WorldWideScience

Sample records for reprogram human fibroblasts

  1. Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State

    Science.gov (United States)

    Fu, Ji-Dong; Stone, Nicole R.; Liu, Lei; Spencer, C. Ian; Qian, Li; Hayashi, Yohei; Delgado-Olguin, Paul; Ding, Sheng; Bruneau, Benoit G.; Srivastava, Deepak

    2013-01-01

    Summary Direct reprogramming of adult somatic cells into alternative cell types has been shown for several lineages. We previously showed that GATA4, MEF2C, and TBX5 (GMT) directly reprogrammed nonmyocyte mouse heart cells into induced cardiomyocyte-like cells (iCMs) in vitro and in vivo. However, GMT alone appears insufficient in human fibroblasts, at least in vitro. Here, we show that GMT plus ESRRG and MESP1 induced global cardiac gene-expression and phenotypic shifts in human fibroblasts derived from embryonic stem cells, fetal heart, and neonatal skin. Adding Myocardin and ZFPM2 enhanced reprogramming, including sarcomere formation, calcium transients, and action potentials, although the efficiency remained low. Human iCM reprogramming was epigenetically stable. Furthermore, we found that transforming growth factor β signaling was important for, and improved the efficiency of, human iCM reprogramming. These findings demonstrate that human fibroblasts can be directly reprogrammed toward the cardiac lineage, and lay the foundation for future refinements in vitro and in vivo. PMID:24319660

  2. Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Holst, Bjørn; Tümer, Zeynep

    2014-01-01

    The discovery of human-induced pluripotent stem cells (iPSCs) has sparked great interest in the potential treatment of patients with their own in vitro differentiated cells. Recently, knockout of the Tumor Protein 53 (p53) gene was reported to facilitate reprogramming but unfortunately also led...... to genomic instability. Here, we report that transient suppression of p53 during nonintegrative reprogramming of human fibroblasts leads to a significant increase in expression of pluripotency markers and overall number of iPSC colonies, due to downstream suppression of p21, without affecting apoptosis...

  3. Direct Reprogramming of Human Dermal Fibroblasts Into Endothelial Cells Using ER71/ETV2.

    Science.gov (United States)

    Lee, Sangho; Park, Changwon; Han, Ji Woong; Kim, Ju Young; Cho, Kyuwon; Kim, Eun Jae; Kim, Sangsung; Lee, Shin-Jeong; Oh, Se Yeong; Tanaka, Yoshiaki; Park, In-Hyun; An, Hyo Jae; Shin, Claire Min; Sharma, Shraya; Yoon, Young-Sup

    2017-03-03

    Direct conversion or reprogramming of human postnatal cells into endothelial cells (ECs), bypassing stem or progenitor cell status, is crucial for regenerative medicine, cell therapy, and pathophysiological investigation but has remained largely unexplored. We sought to directly reprogram human postnatal dermal fibroblasts to ECs with vasculogenic and endothelial transcription factors and determine their vascularizing and therapeutic potential. We utilized various combinations of 7 EC transcription factors to transduce human postnatal dermal fibroblasts and found that ER71/ETV2 (ETS variant 2) alone best induced endothelial features. KDR+ (kinase insert domain receptor) cells sorted at day 7 from ER71/ETV2-transduced human postnatal dermal fibroblasts showed less mature but enriched endothelial characteristics and thus were referred to as early reprogrammed ECs (rECs), and did not undergo maturation by further culture. After a period of several weeks' transgene-free culture followed by transient reinduction of ER71/ETV2, early rECs matured during 3 months of culture and showed reduced ETV2 expression, reaching a mature phenotype similar to postnatal human ECs. These were termed late rECs. While early rECs exhibited an immature phenotype, their implantation into ischemic hindlimbs induced enhanced recovery from ischemia. These 2 rECs showed clear capacity for contributing to new vessel formation through direct vascular incorporation in vivo. Paracrine or proangiogenic effects of implanted early rECs played a significant role in repairing hindlimb ischemia. This study for the first time demonstrates that ER71/ETV2 alone can directly reprogram human postnatal cells to functional, mature ECs after an intervening transgene-free period. These rECs could be valuable for cell therapy, personalized disease investigation, and exploration of the reprogramming process. © 2016 American Heart Association, Inc.

  4. Improved methods for reprogramming human dermal fibroblasts using fluorescence activated cell sorting.

    Directory of Open Access Journals (Sweden)

    David J Kahler

    Full Text Available Current methods to derive induced pluripotent stem cell (iPSC lines from human dermal fibroblasts by viral infection rely on expensive and lengthy protocols. One major factor contributing to the time required to derive lines is the ability of researchers to identify fully reprogrammed unique candidate clones from a mixed cell population containing transformed or partially reprogrammed cells and fibroblasts at an early time point post infection. Failure to select high quality colonies early in the derivation process results in cell lines that require increased maintenance and unreliable experimental outcomes. Here, we describe an improved method for the derivation of iPSC lines using fluorescence activated cell sorting (FACS to isolate single cells expressing the cell surface marker signature CD13(NEGSSEA4(POSTra-1-60(POS on day 7-10 after infection. This technique prospectively isolates fully reprogrammed iPSCs, and depletes both parental and "contaminating" partially reprogrammed fibroblasts, thereby substantially reducing the time and reagents required to generate iPSC lines without the use of defined small molecule cocktails. FACS derived iPSC lines express common markers of pluripotency, and possess spontaneous differentiation potential in vitro and in vivo. To demonstrate the suitability of FACS for high-throughput iPSC generation, we derived 228 individual iPSC lines using either integrating (retroviral or non- integrating (Sendai virus reprogramming vectors and performed extensive characterization on a subset of those lines. The iPSC lines used in this study were derived from 76 unique samples from a variety of tissue sources, including fresh or frozen fibroblasts generated from biopsies harvested from healthy or disease patients.

  5. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Yakubov, Eduard [Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot (Israel); Rechavi, Gidi [Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rozenblatt, Shmuel [Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv (Israel); Givol, David, E-mail: david.givol@weizmann.ac.il [Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2010-03-26

    Reprogramming of differentiated cells into induced pluripotent cells (iPS) was accomplished in 2006 by expressing four, or less, embryonic stem cell (ESC)-specific transcription factors. Due to the possible danger of DNA damage and the potential tumorigenicity associated with such DNA damage, attempts were made to minimize DNA integration by the vectors involved in this process without complete success. Here we present a method of using RNA transfection as a tool for reprogramming human fibroblasts to iPS. We used RNA synthesized in vitro from cDNA of the same reprogramming four transcription factors. After transfection of the RNA, we show intracellular expression and nuclear localization of the respective proteins in at least 70% of the cells. We used five consecutive transfections to support continuous protein expression resulting in the formation of iPS colonies that express alkaline phosphatase and several ESC markers and that can be expanded. This method completely avoids DNA integration and may be developed to replace the use of DNA vectors in the formation of iPS.

  6. Involvement of Polycomb Repressive Complex 2 in Maturation of Induced Pluripotent Stem Cells during Reprogramming of Mouse and Human Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Niusha Khazaie

    Full Text Available Induced pluripotent stem cells (iPSCs provide a reliable source for the study of regenerative medicine, drug discovery, and developmental biology. Despite extensive studies on the reprogramming of mouse and human fibroblasts into iPSCs, the efficiency of reprogramming is still low. Here, we used a bioinformatics and systems biology approach to study the two gene regulatory waves governing the reprogramming of mouse and human fibroblasts into iPSCs. Our results revealed that the maturation phase of reprogramming was regulated by a more complex regulatory network of transcription factors compared to the initiation phase. Interestingly, in addition to pluripotency factors, the polycomb repressive complex 2 (PRC2 members Ezh2, Eed, Jarid2, Mtf2, and Suz12 are crucially recruited during the maturation phase of reprogramming. Moreover, we found that during the maturation phase of reprogramming, pluripotency factors, via the expression and induction of PRC2 complex members, could silence the lineage-specific gene expression program and maintain a ground state of pluripotency in human and mouse naïve iPSCs. The findings obtained here provide us a better understanding of the gene regulatory network (GRN that governs reprogramming, and the maintenance of the naïve state of iPSCs.

  7. Reprogramming of embryonic human fibroblasts into fetal hematopoietic progenitors by fusion with human fetal liver CD34+ cells.

    Directory of Open Access Journals (Sweden)

    Vladislav M Sandler

    Full Text Available Experiments with somatic cell nuclear transfer, inter-cellular hybrid formation_ENREF_3, and ectopic expression of transcription factors have clearly demonstrated that cell fate can be dramatically altered by changing the epigenetic state of cell nuclei. Here we demonstrate, using chemical fusion, direct reprogramming of the genome of human embryonic fibroblasts (HEF into the state of human fetal liver hFL CD34+ (hFL hematopoietic progenitors capable of proliferating and differentiating into multiple hematopoietic lineages. We show that hybrid cells retain their ploidy and can differentiate into several hematopoietic lineages. Hybrid cells follow transcription program of differentiating hFL cells as shown by genome-wide transcription profiling. Using whole-genome single nucleotide polymorphism (SNP profiling of both donor genomes we demonstrate reprogramming of HEF genome into the state of hFL hematopoietic progenitors. Our results prove that it is possible to convert the fetal somatic cell genome into the state of fetal hematopoietic progenitors by fusion. This suggests a possibility of direct reprogramming of human somatic cells into tissue specific progenitors/stem cells without going all the way back to the embryonic state. Direct reprogramming of terminally differentiated cells into the tissue specific progenitors will likely prove useful for the development of novel cell therapies.

  8. Two factor-based reprogramming of rodent and human fibroblasts into Schwann cells

    Science.gov (United States)

    Mazzara, Pietro Giuseppe; Massimino, Luca; Pellegatta, Marta; Ronchi, Giulia; Ricca, Alessandra; Iannielli, Angelo; Giannelli, Serena Gea; Cursi, Marco; Cancellieri, Cinzia; Sessa, Alessandro; Del Carro, Ubaldo; Quattrini, Angelo; Geuna, Stefano; Gritti, Angela; Taveggia, Carla; Broccoli, Vania

    2017-01-01

    Schwann cells (SCs) generate the myelin wrapping of peripheral nerve axons and are promising candidates for cell therapy. However, to date a renewable source of SCs is lacking. In this study, we show the conversion of skin fibroblasts into induced Schwann cells (iSCs) by driving the expression of two transcription factors, Sox10 and Egr2. iSCs resembled primary SCs in global gene expression profiling and PNS identity. In vitro, iSCs wrapped axons generating compact myelin sheaths with regular nodal structures. Conversely, iSCs from Twitcher mice showed a severe loss in their myelinogenic potential, demonstrating that iSCs can be an attractive system for in vitro modelling of PNS diseases. The same two factors were sufficient to convert human fibroblasts into iSCs as defined by distinctive molecular and functional traits. Generating iSCs through direct conversion of somatic cells offers opportunities for in vitro disease modelling and regenerative therapies. PMID:28169300

  9. Hypoxia Enhances Direct Reprogramming of Mouse Fibroblasts to Cardiomyocyte-Like Cells.

    Science.gov (United States)

    Wang, Yanyan; Shi, Shujun; Liu, Huiwen; Meng, Li

    2016-02-01

    Recent work has shown that mouse and human fibroblasts can be reprogrammed to cardiomyocyte-like cells with a combination of transcription factors. Current research has focused on improving the efficiency and mechanisms for fibroblast reprogramming. Previously, it has been reported that hypoxia enhances fibroblast cell reprogramming to pluripotent stem cells. In this study, we observed that 6 h of hypoxic conditions (2% oxygen) on newborn mouse dermal fibroblasts can improve the efficiency of reprogramming to cardiomyocyte-like cells. Expression of cardiac-related genes and proteins increased at 4 weeks after transfer of three transcription factors (Gata4/Mef2c/Tbx5 [GMT]). However, beating cardiomyocyte cells were not detected. The epigenetic mechanism of hypoxia-induced fibroblast reprogramming to cardiomyocyte cells requires further study.

  10. A feeder- and xeno-free human induced pluripotent stem cell line obtained from primary human dermal fibroblasts with epigenetic repression of reprogramming factors expression: GPCCi001-A

    Directory of Open Access Journals (Sweden)

    Michał Stefan Lach

    2017-04-01

    Full Text Available The primary human dermal fibroblasts (PHDFs from breast cancer patient were obtained to generate the human induced pluripotent stem cell line GPCCi001-A via lentiviral transfection. Thus, a modified EF1a-hSTEMCCA-loxP with tetO operator which regulates transgene expression was used. This method takes advantage of epigenetic regulation of transcription and allows for stable silencing of the reprogramming factors in obtained hiPS cells. To increase the potential utility of hiPSCs for clinical applications, they were adapted to feeder- and xeno-free conditions. The pluripotency of GPCCi001-A cell line and ability to differentiate into three germ layers was confirmed.

  11. Directly reprogramming fibroblasts into adipogenic, neurogenic and hepatogenic differentiation lineages by defined factors

    Science.gov (United States)

    Wu, Wei; Jin, Yu-Qing; Gao, Zhen

    2017-01-01

    The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types represents a great potential technology for regenerative medicine. In the present study, the potential of key developmental adipogenic, neurogenic and hepatogenic regulators to reprogram human fibroblasts into adipocytes, neurocytes and hepatocytes was investigated. The results demonstrated that direct reprogramming of octamer-binding transcription factor 4 (Oct4) and CCAAT-enhancer-binding protein (C/EBP)β activated C/EBPα and peroxisome proliferator-activated receptor-γ expression, inducing the conversion of fibroblasts into adipocytes. Similarly, direct reprogramming of the transcription factors sex determining region-box 2, trans-acting T-cell specific transcription factor (GATA-3) and neurogenic differentiation 1 in fibroblasts may induce neurogenic differentiation through hemagglutinating virus of Japan envelope (HVJ-E) transfection. Moreover, hepatogenic differentiation was induced by combining the direct reprogramming of Oct4, GATA-3, hepatocyte nuclear factor 1 homeobox α and forkhead box protein A2 in fibroblasts. These results demonstrate that specific transcription factors and reprogramming factors are able to directly reprogram fibroblasts into adipogenic, neurogenic and hepatogenic differentiation lineages by HVJ-E transfection. PMID:28587331

  12. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons.

    Science.gov (United States)

    Wapinski, Orly L; Vierbuchen, Thomas; Qu, Kun; Lee, Qian Yi; Chanda, Soham; Fuentes, Daniel R; Giresi, Paul G; Ng, Yi Han; Marro, Samuele; Neff, Norma F; Drechsel, Daniela; Martynoga, Ben; Castro, Diogo S; Webb, Ashley E; Südhof, Thomas C; Brunet, Anne; Guillemot, Francois; Chang, Howard Y; Wernig, Marius

    2013-10-24

    Direct lineage reprogramming is a promising approach for human disease modeling and regenerative medicine, with poorly understood mechanisms. Here, we reveal a hierarchical mechanism in the direct conversion of fibroblasts into induced neuronal (iN) cells mediated by the transcription factors Ascl1, Brn2, and Myt1l. Ascl1 acts as an "on-target" pioneer factor by immediately occupying most cognate genomic sites in fibroblasts. In contrast, Brn2 and Myt1l do not access fibroblast chromatin productively on their own; instead, Ascl1 recruits Brn2 to Ascl1 sites genome wide. A unique trivalent chromatin signature in the host cells predicts the permissiveness for Ascl1 pioneering activity among different cell types. Finally, we identified Zfp238 as a key Ascl1 target gene that can partially substitute for Ascl1 during iN cell reprogramming. Thus, a precise match between pioneer factors and the chromatin context at key target genes is determinative for transdifferentiation to neurons and likely other cell types. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Hepatocyte growth factor improves direct reprogramming of fibroblasts towards endothelial progenitor cells via ETV2 transduction

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-09-01

    Full Text Available Human fibroblasts can be differentiated into endothelial progenitor cells by direct reprogramming via ETV-2 transfection. Previously, we have shown that the efficacy of direct reprogramming can be enhanced by hypoxia treatment. In this study, we aim to investigate whether the efficacy of direct reprogramming of fibroblasts into EPCs via Ets variant gene 2 (ETV2 transfection can be increased with hepatocyte growth factor (HGF treatment. Foreskin-derived fibroblasts were cultured in standard medium (DMEM/F12 supplemented with fetal bovine serum. They were then transduced with a viral vector expressing ETV2 in culture medium supplemented with HGF. The transduced fibroblasts were cultured in endothelial cell medium supplemented with HGF for 28 days. The efficacy of direct reprogramming was evaluated based on expression of CD31 and VEGFR2 markers by transduced cells. Phenotypic and functional characterization of induced EPCs were also confirmed by expression of particular genes and in vitro angiogenesis assays. Our results showed that HGF significantly increased the efficacy of direct reprogramming of fibroblasts towards EPCs via ETV2 transcription factors; efficiency increased from 5.41+/-1.51% for ETV2 transduction alone to 12.31+/-2.15% for ETV2 transduction combined with HGF treatment. These findings suggest the rationale for combined use of ETV2 and HGF in direct in vitro reprogramming of fibroblasts into EPCs. [Biomed Res Ther 2016; 3(9.000: 836-843

  14. MYC Mediates Large Oncosome-Induced Fibroblast Reprogramming in Prostate Cancer.

    Science.gov (United States)

    Minciacchi, Valentina R; Spinelli, Cristiana; Reis-Sobreiro, Mariana; Cavallini, Lorenzo; You, Sungyong; Zandian, Mandana; Li, Xiaohong; Mishra, Rajeev; Chiarugi, Paola; Adam, Rosalyn M; Posadas, Edwin M; Viglietto, Giuseppe; Freeman, Michael R; Cocucci, Emanuele; Bhowmick, Neil A; Di Vizio, Dolores

    2017-05-01

    Communication between cancer cells and the tumor microenvironment results in the modulation of complex signaling networks that facilitate tumor progression. Here, we describe a new mechanism of intercellular communication originating from large oncosomes (LO), which are cancer cell-derived, atypically large (1-10 μm) extracellular vesicles (EV). We demonstrate that, in the context of prostate cancer, LO harbor sustained AKT1 kinase activity, nominating them as active signaling platforms. Active AKT1 was detected in circulating EV from the plasma of metastatic prostate cancer patients and was LO specific. LO internalization induced reprogramming of human normal prostate fibroblasts as reflected by high levels of α-SMA, IL6, and MMP9. In turn, LO-reprogrammed normal prostate fibroblasts stimulated endothelial tube formation in vitro and promoted tumor growth in mice. Activation of stromal MYC was critical for this reprogramming and for the sustained cellular responses elicited by LO, both in vitro and in vivo in an AKT1-dependent manner. Inhibition of LO internalization prevented activation of MYC and impaired the tumor-supporting properties of fibroblasts. Overall, our data show that prostate cancer-derived LO powerfully promote establishment of a tumor-supportive environment by inducing a novel reprogramming of the stroma. This mechanism offers potential alternative options for patient treatment. Cancer Res; 77(9); 2306-17. ©2017 AACR. ©2017 American Association for Cancer Research.

  15. Reprogramming of fibroblast nuclei after transfer into bovine oocytes.

    Science.gov (United States)

    De Sousa, P A; Winger, Q; Hill, J R; Jones, K; Watson, A J; Westhusin, M E

    1999-01-01

    Recent landmark achievements in animal cloning have demonstrated that the events of cell differentiation can, in principle, be reversed. This reversal necessarily requires large-scale genetic reprogramming, of which little is known. In the present study we characterized the extent to which blastocyst stage-specific mRNA expression would be conserved in bovine embryos produced by nuclear transfer (NT) using fetal fibroblasts as nuclei donors (FF NT). The mRNA pool of FF NT embryos was compared with that of NT embryos reconstructed from embryonic blastomeres (Emb NT), with embryos produced under in vivo or in vitro conditions, and finally with fibroblast cells. Embryo/cell-specific mRNA pools were contrasted using differential display methodology. Random oligonucleotide primer pair combinations were used to subfractionate mRNA populations and represent individual mRNAs as copy DNA (cDNA) bands ranging in size from 100 to 800 base pairs. Regardless of whether bovine blastocysts developed in vivo or in vitro, or were derived after nuclear transplantation with embryonic blastomeres or fetal fibroblasts, their mRNA profile was highly conserved and distinct from that of fetal fibroblast cells. There was approximately 95% conservation in cDNA banding patterns between FF NT, Emb NT, and in vivo derived blastocysts, when compared with in vitro derived blastocysts. In contrast, the cDNA banding in fibroblasts was only 67% conserved with in vitro derived blastocysts (p types to serve as nuclear donors for embryo reconstruction and provide information that can be used to improve the efficiency of cloning animals by nuclear transplantation.

  16. Hierarchical mechanisms for transcription factor-mediated reprogramming of fibroblasts to neurons

    Science.gov (United States)

    Wapinski, Orly L.; Vierbuchen, Thomas; Qu, Kun; Lee, Qian Yi; Chanda, Soham; Fuentes, Daniel R.; Giresi, Paul G.; Ng, Yi Han; Marro, Samuele; Neff, Norma F.; Drechsel, Daniela; Martynoga, Ben; Castro, Diogo S.; Webb, Ashley E.; Brunet, Anne; Guillemot, Francois; Chang, Howard Y.; Wernig, Marius

    2013-01-01

    SUMMARY Direct lineage reprogramming is a promising approach for human disease modeling and regenerative medicine with poorly understood mechanisms. Here we reveal a hierarchical mechanism in the direct conversion of fibroblasts into induced neuronal (iN) cells mediated by the transcription factors Ascl1, Brn2, and Myt1l. Ascl1 acts as an “on target” pioneer factor by immediately occupying most cognate genomic sites in fibroblasts. In contrast, Brn2 and Myt1l do not access fibroblast chromatin productively on their own; instead Ascl1 recruits Brn2 to Ascl1 sites genome-wide. A unique trivalent chromatin signature in the host cells predicts the permissiveness for Ascl1 pioneering activity among different cell types. Finally, we identified Zfp238 as a key Ascl1 target gene that can partially substitute for Ascl1 during iN cell reprogramming. Thus, precise match between pioneer factor and the chromatin context at key target genes is determinative for trans-differentiation to neurons and likely other cell types. PMID:24243019

  17. Study of mitochondrial respiratory defects on reprogramming to human induced pluripotent stem cells

    Science.gov (United States)

    Hung, Sandy S.C.; Van Bergen, Nicole J.; Jackson, Stacey; Liang, Helena; Mackey, David A.; Hernández, Damián; Lim, Shiang Y.; Hewitt, Alex W.; Trounce, Ian; Pébay, Alice; Wong, Raymond C.B.

    2016-01-01

    Reprogramming of somatic cells into a pluripotent state is known to be accompanied by extensive restructuring of mitochondria and switch in metabolic requirements. Here we utilized Leber's hereditary optic neuropathy (LHON) as a mitochondrial disease model to study the effects of homoplasmic mtDNA mutations and subsequent oxidative phosphorylation (OXPHOS) defects in reprogramming. We obtained fibroblasts from a total of 6 LHON patients and control subjects, and showed a significant defect in complex I respiration in LHON fibroblasts by high-resolution respiratory analysis. Using episomal vector reprogramming, our results indicated that human induced pluripotent stem cell (hiPSC) generation is feasible in LHON fibroblasts. In particular, LHON-specific OXPHOS defects in fibroblasts only caused a mild reduction and did not significantly affect reprogramming efficiency, suggesting that hiPSC reprogramming can tolerate a certain degree of OXPHOS defects. Our results highlighted the induction of genes involved in mitochondrial biogenesis (TFAM, NRF1), mitochondrial fusion (MFN1, MFN2) and glycine production (GCAT) during reprogramming. However, LHON-associated OXPHOS defects did not alter the kinetics or expression levels of these genes during reprogramming. Together, our study provides new insights into the effects of mtDNA mutation and OXPHOS defects in reprogramming and genes associated with various aspects of mitochondrial biology. PMID:27127184

  18. Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, Tbx5

    Science.gov (United States)

    Chen, J.X.; Krane, M.; Deutsch, M. A.; Wang, L.; Rav-Acha, M.; Gregoire, S.; Engels, M. C.; Rajarajan, K.; Karra, R.; Abel, E. D.; Wu, J. C.; Milan, D.; Wu, S. M.

    2012-01-01

    Rationale Direct reprogramming of fibroblasts into cardiomyocytes is a novel strategy for cardiac regeneration. However, the key determinants involved in this process are unknown. Objective To assess the efficiency of direct fibroblast reprogramming via viral overexpression of GATA4, Mef2c, and Tbx5 (GMT). Methods and Results We induced GMT overexpression in murine tail tip fibroblasts (TTFs) and cardiac fibroblasts (CFs) from multiple lines of transgenic mice carrying different cardiomyocyte lineage reporters. We found that the induction of GMT overexpression in TTFs and CFs is inefficient at inducing molecular and electrophysiological phenotypes of mature cardiomyocytes. In addition, transplantation of GMT infected CFs into injured mouse hearts resulted in decreased cell survival with minimal induction of cardiomyocyte genes. Conclusions Significant challenges remain in our ability to convert fibroblasts into cardiomyocyte-like cells and a greater understanding of cardiovascular epigenetics is needed to increase the translational potential of this strategy. PMID:22581928

  19. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq.

    Science.gov (United States)

    Treutlein, Barbara; Lee, Qian Yi; Camp, J Gray; Mall, Moritz; Koh, Winston; Shariati, Seyed Ali Mohammad; Sim, Sopheak; Neff, Norma F; Skotheim, Jan M; Wernig, Marius; Quake, Stephen R

    2016-06-16

    Direct lineage reprogramming represents a remarkable conversion of cellular and transcriptome states. However, the intermediate stages through which individual cells progress during reprogramming are largely undefined. Here we use single-cell RNA sequencing at multiple time points to dissect direct reprogramming from mouse embryonic fibroblasts to induced neuronal cells. By deconstructing heterogeneity at each time point and ordering cells by transcriptome similarity, we find that the molecular reprogramming path is remarkably continuous. Overexpression of the proneural pioneer factor Ascl1 results in a well-defined initialization, causing cells to exit the cell cycle and re-focus gene expression through distinct neural transcription factors. The initial transcriptional response is relatively homogeneous among fibroblasts, suggesting that the early steps are not limiting for productive reprogramming. Instead, the later emergence of a competing myogenic program and variable transgene dynamics over time appear to be the major efficiency limits of direct reprogramming. Moreover, a transcriptional state, distinct from donor and target cell programs, is transiently induced in cells undergoing productive reprogramming. Our data provide a high-resolution approach for understanding transcriptome states during lineage differentiation.

  20. Reprogramming mouse embryo fibroblasts to functional islets without genetic manipulation.

    Science.gov (United States)

    Chandravanshi, Bhawna; Bhonde, Ramesh

    2018-02-01

    The constant quest for generation of large number of islets aimed us to explore the differentiation potential of mouse embryo fibroblast cells. Mouse embryo fibroblast cells isolated from 12- to 14-day-old pregnant mice were characterized for their surface markers and tri-lineage differentiation potential. They were subjected to serum-free media containing a cocktail of islet differentiating reagents and analyzed for the expression of pancreatic lineage transcripts. The islet-like cell aggregates (ICAs) was confirmed for their pancreatic properties via immunofluorecence for C-peptide, glucagon, and somatostain. They were positive for CD markers-Sca1, CD44, CD73, and CD90 and negative for hematopoietic markers-CD34 and CD45 at both transcription and translational levels. The transcriptional analysis of the ICAs at different day points exhibited up-regulation of islet markers (Insulin, PDX1, HNF3, Glucagon, and Somatostatin) and down-regulation of MSC-markers (Vimentin and Nestin). They positively stained for dithizone, C-peptide, insulin, glucagon, and somatostatin indicating intact insulin producing machinery. In vitro glucose stimulation assay revealed three-fold increase in insulin secretion as compared to basal glucose with insulin content being the same in both the conditions. The preliminary in vivo data on ICA transplantation showed reversal of diabetes in streptozotocin induced diabetic mice. Our results demonstrate for the first time that mouse embryo fibroblast cells contain a population of MSC-like cells which could differentiate into insulin producing cell aggregates. Hence, our study could be extrapolated for isolation of MSC-like cells from human, medically terminated pregnancies to generate ICAs for treating type 1 diabetic patients. © 2017 Wiley Periodicals, Inc.

  1. Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors

    Directory of Open Access Journals (Sweden)

    Han-Seop Kim

    2014-01-01

    Full Text Available The direct lineage reprogramming of somatic cells to other lineages by defined factors has led to innovative cell-fate-change approaches for providing patient-specific cells. Recent reports have demonstrated that four pluripotency factors (Oct4, Sox2, Klf4, and c-Myc are sufficient to directly reprogram fibroblasts to other specific cells, including induced neural stem cells (iNSCs. Here, we show that mouse fibroblasts can be directly reprogrammed into midbrain dopaminergic neuronal progenitors (DPs by temporal expression of the pluripotency factors and environment containing sonic hedgehog and fibroblast growth factor 8. Within thirteen days, self-renewing and functional induced DPs (iDPs were generated. Interestingly, the inhibition of both Jak and Gsk3β notably enhanced the iDP reprogramming efficiency. We confirmed the functionality of the iDPs by showing that the dopaminergic neurons generated from iDPs express midbrain markers, release dopamine, and show typical electrophysiological profiles. Our results demonstrate that the pluripotency factors-mediated direct reprogramming is an invaluable strategy for supplying functional and proliferating iDPs and may be useful for other neural progenitors required for disease modeling and cell therapies for neurodegenerative disorders.

  2. Constitutive Reprogramming of Fibroblast Mitochondrial Metabolism in Pulmonary Hypertension

    Czech Academy of Sciences Publication Activity Database

    Plecitá-Hlavatá, Lydie; Tauber, Jan; Li, M.; Zhang, H.; Flockton, A. R.; Pullamsetti, S. S.; Chelladurai, P.; D'Alessandro, A.; El Kasmi, K. C.; Ježek, Petr; Stenmark, K. R.

    2016-01-01

    Roč. 55, č. 1 (2016), s. 47-57 ISSN 1044-1549 R&D Projects: GA MŠk(CZ) LH11055; GA MŠk(CZ) LH15071 Institutional support: RVO:67985823 Keywords : mitochondria * complex I * oxidative metabolism * pulmonary hypertension * adventitial fibroblasts Subject RIV: ED - Physiology Impact factor: 4.100, year: 2016

  3. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence.

    Directory of Open Access Journals (Sweden)

    Marta Winiecka-Klimek

    Full Text Available Tumorigenic potential of induced pluripotent stem cells (iPSCs infiltrating population of induced neural stem cells (iNSCs generated from iPSCs may limit their medical applications. To overcome such a difficulty, direct reprogramming of adult somatic cells into iNSCs was proposed. The aim of this study was the systematic comparison of induced neural cells (iNc obtained with different methods-direct reprogramming of human adult fibroblasts with either SOX2 (SiNSc-like or SOX2 and c-MYC (SMiNSc-like and induced pluripotent stem cells differentiation to ebiNSc-in terms of gene expression profile, differentiation potential as well as proliferation properties. Immunocytochemistry and real-time PCR analyses were used to evaluate gene expression profile and differentiation potential of various iNc types. Bromodeoxyuridine (BrdU incorporation and senescence-associated beta-galactosidase (SA-β-gal assays were used to estimate proliferation potential. All three types of iNc were capable of neuronal differentiation; however, astrocytic differentiation was possible only in case of ebiNSc. Contrary to ebiNSc generation, the direct reprogramming was rarely a propitious process, despite 100% transduction efficiency. The potency of direct iNSCs-like cells generation was lower as compared to iNSCs obtained by iPSCs differentiation, and only slightly improved when c-MYC was added. Directly reprogrammed iNSCs-like cells were lacking the ability to differentiate into astrocytic cells and characterized by poor efficiency of neuronal cells formation. Such features indicated that these cells could not be fully reprogrammed, as confirmed mainly with senescence detection. Importantly, SiNSc-like and SMiNSc-like cells were unable to achieve the long-term survival and became senescent, which limits their possible therapeutic applicability. Our results suggest that iNSCs-like cells, generated in the direct reprogramming attempts, were either not fully reprogrammed or

  4. Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine.

    Science.gov (United States)

    Pennarossa, G; Maffei, S; Campagnol, M; Rahman, M M; Brevini, T A L; Gandolfi, F

    2014-02-01

    Large animal models provide useful data for pre-clinical research including regenerative medicine. However whereas the derivation of tissue specific stem cells has been successful. pluripotent stem cells so far have been difficult to obtain in these species. A possible alternative could be direct reprogramming but this has only been described in mouse and human. We have recently described an alternative method for reprogramming human somatic cells based on a brief demethylation step immediately followed by an induction protocol. Aim of the present paper was to determine whether this method is applicable to pig in the attempt to achieve cell reprogramming in a large animal model for the first time. Pig dermal fibroblasts were exposed to DNA methyltransferase inhibitor 5-aza-cytidine (5-aza-CR) for 18 h. After a brief recovery period, fibroblast were subjected to a three-step protocol for the induction of endocrine pancreatic differentiation that was completed after 42 days. During the process pig fibroblast rapidly lost their typical elongated form and gradually became organized in a reticular pattern that evolved into distinct cell aggregates. After a brief expression of some pluripotency genes, cells expression pattern mimicked the transition from primitive endoderm to endocrine pancreas. Not only converted cells expressed insulin but were able to release it in response to a physiological glucose challenge in vitro. Finally they were able to protect recipient mice against streptozotocin-induced diabetes. This work shows, that the conversion of a somatic cell into another, even if belonging to a different germ layer, is possible also in pig.

  5. Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage.

    Science.gov (United States)

    Sridhar, Akshayalakshmi; Ohlemacher, Sarah K; Langer, Kirstin B; Meyer, Jason S

    2016-04-01

    The derivation of human induced pluripotent stem cells (hiPSCs) from patient-specific sources has allowed for the development of novel approaches to studies of human development and disease. However, traditional methods of generating hiPSCs involve the risks of genomic integration and potential constitutive expression of pluripotency factors and often exhibit low reprogramming efficiencies. The recent description of cellular reprogramming using synthetic mRNA molecules might eliminate these shortcomings; however, the ability of mRNA-reprogrammed hiPSCs to effectively give rise to retinal cell lineages has yet to be demonstrated. Thus, efforts were undertaken to test the ability and efficiency of mRNA-reprogrammed hiPSCs to yield retinal cell types in a directed, stepwise manner. hiPSCs were generated from human fibroblasts via mRNA reprogramming, with parallel cultures of isogenic human fibroblasts reprogrammed via retroviral delivery of reprogramming factors. New lines of mRNA-reprogrammed hiPSCs were established and were subsequently differentiated into a retinal fate using established protocols in a directed, stepwise fashion. The efficiency of retinal differentiation from these lines was compared with retroviral-derived cell lines at various stages of development. On differentiation, mRNA-reprogrammed hiPSCs were capable of robust differentiation to a retinal fate, including the derivation of photoreceptors and retinal ganglion cells, at efficiencies often equal to or greater than their retroviral-derived hiPSC counterparts. Thus, given that hiPSCs derived through mRNA-based reprogramming strategies offer numerous advantages owing to the lack of genomic integration or constitutive expression of pluripotency genes, such methods likely represent a promising new approach for retinal stem cell research, in particular, those for translational applications. In the current report, the ability to derive mRNA-reprogrammed human induced pluripotent stem cells (hi

  6. ONSL and OSKM cocktails act synergistically in reprogramming human somatic cells into induced pluripotent stem cells.

    Science.gov (United States)

    Jung, Laura; Tropel, Philippe; Moal, Yohann; Teletin, Marius; Jeandidier, Eric; Gayon, Régis; Himmelspach, Christian; Bello, Fiona; André, Cécile; Tosch, Adeline; Mansouri, Ahmed; Bruant-Rodier, Catherine; Bouillé, Pascale; Viville, Stéphane

    2014-06-01

    The advent of human induced pluripotent stem cells (hiPSC) is revolutionizing many research fields including cell-replacement therapy, drug screening, physiopathology of specific diseases and more basic research such as embryonic development or diseases modeling. Despite the large number of reports on reprogramming methods, techniques in use remain globally inefficient. We present here a new optimized approach to improve this efficiency. After having tested different monocistronic vectors with poor results, we adopted a polycistronic cassette encoding Thomson's cocktail OCT4, NANOG, SOX2 and LIN28 (ONSL) separated by 2A peptides. This cassette was tested in various vector backbones, based on lentivirus or retrovirus under a LTR or EF1 alpha promoter. This allowed us to show that ONSL-carrier retrovectors reprogrammed adult fibroblast cells with a much higher efficiency (up to 0.6%) than any other tested. We then compared the reprogramming efficiencies of two different polycistronic genes, ONSL and OCT4, SOX2, KLF4 and cMYC (OSKM) placed in the same retrovector backbone. Interestingly, in this context ONSL gene reprograms more efficiently than OSKM but OSKM reprograms faster suggesting that the two cocktails may reprogram through distinct pathways. By equally mixing RV-LTR-ONSL and RV-LTR-OSKM, we indeed observed a remarkable synergy, yielding a reprogramming efficiency of >2%. We present here a drastic improvement of the reprogramming efficiency, which opens doors to the development of automated and high throughput strategies of hiPSC production. Furthermore, non-integrative reprogramming protocols (i.e. mRNA) may take advantage of this synergy to boost their efficiency. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Efficient Reprogramming of Mouse Fibroblasts to Neuronal Cells including Dopaminergic Neurons

    OpenAIRE

    Seung-ick Oh; Hang-soo Park; Insik Hwang; Han-kyul Park; Kyung-Ah Choi; Hyesun Jeong; Suhng Wook Kim; Sunghoi Hong

    2014-01-01

    Somatic cells were directly converted to functional neurons through the use of a combination of transcription factors, including Ascl1, Brn2, and Myt1l. However, a major limitation is the lack of a reliable source of cell-replacement therapy for neurological diseases. Here, we show that a combination of the transcription factors Ascl1 and Nurr1 (AN) and neurotrophic factors including SHH and FGF8b directly reprogrammed embryonic mouse fibroblasts to induced neuronal (iN) cells: pan-neuronal ...

  8. Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Animal embryonic stem cells (ESCs provide powerful tool for studies of early embryonic development, gene targeting, cloning, and regenerative medicine. However, the majority of attempts to establish ESC lines from large animals, especially ungulate mammals have failed. Recently, another type of pluripotent stem cells, known as induced pluripotent stem cells (iPSCs, have been successfully generated from mouse, human, monkey, rat and pig. In this study we show sheep fibroblasts can be reprogrammed to pluripotency by defined factors using a drug-inducible system. Sheep iPSCs derived in this fashion have a normal karyotype, exhibit morphological features similar to those of human ESCs and express AP, Oct4, Sox2, Nanog and the cell surface marker SSEA-4. Pluripotency of these cells was further confirmed by embryoid body (EB and teratoma formation assays which generated derivatives of all three germ layers. Our results also show that the substitution of knockout serum replacement (KSR with fetal bovine serum in culture improves the reprogramming efficiency of sheep iPSCs. Generation of sheep iPSCs places sheep on the front lines of large animal preclinical trials and experiments involving modification of animal genomes.

  9. Enhanced generation of induced pluripotent stem cells from a subpopulation of human fibroblasts.

    Directory of Open Access Journals (Sweden)

    James A Byrne

    Full Text Available BACKGROUND: The derivation of induced pluripotent stem cells (iPSCs provides new possibilities for basic research and novel cell-based therapies. Limitations, however, include our current lack of understanding regarding the underlying mechanisms and the inefficiency of reprogramming. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report identification and isolation of a subpopulation of human dermal fibroblasts that express the pluripotency marker stage specific embryonic antigen 3 (SSEA3. Fibroblasts that expressed SSEA3 demonstrated an enhanced iPSC generation efficiency, while no iPSC derivation was obtained from the fibroblasts that did not express SSEA3. Transcriptional analysis revealed NANOG expression was significantly increased in the SSEA3 expressing fibroblasts, suggesting a possible mechanistic explanation for the differential reprogramming. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this study is the first to identify a pluripotency marker in a heterogeneous population of human dermal fibroblasts, to isolate a subpopulation of cells that have a significantly increased propensity to reprogram to pluripotency and to identify a possible mechanism to explain this differential reprogramming. This discovery provides a method to significantly increase the efficiency of reprogramming, enhancing the feasibility of the potential applications based on this technology, and a tool for basic research studies to understand the underlying reprogramming mechanisms.

  10. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-20

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  11. Chemical Cocktails Enable Hepatic Reprogramming of Mouse Fibroblasts with a Single Transcription Factor

    Directory of Open Access Journals (Sweden)

    Ren Guo

    2017-08-01

    Full Text Available Liver or hepatocytes transplantation is limited by the availability of donor organs. Functional hepatocytes independent of the donor sources may have wide applications in regenerative medicine and the drug industry. Recent studies have demonstrated that chemical cocktails may induce reprogramming of fibroblasts into a range of functional somatic cells. Here, we show that mouse fibroblasts can be transdifferentiated into the hepatocyte-like cells (iHeps using only one transcription factor (TF (Foxa1, Foxa2, or Foxa3 plus a chemical cocktail. These iHeps show typical epithelial morphology, express multiple hepatocyte-specific genes, and acquire hepatocyte functions. Genetic lineage tracing confirms the fibroblast origin of these iHeps. More interestingly, these iHeps are expandable in vitro and can reconstitute the damaged hepatic tissues of the fumarylacetoacetate hydrolase-deficient (Fah−/− mice. Our study provides a strategy to generate functional hepatocyte-like cells by using a single TF plus a chemical cocktail and is one step closer to generate the full-chemical iHeps.

  12. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yingying; Chen, Xi; Yu, Dehai [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Tao [Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Cui, Jiuwei; Wang, Guanjun [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Hu, Ji-Fan, E-mail: jifan@stanford.edu [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Wei, E-mail: jdyylw@163.com [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China)

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  13. Reprogramming fibroblasts to neural-precursor-like cells by structured overexpression of pallial patterning genes.

    Science.gov (United States)

    Raciti, Marilena; Granzotto, Marilena; Duc, Minh Do; Fimiani, Cristina; Cellot, Giada; Cherubini, Enrico; Mallamaci, Antonello

    2013-11-01

    In this study, we assayed the capability of four genes implicated in embryonic specification of the cortico-cerebral field, Foxg1, Pax6, Emx2 and Lhx2, to reprogramme mouse embryonic fibroblasts towards neural identities. Lentivirus-mediated, TetON-dependent overexpression of Pax6 and Foxg1 transgenes specifically activated the neural stem cell (NSC) reporter Sox1-EGFP in a substantial fraction of engineered cells. The efficiency of this process was enhanced up to ten times by simultaneous inactivation of Trp53 and co-administration of a specific drug mix inhibiting HDACs, H3K27-HMTase and H3K4m2-demethylase. Remarkably, a fraction of the reprogrammed population expressed other NSC markers and retained its new identity, even after switching off the reprogramming transgenes. When transferred into a pro-differentiative environment, Pax6/Foxg1-overexpressing cells activated the neuronal marker Tau-EGFP. Frequency of Tau-EGFP positive cells was almost doubled upon delayed delivery of Emx2 and Lhx2 transgenes. A further improvement of the neuron-like cell output was achieved by inhibition of the BMP and TGFβ pathways. Tau-EGFP positive cells were able to generate action potentials upon injection of depolarizing current pulses, further indicating their neuron-like phenotype. © 2013.

  14. Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Ahmed Kamel El-Sayed

    2014-11-01

    Full Text Available Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1 and Rex-1 (ZFP-42, zinc finger protein 42. Using embryonic stem cells (ESCs conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations.

  15. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells.

    Science.gov (United States)

    Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren

    2015-01-01

    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation.

  16. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    Science.gov (United States)

    Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren

    2015-01-01

    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. PMID:25834424

  17. Non-viral reprogramming of fibroblasts into induced pluripotent stem cells by Sleeping Beauty and piggyBac transposons.

    Science.gov (United States)

    Talluri, Thirumala R; Kumar, Dharmendra; Glage, Silke; Garrels, Wiebke; Ivics, Zoltan; Debowski, Katharina; Behr, Rüdiger; Kues, Wilfried A

    2014-07-18

    The generation of induced pluripotent stem (iPS) cells represents a promising approach for innovative cell therapies. The original method requires viral transduction of several reprogramming factors, which may be associated with an increased risk of tumorigenicity. Transposition of reprogramming cassettes represents a recent alternative to viral approaches. Since binary transposons can be produced as common plasmids they provide a safe and cost-efficient alternative to viral delivery methods. Here, we compared the efficiency of two different transposon systems, Sleeping Beauty (SB) and piggyBac (PB), for the generation of murine iPS. Murine fibroblasts derived from an inbred BL/6 mouse line carrying a pluripotency reporter, Oct4-EGFP, and fibroblasts derived from outbred NMRI mice were employed for reprogramming. Both transposon systems resulted in the successful isolation of murine iPS cell lines. The reduction of the core reprogramming factors to omit the proto-oncogene c-Myc was compatible with iPS cell line derivation, albeit with reduced reprogramming efficiencies. The transposon-derived iPS cells featured typical hallmarks of pluripotency, including teratoma growth in immunodeficient mice. Thus SB and PB transposons represent a promising non-viral approach for iPS cell derivation. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Metabolic Reprogramming of Cancer-Associated Fibroblasts by IDH3α Downregulation

    Directory of Open Access Journals (Sweden)

    Daoxiang Zhang

    2015-03-01

    Full Text Available Cancer-associated fibroblasts (CAFs provide critical metabolites for tumor growth and undergo metabolic reprogramming to support glycolysis. However, the molecular mechanisms responsible for this change remain unclear. Here, we report that TGF-β1- or PDGF-induced CAFs switch from oxidative phosphorylation to aerobic glycolysis. We identify downregulation of isocitrate dehydrogenase 3α (IDH3α as a marker for this switch. Furthermore, miR-424 downregulates IDH3α during CAF formation. Downregulation of IDH3α decreases the effective level of α-ketoglutarate (α-KG by reducing the ratio of α-KG to fumarate and succinate, resulting in PHD2 inhibition and HIF-1α protein stabilization. The accumulation of HIF-1α, in turn, promotes glycolysis by increasing the uptake of glucose, upregulating expression of glycolytic enzymes under normoxic conditions, and inhibiting oxidative phosphorylation by upregulating NDUFA4L2. CAFs from tumor samples exhibit low levels of IDH3α, and overexpression of IDH3α prevents transformation of fibroblasts into CAFs. Our studies reveal IDH3α to be a critical metabolic switch in CAFs.

  19. Reprogramming diminishes retention of Mycobacterium leprae in Schwann cells and elevates bacterial transfer property to fibroblasts [v2; ref status: indexed, http://f1000r.es/280

    Directory of Open Access Journals (Sweden)

    Toshihiro Masaki

    2013-11-01

    Full Text Available Background: Bacterial pathogens can manipulate or subvert host tissue cells to their advantage at different stages during infection, from initial colonization in primary host niches to dissemination. Recently, we have shown that Mycobacterium leprae (ML, the causative agent of human leprosy, reprogrammed its preferred host niche de-differentiated adult Schwann cells to progenitor/stem cell-like cells (pSLC which appear to facilitate bacterial spread. Here, we studied how this cell fate change influences bacterial retention and transfer properties of Schwann cells before and after reprogramming. Results: Using primary fibroblasts as bacterial recipient cells, we showed that non-reprogrammed Schwann cells, which preserve all Schwann cell lineage and differentiation markers, possess high bacterial retention capacity when co-cultured with skin fibroblasts; Schwann cells failed to transfer bacteria to fibroblasts at higher numbers even after co-culture for 5 days. In contrast, pSLCs, which are derived from the same Schwann cells but have lost Schwann cell lineage markers due to reprogramming, efficiently transferred bacteria to fibroblasts within 24 hours. Conclusions: ML-induced reprogramming converts lineage-committed Schwann cells with high bacterial retention capacity to a cell type with pSLC stage with effective bacterial transfer properties. We propose that such changes in cellular properties may be associated with the initial intracellular colonization, which requires long-term bacterial retention within Schwann cells, in order to spread the infection to other tissues, which entails efficient bacterial transfer capacity to cells like fibroblasts which are abundant in many tissues, thereby potentially maximizing bacterial dissemination. These data also suggest how pathogens could take advantage of multiple facets of host cell reprogramming according to their needs during infection.

  20. Reprogramming diminishes retention of Mycobacterium leprae in Schwann cells and elevates bacterial transfer property to fibroblasts [v3; ref status: indexed, http://f1000r.es/2ae

    Directory of Open Access Journals (Sweden)

    Toshihiro Masaki

    2013-11-01

    Full Text Available Background: Bacterial pathogens can manipulate or subvert host tissue cells to their advantage at different stages during infection, from initial colonization in primary host niches to dissemination. Recently, we have shown that Mycobacterium leprae (ML, the causative agent of human leprosy, reprogrammed its preferred host niche de-differentiated adult Schwann cells to progenitor/stem cell-like cells (pSLC which appear to facilitate bacterial spread. Here, we studied how this cell fate change influences bacterial retention and transfer properties of Schwann cells before and after reprogramming. Results: Using primary fibroblasts as bacterial recipient cells, we showed that non-reprogrammed Schwann cells, which preserve all Schwann cell lineage and differentiation markers, possess high bacterial retention capacity when co-cultured with skin fibroblasts; Schwann cells failed to transfer bacteria to fibroblasts at higher numbers even after co-culture for 5 days. In contrast, pSLCs, which are derived from the same Schwann cells but have lost Schwann cell lineage markers due to reprogramming, efficiently transferred bacteria to fibroblasts within 24 hours. Conclusions: ML-induced reprogramming converts lineage-committed Schwann cells with high bacterial retention capacity to a cell type with pSLC stage with effective bacterial transfer properties. We propose that such changes in cellular properties may be associated with the initial intracellular colonization, which requires long-term bacterial retention within Schwann cells, in order to spread the infection to other tissues, which entails efficient bacterial transfer capacity to cells like fibroblasts which are abundant in many tissues, thereby potentially maximizing bacterial dissemination. These data also suggest how pathogens could take advantage of multiple facets of host cell reprogramming according to their needs during infection.

  1. Targeted release of transcription factors for human cell reprogramming by ZEBRA cell-penetrating peptide.

    Science.gov (United States)

    Caulier, Benjamin; Berthoin, Lionel; Coradin, Helène; Garban, Frédéric; Dagher, Marie Claire; Polack, Benoît; Toussaint, Bertrand; Lenormand, Jean Luc; Laurin, David

    2017-08-30

    Transcription factors (TFs) are key actors of the control of gene expression and consequently of every major process within cells, ranging from cell fate determination, cell cycle control and response to environment. Their ectopic expression has proven high potential in reprogramming cells for regenerative medicine; ontogenesis studies and cell based modelling. Direct delivery of proteins could represent an alternative to current reprogramming methods using gene transfer but still needs technological improvements. Herein, we set-up an efficient cellular penetration of recombinant TFs fused to the minimal transduction domain (MD) from the ZEBRA protein. We show that ZEBRA MD-fused TFs applied on primary human fibroblasts and cord blood CD34 + hematopoietic stem cells route through the cytoplasm to the nucleus. The delivery of Oct4, Sox2 and Nanog by MD leads to the activation of mRNA transcripts from genes regulated by these TFs. Moreover, the expression of genes involved in the pluripotency network but not directly bound by these TFs, is also induced. Overall, the repeated application of MD-Oct4, MD-Sox2, MD-Nanog TFs and the post-transcriptional regulator RNA-binding protein MD-Lin28a, triggers the rejuvenation of human fibroblasts and CD34 + cells. This study provides powerful tools for cell fate reprogramming without genetic interferences. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. CEND1 and NEUROGENIN2 Reprogram Mouse Astrocytes and Embryonic Fibroblasts to Induced Neural Precursors and Differentiated Neurons

    Directory of Open Access Journals (Sweden)

    Katerina Aravantinou-Fatorou

    2015-09-01

    Full Text Available Recent studies demonstrate that astroglia from non-neurogenic brain regions can be reprogrammed into functional neurons through forced expression of neurogenic factors. Here we explored the effect of CEND1 and NEUROG2 on reprogramming of mouse cortical astrocytes and embryonic fibroblasts. Forced expression of CEND1, NEUROG2, or both resulted in acquisition of induced neuronal cells expressing subtype-specific markers, while long-term live-cell imaging highlighted the existence of two different modes of neuronal trans-differentiation. Of note, a subpopulation of CEND1 and NEUROG2 double-transduced astrocytes formed spheres exhibiting neural stem cell properties. mRNA and protein expression studies revealed a reciprocal feedback loop existing between the two molecules, while knockdown of endogenous CEND1 demonstrated that it is a key mediator of NEUROG2-driven neuronal reprogramming. Our data suggest that common reprogramming mechanisms exist driving the conversion of lineage-distant somatic cell types to neurons and reveal a critical role for CEND1 in NEUROG2-driven astrocytic reprogramming.

  3. Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Miyoshi, Keiko; Horiguchi, Taigo; Tanimura, Ayako; Hagita, Hiroko; Noma, Takafumi

    2015-01-01

    Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs), human dermal fibroblasts (hDFs), and hOF-derived induced pluripotent stem cells (hOF-iPSCs), linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.

  4. Discovery and progress of direct cardiac reprogramming.

    Science.gov (United States)

    Kojima, Hidenori; Ieda, Masaki

    2017-06-01

    Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

  5. Cellular reprogramming for understanding and treating human disease.

    Directory of Open Access Journals (Sweden)

    Riya Rajan Kanherkar

    2014-11-01

    Full Text Available In the last two decades we have witnessed a paradigm shift in our understanding of cells so radical that it has rewritten the rules of biology. The study of cellular reprogramming has gone from little more than a hypothesis, to applied bioengineering, with the creation of a variety of important cell types. By way of metaphor, we can compare the discovery of reprogramming with the archaeological discovery of the Rosetta stone. This stone slab made possible the initial decipherment of Egyptian hieroglyphics because it allowed us to see this language in a way that was previously impossible. We propose that cellular reprogramming will have an equally profound impact on understanding and curing human disease, because it allows us to perceive and study molecular biological processes such as differentiation, epigenetics, and chromatin in ways that were likewise previously impossible. Stem cells could be called cellular Rosetta stones because they allow also us to perceive the connections between development, disease, cancer, aging, and regeneration in novel ways. Here we present a comprehensive historical review of stem cells and cellular reprogramming, and illustrate the developing synergy between many previously unconnected fields. We show how stem cells can be used to create in vitro models of human disease and provide examples of how reprogramming is being used to study and treat such diverse diseases as cancer, aging and accelerated aging syndromes, infectious diseases such as AIDS, and epigenetic diseases such as polycystic ovary syndrome. While the technology of reprogramming is being developed and refined there have also been significant ongoing developments in other complementary technologies such as gene editing, progenitor cell production, and tissue engineering. These technologies are the foundations of what is becoming a fully-functional field of regenerative medicine and are converging to a point that will allow us to treat almost any

  6. Generation of Footprint-Free Induced Pluripotent Stem Cells from Human Fibroblasts Using Episomal Plasmid Vectors.

    Science.gov (United States)

    Ovchinnikov, Dmitry A; Sun, Jane; Wolvetang, Ernst J

    2015-01-01

    Human induced pluripotent stem cells (hiPSCs) have provided novel insights into the etiology of disease and are set to transform regenerative medicine and drug screening over the next decade. The generation of human iPSCs free of a genetic footprint of the reprogramming process is crucial for the realization of these potential uses. Here we describe in detail the generation of human iPSC from control and disease-carrying individuals' fibroblasts using episomal plasmids.

  7. Plasmid-based generation of induced neural stem cells from adult human fibroblasts

    Directory of Open Access Journals (Sweden)

    Philipp Capetian

    2016-10-01

    Full Text Available Direct reprogramming from somatic to neural cell types has become an alternative to induced pluripotent stem cells. Most protocols employ viral expression systems, posing the risk of random genomic integration. Recent developments led to plasmid-based protocols, lowering this risk. However, these protocols either relied on continuous presence of a variety of small molecules or were only able to reprogram murine cells. We therefore established a reprogramming protocol based on vectors containing the Epstein-Barr virus (EBV-derived oriP/EBNA1 as well as the defined expression factors Oct3/4, Sox2, Klf4, L-myc, Lin28, and a small hairpin directed against p53. We employed a defined neural medium in combination with the neurotrophins bFGF, EGF and FGF4 for cultivation without the addition of small molecules. After reprogramming, cells demonstrated a temporary increase in the expression of endogenous Oct3/4. We obtained induced neural stem cells (iNSC 30 days after transfection. In contrast to previous results, plasmid vectors as well as a residual expression of reprogramming factors remained detectable in all cell lines. Cells showed a robust differentiation into neuronal (72% and glial cells (9% astrocytes, 6% oligodendrocytes. Despite the temporary increase of pluripotency-associated Oct3/4 expression during reprogramming, we did not detect pluripotent stem cells or non-neural cells in culture (except occasional residual fibroblasts. Neurons showed electrical activity and functional glutamatergic synapses. Our results demonstrate that reprogramming adult human fibroblasts to iNSC by plasmid vectors and basic neural medium without small molecules is possible and feasible. However, a full set of pluripotency-associated transcription factors may indeed result in the acquisition of a transient (at least partial pluripotent intermediate during reprogramming. In contrast to previous reports, the EBV-based plasmid system remained present and active inside

  8. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells

    Directory of Open Access Journals (Sweden)

    Giacomo Palazzolo

    2016-01-01

    Full Text Available The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols. Here we describe a protocol to convert GRMD canine fibroblasts isolated from heart and skin into induced cardiac-like myocytes (ciCLMs. We used a mix of transcription factors (GATA4, HAND2, TBX5, and MEF2C, known to be able to differentiate mouse and human somatic cells into ciCLMs. Exogenous gene expression was obtained using four lentiviral vectors carrying transcription factor genes and different resistance genes. Our data demonstrate a direct switch from fibroblast into ciCLMs with no activation of early cardiac genes. ciCLMs were unable to contract spontaneously, suggesting, differently from mouse and human cells, an incomplete differentiation process. However, when transplanted in neonatal hearts of SCID/Beige mice, ciCLMs participate in cardiac myogenesis.

  9. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts

    DEFF Research Database (Denmark)

    Li, Dong; Secher, Jan Ole Bertelsen; Juhl, Morten

    2017-01-01

    populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore......, reprogramming of SSEA-1+ sorted pEFs led to higher reprogramming efficiency. Subsequent transcriptome profiling of the SSEA-1+ vs. the SSEA-1neg cell fraction revealed highly comparable gene signatures. However several genes that were found to be upregulated in the SSEA-1+ cells were similarly expressed...

  10. EXPRESSION OF PLURIPOTENCY MARKERS IN REPROGRAMMING WITH TRANSPOSON SYSTEM MURINE FIBROBLASTS

    Directory of Open Access Journals (Sweden)

    S. V. Malysheva

    2013-10-01

    Full Text Available The search for effective and safe methods to generate induced pluripotent stem cells is especially urgent. In the paper murine embryonic fibro blasts were reprogrammed towards actively proliferating colonies with typical induced pluripotent stem cells morphology by means of Sleeping beauty transposon-based vector system. The obtained clones were checked for the expression of various pluripotency markers: alkaline phosphatase, Oct4 and Sox2 genes, SSEA-1 expression in various clones was evaluated. Also the reactivation of endogenous pluripotency factors Nanog and Rex1 was indicated. The data obtained is analyzed and compared to the established pluripotent stem cell line. It is shown that somatic cells are reprogrammed towards pluripotency by means of Sleeping beauty transposon system. Therefore, the system is a new perspective biotechnological tool to generate pluripotent cells.

  11. Reversibility of cellular aging by reprogramming through an embryonic-like state : a new paradigm for human cell rejuvenation

    Directory of Open Access Journals (Sweden)

    Jean-Marc Lemaitre

    2014-01-01

    Full Text Available Direct reprogramming of somatic cells into induced pluripotent stem cells (iPSCs provides a unique opportunity to derive patient-specific stem cells with potential application in autologous tissue replacement therapies and without the ethical concerns of Embryonic Stem Cells (hESC. However, this strategy still suffers from several hurdles that need to be overcome before clinical applications. Among them, cellular senescence, which contributes to aging and restricted longevity, has been described as a barrier to the derivation of iPSCs. This suggests that aging might be an important limitation for therapeutic purposes for elderly individuals. Senescence is characterized by an irreversible cell cycle arrest in response to various forms of stress, including activation of oncogenes, shortened telomeres, DNA damage, oxidative stress, and mitochondrial dysfunction. To overcome this barrier, we developed an optimized 6-factor-based reprogramming protocol that is able to cause efficient reversing of cellular senescence and reprogramming into iPSCs. We demonstrated that iPSCs derived from senescent and centenarian fibroblasts have reset telomere size, gene expression profiles, oxidative stress, and mitochondrial metabolism, and are indistinguishable from hESC. Finally, we demonstrate that re-differentiation led to rejuvenated cells with a reset cellular physiology, defining a new paradigm for human cell rejuvenation. We discuss the molecular mechanisms involved in cell reprogramming of senescent cells. 

  12. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María Laura Chiribao

    2014-01-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response, a great number of transcription factors (including the majority of NFκB family members, and host metabolism (cholesterol, fatty acids, and phospholipids. These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.

  13. Direct generation of neurosphere-like cells from human dermal fibroblasts.

    Directory of Open Access Journals (Sweden)

    Soon-Tae Lee

    Full Text Available Neural stem cell (NSC transplantation replaces damaged brain cells and provides disease-modifying effects in many neurological disorders. However, there has been no efficient way to obtain autologous NSCs in patients. Given that ectopic factors can reprogram somatic cells to be pluripotent, we attempted to generate human NSC-like cells by reprograming human fibroblasts. Fibroblasts were transfected with NSC line-derived cellular extracts and grown in neurosphere culture conditions. The cells were then analyzed for NSC characteristics, including neurosphere formation, gene expression patterns, and ability to differentiate. The obtained induced neurosphere-like cells (iNS, which formed daughter neurospheres after serial passaging, expressed neural stem cell markers, and had demethylated SOX2 regulatory regions, all characteristics of human NSCs. The iNS had gene expression patterns that were a combination of the patterns of NSCs and fibroblasts, but they could be differentiated to express neuroglial markers and neuronal sodium channels. These results show for the first time that iNS can be directly generated from human fibroblasts. Further studies on their application in neurological diseases are warranted.

  14. Boosters and barriers for direct cardiac reprogramming.

    Science.gov (United States)

    Talkhabi, Mahmood; Zonooz, Elmira Rezaei; Baharvand, Hossein

    2017-06-01

    Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming.

    Directory of Open Access Journals (Sweden)

    Nathalie Swales

    Full Text Available AIMS/HYPOTHESIS: Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3. In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it. METHODS: The extent of the Ngn3-mediated duct-to-endocrine cell reprogramming was measured employing genome wide mRNA profiling. By modulation of the Delta-Notch signaling or addition of pancreatic endocrine transcription factors Myt1, MafA and Pdx1 we intended to improve the reprogramming. RESULTS: Ngn3 stimulates duct cells to express a focused set of genes that are characteristic for islet endocrine cells and/or neural tissues. This neuro-endocrine shift however, is incomplete with less than 10% of full duct-to-endocrine reprogramming achieved. Transduction of exogenous Ngn3 activates endogenous Ngn3 suggesting auto-activation of this gene. Furthermore, pancreatic endocrine reprogramming of human duct cells can be moderately enhanced by inhibition of Delta-Notch signaling as well as by co-expressing the transcription factor Myt1, but not MafA and Pdx1. CONCLUSIONS/INTERPRETATION: The results provide further insight into the plasticity of adult human duct cells and suggest measurable routes to enhance Ngn3-mediated in vitro reprogramming protocols for regenerative beta cell therapy in diabetes.

  16. Direct Neural Conversion from Human Fibroblasts Using Self-Regulating and Nonintegrating Viral Vectors

    Directory of Open Access Journals (Sweden)

    Shong Lau

    2014-12-01

    Full Text Available Recent findings show that human fibroblasts can be directly programmed into functional neurons without passing via a proliferative stem cell intermediate. These findings open up the possibility of generating subtype-specific neurons of human origin for therapeutic use from fetal cell, from patients themselves, or from matched donors. In this study, we present an improved system for direct neural conversion of human fibroblasts. The neural reprogramming genes are regulated by the neuron-specific microRNA, miR-124, such that each cell turns off expression of the reprogramming genes once the cell has reached a stable neuronal fate. The regulated system can be combined with integrase-deficient vectors, providing a nonintegrative and self-regulated conversion system that rids problems associated with the integration of viral transgenes into the host genome. These modifications make the system suitable for clinical use and therefore represent a major step forward in the development of induced neurons for cell therapy.

  17. Inhibition of miRNA-212/132 improves the reprogramming of fibroblasts into induced pluripotent stem cells by de-repressing important epigenetic remodelling factors.

    Science.gov (United States)

    Pfaff, Nils; Liebhaber, Steffi; Möbus, Selina; Beh-Pajooh, Abbas; Fiedler, Jan; Pfanne, Angelika; Schambach, Axel; Thum, Thomas; Cantz, Tobias; Moritz, Thomas

    2017-04-01

    MicroRNAs (miRNAs) repeatedly have been demonstrated to play important roles in the generation of induced pluripotent stem cells (iPSCs). To further elucidate the molecular mechanisms underlying transcription factor-mediated reprogramming we have established a model, which allows for the efficient screening of whole libraries of miRNAs modulating the generation of iPSCs from murine embryonic fibroblasts. Applying this model, we identified 14 miRNAs effectively inhibiting iPSC generation, including miR-132 and miR-212. Intriguingly, repression of these miRNAs during iPSC generation also resulted in significantly increased reprogramming efficacy. MiRNA target evaluation by qRT-PCR, Western blot, and luciferase assays revealed two crucial epigenetic regulators, the histone acetyl transferase p300 as well as the H3K4 demethylase Jarid1a (KDM5a) to be directly targeted by both miRNAs. Moreover, we demonstrated that siRNA-mediated knockdown of either p300 or Jarid1a recapitulated the miRNA effects and led to a significant decrease in reprogramming efficiency. Thus, conducting a full library miRNA screen we here describe a miRNA family, which markedly reduces generation of iPSC and upon inhibition in turn enhances reprogramming. These miRNAs, at least in part, exert their functions through repression of the epigenetic modulators p300 and Jarid1a, highlighting these two molecules as an endogenous epigenetic roadblock during iPSC generation. Copyright © 2017. Published by Elsevier B.V.

  18. Differentiation of reprogrammed human adipose mesenchymal stem cells toward neural cells with defined transcription factors.

    Science.gov (United States)

    Qu, Xinjian; Liu, Tianqing; Song, Kedong; Li, Xiangqin; Ge, Dan

    2013-10-04

    Somatic cell reprogramming may become a powerful approach to generate specific human cell types for cell-fate determination studies and potential transplantation therapies of neurological diseases. Here we report a reprogramming methodology with which human adipose stem cells (hADSCs) can be differentiated into neural cells. After being reprogrammed with polycistronic plasmid carrying defined factor OCT3/4, SOX2, KLF4 and c-MYC, and further treated with neural induce medium, the hADSCs switched to differentiate toward neural cell lineages. The generated cells had normal karyotypes and exogenous vector sequences were not inserted in the genomes. Therefore, this cell lineage conversion methodology bypasses the risk of mutation and gene instability, and provides a novel strategy to obtain patient-specific neural cells for basic research and therapeutic application. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. High-efficiency generation of induced pluripotent mesenchymal stem cells from human dermal fibroblasts using recombinant proteins.

    Science.gov (United States)

    Chen, Fanfan; Zhang, Guoqiang; Yu, Ling; Feng, Yanye; Li, Xianghui; Zhang, Zhijun; Wang, Yongting; Sun, Dapeng; Pradhan, Sriharsa

    2016-07-30

    Induced pluripotent mesenchymal stem cells (iPMSCs) are novel candidates for drug screening, regenerative medicine, and cell therapy. However, introduction of transcription factor encoding genes for induced pluripotent stem cell (iPSC) generation which could be used to generate mesenchymal stem cells is accompanied by the risk of insertional mutations in the target cell genome. We demonstrate a novel method using an inactivated viral particle to package and deliver four purified recombinant Yamanaka transcription factors (Sox2, Oct4, Klf4, and c-Myc) resulting in reprogramming of human primary fibroblasts. Whole genome bisulfite sequencing was used to analyze genome-wide CpG methylation of human iPMSCs. Western blot, quantitative PCR, immunofluorescence, and in-vitro differentiation were used to assess the pluripotency of iPMSCs. The resulting reprogrammed fibroblasts show high-level expression of stem cell markers. The human fibroblast-derived iPMSC genome showed gains in DNA methylation in low to medium methylated regions and concurrent loss of methylation in previously hypermethylated regions. Most of the differentially methylated regions are close to transcription start sites and many of these genes are pluripotent pathway associated. We found that DNA methylation of these genes is regulated by the four iPSC transcription factors, which functions as an epigenetic switch during somatic reprogramming as reported previously. These iPMSCs successfully differentiate into three embryonic germ layer cells, both in vitro and in vivo. Following multipotency induction in our study, the delivered transcription factors were degraded, leading to an improved efficiency of subsequent programmed differentiation. Recombinant transcription factor based reprogramming and derivatization of iPMSC offers a novel high-efficiency approach for regenerative medicine from patient-derived cells.

  20. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Hisataka Ogawa

    Full Text Available Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors.

  1. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies

    NARCIS (Netherlands)

    Brouwer, M.; Zhou, Huiqing; Nadif Kasri, N.

    2016-01-01

    The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are

  2. Reprogramming of human cancer cells to pluripotency for models of cancer progression

    Science.gov (United States)

    Kim, Jungsun; Zaret, Kenneth S

    2015-01-01

    The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. PMID:25712212

  3. Beryllium induces premature senescence in human fibroblasts.

    Science.gov (United States)

    Coates, Shannon S A; Lehnert, Bruce E; Sharma, Sunil; Kindell, Susan M; Gary, Ronald K

    2007-07-01

    After cells have completed a sufficient number of cell divisions, they exit the cell cycle and enter replicative senescence. Here, we report that beryllium causes proliferation arrest with premature expression of the principal markers of senescence. After young presenescent human fibroblasts were treated with 3 microM BeSO(4) for 24 h, p21 cyclin-dependent kinase inhibitor mRNA increased by >200%. Longer periods of exposure caused mRNA and protein levels to increase for both p21 and p16(Ink4a), a senescence regulator that prevents pRb-mediated cell cycle progression. BeSO(4) also caused dose-dependent induction of senescence-associated beta-galactosidase activity (SA-beta-gal). Untreated cells had 48 relative fluorescence units (RFU)/microg/h of SA-beta-gal, whereas 3 microM BeSO(4) caused activity to increase to 84 RFU/microg/h. In chromatin immunoprecipitation experiments, BeSO(4) caused p53 protein to associate with its DNA binding site in the promoter region of the p21 gene, indicating that p53 transcriptional activity is responsible for the large increase in p21 mRNA elicited by beryllium. Forced expression of human telomerase reverse transcriptase (hTERT) rendered HFL-1 cells incapable of normal replicative senescence. However, there was no difference in the responsiveness of normal HFL-1 fibroblasts (IC(50) = 1.9 microM) and hTERT-immortalized cells (IC(50) = 1.7 microM) to BeSO(4) in a 9-day proliferation assay. The effects of beryllium resemble those of histone deacetylase-inhibiting drugs, which also cause large increases in p21. However, beryllium produced no changes in histone acetylation, suggesting that Be(2+) acts as a novel and potent pharmacological inducer of premature senescence.

  4. Reprogramming factors involved in hybrids and cybrids of human embryonic stem cells fused with hepatocytes.

    Science.gov (United States)

    Guo, Jitong; Tecirlioglu, R Tayfur; Nguyen, Linh; Koh, Karen; Jenkin, Graham; Trounson, Alan

    2010-10-01

    Embryonic stem cells (ESCs) have the potential to reprogram somatic cells into ESC-like cells through cell fusion. In the present study, the potential of human (h)ESC cytoplasts and karyoplasts to reprogram human hepatocytes was evaluated. Green fluorescent protein (GFP) transfected hESCs (ENVY cells) were fused with SNARF-1 (CellTracker)-labeled human hepatocytes using polyethylene glycol (PEG) and fluorescence-activated cell sorting (FACS) to produce hESC-hepatocyte hybrids. Immunocytochemical analysis of ESC markers showed that the hybrids expressed OCT4, TRA-1-60, TRA-1-81, SSEA-4, and GCTM-2. However, SSEA-1, which is typically low or absent on hESCs, was detected on hESC–hepatocyte hybrids. Moreover, reverse transcriptase polymerase chain reaction (RT-PCR) showed that alpha-fetoprotein, which is highly expressed in hepatocytes, was erased in the hybrids. These results indicated that hESCs have the potential to reprogram hepatocyte phenotype to a relatively undifferentiated state, but such hybrid cells are not identical to hESCs. Although hESC–hepatocyte hybrids were aneuploid, they were able to differentiate into embryoid bodies and some types of somatic cells. Furthermore, cybrids of enucleated hESCs and hepatocytes were produced by cell fusion, but the cybrids were unable to self-renew in the same way as hESCs. Presumably, the reprogramming factors are associated with the karyoplast and not the cytoplast of hESCs.

  5. Replacement of murine fibroblasts by human fibroblasts irradiated in obtaining feeder layer for the culture of human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshito, Daniele; Sufi, Bianca S.; Santin, Stefany P.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Altran, Silvana C.; Isaac, Cesar [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Lab. de Microcirurgia Plastica; Esteves-Pedro, Natalia M. [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Ciencias Farmaceuticas. Lab. de Controle Biologico; Herson, Marisa R. [DonorTissue Bank of Victoria (Australia)

    2011-07-01

    Human autologous epithelia cultivated in vitro, have been used successfully in treating damage to skin integrity. The methodology allowed the cultivation of these epithelia was described by Rheinwald and Green in 1975, this methodology consisted in seeding keratinocytes onto a feeder layer composed of lineage 3T3 murine fibroblasts, the proliferation rate is controlled through the action of ionizing radiation. However, currently there is a growing concern about the possibility of transmitting prions and murine viruses to transplanted patients. Taking into account this concern, in this present work, we replaced the feeder layer originally composed of murine fibroblasts by human fibroblasts. To obtain this new feeder layer was necessary to standardize the enough irradiation dose to inhibit the replication of human fibroblasts and the verification of effectiveness of the development of keratinocytes culture on a feeder layer thus obtained. According to the obtained results we can verify that the human fibroblasts irradiated at various tested doses (60, 70, 100, 200, 250 and 300 Gy) had their mitotic activity inactivated by irradiation, allowing the use of any of these doses to confection of the feeder layer, since these fibroblasts irradiated still showed viable until fourteen days of cultivation. In the test of colony formation efficiency was observed that keratinocytes seeded on irradiated human fibroblasts were able to develop satisfactorily, preserving their clonogenic potential. Therefore it was possible the replacement of murine fibroblasts by human fibroblasts in confection of the feeder layer, in order to eliminate this xenobiotic component of the keratinocytes culture. (author)

  6. Basic fibroblast growth factor is critical to reprogramming buffalo (Bubalus bubalis) primordial germ cells into embryonic germ stem cell-like cells.

    Science.gov (United States)

    Wang, Caizhu; Deng, Yanfei; Chen, Feng; Zhu, Peng; Wei, Jingwei; Luo, Chan; Lu, Fenghua; Yang, Sufang; Shi, Deshun

    2017-03-15

    Primordial germ cells (PGCs) are destined to form gametes in vivo, and they can be reprogrammed into pluripotent embryonic germ (EG) cells in vitro. Buffalo PGC have been reported to be reprogrammed into EG-like cells, but the identities of the major signaling pathways and culture media involved in this derivation remain unclear. Here, the effects of basic fibroblast growth factor (bFGF) and downstream signaling pathways on the reprogramming of buffalo PGCs into EG-like cells were investigated. Results showed bFGF to be critical to buffalo PGCs to dedifferentiate into EG-like cells (20 ng/mL is optimal) with many characteristics of pluripotent stem cells, including alkaline phosphatase (AP) activity, expression of pluripotency marker genes such as OCT4, NANOG, SOX2, SSEA-1, CDH1, and TRA-1-81, and the capacity to differentiate into all three embryonic germ layers. After chemically inhibiting pathways or components downstream of bFGF, data showed that inhibition of the PI3K/AKT pathway led to significantly lower EG cell derivation, while inhibition of P53 activity resulted in an efficiency of EG cell derivation comparable to that in the presence of bFGF. These results suggest that the role of bFGF in PGC-derived EG-like cell generation is mainly due to the activation of the PI3K/AKT/P53 pathway, in particular, the inhibition of P53 function. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors.

    Science.gov (United States)

    Yang, Ruifeng; Zheng, Ying; Li, Ling; Liu, Shujing; Burrows, Michelle; Wei, Zhi; Nace, Arben; Herlyn, Meenhard; Cui, Rutao; Guo, Wei; Cotsarelis, George; Xu, Xiaowei

    2014-12-16

    Direct reprogramming provides a fundamentally new approach for the generation of patient-specific cells. Here, by screening a pool of candidate transcription factors, we identify that a combination of the three factors, MITF, SOX10 and PAX3, directly converts mouse and human fibroblasts to functional melanocytes. Induced melanocytes (iMels) activate melanocyte-specific networks, express components of pigment production and delivery system and produce melanosomes. Human iMels properly integrate into the dermal-epidermal junction and produce and deliver melanin pigment to surrounding keratinocytes in a 3D organotypic skin reconstruct. Human iMels generate pigmented epidermis and hair follicles in skin reconstitution assays in vivo. The generation of iMels has important implications for studies of melanocyte lineage commitment, pigmentation disorders and cell replacement therapies.

  8. Reprogramming Roadblocks Are System Dependent

    Directory of Open Access Journals (Sweden)

    Eleni Chantzoura

    2015-09-01

    Full Text Available Since the first generation of induced pluripotent stem cells (iPSCs, several reprogramming systems have been used to study its molecular mechanisms. However, the system of choice largely affects the reprogramming efficiency, influencing our view on the mechanisms. Here, we demonstrate that reprogramming triggered by less efficient polycistronic reprogramming cassettes not only highlights mesenchymal-to-epithelial transition (MET as a roadblock but also faces more severe difficulties to attain a pluripotent state even post-MET. In contrast, more efficient cassettes can reprogram both wild-type and Nanog−/− fibroblasts with comparable efficiencies, routes, and kinetics, unlike the less efficient reprogramming systems. Moreover, we attribute a previously reported variation in the N terminus of KLF4 as a dominant factor underlying these critical differences. Our data establish that some reprogramming roadblocks are system dependent, highlighting the need to pursue mechanistic studies with close attention to the systems to better understand reprogramming.

  9. Germline-competent mouse-induced pluripotent stem cell lines generated on human fibroblasts without exogenous leukemia inhibitory factor.

    Directory of Open Access Journals (Sweden)

    Chunliang Li

    Full Text Available Induced pluripotent stem (iPS cells have attracted enormous attention due to their vast potential in regenerative medicine, pharmaceutical screening and basic research. Most prior established iPS cell lines were derived and maintained on mouse embryonic fibroblast (MEF cells supplemented with exogenous leukemia inhibitory factor (LIF. Drawbacks of MEF cells impede optimization as well as dissection of reprogramming events and limit the usage of iPS cell derivatives in therapeutic applications. In this study, we develop a reproducible protocol for efficient reprogramming mouse neural progenitor cells (NPCs on human foreskin fibroblast (HFF cells via retroviral transfer of human transcriptional factors OCT4/SOX2/KLF4/C-MYC. Two independent iPS cell lines are derived without exogenous LIF. They display typical undifferentiated morphology and express pluripotency markers Oct4 and Sox2. Transgenes are inactivated and the endogenous Oct4 promoter is completely demethylated in the established iPS cell lines, indicating a fully reprogrammed state. Moreover, the iPS cells can spontaneously differentiate or be induced into various cell types of three embryonic germ layers in vitro and in vivo when they are injected into immunodeficient mice for teratoma formation. Importantly, iPS cells extensively integrate with various host tissues and contribute to the germline when injected into the blastocysts. Interestingly, these two iPS cell lines, while both pluripotent, exhibit distinctive differentiation tendencies towards different lineages. Taken together, the data describe the first genuine mouse iPS cell lines generated on human feeder cells without exogenous LIF, providing a reliable tool for understanding the molecular mechanisms of nuclear reprogramming.

  10. Characterization of the Epigenetic Changes During Human Gonadal Primordial Germ Cells Reprogramming.

    Science.gov (United States)

    Eguizabal, C; Herrera, L; De Oñate, L; Montserrat, N; Hajkova, P; Izpisua Belmonte, J C

    2016-09-01

    Epigenetic reprogramming is a central process during mammalian germline development. Genome-wide DNA demethylation in primordial germ cells (PGCs) is a prerequisite for the erasure of epigenetic memory, preventing the transmission of epimutations to the next generation. Apart from DNA demethylation, germline reprogramming has been shown to entail reprogramming of histone marks and chromatin remodelling. Contrary to other animal models, there is limited information about the epigenetic dynamics during early germ cell development in humans. Here, we provide further characterization of the epigenetic configuration of the early human gonadal PGCs. We show that early gonadal human PGCs are DNA hypomethylated and their chromatin is characterized by low H3K9me2 and high H3K27me3 marks. Similarly to previous observations in mice, human gonadal PGCs undergo dynamic chromatin changes concomitant with the erasure of genomic imprints. Interestingly, and contrary to mouse early germ cells, expression of BLIMP1/PRDM1 persists in through all gestational stages in human gonadal PGCs and is associated with nuclear lysine-specific demethylase-1. Our work provides important additional information regarding the chromatin changes associated with human PGCs development between 6 and 13 weeks of gestation in male and female gonads. Stem Cells 2016;34:2418-2428. © 2016 AlphaMed Press.

  11. Survivin Improves Reprogramming Efficiency of Human Neural Progenitors by Single Molecule OCT4

    Directory of Open Access Journals (Sweden)

    Shixin Zhou

    2016-01-01

    Full Text Available Induced pluripotent stem (iPS cells have been generated from human somatic cells by ectopic expression of four Yamanaka factors. Here, we report that Survivin, an apoptosis inhibitor, can enhance iPS cells generation from human neural progenitor cells (NPCs together with one factor OCT4 (1F-OCT4-Survivin. Compared with 1F-OCT4, Survivin accelerates the process of reprogramming from human NPCs. The neurocyte-originated induced pluripotent stem (NiPS cells generated from 1F-OCT4-Survivin resemble human embryonic stem (hES cells in morphology, surface markers, global gene expression profiling, and epigenetic status. Survivin keeps high expression in both iPS and ES cells. During the process of NiPS cell to neural cell differentiation, the expression of Survivin is rapidly decreased in protein level. The mechanism of Survivin promotion of reprogramming efficiency from NPCs may be associated with stabilization of β-catenin in WNT signaling pathway. This hypothesis is supported by experiments of RT-PCR, chromatin immune-precipitation, and Western blot in human ES cells. Our results showed overexpression of Survivin could improve the efficiency of reprogramming from NPCs to iPS cells by one factor OCT4 through stabilization of the key molecule, β-catenin.

  12. Influence of three laser wavelengths on human fibroblasts cell culture.

    Science.gov (United States)

    Crisan, Bogdan; Soritau, Olga; Baciut, Mihaela; Campian, Radu; Crisan, Liana; Baciut, Grigore

    2013-02-01

    Although experimental studies in vitro and vivo have been numerous, the effect of laser wavelength irradiation on human fibroblast cell culture is poorly understood. This emphasizes the need of additional cellular and molecular research into laser influence with low energy and power. The aim of this study was to assess the influence of three different laser wavelengths on the human skin fibroblasts cell culture. We wanted to evaluate if near infrared lasers had any influence in healing of wounds by stimulating mitochondrial activity of fibroblasts. The cells were irradiated using 830-, 980- and 2,940-nm laser wavelengths. The irradiated cells were incubated and their mitochondrial activity was assessed by the MTT assay at 24, 48 and 72 h. Simultaneously, an apoptosis assay was assessed on the irradiated fibroblasts. It can be concluded that laser light of the near-infrared region (830 and 980 nm) influences fibroblasts mitochondrial activity compared to the 2,940-nm wavelength which produces apoptosis.

  13. Allele-specific analysis of cell fusion-mediated pluripotent reprograming reveals distinct and predictive susceptibilities of human X-linked genes to reactivation.

    Science.gov (United States)

    Cantone, Irene; Dharmalingam, Gopuraja; Chan, Yi-Wah; Kohler, Anne-Celine; Lenhard, Boris; Merkenschlager, Matthias; Fisher, Amanda G

    2017-01-25

    Inactivation of one X chromosome is established early in female mammalian development and can be reversed in vivo and in vitro when pluripotency factors are re-expressed. The extent of reactivation along the inactive X chromosome (Xi) and the determinants of locus susceptibility are, however, poorly understood. Here we use cell fusion-mediated pluripotent reprograming to study human Xi reactivation and allele-specific single nucleotide polymorphisms (SNPs) to identify reactivated loci. We show that a subset of human Xi genes is rapidly reactivated upon re-expression of the pluripotency network. These genes lie within the most evolutionary recent segments of the human X chromosome that are depleted of LINE1 and enriched for SINE elements, predicted to impair XIST spreading. Interestingly, this cadre of genes displays stochastic Xi expression in human fibroblasts ahead of reprograming. This stochastic variability is evident between clones, by RNA-sequencing, and at the single-cell level, by RNA-FISH, and is not attributable to differences in repressive histone H3K9me3 or H3K27me3 levels. Treatment with the DNA demethylating agent 5-deoxy-azacytidine does not increase Xi expression ahead of reprograming, but instead reveals a second cadre of genes that only become susceptible to reactivation upon induction of pluripotency. Collectively, these data not only underscore the multiple pathways that contribute to maintaining silencing along the human Xi chromosome but also suggest that transcriptional stochasticity among human cells could be useful for predicting and engineering epigenetic strategies to achieve locus-specific or domain-specific human Xi gene reactivation.

  14. Optimized Hepatocyte-Like Cells with Functional Drug Transporters Directly-Reprogrammed from Mouse Fibroblasts and their Potential in Drug Disposition and Toxicology

    Directory of Open Access Journals (Sweden)

    Zhi-Tao Wu

    2016-05-01

    Full Text Available Background/Aims: To develop a suitable hepatocyte-like cell model that could be a substitute for primary hepatocytes with essential transporter expression and functions. Induced hepatocyte-like (iHep cells directly reprogrammed from mice fibroblast cells were fully characterized. Methods: Naïve iHep cells were transfected with nuclear hepatocyte factor 4 alpha (Hnf4α and treated with selected small molecules. Sandwich cultured configuration was applied. The mRNA and protein expression of transporters were determined by Real Time PCR and confocal. The functional transporters were estimated by drug biliary excretion measurement. The inhibition of bile acid efflux transporters by cholestatic drugs were assessed. Results: The expression and function of p-glycoprotein (P-gp, bile salt efflux pump (Bsep, multidrug resistance-associated protein 2 (Mrp2, Na+-dependent taurocholate cotransporting polypeptide (Ntcp, and organic anion transporter polypedtides (Oatps in iHep cells were significantly improved after transfection of hepatocyte nuclear factor 4 alpha (Hnf4α and treatment with selected inducers. In vitro intrinsic biliary clearances (CLb,int of optimized iHep cells for rosuvastatin, methotrexate, d8-TCA (deuterium-labeled sodium taurocholate acid and DPDPE ([D-Pen2,5] enkephalin hydrate correlated well with that of sandwich-cultured primary mouse hepatocytes (SCMHs (r2 = 0.984. Cholestatic drugs were evaluated and the results were compared well with primary mice hepatocytes. Conclusion: The optimized iHep cells expressed functional drug transporters and were comparable to primary mice hepatocytes. This study suggested direct reprogramming could provide a potential alternative to primary hepatocytes for drug candidate hepatobiliary disposition and hepatotoxicity screening.

  15. Hyaluronic acid production by irradiated human synovial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yaron, M.; Yaron, I.; Levita, M.; Herzberg, M.

    1977-03-01

    Radioactive particles as well as x irradiation from an external source has been used in the treatment of rheumatoid arthritis, osteoarthritis, and ankylosing spondylitis. In order to clarify effects of ionizing irradiation on synovial cells, radioactive gold (/sup 198/Au) and yttrium (/sup 90/Y) were added to fibroblast cultures derived from human synovial membranes. Other cultures were irradiated by a Picker x-ray machine. Fibroblast growth and hyaluronic acid production were measured. Radioactive gold and yttrium particles induced a significant increase of hyaluronic acid synthesis rate (pg/cell/day) and inhibited fibroblast growth. Fibroblasts continued to overproduce hyaluronic acid and to show growth inhibition 3 weeks after irradiation with radioactive gold. Hydrocortisone inhibited hyaluronic acid overproduction induced by radioactive gold. Overproduction of hyaluronic acid induced by the x-ray machine was inhibited by hydrocortisone, actinomycin-D, and cycloheximide. Fibroblasts derived from normal and rheumatoid patients responded similarly to ionizing irradiation.

  16. Eugenol Toxicity in Human Dental Pulp Fibroblasts of Primary Teeth.

    Science.gov (United States)

    Escobar-García, Maria; Rodríguez-Contreras, Karen; Ruiz-Rodríguez, Socorro; Pierdant-Pérez, Mauricio; Cerda-Cristerna, Bernardino; Pozos-Guillén, Amaury

    2016-01-01

    The aim of the study was to determine the eugenol concentrations at which toxicity occurs in human dental pulp fibroblasts of primary teeth. Samples of primary dental pulp tissue were taken. Tissue samples were seeded by means of explant technique and used in the 4(th)-5th pass. Single Cell Gel Electrophoresis (Comet), phenazine MeThoSulfate (MTS), LIVE/DEAD Cell Viability/Toxicity and trypan blue assays for evaluation of the cytotoxicity of increasing concentrations of eugenol (0.06 to 810 μM) were performed. The results of toxicity tests showed toxic effects on dental pulp fibroblasts, even at very low concentrations of eugenol (0.06 μM). Very low concentrations of eugenol produce high toxicity in human dental pulp fibroblasts. All of the concentrations of eugenol that we evaluated produced high toxicity in human dental pulp fibroblasts of primary teeth.

  17. Epigenetically reprogramming of human embryonic stem cells by 3-Deazaneplanocin A and sodium butyrate

    Directory of Open Access Journals (Sweden)

    Soheila Azghadi

    2011-01-01

    Full Text Available Objectives: Infertility affects about 6.1 million women aged 15-44 in the United States. The leading cause of infertility in women is quantitative and qualitative defects in human germ-cell development (these sentences are not mentioned in introduction so it is not correct to mention in abstract, you can omit. Human embryonic stem cell (hESC lines are derived from the inner cell mass (ICM of developing blastocysts and have a broad clinical potential. hESCs have been classified into three classes based on their epigenetic state. The goal of this study was to epigenetically reprogram Class II and Class III cell lines to Class I (naïve state, and to in vitro differentiation of potent hESCs to primordial germ cells (PGCs. Methods: Recent evidence suggests that 3-deazaneplanocin A (DZNep is a global histone methylation inhibitor which selectively inhibits trimethylation of lysine 27 on histone H3K27, and it is an epigenetic therapeutic for cancer. The characteristics of DZNep lead us to hypothesize that it is a good candidate to epigenetically reprogram hESCs to the Class I. Additionally, we used sodium butyrate (NaBu shown in previous studies to up-regulate the expression of germ cell specific markers (these sentences should be come in introduction. Results: We used these two drugs to produce epigenetically stable hESC lines. hESC lines are an appropriate system for disease modeling and understanding developmental stages, therefore producing stable stem cell lines may have an outstanding impact in different research fields such as preventive medicine. Conclusions: X-Chromosome inactivation has been used as a tool to follow the reprogramming process. We have used immunostaining and western blot as methods to follow this reprogramming qualitatively and quantitatively.

  18. Primary cell culture from human oral tissue: gingival keratinocytes,gingival fibroblasts and periodontal ligament fibroblasts

    Directory of Open Access Journals (Sweden)

    Supreya Wanichpakorn

    2010-08-01

    Full Text Available Primary cell culture of human oral tissue has many applications for oral biology research. There are two techniques in primary culture, which includes the enzymatic and direct explant technique. The objectives of this study were (1 to isolate and investigate the difference in percentage the success in culturing three cell types from human oral tissue: gingival keratinocytes, gingival fibroblasts and periodontal ligament fibroblasts by using the direct explant technique; (2 to compare the effect of sex and age on the success of tissue culturing. Twenty seven tissue samples were obtained from healthy human gingival tissue, 19 female and 8 male patients aged 14-67 years (37.7±17.5. The tissue was cut into 1x1 mm pieces and placed on plastic culture plates containing Dulbecco’s Modified Eagle’s Medium supplemented with 10% fetal calf serum, 100 U/ml penicillin, 100 µg/ml streptomycin and 1% amphotericin B. For the keratinocytes culture, after the epithelial cells started to multiply around the gingival origin and the diameter was 2-5 mm., the fibroblasts were liminated by mechanical removal under inverted microscope to prevent fibroblast overgrowth and the medium was changed to keratinocyte-SFM (Gibco, BRL supplemented with 5 µg/ml gentamycin. The results revealed that gingival fibroblast gave the highest success rate in culture (96.3%, followed by gingival keratinocytes (88.9% and periodontal ligament fibroblasts (81.5%. There was no significant difference in the success rate of cultivation between younger and older individuals, as between sex of the subjects (p>0.05. The risk of failure in culture techniques is mainly caused by microbiological contamination from the tissue samples.

  19. In vivo reprogramming for heart regeneration: A glance at efficiency, environmental impacts, challenges and future directions.

    Science.gov (United States)

    Ebrahimi, Behnam

    2017-07-01

    Replacing dying or diseased cells of a tissue with new ones that are converted from patient's own cells is an attractive strategy in regenerative medicine. In vivo reprogramming is a novel strategy that can circumvent the hurdles of autologous/allogeneic cell injection therapies. Interestingly, studies have demonstrated that direct injection of cardiac transcription factors or specific miRNAs into the infarct border zone of murine hearts following myocardial infarction converts resident cardiac fibroblasts into functional cardiomyocytes. Moreover, in vivo cardiac reprogramming not only drives cardiac tissue regeneration, but also improves cardiac function and survival rate after myocardial infarction. Thanks to the influence of cardiac microenvironment and the same developmental origin, cardiac fibroblasts seem to be more amenable to reprogramming toward cardiomyocyte fate than other cell sources (e.g. skin fibroblasts). Thus, reprogramming of cardiac fibroblasts to functional induced cardiomyocytes in the cardiac environment holds great promises for induced regeneration and potential clinical purposes. Application of small molecules in future studies may represent a major advancement in this arena and pharmacological reprogramming would convey reprogramming technology to the translational medicine paradigm. This study reviews accomplishments in the field of in vitro and in vivo mouse cardiac reprogramming and then deals with strategies for the enhancement of the efficiency and quality of the process. Furthermore, it discusses challenges ahead and provides suggestions for future research. Human cardiac reprogramming is also addressed as a foundation for possible application of in vivo cardiac reprogramming for human heart regeneration in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Small molecules enable highly efficient neuronal conversion of human fibroblasts.

    Science.gov (United States)

    Ladewig, Julia; Mertens, Jerome; Kesavan, Jaideep; Doerr, Jonas; Poppe, Daniel; Glaue, Finnja; Herms, Stefan; Wernet, Peter; Kögler, Gesine; Müller, Franz-Josef; Koch, Philipp; Brüstle, Oliver

    2012-06-01

    Forced expression of proneural transcription factors has been shown to direct neuronal conversion of fibroblasts. Because neurons are postmitotic, conversion efficiencies are an important parameter for this process. We present a minimalist approach combining two-factor neuronal programming with small molecule-based inhibition of glycogen synthase kinase-3β and SMAD signaling, which converts postnatal human fibroblasts into functional neuron-like cells with yields up to >200% and neuronal purities up to >80%.

  1. Combined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Ras Trokovic

    2015-07-01

    Full Text Available Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSC by the forced expression of the transcription factors OCT4, SOX2, KLF4 and c-MYC. Pluripotent reprogramming appears as a slow and inefficient process because of genetic and epigenetic barriers of somatic cells. In this report, we have extended previous observations concerning donor age and passage number of human fibroblasts as critical determinants of the efficiency of iPSC induction. Human fibroblasts from 11 different donors of variable age were reprogrammed by ectopic expression of reprogramming factors. Although all fibroblasts gave rise to iPSC colonies, the reprogramming efficiency correlated negatively and declined rapidly with increasing donor age. In addition, the late passage fibroblasts gave less reprogrammed colonies than the early passage cell counterparts, a finding associated with the cellular senescence-induced upregulation of p21. Knockdown of p21 restored iPSC generation even in long-term passaged fibroblasts of an old donor, highlighting the central role of the p53/p21 pathway in cellular senescence induced by both donor age and culture time.

  2. Heterokaryon-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2.

    Directory of Open Access Journals (Sweden)

    Carlos F Pereira

    2008-09-01

    Full Text Available Differentiated cells can be reprogrammed through the formation of heterokaryons and hybrid cells when fused with embryonic stem (ES cells. Here, we provide evidence that conversion of human B-lymphocytes towards a multipotent state is initiated much more rapidly than previously thought, occurring in transient heterokaryons before nuclear fusion and cell division. Interestingly, reprogramming of human lymphocytes by mouse ES cells elicits the expression of a human ES-specific gene profile, in which markers of human ES cells are expressed (hSSEA4, hFGF receptors and ligands, but markers that are specific to mouse ES cells are not (e.g., Bmp4 and LIF receptor. Using genetically engineered mouse ES cells, we demonstrate that successful reprogramming of human lymphocytes is independent of Sox2, a factor thought to be required for induced pluripotent stem (iPS cells. In contrast, there is a distinct requirement for Oct4 in the establishment but not the maintenance of the reprogrammed state. Experimental heterokaryons, therefore, offer a powerful approach to trace the contribution of individual factors to the reprogramming of human somatic cells towards a multipotent state.

  3. Orthodontic adhesives induce human gingival fibroblast toxicity and inflammation.

    Science.gov (United States)

    Huang, Tsui-Hsien; Liao, Pao-Hsin; Li, Han Yu; Ding, Shinn Jyh; Yen, Min; Kao, Chia-Tze

    2008-05-01

    To test the null hypothesis that the resin base and the resin hybrid glass ionomer base adhesives do not cause inflammation after contacting primary human gingival fibroblasts in vitro. The resin base and resin hybrid glass ionomer base adhesives were used to treat human gingival fibroblasts to evaluate the survival rate using MTT colorimetric assay to detect the level of cyclooxygenase-2 (COX-2) mRNA by reverse transcription polymerase chain reaction (RT-PCR) technique and COX-2 protein expression using Western blot analysis. The results were analyzed using one-way analysis of variance (ANOVA). Tests of differences of the treatments were analyzed using the Tukey test and a value of P adhesive and the liquid of glass ionomer adhesive showed decreasing survival rates after 24 hours of treatment (P adhesives induced COX-2 protein expression in human gingival fibroblasts. The exposure of quiescent human gingival fibroblasts to adhesives resulted in the induction of COX-2 mRNA expression. The investigations of the time-dependent COX-2 mRNA expression in adhesive-treated human gingival fibroblasts revealed different patterns. The hypothesis is rejected. For orthodontic patients with gingival inflammation, except for those with oral hygiene problems, the activation of COX-2 expression by orthodontic adhesive may be one of the potential mechanisms.

  4. Rapid and efficient CRISPR/Cas9 gene inactivation in human neurons during human pluripotent stem cell differentiation and direct reprogramming.

    Science.gov (United States)

    Rubio, Alicia; Luoni, Mirko; Giannelli, Serena G; Radice, Isabella; Iannielli, Angelo; Cancellieri, Cinzia; Di Berardino, Claudia; Regalia, Giulia; Lazzari, Giovanna; Menegon, Andrea; Taverna, Stefano; Broccoli, Vania

    2016-11-18

    The CRISPR/Cas9 system is a rapid and customizable tool for gene editing in mammalian cells. In particular, this approach has widely opened new opportunities for genetic studies in neurological disease. Human neurons can be differentiated in vitro from hPSC (human Pluripotent Stem Cells), hNPCs (human Neural Precursor Cells) or even directly reprogrammed from fibroblasts. Here, we described a new platform which enables, rapid and efficient CRISPR/Cas9-mediated genome targeting simultaneously with three different paradigms for in vitro generation of neurons. This system was employed to inactivate two genes associated with neurological disorder (TSC2 and KCNQ2) and achieved up to 85% efficiency of gene targeting in the differentiated cells. In particular, we devised a protocol that, combining the expression of the CRISPR components with neurogenic factors, generated functional human neurons highly enriched for the desired genome modification in only 5 weeks. This new approach is easy, fast and that does not require the generation of stable isogenic clones, practice that is time consuming and for some genes not feasible.

  5. Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths.

    Directory of Open Access Journals (Sweden)

    Chunhe Li

    Full Text Available Cellular reprogramming has been recently intensively studied experimentally. We developed a global potential landscape and kinetic path framework to explore a human stem cell developmental network composed of 52 genes. We uncovered the underlying landscape for the stem cell network with two basins of attractions representing stem and differentiated cell states, quantified and exhibited the high dimensional biological paths for the differentiation and reprogramming process, connecting the stem cell state and differentiated cell state. Both the landscape and non-equilibrium curl flux determine the dynamics of cell differentiation jointly. Flux leads the kinetic paths to be deviated from the steepest descent gradient path, and the corresponding differentiation and reprogramming paths are irreversible. Quantification of paths allows us to find out how the differentiation and reprogramming occur and which important states they go through. We show the developmental process proceeds as moving from the stem cell basin of attraction to the differentiation basin of attraction. The landscape topography characterized by the barrier heights and transition rates quantitatively determine the global stability and kinetic speed of cell fate decision process for development. Through the global sensitivity analysis, we provided some specific predictions for the effects of key genes and regulation connections on the cellular differentiation or reprogramming process. Key links from sensitivity analysis and biological paths can be used to guide the differentiation designs or reprogramming tactics.

  6. Chloride transport in human fibroblasts is activated by hypotonic shock

    Energy Technology Data Exchange (ETDEWEB)

    Rugolo, M.; Mastocola, T.; Flamigni, A.; Lenaz, G. (Universita' di Bologna (Italy))

    1989-05-15

    Incubation of human skin fibroblasts in hypotonic media induced the activation of {sup 36}Cl- efflux which was roughly proportional to the decrease in the osmolality of the media. The efflux of {sup 36}Cl- was insensitive to DIDS plus furosemide and inhibited by addition of a Cl- channel blocker such as 5-nitro-2-(3-phenyl propylamino) benzoic acid (NPPB). We propose that a conductive pathway for Cl- transport, almost silent in isotonic conditions, is activated by exposing human fibroblasts to hypotonic shock, this conclusion being supported by evidence that also {sup 36}Cl- influx was enhanced by hypotonic medium.

  7. Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures

    Directory of Open Access Journals (Sweden)

    Maria Cecilia Fernandes

    2016-05-01

    Full Text Available Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome.

  8. Secretome Analysis of Human Primary Fibroblasts Undergoing Senescence

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Micutkova, Lucia; Diener, Thomas

    Introduction Cultures of diploid human fibroblasts can replicate only a finite number of times; rapid proliferation is followed by decline in replicative frequency and finally cells become senescent and are incapable of further proliferation. Senescencent cells display altered growth, morphology......-degrading. In this study we use proteomic tools to characterise the secretome of young and senescent fibroblasts.   Methods Three independent preparations of primary human foreskin fibroblasts were grown to senescence. Young, rapidly proliferating cells at passage 11 and cells from passage 28 displaying senescent...... spectrometry; peptide count was used to estimate protein abundance.   Results 2DGE based analysis of secretion profiles of young and senescent cells derived from the same cell lineage revealed a number of protein spots differentially expressed. We have observed an increased secretion of matrix...

  9. Chemical Conversion of Human Fibroblasts into Functional Schwann Cells

    Directory of Open Access Journals (Sweden)

    Eva C. Thoma

    2014-10-01

    Full Text Available Direct transdifferentiation of somatic cells is a promising approach to obtain patient-specific cells for numerous applications. However, conversion across germ-layer borders often requires ectopic gene expression with unpredictable side effects. Here, we present a gene-free approach that allows efficient conversion of human fibroblasts via a transient progenitor stage into Schwann cells, the major glial cell type of peripheral nerves. Using a multikinase inhibitor, we transdifferentiated fibroblasts into transient neural precursors that were subsequently further differentiated into Schwann cells. The resulting induced Schwann cells (iSCs expressed numerous Schwann cell-specific proteins and displayed neurosupportive and myelination capacity in vitro. Thus, we established a strategy to obtain mature Schwann cells from human postnatal fibroblasts under chemically defined conditions without the introduction of ectopic genes.

  10. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser.

    Science.gov (United States)

    Illescas-Montes, Rebeca; Melguizo-Rodríguez, Lucía; Manzano-Moreno, Francisco Javier; García-Martínez, Olga; Ruiz, Concepción; Ramos-Torrecillas, Javier

    2017-07-13

    Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2-1 W and energy density: 1-7 J/cm²) using different transmission modes (continuous or pulsed). The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm²; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing.

  11. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser

    Directory of Open Access Journals (Sweden)

    Rebeca Illescas-Montes

    2017-07-01

    Full Text Available Background: Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. Methods: The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2–1 W and energy density: 1–7 J/cm2 using different transmission modes (continuous or pulsed. The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. Results: fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm2; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. Conclusion: The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing.

  12. Interaction of human gingival fibroblasts with PVA/gelatine sponges.

    Science.gov (United States)

    Moscato, Stefania; Mattii, Letizia; D'Alessandro, Delfo; Cascone, Maria Grazia; Lazzeri, Luigi; Serino, Lorenzo Pio; Dolfi, Amelio; Bernardini, Nunzia

    2008-07-01

    Tissue engineering scaffolds should be able to reproduce optimal microenvironments in order to support cell attachment, three-dimensional growth, migration and, regarding fibroblasts, must also promote extracellular matrix production. Various bioactive molecules are employed in the preparation of spongy scaffolds to obtain biomimetic matrices by either surface-coating or introducing them into the bulk composition of the biomaterial. The biomimetic properties of a spongy matrix composed of PVA combined with the natural component gelatine were evaluated by culturing human gingival fibroblasts on the scaffold. Cell adhesion, morphology and distribution within the scaffold were assessed by histology and electron microscopy; viability and metabolic activity as well as extracellular matrix production were analyzed by MTT assay, cytochemistry and immunocytochemistry. Fibroblasts interacted positively with PVA/gelatine. They adhered to the PVA/gelatine matrix in which they had good spreading activity and active metabolism; fibroblasts were also able to produce extracellular matrix molecules (type I collagen, fibronectin and laminin) compared to bi-dimensionally grown cells. The in situ creation of a biological matrix by human fibroblasts together with the ability to produce growth factor TGF-beta1 and the intracellular signal transduction molecule RhoA, suggests that this kind of PVA/gelatine sponge may represent a suitable support for in vitro extracellular matrix production and connective tissue regeneration.

  13. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis.

    Directory of Open Access Journals (Sweden)

    Marie C Matrka

    Full Text Available The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos. To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.

  14. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis

    Science.gov (United States)

    Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F.; Lane, Andrew N.; Romick-Rosendale, Lindsey E.; Wells, Susanne I.

    2017-01-01

    The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth. PMID:28558019

  15. Direct Lineage Reprogramming Reveals Disease-Specific Phenotypes of Motor Neurons from Human ALS Patients

    Directory of Open Access Journals (Sweden)

    Meng-Lu Liu

    2016-01-01

    Full Text Available Subtype-specific neurons obtained from adult humans will be critical to modeling neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS. Here, we show that adult human skin fibroblasts can be directly and efficiently converted into highly pure motor neurons without passing through an induced pluripotent stem cell stage. These adult human induced motor neurons (hiMNs exhibit the cytological and electrophysiological features of spinal motor neurons and form functional neuromuscular junctions (NMJs with skeletal muscles. Importantly, hiMNs converted from ALS patient fibroblasts show disease-specific degeneration manifested through poor survival, soma shrinkage, hypoactivity, and an inability to form NMJs. A chemical screen revealed that the degenerative features of ALS hiMNs can be remarkably rescued by the small molecule kenpaullone. Taken together, our results define a direct and efficient strategy to obtain disease-relevant neuronal subtypes from adult human patients and reveal their promising value in disease modeling and drug identification.

  16. High level expression of human basic fibroblast growth factor in ...

    African Journals Online (AJOL)

    USER

    2010-04-19

    Apr 19, 2010 ... High-level expression of recombinant human basic fibroblast growth factor in Escherichia coli presents research opportunities such as analysis ... The general agreement from the published data on heterologous gene ..... for protein expression (Casimiro et al., 1997; Gold et al.,. 1981; Hamdan et al., 2002; ...

  17. The radiation response of human dermal fibroblasts

    Science.gov (United States)

    Mitchell, Stephen Andrew

    A clinically reliable predictive assay based on normal-tissue radiosensitivity may lead to improved tumour control through individualised dose prescriptions. In-vitro fibroblast radiosensitivity has been shown, in several studies, to correlate with late radiation morbidity. The aim of this study was to investigate some of the cellular mechanisms underlying the normal-tissue response. In this study, seventeen primary fibroblast strains were established by enzymatic disaggregation of skin biopsies obtained from patients. These comprised seven who experienced acute tissue reactions to radiotherapy, four patients with a normal response and six non-cancer volunteers. An AT cell line was included as a positive control for radiosensitivity. In-vitro radiosensitivity was measured using a clonogenic assay at both high (HDR: 1.6 Gymin-1) and low dose rate (LDR: 0.01 Gymin-1). The radiation parameter HDR SF2 was the most sensitive in discriminating the seven sensitive patients from the remaining ten normal patients (range 0.11-0.19 sensitive patients compared with 0.17-0.34 control patients: pDNA damage. However, a strong correlation was found between clonogenic survival and both residual DNA damage (measured over 10-70 Gy, allowing 4 h repair, correlation coefficient: 0.90, DNA damage, with the sensitive cell lines generally showing a higher level of residual DNA damage. Cell-cycle delays were found in all 18 cell strains in response to 2 Gy irradiation, but were not found to discriminate between sensitive and normal patients. Associated studies found no mutations of the ATM gene in the five radiosensitive patients studied. However, a coding sequence alteration was found in the XRCC1 gene in one of the radiosensitive patients. These findings indicate that a DNA repair defect may be partly responsible for the extreme reactions to radiotherapy observed in a small percentage of patients and that with further modifications, an assay based on measurement of residual DNA damage

  18. Reprogramming chromatin

    DEFF Research Database (Denmark)

    Ehrensberger, Andreas Hasso; Svejstrup, Jesper Qualmann

    2012-01-01

    attributed to high kinetic barriers that affect all cells equally and can only be overcome by rare stochastic events. The barriers to reprogramming are likely to involve transformations of chromatin state because (i) inhibitors of chromatin-modifying enzymes can enhance the efficiency of reprogramming...... and (ii) knockdown or knock-out of chromatin-modifying enzymes can lower the efficiency of reprogramming. Here, we review the relationship between chromatin state transformations (chromatin reprogramming) and cellular reprogramming, with an emphasis on transcription factors, chromatin remodeling factors...

  19. Reprogramming Malignant Cancer Cells toward a Benign Phenotype following Exposure to Human Embryonic Stem Cell Microenvironment

    Science.gov (United States)

    Arena, Vincenzo; Arena, Manuel; Arena, Goffredo Orazio

    2017-01-01

    The embryonic microenvironment is well known to be non-permissive for tumor development because early developmental signals naturally suppress the expression of proto-oncogenes. In an analogous manner, mimicking an early embryonic environment during embryonic stem cell culture has been shown to suppress oncogenic phenotypes of cancer cells. Exosomes derived from human embryonic stem cells harbor substances that mirror the content of the cells of origin and have been reported to reprogram hematopoietic stem/progenitor cells via horizontal transfer of mRNA and proteins. However, the possibility that these embryonic stem cells-derived exosomes might be the main effectors of the anti-tumor effect mediated by the embryonic stem cells has not been explored yet. The present study aims to investigate whether exosomes derived from human embryonic stem cells can reprogram malignant cancer cells to a benign stage and reduce their tumorigenicity. We show that the embryonic stem cell-conditioned medium contains factors that inhibit cancer cell growth and tumorigenicity in vitro and in vivo. Moreover, we demonstrate that exosomes derived from human embryonic stem cells display anti-proliferation and pro-apoptotic effects, and decrease tumor size in a xenograft model. These exosomes are also able to transfer their cargo into target cancer cells, inducing a dose-dependent increase in SOX2, OCT4 and Nanog proteins, leading to a dose-dependent decrease of cancer cell growth and tumorigenicity. This study shows for the first time that human embryonic stem cell-derived exosomes play an important role in the tumor suppressive activity displayed by human embryonic stem cells. PMID:28068409

  20. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways

    Directory of Open Access Journals (Sweden)

    V. Barquissau

    2016-05-01

    Conclusions: Conversion of human white fat cells into brite adipocytes results in a major metabolic reprogramming inducing fatty acid anabolic and catabolic pathways. PDK4 redirects glucose from oxidation towards triglyceride synthesis and favors the use of fatty acids as energy source for uncoupling mitochondria.

  1. Optimum microcurrent stimulation intensity for galvanotaxis in human fibroblasts.

    Science.gov (United States)

    Sugimoto, M; Maeshige, N; Honda, H; Yoshikawa, Y; Uemura, M; Yamamoto, M; Terashi, H

    2012-01-01

    In this study, we develop methods to measure galvanotaxis of fibroblasts and determined the optimum conditions of electrical stimulation. An inverted 35mm dish containing cell suspensions (3×105 primary human skin fibroblasts, DMEM, and 10% FBS) was placed on the centre of a 100mm dish. The 35mm dish was removed 24 hours later, and culture medium was added to the 100mm dish. Fibroblasts were randomised (double-blind) into three groups, where electrical stimulation was given at varying intensities: 0UA (control), 50UA, and 100UA. Electrical stimulation (frequency=0.3Hz) was conducted, for a duration of 4 hours, with platinum electrodes in a CO2 incubator. We took pictures immediately before and 20 hours after stimulation. We calculated the migration ratio to the negative pole by dividing the area of attached fibroblasts after stimulation with that before stimulation. The migration ratio to the negative pole was significantly higher in the 100UA group than in the control group (pmicrocurrent efficacy for pressure ulcer healing. Electrical stimulation based on our in vitro experiment might be important for the development of physical therapy for pressure ulcers.

  2. Pulsed short-wave diathermy effects on human fibroblast proliferation.

    Science.gov (United States)

    Hill, Jonathan; Lewis, Martyn; Mills, Pauline; Kielty, Cay

    2002-06-01

    To investigate the influence of pulsed short-wave diathermy (PSWD) on fibroblast and chondrocyte cell proliferation rates and to establish the influences of different dosages applied. Four single-blind trials. Laboratory, in vitro study. Human adult dermal fibroblast and chondrocyte cells were plated at known concentrations and incubated for 5 days. Exposure to PSWD, twice daily, on days 2, 3, and 4. After crystal violet staining (day 5), optical density (cell number) was determined spectrophotometrically. PSWD, given at mean power of 48W for 10 minutes, increased fibroblast proliferation compared with control groups (P<.001). There was a relationship between cell proliferation and the amount of energy given (P<0.001). The optimal mean power for proliferation was estimated to be 13.8W. While keeping mean power constant at 6W, altering pulse duration and pulse repetition rate dosage parameters did not have a significant effect on proliferation (P=.519). Chondrocyte proliferation also increased with PSWD exposure of 6W at 10 minutes duration (P=.015). In addition, treatment time was significantly associated with chondrocyte proliferation (P<.001). PSWD is associated with increased rates of fibroblast and chondrocyte proliferation in vitro, which is dose dependent. These results contribute to an understanding of the physiologic mechanisms underlying the therapeutic effects of PSWD. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  3. Involvement of the mitochondrial compartment in human NCL fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Pezzini, Francesco; Gismondi, Floriana [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy); Tessa, Alessandra [IRCCS Fondazione Stella Maris-Molecular Medicine Unit, Pisa (Italy); Tonin, Paola [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy); Carrozzo, Rosalba [IRCCS Bambino Gesu Hospital-Molecular Medicine Unit, Roma (Italy); Mole, Sara E. [MRC Laboratory for Molecular Cell Biology, Molecular Medicines Unit, UCL Institute of Child Health and Department of Genetics, Evolution and Environment, University College London (United Kingdom); Santorelli, Filippo M. [IRCCS Fondazione Stella Maris-Molecular Medicine Unit, Pisa (Italy); Simonati, Alessandro, E-mail: alessandro.simonati@univr.it [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. Black-Right-Pointing-Pointer Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. Black-Right-Pointing-Pointer Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  4. Mitochondrial Spare Respiratory Capacity Is Negatively Correlated with Nuclear Reprogramming Efficiency

    DEFF Research Database (Denmark)

    Yan, Zhou; Al-Saaidi, Rasha Abdelkadhem; Fernandez Guerra, Paula

    2017-01-01

    PSCs) requires remodeling of mitochondria and a metabolic shift from an oxidative state to a more glycolytic state. In this study, we evaluated the nuclear reprogramming efficiency in relation to mitochondrial bioenergetic parameters of fibroblasts from seven different human individuals. Using the Seahorse...

  5. RNA-Guided Activation of Pluripotency Genes in Human Fibroblasts

    DEFF Research Database (Denmark)

    Xiong, Kai; Zhou, Yan; Blichfeld, Kristian Aabo

    2017-01-01

    -associated protein 9 (dCas9)-VP64 (CRISPRa) alone, or a combination of dCas9-VP64 and MS2-P65-HSF1 [synergistic activation mediator (SAM) system] mediated activation of five pluripotency genes: KLF4 (K), LIN28 (L), MYC (M), OCT4 (O), and SOX2 (S) in human cells (HEK293T, HeLa, HepG2, and primary fibroblasts...... could be obtained from these SAM fibroblasts. In conclusion, our study showed that CRISPR/Cas9-based ATFs are potent to activate and maintain transcription of endogenous human pluripotent genes. However, future improvements of the system are still required to improve activation efficiency and cellular...

  6. Extracellular depolymerization of hyaluronic acid in cultured human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Takagaki, K.; Kubo, K.; Morikawa, A.; Tamura, S.; Endo, M. (Hirosaki Univ. School of Medicine (Japan))

    1990-10-15

    The chain length of ({sup 3}H)hyaluronic acid synthesized by cultivating human skin fibroblasts in the presence of ({sup 3}H)glucosamine was investigated. ({sup 3}H)Hyaluronic acid obtained from the matrix fraction was excluded from a Sepharose CL-2B column irrespective of the incubation period, whereas that from the medium was depolymerized into a constant chain length (Mr = 40,000). The reducing and non-reducing terminals of the depolymerized hyaluronic acid were N-acetylglucosamine and glucuronic acid, respectively. Prolonged incubation produced no oligosaccharides as shown by examination of hyaluronidase digests, suggesting the presence of a novel endo-beta-N-acetylglucosaminidase in cultured human skin fibroblasts.

  7. Paracrine interactions between primary human macrophages and human fibroblasts enhance murine mammary gland humanization in vivo.

    Science.gov (United States)

    Fleming, Jodie M; Miller, Tyler C; Kidacki, Michal; Ginsburg, Erika; Stuelten, Christina H; Stewart, Delisha A; Troester, Melissa A; Vonderhaar, Barbara K

    2012-06-25

    Macrophages comprise an essential component of the mammary microenvironment necessary for normal gland development. However, there is no viable in vivo model to study their role in normal human breast function. We hypothesized that adding primary human macrophages to the murine mammary gland would enhance and provide a novel approach to examine immune-stromal cell interactions during the humanization process. Primary human macrophages, in the presence or absence of ectopic estrogen stimulation, were used to humanize mouse mammary glands. Mechanisms of enhanced humanization were identified by cytokine/chemokine ELISAs, zymography, western analysis, invasion and proliferation assays; results were confirmed with immunohistological analysis. The combined treatment of macrophages and estrogen stimulation significantly enhanced the percentage of the total gland humanized and the engraftment/outgrowth success rate. Timecourse analysis revealed the disappearance of the human macrophages by two weeks post-injection, suggesting that the improved overall growth and invasiveness of the fibroblasts provided a larger stromal bed for epithelial cell proliferation and structure formation. Confirming their promotion of fibroblasts humanization, estrogen-stimulated macrophages significantly enhanced fibroblast proliferation and invasion in vitro, as well as significantly increased proliferating cell nuclear antigen (PCNA) positive cells in humanized glands. Cytokine/chemokine ELISAs, zymography and western analyses identified TNFα and MMP9 as potential mechanisms by which estrogen-stimulated macrophages enhanced humanization. Specific inhibitors to TNFα and MMP9 validated the effects of these molecules on fibroblast behavior in vitro, as well as by immunohistochemical analysis of humanized glands for human-specific MMP9 expression. Lastly, glands humanized with macrophages had enhanced engraftment and tumor growth compared to glands humanized with fibroblasts alone. Herein, we

  8. Phytanic acid alpha-oxidation in peroxisomal disorders: studies in cultured human fibroblasts

    NARCIS (Netherlands)

    Verhoeven, N. M.; Schor, D. S.; Roe, C. R.; Wanders, R. J.; Jakobs, C.

    1997-01-01

    We studied the alpha-oxidation of phytanic acid in human fibroblasts of controls and patients affected with classical Refsum disease, rhizomelic chondrodysplasia punctata, generalized peroxisomal disorders and peroxisomal bifunctional protein deficiency. Cultured fibroblasts were incubated with

  9. Effect of periodontal dressings on human gingiva fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Eber, R.M.; Shuler, C.F.; Buchanan, W.; Beck, F.M.; Horton, J.E. (Ohio State Univ. College of Dentistry, Columbus (USA))

    1989-08-01

    In vitro cytotoxicity studies of periodontal dressings have not generally produced a result consistent with in vivo observations. These prior in vitro studies have not used human intraoral cell lines. We tested the effects of two eugenol containing and two non-eugenol periodontal dressings on cultured human gingival fibroblasts (HGF) (ATCC No. 1292). Replicate HGF cultures grown in microtiter plates were exposed to stock, 1:4 and 1:16 dilutions of extracts made from each of the four periodontal dressings. The HGF cultures were pulse labelled with tritiated thymidine (3HTdR) after 24, 48, and 72 hours. Incorporations of the labelled thymidine were measured using liquid scintillation counting and expressed as counts per minute. The results showed that undiluted extracts from all four periodontal dressings totally inhibited 3HTdR uptake (P less than 0.05). The 1:4 dilution of eugenol dressings inhibited 3HTdR uptake significantly more than non-eugenol dressings (P less than 0.05). Interestingly, at 72 hours the 1:16 dilution of the non-eugenol dressings caused significantly increased 3HTdR uptake which was not observed with the eugenol dressings. The present results suggest that the use of a human fibroblastic cell line for testing the effects of periodontal dressings may provide information about the relative biological effects of these dressings. Using this cell line, we have found that eugenol dressings inhibit fibroblast proliferation to a greater extent than non-eugenol dressings.

  10. Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures.

    Science.gov (United States)

    Fernandes, Maria Cecilia; Dillon, Laura A L; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M; El-Sayed, Najib M

    2016-05-10

    Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. Little is known about the transcriptional changes that occur within mammalian cells harboring intracellular pathogens. This study characterizes the gene expression signatures of Leishmania spp. parasites and the coordinated response of infected human macrophages as the pathogen enters and persists within them. After accounting for the generic effects of large-particle phagocytosis, we observed a parasite-specific response of the human macrophages early in

  11. Inhibition of normal human lung fibroblast growth by beryllium.

    Science.gov (United States)

    Lehnert, N M; Gary, R K; Marrone, B L; Lehnert, B E

    2001-03-07

    Inhalation of particulate beryllium (Be) and its compounds causes chronic Be disease (CBD) in a relatively small subset ( approximately 1-6%) of exposed individuals. Hallmarks of this pulmonary disease include increases in several cell types, including lung fibroblasts, that contribute to the fibrotic component of the disorder. In this regard, enhancements in cell proliferation appear to play a fundamental role in CBD development and progression. Paradoxically, however, some existing evidence suggests that Be actually has antiproliferative effects. In order to gain further information about the effects of Be on cell growth, we: (1) assessed cell proliferation and cell cycle effects of low concentrations of Be in normal human diploid fibroblasts, and (2) investigated the molecular pathway(s) by which the cell cycle disturbing effects of Be may be mediated. Treatment of human lung and skin fibroblasts with Be added in the soluble form of BeSO(4) (0.1-100 microM) caused inhibitions of their growth in culture in a concentration-dependent manner. Such growth inhibition was found to persist, even after cells were further cultured in Be(2+)-free medium. Flow cytometric analyses of cellular DNA labeled with the DNA-binding fluorochrome DAPI revealed that Be causes a G(0)-G(1)/pre-S phase arrest. Western blot analyses indicated that the Be-induced G(0)-G(1)/pre-S phase arrest involves elevations in TP53 (p53) and the cyclin-dependent kinase inhibitor CDKN1A (p21(Waf-1,Cip1)). That Be at low concentrations inhibits the growth of normal human fibroblasts suggests the possibility of the existence of abnormal cell cycle inhibitory responses to Be in individuals who are sensitive to the metal and ultimately develop CBD.

  12. Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts

    Directory of Open Access Journals (Sweden)

    Evangelia Papadimou

    2015-04-01

    Full Text Available The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs, also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy.

  13. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family

    Directory of Open Access Journals (Sweden)

    Eriona Hysolli

    2016-07-01

    Full Text Available Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs have been shown to be highly similar to embryonic stem cells (ESCs. However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs.

  14. Meta-Analysis of Transcriptome Regulation During Induction to Cardiac Myocyte Fate From Mouse and Human Fibroblasts.

    Science.gov (United States)

    Rastegar-Pouyani, Shima; Khazaei, Niusha; Wee, Ping; Yaqubi, Moein; Mohammadnia, Abdulshakour

    2017-08-01

    Ectopic expression of a defined set of transcription factors (TFs) can directly convert fibroblasts into a cardiac myocyte cell fate. Beside inefficiency in generating induced cardiomyocytes (iCMs), the molecular mechanisms that regulate this process remained to be well defined. The main purpose of this study was to provide better insight on the transcriptome regulation and to introduce a new strategy for candidating TFs for the transdifferentiation process. Eight mouse and three human high quality microarray data sets were analyzed to find differentially expressed genes (DEGs), which we integrated with TF-binding sites and protein-protein interactions to construct gene regulatory and protein-protein interaction networks. Topological and biological analyses of constructed gene networks revealed the main regulators and most affected biological processes. The DEGs could be categorized into two distinct groups, first, up-regulated genes that are mainly involved in cardiac-specific processes and second, down-regulated genes that are mainly involved in fibroblast-specific functions. Gata4, Mef2a, Tbx5, Tead4 TFs were identified as main regulators of cardiac-specific gene expression program; and Trp53, E2f1, Myc, Sfpi1, Lmo2, and Meis1 were identified as TFs which mainly regulate the expression of fibroblast-specific genes. Furthermore, we compared gene expression profiles and identified TFs between mouse and human to find the similarities and differences. In summary, our strategy of meta-analyzing the data of high-throughput techniques by computational approaches, besides revealing the mechanisms involved in the regulation of the gene expression program, also suggests a new approach for increasing the efficiency of the direct reprogramming of fibroblasts into iCMs. J. Cell. Physiol. 232: 2053-2062, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Effects of blue light irradiation on human dermal fibroblasts.

    Science.gov (United States)

    Opländer, Christian; Hidding, Sarah; Werners, Frauke B; Born, Matthias; Pallua, Norbert; Suschek, Christoph V

    2011-05-03

    Previous studies have reported that separately from UV-radiation also blue light influences cellular physiology in different cell types. However, little is known about the blue light action spectrum. The purpose of this study was to investigate effects of blue light at distinct wavelengths (410, 420, 453, 480 nm) emitted by well defined light-emitting-diodes on viability, proliferation and antioxidative capacity of human dermal fibroblasts. We found that irradiation with blue light (410, 420 nm) led to intracellular oxidative stress and toxic effects in a dose and wavelength dependent manner. No toxicity was observed using light at 453 nm and 480 nm. Furthermore, blue light (410, 420, 453 nm) at low doses reduced the antioxidative capacity of fibroblasts. At non-toxic doses, irradiations at 410, 420 and 453 nm reduced proliferation indicating a higher susceptibility of proliferating fibroblasts to blue light. Our results show that blue light at different wavelengths may induce varying degrees of intracellular oxidative stress with different physiological outcome, which could contribute to premature skin photoaging. On the other hand, the use of blue light due to its antiproliferative and toxic properties may represent a new approach in treatment and prevention of keloids, hypertrophic scars and fibrotic skin diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Differential impact of RB status on E2F1 reprogramming in human cancer.

    Science.gov (United States)

    McNair, Christopher; Xu, Kexin; Mandigo, Amy C; Benelli, Matteo; Leiby, Benjamin; Rodrigues, Daniel; Lindberg, Johan; Gronberg, Henrik; Crespo, Mateus; De Laere, Bram; Dirix, Luc; Visakorpi, Tapio; Li, Fugen; Feng, Felix Y; de Bono, Johann; Demichelis, Francesca; Rubin, Mark A; Brown, Myles; Knudsen, Karen E

    2017-12-04

    The tumor suppressor protein retinoblastoma (RB) is mechanistically linked to suppression of transcription factor E2F1-mediated cell cycle regulation. For multiple tumor types, loss of RB function is associated with poor clinical outcome. RB action is abrogated either by direct depletion or through inactivation of RB function; however, the basis for this selectivity is unknown. Here, analysis of tumor samples and cell-free DNA from patients with advanced prostate cancer showed that direct RB loss was the preferred pathway of disruption in human disease. While RB loss was associated with lethal disease, RB-deficient tumors had no proliferative advantage and exhibited downstream effects distinct from cell cycle control. Mechanistically, RB loss led to E2F1 cistrome expansion and different binding specificity, alterations distinct from those observed after functional RB inactivation. Additionally, identification of protumorigenic transcriptional networks specific to RB loss that were validated in clinical samples demonstrated the ability of RB loss to differentially reprogram E2F1 in human cancers. Together, these findings not only identify tumor-suppressive functions of RB that are distinct from cell cycle control, but also demonstrate that the molecular consequence of RB loss is distinct from RB inactivation. Thus, these studies provide insight into how RB loss promotes disease progression, and identify new nodes for therapeutic intervention.

  17. Structure-guided reprogramming of human cGAS dinucleotide linkage specificity.

    Science.gov (United States)

    Kranzusch, Philip J; Lee, Amy S Y; Wilson, Stephen C; Solovykh, Mikhail S; Vance, Russell E; Berger, James M; Doudna, Jennifer A

    2014-08-28

    Cyclic dinucleotides (CDNs) play central roles in bacterial pathogenesis and innate immunity. The mammalian enzyme cGAS synthesizes a unique cyclic dinucleotide (cGAMP) containing a 2'-5' phosphodiester linkage essential for optimal immune stimulation, but the molecular basis for linkage specificity is unknown. Here, we show that the Vibrio cholerae pathogenicity factor DncV is a prokaryotic cGAS-like enzyme whose activity provides a mechanistic rationale for the unique ability of cGAS to produce 2'-5' cGAMP. Three high-resolution crystal structures show that DncV and human cGAS generate CDNs in sequential reactions that proceed in opposing directions. We explain 2' and 3' linkage specificity and test this model by reprogramming the human cGAS active site to produce 3'-5' cGAMP, leading to selective stimulation of alternative STING adaptor alleles in cells. These results demonstrate mechanistic homology between bacterial signaling and mammalian innate immunity and explain how active site configuration controls linkage chemistry for pathway-specific signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Biological activities of frankincense essential oil in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Xuesheng Han

    2017-06-01

    Full Text Available Although frankincense essential oil (FREO has become increasingly popular in skin care, research on its biological activities in human skin cells is scarce, if not completely absent. In the current study, we explored the biological activities of FREO in pre-inflamed human dermal fibroblasts by analyzing the levels of 17 important protein biomarkers pertinent to inflammation and tissue remodeling. FREO exhibited robust anti-proliferative activity in these skin cells. It also significantly inhibited collagen III, interferon gamma-induced protein 10, and intracellular cell adhesion molecule 1. We also studied its effect in regulating genome-wide gene expression. FREO robustly modulated global gene expression. Furthermore, Ingenuity® Pathway Analysis showed that FREO affected many important signaling pathways that are closely related to inflammation, immune response, and tissue remodeling. This study provides the first evidence of the biological activities of FREO in human dermal fibroblasts. Consistent with existing studies in other models, the current study suggests that FREO possesses promising potential to modulate the biological processes of inflammation and tissue remodeling in human skin. Further research into the biological mechanisms of action of FREO and its major active components is recommended.

  19. Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency

    Directory of Open Access Journals (Sweden)

    Alvaro Muñoz-López

    2016-10-01

    Full Text Available Induced pluripotent stem cells (iPSCs are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies generated iPSCs from primary chronic myeloid leukemias, but iPSC generation from acute myeloid or lymphoid leukemias (ALL has not been achieved. We attempted to generate iPSCs from different subtypes of B-ALL to address the developmental impact of leukemic fusion genes. OKSM(L-expressing mono/polycistronic-, retroviral/lentiviral/episomal-, and Sendai virus vector-based reprogramming strategies failed to render iPSCs in vitro and in vivo. Addition of transcriptomic-epigenetic reprogramming “boosters” also failed to generate iPSCs from B cell blasts and B-ALL lines, and when iPSCs emerged they lacked leukemic fusion genes, demonstrating non-leukemic myeloid origin. Conversely, MLL-AF4-overexpressing hematopoietic stem cells/B progenitors were successfully reprogrammed, indicating that B cell origin and leukemic fusion gene were not reprogramming barriers. Global transcriptome/DNA methylome profiling suggested a developmental/differentiation refractoriness of MLL-rearranged B-ALL to reprogramming into pluripotency.

  20. Quercetin inhibits hexose transport in a human diploid fibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Salter, D.W.; Custead-Jones, S.; Cook, J.S.

    1978-01-01

    The flavonol quercetin, a phloretin analog, inhibits transport of 2-deoxyglucose and 3-O-methylglucose in a cultured human diploid fibroblast. This inhibition is related to transport itself and not to the reported effects of flavonoids on membrane-bound ATPases. From concentration-inhibition curves at several pH's we conclude that uncharged (acid) quercetin (pH = 7.65) is the inhibitory form of the molecule (K/sub I/ = 10 ..mu..m). Quercetin, unlike phloretin, is rapidly degraded in 0.1 N NaOH; the degradation products are weakly inhibitory to hexose transport.

  1. In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors.

    Directory of Open Access Journals (Sweden)

    Matteo Vecellio

    Full Text Available Adult human cardiac mesenchymal-like stromal cells (CStC represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS in the presence of 5 µM all-trans Retinoic Acid (ATRA, 5 µM Phenyl Butyrate (PB, and 200 µM diethylenetriamine/nitric oxide (DETA/NO, to create a novel epigenetically active cocktail (EpiC. Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors.

  2. CEMP1 Induces Transformation in Human Gingival Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Mercedes Bermúdez

    Full Text Available Cementum Protein 1 (CEMP1 is a key regulator of cementogenesis. CEMP1 promotes cell attachment, differentiation, deposition rate, composition, and morphology of hydroxyapatite crystals formed by human cementoblastic cells. Its expression is restricted to cementoblasts and progenitor cell subpopulations present in the periodontal ligament. CEMP1 transfection into non-osteogenic cells such as adult human gingival fibroblasts results in differentiation of these cells into a "mineralizing" cell phenotype. Other studies have shown evidence that CEMP1 could have a therapeutic potential for the treatment of bone defects and regeneration of other mineralized tissues. To better understand CEMP1's biological effects in vitro we investigated the consequences of its expression in human gingival fibroblasts (HGF growing in non-mineralizing media by comparing gene expression profiles. We identified several mRNAs whose expression is modified by CEMP1 induction in HGF cells. Enrichment analysis showed that several of these newly expressed genes are involved in oncogenesis. Our results suggest that CEMP1 causes the transformation of HGF and NIH3T3 cells. CEMP1 is overexpressed in cancer cell lines. We also determined that the region spanning the CEMP1 locus is commonly amplified in a variety of cancers, and finally we found significant overexpression of CEMP1 in leukemia, cervix, breast, prostate and lung cancer. Our findings suggest that CEMP1 exerts modulation of a number of cellular genes, cellular development, cellular growth, cell death, and cell cycle, and molecules associated with cancer.

  3. Single cell analysis reveals the stochastic phase of reprogramming to pluripotency is an ordered probabilistic process.

    Science.gov (United States)

    Chung, Kyung-Min; Kolling, Frederick W; Gajdosik, Matthew D; Burger, Steven; Russell, Alexander C; Nelson, Craig E

    2014-01-01

    Despite years of research, the reprogramming of human somatic cells to pluripotency remains a slow, inefficient process, and a detailed mechanistic understanding of reprogramming remains elusive. Current models suggest reprogramming to pluripotency occurs in two-phases: a prolonged stochastic phase followed by a rapid deterministic phase. In this paradigm, the early stochastic phase is marked by the random and gradual expression of pluripotency genes and is thought to be a major rate-limiting step in the successful generation of induced Pluripotent Stem Cells (iPSCs). Recent evidence suggests that the epigenetic landscape of the somatic cell is gradually reset during a period known as the stochastic phase, but it is known neither how this occurs nor what rate-limiting steps control progress through the stochastic phase. A precise understanding of gene expression dynamics in the stochastic phase is required in order to answer these questions. Moreover, a precise model of this complex process will enable the measurement and mechanistic dissection of treatments that enhance the rate or efficiency of reprogramming to pluripotency. Here we use single-cell transcript profiling, FACS and mathematical modeling to show that the stochastic phase is an ordered probabilistic process with independent gene-specific dynamics. We also show that partially reprogrammed cells infected with OSKM follow two trajectories: a productive trajectory toward increasingly ESC-like expression profiles or an alternative trajectory leading away from both the fibroblast and ESC state. These two pathways are distinguished by the coordinated expression of a small group of chromatin modifiers in the productive trajectory, supporting the notion that chromatin remodeling is essential for successful reprogramming. These are the first results to show that the stochastic phase of reprogramming in human fibroblasts is an ordered, probabilistic process with gene-specific dynamics and to provide a precise

  4. Cytotoxic effects of nickel nanowires in human fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2016-03-09

    The increasing interest in the use of magnetic nanostructures for biomedical applications necessitates rigorous studies to be carried out in order to determine their potential toxicity. This work attempts to elucidate the cytotoxic effects of nickel nanowires (NWs) in human fibroblasts WI-38 by a colorimetric assay (MTT) under two different parameters: NW concentration and exposure time. This was complemented with TEM and confocal images to assess the NWs internalization and to identify any changes in the cell morphology. Ni NWs were fabricated by electrodeposition using porous alumina templates. Energy dispersive X-Ray analysis, scanning electron microscopy and transmission electron microscopy imaging were used for NW characterization. The results showed decreased cell metabolic activity for incubation times longer than 24 hours and no negative effects for exposure times shorter than that. The cytotoxicity effects for human fibroblasts were then compared with those reported for HCT 116 cells, and the findings point out that it is relevant to consider the cellular size. In addition, the present study compares the toxic effects of equivalent amounts of nickel in the form of its salt to those of NWs and shows that the NWs are more toxic than the salts. Internalized NWs were found in vesicles inside of the cells where their presence induced inflammation of the endoplasmic reticulum.

  5. Epigenetic Reprogramming Induced Pluripotency

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2011-08-01

    Full Text Available BACKGROUND: The ability to reprogram mature cells to an embryonic-like state by nuclear transfer or by inducing the expression of key transcription factors has provided us with critical opportunities to linearly map the epigenetic parameters that are essential for attaining pluripotency. CONTENT: Epigenetic reprogramming describes a switch in gene expression of one kind of cell to that of another unrelated cell type. Early studies in frog cloning provided some of the first experimental evidence for reprogramming. Subsequent procedures included mammalian somatic cell nuclear transfer, cell fusion, induction of pluripotency by ectopic gene expression, and direct reprogramming. Through these methods it becomes possible to derive one kind of specialized cell (such as a brain cell from another, more accessible tissue, such as skin in the same individual. This has potential applications for cell replacement without the immunosuppression treatments commonly required when cells are transferred between genetically different individuals. SUMMARY: Reprogramming with transcription factors offers tremendous promise for the future development of patient-specific pluripotent cells and for studies of human disease. The identification of optimized protocols for the differentiation of iPS cells and ES cells into multiple functional cell types in vitro and their proper engraftment in vivo will be challenged in the coming years. Given that the first small molecule approaches aimed at activating pluripotency genes have already been devised and that murine iPS cells have recently been derived by using non-integrative transient expression strategies of the reprogramming factors, we expect that human iPS cells without permanent genetic alterations will soon be generated. KEYWORDS: epigenetics, reprogramming, pluripotency, stem cells, iPS cells, chromatin, DNA methylation.

  6. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Mizoshiri, N. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kishida, T. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, K. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Shirai, T.; Terauchi, R.; Tsuchida, S. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mori, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Ejima, A. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Sato, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Arai, Y.; Fujiwara, H. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, T.; Kanamura, N. [Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, O., E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kubo, T. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2015-11-27

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  7. Metallic nanoparticles reduce the migration of human fibroblasts in vitro

    Science.gov (United States)

    Vieira, Larissa Fernanda de Araújo; Lins, Marvin Paulo; Viana, Iana Mayane Mendes Nicácio; dos Santos, Jeniffer Estevão; Smaniotto, Salete; Reis, Maria Danielma dos Santos

    2017-03-01

    Nanoparticles have extremely wide applications in the medical and biological fields. They are being used in biosensors, local drug delivery, diagnostics, and medical therapy. However, the potential effects of nanoparticles on target cell and tissue function, apart from cytotoxicity, are not completely understood. Thus, the aim of this study was to investigate the in vitro effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on human fibroblasts with respect to their interaction with the extracellular matrix and in cell migration. Immunofluorescence analysis revealed that treatment with AgNPs or AuNPs decreased collagen and laminin production at all the concentrations tested (0.1, 1, and 10 μg/mL). Furthermore, cytofluorometric analysis showed that treatment with AgNPs reduced the percentage of cells expressing the collagen receptor very late antigen 2, α2β1 integrin (VLA-2) and the laminin receptor very late antigen 6, α6β1 integrin (VLA-6). In contrast, AuNP treatment increased and decreased the percentages of VLA-2-positive and VLA-6-positive cells, respectively, as compared to the findings for the controls. Analysis of cytoskeletal reorganization showed that treatment with both types of nanoparticles increased the formation of stress fibres and number of cell protrusions and impaired cell polarity. Fibroblasts exposed to different concentrations of AuNPs and AgNPs showed reduced migration through transwell chambers in the functional chemotaxis assay. These results demonstrated that metal nanoparticles may influence fibroblast function by negatively modulating the deposition of extracellular matrix molecules (ECM) and altering the expression of ECM receptors, cytoskeletal reorganization, and cell migration.

  8. Wnt pathway reprogramming during human embryonal carcinoma differentiation and potential for therapeutic targeting

    Directory of Open Access Journals (Sweden)

    Bee Thomas

    2009-10-01

    tested including NT2/D1, NT2/D1-R1, Tera-1 and 833K cells. Conclusion During induced differentiation of human EC cells, the Wnt signalling pathway is reprogrammed and canonical Wnt signalling induced. Specific species regulating non-canonical Wnt signalling conferred growth inhibition when targeted for repression in these EC cells. Notably, FZD7 repression significantly inhibited growth of human EC cells and is a promising therapeutic target for TGCTs.

  9. Inhibition of miRNA-212/132 improves the reprogramming of fibroblasts into induced pluripotent stem cells by de-repressing important epigenetic remodelling factors

    Directory of Open Access Journals (Sweden)

    Nils Pfaff

    2017-04-01

    Thus, conducting a full library miRNA screen we here describe a miRNA family, which markedly reduces generation of iPSC and upon inhibition in turn enhances reprogramming. These miRNAs, at least in part, exert their functions through repression of the epigenetic modulators p300 and Jarid1a, highlighting these two molecules as an endogenous epigenetic roadblock during iPSC generation.

  10. Characterization of human fibroblastic reticular cells as potential immunotherapeutic tools.

    Science.gov (United States)

    Valencia, Jaris; Jiménez, Eva; Martínez, Víctor G; Del Amo, Beatriz G; Hidalgo, Laura; Entrena, Ana; Fernández-Sevilla, Lidia M; Del Río, Francisco; Varas, Alberto; Vicente, Ángeles; Sacedón, Rosa

    2017-05-01

    Fibroblastic reticular cells (FRCs) are essential players during adaptive immune responses not only as a structural support for the encounter of antigen-presenting cells and naive T lymphocytes but also as a source of modulatory signals. However, little is known about this cell population in humans. To address the phenotypical and functional analysis of human FRCs here we established splenic (SP) and mesenteric lymph node (LN) CD45(-)CD31(-)CD90(+)podoplanin(+) myofibroblastic cell cultures. They shared the phenotypical characteristics distinctive of FRCs, including the expression of immunomodulatory factors and peripheral tissue antigens. Nevertheless, human FRCs also showed particular features, some differing from mouse FRCs, like the lack of nitric oxide synthase (NOS2) expression after interferon (IFN)γstimulation. Interestingly, SP-FRCs expressed higher levels of interleukin (IL)-6, BMP4, CCL2, CXCL12 and Notch molecules, and strongly adapted their functional profile to lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (Poly I:C) and IFNγ stimulation. In contrast, we found higher expression of transforming growth factor (TGF)β and Activin A in LN-FRCs that barely responded via Toll-Like Receptor (TLR)3 and constitutively expressed retinaldehyde dehydrogenase 1 enzyme, absent in SP-FRCs. This study reveals human FRCs can be valuable models to increase our knowledge about the physiology of human secondary lymphoid organs in health and disease and to explore the therapeutic options of FRCs. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency

    NARCIS (Netherlands)

    Á. Muñoz-López (Álvaro); D. Romero-Moya (Damià); C. Prieto (Cristina); Ramos-Mejía, V. (Verónica); Agraz-Doblas, A. (Antonio); I. Varela (Ignacio); Buschbeck, M. (Marcus); Palau, A. (Anna); Carvajal-Vergara, X. (Xonia); Giorgetti, A. (Alessandra); Ford, A. (Anthony); M. Lako (Majlinda); Granada, I. (Isabel); Ruiz-Xivillé, N. (Neus); Rodríguez-Perales, S. (Sandra); Torres-Ruíz, R. (Raul); R.W. Stam (Ronald); Fuster, J.L. (Jose Luis); M.F. Fraga (Mario F.); Nakanishi, M. (Mahito); G. Cazzaniga (Gianni); Bardini, M. (Michela); Cobo, I. (Isabel); Bayon, G.F. (Gustavo F.); A.F. Fernández (Agustin F.); C. Bueno (Clara); P. Menéndez (Pablo)

    2016-01-01

    textabstractInduced pluripotent stem cells (iPSCs) are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies

  12. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Anne Grünewald

    Full Text Available BACKGROUND: Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD. The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the impact of Parkin mutations on mitochondrial function and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7, as well as from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-12, delEx4/c.924C>T and delEx1/c.924C>T and three unrelated age-matched controls were included. Fibroblasts were cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial preparations or cell lysates. The mitochondrial membrane potential was measured with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and stress conditions. The degree of mitochondrial network branching was comparable in mutants and

  13. Efficient feeder-free episomal reprogramming with small molecules.

    Directory of Open Access Journals (Sweden)

    Junying Yu

    Full Text Available Genetic reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs could offer replenishable cell sources for transplantation therapies. To fulfill their promises, human iPSCs will ideally be free of exogenous DNA (footprint-free, and be derived and cultured in chemically defined media free of feeder cells. Currently, methods are available to enable efficient derivation of footprint-free human iPSCs. However, each of these methods has its limitations. We have previously derived footprint-free human iPSCs by employing episomal vectors for transgene delivery, but the process was inefficient and required feeder cells. Here, we have greatly improved the episomal reprogramming efficiency using a cocktail containing MEK inhibitor PD0325901, GSK3β inhibitor CHIR99021, TGF-β/Activin/Nodal receptor inhibitor A-83-01, ROCK inhibitor HA-100 and human leukemia inhibitory factor. Moreover, we have successfully established a feeder-free reprogramming condition using chemically defined medium with bFGF and N2B27 supplements and chemically defined human ESC medium mTeSR1 for the derivation of footprint-free human iPSCs. These improvements enabled the routine derivation of footprint-free human iPSCs from skin fibroblasts, adipose tissue-derived cells and cord blood cells. This technology will likely be valuable for the production of clinical-grade human iPSCs.

  14. Epigenetic Induction of Definitive and Pancreatic Endoderm Cell Fate in Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rangarajan Sambathkumar

    2016-01-01

    Full Text Available Reprogramming can occur by the introduction of key transcription factors (TFs as well as by epigenetic changes. We demonstrated that histone deacetylase inhibitor (HDACi Trichostatin A (TSA combined with a chromatin remodeling medium (CRM induced expression of a number of definitive endoderm and early and late pancreatic marker genes. When CRM was omitted, endoderm/pancreatic marker genes were not induced. Furthermore, treatment with DNA methyltransferase inhibitor (DNMTi 5-azacytidine (5AZA CRM did not affect gene expression changes, and when 5AZA was combined with TSA, no further increase in gene expression of endoderm, pancreatic endoderm, and endocrine markers was seen over levels induced with TSA alone. Interestingly, TSA-CRM did not affect expression of pluripotency and hepatocyte genes but induced some mesoderm transcripts. Upon removal of TSA-CRM, the endoderm/pancreatic gene expression profile returned to baseline. Our findings underscore the role epigenetic modification in transdifferentiation of one somatic cell into another. However, full reprogramming of fibroblasts to β-cells will require combination of this approach with TF overexpression and/or culture of the partially reprogrammed cells under β-cell specific conditions.

  15. Differences in motility pattern between human buccal fibroblasts and periodontal and skin fibroblasts

    DEFF Research Database (Denmark)

    Lepekhin, Eugene; Grøn, Birgitte; Berezin, Vladimir

    2002-01-01

    at these sites can be explained by differences in the motile behavior of their respective fibroblast populations. The migratory characteristics were studied in a two-dimensional culture system. The migration of single cells was time-lapse video recorded at intervals of 15 min for a period of 6 h using a computer...

  16. Metabolic Reprogramming Regulates the Proliferative and Inflammatory Phenotype of Adventitial Fibroblasts in Pulmonary Hypertension Through the Transcriptional Corepressor C-Terminal Binding Protein-1

    Czech Academy of Sciences Publication Activity Database

    Li, M.; Riddle, S.; Zhang, H.; D'Alessandro, A.; Flockton, A.; Serkova, N. J.; Hansen, K. C.; Moldvan, R.; McKeon, B. A.; Frid, M.; Kumar, S.; Li, H.; Liu, H.; Canovas, A.; Medrano, J. F.; Thomas, M. G.; Iloska, D.; Plecitá-Hlavatá, Lydie; Ježek, Petr; Pullamsetti, S.; Fini, M. A.; El Kasmi, K. C.; Zhang, Q. H.; Stenmark, K. R.

    2016-01-01

    Roč. 134, č. 15 (2016), s. 1105-1121 ISSN 0009-7322 R&D Projects: GA MŠk(CZ) LH11055; GA MŠk(CZ) LH15071 Institutional support: RVO:67985823 Keywords : arterial fibroblasts * pulmonary hypertension * metabolism * CtBP1 Subject RIV: ED - Physiology Impact factor: 19.309, year: 2016

  17. Malignant transformation of human fibroblasts caused by expression of a transfected T24 HRAS oncogene.

    OpenAIRE

    Hurlin, P J; Maher, V M; McCormick, J J

    1989-01-01

    We showed previously that diploid human fibroblasts that express a transfected HRAS oncogene from the human bladder carcinoma cell line T24 exhibit several characteristics of transformed cells but do not acquire an infinite life-span and are not tumorigenic. To extend these studies of the T24 HRAS in human cells, we have utilized an infinite life-span, but otherwise phenotypically normal, human fibroblast cell strain, MSU-1.1, developed in this laboratory after transfection of diploid fibrobl...

  18. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiaohui [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Yang [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Jingwen [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Li, Peng [Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR (China); Liu, Yinan [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Wen, Jinhua, E-mail: jhwen@bjmu.edu.cn [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Luan, Qingxian, E-mail: kqluanqx@126.com [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China)

    2016-05-06

    Induced pluripotent stem cells (iPSCs) have been recognized as a promising cell source for periodontal tissue regeneration. However, the conventional virus-based reprogramming approach is associated with a high risk of genetic mutation and limits their therapeutic utility. Here, we successfully generated iPSCs from readily accessible human gingival fibroblasts (hGFs) through an integration-free and feeder-free approach via delivery of reprogramming factors of Oct4, Sox2, Klf4, L-myc, Lin28 and TP53 shRNA with episomal plasmid vectors. The iPSCs presented similar morphology and proliferation characteristics as embryonic stem cells (ESCs), and expressed pluripotent markers including Oct4, Tra181, Nanog and SSEA-4. Additionally, these cells maintained a normal karyotype and showed decreased CpG methylation ratio in the promoter regions of Oct4 and Nanog. In vivo teratoma formation assay revealed the development of tissues representative of three germ layers, confirming the acquisition of pluripotency. Furthermore, treatment of the iPSCs in vitro with enamel matrix derivative (EMD) or growth/differentiation factor-5 (GDF-5) significantly up-regulated the expression of periodontal tissue markers associated with bone, periodontal ligament and cementum respectively. Taken together, our data demonstrate that hGFs are a valuable cell source for generating integration-free iPSCs, which could be sequentially induced toward periodontal cells under the treatment of EMD and GDF-5. - Highlights: • Integration-free iPSCs are successfully generated from hGFs via an episomal approach. • EMD promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • GDF-5 promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • hGFs-derived iPSCs could be a promising cell source for periodontal regeneration.

  19. Generation of iPSC line MU011.A-hiPS from homozygous α-thalassemia fetal skin fibroblasts

    Directory of Open Access Journals (Sweden)

    Amornrat Tangprasittipap

    2015-11-01

    Full Text Available Human iPSC line MU011.A-hiPS was generated from homozygous α-thalassemia (−SEA/−SEA fetal skin fibroblasts using a non-integrative reprogramming method. Reprogramming factors OCT3/4, SOX2, KLF4, L-MYC, LIN28, and shRNA of TP53 contained in three episomal vectors were delivered using electroporation.

  20. Stress-induced responses of human skin fibroblasts in vitro reflect human longevity

    NARCIS (Netherlands)

    Dekker, Pim; Maier, Andrea B.; van Heemst, Diana; de Koning-Treurniet, Corine; Blom, Joke; Dirks, Roeland W.; Tanke, Hans J.; Westendorp, Rudi G.J.

    2009-01-01

    Unlike various model organisms, cellular responses to stress have not been related to human longevity. We investigated cellular responses to stress in skin fibroblasts that were isolated from young and very old subjects, and from offspring of nonagenarian siblings and their partners, representatives

  1. [Effect of PRX-2 gene transferred by lipofectamine on the proliferation of human skin fibroblasts].

    Science.gov (United States)

    Song, Hui-feng; Chai, Jia-ke; Lin, Zi-hao

    2011-10-11

    To explore the effects of PRX-2 gene transferred by lipofectamine on the human skin fibroblasts. Normal human skin fibroblasts were cultured and PRX-2 gene was transferred by lipofectamine. The proliferation of fibroblasts was detected by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) and flow cytometry. The proliferation of PRX-2-transfected fibroblasts was stronger than that of normal counterparts. There were fewer cells during G0-G1 period and more cells during S and G2-M periods. The proliferative index increased. The proliferation of fibroblasts may be modified by transfected PRX-2. Thus PRX-2 plays an important role during the healing of human skin wound.

  2. Cytotoxic Effects of Nickel Nanowires in Human Fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2014-04-01

    There is an increasing interest for the use of nanostructures as potential tools in areas that include biology and medicine, for applications spanning from cell separation to treatments of diseases. Magnetic nanoparticles (MNPs) have been the most widely studied and utilized nanostructures in biomedical applications. Despite their popularity, the regular shape of MNPs limits their potential for certain applications. Studies have shown that magnetic nanowires (MNWs), due to their high-­‐aspect ratio and specific magnetic properties, might provide improved performance for some biomedical applications. As a consequence, MNWs have received increasing attention from researchers in the last years. However, as with any other nanostructure intended for biomedical applications, rigorous studies must be carried out to determine their potential toxicity and adverse effects before they can be successfully incorporated in clinical applications. This work attempts to elucidate the cytotoxic effects of nickel NWs (Ni NWs) in human fibroblasts by measuring cell viability under different parameters. Ni NWs of three different lengths (0.86 ± 0.02 μm, 1.1 ± 0.1 μm and 6.1 ± 0.6 μm) were fabricated by electrodeposition using porous aluminum oxide (PAO) membranes as templates. Energy dispersive X-­‐Ray analysis (EDAX) and X-­‐Ray diffraction (XRD) were used for the chemical characterization of the Ni NWs. Their physical characterization was done using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging. MTT assays were performed to assess cell viability of human fibroblasts in the presence of Ni NWs. NW length, NW/cell ratio and exposure time were changed throughout the experiments to elucidate their effects on cell viability. The results showed that NWs length has a strong effect on internalization and cytotoxicity. Smaller NWs showed higher toxicity levels at earlier times while longer NWs had stronger effects on cell viability at

  3. Relation between replicative senescence of human fibroblasts and life history characteristics

    NARCIS (Netherlands)

    Maier, Andrea B.; Westendorp, Rudi G J

    Replicative ageing of fibroblasts in vitro has often been used as a model for organismal ageing. The general assumption that the ageing process is mirrored by cellular senescence in vitro is based on lower replicative capacity of human fibroblasts from patients with accelerated ageing syndromes,

  4. Human gingival fibroblasts display a non-fibrotic phenotype distinct from skin fibroblasts in three-dimensional cultures.

    Directory of Open Access Journals (Sweden)

    Wesley Mah

    Full Text Available Scar formation following skin injury can be a major psychosocial and physiological problem. However, the mechanisms of scar formation are still not completely understood. Previous studies have shown that wound healing in oral mucosa is faster, associates with a reduced inflammatory response and results to significantly reduced scar formation compared with skin wounds. In the present study, we hypothesized that oral mucosal fibroblasts from human gingiva are inherently distinct from fibroblasts from breast and abdominal skin, two areas prone to excessive scar formation, which may contribute to the preferential wound healing outcome in gingiva. To this end, we compared the phenotype of human gingival and skin fibroblasts cultured in in vivo-like three-dimensional (3D cultures that mimic the cells' natural extracellular matrix (ECM niche. To establish 3D cultures, five parallel fibroblast lines from human gingiva (GFBLs and breast skin (SFBLs were seeded in high density, and cultured for up to 21 days in serum and ascorbic acid containing medium to induce expression of wound-healing transcriptome and ECM deposition. Cell proliferation, morphology, phenotype and expression of wound healing and scar related genes were analyzed by real-time RT-PCR, Western blotting and immunocytochemical methods. The expression of a set of genes was also studied in three parallel lines of human abdominal SFBLs. Findings showed that GFBLs displayed morphologically distinct organization of the 3D cultures and proliferated faster than SFBLs. GFBLs expressed elevated levels of molecules involved in regulation of inflammation and ECM remodeling (MMPs while SFBLs showed significantly higher expression of TGF-β signaling, ECM and myofibroblast and cell contractility-related genes. Thus, GFBLs display an inherent phenotype conducive for fast resolution of inflammation and ECM remodeling, characteristic for scar-free wound healing, while SFBLs have a profibrotic, scar

  5. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  6. Effects of Calendula officinalis on human gingival fibroblasts.

    Science.gov (United States)

    Saini, Pragtipal; Al-Shibani, Nouf; Sun, Jun; Zhang, Weiping; Song, Fengyu; Gregson, Karen S; Windsor, L Jack

    2012-04-01

    Calendula officinalis is commonly called the marigold. It is a staple topical remedy in homeopathic medicine. It is rich in quercetin, carotenoids, lutein, lycopene, rutin, ubiquinone, xanthophylls, and other anti-oxidants. It has anti-inflammatory properties. Quercetin, one of the active components in Calendula, has been shown to inhibit recombinant human matrix metalloproteinase (MMP) activity and decrease the expression of tumor necrosis factor-α, interleukin-1β (IL), IL-6 and IL-8 in phorbol 12-myristate 13-acetate and calcium ionophore-stimulated human mast cells. To examine the effects of Calendula on human gingival fibroblast (HGF) mediated collagen degradation and MMP activity. Lactate dehydrogenate assays were performed to determine the non-toxic concentrations of Calendula, doxycycline and quercetin. Cell-mediated collagen degradation assays were performed to examine the inhibitory effect on cell-mediated collagen degradation. Gelatin zymography was performed to examine their effects on MMP-2 activity. The experiments were repeated three times and ANOVA used for statistical analyses. Calendula at 2-3% completely inhibited the MMP-2 activity in the zymograms. Doxycycline inhibited HGF-mediated collagen degradation at 0.005, 0.01, 0.02 and 0.05%, and MMP-2 activity completely at 0.05%. Quercetin inhibited HGF-mediated collagen degradation at 0.005, 0.01 and 0.02%, and MMP-2 activity in a dose-dependent manner. Calendula inhibited HGF-mediated collagen degradation and MMP-2 activity more than the same correlated concentration of pure quercetin. Calendula inhibits HGF-mediated collagen degradation and MMP-2 activity more than the corresponding concentration of quercetin. This may be attributed to additional components in Calendula other than quercetin. Published by Elsevier Ltd.

  7. Growth Factor-Activated Stem Cell Circuits and Stromal Signals Cooperatively Accelerate Non-Integrated iPSC Reprogramming of Human Myeloid Progenitors

    Science.gov (United States)

    Park, Tea Soon; Huo, Jeffrey S.; Peters, Ann; Talbot, C. Conover; Verma, Karan; Zimmerlin, Ludovic; Kaplan, Ian M.; Zambidis, Elias T.

    2012-01-01

    Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC) occurs in only rare fractions (∼0.001%–0.5%) of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB) myeloid progenitors with bulk efficiencies of ∼50% in purified episome-expressing cells. Lineage-committed CD33+CD45+CD34− myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG+TRA-1-81+ hiPSC was mediated by synergies between hematopoietic growth factor (GF), stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC). Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly regulates self

  8. Allogeneic human dermal fibroblasts are viable in peripheral blood mononuclear co-culture

    Directory of Open Access Journals (Sweden)

    Restu Syamsul Hadi

    2014-08-01

    Full Text Available Background Transplanted allogeneic dermal fibroblasts retain stem cell subpopulations, and are easily isolated, expanded and stored using standard techniques. Their potential for regenerative therapy of chronic wounds should be evaluated. The aim of this study was to determine allogeneic fibroblast viability in the presence of peripheral blood mononuclear cells (PBMC. Methods In this experimental study, fibroblasts were isolated from foreskin explants, expanded in the presence of serum, and stored using slow-freezing. We used one intervention group of allogeneic fibroblasts co-cultured with PBMC and 2 control groups of separate fibroblast and PBMC cultures.Fibroblasts were characterized by their collagen secretion and octamer-binding transcription factor 4 (OCT4 expression. Viability was evaluated using water soluble tetrazolium-1 (WST-1 proliferation assay. Absorbances were measured at 450 nm. Data analysis was performed by student’s paired t-test. Results Dermal fibroblasts were shown to secrete collagen, express OCT4, be recoverable after cryopreservation, and become attached to the culture dish in a co-culture with PBMC. Co-cultured and control fibroblasts had no significantly different cell viabilities (p>0.05. Calculated viable cell numbers increased 1.8 and 5.1-fold, respectively, at days 2 and 4 in vitro. Both groups showed comparable doubling times at days 2 and 4 in vitro. PBMC did not interfere with allogeneic fibroblast viability and proliferative capacity Conclusions Allogeneic fibroblasts remain viable and proliferate in the presence of host PBMC. Future research should evaluate allogeneic human dermal fibroblast competency in clinical settings. Dermal fibroblasts are a potential source for cell therapy in chronic wound management.

  9. Allogeneic human dermal fibroblasts are viable in peripheral blood mononuclear co-culture

    Directory of Open Access Journals (Sweden)

    Restu Syamsul Hadi

    2015-12-01

    Full Text Available BACKGROUND Transplanted allogeneic dermal fibroblasts retain stem cell subpopulations, and are easily isolated, expanded and stored using standard techniques. Their potential for regenerative therapy of chronic wounds should be evaluated. The aim of this study was to determine allogeneic fibroblast viability in the presence of peripheral blood mononuclear cells (PBMC. METHODS In this experimental study, fibroblasts were isolated from foreskin explants, expanded in the presence of serum, and stored using slow-freezing. We used one intervention group of allogeneic fibroblasts co-cultured with PBMC and 2 control groups of separate fibroblast and PBMC cultures.Fibroblasts were characterized by their collagen secretion and octamer-binding transcription factor 4 (OCT4 expression. Viability was evaluated using water soluble tetrazolium-1 (WST-1 proliferation assay. Absorbances were measured at 450 nm. Data analysis was performed by student’s paired t-test. RESULTS Dermal fibroblasts were shown to secrete collagen, express OCT4, be recoverable after cryopreservation, and become attached to the culture dish in a co-culture with PBMC. Co-cultured and control fibroblasts had no significantly different cell viabilities (p>0.05. Calculated viable cell numbers increased 1.8 and 5.1- fold, respectively, at days 2 and 4 in vitro. Both groups showed comparable doubling times at days 2 and 4 in vitro. PBMC did not interfere with allogeneic fibroblast viability and proliferative capacity CONCLUSIONS Allogeneic fibroblasts remain viable and proliferate in the presence of host PBMC. Future research should evaluate allogeneic human dermal fibroblast competency in clinical settings. Dermal fibroblasts are a potential source for cell therapy in chronic wound management.

  10. [Effects of culture supernatant of human amnion mesenchymal stem cells on biological characteristics of human fibroblasts].

    Science.gov (United States)

    Wu, Qi'er; Lyu, Lu; Xin, Haiming; Luo, Liang; Tong, Yalin; Mo, Yongliang; Yue, Yigang

    2016-06-01

    To investigate the effects of culture supernatant of human amnion mesenchymal stem cells (hAMSCs-CS) on biological characteristics of human fibroblasts. (1) hAMSCs were isolated from deprecated human fresh amnion tissue of placenta and then sub-cultured. The morphology of hAMSCs on culture day 3 and hAMSCs of the third passage were observed with inverted phase contrast microscope. (2) Two batches of hAMSCs of the third passage were obtained, then the expression of vimentin of cells was observed with immunofluorescence method, and the expression of cell surface marker CD90, CD73, CD105, and CD45 was detected by flow cytometer. (3) hAMSCs-CS of the third passage at culture hour 72 were collected, and the content of insulin-like growth factor Ⅰ (IGF-Ⅰ), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF) were detected by enzyme-linked immunosorbent assay. (4) Human fibroblasts were isolated from deprecated human fresh prepuce tissue of circumcision and then sub-cultured. Human fibroblasts of the third passage were used in the following experiments. Cells were divided into blank control group and 10%, 30%, 50%, and 70% hAMSCs-CS groups according to the random number table (the same grouping method below), with 48 wells in each group. Cells in blank control group were cultured with DMEM/F12 medium containing 2% fetal bovine serum (FBS), while cells in the latter 4 groups were cultured with DMEM/F12 medium containing corresponding volume fraction of hAMSCs-CS and 2% FBS. The proliferation activity of cells was detected by cell counting kit 8 and microplate reader at culture hour 12, 24, 48, and 72, respectively, and corresponding volume fraction of hAMSCs-CS which causing the best proliferation activity of human fibroblasts was used in the following experiments. (5) Human fibroblasts were divided into blank control group and 50% hAMSCs-CS group and treated as in (4), with 4 wells in each group, at post

  11. Binding, uptake, and release of nicotine by human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, P.J.; Schuster, G.S.; Lubas, S. (Medical College of Georgia, Augusta (USA))

    1991-02-01

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so, at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4{degree}C using a mixture of {sup 3}H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between {sup 3}H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37{degree}C after treating cells with {sup 3}H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours.

  12. Optimal Viscosity and Particle Shape of Hyaluronic Acid Filler as a Scaffold for Human Fibroblasts.

    Science.gov (United States)

    Kim, Deok-Yeol; Namgoong, Sik; Han, Seung-Kyu; Won, Chang-Hoon; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2015-07-01

    The authors previously reported that cultured human fibroblasts suspended in a hyaluronic acid filler can produce human dermal matrices with extended in vivo stability in animal and clinical studies. The present study was undertaken to determine the optimal viscosity and particle shape of hyaluronic acid filler as a scaffold for cultured human dermal fibroblasts to enhance the maximal viability of injected cells. The fibroblasts were suspended in either 1 of 3 hyaluronic acid viscosities at 2 different particle shapes. The viscosities used in this study were low (600,000-800,000 centipoises), moderate (2,000,000-4,000,000 centipoises), and high (8,000,000-12,000,000 centipoises). The particle shape was evaluated by testing round and irregular shapes. The fibroblast mixed bioimplants were injected into the back of individual athymic nude mice. The levels of type I collagen were measured using fluorescent-activated cell sorting (FACS) and immunohistochemical staining at 16 weeks after the injections. Results of FACS demonstrated that the mean cell ratio with human collagens in the moderate viscosity group was greater than those of control, low, and high viscosity groups. An immunohistochemical study showed similar results. The moderate viscosity group demonstrated the highest positive staining of human collagens. However, there were no significant differences between groups of irregular and round shape particles. A hyaluronic acid bioimplant with moderate viscosity is superior to that with low or high viscosity in the viability for human fibroblasts. However, the particle shape does not influence the viability of the fibroblasts.

  13. Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes.

    Directory of Open Access Journals (Sweden)

    Sandeep R Varma

    Full Text Available Human skin is body's vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF and human keratinocytes (HaCaT were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2 induced RBC haemolysis (IC50 64.95 μg/mL, nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2, aquaporin-3 (AQP-3, filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations.

  14. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong-hui, E-mail: fan_ronghuixa@163.com [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Zhu, Xiu-mei; Sun, Yao-wen [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Peng, Hui-zi [Department of Cosmetology Plastic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China); Wu, Hang-li; Gao, Wen-jie [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China)

    2016-07-08

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  15. Chemokine release from human rhinovirus-infected airway epithelial cells promotes fibroblast migration.

    Science.gov (United States)

    Shelfoon, Christopher; Shariff, Sami; Traves, Suzanne L; Kooi, Cora; Leigh, Richard; Proud, David

    2016-07-01

    Thickening of the lamina reticularis, a feature of remodeling in the asthmatic airways, is now known to be present in young children who wheeze. Human rhinovirus (HRV) infection is a common trigger for childhood wheezing, which is a risk factor for subsequent asthma development. We hypothesized that HRV-infected epithelial cells release chemoattractants to recruit fibroblasts that could potentially contribute to thickening of the lamina reticularis. We sought to investigate whether conditioned medium from HRV-infected epithelial cells can trigger directed migration of fibroblasts. Human bronchial epithelial cells were exposed to medium alone or infected with HRV-16. Conditioned medium from both conditions were tested as chemoattractants for human bronchial fibroblasts in the xCELLigence cell migration apparatus. HRV-conditioned medium was chemotactic for fibroblasts. Treatment of fibroblasts with pertussis toxin, an inhibitor of Gαi-coupled receptors, prevented their migration. Production of epithelial chemoattractants required HRV replication. Multiplex analysis of epithelial supernatants identified CXCL10, CXCL8, and CCL5 as Gαi-coupled receptor agonists of potential interest. Subsequent analysis confirmed that fibroblasts express CXCR3 and CXCR1 receptors and that CXCL10 and, to a lesser extent, CXCL8, but not CCL5, are major contributors to fibroblast migration caused by HRV-conditioned medium. CXCL10 and CXCL8 produced from HRV-infected epithelial cells are chemotactic for fibroblasts. This raises the possibility that repeated HRV infections in childhood could contribute to the initiation and progression of airway remodeling in asthmatic patients by recruiting fibroblasts that produce matrix proteins and thicken the lamina reticularis. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Reprogramming to pluripotency can conceal somatic cell chromosomal instability.

    Directory of Open Access Journals (Sweden)

    Masakazu Hamada

    Full Text Available The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology.

  17. Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells

    Science.gov (United States)

    Grabundzija, Ivana; Wang, Jichang; Sebe, Attila; Erdei, Zsuzsanna; Kajdi, Robert; Devaraj, Anantharam; Steinemann, Doris; Szuhai, Károly; Stein, Ulrike; Cantz, Tobias; Schambach, Axel; Baum, Christopher; Izsvák, Zsuzsanna; Sarkadi, Balázs; Ivics, Zoltán

    2013-01-01

    The discovery of direct cell reprogramming and induced pluripotent stem (iPS) cell technology opened up new avenues for the application of non-viral, transposon-based gene delivery systems. The Sleeping Beauty (SB) transposon is highly advanced for versatile genetic manipulations in mammalian cells. We established iPS cell reprogramming of mouse embryonic fibroblasts and human foreskin fibroblasts by transposition of OSKM (Oct4, Sox2, Klf4 and c-Myc) and OSKML (OSKM + Lin28) expression cassettes mobilized by the SB100X hyperactive transposase. The efficiency of iPS cell derivation with SB transposon system was in the range of that obtained with retroviral vectors. Co-expression of the miRNA302/367 cluster together with OSKM significantly improved reprogramming efficiency and accelerated the temporal kinetics of reprogramming. The iPS cells displayed a stable karyotype, and hallmarks of pluripotency including expression of stem cell markers and the ability to differentiate into embryoid bodies in vitro. We demonstrate Cre recombinase-mediated exchange allowing simultaneous removal of the reprogramming cassette and targeted knock-in of an expression cassette of interest into the transposon-tagged locus in mouse iPS cells. This strategy would allow correction of a genetic defect by site-specific insertion of a therapeutic gene construct into ‘safe harbor’ sites in the genomes of autologous, patient-derived iPS cells. PMID:23275558

  18. Granulocyte macrophage colony stimulating factor (GM-CSF biological actions on human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    S Montagnani

    2009-12-01

    Full Text Available Fibroblasts are involved in all pathologies characterized by increased ExtraCellularMatrix synthesis, from wound healing to fibrosis. Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF is a cytokine isolated as an hemopoietic growth factor but recently indicated as a differentiative agent on endothelial cells. In this work we demonstrated the expression of the receptor for GM-CSF (GMCSFR on human normal skin fibroblasts from healthy subjects (NFPC and on a human normal fibroblast cell line (NHDF and we try to investigate the biological effects of this cytokine. Human normal fibroblasts were cultured with different doses of GM-CSF to study the effects of this factor on GMCSFR expression, on cell proliferation and adhesion structures. In addition we studied the production of some Extra-Cellular Matrix (ECM components such as Fibronectin, Tenascin and Collagen I. The growth rate of fibroblasts from healthy donors (NFPC is not augmented by GM-CSF stimulation in spite of increased expression of the GM-CSFR. On the contrary, the proliferation of normal human dermal fibroblasts (NHDF cell line seems more influenced by high concentration of GM-CSF in the culture medium. The adhesion structures and the ECM components appear variously influenced by GM-CSF treatment as compared to fibroblasts cultured in basal condition, but newly only NHDF cells are really induced to increase their synthesis activity. We suggest that the in vitro treatment with GM-CSF can shift human normal fibroblasts towards a more differentiated state, due or accompanied by an increased expression of GM-CSFR and that such “differentiation” is an important event induced by such cytokine.

  19. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...

  20. Protective Effect of Modified Human Acidic Fibroblast Growth Factor ...

    African Journals Online (AJOL)

    Purpose: To investigate whether modified acidic fibroblast growth factor (MaFGF) can protect NRK52E cell against apoptotic death induced by actinomycin D (Act D) and the effect of MaFGF on PI3K/Akt signaling pathway. Methods: NRK52E cell apoptotic death was measured by several methods including cell morphologic ...

  1. Reprogramming human amniotic fluid stem cells to functional pluripotency by manipulation of culture conditions.

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Dafni Moschidou & Pascale V Guillot ### Abstract Pluripotent stem cells have potential applications in regenerative medicine, disease modelling and drug screening. Induced pluripotent stem (iPS) cells have first been generated from fibroblasts using retroviral insertion of OCT4A, SOX2, c-MYC and KLF4. Since then, a number of methods have been developed to avoid the random integration of ectopic factors in the genome and the low efficiency of the process. Those include alt...

  2. Influence of caffeine and hyaluronic acid on collagen biosynthesis in human skin fibroblasts.

    Science.gov (United States)

    Donejko, Magdalena; Przylipiak, Andrzej; Rysiak, Edyta; Głuszuk, Katarzyna; Surażyński, Arkadiusz

    2014-01-01

    The aim of this study was to evaluate the effect of caffeine on collagen biosynthesis in human skin fibroblasts and the influence of hyaluronic acid (HA) on this process. Collagen, [(3)H]-thymidine incorporation, and prolidase activity were measured in confluent human skin fibroblast cultures that had been treated with 1, 2, and 5 mM caffeine and with caffeine and 500 μg/mL HA. Western immunoblot analysis was performed to evaluate expression of β1-integrin receptor, insulin-like growth factor receptor phospho-Akt protein and mitogen-activated protein kinase (phospho-extracellular signal-regulated kinase). Caffeine inhibited collagen biosynthesis in a dose-dependent manner. The mechanism of this process was found at the level of prolidase activity. Caffeine significantly inhibited the enzyme activity. The addition of HA had no effect on collagen biosynthesis or prolidase activity in fibroblasts incubated with caffeine. Caffeine also had an inhibitory effect on DNA biosynthesis. HA, however, did not have any significant effect on this process. The inhibition of the expression of β1-integrin and insulin-like growth factor receptor in fibroblasts incubated with the caffeine indicates a possible mechanism of inhibition of collagen biosynthesis. Caffeine reduces collagen synthesis in human cultured skin fibroblasts. HA did not have any significant protective effect on this process. This is the first study to our knowledge that reports caffeine-induced inhibition of collagen synthesis in human skin fibroblasts.

  3. [A method for the primary culture of fibroblasts isolated from human airway granulation tissues].

    Science.gov (United States)

    Chen, Nan; Zhang, Jie; Xu, Min; Wang, Yu-ling; Pei, Ying-hua

    2013-04-01

    To establish a feasible method to culture primary fibroblasts isolated from human airway granulation tissues, and therefore to provide experimental data for the investigation of the pathogenesis of benign airway stenosis. The granulation tissues were collected from 6 patients during routine bronchoscopy at our department of Beijing Tiantan Hospital from April to June 2011. Primary fibroblasts were obtained by culturing the explanted tissues. Cell growth was observed under inverted microscope. All of these 6 primary cultures were successful. Fibroblast-like cells were observed to migrate from the tissue pieces 3 d after inoculation. After 9-11 d of culture, cells reached to 90% confluence and could be sub-cultured. After passage, the cells were still in a typical elongated spindle-shape and grew well. The cells could be sub-cultured further when they formed a monolayer. Explant culture is a reliable method for culturing primary fibroblasts from human airway granulation tissues.

  4. Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells.

    Science.gov (United States)

    Bazley, Faith A; Liu, Cyndi F; Yuan, Xuan; Hao, Haiping; All, Angelo H; De Los Angeles, Alejandro; Zambidis, Elias T; Gearhart, John D; Kerr, Candace L

    2015-11-15

    Primordial germ cells (PGCs) share many properties with embryonic stem cells (ESCs) and innately express several key pluripotency-controlling factors, including OCT4, NANOG, and LIN28. Therefore, PGCs may provide a simple and efficient model for studying somatic cell reprogramming to induced pluripotent stem cells (iPSCs), especially in determining the regulatory mechanisms that fundamentally define pluripotency. Here, we report a novel model of PGC reprogramming to generate iPSCs via transfection with SOX2 and OCT4 using integrative lentiviral. We also show the feasibility of using nonintegrative approaches for generating iPSC from PGCs using only these two factors. We show that human PGCs express endogenous levels of KLF4 and C-MYC protein at levels similar to embryonic germ cells (EGCs) but lower levels of SOX2 and OCT4. Transfection with both SOX2 and OCT4 together was required to induce PGCs to a pluripotent state at an efficiency of 1.71%, and the further addition of C-MYC increased the efficiency to 2.33%. Immunohistochemical analyses of the SO-derived PGC-iPSCs revealed that these cells were more similar to ESCs than EGCs regarding both colony morphology and molecular characterization. Although leukemia inhibitory factor (LIF) was not required for the generation of PGC-iPSCs like EGCs, the presence of LIF combined with ectopic exposure to C-MYC yielded higher efficiencies. Additionally, the SO-derived PGC-iPSCs exhibited differentiation into representative cell types from all three germ layers in vitro and successfully formed teratomas in vivo. Several lines were generated that were karyotypically stable for up to 24 subcultures. Their derivation efficiency and survival in culture significantly supersedes that of EGCs, demonstrating their utility as a powerful model for studying factors regulating pluripotency in future studies.

  5. Cellular Mechanics of Primary Human Cervical Fibroblasts: Influence of Progesterone and a Pro-inflammatory Cytokine.

    Science.gov (United States)

    Shukla, Vasudha; Barnhouse, Victoria; Ackerman, William E; Summerfield, Taryn L; Powell, Heather M; Leight, Jennifer L; Kniss, Douglas A; Ghadiali, Samir N

    2018-01-01

    The leading cause of neonatal mortality, pre-term birth, is often caused by pre-mature ripening/opening of the uterine cervix. Although cervical fibroblasts play an important role in modulating the cervix's extracellular matrix (ECM) and mechanical properties, it is not known how hormones, i.e., progesterone, and pro-inflammatory insults alter fibroblast mechanics, fibroblast-ECM interactions and the resulting changes in tissue mechanics. Here we investigate how progesterone and a pro-inflammatory cytokine, IL-1β, alter the biomechanical properties of human cervical fibroblasts and the fibroblast-ECM interactions that govern tissue-scale mechanics. Primary human fibroblasts were isolated from non-pregnant cervix and treated with estrogen/progesterone, IL-1β or both. The resulting changes in ECM gene expression, matrix remodeling, traction force generation, cell-ECM adhesion and tissue contractility were monitored. Results indicate that IL-1β induces a significant reduction in traction force and ECM adhesion independent of pre-treatment with progesterone. These cell level effects altered tissue-scale mechanics where IL-1β inhibited the contraction of a collagen gel over 6 days. Interestingly, progesterone treatment alone did not modulate traction forces or gel contraction but did result in a dramatic increase in cell-ECM adhesion. Therefore, the protective effect of progesterone may be due to altered adhesion dynamics as opposed to altered ECM remodeling.

  6. CD90 Expression on human primary cells and elimination of contaminating fibroblasts from cell cultures.

    Science.gov (United States)

    Kisselbach, Lynn; Merges, Michael; Bossie, Alexis; Boyd, Ann

    2009-01-01

    Cluster Differentiation 90 (CD90) is a cell surface glycoprotein originally identified on mouse thymocytes. Although CD90 has been identified on a variety of stem cells and at varying levels in non-lymphoid tissues such as on fibroblasts, brain cells, and activated endothelial cells, the knowledge about the levels of CD90 expression on different cell types, including human primary cells, is limited. The goal of this study was to identify CD90 as a human primary cell biomarker and to develop an efficient and reliable method for eliminating unwanted or contaminating fibroblasts from human primary cell cultures suitable for research pursuant to cell based therapy technologies.

  7. The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Lucia Pagani

    Full Text Available BACKGROUND: Diurnal behavior in humans is governed by the period length of a circadian clock in the suprachiasmatic nuclei of the brain hypothalamus. Nevertheless, the cell-intrinsic mechanism of this clock is present in most cells of the body. We have shown previously that for individuals of extreme chronotype ("larks" and "owls", clock properties measured in human fibroblasts correlated with extreme diurnal behavior. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have measured circadian period in human primary fibroblasts taken from normal individuals and, for the first time, compared it directly with physiological period measured in vivo in the same subjects. Human physiological period length was estimated via the secretion pattern of the hormone melatonin in two different groups of sighted subjects and one group of totally blind subjects, each using different methods. Fibroblast period length was measured via cyclical expression of a lentivirally delivered circadian reporter. Within each group, a positive linear correlation was observed between circadian period length in physiology and in fibroblast gene expression. Interestingly, although blind individuals showed on average the same fibroblast clock properties as sighted ones, their physiological periods were significantly longer. CONCLUSIONS/SIGNIFICANCE: We conclude that the period of human circadian behaviour is mostly driven by cellular clock properties in normal individuals and can be approximated by measurement in peripheral cells such as fibroblasts. Based upon differences among sighted and blind subjects, we also speculate that period can be modified by prolonged unusual conditions such as the total light deprivation of blindness.

  8. Podoplanin increases the migration of human fibroblasts and affects the endothelial cell network formation: A possible role for cancer-associated fibroblasts in breast cancer progression.

    Science.gov (United States)

    Suchanski, Jaroslaw; Tejchman, Anna; Zacharski, Maciej; Piotrowska, Aleksandra; Grzegrzolka, Jedrzej; Chodaczek, Grzegorz; Nowinska, Katarzyna; Rys, Janusz; Dziegiel, Piotr; Kieda, Claudine; Ugorski, Maciej

    2017-01-01

    In our previous studies we showed that in breast cancer podoplanin-positive cancer-associated fibroblasts correlated positively with tumor size, grade of malignancy, lymph node metastasis, lymphovascular invasion and poor patients' outcome. Therefore, the present study was undertaken to assess if podoplanin expressed by fibroblasts can affect malignancy-associated properties of breast cancer cells. Human fibroblastic cell lines (MSU1.1 and Hs 578Bst) overexpressing podoplanin and control fibroblasts were co-cultured with breast cancer MDA-MB-231 and MCF7 cells and the impact of podoplanin expressed by fibroblasts on migration and invasiveness of breast cancer cells were studied in vitro. Migratory and invasive properties of breast cancer cells were not affected by the presence of podoplanin on the surface of fibroblasts. However, ectopic expression of podoplanin highly increases the migration of MSU1.1 and Hs 578Bst fibroblasts. The present study also revealed for the first time, that podoplanin expression affects the formation of pseudo tubes by endothelial cells. When human HSkMEC cells were co-cultured with podoplanin-rich fibroblasts the endothelial cell capillary-like network was characterized by significantly lower numbers of nodes and meshes than in co-cultures of endothelial cells with podoplanin-negative fibroblasts. The question remains as to how our experimental data can be correlated with previous clinical data showing an association between the presence of podoplanin-positive cancer-associated fibroblasts and progression of breast cancer. Therefore, we propose that expression of podoplanin by fibroblasts facilitates their movement into the tumor stroma, which creates a favorable microenvironment for tumor progression by increasing the number of cancer-associated fibroblasts, which produce numerous factors affecting proliferation, survival and invasion of cancer cells. In accordance with this, the present study revealed for the first time, that such

  9. Podoplanin increases the migration of human fibroblasts and affects the endothelial cell network formation: A possible role for cancer-associated fibroblasts in breast cancer progression.

    Directory of Open Access Journals (Sweden)

    Jaroslaw Suchanski

    Full Text Available In our previous studies we showed that in breast cancer podoplanin-positive cancer-associated fibroblasts correlated positively with tumor size, grade of malignancy, lymph node metastasis, lymphovascular invasion and poor patients' outcome. Therefore, the present study was undertaken to assess if podoplanin expressed by fibroblasts can affect malignancy-associated properties of breast cancer cells. Human fibroblastic cell lines (MSU1.1 and Hs 578Bst overexpressing podoplanin and control fibroblasts were co-cultured with breast cancer MDA-MB-231 and MCF7 cells and the impact of podoplanin expressed by fibroblasts on migration and invasiveness of breast cancer cells were studied in vitro. Migratory and invasive properties of breast cancer cells were not affected by the presence of podoplanin on the surface of fibroblasts. However, ectopic expression of podoplanin highly increases the migration of MSU1.1 and Hs 578Bst fibroblasts. The present study also revealed for the first time, that podoplanin expression affects the formation of pseudo tubes by endothelial cells. When human HSkMEC cells were co-cultured with podoplanin-rich fibroblasts the endothelial cell capillary-like network was characterized by significantly lower numbers of nodes and meshes than in co-cultures of endothelial cells with podoplanin-negative fibroblasts. The question remains as to how our experimental data can be correlated with previous clinical data showing an association between the presence of podoplanin-positive cancer-associated fibroblasts and progression of breast cancer. Therefore, we propose that expression of podoplanin by fibroblasts facilitates their movement into the tumor stroma, which creates a favorable microenvironment for tumor progression by increasing the number of cancer-associated fibroblasts, which produce numerous factors affecting proliferation, survival and invasion of cancer cells. In accordance with this, the present study revealed for the first

  10. Immortality, but not oncogenic transformation, of primary human cells leads to epigenetic reprogramming of DNA methylation and gene expression.

    Science.gov (United States)

    Gordon, Katrina; Clouaire, Thomas; Bao, Xun X; Kemp, Sadie E; Xenophontos, Maria; de Las Heras, Jose Ignacio; Stancheva, Irina

    2014-04-01

    Tumourigenic transformation of normal cells into cancer typically involves several steps resulting in acquisition of unlimited growth potential, evasion of apoptosis and non-responsiveness to growth inhibitory signals. Both genetic and epigenetic changes can contribute to cancer development and progression. Given the vast genetic heterogeneity of human cancers and difficulty to monitor cancer-initiating events in vivo, the precise relationship between acquisition of genetic mutations and the temporal progression of epigenetic alterations in transformed cells is largely unclear. Here, we use an in vitro model system to investigate the contribution of cellular immortality and oncogenic transformation of primary human cells to epigenetic reprogramming of DNA methylation and gene expression. Our data demonstrate that extension of replicative life span of the cells is sufficient to induce accumulation of DNA methylation at gene promoters and large-scale changes in gene expression in a time-dependent manner. In contrast, continuous expression of cooperating oncogenes in immortalized cells, although essential for anchorage-independent growth and evasion of apoptosis, does not affect de novo DNA methylation at promoters and induces subtle expression changes. Taken together, these observations imply that cellular immortality promotes epigenetic adaptation to highly proliferative state, whereas transforming oncogenes confer additional properties to transformed human cells.

  11. Influence of caffeine and hyaluronic acid on collagen biosynthesis in human skin fibroblasts

    Directory of Open Access Journals (Sweden)

    Donejko M

    2014-10-01

    Full Text Available Magdalena Donejko,1 Andrzej Przylipiak,1 Edyta Rysiak,2 Katarzyna Głuszuk,2 Arkadiusz Surażyński2 1Department of Esthetic Medicine, 2Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland Aim: The aim of this study was to evaluate the effect of caffeine on collagen biosynthesis in human skin fibroblasts and the influence of hyaluronic acid (HA on this process. Materials and methods: Collagen, [3H]-thymidine incorporation, and prolidase activity were measured in confluent human skin fibroblast cultures that had been treated with 1, 2, and 5 mM caffeine and with caffeine and 500 µg/mL HA. Western immunoblot analysis was performed to evaluate expression of ß1-integrin receptor, insulin-like growth factor receptor phospho-Akt protein and mitogen-activated protein kinase (phospho-extracellular signal-regulated kinase. Results: Caffeine inhibited collagen biosynthesis in a dose-dependent manner. The mechanism of this process was found at the level of prolidase activity. Caffeine significantly inhibited the enzyme activity. The addition of HA had no effect on collagen biosynthesis or prolidase activity in fibroblasts incubated with caffeine. Caffeine also had an inhibitory effect on DNA biosynthesis. HA, however, did not have any significant effect on this process. The inhibition of the expression of ß1-integrin and insulin-like growth factor receptor in fibroblasts incubated with the caffeine indicates a possible mechanism of inhibition of collagen biosynthesis. Conclusion: Caffeine reduces collagen synthesis in human cultured skin fibroblasts. HA did not have any significant protective effect on this process. This is the first study to our knowledge that reports caffeine-induced inhibition of collagen synthesis in human skin fibroblasts. Keywords: collagen, caffeine, hyaluronic acid, fibroblast

  12. Adipose tissue-derived stromal cells inhibit TGF-β1-induced differentiation of human dermal fibroblasts and keloid scar-derived fibroblasts in a paracrine fashion.

    Science.gov (United States)

    Spiekman, Maroesjka; Przybyt, Ewa; Plantinga, Josée A; Gibbs, Susan; van der Lei, Berend; Harmsen, Martin C

    2014-10-01

    Adipose tissue-derived stromal cells augment wound healing and skin regeneration. It is unknown whether and how they can also influence dermal scarring. The authors hypothesized that adipose tissue-derived stromal cells inhibit adverse differentiation of dermal fibroblasts induced by the pivotal factor in scarring, namely, transforming growth factor (TGF)-β. TGF-β1-treated adult human dermal fibroblasts and keloid scar-derived fibroblasts were incubated with adipose tissue-derived stromal cell-conditioned medium and assessed for proliferation and differentiation, particularly the production of collagen, expression of SM22α, and development of hypertrophy and contractility. TGF-β1-induced proliferation of adult human dermal fibroblasts was abolished by adipose tissue-derived stromal cell-conditioned medium. Simultaneously, the medium reduced SM22α gene and protein expression of TGF-β1-treated adult human dermal fibroblasts, and their contractility was reduced also. Furthermore, the medium strongly reduced transcription of collagen I and III genes and their corresponding proteins. In contrast, it tipped the balance of matrix turnover to degradation through stimulating gene expression of matrix metalloproteinase (MMP)-1, MMP-2, and MMP-14, whereas MMP-2 activity was up-regulated also. Even in end-stage myofibroblasts (i.e., keloid scar-derived fibroblasts), adipose tissue-derived stromal cell-conditioned medium suppressed TGF-β1-induced myofibroblast contraction and collagen III gene expression. The authors show that adipose tissue-derived stromal cells inhibit TGF-β1-induced adverse differentiation and function of adult human dermal fibroblasts and TGF-β1-induced contraction in keloid scar-derived fibroblasts, in a paracrine fashion.

  13. [Effect of Salvia Miltiorrhiza Bunge on expression of osteoprotegerin in cultured human periodontal ligament fibroblasts].

    Science.gov (United States)

    Du, Hong-jiang; Chen, Xue-peng; Yan, Hong-hai

    2010-10-01

    To study the effect of Salvia Miltiorrhiza Bunge on the expression of osteoprotegerin (OPG) in cultured human periodontal ligament fibroblasts. Primary culture of human periodontal ligament fibroblasts was established and the fifth passage cells were used in this study. Concentration-dependent effect of Salvia Miltiorrhiza Bunge on OPG mRNA and OPG protein secretion were determined by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme linked immunosorbant assay (ELISA), respectively. The data were analyzed with SPSS15.0 software package. OPG mRNA expression was increased after 1 h exposure to various concentrations of Salvia Miltiorrhiza Bunge compared with the control group (PBunge compared with the control group (PBunge can up-regulate the expression of OPG in cultured human periodontal ligament fibroblasts.

  14. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions.

    Science.gov (United States)

    Slamecka, Jaroslav; Salimova, Lilia; McClellan, Steven; van Kelle, Mathieu; Kehl, Debora; Laurini, Javier; Cinelli, Paolo; Owen, Laurie; Hoerstrup, Simon P; Weber, Benedikt

    2016-01-01

    Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.

  15. [Characterization of microRNAs profiles of induced pluripotent stem cells reprogrammed from human dental pulp stem cells and stem cells from apical papilla].

    Science.gov (United States)

    Xiaobing, Tan; Qingyuan, Dai

    2017-06-01

    To compare characterization of microRNAs (miRNAs) expression profiles of induced pluripotent stem cells (iPSCs) reprogrammed from human dental pulp stem cells (DPSCs) and stem cells from apical papilla (SCAP) and screen-specific microRNA. Human DPSCs and SCAP were reprogrammed into iPSCs using a Sendai virus vector. Total RNA of human DPSCs-iPSCs and SCAP-iPSCs were extracted. miRNAs were labeled and hybridized. Slides were scanned, and images were imported into GenePix Pro 6.0 for grid alignment and data extraction. Significant differentially expressed miRNAs between the two groups were identified using fold change and P-value and were analyzed. Both human DPSCs and SCAP were successfully reprogrammed into iPSCs. Among miRNA genes analyzed by miRNA microarray, 68 were differentially expressed by more than 10-fold in DPSCs-iPSCs; 37 of these genes were up-regulated, and 31 were down-regulated. In SCAP-iPSCs, 107 genes were differentially expressed by more than 10-fold; 68 were up-regulated, and 39 were down-regulated. In both cells, only miR-302e was up-regulated, whereas 9 miRNAs were down-regulated: miR-29b-3p, miR-181b-5p, miR-4328, miR-22-5p, miR-145-5p, miR-4324, let-7b-5p, miR-181a-5p, and miR-27b-3p. Multiple miRNAs participated in reprogramming of human DPSCs and SCAP into iPSCs. Most miRNAs are related to cell cycle, transforming growth factor-β signaling pathways and epithelial-mesenchymal transition.

  16. Cytokine expression in human dermal fibroblasts stimulated with eosinophil cationic protein measured by protein array.

    Science.gov (United States)

    Sato, Takamaro; Soga, Yoshihiko; Yamaguchi, Tomoko; Meguro, Michio; Maeda, Hiroshi; Tada, Joji; Otani, Takayuki; Seno, Masaharu; Takashiba, Shogo

    2013-12-01

    Eosinophil cationic protein (ECP) was reported previously to be involved in allergic inflammation with cytotoxic activity. On the other hand, recent studies showed that ECP did not induce cell death but inhibited the growth of cancer-derived cells. Our previous study indicated that human ECP enhanced differentiation of rat neonatal cardiomyocytes and stress fiber formation in Balb/c 3T3 mouse fibroblasts, while the effects of human ECP on human fibroblasts are unknown. The present study was performed to determine the effects of human ECP on cytokine expression in human fibroblasts by protein array. The effects of recombinant human ECP (rhECP) on normal human dermal fibroblasts (NHDF) were examined by assaying cell growth. Furthermore, cytokine expression of NHDF stimulated by ECP, which could influence cell growth, was evaluated by protein array. ECP was not cytotoxic but enhanced the growth of NHDF. The peak rhECP concentration that enhanced the cell counts by 1.56-fold was 100 ng/mL, which was significantly different from cultures without ECP stimulation (ANOVA/ Scheffe's test, P neurotrophin (NT)-3 were significantly upregulated in NHDF stimulated with 100 ng/mL ECP compared to those without stimulation. ECP is not cytotoxic but enhances the growth of NHDF. CNTF, NAP-2, and NT-3 were suggested to be involved in enhancing the growth of NHDF. These findings will contribute to determination of the role of ECP in allergic inflammation.

  17. Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro

    Science.gov (United States)

    Urbaniak, Paulina; Szkaradkiewicz, Anna; Jankun, Jerzy; Kotwicka, Malgorzata

    2016-01-01

    Antiseptic rinses have been successfully used in inflammatory states of the gums and oral cavity mucosa. Antibacterial effects of chlorhexidine, essential oils and some herbs are well documented. Reaction of host tissue to these substances has much poorer documentation. The aim of the study was to analyse the influence of chlorhexidine (CHX), essential oil (EO: thymol, 0.064%; eucalyptol, 0.092%; methyl salicylate, 0.060%; menthol, 0.042%) mouth rinses and salvia, chamomile and calendula brews on fibroblast biology in vitro. The human fibroblast CCD16 line cells were cultured in incubation media which contained the examined substances. After 24 and 48 hours, the cell morphology, relative growth and apoptosis were evaluated. Exposure of fibroblasts to CHX, EO or salvia caused various changes in cell morphology. Cells cultured for 48 hours with CHX revealed a noticeably elongated shape of while cells cultured in high EO concentration or with salvia were considerably smaller and contracted with fewer projections. Chlorhexidine, EO and salvia reduced the fibroblast proliferation rate and stimulated cell death. Both reactions to EO were dose dependent. Cells exposure to chamomile or calendula brews did not change morphology or proliferation of fibroblasts. The results of this in vitro study showed that in contrast to chamomile and calendula, the brews of EO, CHX or salvia had a negative influence on fibroblast biology. PMID:27536196

  18. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds.

    Directory of Open Access Journals (Sweden)

    Howard Y Chang

    2004-02-01

    Full Text Available Cancer invasion and metastasis have been likened to wound healing gone awry. Despite parallels in cellular behavior between cancer progression and wound healing, the molecular relationships between these two processes and their prognostic implications are unclear. In this study, based on gene expression profiles of fibroblasts from ten anatomic sites, we identify a stereotyped gene expression program in response to serum exposure that appears to reflect the multifaceted role of fibroblasts in wound healing. The genes comprising this fibroblast common serum response are coordinately regulated in many human tumors, allowing us to identify tumors with gene expression signatures suggestive of active wounds. Genes induced in the fibroblast serum-response program are expressed in tumors by the tumor cells themselves, by tumor-associated fibroblasts, or both. The molecular features that define this wound-like phenotype are evident at an early clinical stage, persist during treatment, and predict increased risk of metastasis and death in breast, lung, and gastric carcinomas. Thus, the transcriptional signature of the response of fibroblasts to serum provides a possible link between cancer progression and wound healing, as well as a powerful predictor of the clinical course in several common carcinomas.

  19. Aromatase activity in human skin fibroblasts grown in cell culture.

    Science.gov (United States)

    Berkovitz, G D; Brown, T R; Fujimoto, M

    1987-01-01

    Recent studies in this laboratory have described an unusual kindred in which gynecomastia resulted from abnormally elevated levels of extraglandular aromatase activity. In order to better understand the molecular mechanisms responsible for the abnormal aromatase activity in these and other patients, we explored the aromatase activity of genital skin fibroblasts. Our studies demonstrate that the kinetic parameters for aromatase in skin are similar to those of other cultured cells and suggest that skin is an important site of extraglandular aromatase activity. These cells also contain 5 alpha-reductase activity and androgen receptors and are, therefore, a model for androgen action and metabolism. For example, they provided a system for the study of the potency and specificity of the aromatase inhibitors 4-OHA and MDL 18,962. Finally, the influence of DEX on aromatase in genital skin fibroblasts differs in some important respects from the pattern of control observed in adipose tissue stromal-vascular cells. These findings suggest that investigating the molecular mechanisms for the regulation of aromatase in skin may provide unique information about the control of the enzyme.

  20. Brimonidine reduces TGF-beta-induced extracellular matrix synthesis in human Tenon's fibroblasts.

    Science.gov (United States)

    Hong, Samin; Han, Sueng-Han; Kim, Chan Yun; Kim, Kang Yoon; Song, Yoo Kyung; Seong, Gong Je

    2015-05-28

    Brimonidine is a highly selective α2 adrenergic agonist that has been widely used in anti-glaucoma eyedrops. The aim of this study was to investigate its putative anti-fibrotic role in the fibrosis caused by activated Tenon's fibroblasts. Primary cultured human Tenon's fibroblasts were exposed to 2.0 ng/mL of transforming growth factor-β1 (TGF-β1) for up to 48 h. In the presence of various concentrations of brimonidine (from 0.0 to 10.0 μM), the expression levels of fibronectin, collagen types I and III, and β-actin were determined by Western immunoblots. The expression of phosphorylated SMAD2/3 (p-SMAD2/3) was then evaluated using immunofluorescence. TGF-β1 significantly increased the synthesis of fibronectin and collagens in human Tenon's fibroblasts; however brimonidine treatment distinctly attenuated the TGF-β1-induced production of extracellular matrix (ECM) proteins. TGF-β1 also changed the cellular morphology to be plump, while brimonidine treatment returned the cells to a spindle shape, similar to control fibroblasts. Regarding p-SMAD2/3, brimonidine treatment did not show any apparent changes in its expression. Our data revealed that brimonidine reduces TGF-β-induced ECM synthesis in human Tenon's fibroblasts in vitro. This finding implies that topical administration of brimonidine may be helpful in reducing the fibrosis caused by the long-term use of topical anti-glaucoma medications.

  1. The immunoregulatory effects of CMV-infection in human fibroblasts and the impact on cellular senescence

    Directory of Open Access Journals (Sweden)

    Wolf Juliane

    2012-03-01

    Full Text Available Abstract Background As a chronic antigenic stressor human Cytomegalovirus (CMV contributes substantially to age-related alterations of the immune system. Even though monocytes have the greatest propensity for CMV-infection and seem to be an important host for the virus during latency, fibroblasts are also discussed to be target cells of CMV in vivo. However, little is known so far about general immunoregulatory properties of CMV in fibroblasts. We therefore investigated the immunoregulatory effects of CMV-infection in human lung fibroblasts and the impact on replicative senescence. Findings We observed that CMV-infection led to the induction of several immunoregulatory host cell genes associated with the innate and adaptive immune system. These were genes of different function such as genes regulating apoptosis, cytokines/chemokines and genes that are responsible for the detection of pathogens. Some of the genes upregulated following CMV-infection are also upregulated during cellular senescence, indicating that CMV causes an immunological phenotype in fibroblasts, which is partially reminiscent of replicative senescent cells. Conclusion In summary our results demonstrate that CMV not only affects the T cell pool but also induces inflammatory processes in human fibroblasts.

  2. Nemotic human dental pulp fibroblasts promote human dental pulp stem cells migration.

    Science.gov (United States)

    Zhai, Shafei; Wang, Yafei; Jiang, Wenkai; Jia, Qian; Li, Jie; Wang, Wei; Wang, Haijing; Ding, Yonglin; Wang, Ping; Liu, Jun; Ni, Longxing

    2013-06-10

    Dental pulp inflammation has long been perceived as a negative factor leading to pulp disruption. Previous studies have suggested that the inflammatory reaction might be a prerequisite for the burst of progenitors implicated in pulp repair. To investigate the migration of human dental pulp stem cells (hDPSCs) in response to human dental pulp fibroblasts (HDPFs) nemosis, an in vitro model of nemosis-induced inflammation in three-dimensional culture was used in this study. We observed HDPF spheroid formation and that cell-cell adhesion between HDPFs leads to necrosis. Cell death detection and cell counting kit-8 assays showed reduced live cell numbers and increased levels of cell membrane leakage in HDPF spheroids. HDPFs spheroids expressed cyclooxygenase-2 and released an increasing amount of prostaglandin E2 and interleukin-8, indicating inflammation in response to nemosis. The Transwell assays showed that the conditioned medium from HDPFs spheroids significantly induced hDPSCs migration more than the medium from the monolayer. Taken together, these results indicate that HDPFs spheroids induce nemosis and contribute to the migration of hDPSCs. This model might provide a potential research tool for studying interactions between fibroblasts and stem cells, and studies concerning nemosis-targeted stem cells might help treat pulp inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Biological effects of plasma rich in growth factors (PRGF) on human endometrial fibroblasts.

    Science.gov (United States)

    Anitua, Eduardo; de la Fuente, María; Ferrando, Marcos; Quintana, Fernando; Larreategui, Zaloa; Matorras, Roberto; Orive, Gorka

    2016-11-01

    To evaluate the biological outcomes of plasma rich in growth factors (PRGF) on human endometrial fibroblasts in culture. PRGF was obtained from three healthy donors and human endometrial fibroblasts (HEF) were isolated from endometrial specimens from five healthy women. The effects of PRGF on cell proliferation and migration, secretion of vascular endothelial growth factor (VEGF), procollagen type I and hyaluronic acid (HA) and contractility of isolated and cultured human endometrial fibroblasts (HEF) were analyzed. Statistical analysis was performed in order to compare the effects of PRGF with respect to control situation (T-test or Mann-Whitney U-test). We report a significantly elevated human endometrial fibroblast proliferation and migration after treatment with PRGF. In addition, stimulation of HEF with PRGF induced an increased expression of the angiogenic factor VEGF and favored the endometrial matrix remodeling by the secretion of procollagen type I and HA and endometrial regeneration by elevating the contractility of HEF. These results were obtained for all PRGF donors and each endometrial cell line. The myriad of growth factors contained in PRGF promoted HEF proliferation, migration and synthesis of paracrine molecules apart from increasing their contractility potential. These preliminary results suggest that PRGF improves the biological activity of HEF in vitro, enhancing the regulation of several cellular processes implied in endometrial regeneration. This innovative treatment deserves further investigation for its potential in "in vivo" endometrial development and especially in human embryo implantation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Cytoskeleton involvement during human cytomegalovirus replicative cycle in human embryo fibroblasts.

    Science.gov (United States)

    Arcangeletti, M C; Pinardi, F; Medici, M C; Pilotti, E; De Conto, F; Ferraglia, F; Landini, M P; Chezzi, C; Dettori, G

    2000-07-01

    Several studies indicate that viruses can induce different cytoskeletal modifications. The present investigation examines the possible involvement of human embryo fibroblast cytoskeleton in the replication of human cytomegalovirus (HCMV). Significant cytoskeletal modifications occur in infected cells; specifically, microfilament depolymerization is observed very early during the HCMV replicative cycle, whilst microtubules and intermediate filaments do not undergo any change for longer times after infection. Our data focus, in particular, on microfilament depolymerization, which starts within the first hour of the replicative cycle, and on the significance of this event, as a CMV-induced mechanism to modify the post-transcriptional regulation of cellular gene expression for its own benefit. Among the possible mechanisms exploited by HCMV to induce microfilament modifications, one might involve the cellular ADP-ribosylation activity, which is increased by HCMV very early in the infectious cycle. Experiments carried out on HCMV-infected cells, in the presence of ADP-ribosylation inhibitors, seem to confirm this hypothesis.

  5. Generation of a pig induced pluripotent stem cell (piPSC line from embryonic fibroblasts by incorporating LIN28 to the four transcriptional factor-mediated reprogramming: VSMUi001-D

    Directory of Open Access Journals (Sweden)

    Warunya Chakritbudsabong

    2017-10-01

    Full Text Available Pig induced pluripotent stem cell (piPSC line was generated from embryonic fibroblast cells using retroviral transduction approaches carrying human transcriptional factors: OCT4, SOX2, KLF4, c-MYC and LIN28. The generated piPSC line, VSMUi001-D, was positive for alkaline phosphatase activity and expressed the pluripotency associated transcription factors including OCT4, SOX2, NANOG and surface markers SSEA-1, all iPSC hallmarks of authenticity. Furthermore, VSMUi001-D exhibited a normal karyotype and formed embryoid bodies in vitro and teratomas in vivo. Upon cardiac differentiation, VSMUi001-D displayed spontaneous beating and expressed cardiomyocyte markers, like cardiac Troponin T.

  6. Arsenic-induced sub-lethal stress reprograms human bronchial epithelial cells to CD61¯ cancer stem cells.

    Science.gov (United States)

    Chang, Qingshan; Chen, Bailing; Thakur, Chitra; Lu, Yongju; Chen, Fei

    2014-03-15

    In the present report, we demonstrate that sub-lethal stress induced by consecutive exposure to 0.25 µM arsenic (As3+) for six months can trigger reprogramming of the human bronchial epithelial cell (BEAS-2B) to form cancer stem cells (CSCs) without forced introduction of the stemness transcription factors. These CSCs formed from As3+-induced sub-lethal stress featured with an increased expression of the endogenous stemness genes, including Oct4, Sox2, Klf4, Myc, and others that are associated with the pluripotency and self-renewal of the CSCs. Flow cytometry analysis indicated that 90% of the CSC cells are CD61¯, whereas 100% of the parental cells are CD61+. These CD61¯ CSCs are highly tumorigenic and metastatic to the lung in xenotransplantation tests in NOD/SCID Il2rγ-/- mice. Additional tests also revealed that the CD61¯ CSCs showed a significant decrease in the expression of the genes important for DNA repair and oxidative phosphorylation. To determine the clinical relevance of the above findings, we stratified human lung cancers based on the level of CD61 protein and found that CD61low cancer correlates with poorer survival of the patients. Such a correlation was also observed in human breast cancer and ovarian cancer. Taken together, our findings suggest that in addition to the traditional approaches of enforced introduction of the exogenous stemness circuit transcription factors, sub-lethal stress induced by consecutive low dose As3+ is also able to convert non-stem cells to the CSCs.

  7. Defining the diversity of phenotypic respecification using multiple cell lines and reprogramming regimens.

    Science.gov (United States)

    Alicea, Bradly; Murthy, Shashanka; Keaton, Sarah A; Cobbett, Peter; Cibelli, Jose B; Suhr, Steven T

    2013-10-01

    To better understand the basis of variation in cellular reprogramming, we performed experiments with two primary objectives: first, to determine the degree of difference, if any, in reprogramming efficiency among cells lines of a similar type after accounting for technical variables, and second, to compare the efficiency of conversion of multiple similar cell lines to two separate reprogramming regimens-induced neurons and induced skeletal muscle. Using two reprogramming regimens, it could be determined whether converted cells are likely derived from a distinct subpopulation that is generally susceptible to reprogramming or are derived from cells with an independent capacity for respecification to a given phenotype. Our results indicated that when technical components of the reprogramming regimen were accounted for, reprogramming efficiency was reproducible within a given primary fibroblast line but varied dramatically between lines. The disparity in reprogramming efficiency between lines was of sufficient magnitude to account for some discrepancies in published results. We also found that the efficiency of conversion to one phenotype was not predictive of reprogramming to the alternate phenotype, suggesting that the capacity for reprogramming does not arise from a specific subpopulation with a generally "weak grip" on cellular identity. Our findings suggest that parallel testing of multiple cell lines from several sources may be needed to accurately assess the efficiency of direct reprogramming procedures, and that testing a larger number of fibroblast lines--even lines with similar origins--is likely the most direct means of improving reprogramming efficiency.

  8. Expression pattern and regulation of genes differ between fibroblasts of adhesion and normal human peritoneum

    Directory of Open Access Journals (Sweden)

    Saed Ghassan M

    2005-01-01

    Full Text Available Abstract Background Injury to the peritoneum during surgery is followed by a healing process that frequently results in the attachment of adjacent organs by a fibrous mass, referred commonly as adhesions. Because injuries to the peritoneum during surgery are inevitable, it is imperative that we understand the mechanisms of adhesion formation to prevent its occurrence. This requires thorough understanding of the molecular sequence that results in the attachment of injured peritoneum and the development of fibrous tissue. Recent data show that fibroblasts from the injured peritoneum may play a critical role in the formation of adhesion tissues. Therefore, identifying changes in gene expression pattern in the peritoneal fibroblasts during the process may provide clues to the mechanisms by which adhesion develop. Methods In this study, we compared expression patterns of larger number of genes in the fibroblasts isolated from adhesion and normal human peritoneum using gene filters. Contributions of TGF-beta1 and hypoxia in the altered expression of specific genes were also examined using a semiquantitative RT-PCR technique. Results Results show that several genes are differentially expressed between fibroblasts of normal and adhesion peritoneum and that the peritoneal fibroblast may acquire a different phenotype during adhesion formation. Genes that are differentially expressed between normal and adhesion fibroblasts encode molecules involved in cell adhesion, proliferation, differentiation, migration and factors regulating cytokines, transcription, translation and protein/vesicle trafficking. Conclusions Our data substantiate that adhesion formation is a multigenic phenomenon and not all changes in gene expression pattern between normal and adhesion fibroblasts are the function of TGF-beta1 and hypoxia that are known to influence adhesion formation. Analysis of the gene expression data in the perspective of known functions of genes connote to

  9. In vitro cytotoxicity of “mswaki” fibre on human gingival fibroblasts ...

    African Journals Online (AJOL)

    Aim: This study determined the in vitro cytotoxicity of mswaki fibres on human gingival fibroblasts (HGF). Methods: Two types of “mswaki” twigs (Salvadora persica and Euclea natalensis) were used. Each twig was swabbed with 70% ethanol, the bark was then removed and approximately 1cm pieces of fibre were cut and ...

  10. Characteristics of human infant primary fibroblast cultures from Achilles tendons removed post-mortem

    DEFF Research Database (Denmark)

    Rohde, Marianne Cathrine; Corydon, Thomas Juhl; Hansen, Jakob

    2014-01-01

    Primary cell cultures were investigated as a tool for molecular diagnostics in a forensic setting. Fibroblast cultures had been established from human Achilles tendon resected at autopsies, from cases of sudden infant death syndrome and control infants who died in traumatic events (n=41). After...

  11. Effect of tobacco smoking on human gingival and periodontal fibroblasts. A systematic review of literature.

    Science.gov (United States)

    Wyganowska-Swiatkowska, Marzena; Nohawica, Michal Marek

    2015-01-01

    Influence of smoking tobacco on the oral cavity has been showcased, based on a review of the relevant literature. The effect of tobacco smoke, as well as its components, on the morphology and motility of human gingival and periodontal ligament fibroblasts in health, periodontal disease, and in neoplasms, has been described.

  12. Colony formation and colony size do not reflect the onset of replicative senescence in human fibroblasts

    NARCIS (Netherlands)

    Maier, Andrea B.; Maier, Ilko L.; Van Heemst, Diana; Westendorp, Rudi G.J.

    2008-01-01

    Replicative senescence of human fibroblasts in vitro has been used as a model for in vivo aging. The onset of replicative senescence varies between several months to years. A colony formation assay, critically dependent on growth speed, can be performed within weeks, and has been reported being an

  13. Effect of Lactobacillus reuteri on Cell Viability and PGE2 Production in Human Gingival Fibroblasts

    DEFF Research Database (Denmark)

    Castiblanco, Gina A.; Yucel-Lindberg, Tulay; Roos, Stefan

    2017-01-01

    Emerging evidence suggests that probiotic therapy can play a role in the prevention and management of oral inflammatory diseases through immunomodulation and down-regulation of the inflammatory cascade. The aim of this in vitro study was to investigate the viability of human gingival fibroblasts...

  14. Irradiated Human Dermal Fibroblasts Are as Efficient as Mouse Fibroblasts as a Feeder Layer to Improve Human Epidermal Cell Culture Lifespan

    Directory of Open Access Journals (Sweden)

    Lucie Germain

    2013-02-01

    Full Text Available A fibroblast feeder layer is currently the best option for large scale expansion of autologous skin keratinocytes that are to be used for the treatment of severely burned patients. In a clinical context, using a human rather than a mouse feeder layer is desirable to reduce the risk of introducing animal antigens and unknown viruses. This study was designed to evaluate if irradiated human fibroblasts can be used in keratinocyte cultures without affecting their morphological and physiological properties. Keratinocytes were grown either with or without a feeder layer in serum-containing medium. Our results showed that keratinocytes grown either on an irradiated human feeder layer or irradiated 3T3 cells (i3T3 can be cultured for a comparable number of passages. The average epithelial cell size and morphology were also similar. On the other hand, keratinocytes grown without a feeder layer showed heavily bloated cells at early passages and stop proliferating after only a few passages. On the molecular aspect, the expression level of the transcription factor Sp1, a useful marker of keratinocytes lifespan, was maintained and stabilized for a high number of passages in keratinocytes grown with feeder layers whereas Sp1 expression dropped quickly without a feeder layer. Furthermore, gene profiling on microarrays identified potential target genes whose expression is differentially regulated in the absence or presence of an i3T3 feeder layer and which may contribute at preserving the growth characteristics of these cells. Irradiated human dermal fibroblasts therefore provide a good human feeder layer for an effective expansion of keratinocytes in vitro that are to be used for clinical purposes.

  15. Epigenetic Characterization of the FMR1 Promoter in Induced Pluripotent Stem Cells from Human Fibroblasts Carrying an Unmethylated Full Mutation

    Directory of Open Access Journals (Sweden)

    Celine E.F. de Esch

    2014-10-01

    Full Text Available Silencing of the FMR1 gene leads to fragile X syndrome, the most common cause of inherited intellectual disability. To study the epigenetic modifications of the FMR1 gene during silencing in time, we used fibroblasts and induced pluripotent stem cells (iPSCs of an unmethylated full mutation (uFM individual with normal intelligence. The uFM fibroblast line carried an unmethylated FMR1 promoter region and expressed normal to slightly increased FMR1 mRNA levels. The FMR1 expression in the uFM line corresponds with the increased H3 acetylation and H3K4 methylation in combination with a reduced H3K9 methylation. After reprogramming, the FMR1 promoter region was methylated in all uFM iPSC clones. Two clones were analyzed further and showed a lack of FMR1 expression, whereas the presence of specific histone modifications also indicated a repressed FMR1 promoter. In conclusion, these findings demonstrate that the standard reprogramming procedure leads to epigenetic silencing of the fully mutated FMR1 gene.

  16. Implanted neonatal human dermal fibroblasts influence the recruitment of endothelial cells in mice.

    Science.gov (United States)

    Guerreiro, Susana G; Brochhausen, Christoph; Negrão, Rita; Barbosa, Mário A; Unger, Ronald E; Kirkpatrick, C James; Soares, Raquel; Granja, Pedro L

    2012-01-01

    The vascularization of new tissue within a reasonable time is a crucial prerequisite for the success of different cell- and material-based strategies. Considering that angiogenesis is a multi-step process involving humoral and cellular regulatory components, only in vivo assays provide the adequate information about vessel formation and the recruitment of endothelial cells. The present study aimed to investigate if neonatal human dermal fibroblasts could influence in vivo neovascularization. Results obtained showed that fibroblasts were able to recruit endothelial cells to vascularize the implanted matrix, which was further colonized by murine functional blood vessels after one week. The vessels exhibited higher levels of hemoglobin, compared with the control matrix, implanted without fibroblasts, in which no vessel formation could be observed. No significant differences were detected in systemic inflammation. The presence of vessels originated from the host vasculature suggested that host vascular response was involved, which constitutes a fundamental aspect in the process of neovascularization. Fibroblasts implanted within matrigel increased the presence of endothelial cells with positive staining for CD31 and for CD34 and the production of collagen influencing the angiogenic process and promoting the formation of microvessels. New strategies in tissue engineering could be delineated with improved angiogenesis using neonatal fibroblasts.

  17. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    Science.gov (United States)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  18. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jun [Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Xiang, Jun-Jian, E-mail: txjj@jnu.edu.cn [Laboratory of Antibody Engineering, College of Life Sciences and Technologies, Jinan University, Guangzhou 510632 (China); Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Li, Dan [Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Deng, Ning; Wang, Hong; Gong, Yi-Ping [Laboratory of Antibody Engineering, College of Life Sciences and Technologies, Jinan University, Guangzhou 510632 (China)

    2010-04-09

    Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8 x 10{sup -9} M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.

  19. Reprogramming cancer cells: overview & current progress.

    Science.gov (United States)

    Lim, Kian Lam; Teoh, Hoon Koon; Choong, Pei Feng; Teh, Hui Xin; Cheong, Soon Keng; Kamarul, Tunku

    2016-07-01

    Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model. Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents. Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  20. Imatinib mesylate inhibits proliferation and exerts an antifibrotic effect in human breast stroma fibroblasts.

    Science.gov (United States)

    Gioni, Vassiliki; Karampinas, Theodoros; Voutsinas, Gerassimos; Roussidis, Andreas E; Papadopoulos, Savvas; Karamanos, Nikos K; Kletsas, Dimitris

    2008-05-01

    Tumor stroma plays an important role in cancer development. In a variety of tumors, such as breast carcinomas, a desmoplastic response, characterized by stromal fibroblast and collagen accumulation, is observed having synergistic effects on tumor progression. However, the effect of known anticancer drugs on stromal cells has not been thoroughly investigated. Imatinib mesylate is a selective inhibitor of several protein tyrosine kinases, including the receptor of platelet-derived growth factor, an important mediator of desmoplasia. Recently, we have shown that imatinib inhibits the growth and invasiveness of human epithelial breast cancer cells. Here, we studied the effect of imatinib on the proliferation and collagen accumulation in breast stromal fibroblasts. We have shown that it blocks the activation of the extracellular signal-regulated kinase and Akt signaling pathways and up-regulates cyclin-dependent kinase inhibitor p21(WAF1), leading to the inhibition of fibroblast proliferation, by arresting them at the G(0)/G(1) phase of the cell cycle. Imatinib inhibits more potently the platelet-derived growth factor-mediated stimulation of breast fibroblast proliferation. By using specific inhibitors, we have found that this is due to the inhibition of the Akt pathway. In addition, imatinib inhibits fibroblast-mediated collagen accumulation. Conventional and quantitative PCR analysis, as well as gelatin zymography, indicates that this is due to the down-regulation of mRNA synthesis of collagen I and collagen III-the main collagen types in breast stroma-and not to the up-regulation or activation of collagenases matrix metalloproteinase 2 and matrix metalloproteinase 9. These data indicate that imatinib has an antifibrotic effect on human breast stromal fibroblasts that may inhibit desmoplastic reaction and thus tumor progression.

  1. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    Science.gov (United States)

    Brun, Paola; Pathak, Surajit; Castagliuolo, Ignazio; Palù, Giorgio; Brun, Paola; Zuin, Matteo; Cavazzana, Roberto; Martines, Emilio

    2014-01-01

    Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS) in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR)-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine) cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and can be considered a

  2. Vitamin D modulates prostaglandin E2 synthesis and degradation in human lung fibroblasts.

    Science.gov (United States)

    Liu, Xiangde; Nelson, Amy; Wang, Xingqi; Farid, Maha; Gunji, Yoko; Ikari, Jun; Iwasawa, Shun; Basma, Hesham; Feghali-Bostwick, Carol; Rennard, Stephen I

    2014-01-01

    Vitamin D insufficiency has been increasingly recognized in the general population worldwide and has been associated with several lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), and respiratory tract infections. Fibroblasts play a critical role in tissue repair and remodeling, which is a key feature of COPD and asthma. Fibroblasts modulate tissue repair by producing and modifying extracellular matrix components and by releasing mediators that act as autocrine or paracrine modulators of tissue remodeling. The current study was designed to investigate if vitamin D alters fibroblast release of key autocrine/paracrine repair factors. First, we demonstrated that human fetal lung (HFL)-1 cells express the vitamin D receptor (VDR) and that vitamin D, 25-hydroxyvitamin D [25(OH)D], or 1,25-dihydroxyvitamin D [1,25(OH)2D] induce VDR nuclear translocation and increase VDR-DNA binding activity. We next demonstrated that vitamin D, 25(OH)D, and 1,25(OH)2D significantly reduced prostaglandin (PG)E2 production by human lung fibroblasts (HFL-1) but had no effect on transforming growth factor β1, vascular endothelial growth factor, or fibronectin production. Vitamin D, 25(OH)D, and 1,25(OH)2D significantly inhibited IL-1β-induced microsomal PGE synthase (mPGES)-1 expression; in contrast, all three forms of vitamin D stimulated 15-hydroxy PG dehydrogenase, an enzyme that degrades PGE2. Cyclooxygenase-1 and -2 and the other two PGE2 synthases (mPGES-2 and cytosolic PGE synthase) were not altered by vitamin D, 25(OH)D, or 1,25(OH)2D. Finally, the effect of PGE2 inhibition by 25(OH)D was observed in adult lung fibroblasts. These findings suggest that vitamin D can regulate PGE2 synthesis and degradation and by this mechanism can modulate fibroblast-mediated tissue repair function.

  3. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  4. Cytotoxicity evaluation of three light-cured dentin adhesive materials on human gingival fibroblasts, ex vivo.

    Science.gov (United States)

    Kierklo, A; Pawińska, M; Tokajuk, G; Popławska, B; Bielawska, A

    2012-01-01

    To evaluate the cytotoxic effects of three current light-cured dentin adhesives, in both uncured and post-cured conditions, on human gingival fibroblasts. The materials tested were Heliobond, Adper Single Bond 2 and Xeno V, which are characterized by various compositions and application procedures. Each agent, in volumes of 5 and 10 μL, was tested after polymerization, and those unpolymerized were diluted in DMEM to 10-3 and 10-5. The cytotoxicity of the adhesives was assessed on the basis of a test of cell viability in a culture of human gingival fibroblasts, with the use of tetrazolic salt (MTT assay). The results showed that, among the adhesive/bonding systems tested, Xeno V was the least cytotoxic. There were statistically significant differences in cell survival between polymerized Xeno V, Adper Single Bond 2 and Heliobond in the amount of 5 μL as well as between the Xeno V and Adper Single Bond 2 in 10-5 dilutions. The tested adhesives were more toxic in the polymerized form than in the dilutions. Samples of 10 μL resulted in a lower survival percentage of fibroblasts compared to 5 μL. All the tested adhesives demonstrated cytopathic effects towards human gingival fibroblasts, but varied in their cytotoxicity. This has clinical implications. Dentists should follow the rules of adhesive application, precisely dose them and not allow direct contact with the gums as, even after polymerization, adhesive agents exhibit potential cytotoxic activity.

  5. Proinflammatory cytokines increase iron uptake into human monocytes and synovial fibroblasts from patients with rheumatoid arthritis.

    Science.gov (United States)

    Telfer, Joan F; Brock, Jeremy H

    2004-04-01

    It has been hypothesized that iron is stored in the synovium of patients with rheumatoid arthritis which perpetuates inflamation by aiding the production of oxygen free radicals. Proinflammatory cytokines are produced by macrophages and lymphocytes present within synovium and by mononuclear cells of in synovial fluid from patients with rheumatoid arthritis. There are two known systems for iron uptake. The first involves binding of iron to transferrin and uptake via transferrin receptors. The second involves uptake by low molecular weight organic anions such as ascorbate and citrate (non-transferrin bound uptake). Proinflammatory cytokines (IL-1, IL-6, TNFalpha and interferon gamma) were added to fibroblasts isolated from patients with rheumatoid arthritis and human monocytes in culture and their effect on 59Fe-transferrin and citrate uptake was determined. Proinflammatory cytokines increase transferrin and non-transferrin bound iron uptake into human monocytes and increase transferrin-bound iron uptake by synovial fibroblasts, but have no effect on non-transferrin bound uptake into fibroblasts. Proinflammatory cytokines produced in human rheumatoid arthritis synovium and synovial fluid may contribute to the accumulation of iron that occurs in rheumatoid arthritis synovium which may lead to damage to synovial fibroblasts, macrophages and lymphocytes.

  6. DNA methylation and transcriptional trajectories during human development and reprogramming of isogenic pluripotent stem cells

    NARCIS (Netherlands)

    Roost, Matthias S; Slieker, Roderick C; Bialecka, Monika; van Iperen, Liesbeth; Gomes Fernandes, Maria M; He, Nannan; Suchiman, H Eka D; Szuhai, Karoly; Carlotti, Françoise; de Koning, Eelco J P; Mummery, Christine L; Heijmans, Bastiaan T; Chuva de Sousa Lopes, Susana M

    2017-01-01

    Determining cell identity and maturation status of differentiated pluripotent stem cells (PSCs) requires knowledge of the transcriptional and epigenetic trajectory of organs during development. Here, we generate a transcriptional and DNA methylation atlas covering 21 organs during human fetal

  7. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog

    NARCIS (Netherlands)

    Hartmann-Fritsch, Fabienne; Hosper, Nynke; Luginbuehl, Joachim; Biedermann, Thomas; Reichmann, Ernst; Meuli, Martin

    Human amniotic fluid comprises cells with high differentiation capacity, thus representing a potential cell source for skin tissue engineering. In this experimental study, we investigated the ability of human amniotic fluid derived cells to substitute dermal fibroblasts and support epidermis

  8. Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers

    DEFF Research Database (Denmark)

    Loft, Anne; Forss, Isabel; Siersbæk, Majken Storm

    2015-01-01

    Long-term exposure to peroxisome proliferator-activated receptor γ (PPARγ) agonists such as rosiglitazone induces browning of rodent and human adipocytes; however, the transcriptional mechanisms governing this phenotypic switch in adipocytes are largely unknown. Here we show that rosiglitazone-in...

  9. Human Placenta-Derived Mesenchymal Stromal-Like Cells Enhance Angiogenesis via T Cell-Dependent Reprogramming of Macrophage Differentiation.

    Science.gov (United States)

    He, Shuyang; Gleason, Joseph; Fik-Rymarkiewicz, Ewa; DiFiglia, Andrea; Bharathan, Mini; Morschauser, Andrew; Djuretic, Ivana; Xu, Yan; Krakovsky, Michael; Jankovic, Vladimir; Buensuceso, Charito; Edinger, James; Herzberg, Uri; Hofgartner, Wolfgang; Hariri, Robert

    2017-06-01

    Peripheral arterial disease (PAD) is a leading cause of limb loss and mortality worldwide with limited treatment options. Mesenchymal stromal cell (MSC) therapy has demonstrated positive effects on angiogenesis in preclinical models and promising therapeutic efficacy signals in early stage clinical studies; however, the mechanisms underlying MSC-mediated angiogenesis remain largely undefined. Here, we investigated the mechanism of action of human placenta-derived MSC-like cells (PDA-002) in inducing angiogenesis using mice hind limb ischemia model. We showed that PDA-002 improved blood flow and promoted collateral vessel formation in the injured limb. Histological analysis demonstrated that PDA-002 increased M2-like macrophages in ischemic tissue. Analysis of the changes in functional T cell phenotype in the draining lymph nodes revealed that PDA-002 treatment was associated with the induction of cytokine and gene expression signatures of Th2 response. Angiogenic effect of PDA-002 was markedly reduced in Balb/c nude mice compared with wild type. This reduction in efficacy was reversed by T cell reconstitution, suggesting T cells are essential for PDA-002-mediated angiogenesis. Furthermore, effect of PDA-002 on macrophage differentiation was also T cell-dependent as a PDA-002-mediated M2-like macrophage skewing was only observed in wild type and T cell reconstituted nude mice, but not in nude mice. Finally, we showed that PDA-002-treated animals had enhanced angiogenic recovery in response to the second injury when PDA-002 no longer persisted in vivo. These results suggest that PDA-002 enhances angiogenesis through an immunomodulatory mechanism involving T cell-dependent reprogramming of macrophage differentiation toward M2-like phenotype. Stem Cells 2017;35:1603-1613. © 2017 AlphaMed Press.

  10. Re-evaluation of in vitro radiosensitivity of human fibroblasts of different genetic origins

    Energy Technology Data Exchange (ETDEWEB)

    Deschavanne, P.J.; Debieu, D.; Malaise, E.P.; Fertil, B.

    1986-08-01

    Statistical analysis of the radiosensitivity of 204 survival curves of non-transformed human fibroblast cell strains of different genetic origins was made using the multi-target one-hit model (characterized by parameters eta and D/sub 0/), the surviving fraction for a 2 Gy dose (S/sub 2/) and the mean inactivation dose (D-bar). D-bar is found to be the parameter for characterization of anomalous radiosensitivity linked to a genetic disorder and discrimination between groups of cell strains of differing radiosensitivity. It allows the description of a range of 'normal' radiosensitivity for control fibroblasts and classification of genetic disorders as a function of their mean radiosensitivity expressed in terms of D-bar. Nine groups of cell strains appear to exhibit radiosensitivity differing significantly from the controls: seven groups are hypersensitive (ataxia-telengiectasia homozygotes and heterozygotes, Cockayne's syndrome, Gardner's syndrome, 5-oxoprolinuria homozygotes and heterozygotes, Fanconi's anaemia) and two groups are more radioresistant (fibroblasts from retinoblastoma patients and individuals with chromosome 13 anomalies). Since the coupled parameter eta and D/sub 0/ failed to discriminate between the radiosensitivity of the different genetic groups, the use of D-bar to make an intercomparison of intrinsic radiosensitivity of non-transformed human fibroblasts is recommended. (U.K.).

  11. Human gingival fibroblast cytoskeleton is a target for volatile smoke components.

    Science.gov (United States)

    Rota, M T; Poggi, P; Boratto, R

    2001-06-01

    Several in vitro investigations have indicated that the particulate phase of cigarette smoke as nicotine affects many cell types including gingival fibroblasts, but few studies have examined the effect of volatile fraction on cellular structures involved in cell functions such as adhesion and proliferation. Since gingival fibroblast survival and reproduction are fundamental to maintaining the oral connective tissue as well as to wound healing, the effects of acrolein and acetaldehyde, volatile fractions of cigarette smoke, on cytoskeleton were examined in human gingival fibroblasts (HGFs) in vitro. Human gingival fibroblast (HGF) strains from healthy subjects with non-inflamed gingiva were utilized. The cells were incubated in different concentrations of acrolein and acetaldehyde. Cell adhesion was evaluated after 3 hours. The influence of both substances on cytoskeletal structures, tubulin and vimentin intermediate filaments (VIF), was investigated using indirect immunofluorescence technique. The results show that both substances produced similar effects, resulting in a dose-dependent inhibition of HGF adhesion. Disturbance of HGF cytoskeleton consisted of a disruption of microtubules and vimentin microfilaments with alterations in cell shape. Our experimental findings suggest that volatile fractions of cigarette smoke such as acrolein and acetaldehyde, because their ability to bind and interact with the cytoskeleton, prevent HGF adhesion. Consequently the maintenance of the oral connective tissue and integrity and remodeling could be impaired. According to our morphological evidence, these findings confirm other clinical and epidemiological investigations reporting that volatile components of cigarette smoke could lead to the initiation and progression of periodontal disease.

  12. Cigarette Smoke-Exposed Candida albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses

    Directory of Open Access Journals (Sweden)

    Humidah Alanazi

    2014-01-01

    Full Text Available The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P<0.01 sensitive to oxidation but significantly (P<0.01 resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P<0.01 slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers.

  13. Effects of pro-inflammatory cytokines on expression of kynurenine pathway enzymes in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Kegel Magdalena

    2011-10-01

    Full Text Available Abstract Background The kynurenine pathway (KP is the main route of tryptophan degradation in the human body and generates several neuroactive and immunomodulatory metabolites. Altered levels of KP-metabolites have been observed in neuropsychiatric and neurodegenerative disorders as well as in patients with affective disorders. The purpose of the present study was to investigate if skin derived human fibroblasts are useful for studies of expression of enzymes in the KP. Methods Fibroblast cultures were established from cutaneous biopsies taken from the arm of consenting volunteers. Such cultures were subsequently treated with interferon (IFN-γ 200 U/ml and/or tumor necrosis factor (TNF-α, 100 U/ml for 48 hours in serum-free medium. Levels of transcripts encoding different enzymes were determined by real-time PCR and levels of kynurenic acid (KYNA were determined by HPLC. Results At base-line all cultures harbored detectable levels of transcripts encoding KP enzymes, albeit with considerable variation across individuals. Following cytokine treatment, considerable changes in many of the transcripts investigated were observed. For example, increases in the abundance of transcripts encoding indoleamine 2,3-dioxygenase, kynureninase or 3-hydroxyanthranilic acid oxygenase and decreases in the levels of transcripts encoding tryptophan 2,3-dioxygenase, kynurenine aminotransferases or quinolinic acid phosphoribosyltransferase were observed following IFN-γ and TNF-α treatment. Finally, the fibroblast cultures released detectable levels of KYNA in the cell culture medium at base-line conditions, which were increased after IFN-γ, but not TNF-α, treatments. Conclusions All of the investigated genes encoding KP enzymes were expressed in human fibroblasts. Expression of many of these appeared to be regulated in response to cytokine treatment as previously reported for other cell types. Fibroblast cultures, thus, appear to be useful for studies of disease

  14. Effect of three commercial mouth rinses on cultured human gingival fibroblast: An in vitro study

    Directory of Open Access Journals (Sweden)

    Flemingson

    2008-01-01

    Full Text Available Aim: To examine the effect of three commercial mouth rinses (Hexidine 0.2%, Listerine Cool Mint, Betadine 1% upon cultured human gingival fibroblast proliferation. Materials and Methods: Human gingival fibroblasts were cultured and incubated in Dulbecco′s Minimum Eagle′s Medium containing Chlorhexidine, Listerine, Povidone-Iodine at varying concentrations (1%, 2%, 5%, 10%, 20% and 100% of the given solution at 37°C for 1, 5 and 15 min. Control cells received an equal volume of Dulbecco′s Minimum Eagle′s Medium without adding mouth rinses, for similar duration of exposure at 37°C. Following incubation the media were removed, cells were washed twice with medium, supplemented with 10% Fetal Bovine Serum, and fibroblasts in the test and control group were allowed to recover in the same media for 24 h. Results: In all the three groups, the proliferation inhibition was dependent on the concentration of solublized mouth rinses in the cell culture but independent of the duration of exposure to all three mouth rinses. The results showed that all three solutions were toxic to cultured human gingival fibroblasts, Chlorhexidine being the most cytotoxic. It was seen that at dilute concentrations (1% and 2% of given solutions Listerine was more cytotoxic than Chlorhexidine and Povidone-Iodine. Conclusion: These results suggest that Chlorhexidine, Listerine and Povidone-Iodine are capable of inducing a dose-dependent reduction in cellular proliferation of fibroblasts. The results presented are interesting, but to know the clinical significance, further studies are needed.

  15. Human corneal fibrillogenesis. Collagen V structural analysis and fibrillar assembly by stromal fibroblasts in culture.

    Science.gov (United States)

    Ruggiero, F; Burillon, C; Garrone, R

    1996-08-01

    The stroma of the developing cornea is a highly organized extracellular matrix formed essentially by uniform, small-diameter collagen fibrils with constant interfibrillar spacing. Unlike the fibrillogenesis of chicken cornea, the assembly and maturation of human corneal fibrils have been poorly investigated. In the current study, the authors aimed to ascertain the heterotypic organization (collagens I and V) of the human corneal fibrils at the supramolecular level. To gain more insight into the molecular structure of collagen V, its cellular source, and its role in fibrillogenesis, the authors used cultured human corneal fibroblasts. The structure of human corneal stroma after brief homogenization of the tissue was analyzed by immunogold labeling using specific polyclonal antibodies and rotary shadowing. Biochemical, electron microscopic, and immunolabeling approaches were used to investigate the collagen fibril formation and the extracellular matrix synthesis using human corneal fibroblasts grown in culture as a model system. The authors showed that in human corneal stroma, collagen I is distributed uniformly along the striated fibrils, in contrast to collagen V, which could be identified only at sites at which the fibrils partially were disrupted. Rotary shadowing observations of the homogenate revealed that collagen VI, a major component of the human cornea, was associated closely with the collagen fibril surface. Corneal fibroblasts synthesize and deposit a collagenous matrix with fibrils resembling those of the human cornea in appearance and collagen composition. Biochemical data indicate that a high concentration (20% to 30%) of collagen V is synthesized by stromal fibroblasts and that collagen V molecules are processed similarly to matrix forms in which the extension peptides are retained on the molecules. The heterotypic nature (collagens I and V) of human corneal fibrils was determined. Results indicate that human corneal fibroblasts synthesize the major

  16. The period length of fibroblast circadian gene expression varies widely among human individuals.

    Directory of Open Access Journals (Sweden)

    Steven A Brown

    2005-10-01

    Full Text Available Mammalian circadian behavior is governed by a central clock in the suprachiasmatic nucleus of the brain hypothalamus, and its intrinsic period length is believed to affect the phase of daily activities. Measurement of this period length, normally accomplished by prolonged subject observation, is difficult and costly in humans. Because a circadian clock similar to that of the suprachiasmatic nucleus is present in most cell types, we were able to engineer a lentiviral circadian reporter that permits characterization of circadian rhythms in single skin biopsies. Using it, we have determined the period lengths of 19 human individuals. The average value from all subjects, 24.5 h, closely matches average values for human circadian physiology obtained in studies in which circadian period was assessed in the absence of the confounding effects of light input and sleep-wake cycle feedback. Nevertheless, the distribution of period lengths measured from biopsies from different individuals was wider than those reported for circadian physiology. A similar trend was observed when comparing wheel-running behavior with fibroblast period length in mouse strains containing circadian gene disruptions. In mice, inter-individual differences in fibroblast period length correlated with the period of running-wheel activity; in humans, fibroblasts from different individuals showed widely variant circadian periods. Given its robustness, the presented procedure should permit quantitative trait mapping of human period length.

  17. Telomerase promoter reprogramming and interaction with general transcription factors in the human mesenchymal stem cell

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Hoare, Stacey F.; Kassem, Moustapha

    2006-01-01

    The human adult mesenchymal stem cell (hMSC) does not express telomerase and has been shown to be the target for neoplastic transformation after transduction with hTERT. These findings lend support to the stem cell hypothesis of cancer development but by supplying hTERT, the molecular events...... and that modifications of the chromatin environment lead to reactivation of telomerase gene expression. It is shown that repression of hTERT expression in hMSCs is due to promoter-specific histone hypoacetylation coupled with low Pol II and TFIIB trafficking. This repression is overcome by treatment with Trichostatin...

  18. Age-related changes in cyclic phosphatidic acid-induced hyaluronic acid synthesis in human fibroblasts.

    Science.gov (United States)

    Sano, Katsura; Gotoh, Mari; Dodo, Kyoko; Tajima, Noriaki; Shimizu, Yoshibumi; Murakami-Murofushi, Kimiko

    2018-01-01

    Hyaluronic acid is a major component of the extracellular matrix, which is important for skin hydration. As aging brings skin dehydration, we aimed to clarify the mRNA expression of hyaluronic acid-related proteins in human skin fibroblasts from donors of various ages (range 0.7-69 years). Previously, we reported that cyclic phosphatidic acid (cPA), a unique phospholipid mediator, stimulated the expression of HAS2 and increased hyaluronic acid synthesis in human skin fibroblasts (donor age: 3 days). In this study, we measured the mRNA expression of hyaluronic acid-related proteins: hyaluronan synthase (HAS) 1-3, hyaluronidase-1, -2, and hyaluronic acid-binding protein (versican). In addition, we tested whether cPA could increase hyaluronic acid synthesis in skin fibroblasts derived from donors of various ages. The expression of HAS1, 3, hyaluronidase-1, and -2 did not change with aging. However, the mRNA expression of versican decreased with aging. Although it is thought that the amount of hyaluronic acid in the dermis decreases with aging, the mRNA expression of HAS2 was increased. But the amount of hyaluronic acid secreted by fibroblasts did not increase with aging. This suggests that the activity and/or protein expression of HAS2 decrease with aging. Furthermore, we observed that cPA caused the increase of hyaluronic acid synthesis at any age, and this effect was increased with aging. These results suggest that aging made the fibroblasts more sensitive to cPA treatment. Therefore, cPA represents a suitable candidate for the health maintenance and improvement of the skin by increasing the level of hyaluronic acid in the dermis.

  19. Generation of a pig induced pluripotent stem cell (piPSC) line from embryonic fibroblasts by incorporating LIN28 to the four transcriptional factor-mediated reprogramming: VSMUi001-D.

    Science.gov (United States)

    Chakritbudsabong, Warunya; Sariya, Ladawan; Pamonsupornvichit, Sirikron; Pronarkngver, Rassmeepen; Chaiwattanarungruengpaisan, Somjit; Ferreira, Joao N; Setthawong, Piyathip; Phakdeedindan, Praopilas; Techakumphu, Mongkol; Tharasanit, Theerawat; Rungarunlert, Sasitorn

    2017-10-01

    Pig induced pluripotent stem cell (piPSC) line was generated from embryonic fibroblast cells using retroviral transduction approaches carrying human transcriptional factors: OCT4, SOX2, KLF4, c-MYC and LIN28. The generated piPSC line, VSMUi001-D, was positive for alkaline phosphatase activity and expressed the pluripotency associated transcription factors including OCT4, SOX2, NANOG and surface markers SSEA-1, all iPSC hallmarks of authenticity. Furthermore, VSMUi001-D exhibited a normal karyotype and formed embryoid bodies in vitro and teratomas in vivo. Upon cardiac differentiation, VSMUi001-D displayed spontaneous beating and expressed cardiomyocyte markers, like cardiac Troponin T. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Proteomic identification of cathepsin B and nucleophosmin as novel UVA-targets in human skin fibroblasts.

    Science.gov (United States)

    Lamore, Sarah D; Qiao, Shuxi; Horn, David; Wondrak, Georg T

    2010-01-01

    Solar UVA exposure plays a causative role in skin photoaging and photocarcinogenesis. Here, we describe the proteomic identification of novel UVA-targets in human dermal fibroblasts following a two-dimensional-difference-gel-electrophoresis (2D-DIGE) approach. Fibroblasts were exposed to noncytotoxic doses of UVA or left untreated, and total protein extracts underwent CyDye-labeling followed by 2D-DIGE/mass-spectrometric identification of differentially expressed proteins, confirmed independently by immunodetection. The protein displaying the most pronounced UVA-induced upregulation was identified as the nucleolar protein nucleophosmin. The protein undergoing the most pronounced UVA-induced downregulation was identified as cathepsin B, a lysosomal cysteine-protease displaying loss of enzymatic activity and altered maturation after cellular UVA exposure. Extensive lysosomal accumulation of lipofuscin-like autofluorescence and osmiophilic material occurred in UVA-exposed fibroblasts as detected by confocal fluorescence microscopy and transmission electron microscopy, respectively. Array analysis indicated UVA-induced upregulation of oxidative stress response gene expression, and UVA-induced loss of cathepsin B enzymatic activity in fibroblasts was suppressed by antioxidant intervention. Pharmacological cathepsin B inhibition using CA074Me mimicked UVA-induced accumulation of lysosomal autofluorescence and deficient cathepsin B maturation. Taken together, these data support the hypothesis that cathepsin B is a crucial target of UVA-induced photo-oxidative stress causatively involved in dermal photodamage through the impairment of lysosomal removal of lipofuscin. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  1. [Energy corrective and antioxidative actions of cytoflavin during postischemic period of human dermal fibroblasts in vitro].

    Science.gov (United States)

    Tiuriaeva, I I; Kuranova, M L; Gonchar, I V; Rozanov, Iu M

    2012-01-01

    The influence of metabolic drug Cytoflavin (CF) with antihypoxic and antioxidative properties on human dermal fibroblasts in a model of ischemia-reoxygenation in vitro was studied. It was revealed that the restoration of ATP synthesis in fibroblasts in the postischemic period was considerably accelerated (in 2.1 times) by the addition of CF to the culture medium. The drug had a cell protective effect of reducing cell mortality during the reoxygenation after ischemia by 2-2.7 times. CF effectively reduced the level of reactive oxygen species (ROS) in fibroblasts after H2O2 treatment which allowed maintaining their survival at the level of control cells. Pretreatment of the cells with CF for one day ensured the maintenance of normal levels of ROS during the investigated time period in the fibroblasts subjected to H2O2 treatment, and reduced H2O2-induced cell death by almost a third compared to control cells. The introduction of CF in culture medium after ischemia showed no influence on Hsp70 synthesis, but led to decrease in GRP78 synthesis, raised after ischemia, to the control level, indicating a resolve of the endoplasmic reticulum (ER) stress and functional normalization of ER.

  2. Enhanced Biological Behavior of In Vitro Human Gingival Fibroblasts on Cold Plasma-Treated Zirconia

    Science.gov (United States)

    Zheng, Miao; Yang, Yang; Liu, Xiao-Qiang; Liu, Ming-Yue; Zhang, Xiao-Fei; Wang, Xin; Li, He-Ping; Tan, Jian-Guo

    2015-01-01

    Objective To evaluate whether atmospheric-pressure dielectric-barrier-discharge plasma treatment of zirconia enhances its biocompatibility with human gingival fibroblasts. Materials and Methods The zirconia disks were divided into four groups and treated using helium atmospheric-pressure dielectric-barrier-discharge plasmas for 30, 60 or 90 s or left untreated. The surface morphology, wettability and chemical elements were analyzed. Fibroblasts density, morphology, morphometry and attachment-related genes expression were measured at different time points from 3 to 72 h. Results After plasma treatment, the surface morphology and roughness remained the same, while the contact angle decreased from 78.31° to 43.71°, and the surface C/O ratio decreased from 3.17 to 0.89. The surficial areas and perimeters of HGFs were increased two-fold in the treated groups at 3 h. Fibroblasts density increased on treated disks at all time points, especially the ones treated for 60 s. Attachment-related genes in the groups treated for 30 and 60 s were significantly higher at 3 and 24 h. Conclusion The helium atmospheric-pressure dielectric-barrier-discharge plasma treatment enhances the biological behavior of fibroblasts on zirconia by increasing the expression of attachment-related genes within 24 h and promoting the cell density during longer culture times. Wettability of zirconia, an important physicochemical property, has a vital influence on the cell behaviors. PMID:26461253

  3. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Malpass, Gloria E., E-mail: gloria.malpass@gmail.com [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Arimilli, Subhashini, E-mail: sarimill@wakehealth.edu [Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Prasad, G.L., E-mail: prasadg@rjrt.com [R and D Department, R.J. Reynolds Tobacco Company, Winston-Salem, NC 27102 (United States); Howlett, Allyn C., E-mail: ahowlett@wakehealth.edu [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States)

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  4. Microstructured human fibroblast-derived extracellular matrix scaffold for vascular media fabrication.

    Science.gov (United States)

    Bourget, Jean-Michel; Laterreur, Véronique; Gauvin, Robert; Guillemette, Maxime D; Miville-Godin, Caroline; Mounier, Maxence; Tondreau, Maxime Y; Tremblay, Catherine; Labbé, Raymond; Ruel, Jean; Auger, François A; Veres, Teodor; Germain, Lucie

    2017-09-01

    In the clinical and pharmacological fields, there is a need for the production of tissue-engineered small-diameter blood vessels. We have demonstrated previously that the extracellular matrix (ECM) produced by fibroblasts can be used as a scaffold to support three-dimensional (3D) growth of another cell type. Thus, a resistant tissue-engineered vascular media can be produced when such scaffolds are used to culture smooth muscle cells (SMCs). The present study was designed to develop an anisotropic fibroblastic ECM sheet that could replicate the physiological architecture of blood vessels after being assembled into a small diameter vascular conduit. Anisotropic ECM scaffolds were produced using human dermal fibroblasts, grown on a microfabricated substrate with a specific topography, which led to cell alignment and unidirectional ECM assembly. Following their devitalization, the scaffolds were seeded with SMCs. These cells elongated and migrated in a single direction, following a specific angle relative to the direction of the aligned fibroblastic ECM. Their resultant ECM stained for collagen I and III and elastin, and the cells expressed SMC differentiation markers. Seven days after SMCs seeding, the sheets were rolled around a mandrel to form a tissue-engineered vascular media. The resulting anisotropic ECM and cell alignment induced an increase in the mechanical strength and vascular reactivity in the circumferential direction as compared to unaligned constructs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Microenvironment promotes tumor cell reprogramming in human breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Fabrizio D'Anselmi

    Full Text Available The microenvironment drives mammary gland development and function, and may influence significantly both malignant behavior and cell growth of mammary cancer cells. By restoring context, and forcing cells to properly interpret native signals from the microenvironment, the cancer cell aberrant behavior can be quelled, and organization re-established. In order to restore functional and morphological differentiation, human mammary MCF-7 and MDA-MB-231 cancer cells were allowed to grow in a culture medium filled with a 10% of the albumen (EW, Egg White from unfertilized chicken egg. That unique microenvironment behaves akin a 3D culture and induces MCF-7 cells to produce acini and branching duct-like structures, distinctive of mammary gland differentiation. EW-treated MDA-MB-231 cells developed buds of acini and duct-like structures. Both MCF-7 and MDA-MB-231 cells produced β-casein, a key milk component. Furthermore, E-cadherin expression was reactivated in MDA-MB-231 cells, as a consequence of the increased cdh1 expression; meanwhile β-catenin - a key cytoskeleton component - was displaced behind the inner cell membrane. Such modification hinders the epithelial-mesenchymal transition in MDA-MB-231 cells. This differentiating pathway is supported by the contemporary down-regulation of canonical pluripotency markers (Klf4, Nanog. Given that egg-conditioned medium behaves as a 3D-medium, it is likely that cancer phenotype reversion could be ascribed to the changed interactions between cells and their microenvironment.

  6. Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes.

    Science.gov (United States)

    Väremo, Leif; Henriksen, Tora Ida; Scheele, Camilla; Broholm, Christa; Pedersen, Maria; Uhlén, Mathias; Pedersen, Bente Klarlund; Nielsen, Jens

    2017-05-25

    Skeletal muscle is one of the primary tissues involved in the development of type 2 diabetes (T2D). The close association between obesity and T2D makes it difficult to isolate specific effects attributed to the disease alone. Therefore, here we set out to identify and characterize intrinsic properties of myocytes, associated independently with T2D or obesity. We generated and analyzed RNA-seq data from primary differentiated myotubes from 24 human subjects, using a factorial design (healthy/T2D and non-obese/obese), to determine the influence of each specific factor on genome-wide transcription. This setup enabled us to identify intrinsic properties, originating from muscle precursor cells and retained in the corresponding myocytes. Bioinformatic and statistical methods, including differential expression analysis, gene-set analysis, and metabolic network analysis, were used to characterize the different myocytes. We found that the transcriptional program associated with obesity alone was strikingly similar to that induced specifically by T2D. We identified a candidate epigenetic mechanism, H3K27me3 histone methylation, mediating these transcriptional signatures. T2D and obesity were independently associated with dysregulated myogenesis, down-regulated muscle function, and up-regulation of inflammation and extracellular matrix components. Metabolic network analysis identified that in T2D but not obesity a specific metabolite subnetwork involved in sphingolipid metabolism was transcriptionally regulated. Our findings identify inherent characteristics in myocytes, as a memory of the in vivo phenotype, without the influence from a diabetic or obese extracellular environment, highlighting their importance in the development of T2D.

  7. Autophagic-lysosomal dysregulation downstream of cathepsin B inactivation in human skin fibroblasts exposed to UVA

    OpenAIRE

    Lamore, Sarah D.; Wondrak, Georg T.

    2011-01-01

    Recently, using 2D-DIGE proteomics we have identified cathepsin B as a novel target of UVA in human Hs27 skin fibroblasts. In response to chronic exposure to noncytotoxic doses of UVA (9.9 J/cm2, twice a week, 3 weeks), photooxidative impairment of cathepsin B enzymatic activity occurred with accumulation of autofluorescent aggregates colocalizing with lysosomes, an effect mimicked by pharmacological antagonism of cathepsin B using the selective inhibitor CA074Me. Here, we have further explor...

  8. Adhesion and Spreading of Human Fibroblasts on Superhydrophobic Fep-Teflon

    OpenAIRE

    Busscher, H. J.; Stokroos, I.; Golverdingen, J. G.; Shakenraad, J. M.

    1991-01-01

    Adhesion and spreading of human fibroblasts was studied on hydrophobized and hydrophilized FEPTeflon, and compared with adhesion and spreading on untreated FEP-Teflon and Tissue culture polystyrene (TCPS). Superhydrophobic FEP-Teflon was prepared by ion etching followed by oxygen glow-discharge. Hydrophilic PEP-Teflon was prepared by ion etching only. Water contact angles of the modified surfaces were 140- 1500 and 5-10° for the hydrophobic and the hydrophilic variant, respectively. (Untreate...

  9. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence...... and strongly stimulate both MPC differentiation and MPC fusion. It thus appears, in humans, that fibroblasts exert a strong positive regulatory influence on MPC activity, in line with observations during in vivo skeletal muscle regeneration....

  10. Analysis of DNA-damage response to ionizing radiation in serum-shock synchronized human fibroblasts

    OpenAIRE

    Corra', Samantha; Salvadori, Riccardo; Bee, Leonardo; Barbieri, Vito; Mognato, Maddalena

    2017-01-01

    Many aspects of cellular physiology, including cellular response to genotoxic stress, are related to the circadian rhythmicity induced by the molecular clock. The current study investigated if the cellular response to DNA damage is in relation to endogenous expression levels of the PER2 protein, a key component of the molecular regulatory system that confers rhythmicity in mammalian cells. Human normal fibroblasts (CCD-34Lu) were subjected to serum shock to induce circadian oscillations of th...

  11. LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.

    Science.gov (United States)

    Zhang, Hui; Sweezey, Neil B; Kaplan, Feige

    2015-02-15

    Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development. Copyright © 2015 the American Physiological

  12. Fibroblast growth factor 23 weakens chemotaxis of human blood neutrophils in microfluidic devices

    OpenAIRE

    Yang, Ke; Peretz-Soroka, Hagit; Wu, Jiandong; Zhu, Ling; Cui, Xueling; Zhang, Michael; Rigatto, Claudio; Liu, Yong; Lin, Francis

    2017-01-01

    Neutrophil trafficking in tissues critically regulates the body?s immune response. Neutrophil migration can either play a protective role in host defense or cause health problems. Fibroblast growth factor 23 (FGF23) is a known biomarker for chronic kidney disease (CKD) and was recently shown to impair neutrophil arrest on endothelium and transendothelial migration. In the present study, we further examined the effect of FGF23 on human blood neutrophil chemotaxis using two new microfluidic dev...

  13. [Effect of the self-etching adhesives system on human pulp fibroblast].

    Science.gov (United States)

    Zhang, Ming; Feng, Yan; Huang, Xiao-jing; Lei, Li-shan; Zheng, Bi-qiong; Lu, You-guang

    2008-02-01

    To compare and evaluate the biocompatibility of three kinds of dentin bonding agents Xeno III (XO), Adper Prompt (AP), Single bond2 (SB) through cell culture in vitro. Three kinds of dentin bonding agents (XO, AP, SB) were applied on the surface of the dental slices which were 5.0 mm in diameter and 0.5 mm in depth. By immersing the slices into the DMEM culture medium, the maceration extracts were obtained. Normal dental pulps of teenagers were collected and human pulp fibroblast was cultured using tissue explant method. The fifth generation pulp cells were exposed to culture medium containing different concentrations of maceration extracts (100.0%, 50.0%, 25.0%, 12.5%) for 24, 72, 120 h. At last, MTT method was used to evaluate the cytotoxicity of the dentin bonding agents on human pulp fibroblast. The results showed that all three kinds of dentin bonding systems had cytotoxicity to human pulp fibroblast in different degree in vitro. The cytotoxicity of XO and AP was less than SB. The difference was statistically significant (Padhesives system has more irritation to pulp than self-etching adhesives system.

  14. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    Science.gov (United States)

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie Saini

    2016-10-01

    Full Text Available Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration: ClinicalTrials.gov NCT01087307.

  16. Treatment of postoperative lower extremity wounds using human fibroblast-derived dermis: a retrospective analysis.

    Science.gov (United States)

    Carlson, Russell M; Smith, Nicholas C; Dux, Katherine; Stuck, Rodney M

    2014-04-01

    Human fibroblast-derived dermis skin substitute is a well-studied treatment for diabetic foot ulcers; however, no case series currently exist for its use in healing postoperative wounds of the lower extremity. A retrospective analysis was conducted on 32 lower extremity postoperative wounds treated weekly with human fibroblast-derived dermis skin substitute. Postoperative wounds were defined as a wound resulting from an open partial foot amputation, surgical wound dehiscence, or nonhealing surgical wound of the lower extremity. Wound surface area was calculated at 4 and 12 weeks or until wound closure if prior to 12 weeks. Postoperative wounds treated with weekly applications showed mean improvement in surface area reduction of 63.6% at 4 weeks and 96.1% at 12 weeks. More than 56% of all wounds healed prior to the 12-week endpoint. Additionally, only one adverse event was noted in this group. This retrospective review supports the use of human fibroblast-derived dermis skin substitute in the treatment of postoperative lower extremity wounds. This advanced wound care therapy aids in decreased total healing time and increased rate of healing for not only diabetic foot wounds but also postoperative wounds of the lower extremity, as demonstrated by this retrospective review.

  17. Preneoplastic phenotype and chromosome changes of cultured human Bloom syndrome fibroblasts (strain GM 1492).

    Science.gov (United States)

    Brothman, A R; Cram, L S; Bartholdi, M F; Kraemer, P M

    1986-02-01

    The Bloom syndrome fibroblast strain, GM 1492, was examined for phenotypic properties generally associated with neoplastic cells. A serial clonogenicity assay indicated that these cells can proliferate in culture, achieving approximately twice the number of population doublings as compared to normal human skin fibroblasts. Strain GM 1492 appeared to be partially transformed in that these cells showed a slight degree of anchorage independence when grown in methylcellulose, and also appeared to have relaxed growth requirements compared to normal fibroblasts. GM 1492 cells are heteroploid, with 20 to 80 chromosomes/cell and a modal chromosome number of 44. Cytogenetic analysis of G-banded metaphase chromosomes indicated that most cells contained at least one copy of each normal human chromosome, and many cells exhibited only aneuploidies with no detectable chromosomal rearrangements. Minute chromosomes were seen in a few of the metaphase cells examined. GM 1492 cells did not form tumors in athymic nude mice. Since many of the characteristics of GM 1492 cells are similar to those seen only in tumor cells, but the strain is nontumorigenic, we suggest that GM 1492 cells are preneoplastic and thus represent an ideal system for the in vitro study of human neoplastic progression.

  18. Optimal ROS Signaling Is Critical for Nuclear Reprogramming

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2016-05-01

    Full Text Available Efficient nuclear reprogramming of somatic cells to pluripotency requires activation of innate immunity. Because innate immune activation triggers reactive oxygen species (ROS signaling, we sought to determine whether there was a role of ROS signaling in nuclear reprogramming. We examined ROS production during the reprogramming of doxycycline (dox-inducible mouse embryonic fibroblasts (MEFs carrying the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc [OSKM] into induced pluripotent stem cells (iPSCs. ROS generation was substantially increased with the onset of reprogramming. Depletion of ROS via antioxidants or Nox inhibitors substantially decreased reprogramming efficiency. Similarly, both knockdown and knockout of p22phox—a critical subunit of the Nox (1–4 complex—decreased reprogramming efficiency. However, excessive ROS generation using genetic and pharmacological approaches also impaired reprogramming. Overall, our data indicate that ROS signaling is activated early with nuclear reprogramming, and optimal levels of ROS signaling are essential to induce pluripotency.

  19. Mitochondrial Spare Respiratory Capacity Is Negatively Correlated with Nuclear Reprogramming Efficiency

    DEFF Research Database (Denmark)

    Yan, Zhou; Al-Saaidi, Rasha Abdelkadhem; Fernandez Guerra, Paula

    2017-01-01

    extracellular energy flux analyzer, we measured oxygen consumption rate (OCR) profiles of the cells, along with their nuclear reprogramming efficiency into iPSCs. Our results showed that fibroblasts with the lowest mitochondrial spare respiratory capacity (SRC) had the highest nuclear reprogramming efficiency...

  20. The Role of Human Adult Peripheral and Umbilical Cord Blood Platelet-Rich Plasma on Proliferation and Migration of Human Skin Fibroblasts.

    Science.gov (United States)

    Hashemi, Seyedeh-Sara; Mahmoodi, Mahdokht; Rafati, Ali Reza; Manafi, Farzad; Mehrabani, Davood

    2017-05-01

    Wound healing is a complex and dynamic process following damage in tissue structures. Due to extensive skin damage caused by burn injuries, this study determined the role of human adult peripheral and umbilical cord blood platelet-rich plasma on proliferation and migration in human skin fibroblasts. Platelet-rich plasma (5, 10, 15, 20 and 50% PRP) from human umbilical cord blood and adult peripheral blood were provided and added to fibroblasts cultured from a human skin sample. Migration and proliferation of fibroblasts were assessed in comparison to 10% FBS and by the fibroblast responses to a concentration gradient. All components of the umbilical cord blood PRP significantly stimulated the growth of fibroblasts when compared to the negative control. Fibroblast growth was enhanced in a dose dependent manner. All fibroblast cultures retained normal morphology. No significant difference was noted between umbilical cord blood and adult peripheral blood PRP preparations regarding cell proliferation and migration, but the difference to 10% FBS was significant. 1% and 50% PRP reduced cellular proliferation. The 20% umbilical cord blood PRP and 10% adult peripheral blood PRP had a significant stimulatory effect on the migration of the skin fibroblast cells in comparison with 10% FBS. As PRP could promote the migration and proliferation of dermal fibroblasts, it can be safely added in cultures when treatment of chronic wounds without triggering the immune response is needed.

  1. Expression and function of connexin 43 in human gingival wound healing and fibroblasts.

    Directory of Open Access Journals (Sweden)

    Rana Tarzemany

    Full Text Available Connexins (C×s are a family of transmembrane proteins that form hemichannels and gap junctions (GJs on the cell membranes, and transfer small signaling molecules between the cytoplasm and extracellular space and between connecting cells, respectively. Among C×s, suppressing C×43 expression or function promotes skin wound closure and granulation tissue formation, and may alleviate scarring, but the mechanisms are not well understood. Oral mucosal gingiva is characterized by faster wound closure and scarless wound healing outcome as compared to skin wounds. Therefore, we hypothesized that C×43 function is down regulated during human gingival wound healing, which in fibroblasts promotes expression of genes conducive for fast and scarless wound healing. Cultured gingival fibroblasts expressed C×43 as their major connexin. Immunostaining of unwounded human gingiva showed that C×43 was abundantly present in the epithelium, and in connective tissue formed large C×43 plaques in fibroblasts. At the early stages of wound healing, C×43 was strongly down regulated in wound epithelial cells and fibroblasts, returning to the level of normal tissue by day 60 post-wounding. Blocking of C×43 function by C×43 mimetic peptide Gap27 suppressed GJ-mediated dye transfer, promoted migration, and caused significant changes in the expression of wound healing-associated genes in gingival fibroblasts. In particular, out of 54 genes analyzed, several MMPs and TGF-β1, involved in regulation of inflammation and extracellular matrix (ECM turnover, and VEGF-A, involved in angiogenesis, were significantly upregulated while pro-fibrotic ECM molecules, including Collagen type I, and cell contractility-related molecules were significantly down regulated. These responses involved MAPK, GSK3α/β and TGF-β signaling pathways, and AP1 and SP1 transcription factors. Thus, suppressed function of C×43 in fibroblasts promotes their migration, and regulates expression of

  2. Generation of human induced pluripotent stem cell lines from human dermal fibroblasts using a non-integration system

    Directory of Open Access Journals (Sweden)

    Kyung-Ok Uhm

    2017-05-01

    Full Text Available We generated human induced pluripotent stem cells (hiPSCs from dermal fibroblasts using a Sendai virus (SeV-based gene delivery method. The generated hiPSC line, KSCBi002-A, has a normal karyotype (46,XY. The pluripotency and differentiation capacity were characterized by comparison with those of a human embryonic stem cell line. This cell line is registered and available from the National Stem Cell Bank, Korea National Institute of Health.

  3. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Isabela Resende Pereira

    2015-01-01

    Full Text Available Chagas disease (CD, caused by the protozoan Trypanosoma cruzi, is a prototypical neglected tropical disease. Specific immunity promotes acute phase survival. Nevertheless, one-third of CD patients develop chronic chagasic cardiomyopathy (CCC associated with parasite persistence and immunological unbalance. Currently, the therapeutic management of patients only mitigates CCC symptoms. Therefore, a vaccine arises as an alternative to stimulate protective immunity and thereby prevent, delay progression and even reverse CCC. We examined this hypothesis by vaccinating mice with replication-defective human Type 5 recombinant adenoviruses (rAd carrying sequences of amastigote surface protein-2 (rAdASP2 and trans-sialidase (rAdTS T. cruzi antigens. For prophylactic vaccination, naïve C57BL/6 mice were immunized with rAdASP2+rAdTS (rAdVax using a homologous prime/boost protocol before challenge with the Colombian strain. For therapeutic vaccination, rAdVax administration was initiated at 120 days post-infection (dpi, when mice were afflicted by CCC. Mice were analyzed for electrical abnormalities, immune response and cardiac parasitism and tissue damage. Prophylactic immunization with rAdVax induced antibodies and H-2Kb-restricted cytotoxic and interferon (IFNγ-producing CD8+ T-cells, reduced acute heart parasitism and electrical abnormalities in the chronic phase. Therapeutic vaccination increased survival and reduced electrical abnormalities after the prime (analysis at 160 dpi and the boost (analysis at 180 and 230 dpi. Post-therapy mice exhibited less heart injury and electrical abnormalities compared with pre-therapy mice. rAdVax therapeutic vaccination preserved specific IFNγ-mediated immunity but reduced the response to polyclonal stimuli (anti-CD3 plus anti-CD28, CD107a+ CD8+ T-cell frequency and plasma nitric oxide (NO levels. Moreover, therapeutic rAdVax reshaped immunity in the heart tissue as reduced the number of perforin+ cells

  4. Effects of conditioned medium from LL-37 treated adipose stem cells on human fibroblast migration.

    Science.gov (United States)

    Yang, Eun-Jung; Bang, Sa-Ik

    2017-07-01

    Adipose stem cell-conditioned medium may promote human dermal fibroblast (HDF) proliferation and migration by activating paracrine peptides during the re-epithelization phase of wound healing. Human antimicrobial peptide LL-37 is upregulated in the skin epithelium as part of the normal response to injury. The effects of conditioned medium (CM) from LL-37 treated adipose stem cells (ASCs) on cutaneous wound healing, including the mediation of fibroblast migration, remain to be elucidated, therefore the aim of the present study was to determine how ASCs would react to an LL-37-rich microenvironment and if CM from LL-37 treated ASCs may influence the migration of HDFs. The present study conducted migration assays with HDFs treated with CM from LL-37 treated ASCs. Expression of CXC chemokine receptor 4 (CXCR4), which controls the recruitment of HDFs, was analyzed at the mRNA and protein levels. To further characterize the stimulatory effects of LL-37 on ASCs, the expression of stromal cell-derived factor-1α (SDF-1α), a CXC chemokine, was investigated. CM from LL-37-treated ASCs induced migration of HDFs in a time- and dose-dependent manner, with a maximum difference in migration observed 24 h following stimulation with LL-37 at a concentration of 10 µg/ml. The HDF migration and the expression of CXCR4 in fibroblasts was markedly increased upon treatment with CM from LL-37-treated ASCs compared with CM from untreated ASCs. SDF-1α expression was markedly increased in CM from LL-37 treated ASCs. It was additionally observed that SDF-1α blockade significantly reduced HDF migration. These findings suggest the feasibility of CM from LL-37-treated ASCs as a potential therapeutic for human dermal fibroblast migration.

  5. Knockdown of CDK2AP1 in primary human fibroblasts induces p53 dependent senescence.

    Directory of Open Access Journals (Sweden)

    Khaled N Alsayegh

    Full Text Available Cyclin Dependent Kinase-2 Associated Protein-1 (CDK2AP1 is known to be a tumor suppressor that plays a role in cell cycle regulation by sequestering monomeric CDK2, and targeting it for proteolysis. A reduction of CDK2AP1 expression is considered to be a negative prognostic indicator in patients with oral squamous cell carcinoma and also associated with increased invasion in human gastric cancer tissue. CDK2AP1 overexpression was shown to inhibit growth, reduce invasion and increase apoptosis in prostate cancer cell lines. In this study, we investigated the effect of CDK2AP1 downregulation in primary human dermal fibroblasts. Using a short-hairpin RNA to reduce its expression, we found that knockdown of CDK2AP1 in primary human fibroblasts resulted in reduced proliferation and in the induction of senescence associated beta-galactosidase activity. CDK2AP1 knockdown also resulted in a significant reduction in the percentage of cells in the S phase and an accumulation of cells in the G1 phase of the cell cycle. Immunocytochemical analysis also revealed that the CDK2AP1 knockdown significantly increased the percentage of cells that exhibited γ-H2AX foci, which could indicate presence of DNA damage. CDK2AP1 knockdown also resulted in increased mRNA levels of p53, p21, BAX and PUMA and p53 protein levels. In primary human fibroblasts in which p53 and CDK2AP1 were simultaneously downregulated, there was: (a no increase in senescence associated beta-galactosidase activity, (b decrease in the number of cells in the G1-phase and increase in number of cells in the S-phase of the cell cycle, and (c decrease in the mRNA levels of p21, BAX and PUMA when compared with CDK2AP1 knockdown only fibroblasts. Taken together, this suggests that the observed phenotype is p53 dependent. We also observed a prominent increase in the levels of ARF protein in the CDK2AP1 knockdown cells, which suggests a possible role of ARF in p53 stabilization following CDK2AP1

  6. [Culture of human fibroblasts transfected by human telomerase reverse transcriptase eucaryotic expression plasmid pGRN145 and their biological characteristics in vitro].

    Science.gov (United States)

    Xie, Hui-qi; Yang, Zhi-ming; Qu, Yi

    2002-05-01

    To analysis the biological characteristics of human fibroblasts transfected by human telomerase reverse transcriptase (hTERT) eucaryotic expression plasmid pGRN145. Fibroblasts from children's foreskin were isolated and cultured in vitro, and the fibroblasts were transfected by pGRN145 with Lipofec-tAMINE PLUS Reagent. After strict screening of hygromycin B, the positive clones were subcultured. The telomerase activity was detected by RT-PCR and TRAP-PCR technique. The cell generation cycle and apoptosis rate were detected by flow cytometry to investigate the proliferative characteristics after transfection, and the chromosome karyotype of transformed cells was analyzed. The collagen secreted by transformed cells was detected by immunohistochemical staining. The morphological properties of fibroblasts did not change obviously after transfection. There were telomerase activity in transfected fibroblasts, while it could not be detected in pre-transfection fibroblasts. The cell generation cycle had no obvious changes between pre-transfection and post-transfection. However, the apoptosis rate of transfected fibroblasts were decreased compared with that of pre-transfection. The fibroblasts transfected by pGRN145 maintained the normal diploid karyotype, as well as the cells could normally secret type I and III collagen. The human fibroblasts transfected by pGRN145 has telomerase activity with prolonged life span of culture, which preliminarily proves the availability of establishing standard seeding cell lines of tissue engineering by hTERT plasmid transfection techniques.

  7. Dried human skin fibroblasts as a new substratum for functional culture of hepatic cells.

    Science.gov (United States)

    Wencel, Agnieszka; Zakrzewska, Karolina Ewa; Samluk, Anna; Noszczyk, Bartłomiej Henryk; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2017-01-01

    The primary hepatocytes culture is still one of the main challenges in toxicology studies in the drug discovery process, development of in vitro models to study liver function, and cell-based therapies. Isolated hepatocytes display a rapid decline in viability and liver-specific functions including albumin production, conversion of ammonia to urea, and activity of the drug metabolizing enzymes. A number of methods have been developed in order to maintain hepatocytes in their highly differentiated state in vitro. Optimization of culture conditions includes a variety of media formulations and supplements, growth surface coating with the components of extracellular matrix or with synthetic polymers, three-dimensional growth scaffolds and decellularized tissues, and coculture with other cell types required for the normal cell-cell interactions. Here we propose a new substratum for hepatic cells made by drying confluent human skin fibroblasts' culture. This growth surface coating, prepared using maximally simplified procedure, combines the advantages of the use of extracellular matrices and growth factors/cytokines secreted by the feeder layer cells. In comparison to the hepatoma cells grown on a regular tissue culture plastic, cells cultured on the dried fibroblasts were able to synthesize albumin in larger quantities and to form greater number of apical vacuoles. Unlike the coculture with the living feeder layer cells, the number of cells grown on the new substratum was not reduced after fourteen days of culture. This fact could make the dried fibroblasts coating an ideal candidate for the substrate for non-dividing human hepatocytes.

  8. CpG Motifs in Porphyromonas gingivalis DNA Stimulate Interleukin-6 Expression in Human Gingival Fibroblasts

    Science.gov (United States)

    Takeshita, Akira; Imai, Kenichi; Hanazawa, Shigemasa

    1999-01-01

    We suggest here that Porphyromonas gingivalis DNA may function as a virulence factor in periodontal disease through expression of inflammatory cytokine. The bacterial DNA markedly stimulated in a dose-dependent manner interleukin-6 (IL-6) production by human gingival fibroblasts. The stimulatory action was eliminated by treatment with DNase but not RNase. The stimulatory effect was not observed in the fibroblasts treated with eucaryotic DNAs. The bacterial DNA also stimulated in dose- and treatment time-dependent manners the expression of the IL-6 gene in the cells. In addition, the stimulatory effect was eliminated when the DNA was methylated with CpG motif methylase. Interestingly, a 30-base synthetic oligonucleotide containing the palindromic motif GACGTC could stimulate expression of the IL-6 gene and production of its protein in the cells. Furthermore, the synthetic oligonucleotide-induced expression of this cytokine gene was blocked by pyrrolidine dithiocarbamate and N-acetyl-l-cystine, potent inhibitors of transcriptional factor NF-κB. Gel mobility shift assay showed increased binding of NF-κB to its consensus sequence in the synthetic oligonucleotide-treated cells. Also, using specific antibody against p50 and p65, which compose NF-κB, we showed the consensus sequence-binding proteins to be NF-κB. These results are the first to demonstrate that the internal CpG motifs in P. gingivalis DNA stimulate IL-6 expression in human gingival fibroblasts via stimulation of NF-κB. PMID:10456872

  9. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity.

    Science.gov (United States)

    Bishop, J E; Mitchell, J J; Absher, P M; Baldor, L; Geller, H A; Woodcock-Mitchell, J; Hamblin, M J; Vacek, P; Low, R B

    1993-08-01

    Cellular hypertrophy and hyperplasia and increased extracellular matrix deposition are features of tissue hypertrophy resulting from increased work load. It is known, for example, that mechanical forces play a critical role in lung development, cardiovascular remodeling following pressure overload, and skeletal muscle growth. The mechanisms involved in these processes, however, remain unclear. Here we examined the effect of mechanical deformation on fibroblast function in vitro. IMR-90 human fetal lung fibroblasts grown on collagen-coated silastic membranes were subjected to cyclical mechanical deformation (10% increase in culture surface area; 1 Hz) for up to 5 days. Cell number was increased by 39% after 2 days of deformation (1.43 +/- .01 x 10(5) cells/membrane compared with control, 1.03 +/- 0.02 x 10(5) cells; mean +/- SEM; P < 0.02) increasing to 163% above control by 4 days (2.16 +/- 0.16 x 10(5) cells compared with 0.82 +/- 0.03 x 10(5) cells; P < 0.001). The medium from mechanically deformed cells was mitogenic for IMR-90 cells, with maximal activity in the medium from cells mechanically deformed for 2 days (stimulating cell replication by 35% compared with media control; P < 0.002). These data suggest that mechanical deformation stimulates human lung fibroblast replication and that this effect is mediated by the release of autocrine growth factors.

  10. Differentiation of human labia minora dermis-derived fibroblasts into insulin-producing cells

    Science.gov (United States)

    Kim, Bona; Yoon, Byung Sun; Moon, Jai-Hee; Kim, Jonggun; Jun, Eun Kyoung; Lee, Jung Han; Kim, Jun Sung; Baik, Cheong Soon; Kim, Aeree; Whang, Kwang Youn

    2012-01-01

    Recent evidence has suggested that human skin fibroblasts may represent a novel source of therapeutic stem cells. In this study, we report a 3-stage method to induce the differentiation of skin fibroblasts into insulin-producing cells (IPCs). In stage 1, we establish the isolation, expansion and characterization of mesenchymal stem cells from human labia minora dermis-derived fibroblasts (hLMDFs) (stage 1: MSC expansion). hLMDFs express the typical mesenchymal stem cell marker proteins and can differentiate into adipocytes, osteoblasts, chondrocytes or muscle cells. In stage 2, DMEM/F12 serum-free medium with ITS mix (insulin, transferrin, and selenite) is used to induce differentiation of hLMDFs into endoderm-like cells, as determined by the expression of the endoderm markers Sox17, Foxa2, and PDX1 (stage 2: mesenchymal-endoderm transition). In stage 3, cells in the mesenchymal-endoderm transition stage are treated with nicotinamide in order to further differentiate into self-assembled, 3-dimensional islet cell-like clusters that express multiple genes related to pancreatic β-cell development and function (stage 3: IPC). We also found that the transplantation of IPCs can normalize blood glucose levels and rescue glucose homeostasis in streptozotocin-induced diabetic mice. These results indicate that hLMDFs have the capacity to differentiate into functionally competent IPCs and represent a potential cell-based treatment for diabetes mellitus. PMID:22020533

  11. IFN-Dependent and -Independent Reduction in West Nile Virus Infectivity in Human Dermal Fibroblasts

    Science.gov (United States)

    Hoover, Lisa I.; Fredericksen, Brenda L.

    2014-01-01

    Although dermal fibroblasts are one of the first cell types exposed to West Nile virus (WNV) during a blood meal by an infected mosquito, little is known about WNV replication within this cell type. Here, we demonstrate that neuroinvasive, WNV-New York (WNV-NY), and nonneuroinvasive, WNV-Australia (WNV-AUS60) strains are able to infect and replicate in primary human dermal fibroblasts (HDFs). However, WNV-AUS60 replication and spread within HDFs was reduced compared to that of WNV-NY due to an interferon (IFN)-independent reduction in viral infectivity early in infection. Additionally, replication of both strains was constrained late in infection by an IFN-β-dependent reduction in particle infectivity. Overall, our data indicates that human dermal fibroblasts are capable of supporting WNV replication; however, the low infectivity of particles produced from HDFs late in infection suggests that this cell type likely plays a limited role as a viral reservoir in vivo. PMID:24662674

  12. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Sivapragasam Gothai

    2016-03-01

    Full Text Available Background/Aim: Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for treatment of cuts, wounds and burns. Moringa oleifera is an herb used as traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of M. oleifera leaves extract are completely unknown. Methods: In the current study, ethyl acetate fraction of Moringa oleifera leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate in human normal dermal fibroblast cells. Results: Results revealed that lower concentration (12.5 and micro;g/ml, 25 and micro;g/ml, and 50 and micro;g/ml of ethyl acetate fraction of M. oleifera leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. Conclusion: The present study suggested that ethyl acetate fraction of M. oleifera leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use. [J Intercult Ethnopharmacol 2016; 5(1.000: 1-6

  13. Chronic resveratrol treatment ameliorates cell adhesion and mitigates the inflammatory phenotype in senescent human fibroblasts.

    Science.gov (United States)

    Pitozzi, Vanessa; Mocali, Alessandra; Laurenzana, Anna; Giannoni, Elisa; Cifola, Ingrid; Battaglia, Cristina; Chiarugi, Paola; Dolara, Piero; Giovannelli, Lisa

    2013-04-01

    We evaluated the effect of resveratrol on the senescence-associated secretory phenotype (SASP) and on adhesion-related processes in cultured human MRC5 fibroblasts. Presenescent cultures were chronically treated with or without 5 µM resveratrol. The development of SASP in MRC5 fibroblasts approaching senescence was significantly attenuated by resveratrol treatment, which reduced both gene expression and release of proinflammatory cytokines. Although to a lesser extent, 1 µM resveratrol proved to be effective on cytokine gene expression. Cell spreading capacity and plating efficiency were strikingly increased and accompanied by recovery of type I collagen expression to presenescent levels. As p16(INK4a) protein expression was not significantly modified, and based on our previous data, we propose that resveratrol does not affect fibroblast replicative senescence, but improves tissue maintenance and repair during normal cellular aging. Considering these low concentrations proved effective in vitro, translation of these data to human research on inflammation-related pathologies can be envisaged.

  14. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts.

    Science.gov (United States)

    Gothai, Sivapragasam; Arulselvan, Palanisamy; Tan, Woan Sean; Fakurazi, Sharida

    2016-01-01

    Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for the treatment of cuts, wounds and burns. Moringa oleifera (MO) is an herb used as a traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of MO leaves extract are completely unknown. In the current study, ethyl acetate fraction of MO leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate) in human normal dermal fibroblast cells. Results revealed that lower concentration (12.5 µg/ml, 25 µg/ml, and 50 µg/ml) of ethyl acetate fraction of MO leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. This study suggested that ethyl acetate fraction of MO leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use.

  15. Insulin-like growth factor binding protein-6 delays replicative senescence of human fibroblasts

    DEFF Research Database (Denmark)

    Micutkova, Lucia; Diener, Thomas; Li, Chen

    2011-01-01

    extracellular proteins with significantly different abundance in conditioned media from young and senescent fibroblasts. Among these was insulin-like growth factor binding protein-6 (IGFBP-6), which was chosen for further analysis. When IGFBP-6 gene expression was downregulated, cell proliferation was inhibited...... and apoptotic cell death was increased. Furthermore, downregulation of IGFBP-6 led to premature entry into cellular senescence. Since IGFBP-6 overexpression increased cellular lifespan, the data suggest that IGFBP-6, in contrast to other IGF binding proteins, is a negative regulator of cellular senescence......Cellular senescence can be induced by a variety of mechanisms, and recent data suggest a key role for cytokine networks to maintain the senescent state. Here, we have used a proteomic LC-MS/MS approach to identify new extracellular regulators of senescence in human fibroblasts. We identified 26...

  16. UV-induced extracellular factor from human fibroblasts communicates the UV response to nonirradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Schorpp, M.; Mallick, U.; Rahmsdorf, H.J.; Herrlich, P.

    1984-07-01

    Ultraviolet light enhances the synthesis of at least eight abundant proteins in human fibroblasts within 2 hr. These proteins are identical with those induced by the tumor promoter TPA. The inducing signal is generated by DNA damage, as these proteins are induced by lower doses of UV in fibroblasts from patients with Cockayne's syndrome or Xeroderma pigmentosum. In the supernatant of UV-treated cells, a heat-labile ammonium sulfate precipitable factor of more than 10 kd (EPIF) was detected which, upon transfer to nonirradiated cells, mimicked UV in the UV-induced synthesis of gene products. The response to UV, TPA, or EPIF was inhibited by fluocinolone acetonide, but not by retinoic acid, protease inhibitors, or superoxide dismutase.

  17. Microarray-based identification of age-dependent differences in gene expression of human dermal fibroblasts.

    Science.gov (United States)

    Dekker, Pim; Gunn, David; McBryan, Tony; Dirks, Roeland W; van Heemst, Diana; Lim, Fei-Ling; Jochemsen, Aart G; Verlaan-de Vries, Matty; Nagel, Julia; Adams, Peter D; Tanke, Hans J; Westendorp, Rudi G J; Maier, Andrea B

    2012-07-01

    Senescence is thought to play an important role in the progressive age-related decline in tissue integrity and concomitant diseases, but not much is known about the complex interplay between upstream regulators and downstream effectors. We profiled whole genome gene expression of non-stressed and rotenone-stressed human fibroblast strains from young and oldest old subjects, and measured senescence associated β-gal activity. Microarray results identified gene sets involved in carbohydrate metabolism, Wnt/β-catenin signaling, the cell cycle, glutamate signaling, RNA-processing and mitochondrial function as being differentially regulated with chronological age. The most significantly differentially regulated mRNA corresponded to the p16 gene. p16 was then investigated using qPCR, Western blotting and immunocytochemistry. In conclusion, we have identified cellular pathways that are differentially expressed between fibroblast strains from young and old subjects. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Differential expression of type XIV collagen/undulin by human mammary gland intralobular and interlobular fibroblasts.

    Science.gov (United States)

    Atherton, A J; Warburton, M J; O'Hare, M J; Monaghan, P; Schuppan, D; Gusterson, B A

    1998-03-01

    Immunolocalisation of type XIV collagen/undulin in the human mammary gland revealed greater deposition in the interlobular stroma than in the intralobular stroma. The interlobular stroma is located between the breast lobules and their associated intralobular stroma. Fibroblasts isolated from the interlobular stroma synthesised 3- to 5-fold more type XIV collagen/undulin than intralobular fibroblasts, but synthesised type I and type IV collagens in similar amounts. The differential expression of type XIV collagen/undulin was maintained with passage in culture. The results suggest a role for type XIV collagen/undulin in stabilising dense collagen fibrils. The maintenance of two types of structurally distinct stromas may be important during developmental processes in the mammary gland.

  19. Activation of the NLRP3/caspase-1 inflammasome in human dental pulp tissue and human dental pulp fibroblasts.

    Science.gov (United States)

    Jiang, Wenkai; Lv, Haipeng; Wang, Haijing; Wang, Diya; Sun, Shukai; Jia, Qian; Wang, Peina; Song, Bing; Ni, Longxing

    2015-08-01

    The NLRP3/caspase-1 inflammasome pathway plays an important role in cellular immune defence against bacterial infection; however, its function in human dental pulp tissue and human dental pulp fibroblasts remains poorly understood. We demonstrate that NLRP3 protein expression occurs to a greater extent in pulp tissue with irreversible pulpitis than in normal pulp tissue and in tissue with reversible pulpitis. Caspase-1 is present in its active (cleaved) form only in pulp tissue with irreversible pulpitis. NLRP3 and caspase-1 are expressed in the odontoblast layers in normal human dental pulp tissue, whereas in inflamed pulp tissue, the odontoblast layers are disrupted and dental pulp cells are positive for NLRP3 and caspase-1. Additionally, we investigate the role of the NLRP3/caspase-1 inflammasome pathway in human dental pulp fibroblasts and show that ATP activates the P2X7 receptor on the cell membrane triggering K(+) efflux and inducing the gradual recruitment of the membrane pore pannexin-1. Extracellular lipopolysaccharide is able to penetrate the cytosol and activate NLRP3. Furthermore, the low intracellular K(+) concentration in the cytosol triggers reactive oxygen species generation, which also induces the NLRP3 inflammasome. Thus, the NLRP3/caspase-1 pathway has a biological role in the innate immune response mounted by human dental pulp fibroblasts.

  20. TP53inp1 Gene Is Implicated in Early Radiation Response in Human Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Nikolett Sándor

    2015-10-01

    Full Text Available Tumor protein 53-induced nuclear protein-1 (TP53inp1 is expressed by activation via p53 and p73. The purpose of our study was to investigate the role of TP53inp1 in response of fibroblasts to ionizing radiation. γ-Ray radiation dose-dependently induces the expression of TP53inp1 in human immortalized fibroblast (F11hT cells. Stable silencing of TP53inp1 was done via lentiviral transfection of shRNA in F11hT cells. After irradiation the clonogenic survival of TP53inp1 knockdown (F11hT-shTP cells was compared to cells transfected with non-targeting (NT shRNA. Radiation-induced senescence was measured by SA-β-Gal staining and autophagy was detected by Acridine Orange dye and microtubule-associated protein-1 light chain 3 (LC3B immunostaining. The expression of TP53inp1, GDF-15, and CDKN1A and alterations in radiation induced mitochondrial DNA deletions were evaluated by qPCR. TP53inp1 was required for radiation (IR induced maximal elevation of CDKN1A and GDF-15 expressions. Mitochondrial DNA deletions were increased and autophagy was deregulated following irradiation in the absence of TP53inp1. Finally, we showed that silencing of TP53inp1 enhances the radiation sensitivity of fibroblast cells. These data suggest functional roles for TP53inp1 in radiation-induced autophagy and survival. Taken together, we suppose that silencing of TP53inp1 leads radiation induced autophagy impairment and induces accumulation of damaged mitochondria in primary human fibroblasts.

  1. Effect of static magnetic fields and phloretin on antioxidant defense system of human fibroblasts.

    Science.gov (United States)

    Pawłowska-Góral, Katarzyna; Kimsa-Dudek, Magdalena; Synowiec-Wojtarowicz, Agnieszka; Orchel, Joanna; Glinka, Marek; Gawron, Stanisław

    2016-08-01

    The available evidence from in vitro and in vivo studies is deemed not sufficient to draw conclusions about the potential health effects of static magnetic field (SMF) exposure. Therefore, the aim of the present study was to determine the influence of static magnetic fields and phloretin on the redox homeostasis of human dermal fibroblasts. Control fibroblasts and fibroblasts treated with phloretin were subjected to the influence of static magnetic fields. Three chambers with static magnetic fields of different intensities (0.4, 0.55, and 0.7 T) were used in the study. Quantification of superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPX1), microsomal glutathione S-transferase 1 (MGST1), glutathione reductase (GSR), and catalase (CAT) messenger RNAs (mRNAs) was performed by means of real-time reverse transcription PCR (QRT-PCR) technique. Superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities were measured using a commercially available kit. No significant differences were found in SOD1, SOD2, GPX1, MGST1, GSR, and CAT mRNA levels among the studied groups in comparison to the control culture without phloretin and without the magnet. There were also no changes in SOD, GPx, and CAT activities. In conclusion, our study indicated that static magnetic fields generated by permanent magnets do not exert a negative influence on the oxidative status of human dermal fibroblasts. Based on these studies, it may also be concluded that phloretin does not increase its antioxidant properties under the influence of static magnetic fields. However, SMF-induced modifications at the cellular and molecular level require further clarification.

  2. Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites.

    Science.gov (United States)

    Aggarwal, Saurabh; Brennen, W Nathaniel; Kole, Thomas P; Schneider, Elizabeth; Topaloglu, Ozlem; Yates, Melinda; Cotter, Robert J; Denmeade, Samuel R

    2008-01-22

    A highly consistent trait of tumor stromal fibroblasts is the induction of the membrane-bound serine protease fibroblast activation protein-alpha (FAP), which is overexpressed on the surface of reactive stromal fibroblasts present within the stroma of the majority of human epithelial tumors. In contrast, FAP is not expressed by tumor epithelial cells or by fibroblasts or other cell types in normal tissues. The proteolytic activity of FAP, therefore, represents a potential pan-tumor target that can be exploited for the release of potent cytotoxins from inactive prodrugs consisting of an FAP peptide substrate coupled to a cytotoxin. To identify FAP peptide substrates, we used liquid chromatography tandem mass spectroscopy based sequencing to generate a complete map of the FAP cleavage sites within human collagen I derived gelatin. Positional analysis of the frequency of each amino acid at each position within the cleavage sites revealed FAP consensus sequences PPGP and (D/E)-(R/K)-G-(E/D)-(T/S)-G-P. These studies further demonstrated that ranking cleavage sites based on the magnitude of the LC/MS/MS extracted ion current predicted FAP substrates that were cleaved with highest efficiency. Fluorescence-quenched peptides were synthesized on the basis of the cleavage sites with the highest ion current rankings, and kinetic parameters for FAP hydrolysis were determined. The substrate DRGETGP, which corresponded to the consensus sequence, had the lowest Km of 21 microM. Overall the Km values were relatively similar for both high and low ranked substrates, whereas the kcat values differed by up to 100-fold. On the basis of these results, the FAP consensus sequences are currently being evaluated as FAP-selective peptide carriers for incorporation into FAP-activated prodrugs.

  3. Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts.

    Science.gov (United States)

    Onesto, Elisa; Colombrita, Claudia; Gumina, Valentina; Borghi, Maria Orietta; Dusi, Sabrina; Doretti, Alberto; Fagiolari, Gigliola; Invernizzi, Federica; Moggio, Maurizio; Tiranti, Valeria; Silani, Vincenzo; Ratti, Antonia

    2016-05-05

    Dysregulation of RNA metabolism represents an important pathogenetic mechanism in both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) due to the involvement of the DNA/RNA-binding proteins TDP-43 and FUS and, more recently, of C9ORF72. A potential link between dysregulation of RNA metabolism and mitochondrial dysfunction is recently emerged in TDP-43 disease models. To further investigate the possible relationship between these two pathogenetic mechanisms in ALS/FTD, we studied mitochondria functionality in human mutant TARDBP(p.A382T) and C9ORF72 fibroblasts grown in galactose medium to induce a switch from a glycolytic to an oxidative metabolism. In this condition we observed significant changes in mitochondria morphology and ultrastructure in both mutant cells with a fragmented mitochondria network particularly evident in TARDBP(p.A382T) fibroblasts. From analysis of the mitochondrial functionality, a decrease of mitochondria membrane potential with no alterations in oxygen consumption rate emerged in TARDBP fibroblasts. Conversely, an increased oxygen consumption and mitochondria hyperpolarization were observed in C9ORF72 fibroblasts in association to increased ROS and ATP content. We found evidence of autophagy/mitophagy in dynamic equilibrium with the biogenesis of novel mitochondria, particularly in mutant C9ORF72 fibroblasts where an increase of mitochondrial DNA content and mass, and of PGC1-α protein was observed. Our imaging and biochemical data show that wild-type and mutant TDP-43 proteins do not localize at mitochondria so that the molecular mechanisms responsible for such mitochondria impairment remain to be further elucidated. For the first time our findings assess a link between C9ORF72 and mitochondria dysfunction and indicate that mitochondria functionality is affected in TARDBP and C9ORF72 fibroblasts with gene-specific features in oxidative conditions. As in neuronal metabolism mitochondria are actively used for ATP

  4. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    Directory of Open Access Journals (Sweden)

    Yongjun Yin

    2016-05-01

    Full Text Available Activating mutations in fibroblast growth factor receptor 3 (FGFR3 have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9, a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11 with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3.

  5. Effects of 2-aminoanthracene and benzo(. cap alpha. )pyrene on interferon production in human foreskin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiaw; Vaughn, J.M.; Morales, D.

    1987-11-01

    Human foreskin fibroblast cell cultures (Flow 7000, FS-35) were treated with varying concentrations of 2-aminoanthracene or benzo(..cap alpha..)pyrene for a two-day period prior to interferon (IFN) induction by either poly I . poly C, or 'Vesicular' Stomatitis virus (VSV). IFN in test cell fluids was then assayed and compared to production in untreated cultures. Both cell lines produced similar amounts of beta-interferon in response to poly I . poly C simulus. However, Flow 7000 fibroblasts were extremely sensitive to benzo(..cap alpha..)pyrene, with concentrations as low as 1 ..mu..M treatment inhibiting 93% of IFN-..beta.. productivity. Treatment of FS-35 cells with ten times this concentration was required to inhibit 85% of IFN-..beta.. productivity. Both test chemicals inhibited IFN-..beta.. productivity in FS-35 fibroblasts to the same extent. It was also noted that FS-35 produced alpha-interferon in response to VSV challenge, but this production was vulnerable to treatment with both test chemicals. In all cases, observed levels of IFN inhibition were directly proportional to the concentration of the applied chemical. 1 fig., 4 tabs.

  6. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts.

    Science.gov (United States)

    Malpass, Gloria E; Arimilli, Subhashini; Prasad, G L; Howlett, Allyn C

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1h or 5h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5h), which was increased by nicotine but suppressed by other components of STE. Within 2h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells.

    Science.gov (United States)

    Pennarossa, Georgia; Maffei, Sara; Campagnol, Marino; Tarantini, Letizia; Gandolfi, Fulvio; Brevini, Tiziana A L

    2013-05-28

    The differentiated state of mature cells of adult organisms is achieved and maintained through the epigenetic regulation of gene expression, which consists of several mechanisms including DNA methylation. The advent of induced pluripotent stem cell technology enabled the conversion of adult cells into any other cell type passing through a stable pluripotency state. However, indefinite pluripotency is unphysiological, inherently labile, and makes cells prone to culture-induced alterations. The direct conversion of one cell type to another without an intermediate pluripotent stage is also possible but, at present, requires the viral transfection of appropriate transcription factors, limiting its therapeutic potential. The aim of this study was to investigate whether it is possible to achieve the direct conversion of an adult cell by exposing it to a demethylating agent immediately followed by differentiating culture conditions. Adult human skin fibroblasts were exposed for 18 h to the DNA methyltransferase inhibitor 5-azacytidine, followed by a three-step protocol for the induction of endocrine pancreatic differentiation that lasted 36 d. At the end of this treatment, 35 ± 8.9% fibroblasts became pancreatic converted cells that acquired an epithelial morphology, produced insulin, and then released the hormone in response to a physiological glucose challenge in vitro. Furthermore, pancreatic converted cells were able to protect recipient mice against streptozotocin-induced diabetes, restoring a physiological response to glucose tolerance tests. This work shows that it is possible to convert adult fibroblasts into insulin-secreting cells, avoiding both a stable pluripotent stage and any transgenic modification.

  8. Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts.

    Science.gov (United States)

    Felici, Roberta; Lapucci, Andrea; Cavone, Leonardo; Pratesi, Sara; Berlinguer-Palmini, Rolando; Chiarugi, Alberto

    2015-06-01

    Mitochondrial disorders are devastating genetic diseases for which efficacious therapies are still an unmet need. Recent studies report that increased availability of intracellular NAD obtained by inhibition of the NAD-consuming enzyme poly(ADP-ribose) polymerase (PARP)-1 or supplementation with the NAD-precursor nicotinamide riboside (NR) ameliorates energetic derangement and symptoms in mouse models of mitochondrial disorders. Whether these pharmacological approaches also improve bioenergetics of human cells harboring mitochondrial defects is unknown. It is also unclear whether the same signaling cascade is prompted by PARP-1 inhibitors and NR supplementation to improve mitochondrial homeostasis. Here, we show that human fibroblasts mutant for the NADH dehydrogenase (ubiquinone) Fe-S protein 1 (NDUFS1) subunit of respiratory complex I have similar ATP, NAD, and mitochondrial content compared with control cells, but show reduced mitochondrial membrane potential. Interestingly, mutant cells also show increased transcript levels of mitochondrial DNA but not nuclear DNA respiratory complex subunits, suggesting activation of a compensatory response. At variance with prior work in mice, however, NR supplementation, but not PARP-1 inhibition, increased intracellular NAD content in NDUFS1 mutant human fibroblasts. Conversely, PARP-1 inhibitors, but not NR supplementation, increased transcription of mitochondrial transcription factor A and mitochondrial DNA-encoded respiratory complexes constitutively induced in mutant cells. Still, both NR and PARP-1 inhibitors restored mitochondrial membrane potential and increased organelle content as well as oxidative activity of NDUFS1-deficient fibroblasts. Overall, data provide the first evidence that in human cells harboring a mitochondrial respiratory defect exposure to NR or PARP-1, inhibitors activate different signaling pathways that are not invariantly prompted by NAD increases, but equally able to improve energetic

  9. Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts.

    Science.gov (United States)

    Han, Xuesheng; Parker, Tory L

    2017-12-01

    Clove (Eugenia caryophyllata Thunb. [Myrtaceae]) essential oil (CEO) has been shown to possess antimicrobial, antifungal, antiviral, antioxidant, anti-inflammatory and anticancer properties. However, few studies have focused on its topical use. We investigated the biological activity of a commercially available CEO in a human skin disease model. We evaluated the effect of CEO on 17 protein biomarkers that play critical roles in inflammation and tissue remodelling in a validated human dermal fibroblast system, which was designed to model chronic inflammation and fibrosis. Four concentrations of CEO (0.011, 0.0037, 0.0012, and 0.00041%, v/v) were studied. The effect of 0.011% CEO on genome-wide gene expression was also evaluated. CEO at a concentration of 0.011% showed robust antiproliferative effects on human dermal fibroblasts. It significantly inhibited the increased production of several proinflammatory biomarkers such as vascular cell adhesion molecule-1 (VCAM-1), interferon γ-induced protein 10 (IP-10), interferon-inducible T-cell α chemoattractant (I-TAC), and monokine induced by γ interferon (MIG). CEO also significantly inhibited tissue remodelling protein molecules, namely, collagen-I, collagen-III, macrophage colony-stimulating factor (M-CSF), and tissue inhibitor of metalloproteinase 2 (TIMP-2). Furthermore, it significantly modulated global gene expression and altered signalling pathways critical for inflammation, tissue remodelling, and cancer signalling processes. CEO significantly inhibited VCAM-1 and collagen III at both protein and gene expression levels. This study provides important evidence of CEO-induced anti-inflammatory and tissue remodelling activity in human dermal fibroblasts. This study also supports the anticancer properties of CEO and its major active component eugenol.

  10. Asiaticoside induces cell proliferation and collagen synthesis in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Linda Yulianti

    2015-08-01

    Full Text Available Asiatiocoside, a saponin component isolated from Centella asiatica can improve wound healing by promoting the proliferation of human dermal fibroblasts (HDF and synthesis of collagen. The skin-renewing cells and type I and III collagen synthesis decrease with aging, resulting in the reduction of skin elasticity and delayed wound healing. Usage of natural active compounds from plants in wound healing should be evaluated and compared to retinoic acid as an active agent that regulates wound healing. The aim of this study was to compare and evaluate the effect of asiaticoside and retinoic acid to induce greater cell proliferation and type I and III collagen synthesis in human dermal fibroblast. Methods Laboratory experiments were conducted using human dermal fibroblasts (HDF isolated from human foreskin explants. Seven passages of HDF were treated with asiaticoside and retinoic acid at several doses and incubated for 24 and 48 hours. Cell viability in all groups was tested with the MTT assay to assess HDF proliferation. Type I and III collagen synthesis was examined using the respective ELISA kits. Analysis of variance was performed to compare the treatment groups. Results Asiaticoside had significantly stronger effects on HDF proliferation than retinoic acid (p<0.05. The type III collagen production was significantly greater induction with asiaticoside compared to retinoic acid (p<0.05. Conclusion Asiaticoside induces HDF proliferation and type I and III collagen synthesis in a time- and dose-dependent pattern. Asiaticoside has a similar effect as retinoic acid on type I and type III collagen synthesis.

  11. Expression of factors involved in dental pulp physiopathological processes by nemotic human pulpal fibroblasts.

    Science.gov (United States)

    Le Clerc, J; Tricot-Doleux, S; Pellen-Mussi, P; Pérard, M; Jeanne, S; Pérez, F

    2017-03-10

    To investigate in human dental pulp fibroblasts (HDPF) the expression of factors involved in dental pulp physiopathological processes and in an experimental model of cell activation called nemosis, and to compare the behaviour of pulp cell activation with sound lung fibroblast MRC5, employed as a reference model for nemosis. Nemotic response was induced in three-dimensional cultures of HDPF and lung fibroblasts. The expressions of molecules involved in physiological (alkaline phosphatase, type I collagen) and in inflammatory processes (IL-6, CXCL8, CCL20, COX-2) were studied using real-time PCR. Concentrations of IL-6 and CXCL8 were analysed during 4 days with ELISA. Nonparametric tests were used to determine statistical differences between groups. A significant decrease (P MRC5 and HDPF nemotic responses. Although the amounts of mRNA differed between these cell types, there was an increase in CCL20, CXCL8 and COX-2 expression (P MRC5 spheroids displayed significant amounts of IL-6 concentrations and mRNA expression. Notably, increased concentrations of CXCL8 were recorded in all three-dimensional cultures compared with monolayers as a function of time (P < 0.05). Although the nemotic responses observed were not identical in the pulpal and lung fibroblasts, similarities occurred in the expression of chemokines and cyclooxygenase-2. Nemotic reactions and inflammatory processes in pulp diseases share similarities in terms of the expression of factors. Thus, this in vitro model could constitute a powerful tool to study intercellular relations within the dental pulp and to develop new local treatments to counteract the inflammatory reaction that occurs during pulpitis. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Hydrogen sulfide suppresses migration, proliferation and myofibroblast transdifferentiation of human lung fibroblasts.

    Science.gov (United States)

    Fang, Li-Ping; Lin, Qing; Tang, Chao-Shu; Liu, Xin-Min

    2009-12-01

    We previously reported that hydrogen sulfide (H(2)S) was implicated in the pathogenesis of bleomycin-induced pulmonary fibrosis in rat, but the cellular mechanisms underlying the role it played were not well characterized. The present study was undertaken to investigate the role of the exogenous H(2)S in human lung fibroblast (MRC5) migration, proliferation and myofibroblast transdifferentiation induced by fetal bovine serum (FBS) and growth factors in vitro, to elucidate the mechanisms by which H(2)S inhibits pathogenesis of pulmonary fibrosis. We found that H(2)S incubation significantly decreased the MRC5 cell migration distance stimulated by FBS and basic fibroblast growth factor (bFGF), inhibited MRC5 cell proliferation induced by FBS and platelet-derived growth factor-BB (PDGF-BB), and also inhibited transforming growth factor-beta1 (TGF-beta1) induced MRC5 cell transdifferentiation into myofibroblasts. Moreover, preincubation with H(2)S decreased extracellular signal-regulated kinase (ERK1/2) phosphorylation in MRC5 cells induced by FBS, PDGF-BB, TGF-beta1, and bFGF. However, the inhibition effects of H(2)S on MRC5 cell migration, proliferation and myofibroblast transdifferentiation were not attenuated by glibenclamide, an ATP-sensitive K(+) channel (K(ATP)) blocker. Thus, H(2)S directly suppressed fibroblast migration, proliferation and phenotype transform stimulated by FBS and growth factors in vitro, which suggests that it could be an important mechanism of H(2)S-suppressed pulmonary fibrosis. These effects of H(2)S on pulmonary fibroblasts were, at least in part, mediated by decreased ERK phosphorylation and were not dependent on K(ATP) channel opening.

  13. Bactericidal and cytotoxic effects of chloramine-T on wound pathogens and human fibroblasts in vitro.

    Science.gov (United States)

    Kloth, Luther C; Berman, Joseph E; Laatsch, Linda J; Kirchner, Phyllis A

    2007-06-01

    To evaluate cytotoxicity and bactericidal effects of chloramine-T. In vitro study of various concentrations and exposure times to preparations containing human fibroblasts or 1.5 x 10 colony forming units per milliliter (CFU/mL) of 3 gram-positive bacteria-Staphylococcus aureus, methicillin-resistant S aureus, and vancomycin-resistant Enterococcus faecalis-and 2 gram-negative bacteria-Escherichia coli and Pseudomonas aeruginosa-with and without fetal bovine serum present. Percentage reduction of bacterial growth and percentage of viable fibroblasts 48 hours after exposure. All gram-positive growth was reduced by 95% to 100%, regardless of dose, with or without serum. E coli (gram-negative; with/without serum) was reduced 94% to 100% at antiseptic concentrations of 300 and 400 ppm. At 200 ppm, E coli growth was fully inhibited without serum present and by 50% with serum. P aeruginosa (gram-negative) was not significantly affected under any conditions. At 100 and 200 ppm, cell viability remained greater than 90% under all experimental conditions. A 300-ppm, 3-minute exposure to chloramine-T resulted in cell viability of up to 70%, with longer exposures producing lower viabilities. Serum did not affect cell viability in any condition. In vitro, chloramine-T at 200 ppm for 5 to 20 minutes was effective against 3 virulent gram-positive bacteria without fibroblast damage. At 300 ppm and 3 and 5 minutes, 30% of fibroblasts were damaged and 95% to 100 % of E coli were inhibited, respectively.

  14. Use of synthetic serum-free medium for culture of human dermal fibroblasts to establish an experimental system similar to living dermis

    OpenAIRE

    Ejiri, Hirotaka; Nomura, Tadashi; Hasegawa, Masumi; Tatsumi, Chiaki; Imai, Midori; Sakakibara, Shunsuke; Terashi, Hiroto

    2014-01-01

    In this study, we sought to establish a defined experimental system for fibroblast growth similar to that of the living dermis. To this end, we evaluated the growth and biochemical characteristics of fibroblasts cultured with serum-free HFDM-1, a finely tuned synthetic medium for human fibroblast culture. Three culture conditions were used to grow fibroblasts obtained from primary culture: (1) culture with Dulbecco’s modified Eagle medium (DMEM) plus 10 % fetal bovine serum (serum-supplemente...

  15. Cigarette smoke exposure inhibits extracellular MMP-2 (gelatinase A activity in human lung fibroblasts

    Directory of Open Access Journals (Sweden)

    Cappello Francesco

    2007-03-01

    Full Text Available Abstract Background Exposure to cigarette smoke is considered a major risk factor for the development of lung diseases, since its causative role has been assessed in the induction and maintenance of an inflamed state in the airways. Lung fibroblasts can contribute to these processes, due to their ability to produce proinflammatory chemotactic molecules and extracellular matrix remodelling proteinases. Among proteolytic enzymes, gelatinases A and B have been studied for their role in tissue breakdown and mobilisation of matrix-derived signalling molecules. Multiple reports linked gelatinase deregulation and overexpression to the development of inflammatory chronic lung diseases such as COPD. Methods In this study we aimed to determine variations in the gelatinolytic pattern of human lung fibroblasts (HFL-1 cell line exposed to cigarette smoke extract (CSE. Gelatinolytic activity levels were determined by using gelatin zymography for the in-gel detection of the enzymes (proenzyme and activated forms, and the subsequent semi-quantitative densitometric evaluation of lytic bands. Expression of gelatinases was evaluated also by RT-PCR, zymography of the cell lysates and by western blotting. Results CSE exposure at the doses used (1–10% did not exert any significant cytotoxic effects on fibroblasts. Zymographic analysis showed that CSE exposure resulted in a linear decrease of the activity of gelatinase A. Control experiments allowed excluding a direct inhibitory effect of CSE on gelatinases. Zymography of cell lysates confirmed the expression of MMP-2 in all conditions. Semi-quantitative evaluation of mRNA expression allowed assessing a reduced transcription of the enzyme, as well as an increase in the expression of TIMP-2. Statistical analyses showed that the decrease of MMP-2 activity in conditioned media reached the statistical significance (p = 0.0031 for 24 h and p = 0.0012 for 48 h, while correlation analysis showed that this result was

  16. Generation of Five Human Lactoferrin Transgenic Cloned Goats Using Fibroblast Cells and Their Methylation Status of Putative Differential Methylation Regions of IGF2R and H19 Imprinted Genes

    Science.gov (United States)

    Sun, Yanyan; Zhang, Yanli; Wang, Ziyu; Song, Yang; Wang, Feng

    2013-01-01

    Background Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. Methodology/Principal Findings Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. Conclusions/Significance In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future. PMID:24204972

  17. Aluminum is More Cytotoxic than Lunar Dust in Human Skin and Lung Fibroblasts

    Science.gov (United States)

    Hammond, D.; Shehata, T.; Hammond, D.; Shehata, T.; Wise, J.P.; Martino, J; Wise, J.P.; Wise, J.P.

    2009-01-01

    NASA plans to build a permanent space station on the moon to explore its surface. The surface of the moon is covered in lunar dust, which consists of fine particles that contain silicon, aluminum and titanium, among others. Because this will be a manned base, the potential toxicity of this dust has to be studied. Also, toxicity standards for potential exposure have to be set. To properly address the potential toxicity of lunar dust we need to understand the toxicity of its individual components, as well as their combined effects. In order to study this we compared NASA simulant JSC-1AVF (volcanic ash particles), that simulates the dust found on the moon, to aluminum, the 3rd most abundant component in lunar dust. We tested the cytotoxicity of both compounds on human lung and skin fibroblasts (WTHBF-6 and BJhTERT cell lines, respectively). Aluminum oxide was more cytotoxic than lunar dust to both cell lines. In human lung fibroblasts 5, 10 and 50 g/sq cm of aluminum oxide induced 85%, 61% and 30% relative survival, respectively. For human skin fibroblasts the same concentrations induced 58%, 41% and 58% relative survival. Lunar dust was also cytotoxic to both cell lines, but its effects were seen at higher concentrations: 50, 100, 200 and 400 g/sq cm of lunar dust induced a 69%, 46%, 35% and 30% relative survival in the skin cells and 53%, 16%, 8% and 2% on the lung cells. Overall, for both compounds, lung cells were more sensitive than skin cells. This work was supported by a NASA EPSCoR grant through the Maine Space Grant Consortium (JPW), the Maine Center for Toxicology and Environmental Health., a Fulbright Grant (JM) and a Delta Kappa Gamma Society International World Fellowship (JM).

  18. Effects of HEMA on type I collagen protein in human gingival fibroblasts.

    Science.gov (United States)

    Falconi, M; Teti, G; Zago, M; Pelotti, S; Breschi, L; Mazzotti, G

    2007-09-01

    The cytotoxicity of dental composites has been attributed to the release of residual monomers from polymerized adhesive systems due to degradation processes or the incomplete polymerization of materials. 2-Hydroxyethyl methacrylate (HEMA) is one of the major components released from dental adhesives. Cytotoxic effects due to high concentrations of HEMA have already been investigated, but the influence of minor toxic concentrations on specific proteins such as type I collagen has not been studied in depth. The objective of this project was to study the effect of minor toxic concentrations of HEMA on human gingival fibroblasts (HGFs), investigating modification in cell morphology, cell viability, and the influence on type I collagen protein. Primary lines of human gingival fibroblasts were exposed to 3 mmol/L HEMA for different periods of time (24 h, 72 h, 96 h). The cell vitality was determined by MTT assay, and high-resolution scanning electron microscopy analysis was performed to evaluate differences in cell morphology before and after treatment. The presence and localization of type I collagen was determined by immunofluorescence in HGFs treated with HEMA for the same period of time. The vitality of the cells decreased after 72 h of exposure. The HGFs grown in monolayer and observed by field emission in-lens scanning electron microscopy demonstrated a preserved surface morphology after 24 h of treatment, while they showed an altered morphology after 96 h of treatment. Immunofluorescence demonstrated a reduction of type I collagen due to HEMA exposure after 96 h. From these results, we conclude that low concentrations of HEMA can significantly alter the morphology of human gingival fibroblasts and interfere with the presence of type I collagen protein.

  19. Inhibition of human scleral fibroblast cell attachment to collagen type I by TGFBIp.

    Science.gov (United States)

    Shelton, Lilian; Rada, Jody A Summers

    2009-08-01

    Transforming growth factor beta-induced protein (TGFBIp; 68 kDa) is a secreted extracellular matrix (ECM) protein that has been demonstrated to regulate cell attachment in a variety of cell types. The sclera synthesizes and secretes TGFBIp, which may function to facilitate scleral ECM remodeling events associated with myopia development. Here the authors report that human scleral fibroblasts (HSFs) express TGFBI and that its protein product, TGFBIp, mediates an effect on cell attachment. TGFBI/TGFBIp expression was evaluated by RT-PCR and immunoblot of HSF lysates and culture supernatants. The effect of rTGFBIp (50 microg/mL) on cell attachment to collagen type I was determined with the use of fluid-phase cell attachment assays in HSFs, human foreskin fibroblasts (HFFs), and human corneal stroma fibroblasts (HCFs). Binding assays using biotinylated rTGFBIp were used to assess TGFBIp binding to the HSF surface. Flow cytometry and immunocytochemistry were used to determine both alphavbeta3 and alphavbeta5 expression and localization to the HSF cell surface. HSFs expressed TGFBI and secreted TGFBIp (approximately 833 ng/h). rTGFBIp significantly decreased (25 microg/mL; P collagen type I, whereas rTGFBIp did not significantly affect cell attachment of HFFs (P = 0.50) or HCFs (P = 0.24) to collagen compared with BSA. Integrins alphavbeta3 and alphavbeta5 were detected on the cell surface, and both anti-alphavbeta3 and anti-alphavbeta5 functionally blocked rTGFBIp binding to HSFs. TGFBIp plays an inhibitory role in HSF attachment to collagen type I in vitro through interactions with alphavbeta3 and alphavbeta5 integrin receptors. These results suggest that TGFBIp may modulate scleral cell-matrix interactions in vivo, thereby affecting scleral viscoelasticity.

  20. Porphyromonas gingivalis Lipopolysaccharide Induces a Pro-inflammatory Human Gingival Fibroblast Phenotype.

    Science.gov (United States)

    Bozkurt, S Buket; Hakki, Sema S; Hakki, Erdogan E; Durak, Yusuf; Kantarci, Alpdogan

    2017-02-01

    Human gingival fibroblasts (HGFs) are the major constituents of the gingival tissues responsible for the synthesis and degradation of the connective tissue while actively participating in immune reactions and inflammation. The aim of this study was to test the impact of lipopolysaccharide (LPS) from Porphyromonas gingivalis (P. gingivalis) on human gingival fibroblasts. Human gingival fibroblasts were treated with different P. gingivalis LPS concentrations. Cell survival rate was evaluated with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) after 24 h. Cell proliferation was determined by counting cells on days 3 and 12. Expression of matrix metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs), and pro-inflammatory cytokine transcripts in HGFs was determined by quantitative PCR (Q-PCR) analysis on days 3 and 8. P. gingivalis LPS decreased cell proliferation on day 3 (p  0.05).The experiments showed that P. gingivalis LPS dose-dependently and differentially modulated the expression of MMP-1, 2, and 3 and TIMP-1 and 2 on days 3 and 8. TIMP-1 expression was significantly induced in P. gingivalis LPS-treated cells while TIMP-2 was increased in response to 10 and 30 ng/ml of LPS on day 3. P. gingivalis LPS induced up-regulation of MMP-1/TIMP-1 ratio on day 3 and increased MMP-2/TIMP-2 ratio on day 8 dose-dependently. Expression of interleukin (IL)-6 and IL-8 was stimulated at higher concentrations (1000 and 3000 ng/ml) of LPS. These findings demonstrate that P. gingivalis LPS suppresses cell proliferation and leads to increased pro-inflammatory changes in HGFs, suggesting that P. gingivalis LPS-induced modification of phenotypic and inflammatory characteristics in HGF could potentially be a pathogenic mechanism underlying the tissue destruction.

  1. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2017-02-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37 °C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37 °C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.

  2. Detection of DNA Damage by Space Radiation in Human Fibroblasts Flown on the International Space Station

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Feiveson, Alan; Gaza, Ramona; Stoffle, Nicholas; Wang, Huichen; Wilson, Bobby; Rohde, Larry; Stodieck, Louis; hide

    2017-01-01

    Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37 degrees Centigrade in space for 14 days before being fixed for analysis of DNA damages with the gamma-H2AX assay. The 3-dimensional gamma-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate gamma rays at 37 degrees Centigrade. Cells exposed to chronic gamma rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET (Linear Energy Transfer) protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.

  3. Reprogramming by De-bookmarking the Somatic Transcriptional Program through Targeting of BET Bromodomains.

    Science.gov (United States)

    Shao, Zhicheng; Yao, Chunping; Khodadadi-Jamayran, Alireza; Xu, Weihua; Townes, Tim M; Crowley, Michael R; Hu, Kejin

    2016-09-20

    One critical event in reprogramming to pluripotency is erasure of the somatic transcriptional program of starting cells. Here, we present the proof of principle of a strategy for reprogramming to pluripotency facilitated by small molecules that interfere with the somatic transcriptional memory. We show that mild chemical targeting of the acetyllysine-binding pockets of the BET bromodomains, the transcriptional bookmarking domains, robustly enhances reprogramming. Furthermore, we show that chemical targeting of the transcriptional bookmarking BET bromodomains downregulates or turns off the expression of somatic genes in both naive and reprogramming fibroblasts. Chemical blocking of the BET bromodomains also results in loss of fibroblast morphology early in reprogramming. We therefore experimentally demonstrate that cell fate conversion can be achieved by chemically targeting the transcriptional bookmarking BET bromodomains responsible for transcriptional memory. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Reprogramming by De-bookmarking the Somatic Transcriptional Program through Targeting of BET Bromodomains

    Directory of Open Access Journals (Sweden)

    Zhicheng Shao

    2016-09-01

    Full Text Available One critical event in reprogramming to pluripotency is erasure of the somatic transcriptional program of starting cells. Here, we present the proof of principle of a strategy for reprogramming to pluripotency facilitated by small molecules that interfere with the somatic transcriptional memory. We show that mild chemical targeting of the acetyllysine-binding pockets of the BET bromodomains, the transcriptional bookmarking domains, robustly enhances reprogramming. Furthermore, we show that chemical targeting of the transcriptional bookmarking BET bromodomains downregulates or turns off the expression of somatic genes in both naive and reprogramming fibroblasts. Chemical blocking of the BET bromodomains also results in loss of fibroblast morphology early in reprogramming. We therefore experimentally demonstrate that cell fate conversion can be achieved by chemically targeting the transcriptional bookmarking BET bromodomains responsible for transcriptional memory.

  5. NEW BIOKERATOPROSTHETIC COMPLEX BASED ON MODIFIED ALLOGENIC DONOR CORNEAS AND CULTURED POSTNATAL HUMAN SKIN FIBROBLASTS

    Directory of Open Access Journals (Sweden)

    S. A. Borzenok

    2011-01-01

    Full Text Available The aim of the study was to develop biokeratoprosthetic complex based on cross-linking modified allogenic donor corneas and cultured postnatal human skin fibroblasts. Cross-linking enhances corneal strength and tole- rance to proteolytic enzymes. Fibroblasts’ proliferation and migration in the intrastromal pocket stimulates fiber syncytium formation and collagen microcarriers integration into the corneal stroma, as well as intercellular ma- trix formation around the prosthetic metallic plate as early as the cocultivation stage. A new biokeratoprosthetic complex has been successfully developed for further in vivo studies. 

  6. Influence of caffeine and hyaluronic acid on collagen biosynthesis in human skin fibroblasts

    OpenAIRE

    Donejko M; Przylipiak A; Rysiak E; Głuszuk K; Surażyński A

    2014-01-01

    Magdalena Donejko,1 Andrzej Przylipiak,1 Edyta Rysiak,2 Katarzyna Głuszuk,2 Arkadiusz Surażyński2 1Department of Esthetic Medicine, 2Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland Aim: The aim of this study was to evaluate the effect of caffeine on collagen biosynthesis in human skin fibroblasts and the influence of hyaluronic acid (HA) on this process. Materials and methods: Collagen, [3H]-thymidine incorporation, an...

  7. A Synthetic Transcriptional Activator of Genes Associated with the Retina in Human Dermal Fibroblasts.

    Science.gov (United States)

    Syed, Junetha; Chandran, Anandhakumar; Pandian, Ganesh N; Taniguchi, Junichi; Sato, Shinsuke; Hashiya, Kaori; Kashiwazaki, Gengo; Bando, Toshikazu; Sugiyama, Hiroshi

    2015-07-06

    Small molecules capable of modulating epigenetic signatures can activate the transcription of tissue-restricted genes in a totally unrelated cell type and have potential use in epigenetic therapy. To provide an example for an initial approach, we report here on one synthetic small-molecule compound-termed "SAHA-PIP X"-from our library of conjugates. This compound triggered histone acetylation accompanied by the transcription of retinal-tissue-related genes in human dermal fibroblasts (HDFs). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2017-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi......-proteome") during ageing and age-related diseases represent a restricted set of cellular proteins, indicating that certain proteins are more prone to oxidative carbonylation and subsequent intracellular accumulation. The occurrence of specific carbonylated proteins upon oxidative stress induced premature senescence...... to belong to functional interaction networks pointing to signalling pathways that have been implicated in the oxidative stress response and subsequent premature senescence....

  9. SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34+ Progenitor Cells.

    Science.gov (United States)

    Zhang, Lianghui; Jambusaria, Ankit; Hong, Zhigang; Marsboom, Glenn; Toth, Peter T; Herbert, Brittney-Shea; Malik, Asrar B; Rehman, Jalees

    2017-06-20

    The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here we established the role of the developmental transcription factor SOX17 in regulating the bilineage conversion of fibroblasts by the generation of intermediate progenitors. CD34+ progenitors were generated after the dedifferentiation of human adult dermal fibroblasts by overexpression of pluripotency transcription factors. Sorted CD34+ cells were transdifferentiated into induced endothelial cells and induced erythroblasts using lineage-specific growth factors. The therapeutic potential of the generated cells was assessed in an experimental model of myocardial infarction. Induced endothelial cells expressed specific endothelial cell surface markers and also exhibited the capacity for cell proliferation and neovascularization. Induced erythroblasts expressed erythroid surface markers and formed erythroid colonies. Endothelial lineage conversion was dependent on the upregulation of the developmental transcription factor SOX17, whereas suppression of SOX17 instead directed the cells toward an erythroid fate. Implantation of these human bipotential CD34+ progenitors into nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice resulted in the formation of microvessels derived from human fibroblasts perfused with mouse and human erythrocytes. Endothelial cells generated from human fibroblasts also showed upregulation of telomerase. Cell implantation markedly improved vascularity and cardiac function after myocardial infarction without any evidence of teratoma formation. Dedifferentiation of fibroblasts to intermediate CD34+ progenitors gives rise to endothelial cells and

  10. Sodium arsenite induces chromosome endoreduplication and inhibits protein phosphatase activity in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Rong-Nan Huang; I-Ching Ho; Ling-Hui Yih [Institute of Biomedical Sciences, Taiwan (China)] [and others

    1995-08-01

    Arsenic, strongly associated with increased risks of human cancers, is a potent clastogen in a variety of mammalian cell systems. The effect of sodium arsenite (a trivalent arsenic compound) on chromatid separation was studied in human skin fibroblasts (HFW). Human fibroblasts were arrested in S phase by the aid of serum starvation and aphidicolin blocking and then these cells were allowed to synchronously progress into G2 phase. Treatment of the G2-enriched HFW cells with sodium arsenite (0-200 {mu}M) resulted in arrest of cells in the G2 phase, interference with mitotic division, inhibition of spindle assembly, and induction of chromosome endoreduplication in their second mitosis. Sodium arsenite treatment also inhibited the activities of serine/threonine protein phosphatases and enhanced phosphorylation levels of a small heat shock protein (HSP27). These results suggest that sodium arsenite may mimic okadaic acid to induce chromosome endoreduplication through its inhibitory effect on protein phosphatase activity. 61 refs., 6 figs., 2 tabs.

  11. Silencing of the pentose phosphate pathway genes influences DNA replication in human fibroblasts.

    Science.gov (United States)

    Fornalewicz, Karolina; Wieczorek, Aneta; Węgrzyn, Grzegorz; Łyżeń, Robert

    2017-11-30

    Previous reports and our recently published data indicated that some enzymes of glycolysis and the tricarboxylic acid cycle can affect the genome replication process by changing either the efficiency or timing of DNA synthesis in human normal cells. Both these pathways are connected with the pentose phosphate pathway (PPP pathway). The PPP pathway supports cell growth by generating energy and precursors for nucleotides and amino acids. Therefore, we asked if silencing of genes coding for enzymes involved in the pentose phosphate pathway may also affect the control of DNA replication in human fibroblasts. Particular genes coding for PPP pathway enzymes were partially silenced with specific siRNAs. Such cells remained viable. We found that silencing of the H6PD, PRPS1, RPE genes caused less efficient enterance to the S phase and decrease in efficiency of DNA synthesis. On the other hand, in cells treated with siRNA against G6PD, RBKS and TALDO genes, the fraction of cells entering the S phase was increased. However, only in the case of G6PD and TALDO, the ratio of BrdU incorporation to DNA was significantly changed. The presented results together with our previously published studies illustrate the complexity of the influence of genes coding for central carbon metabolism on the control of DNA replication in human fibroblasts, and indicate which of them are especially important in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Single Exposure of Human Oral Mucosa Fibroblasts to Ultraviolet B Radiation Reduces Proliferation and Induces COX-2 Expression and Activation

    Directory of Open Access Journals (Sweden)

    Y Boza

    2010-12-01

    Full Text Available The lip vermillion constitutes a transition tissue, between oral mucosa and skin, where oral mucosal cells from epithelial and connective tissue compartments are exposed to ultraviolet (UV sunlight. Fibroblasts are abundant resident cells of the connective tissue which are key regulators of extracellular matrix composition, as well as, epithelial and endothelial cell function. UVB light, an inherent component of sunlight, causes several alterations in skin fibroblasts, including premature senescence and increased cyclooxygenase (COX-2 expression. To assess if UVB irradiation had similar effects on fibroblasts derived from human oral mucosa (HOM, primary cultures of HOM fibroblasts were irradiated with a single dose of 30 or 60 mJ/cm²of UVB light or sham-irradiated. Fibroblast proliferation was assessed from 3 to 48 hrs after UVB-irradiation utilizing [³H]-thymidine incorporation and MTT assays. In addition, COX-2 mRNA expression was detected by RT-PCR, and PGE2 production was assessed using enzyme immunoassay from 0.5 to 24 hrs after UVB-irradiation. The results showed a significant decrease in proliferation of UVB-irradiated HOM fibroblasts as compared to controls as measured by both [³H]-thymidine incorporation and MTT assays (p<0.001. HOM fibroblasts had increased COX-2 mRNA expression at 0.5 and 12 hrs after irradiation, and PGE2 production was elevated at 12 and 24 hrs post-irradiation as compared to controls (p<0.05. The results showed an inhibitory effect of a single dose of UVB irradiation on HOM fibroblast proliferation with an increase in COX-2 expression and activation. Therefore, photodamaged fibroblasts may play and important role in the pathogenesis of UV-induced lesions of the lip.

  13. Effects of triamcinolone acetonide on adult human lung fibroblasts: decrease in proliferation, surface molecule expression and mediator release.

    Science.gov (United States)

    Oddera, S; Cagnoni, F; Mangraviti, S; Giron-Michel, J; Popova, O; Canonica, G W

    2002-10-01

    Lung fibroblasts may have a pivotal role in airway inflammation as they are involved in continuous cycles of mediator secretion, proliferation, activation and cross-talk with recruited inflammatory cells. The role of fibroblasts as intermediate participants in the inflammatory network suggests that they could represent an important target for drugs commonly used in asthma; thus, we investigated the effects of triamcinolone acetonide (TAA) on primary human lung fibroblasts. The in vitro activity of increasing concentrations (10(-9) to 10(-7) M) of TAA in fibroblast cultures was evaluated as regards the following parameters: proliferation, extracellular matrix (ECM) release, cytokine/chemokine secretion and surface antigen expression. All concentrations of TAA decreased fetal calf serum (FCS)-induced fibroblast proliferation, whereas in the presence of FCS plus basic fibroblast growth factor TAA was only effective at 10(-8) and 10(-7) M. TAA failed to decrease ECM, whereas at 10(-8) and 10(-7) M it decreased IL-6 and IL-8 secretion to different extents. In the presence of IFN-gamma the drug was able to reduce VCAM-1 expression at all of the tested concentrations; on the other hand, in TGF-beta 1-driven cultures a decrease in CD54 expression was detected with TAA at 10(-8) and 10(-7) M. TAA acts on some functional properties of human lung fibroblasts that make these cells active participants in the inflammatory network. The ability of TAA to inhibit lung fibroblast proliferation may prevent or even reverse some of the histological changes that characterize airway remodeling in chronic inflammatory diseases; moreover, IL-6, IL-8 and surface molecule decreases by TAA may suggest a direct anti-inflammatory effect of the drug by suppression of resident lung cell function. Copyright 2002 S. Karger AG, Basel

  14. Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress

    Directory of Open Access Journals (Sweden)

    Bross Peter

    2009-05-01

    Full Text Available Abstract Background Mitochondrial proteins are central to various metabolic activities and are key regulators of apoptosis. Disturbance of mitochondrial proteins is therefore often associated with disease. Large scale protein data are required to capture the mitochondrial protein levels and mass spectrometry based proteomics is suitable for generating such data. To study the relative quantities of mitochondrial proteins in cells from cultivated human skin fibroblasts we applied a proteomic method based on nanoLC-MS/MS analysis of iTRAQ-labeled peptides. Results When fibroblast cultures were exposed to mild metabolic stress – by cultivation in galactose medium- the amount of mitochondria appeared to be maintained whereas the levels of individual proteins were altered. Proteins of respiratory chain complex I and IV were increased together with NAD+-dependent isocitrate dehydrogenase of the citric acid cycle illustrating cellular strategies to cope with altered energy metabolism. Furthermore, quantitative protein data, with a median standard error below 6%, were obtained for the following mitochondrial pathways: fatty acid oxidation, citric acid cycle, respiratory chain, antioxidant systems, amino acid metabolism, mitochondrial translation, protein quality control, mitochondrial morphology and apoptosis. Conclusion The robust analytical platform in combination with a well-defined compendium of mitochondrial proteins allowed quantification of single proteins as well as mapping of entire pathways. This enabled characterization of the interplay between metabolism and stress response in human cells exposed to mild stress.

  15. Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts.

    Science.gov (United States)

    Wirohadidjojo, Yohanes Widodo; Budiyanto, Arief; Soebono, Hardyanto

    2016-09-01

    To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm⁻²) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined.

  16. Chronic exposure to rapamycin and episodic serum starvation modulate ageing of human fibroblasts in vitro.

    Science.gov (United States)

    Sodagam, Lakshman; Lewinska, Anna; Wnuk, Maciej; Rattan, Suresh I S

    2017-10-01

    Mild stress-induced activation of stress response (SR) pathways, such as autophagy, heat shock response, oxidative SR, DNA damage response, and inflammatory response, can be potentially health beneficial. Using the model system of cellular ageing and replicative senescence in vitro, we have studied the ageing modulatory effects of the two conditions, rapamycin and serum starvation. Chronic exposure to 0.1, 1 and 10 nM rapamycin positively modulated the survival, growth, morphology, telomere length, DNA methylation levels, 8-oxo-dG level in DNA, N6-methyl-adenosine level in RNA, and ethanol stress tolerance of serially passaged normal human skin fibroblasts. Furthermore, episodic (once a week) serum starvation of human skin fibroblasts extended their replicative lifespan by about 22%, along with the maintenance of early passage youthful morphology even in late passage cultures. Although the results of this study may be considered preliminary, it can be inferred that intermittent and episodic induction of SR, rather than chronic up-regulation of SR, is more effective and applicable in the practice of hormesis for healthy ageing and longevity.

  17. Soy milk as a storage medium to preserve human fibroblast cell viability: an in vitro study.

    Science.gov (United States)

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Reis, Manuella Verdinelli de Paula; Fernandes Neto, Alfredo Júlio; Soares, Carlos José

    2012-01-01

    Soy milk (SM) is widely consumed worldwide as a substitute for cow milk. It is a source of vitamins, carbohydrates and sugars, but its capacity to preserve cell viability has not been evaluated. The purpose of the present study was to investigate the efficacy of SM to maintain the viability of human fibroblasts at short periods compared with different cow milks. Human mouth fibroblasts were cultured and stored in the following media at room temperature: 10% Dulbecco's Modified Eagle Medium (DMEM) (positive control group); long shelf-life ultra-high temperature whole cow milk (WM); long shelf-life ultra-high temperature skim cow milk (SKM); powdered cow milk (PM); and soy milk (SM). After 5, 15, 30 and 45 min, cell viability was analyzed using the MTT assay. Data were analyzed statistically by the Kruskal-Wallis test with post-analysis using the Dunn's method (α=0.05). SKM showed the lowest capacity to maintain cell viability in all analyzed times (p<0.05). At 30 and 45 min, the absorbance levels in control group (DMEM) and SM were significantly higher than in SKM (p<0.05). Cell viability decreased along the time (5-45 min). The results indicate that SM can be used as a more adequate storage medium for avulsed teeth. SKM was not as effective in preserving cell viability as the cell culture medium and SM.

  18. Arecoline stimulated early growth response-1 production in human buccal fibroblasts: suppression by epigallocatechin-3-gallate.

    Science.gov (United States)

    Hsieh, Yu-Ping; Chen, Hsin-Ming; Chang, Jenny Zwei-Chieng; Chiang, Chun-Pin; Deng, Yi-Ting; Kuo, Mark Yen-Ping

    2015-04-01

    Early growth response-1 (Egr-1) protein plays an important role in many human fibrotic diseases. Areca nut chewing is the most important risk factor of oral submucous fibrosis (OSF). Egr-1 protein expression in OSF was examined using antibody to Egr-1. Arecoline-induced Egr-1 expression and its signaling pathways were assessed by Western blot analyses in human buccal mucosal fibroblasts (BMFs). Elevated Egr-1 staining was observed in epithelial cells, fibroblast, and inflammatory cells in 7 of 10 OSF cases. Arecoline, a main alkaloid found in the areca nut, stimulated Egr-1 synthesis in BMFs. Pretreatment with antioxidant N-acetyl-L-cysteine, c-Jun NH2-terminal kinase inhibitor SP600125, and extracellular signal-regulated kinase inhibitor PD98059 significantly reduced arecoline-induced Egr-1 synthesis. Epigallocatechin-3-gallate (EGCG) inhibited arecoline-induced Egr-1 synthesis and collagen gel contraction in a dose-responsive manner. Constitutive Egr-1 expression during areca nut chewing may play a role in the pathogenesis of OSF. EGCG could be a good candidate for prevention or treatment of OSF. © 2014 Wiley Periodicals, Inc.

  19. Delayed Numerical Chromosome Aberrations in Human Fibroblasts by Low Dose of Radiation

    Directory of Open Access Journals (Sweden)

    Yoon Hee Cho

    2015-12-01

    Full Text Available Radiation-induced genomic instability refers to a type of damage transmitted over many generations following irradiation. This delayed impact of radiation exposure may pose a high risk to human health and increases concern over the dose limit of radiation exposure for both the public and radiation workers. Therefore, the development of additional biomarkers is still needed for the detection of delayed responses following low doses of radiation exposure. In this study, we examined the effect of X-irradiation on delayed induction of numerical chromosomal aberrations in normal human fibroblasts irradiated with 20, 50 and 100 cGy of X-rays using the micronucleus-centromere assay. Frequencies of centromere negative- and positive-micronuclei, and aneuploidy of chromosome 1 and 4 were analyzed in the surviving cells at 28, 88 and 240 h after X-irradiation. X-irradiation increased the frequency of micronuclei (MN in a dose-dependent manner in the cells at all measured time-points, but no significant differences in MN frequency among cell passages were observed. Aneuploid frequency of chromosomes 1 and 4 increased with radiation doses, and a significantly higher frequency of aneuploidy was observed in the surviving cells analyzed at 240 h compared to 28 h. These results indicate that low-dose of X-irradiation can induce delayed aneuploidy of chromosomes 1 and 4 in normal fibroblasts.

  20. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization.

    Science.gov (United States)

    Deglesne, Pierre-Antoine; Arroyo, Rodrigo; Ranneva, Evgeniya; Deprez, Philippe

    2016-01-01

    Mesotherapy/biorevitalization with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS(®) (Repairs, Refills, Stimulates) HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15%) and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts.

  1. Characterization of the autocrine/paracrine function of vitamin D in human gingival fibroblasts and periodontal ligament cells.

    Directory of Open Access Journals (Sweden)

    Kaining Liu

    Full Text Available BACKGROUND: We previously demonstrated that 25-hydroxyvitamin D(3, the precursor of 1α,25-dihydroxyvitamin D(3, is abundant around periodontal soft tissues. Here we investigate whether 25-hydroxyvitamin D(3 is converted to 1α,25-dihydroxyvitamin D(3 in periodontal soft tissue cells and explore the possibility of an autocrine/paracrine function of 1α,25-dihydroxyvitamin D(3 in periodontal soft tissue cells. METHODOLOGY/PRINCIPAL FINDINGS: We established primary cultures of human gingival fibroblasts and human periodontal ligament cells from 5 individual donors. We demonstrated that 1α-hydroxylase was expressed in human gingival fibroblasts and periodontal ligament cells, as was cubilin. After incubation with the 1α-hydroxylase substrate 25-hydroxyvitamin D(3, human gingival fibroblasts and periodontal ligament cells generated detectable 1α,25-dihydroxyvitamin D(3 that resulted in an up-regulation of CYP24A1 and RANKL mRNA. A specific knockdown of 1α-hydroxylase in human gingival fibroblasts and periodontal ligament cells using siRNA resulted in a significant reduction in both 1α,25-dihydroxyvitamin D(3 production and mRNA expression of CYP24A1 and RANKL. The classical renal regulators of 1α-hydroxylase (parathyroid hormone, calcium and 1α,25-dihydroxyvitamin D(3 and Porphyromonas gingivalis lipopolysaccharide did not influence 1α-hydroxylase expression significantly, however, interleukin-1β and sodium butyrate strongly induced 1α-hydroxylase expression in human gingival fibroblasts and periodontal ligament cells. CONCLUSIONS/SIGNIFICANCE: In this study, the expression, activity and functionality of 1α-hydroxylase were detected in human gingival fibroblasts and periodontal ligament cells, raising the possibility that vitamin D acts in an autocrine/paracrine manner in these cells.

  2. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts

    NARCIS (Netherlands)

    Reijnders, C.M.A.; van Lier, A.; Roffel, S.; Kramer, D.; Scheper, R.J.; Gibbs, S.

    2015-01-01

    Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve

  3. NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Kate E. Hawkins

    2016-03-01

    Full Text Available The potential of induced pluripotent stem cells (iPSCs in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation.

  4. The volatile fraction of cigarette smoke induces alterations in the human gingival fibroblast cytoskeleton.

    Science.gov (United States)

    Poggi, P; Rota, M T; Boratto, R

    2002-06-01

    Several in vitro investigations have indicated that the particulate phase of cigarette smoke, such as nicotine, affects many cell types, including gingival fibroblasts. However, few studies have been performed on the effects of the volatile fraction on the cellular structures that are involved in cell functions, such as adhesion and proliferation. Since the survival and reproduction of gingival fibroblasts are fundamental in maintaining the integrity of the oral connective tissue, as well as in wound healing, the effects on the cytoskeleton of acrolein and acetaldehyde, which are the volatile fractions of cigarette smoke, were examined in vitro for human gingival fibroblasts (HGFs). HGF strains that were taken from healthy subjects with non-inflamed-gingiva were utilized in this investigation. The cells were incubated in the presence of different concentrations of acrolein and acetaldehyde. Cell adhesion and viability were evaluated after incubation for 3 h and 5 days, respectively. The influence on cytoskeletal structures (tubulin, actin and vimentin intermediate filaments) was investigated with the indirect immunofluorescence technique. The results show that both substances produced similar effects, which resulted in a dose-dependent inhibition of HGF adhesion and viability. Disturbance of the HGF cytoskeleton consisted of disruption of the microtubules, actin filaments and vimentin microfilaments, which was accompanied by alterations to cell shape. Our experimental findings suggest that the volatile fractions of cigarette smoke, such as acrolein and acetaldehyde, have a cytotoxic effect on HGFs, with the result that they lose their capacity for adhesion and proliferation. The consequences of this could be impairment of the maintenance, integrity and remodelling of the oral connective tissue. According to our morphological evidence, these findings show that cigarette smoke can lead to the development and progression of periodontal disease, and indicate the need

  5. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming.

    Science.gov (United States)

    Mitani, Yasuyuki; Vagnozzi, Ronald J; Millay, Douglas P

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non-muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle-specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.-Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. © FASEB.

  6. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    Science.gov (United States)

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  7. Role of Tumor Associated Fibroblasts in Human Liver Regeneration, Cirrhosis, and Cancer

    Directory of Open Access Journals (Sweden)

    Daniela Cesselli

    2011-01-01

    Full Text Available Tumor associated fibroblasts (TAFs are considered a microenvironmental element critical for tumor growth and progression. Experimental studies suggest that their origin could be from mesenchymal stem cells (MSCs derived from the bone marrow. However, the role played by TAFs in cirrhosis, hepatocellular carcinoma development, and progression is largely unknown, and in vitro human models are missing. This paper for the first time demonstrates that (1 human neoplastic livers possess a population of multipotent adult stem cells (MASCs with properties of TAFs; (2 a population of MASC-derived TAFs is already present in cirrhotic, not yet neoplastic, livers; (3 MASCs isolated from nonneoplastic and noncirrhotic liver scan acquire a TAF phenotype when grown in a medium conditioned by tumor cell lines, supporting the notion that TAF could originate from resident primitive cells (MASCs, possibly through a paracrine mechanism.

  8. Prognostic role of fibroblast growth factor receptor 2 in human solid tumors: A systematic review and meta-analysis.

    Science.gov (United States)

    Liu, Gang; Xiong, Disheng; Xiao, Rui; Huang, Zhengjie

    2017-06-01

    In the past decades, the oncogenic role of fibroblast growth factor receptor 2 has been demonstrated in a number of cancer types. However, studies have reported contradictory findings concerning the correlation between fibroblast growth factor receptor 2 expression and prognosis in solid tumors. To address this discrepancy, we performed a meta-analysis with 18 published studies (2975 patients) retrieved from PubMed, EMBASE, and Web of science. Data were extracted and computed into odds ratios. The results showed that fibroblast growth factor receptor 2 overexpression was significantly associated with decreased 3-year overall survival (odds ratio = 1.93, 95% confidence interval: 1.30-2.85, p = 0.001) and 5-year overall survival (odds ratio = 1.62, 95% confidence interval: 1.07-2.44, p = 0.02) in patients with solid tumors. Subgroup analysis revealed that high fibroblast growth factor receptor 2 expression was also associated with poor prognosis of gastric cancer, hepatocellular carcinoma, and esophageal cancer, but not correlated with pancreatic cancer. In conclusion, fibroblast growth factor receptor 2 overexpression is correlated with decreased survival in most solid tumors, suggesting that the expression status of fibroblast growth factor receptor 2 is a valuable prognostic biomarker and a novel therapeutic target in human solid tumors.

  9. Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells.

    Science.gov (United States)

    Poma, Anna; Colafarina, Sabrina; Aruffo, Eleonora; Zarivi, Osvaldo; Bonfigli, Antonella; Di Bucchianico, Sebastiano; Di Carlo, Piero

    2017-01-01

    Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O3 while at 48 hours and 72 hours O3 treated cells viability doesn't differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O3 provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication.

  10. Phenotypic study of human gingival fibroblasts in a medium enriched with platelet lysate.

    Science.gov (United States)

    Naveau, Adrien; Lataillade, Jean-Jacques; Fournier, Benjamin Philippe; Couty, Ludovic; Prat, Marie; Ferre, François Côme; Gourven, Muriel; Durand, Eric; Coulomb, Bernard; Lafont, Antoine; Gogly, Bruno

    2011-04-01

    The modulation abilities of gingival fibroblasts open new therapeutic strategies for the treatment of vascular diseases (e.g., aneurism) and irradiation burns. Culture media are classically supplemented with animal sera to provide nutriments. Unfortunately, because of their potential for interspecies transmission of microorganisms, these media are not used for cells destined for human transplantation. This preliminary phenotypic study aims to test a serum-free (SF) culture medium for human gingival fibroblasts (hGF) supplemented with human platelet lysates (PLs) for rapid cell expansion. An SF medium was first elaborated to compete with hGF proliferation in a reference medium containing 10% fetal bovine serum (BSmedium). Adhesion, proliferation, and doubling kinetics were run in the presence of PLs (SF+PL). Cytoskeletal proteins were analyzed and chromosomal abnormalities were evaluated by karyotype analyses. The SF+PL influence on secretion of molecules implied in tissue remodeling (i.e., matrix metalloproteinases [MMPs], their tissue inhibitors [TIMPs], and several growth factors) was studied. SF+PL increased the proliferation rate 1.5-fold in a week compared to BSmedium. Cytoskeleton protein expression was similar in BSmedium and in SF+PL. Chromosomal abnormalities were rare in SF+PL. MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, TIMP-1, and the growth factors interleukin-1β and -4 and transforming growth factor-β1 secretions were stable during the experiment. TIMP-2 and interleukin-6 were slightly decreased in SF+PL compared to BSmedium. While waiting confirmation from a proteomic approach, this SF culture medium could allow a secured faster hGF proliferation adapted for human cell transplant therapy.

  11. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis.

    Science.gov (United States)

    Liu, Xueting; Fang, Shencun; Liu, Haijun; Wang, Xingang; Dai, Xiaoniu; Yin, Qing; Yun, Tianwei; Wang, Wei; Zhang, Yingming; Liao, Hong; Zhang, Wei; Yao, Honghong; Chao, Jie

    2015-10-15

    Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO2). Phagocytosis of SiO2 in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO2 treatment resulted in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO2-induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO2-induced increase in cell migration. These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO2. CCR2 was also up-regulated in response to SiO2, and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO2-induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. In vitro generation of renal tubular epithelial cells from fibroblasts: implications for precision and regenerative medicine in nephrology.

    Science.gov (United States)

    Wyatt, Christina M; Dubois, Nicole

    2017-02-01

    Prior efforts to generate renal epithelial cells in vitro have relied on pluripotent or bone marrow-derived mesenchymal stem cells. A recent publication in Nature Cell Biology describes the generation of induced tubular epithelial cells from fibroblasts, potentially offering a novel platform for personalized drug toxicity screening and in vitro disease modeling. This report serves as a promising proof of principle study and opens future research directions, including the optimization of the reprogramming process, efficient translation to adult human fibroblasts, and the generation of highly specific functional renal cell types. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. Rac1 and Cdc42 are regulators of HRasV12-transformation and angiogenic factors in human fibroblasts

    Directory of Open Access Journals (Sweden)

    Dao Kim-Hien T

    2010-01-01

    Full Text Available Abstract Background The activities of Rac1 and Cdc42 are essential for HRas-induced transformation of rodent fibroblasts. What is more, expression of constitutively activated mutants of Rac1 and/or Cdc42 is sufficient for their malignant transformation. The role for these two Rho GTPases in HRas-mediated transformation of human fibroblasts has not been studied. Here we evaluated the contribution of Rac1 and Cdc42 to maintaining HRas-induced transformation of human fibroblasts, and determined the ability of constitutively activated mutants of Rac1 or Cdc42 to induce malignant transformation of a human fibroblast cell strain. Methods Under the control of a tetracycline regulatable promoter, dominant negative mutants of Rac1 and Cdc42 were expressed in a human HRas-transformed, tumor derived fibroblast cell line. These cells were used to determine the roles of Rac1 and/or Cdc42 proteins in maintaining HRas-induced transformed phenotypes. Similarly, constitutively active mutants were expressed in a non-transformed human fibroblast cell strain to evaluate their potential to induce malignant transformation. Affymetrix GeneChip arrays were used for transcriptome analyses, and observed expression differences were subsequently validated using protein assays. Results Expression of dominant negative Rac1 and/or Cdc42 significantly altered transformed phenotypes of HRas malignantly transformed human fibroblasts. In contrast, expression of constitutively active mutants of Rac1 or Cdc42 was not sufficient to induce malignant transformation. Microarray analysis revealed that the expression of 29 genes was dependent on Rac1 and Cdc42, many of which are known to play a role in cancer. The dependence of two such genes, uPA and VEGF was further validated in both normoxic and hypoxic conditions. Conclusion(s The results presented here indicate that expression of both Rac1 and Cdc42 is necessary for maintaining several transformed phenotypes in oncogenic HRas

  14. PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages

    DEFF Research Database (Denmark)

    Limbert, Catarina; Päth, Günter; Ebert, Regina

    2011-01-01

    Reprogramming of multipotent adult bone marrow (BM)-derived mesenchymal stromal/stem cells (MSC) (BM-MSC) represents one of several strategies for cell-based therapy of diabetes. However, reprogramming primary BM-MSC into pancreatic endocrine lineages has not yet been consistently demonstrated....

  15. Knockdown of MBP-1 in human foreskin fibroblasts induces p53-p21 dependent senescence.

    Directory of Open Access Journals (Sweden)

    Asish K Ghosh

    Full Text Available MBP-1 acts as a general transcriptional repressor. Overexpression of MBP-1 induces cell death in a number of cancer cells and regresses tumor growth. However, the function of endogenous MBP-1 in normal cell growth regulation remains unknown. To unravel the role of endogenous MBP-1, we knocked down MBP-1 expression in primary human foreskin fibroblasts (HFF by RNA interference. Knockdown of MBP-1 in HFF (HFF-MBPsi-4 resulted in an induction of premature senescence, displayed flattened cell morphology, and increased senescence-associated beta-galactosidase activity. FACS analysis of HFF-MBPsi-4 revealed accumulation of a high number of cells in the G1-phase. A significant upregulation of cyclin D1 and reduction of cyclin A was detected in HFF-MBPsi-4 as compared to control HFF. Senescent fibroblasts exhibited enhanced expression of phosphorylated and acetylated p53, and cyclin-dependent kinase inhibitor, p21. Further analysis suggested that promyolocytic leukemia protein (PML bodies are dramatically increased in HFF-MBPsi-4. Together, these results demonstrated that knockdown of endogenous MBP-1 is involved in cellular senescence of HFF through p53-p21 pathway.

  16. [Determination of the healing effect of Piper aduncum (spiked pepper or matico) on human fibroblasts].

    Science.gov (United States)

    Paco, Karen; Ponce-Soto, Luis Alberto; Lopez-Ilasaca, Marco; Aguilar, José L

    2016-01-01

    To evaluate the healing effect of a Piper aduncum ethanol-water extract on an adult human dermal fibroblast cell line (hDFa). After obtaining the extract via solid-liquid extraction, concentration, and lyophilization, extract proteins were purified using reverse phase high-performance liquid chromatography, identified using tandem mass spectrometry of tryptic peptides, and analyzed using MALDI-TOF-TOF on an ABSciex4800 mass spectrometer. Half maximum effective concentration values (EC50), half maximum inhibiting concentration (IC50), and percentages of cell proliferation were determined using tetrazolium salt assays. Cell migration was evaluated using a "scratch assay". Growth factor expression in cells was analyzed via quantitative real-time reverse transcription polymerase chain reaction. Against the hDFa cell line, the extract had an IC50 of 200 μg/mL and EC50 of 103.5 µg/mL. In the proliferation assay, protein K2 (obtained from the extract) exhibited increased proliferative activity relative to other treatments (1 µg/mL); this agent also exhibited increased activity (50 µg/mL) in the fibroblast migration assay.Furthermore, the relative expression of platelet-derived growth factor increased by 8.6-fold in the presence of K2 protein relative to the control. The hydroethanolic extract of Piper aduncum and its component proteins increased the proliferation and migration of hDFa and increased the expression of growth factors involved in the healing process.

  17. Further studies on the survival of non-proliferating human diploid fibroblasts irradiated with ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Chan, G.L.; Little, J.B. (Harvard Univ., Boston, MA (USA). School of Public Health)

    1982-04-01

    Labelling index data showed that in AG1518 cells, a diploid human fibroblast strain, there was a lag period of at least 14 hours between subculture from the density-inhibited plateau phase of growth and entry into DNA synthesis. Cells irradiated with 254nm wavelength U.V. light 8 hours after subculture did not exhibit the same degree of resistance as cells irradiated in plateau phase and subcultured immediately. When cells were arrested from proliferation by maintenance in an arginine and glutamine deficient medium for 72 hours, they were nearly as resistant to U.V. light as plateau phase cells although maintenance in this medium for 24 hours after irradiation supported further recovery only after low U.V. doses. One strain of Cockayne syndrome fibroblasts was found to be resistant to U.V. light in plateau phase while another strain was found to have the same survival response whether it was irradiated in the plateau or log phase of growth.

  18. Neonatal human dermal fibroblasts immobilized in RGD-alginate induce angiogenesis.

    Science.gov (United States)

    Guerreiro, Susana G; Oliveira, Maria J; Barbosa, Mário A; Soares, Raquel; Granja, Pedro L

    2014-01-01

    Promoting angiogenesis in a damaged tissue is a major challenge for tissue regeneration. Recent findings in tissue engineering suggest that fibroblasts (FBs) play an important role in orchestrating the angiogenic process. Fibroblasts maintain the structural integrity of connective tissue by continuously secreting growth factors and extracellular matrix precursors, which are essential for endothelial cell (EC) adhesion and spreading, thus playing a crucial role in angiogenesis. We hypothesized that FBs immobilized in alginate gels grafted with the RGD peptidic sequence could influence the recruitment of ECs to improve vascularization. In this work, the modulation of immobilized human FBs within the 3D synthetic extracellular matrix was assessed. Experiments using cocultures of ECs and FBs in indirect contact as well as angiogenic assays were performed to assess the influence of FBs immobilized in RGD-alginate in ECs' viability, stabilization, sprouting, and assembly into capillary-like structures. This study demonstrates the ability of FBs immobilized within RGD-alginate microspheres to modulate and support capillary-like structures' assembly. These findings indicate that the microenvironment created by these stromal cells in the scaffold modulates capillary morphogenesis, thus stimulating angiogenesis in situ and can potentially be used in regenerative medicine in clinical scenarios where vascularization is essential.

  19. Optimization of Phenolic Compounds Extraction from Flax Shives and Their Effect on Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Magdalena Czemplik

    2017-01-01

    Full Text Available The goal of this study was to evaluate the most effective technique for extraction of phenolics present in flax shives and to assess their effect on human fibroblasts. Flax shives are by-products of fibre separation, but they were found to be a rich source of phenolic compounds and thus might have application potential. It was found that the optimal procedure for extraction of phenolics was hydrolysis enhanced by the ultrasound with NaOH for 24 h at 65°C and subsequent extraction with ethyl acetate. The influence of the flax shives extract on fibroblast growth and viability was assessed using the MTT and SRB tests. Moreover, the influence of flax shives extract on the extracellular matrix remodelling process was verified. The 20% increase of the viability was observed upon flax shives extract treatment and the decrease of mRNA collagen genes, an increase of matrix metalloproteinase gene expression, and reduction in levels of interleukin 6, interleukin 10, and suppressor of cytokinin signaling 1 mRNA were observed. Alterations in MCP-1 mRNA levels were dependent on flax shives extract concentration. Thus, we suggested the possible application of flax shives extract in the wound healing process.

  20. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Brydone, Alistair S; Dominic Meek, R M [Department of Orthopaedics, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF (United Kingdom); Dalby, Matthew J; Berry, Catherine C; McNamara, Laura E, E-mail: alibrydone@gmail.com [Centre for Cell Engineering, Joseph Black Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2011-06-15

    Extracellular matrix (ECM) remodelling is an essential physiological process in which matrix-metalloproteinases (MMPs) have a key role. Manipulating the manner in which cells produce MMPs and ECMs may enable the creation of a desired tissue type, i.e. effect repair, or the prevention of tissue invasion (e.g. metastasis). The aim of this project was to determine if culturing fibroblasts on grooved topography altered collagen deposition or MMP production. Human fibroblasts were seeded on planar or grooved polycaprolactone substrates (grooves were 12.5 {mu}m wide with varying depths of 240 nm, 540 nm or 2300 nm). Cell behaviour and collagen production were studied using fluorescence microscopy and the spent culture medium was assessed using gel zymography to detect MMPs. Total collagen deposition was high on the 240 nm deep grooves, but decreased as the groove depth increased, i.e. as cell contact guidance decreased. There was an increase in gelatinase on the 2300 nm deep grooved topography and there was a difference in the temporal expression of MMP-3 observed on the planar surface compared to the 540 nm and 2300 nm topographies. These results show that topography can alter collagen and MMP production. A fuller understanding of these processes may permit the design of surfaces tailored to tissue regeneration e.g. tendon repair.

  1. Effect of Cyclosporin A and Angiotensin II on cytosolic calcium levels in primary human gingival fibroblasts

    Directory of Open Access Journals (Sweden)

    Ajitkumar Supraja

    2016-01-01

    Full Text Available Background: To evaluate the effect of Cyclosporin A (CsA and angiotensin II (Ang II on cytosolic calcium levels in cultured human gingival fibroblasts (HGFs. Materials and Methods: Healthy gingival samples from six volunteers were obtained, and primary HGFs were cultured. Cell viability and proliferation assay were performed to identify the ideal concentrations of CsA and Ang II. Cytosolic calcium levels in cultured gingival fibroblasts treated with CsA and Ang II were studied using colorimetric assay, confocal and fluorescence imaging. Statistical analyses were done using SPSS software and GraphPad Prism. Results: Higher levels of cytosolic levels were evident in cells treated with CsA and Ang II when compared to control group and was statistically significant (P < 0.05 in both colorimetric assay and confocal imaging. Fluorescent images of the cultured HGFs revealed the same. Conclusion: Thus calcium being a key player in major cellular functions, plays a major role in the pathogenesis of drug-induced gingival overgrowth.

  2. Inhibition of TRPM7 channels prevents proliferation and differentiation of human lung fibroblasts.

    Science.gov (United States)

    Yu, Mingzhe; Huang, Cheng; Huang, Yan; Wu, Xiaoqin; Li, Xiaohui; Li, Jun

    2013-11-01

    Transient receptor potential melastatin 7 (TRPM7) is involved in both normal physiological processes and pathology of various diseases. The purpose of this study was to explore the function and underlying mechanisms of TRPM7 channels in human lung fibroblast (MRC5) proliferation and differentiation induced by transforming growth factor β1 (TGF-β1) in vitro. We determined the expression of TRPM7 in MRC5 cells in response to TGF-β1 treatment in vitro. Chemical inhibitors (Gd(3+) and 2-APB) and specific siRNA for TRPM7 were used to study the role of TRPM7 in MRC5 cell proliferation and differentiation. The phosphorylation of Akt was determined by Western blotting. The expression of TRPM7 was significantly potentiated in response to TGF-β1. Co-incubation of MRC5 cells with Gd(3+), 2-APB or TRPM7-siRNA decreased cell proliferation and differentiation. Furthermore, we found that suppression of TRPM7 channels also reduced the p-Akt in MRC5 cells induced by TGF-β1. We conclude that suppression of TRPM7 channels may decrease fibroblast proliferation and differentiation stimulated by TGF-β1 in vitro and this is associated with Akt phosphorylation.

  3. Secreted gingipains from Porphyromonas gingivalis colonies exert potent immunomodulatory effects on human gingival fibroblasts.

    Science.gov (United States)

    Bengtsson, Torbjörn; Khalaf, Atika; Khalaf, Hazem

    2015-09-01

    Periodontal pathogens, including Porphyromonas gingivalis, can form biofilms in dental pockets and cause inflammation, which is one of the underlying mechanisms involved in the development of periodontal disease, ultimately leading to tooth loss. Although P. gingivalis is protected in the biofilm, it can still cause damage and modulate inflammatory responses from the host, through secretion of microvesicles containing proteinases. The aim of this study was to evaluate the role of cysteine proteinases in P. gingivalis colony growth and development, and subsequent immunomodulatory effects on human gingival fibroblast. By comparing the wild type W50 with its gingipain deficient strains we show that cysteine proteinases are required by P. gingivalis to form morphologically normal colonies. The lysine-specific proteinase (Kgp), but not arginine-specific proteinases (Rgps), was associated with immunomodulation. P. gingivalis with Kgp affected the viability of gingival fibroblasts and modulated host inflammatory responses, including induction of TGF-β1 and suppression of CXCL8 and IL-6 accumulation. These results suggest that secreted products from P. gingivalis, including proteinases, are able to cause damage and significantly modulate the levels of inflammatory mediators, independent of a physical host-bacterial interaction. This study provides new insight of the pathogenesis of P. gingivalis and suggests gingipains as targets for diagnosis and treatment of periodontitis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Photocytotoxicity in human dermal fibroblasts elicited by permanent makeup inks containing titanium dioxide.

    Science.gov (United States)

    Wamer, Wayne G; Yin, Jun-Jie

    2011-01-01

    Titanium dioxide (TiO2) is a pigment widely used in decorative tattoo and permanent makeup inks. However, little is known about the risks associated with its presence in these products. We have developed an in vitro assay to identify inks containing TiO2 that are cytotoxic and/or photocytotoxic. The presence of TiO2 in ten permanent makeup inks was established by X-ray fluorescence. Using X-ray diffraction, we found that seven inks contained predominately TiO2 (anatase), the more photocatalytically active crystalline form of TiO2. The remaining inks contained predominately TiO2 (rutile). To identify cytotoxic and/or photocytotoxic inks, human dermal fibroblasts were incubated for 18 h in media containing inks or pigments isolated from inks. Fibroblasts were then irradiated with 10 J/cm2 UVA radiation combined with 45 J/cm2 visible light for determining photocytotoxicity, or kept in the dark for determining cytotoxicity. Toxicity was assessed as inhibition of colony formation. No inks were cytotoxic. However eight inks, and the pigments isolated from these inks, were photocytotoxic. Using ESR, we found that most pigments from photocytotoxic inks generated hydroxyl radicals when photoexcited with UV radiation. Therefore, the possibility of photocytotoxicity should be considered when evaluating the safety of permanent makeup inks containing TiO2.

  5. Blue light inhibits transforming growth factor-β1-induced myofibroblast differentiation of human dermal fibroblasts.

    Science.gov (United States)

    Taflinski, Leonie; Demir, Erhan; Kauczok, Jens; Fuchs, Paul Christian; Born, Matthias; Suschek, Christoph V; Opländer, Christian

    2014-04-01

    Transforming growth factor-β1 (TGF-β1) is the major promoter of phenotypic shift between fibroblasts and myofibroblasts accompanied by the expression and incorporation of α-smooth muscle actin (α-SMA). This differentiation is crucial during normal wound healing and wound closure; however, myofibroblasts are considered as the main effecter cell type in fibrosis, for example in scleroderma and hypertrophic scarring. As blue light has exerted antiprolific and toxic effects in several cell types, we investigated whether blue light irradiations with a light-emitting diode array (420 nm) were able to affect proliferation and differentiation of human dermal fibroblasts (HDF). We found that repeated irradiation with non-toxic doses significantly inhibits TGF-β1-induced differentiation of HDF into myofibroblasts shown by α-SMA immunocytochemistry and Western blotting. Additionally, used doses reduced proliferation and myofibroblast contractibility measured by resazurin and collagen gel contraction assays. It could be demonstrated that blue light mediates cell toxicity by oxidative stress due to the generation of singlet oxygen. We postulate that irradiations at non-toxic doses induce low-level oxidative stress and energy-consuming cellular responses, which both may effect proliferation stop and interfere with myofibroblast differentiation. Thus, targeting differentiation, proliferation and activity of myofibroblasts by blue light may represent a useful strategy to prevent or reduce pathological fibrotic conditions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

    Directory of Open Access Journals (Sweden)

    Soham Chanda

    2014-08-01

    Full Text Available Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative medicine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs into mature induced neuronal (iN cells by forced expression of three transcription factors: ASCL1, MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate functional iN cells from mouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogramming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-induced single-factor neurons (1F-iN expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory, demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage.

  7. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration.

    Directory of Open Access Journals (Sweden)

    Andrew Mamalis

    Full Text Available Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease.The goal of our study was to investigate the how reactive oxygen species (ROS free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed.High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR. For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2 on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2.High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched

  8. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration.

    Science.gov (United States)

    Mamalis, Andrew; Koo, Eugene; Isseroff, R Rivkah; Murphy, William; Jagdeo, Jared

    2015-01-01

    Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL) is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease. The goal of our study was to investigate the how reactive oxygen species (ROS) free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed. High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR). For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2) on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2. High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched controls

  9. Hypoxia-Induced Collagen Synthesis of Human Lung Fibroblasts by Activating the Angiotensin System

    Directory of Open Access Journals (Sweden)

    Shan-Shan Liu

    2013-12-01

    Full Text Available The exact molecular mechanism that mediates hypoxia-induced pulmonary fibrosis needs to be further clarified. The aim of this study was to explore the effect and underlying mechanism of angiotensin II (Ang II on collagen synthesis in hypoxic human lung fibroblast (HLF cells. The HLF-1 cell line was used for in vitro studies. Angiotensinogen (AGT, angiotensin converting enzyme (ACE, angiotensin II type 1 receptor (AT1R and angiotensin II type 2 receptor (AT2R expression levels in human lung fibroblasts were analysed using real-time polymerase chain reaction (RT-PCR after hypoxic treatment. Additionally, the collagen type I (Col-I, AT1R and nuclear factor κappaB (NF-κB protein expression levels were detected using Western blot analysis, and NF-κB nuclear translocation was measured using immunofluorescence localization analysis. Ang II levels in HLF-1 cells were measured with an enzyme-linked immunosorbent assay (ELISA. We found that hypoxia increased Col-I mRNA and protein expression in HLF-1 cells, and this effect could be inhibited by an AT1R or AT2R inhibitor. The levels of NF-κB, RAS components and Ang II production in HLF-1 cells were significantly increased after the hypoxia exposure. Hypoxia or Ang II increased NF-κB-p50 protein expression in HLF-1 cells, and the special effect could be inhibited by telmisartan (TST, an AT1R inhibitor, and partially inhibited by PD123319, an AT2R inhibitor. Importantly, hypoxia-induced NF-κB nuclear translocation could be nearly completely inhibited by an AT1R or AT2R inhibitor. Furthermore pyrrolidine dithiocarbamate (PDTC, a NF-κB blocker, abolished the expression of hypoxia-induced AT1R and Col-I in HLF-1 cells. Our results indicate that Ang II-mediated NF-κB signalling via ATR is involved in hypoxia-induced collagen synthesis in human lung fibroblasts.

  10. Differential Expression of Matrix Metalloproteases in Human Fibroblasts with Different Origins

    Directory of Open Access Journals (Sweden)

    Diana Lindner

    2012-01-01

    Full Text Available Fibroblasts are widely distributed cells and are responsible for the deposition of extracellular matrix (ECM components but also secrete ECM-degrading matrix metalloproteases. A finely balanced equilibrium between deposition and degradation of ECM is essential for structural integrity of tissues. In the past, fibroblasts have typically been understood as a uniform cell population with comparable functions regardless of their origin. Here, we determined growth curves of fibroblasts derived from heart, skin, and lung and clearly show the lowest proliferation rate for cardiac fibroblasts. Furthermore, we examined basal expression levels of collagen and different MMPs in these three types of fibroblasts and compared these concerning their site of origin. Interestingly, we found major differences in basal mRNA expression especially for MMP1 and MMP3. Moreover, we treated fibroblasts with TNF-α and observed different alterations under these proinflammatory conditions. In conclusion, fibroblasts show different properties in proliferation and MMP expression regarding their originated tissue.

  11. 5-Lipoxygenase inhibitors attenuate TNF-α-induced inflammation in human synovial fibroblasts.

    Directory of Open Access Journals (Sweden)

    Han-Ching Lin

    Full Text Available The lipoxygenase isoform of 5-lipoxygenase (5-LOX is reported to be overexpressed in human rheumatoid arthritis synovial tissue and involved in the progress of inflammatory arthritis. However, the detailed mechanism of how 5-lipoxygenase regulates the inflammatory response in arthritis synovial tissue is still unclear. The aim of this study was to investigate the involvement of lipoxygenase pathways in TNF-α-induced production of cytokines and chemokines. Human synovial fibroblasts from rheumatoid patients were used in this study. 5-LOX inhibitors and shRNA were used to examine the involvement of 5-LOX in TNF-α-induced cytokines and chemokines expression. The signaling pathways were examined by Western Blotting or immunofluorescence staining. The effect of 5-LOX inhibitor on TNF-α-induced chemokine expression and paw edema was also explored in vivo in C57BL/6 mice. Treatment with 5-LOX inhibitors significantly decreased TNF-α-induced pro-inflammatory mediators including interleukin-6 (IL-6 and monocyte chemo-attractant protein-1 (MCP-1 in human synovial fibroblasts. Knockdown of 5-LOX using shRNA exerted similar inhibitory effects. The abrogation of NF-κB activation was involved in the antagonizing effects of these inhibitors. Furthermore, 5-LOX inhibitor decreased TNF-α-induced up-regulation of serum MCP-1 level and paw edema in mouse model. Our results provide the evidence that the administration of 5-LOX inhibitors is able to ameliorate TNF-α-induced cytokine/chemokine release and paw edema, indicating that 5-LOX inhibitors may be developed for therapeutic treatment of inflammatory arthritis.

  12. 5-Lipoxygenase Inhibitors Attenuate TNF-α-Induced Inflammation in Human Synovial Fibroblasts

    Science.gov (United States)

    Lin, Han-Ching; Lin, Tzu-Hung; Wu, Ming-Yueh; Chiu, Yung-Cheng; Tang, Chih-Hsin; Hour, Mann-Jen; Liou, Houng-Chi; Tu, Huang-Ju; Yang, Rong-Sen; Fu, Wen-Mei

    2014-01-01

    The lipoxygenase isoform of 5-lipoxygenase (5-LOX) is reported to be overexpressed in human rheumatoid arthritis synovial tissue and involved in the progress of inflammatory arthritis. However, the detailed mechanism of how 5-lipoxygenase regulates the inflammatory response in arthritis synovial tissue is still unclear. The aim of this study was to investigate the involvement of lipoxygenase pathways in TNF-α-induced production of cytokines and chemokines. Human synovial fibroblasts from rheumatoid patients were used in this study. 5-LOX inhibitors and shRNA were used to examine the involvement of 5-LOX in TNF-α-induced cytokines and chemokines expression. The signaling pathways were examined by Western Blotting or immunofluorescence staining. The effect of 5-LOX inhibitor on TNF-α-induced chemokine expression and paw edema was also explored in vivo in C57BL/6 mice. Treatment with 5-LOX inhibitors significantly decreased TNF-α-induced pro-inflammatory mediators including interleukin-6 (IL-6) and monocyte chemo-attractant protein-1 (MCP-1) in human synovial fibroblasts. Knockdown of 5-LOX using shRNA exerted similar inhibitory effects. The abrogation of NF-κB activation was involved in the antagonizing effects of these inhibitors. Furthermore, 5-LOX inhibitor decreased TNF-α-induced up-regulation of serum MCP-1 level and paw edema in mouse model. Our results provide the evidence that the administration of 5-LOX inhibitors is able to ameliorate TNF-α-induced cytokine/chemokine release and paw edema, indicating that 5-LOX inhibitors may be developed for therapeutic treatment of inflammatory arthritis. PMID:25229347

  13. Fibroblasts derived from human embryonic stem cells direct development and repair of 3D human skin equivalents.

    Science.gov (United States)

    Shamis, Yulia; Hewitt, Kyle J; Carlson, Mark W; Margvelashvilli, Mariam; Dong, Shumin; Kuo, Catherine K; Daheron, Laurence; Egles, Christophe; Garlick, Jonathan A

    2011-02-21

    Pluripotent, human stem cells hold tremendous promise as a source of progenitor and terminally differentiated cells for application in future regenerative therapies. However, such therapies will be dependent upon the development of novel approaches that can best assess tissue outcomes of pluripotent stem cell-derived cells and will be essential to better predict their safety and stability following in vivo transplantation. In this study we used engineered, human skin equivalents (HSEs) as a platform to characterize fibroblasts that have been derived from human embryonic stem (hES) cell. We characterized the phenotype and the secretion profile of two distinct hES-derived cell lines with properties of mesenchymal cells (EDK and H9-MSC) and compared their biological potential upon induction of differentiation to bone and fat and following their incorporation into the stromal compartment of engineered, HSEs. While both EDK and H9-MSC cell lines exhibited similar morphology and mesenchymal cell marker expression, they demonstrated distinct functional properties when incorporated into the stromal compartment of HSEs. EDK cells displayed characteristics of dermal fibroblasts that could support epithelial tissue development and enable re-epithelialization of wounds generated using a 3D tissue model of cutaneous wound healing, which was linked to elevated production of hepatocyte growth factor (HGF). Lentiviral shRNA-mediated knockdown of HGF resulted in a dramatic decrease of HGF secretion from EDK cells that led to a marked reduction in their ability to promote keratinocyte proliferation and re-epithelialization of cutaneous wounds. In contrast, H9-MSCs demonstrated features of mesenchymal stem cells (MSC) but not those of dermal fibroblasts, as they underwent multilineage differentiation in monolayer culture, but were unable to support epithelial tissue development and repair and produced significantly lower levels of HGF. Our findings demonstrate that hES-derived cells

  14. MiRNA profile associated with replicative senescence, extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts.

    Directory of Open Access Journals (Sweden)

    Laura N Bonifacio

    Full Text Available Senescence is a highly regulated process that limits cellular replication by enforcing a G1 arrest in response to various stimuli. Replicative senescence occurs in response to telomeric DNA erosion, and telomerase expression can offset replicative senescence leading to immortalization of many human cells. Limited data exists regarding changes of microRNA (miRNA expression during senescence in human cells and no reports correlate telomerase expression with regulation of senescence-related miRNAs. We used miRNA microarrays to provide a detailed account of miRNA profiles for early passage and senescent human foreskin (BJ fibroblasts as well as early and late passage immortalized fibroblasts (BJ-hTERT that stably express the human telomerase reverse transcriptase subunit hTERT. Selected miRNAs that were differentially expressed in senescence were assayed for expression in quiescent cells to identify miRNAs that are specifically associated with senescence-associated growth arrest. From this group of senescence-associated miRNAs, we confirmed the ability of miR-143 to induce growth arrest after ectopic expression in young fibroblasts. Remarkably, miR-143 failed to induce growth arrest in BJ-hTERT cells. Importantly, the comparison of late passage immortalized fibroblasts to senescent wild type fibroblasts reveals that miR-146a, a miRNA with a validated role in regulating the senescence associated secretory pathway, is also regulated during extended cell culture independently of senescence. The discovery that miRNA expression is impacted by expression of ectopic hTERT as well as extended passaging in immortalized fibroblasts contributes to a comprehensive understanding of the connections between telomerase expression, senescence and processes of cellular aging.

  15. Inhibition of aromatase activity by methyl sulfonyl PCB metabolites in primary culture of human mammary fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M. van den; Heneweer, M.; Geest, M. de; Sanderson, T. [Inst. for Risk Assessment Sciences and Utrecht Univ. (Netherlands); Jong, P. de [St. Antonius Hospital, Nieuwegein (Netherlands); Bergman, A. [Stockholm Univ., Stockholm (Sweden)

    2004-09-15

    Methyl sulfonyl PCB metabolites (MeSO2-PCBs) are persistent contaminants and are ubiquitously present in humans and the environment. Lipophilicity of MeSO2- PCB metabolites is similar to the parent compounds and they have been detected in human milk, adipose, liver and lung tissue. 4- MeSO2-PCB-149 is the most abundant PCB metabolite in human adipose tissue and milk at a level of 1.5 ng/g lipids. Human blood concentration of 4-MeSO2-PCB-149 is approximately 0.03 nM. 3- MeSO2-PCB-101 is the predominant PCB metabolite in muscle and blubber in wildlife, such as otter, mink and grey seal. In the environment, they have been linked to chronic and reproductive toxicity in exposed mink. Additionaly, some MeSO{sub 2}-PCBs have been shown to be glucocorticoid receptor (GR) antagonists. Since approximately 60% of all breast tumors are estrogen responsive, exposure to compounds that are able to alter estrogen synthesis through interference with the aromatase enzyme, can lead to changes in estrogen levels and possibly to accelerated or inhibit breast tumor growth. Therefore, it is important to identify exogenous compounds that can alter aromatase activity in addition to those compounds which have direct interaction with the estrogen receptor (ER). Aromatase (CYP19) comprises the ubiquitous flavoprotein, NADPH-cytochrome P450 reductase, and a unique cytochrome P450 that is exclusively expressed in estrogen producing cells. Previous studies have revealed that expression of the aromatase gene is regulated in a species- and tissue specific manner. In healthy breast tissue, the predominantly active aromatase promoter region I.4 is regulated by glucocorticoids and class I cytokines. Therefore, it is important to investigate possible aromatase inhibiting properties of MeSO{sub 2}-PCBs (as anti glucocorticoids?) in relevant human tissues. We used primary human mammary fibroblasts because of their role in breast cancer development. We compared the results in primary fibroblasts with

  16. Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts.

    Science.gov (United States)

    Ershova, E S; Sergeeva, V A; Chausheva, A I; Zheglo, D G; Nikitina, V A; Smirnova, T D; Kameneva, L V; Porokhovnik, L N; Kutsev, S I; Troshin, P A; Voronov, I I; Khakina, E A; Veiko, N N; Kostyuk, S V

    2016-07-01

    Water-soluble fullerenes have been studied as potential nanovectors and therapeutic agents, but their possible toxicity is of concern. We have studied the effects of F-828, a soluble fullerene [C60] derivative, on diploid human embryonic lung fibroblasts (HELFs) in vitro. F-828 causes complex time-dependent changes in ROS levels. Inhibition of Nox4 activity by plumbagin blocks F-828-dependent ROS elevation. F-828 induces DNA breaks, as measured by the comet assay and γH2AX expression, and the activities of the transcription factors NF-kB and p53 increase. F-828 concentrations>25μM are cytotoxic; cell death occurs by necrosis. Expression levels of TGF-β, RHOA, RHOC, ROCK1, and SMAD2 increase following exposure to F-828. Our results raise the possibility that fullerene F-828 may induce pulmonary fibrosis in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Cellular characterization of human dermal fibroblasts, focus on mitochondria and maple syrup urine disease

    DEFF Research Database (Denmark)

    Fernandez-Guerra, Paula

    Cell phenotyping of human dermal fibroblasts (HDFs) from patients with inherited metabolic diseases (IMDs) provide invaluable information for diagnosis, disease aetiology, predicting prognosis, and monitoring of treatments. HDFs possess the genetic composition of patients and many pathways...... and functions are expressed in HDFs’ culture environment. Studies of molecular disease mechanisms often point to the involvement of mitochondria. Mitochondria are involved in the regulation of cell cycle and programmed cell death as well as cellular stress responses because they are the main producers...... (SRM) can be used for targeted quantitative proteomics to identify and quantify proteins encoded by wild-type and mutant genes. Mutations in branched-chain alpha-ketoacid dehydrogenase complex (BCKDH) can cause Maple Syrup Urine Disease (MSUD). BCKDH is composed of three subunits: a heterotetrameric E1...

  18. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage

    Directory of Open Access Journals (Sweden)

    Claudia von Montfort

    2015-04-01

    Full Text Available Recently, it has been published that cerium (Ce oxide nanoparticles (CNP; nanoceria are able to downregulate tumor invasion in cancer cell lines. Redox-active CNP exhibit both selective pro-oxidative and antioxidative properties, the first being responsible for impairment of tumor growth and invasion. A non-toxic and even protective effect of CNP in human dermal fibroblasts (HDF has already been observed. However, the effect on important parameters such as cell death, proliferation and redox state of the cells needs further clarification. Here, we present that nanoceria prevent HDF from reactive oxygen species (ROS-induced cell death and stimulate proliferation due to the antioxidative property of these particles.

  19. In vitro toxicity of formocresol, ferric sulphate, and grey MTA on human periodontal ligament fibroblasts.

    Science.gov (United States)

    Al-Haj Ali, S N; Al-Jundi, S H; Ditto, D J

    2015-02-01

    This was to assess and compare the in vitro toxicity of formocresol, ferric sulphate and MTA on cultured human periodontal ligament (PDL) fibroblasts. PDL cells were obtained from sound first permanent molars and cultured in Dulbecco's modified Eagle's medium. PDL cells were subjected to different concentrations of formocresol, ferric sulphate, and grey MTA for 24, 48, and 72 h at 37 °C. Cells that were not exposed to the tested materials served as the negative control. In vitro toxicity was assessed using MTT assay. Statistical analysis of data was accomplished using ANOVA and Tukey statistical tests (pferric sulphate>grey MTA. Only grey MTA had comparable cell viability to the negative control, the other tested materials were significantly inferior at the three exposure periods (ppulpotomy of primary teeth.

  20. Influence of nanofibers on growth and gene expression of human tendon derived fibroblast

    Directory of Open Access Journals (Sweden)

    Schmitt Jan

    2010-02-01

    Full Text Available Abstract Background Rotator cuff tears are a common and frequent lesion especially in older patients. The mechanisms of tendon repair are not fully understood. Common therapy options for tendon repair include mini-open or arthroscopic surgery. The use of growth factors in experimental studies is mentioned in the literature. Nanofiber scaffolds, which provide several criteria for the healing process, might be a suitable therapy option for operative treatment. The aim of this study was to explore the effects of nanofiber scaffolds on human tendon derived fibroblasts (TDF's, as well as the gene expression and matrix deposition of these fibroblasts. Methods Nanofibers composed of PLLA and PLLA/Col-I were seeded with human tendon derived fibroblasts and cultivated over a period of 22 days under growth-inductive conditions, and analyzed during the course of culture, with respect to gene expression of different extra cellular matrix components such as collagens, bigylcan and decorin. Furthermore, we measured cell densities and proliferation by using fluorescene microscopy. Results PLLA nanofibers possessed a growth inhibitory effect on TDF's. Furthermore, no meaningful influence on the gene expression of collagen I, collagen III and decorin could be observed, while the expression of collagen X increased during the course of cultivation. On the other hand, PLLA/Col-I blend nanofibers had no negative influence on the growth of TDF's. Furthermore, blending PLLA nanofibers with collagen had a positive effect on the gene expression of collagen I, III, X and decorin. Here, gene expression indicated that focal adherence kinases might be involved. Conclusion This study indicates that the use of nanofibers influence expression of genes associated with the extra cellular matrix formation. The composition of the nanofibers plays a critical role. While PLLA/Col-I blend nanofibers enhance the collagen I and III formation, their expression on PLLA nanofibers was

  1. Transient Gene and miRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    Science.gov (United States)

    Zhang, Ye; Lu, Tao; Wong, Michael; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Wang, Xiaoyu; Wu, Honglu

    2015-01-01

    Microgravity or an altered gravity environment from the static 1 gravitational constant has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of the cells. Whether non-dividing cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted on the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days for investigations of gene and miRNA (microRNA) expression profile changes in these cells. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly even though they were confluent, as measured by the expression of the protein Ki-67 positive cells, and the cells in space grew slightly faster. Gene and miRNA expression data indicated activation of NF(sub kappa)B (nuclear factor kappa-light-chain-enhancer of activated B cells) and other growth related pathways involving HGF and VEGF in the flown cells. On Day 14 when the cells were mostly non-dividing, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples in respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeleton changes by immunohistochemistry staining of the cells with antibodies for alpha-tubulin showed no difference between the flight and ground samples. Results of our study suggest that in true non-dividing human fibroblast cells, microgravity in

  2. MicroRNA Expression Profiles in Cultured Human Fibroblasts in Space

    Science.gov (United States)

    Wu, Honglu; Lu, Tao; Jeevarajan, John; Rohde, Larry; Zhang, Ye

    2014-01-01

    Microgravity, or an altered gravity environment from the static 1g, has been shown to influence global gene expression patterns and protein levels in living organisms. However, it is unclear how these changes in gene and protein expressions are related to each other or are related to other factors regulating such changes. A different class of RNA, the small non-coding microRNA (miRNA), can have a broad effect on gene expression networks by mainly inhibiting the translation process. Previously, we investigated changes in the expression of miRNA and related genes under simulated microgravity conditions on the ground using the NASA invented bioreactor. In comparison to static 1 g, simulated microgravity altered a number of miRNAs in human lymphoblastoid cells. Pathway analysis with the altered miRNAs and RNA expressions revealed differential involvement of cell communication and catalytic activity, as well as immune response signaling and NGF activation of NF-kB pathways under simulated microgravity condition. The network analysis also identified several projected networks with c- Rel, ETS1 and Ubiquitin C as key factors. In a flight experiment on the International Space Station (ISS), we will investigate the effects of actual spaceflight on miRNA expressions in nondividing human fibroblast cells in mostly G1 phase of the cell cycle. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. In addition to miRNA expressions, we will investigate the effects of spaceflight on the cellular response to DNA damages from bleomycin treatment.

  3. Clarithromycin attenuates IL-13–induced periostin production in human lung fibroblasts

    Directory of Open Access Journals (Sweden)

    Kosaku Komiya

    2017-02-01

    Full Text Available Abstract Background Periostin is a biomarker indicating the presence of type 2 inflammation and submucosal fibrosis; serum periostin levels have been associated with asthma severity. Macrolides have immunomodulatory effects and are considered a potential therapy for patients with severe asthma. Therefore, we investigated whether macrolides can also modulate pulmonary periostin production. Methods Using quantitative PCR and ELISA, we measured periostin production in human lung fibroblasts stimulated by interleukin-13 (IL-13 in the presence of two 14-member–ring macrolides—clarithromycin or erythromycin—or a 16-member–ring macrolide, josamycin. Phosphorylation of signal transducers and activators of transcription 6 (STAT6, downstream of IL-13 signaling, was evaluated by Western blotting. Changes in global gene expression profile induced by IL-13 and/or clarithromycin were assessed by DNA microarray analysis. Results Clarithromycin and erythromycin, but not josamycin, inhibited IL-13–stimulated periostin production. The inhibitory effects of clarithromycin were stronger than those of erythromycin. Clarithromycin significantly attenuated STAT6 phosphorylation induced by IL-13. Global gene expression analyses demonstrated that IL-13 increased mRNA expression of 454 genes more than 4-fold, while decreasing its expression in 390 of these genes (85.9%, mainly “extracellular,” “plasma membrane,” or “defense response” genes. On the other hand, clarithromycin suppressed 9.8% of the genes in the absence of IL-13. Clarithromycin primarily attenuated the gene expression of extracellular matrix protein, including periostin, especially after IL-13. Conclusions Clarithromycin suppressed IL-13–induced periostin production in human lung fibroblasts, in part by inhibiting STAT6 phosphorylation. This suggests a novel mechanism of the immunomodulatory effect of clarithromycin in asthmatic airway inflammation and fibrosis.

  4. Fourier-transform infrared spectroscopic comparison of cultured human fibroblast and fibrosarcoma cells

    Science.gov (United States)

    Yang, Difei; Castro, Dan J.; El-Sayed, Ivan H.; El-Sayed, Mostafa A.; Saxton, Romaine E.; Zhang, Nancy Y.

    1995-05-01

    Infrared vibration spectroscopy appears to be a more powerful technique for diagnosis than visible or UV spectroscopy. Advantages of IR spectra include: 1) vibrational motion has a smaller tissue absorption coefficient than electronic motion, 2) scattering of infrared radiation has a lower cross section than visible or UV light, (these two facts allow deeper penetration of IR radiation) and 3) vibration spectra provide a better fingerprint of chemical groups present in cells than the unresolved broad electronic spectrum of biological molecules. In the present work, Fourier-transform IR spectroscopy was used to compare cultured human fibroblast and malignant fibrosarcoma cells. Significant differences were observed by comparing the spectra of the normal cells with that of the cancer cells. the PO2 symmetric stretching mode at 1082cm-1 in the cancer cell is reduced in intensity. These observations are similar to those reported previously by Wong et al in comparing the IR spectra of pairs of normal and cancerous cells from the colon and cervix. However, the observed increase in the relative intensity of the symmetric to antisymmetric CH3 bending mode are only found in fibrosarcoma and basal cell carcinoma. The decrease in intensity of the CH2 bending mode relative to that of CH3 mode was observed only for fibrosarcoma cells. This finding with paired human fibroblast and fibrosarcoma cells suggests that fatty acid chains or side chains of protein in the cancer cells are partially degraded leading to more terminal carbon. It is also possible that changes in the environment upon carcinogenesis induces a change in the relative absorption cross sections for the CH3 and CH2 bending vibrations.

  5. Bleomycin induces upregulation of lysyl oxidase in cultured human fetal lung fibroblasts

    Science.gov (United States)

    Chen, Li-jun; Li, Wan-de; Li, Shi-feng; Su, Xing-wen; Lin, Guang-yun; Huang, Yi-jun; Yan, Guang-mei

    2010-01-01

    Aim: To investigate the mechanism of bleomycin (BLM)-induced pulmonary fibrosis. Methods: Cultured human fetal lung fibroblast (HLF) cells were exposed to bleomycin (BLM) at 0–30 μg/mL for 24 h. Western blot analysis was used to detect lysyl oxidase (LO) protein expression. Real-time RT-PCR was used to detect LO mRNA level. LO catalytic activity was measured using diaminopentane as a substrate and Amplex red as a hydrogen peroxide probe. Copper (Cu) concentration was detected by flame atomic absorption spectrophotometry. Results: Exposure of HLF cells to BLM at 10 μg/mL and 30 μg/mL increased LO catalytic activity to 130% and 158% of the control in the conditioned media. The expression of LO mRNA was increased to 5.5-fold of the control in HLF cells exposure to BLM at 3 μg/mL. BLM at 3 μg/mL also increased the expression of 46 kDa preproLO, 50 kDa proLO and 32 kDa mature LO to 219%, 130%, and 135% of the control, respectively. The Cu concentrations in conditioned media of cultured HLF cells exposed to BLM (10 and 30 μg/mL) were increased significantly to 1.48 and 2.46-fold of the control, respectively. Conclusion: Bleomycin induces upregulation of LO in cultured human fetal lung fibroblasts, which may be the mechanism of bleomycin-induced pulmonary fibrosis. PMID:20418892

  6. Effects of water-filtered infrared A irradiation on human fibroblasts.

    Science.gov (United States)

    Jung, Tobias; Höhn, Annika; Piazena, Helmut; Grune, Tilman

    2010-01-01

    Infrared radiation is a substantial part of the solar energy output reaching the earth surface. Therefore, exposure of humans to infrared radiation is common. However, whether and how infrared (IR) or infrared A acts on human skin cells is still under debate. Recently the generation of reactive oxygen species by water-filtered infrared A (wIRA) irradiation was postulated. wIRA shows a spectral distribution similar to that of solar irradiation at the earth's surface. Thus, the need for protection of human skin from both solar- and artificially generated infrared A irradiation was concluded. Here we demonstrate that in human dermal fibroblasts this reactive oxygen species generation is dependent on heat formation by infrared A and can be reproduced by thermal exposure. On the other hand wIRA irradiation had no detectable effect if the temperature in the cells was kept constant, even if irradiance exceeded the extraterrestrial solar irradiance in the IR range by a factor of about 4 and the maximum at noontime in the tropics by a factor up to about 6. This could be demonstrated by the measurement of oxidant formation using H(2)DCFDA and the determination of protein carbonyls. In additional experiments we could show that during thermal exposure the mitochondria contribute significantly to oxidant production. Further experiments revealed that the major absorbance of infrared is due to absorption of the energy by cellular water. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Effects of microinjected photoreactivating enzyme on thymine dimer removal and DNA repair synthesis in normal human and xeroderma pigmentosum fibroblasts.

    NARCIS (Netherlands)

    L. Roza (Len); W. Vermeulen (Wim); J.B.A. Bergen Henegouwen (Jacqueline); A.P.M. Eker (André); N.G.J. Jaspers (Nicolaas); P.H.M. Lohman (Paul); J.H.J. Hoeijmakers (Jan)

    1990-01-01

    textabstractUV-induced thymine dimers (10 J/m2 of UV-C) were assayed in normal human and xeroderma pigmentosum (XP) fibroblasts with a monoclonal antibody against these dimers and quantitative fluorescence microscopy. In repair-proficient cells dimer-specific immunofluorescence gradually decreased

  8. Differential gene expression in human fibroblasts after alpha-particle emitter (211)At compared with (60)Co irradiation

    DEFF Research Database (Denmark)

    Danielsson, Anna; Claesson, Kristina; Parris, Toshima Z

    2013-01-01

    trastuzumab monoclonal antibody (0.25, 0.5, and 1 Gy) and (60)Co (1, 2, and 3 Gy). Results: We report gene expression profiles that distinguish the effect different radiation qualities and absorbed doses have on cellular functions in human fibroblasts. In addition, we identified commonly expressed transcripts...

  9. Nucleoplasmic LAP2alpha-lamin A complexes are required to maintain a proliferative state in human fibroblasts.

    NARCIS (Netherlands)

    Pekovic, V.; Harborth, J.; Broers, J.L.; Ramaekers, F.C.S.; Engelen, B.G.M. van; Lammens, M.M.Y.; Zglinicki, T. von; Foisner, R.; Hutchison, C.; Markiewicz, E.

    2007-01-01

    In human diploid fibroblasts (HDFs), expression of lamina-associated polypeptide 2 alpha (LAP2alpha) upon entry and exit from G(0) is tightly correlated with phosphorylation and subnuclear localization of retinoblastoma protein (Rb). Phosphoisoforms of Rb and LAP2alpha are down-regulated in G(0).

  10. Sustained small and intermediate size proteins expression in phorbol 12-myristate 13-acetate/ionomycine prolonged stimulated human fibroblasts

    Directory of Open Access Journals (Sweden)

    Zeinab Abedian

    2017-05-01

    Conclusions: Human fibroblasts produce some small to intermediate sized proteins with specific SDS-PAGE profile upon cell activation. Most of these proteins can be excreted in urine and can be immunogen theoretically so this data provided a reliable clue for fibrosis biomarker screening based on designation of an appropriated immunoassay.

  11. Relation between maximum replicative capacity and oxidative stress-induced responses in human skin fibroblasts in vitro

    NARCIS (Netherlands)

    Dekker, Pim; De Lange, Mark J.; Dirks, Roeland W.; Van Heemst, Diana; Tanke, Hans J.; Westendorp, Rudi G J; Maier, Andrea B.

    Cellular senescence, an important factor in ageing phenotypes, can be induced by replicative exhaustion or by stress. We investigated the relation between maximum replicative capacity, telomere length, stress-induced cellular senescence, and apoptosis/cell death in human primary fibroblast strains

  12. Evaluation of human embryonic stem cells and their differentiated fibroblastic progenies as cellular models for in vitro genotoxicity screening.

    Science.gov (United States)

    Vinoth, Kumar Jayaseelan; Manikandan, Jayapal; Sethu, Swaminathan; Balakrishnan, Lakshmidevi; Heng, Alexis; Lu, Kai; Hande, Manoor Prakash; Cao, Tong

    2014-08-20

    This study evaluated human embryonic stem cells (hESC) and their differentiated fibroblastic progenies as cellular models for genotoxicity screening. The DNA damage response of hESCs and their differentiated fibroblastic progenies were compared to a fibroblastic cell line (HEPM, CRL1486) and primary cultures of peripheral blood lymphocytes (PBL), upon exposure to Mitomycin C, gamma irradiation and H2O2. It was demonstrated that hESC-derived fibroblastic progenies (H1F) displayed significantly higher chromosomal aberrations, micronuclei formation and double strand break (DSB) formation, as compared to undifferentiated hESC upon exposure to genotoxic stress. Nevertheless, H1F cell types displayed comparable sensitivities to genotoxic challenge as HEPM and PBL, both of which are representative of somatic cell types commonly used for genotoxicity screening. Subsequently, transcriptomic and pathways analysis identified differential expression of critical genes involved in cell death and DNA damage response upon exposure to gamma irradiation. The results thus demonstrate that hESC-derived fibroblastic progenies are as sensitive as commonly-used somatic cell types for genotoxicity screening. Moreover, hESCs have additional advantages, such as their genetic normality compared to immortalized cell lines, as well as their amenability to scale-up for producing large, standardized quantities of cells for genotoxicity screening on an industrial scale, something which can never be achieved with primary cell cultures. Copyright © 2014. Published by Elsevier B.V.

  13. Histamine Induces ATP Release from Human Subcutaneous Fibroblasts, via Pannexin-1 Hemichannels, Leading to Ca2+ Mobilization and Cell Proliferation*

    Science.gov (United States)

    Pinheiro, Ana Rita; Paramos-de-Carvalho, Diogo; Certal, Mariana; Costa, Maria Adelina; Costa, Cristina; Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Sévigny, Jean; Correia-de-Sá, Paulo

    2013-01-01

    Changes in the regulation of connective tissue ATP-mediated mechano-transduction and remodeling may be an important link to the pathogenesis of chronic pain. It has been demonstrated that mast cell-derived histamine plays an important role in painful fibrotic diseases. Here we analyzed the involvement of ATP in the response of human subcutaneous fibroblasts to histamine. Acute histamine application caused a rise in intracellular Ca2+ ([Ca2+]i) and ATP release from human subcutaneous fibroblasts via H1 receptor activation. Histamine-induced [Ca2+]i rise was partially attenuated by apyrase, an enzyme that inactivates extracellular ATP, and by blocking P2 purinoceptors with pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt and reactive blue 2. [Ca2+]i accumulation caused by histamine was also reduced upon blocking pannexin-1 hemichannels with 10Panx, probenecid, or carbenoxolone but not when connexin hemichannels were inhibited with mefloquine or 2-octanol. Brefeldin A, an inhibitor of vesicular exocytosis, also did not block histamine-induced [Ca2+]i mobilization. Prolonged exposure of human subcutaneous fibroblast cultures to histamine favored cell growth and type I collagen synthesis via the activation of H1 receptor. This effect was mimicked by ATP and its metabolite, ADP, whereas the selective P2Y1 receptor antagonist, MRS2179, partially attenuated histamine-induced cell growth and type I collagen production. Expression of pannexin-1 and ADP-sensitive P2Y1 receptor on human subcutaneous fibroblasts was confirmed by immunofluorescence confocal microscopy and Western blot analysis. In conclusion, histamine induces ATP release from human subcutaneous fibroblasts, via pannexin-1 hemichannels, leading to [Ca2+]i mobilization and cell growth through the cooperation of H1 and P2 (probably P2Y1) receptors. PMID:23918924

  14. Epigenetic Induction of Definitive and Pancreatic Endoderm Cell Fate in Human Fibroblasts

    NARCIS (Netherlands)

    Sambathkumar, Rangarajan; Kalo, Eric; Van Rossom, Rob; Faas, Marijke M.; de Vos, Paul; Verfaillie, Catherine M.

    2016-01-01

    Reprogramming can occur by the introduction of key transcription factors (TFs) as well as by epigenetic changes. We demonstrated that histone deacetylase inhibitor (HDACi) Trichostatin A (TSA) combined with a chromatin remodeling medium (CRM) induced expression of a number of definitive endoderm and

  15. Hypoxia regulates human lung fibroblast proliferation via p53-dependent and -independent pathways

    Directory of Open Access Journals (Sweden)

    Ameshima Shingo

    2009-03-01

    Full Text Available Abstract Background Hypoxia induces the proliferation of lung fibroblasts in vivo and in vitro. However, the subcellular interactions between hypoxia and expression of tumor suppressor p53 and cyclin-dependent kinase inhibitors p21 and p27 remain unclear. Methods Normal human lung fibroblasts (NHLF were cultured in a hypoxic chamber or exposed to desferroxamine (DFX. DNA synthesis was measured using bromodeoxyuridine incorporation, and expression of p53, p21 and p27 was measured using real-time RT-PCR and Western blot analysis. Results DNA synthesis was increased by moderate hypoxia (2% oxygen but was decreased by severe hypoxia (0.1% oxygen and DFX. Moderate hypoxia decreased p21 synthesis without affecting p53 synthesis, whereas severe hypoxia and DFX increased synthesis of both p21 and p53. p27 protein expression was decreased by severe hypoxia and DFX. Gene silencing of p21 and p27 promoted DNA synthesis at ambient oxygen concentrations. p21 and p53 gene silencing lessened the decrease in DNA synthesis due to severe hypoxia or DFX exposure. p21 gene silencing prevented increased DNA synthesis in moderate hypoxia. p27 protein expression was significantly increased by p53 gene silencing, and was decreased by wild-type p53 gene transfection. Conclusion These results indicate that in NHLF, severe hypoxia leads to cell cycle arrest via the p53-p21 pathway, but that moderate hypoxia enhances cell proliferation via the p21 pathway in a p53-independent manner. In addition, our results suggest that p27 may be involved in compensating for p53 in cultured NHLF proliferation.

  16. The capsule of Porphyromonas gingivalis reduces the immune response of human gingival fibroblasts

    Directory of Open Access Journals (Sweden)

    van Winkelhoff Arie J

    2010-01-01

    Full Text Available Abstract Background Periodontitis is a bacterial infection of the periodontal tissues. The Gram-negative anaerobic bacterium Porphyromonas gingivalis is considered a major causative agent. One of the virulence factors of P. gingivalis is capsular polysaccharide (CPS. Non-encapsulated strains have been shown to be less virulent in mouse models than encapsulated strains. Results To examine the role of the CPS in host-pathogen interactions we constructed an insertional isogenic P. gingivalis knockout in the epimerase-coding gene epsC that is located at the end of the CPS biosynthesis locus. This mutant was subsequently shown to be non-encapsulated. K1 capsule biosynthesis could be restored by in trans expression of an intact epsC gene. We used the epsC mutant, the W83 wild type strain and the complemented mutant to challenge human gingival fibroblasts to examine the immune response by quantification of IL-1β, IL-6 and IL-8 transcription levels. For each of the cytokines significantly higher expression levels were found when fibroblasts were challenged with the epsC mutant compared to those challenged with the W83 wild type, ranging from two times higher for IL-1β to five times higher for IL-8. Conclusions These experiments provide the first evidence that P. gingivalis CPS acts as an interface between the pathogen and the host that may reduce the host's pro-inflammatory immune response. The higher virulence of encapsulated strains may be caused by this phenomenon which enables the bacteria to evade the immune system.

  17. Interplay between Selenium Levels and Replicative Senescence in WI-38 Human Fibroblasts: A Proteomic Approach

    Directory of Open Access Journals (Sweden)

    Ghania Hammad

    2018-01-01

    Full Text Available Selenoproteins are essential components of antioxidant defense, redox homeostasis, and cell signaling in mammals, where selenium is found in the form of a rare amino acid, selenocysteine. Selenium, which is often limited both in food intake and cell culture media, is a strong regulator of selenoprotein expression and selenoenzyme activity. Aging is a slow, complex, and multifactorial process, resulting in a gradual and irreversible decline of various functions of the body. Several cellular aspects of organismal aging are recapitulated in the replicative senescence of cultured human diploid fibroblasts, such as embryonic lung fibroblast WI-38 cells. We previously reported that the long-term growth of young WI-38 cells with high (supplemented, moderate (control, or low (depleted concentrations of selenium in the culture medium impacts their replicative lifespan, due to rapid changes in replicative senescence-associated markers and signaling pathways. In order to gain insight into the molecular link between selenium levels and replicative senescence, in the present work, we have applied a quantitative proteomic approach based on 2-Dimensional Differential in-Gel Electrophoresis (2D-DIGE to the study of young and presenescent cells grown in selenium-supplemented, control, or depleted media. Applying a restrictive cut-off (spot intensity ±50% and a p value < 0.05 to the 2D-DIGE analyses revealed 81 differentially expressed protein spots, from which 123 proteins of interest were identified by mass spectrometry. We compared the changes in protein abundance for three different conditions: (i spots varying between young and presenescent cells, (ii spots varying in response to selenium concentration in young cells, and (iii spots varying in response to selenium concentration in presenescent cells. Interestingly, a 72% overlap between the impact of senescence and selenium was observed in our proteomic results, demonstrating a strong interplay between

  18. Quiescence does not affect p53 and stress response by irradiation in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jiawen [Molecular Radiobiology Laboratory, Division of Cellular and Molecular Research (Singapore); Itahana, Koji, E-mail: koji.itahana@duke-nus.edu.sg [Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School (Singapore); Baskar, Rajamanickam, E-mail: r.baskar@nccs.com.sg [Molecular Radiobiology Laboratory, Division of Cellular and Molecular Research (Singapore); Department of Radiation Oncology, National Cancer Centre (Singapore)

    2015-02-27

    Cells in many organs exist in both proliferating and quiescent states. Proliferating cells are more radio-sensitive, DNA damage pathways including p53 pathway are activated to undergo either G{sub 1}/S or G{sub 2}/M arrest to avoid entering S and M phase with DNA damage. On the other hand, quiescent cells are already arrested in G{sub 0}, therefore there may be fundamental difference of irradiation response between proliferating and quiescent cells, and this difference may affect their radiosensitivity. To understand these differences, proliferating and quiescent human normal lung fibroblasts were exposed to 0.10–1 Gy of γ-radiation. The response of key proteins involved in the cell cycle, cell death, and metabolism as well as histone H2AX phosphorylation were examined. Interestingly, p53 and p53 phosphorylation (Ser-15), as well as the cyclin-dependent kinase inhibitors p21 and p27, were induced similarly in both proliferating and quiescent cells after irradiation. Furthermore, the p53 protein half-life, and expression of cyclin A, cyclin E, proliferating cell nuclear antigen (PCNA), Bax, or cytochrome c expression as well as histone H2AX phosphorylation were comparable after irradiation in both phases of cells. The effect of radioprotection by a glycogen synthase kinase 3β inhibitor on p53 pathway was also similar between proliferating and quiescent cells. Our results showed that quiescence does not affect irradiation response of key proteins involved in stress and DNA damage at least in normal fibroblasts, providing a better understanding of the radiation response in quiescent cells, which is crucial for tissue repair and regeneration. - Highlights: • p53 response by irradiation was similar between proliferating and quiescent cells. • Quiescent cells showed similar profiles of cell cycle proteins after irradiation. • Radioprotection of GSK-3β inhibitor caused similar effects between these cells. • Quiescence did not affect p53 response despite its

  19. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    Science.gov (United States)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (Pcell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  20. Gene expression in response to cyclic mechanical stretch in primary human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Maria Reichenbach

    2014-12-01

    Full Text Available The human dermal skin is permanently exposed to mechanical stress, for instance during facial expression, which might cause wrinkles with age. Cyclic mechanical stretching of cells results in cellular and cytoskeleton alignment perpendicular to the stretch direction regulating cellular response. With gene expression profiling it was aimed to identify the differentially expressed genes associated with the regulation of the cytoskeleton to investigate the stretch-induced cell alignment mechanism. Here, the transcription activity of the genome in response to cyclic mechanical stress was measured using DNA microarray technology with Agilent SurePrint G3 Human GE 8x60k Microarrays, based on the overall measurement of the mRNA. Gene expression was measured at the beginning of the alignment process showing first reoriented cells after 5 h stretching and at the end after 24 h, where nearly all cells are aligned. Gene expression data of control vs. stretched primary human dermal fibroblasts after 5 h and 24 h demonstrated the regulation of differentially expressed genes associated with metabolism, differentiation and morphology and were deposited at http://www.ncbi.nlm.nih.gov/geo with the accession number GSE58389.

  1. Different dose rate-dependent responses of human melanoma cells and fibroblasts to low dose fast neutrons.

    Science.gov (United States)

    Dionet, Claude; Müller-Barthélémy, Melanie; Marceau, Geoffroy; Denis, Jean-Marc; Averbeck, Dietrich; Gueulette, John; Sapin, Vincent; Pereira, Bruno; Tchirkov, Andrei; Chautard, Emmanuel; Verrelle, Pierre

    2016-09-01

    To analyze the dose rate influence in hyper-radiosensitivity (HRS) of human melanoma cells to very low doses of fast neutrons and to compare to the behaviour of normal human skin fibroblasts. We explored different neutron dose rates as well as possible implication of DNA double-strand breaks (DSB), apoptosis, and energy-provider adenosine-triphosphate (ATP) levels during HRS. HRS in melanoma cells appears only at a very low dose rate (VLDR), while a high dose rate (HDR) induces an initial cell-radioresistance (ICRR). HRS does not seem to be due either to DSB or to apoptosis. Both phenomena (HRS and ICRR) appear to be related to ATP availability for triggering cell repair. Fibroblast survival after neutron irradiation is also dose rate-dependent but without HRS. Melanoma cells or fibroblasts exert their own survival behaviour at very low doses of neutrons, suggesting that in some cases there is a differential between cancer and normal cells radiation responses. Only the survival of fibroblasts at HDR fits the linear no-threshold model. This new insight into human cell responses to very low doses of neutrons, concerns natural radiations, surroundings of accelerators, proton-therapy devices, flights at high altitude. Furthermore, ATP inhibitors could increase HRS during high-linear energy transfer (high-LET) irradiation.

  2. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization

    Directory of Open Access Journals (Sweden)

    Deglesne PA

    2016-02-01

    Full Text Available Pierre-Antoine Deglesne,* Rodrigo Arroyo,* Evgeniya Ranneva, Philippe Deprez Research and Development, SKIN TECH PHARMA GROUP, Castelló d'Empúries, Spain  *These authors contributed equally to this work Abstract: Mesotherapy/biorevitalization with hyaluronic acid (HA is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS® (Repairs, Refills, Stimulates HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15% and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts.Keywords: mesotherapy, medical device, RRS, collagen, elastin, extracellular matrix

  3. Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage

    OpenAIRE

    Jackson, Steven A.; Zachariah P.G. Olufs; Tran, Khoa A.; Zaidan, Nur Zafirah; Sridharan, Rupa

    2016-01-01

    Summary During the reprogramming of mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells, the activation of pluripotency genes such as NANOG occurs after the mesenchymal to epithelial transition. Here we report that both adult stem cells (neural stem cells) and differentiated cells (astrocytes) of the neural lineage can activate NANOG in the absence of cadherin expression during reprogramming. Gene expression analysis revealed that only the NANOG+E-cadherin+ populations expres...

  4. Transcriptome comparison of human neurons generated using induced pluripotent stem cells derived from dental pulp and skin fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jian Chen

    Full Text Available Induced pluripotent stem cell (iPSC technology is providing an opportunity to study neuropsychiatric disorders through the capacity to grow patient-specific neurons in vitro. Skin fibroblasts obtained by biopsy have been the most reliable source of cells for reprogramming. However, using other somatic cells obtained by less invasive means would be ideal, especially in children with autism spectrum disorders (ASD and other neurodevelopmental conditions. In addition to fibroblasts, iPSCs have been developed from cord blood, lymphocytes, hair keratinocytes, and dental pulp from deciduous teeth. Of these, dental pulp would be a good source for neurodevelopmental disorders in children because obtaining material is non-invasive. We investigated its suitability for disease modeling by carrying out gene expression profiling, using RNA-seq, on differentiated neurons derived from iPSCs made from dental pulp extracted from deciduous teeth (T-iPSCs and fibroblasts (F-iPSCs. This is the first RNA-seq analysis comparing gene expression profiles in neurons derived from iPSCs made from different somatic cells. For the most part, gene expression profiles were quite similar with only 329 genes showing differential expression at a nominally significant p-value (p<0.05, of which 63 remained significant after correcting for genome-wide analysis (FDR <0.05. The most striking difference was the lower level of expression detected for numerous members of the all four HOX gene families in neurons derived from T-iPSCs. In addition, an increased level of expression was seen for several transcription factors expressed in the developing forebrain (FOXP2, OTX1, and LHX2, for example. Overall, pathway analysis revealed that differentially expressed genes that showed higher levels of expression in neurons derived from T-iPSCs were enriched for genes implicated in schizophrenia (SZ. The findings suggest that neurons derived from T-iPSCs are suitable for disease

  5. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leah J.; Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Kandpal, Sanjeev Kumar; Mason, Michael D. [Department of Chemical and Biological Engineering, University of Maine, Orono, ME (United States); Zheng, Tongzhang [Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT (United States); Wise, John Pierce, E-mail: John.Wise@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States)

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  6. STAT6-Dependent Collagen Synthesis in Human Fibroblasts Is Induced by Bovine Milk.

    Directory of Open Access Journals (Sweden)

    Stefan Kippenberger

    Full Text Available Since the domestication of the urus, 10.000 years ago, mankind utilizes bovine milk for different purposes. Besides usage as a nutrient also the external application of milk on skin has a long tradition going back to at least the ancient Aegypt with Cleopatra VII as a great exponent. In order to test whether milk has impact on skin physiology, cultures of human skin fibroblasts were exposed to commercial bovine milk. Our data show significant induction of proliferation by milk (max. 2,3-fold, EC50: 2,5% milk without toxic effects. Surprisingly, bovine milk was identified as strong inducer of collagen 1A1 synthesis at both, the protein (4-fold, EC50: 0,09% milk and promoter level. Regarding the underlying molecular pathways, we show functional activation of STAT6 in a p44/42 and p38-dependent manner. More upstream, we identified IGF-1 and insulin as key factors responsible for milk-induced collagen synthesis. These findings show that bovine milk contains bioactive molecules that act on human skin cells. Therefore, it is tempting to test the herein introduced concept in treatment of atrophic skin conditions induced e.g. by UV light or corticosteroids.

  7. STAT6-Dependent Collagen Synthesis in Human Fibroblasts Is Induced by Bovine Milk.

    Science.gov (United States)

    Kippenberger, Stefan; Zöller, Nadja; Kleemann, Johannes; Müller, Jutta; Kaufmann, Roland; Hofmann, Matthias; Bernd, August; Meissner, Markus; Valesky, Eva

    2015-01-01

    Since the domestication of the urus, 10.000 years ago, mankind utilizes bovine milk for different purposes. Besides usage as a nutrient also the external application of milk on skin has a long tradition going back to at least the ancient Aegypt with Cleopatra VII as a great exponent. In order to test whether milk has impact on skin physiology, cultures of human skin fibroblasts were exposed to commercial bovine milk. Our data show significant induction of proliferation by milk (max. 2,3-fold, EC50: 2,5% milk) without toxic effects. Surprisingly, bovine milk was identified as strong inducer of collagen 1A1 synthesis at both, the protein (4-fold, EC50: 0,09% milk) and promoter level. Regarding the underlying molecular pathways, we show functional activation of STAT6 in a p44/42 and p38-dependent manner. More upstream, we identified IGF-1 and insulin as key factors responsible for milk-induced collagen synthesis. These findings show that bovine milk contains bioactive molecules that act on human skin cells. Therefore, it is tempting to test the herein introduced concept in treatment of atrophic skin conditions induced e.g. by UV light or corticosteroids.

  8. Ascorbate ameliorates Echis coloratus venom-induced oxidative stress in human fibroblasts

    Science.gov (United States)

    Al-Sheikh, Yazeed A.; Ghneim, Hazem K.; Aljaser, Feda S.; Aboul-Soud, Mourad A.M.

    2017-01-01

    Reports related to the effects of Echis coloratus venom (EcV) on the antioxidant capacity of human tissues is very scarce. The present study was undertaken to investigate the activities and gene expression levels of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT), as well as the levels of reduced glutathione (GSH), oxidized glutathione (GSSG) and the generation rates of superoxide anions (SOA), hydrogen peroxide (H2O2) and lipid peroxides (LPO) in cultured human fibroblasts incubated with EcV, ascorbate (Asc) and EcV plus Asc at concentrations and incubation periods that maintained cell viability. Results indicated that the activities of all antioxidant enzymes and their corresponding transcripts underwent highly significant decreases and downregulation in EcV-treated cultures (0.5 µg/ml medium for 4 h) compared to venom-free controls (PEcV-treated cultures with Asc (400 µM for 12 h) restored the activities and levels of all investigated parameters including the expression levels of the antioxidant genes to control venom-free values. It is concluded that Asc acted to neutralize the increased reactive oxygen species generation, thus ameliorating the EcV-induced oxidative stress and alleviating the downregulation of antioxidant genes. PMID:28672988

  9. Inhibition of the differentiation of monocyte-derived dendritic cells by human gingival fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sylvie Séguier

    Full Text Available We investigated whether gingival fibroblasts (GFs can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05 inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism.

  10. Photoprotective Effects of Cycloheterophyllin against UVA-Induced Damage and Oxidative Stress in Human Dermal Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Cheng-Hua Huang

    Full Text Available Ultraviolet (UV radiation, particularly ultraviolet A (UVA, is known to play a major role in photoaging of the human skin. Many studies have demonstrated that UV exposure causes the skin cells to generate reactive oxygen species and activates the mitogen-activated protein kinase (MAPK pathway. Previous studies have also demonstrated that cycloheterophyllin has an antioxidant effect and can effectively scavenge free radicals. Extending the aforementioned investigations, in this study, human dermal fibroblasts were used to investigate the protective effect of cycloheterophyllin against UV-induced damage. We found that cycloheterophyllin not only significantly increased cell viability, but also attenuated the phosphorylation of MAPK after UVA exposure. Furthermore, cycloheterophyllin could reduce hydrogen peroxide (H2O2 generation and down-regulate H2O2-induced MAPK phosphorylation. In the in vivo studies, the topical application of cycloheterophyllin before UVA irradiation significantly decreased trans-epidermal water loss (TEWL, erythema, and blood flow rate. These results indicate that cycloheterophyllin is a photoprotective agent that inhibits UVA-induced oxidative stress and damage, and could be used in the research on and prevention of skin photoaging.

  11. Induction of mutagenic DNA damage in human fibroblasts after exposure to artificial tanning lamps.

    Science.gov (United States)

    Woollons, A; Clingen, P H; Price, M L; Arlett, C F; Green, M H

    1997-11-01

    There is increasing concern about the adverse health effects associated with the use of sunbeds, particularly with respect to skin photocarcinogenesis. The induction of mutagenic DNA damage is a prerequisite for the development of skin tumours, and it is well established that direct types of damage such as cyclobutane pyrimidine dimers (CPDs) give rise to mutations in tumour suppressor genes and oncogenes. In addition, ultraviolet radiation may induce indirect types of DNA damage, including oxidative products, which are also potentially mutagenic. By using specific DNA repair enzymes (T4 endonuclease V and endonuclease III) and the comet assay we have been able to detect the induction of CPDs, oxidized or hydrated pyrimidine bases and single-strand breaks in cultured human fibroblasts (MRC-5) after exposure for between 15 s and 20 min on two different commercial sunbeds containing Philips 'Performance' 100W-R or Philips TL80W/10R lamps. The ratio of endonuclease III to T4 endonuclease V sensitive sites varied substantially between the two lamps and was 3.3% and 18%, respectively. The sunbed containing the 'Performance' 100W-R lamps was as potent at inducing CPDs as was natural sunlight in fine weather. These results establish that commercial tanning lamps produce the types of DNA damage associated with photocarcinogenesis in human cells, and complement epidemiological evidence indicating the potential risk of using sunbeds.

  12. Biocompatibility and Inflammatory Potential of Titanium Alloys Cultivated with Human Osteoblasts, Fibroblasts and Macrophages

    Directory of Open Access Journals (Sweden)

    Jana Markhoff

    2017-01-01

    Full Text Available The biomaterials used to maintain or replace functions in the human body consist mainly of metals, ceramics or polymers. In orthopedic surgery, metallic materials, especially titanium and its alloys, are the most common, due to their excellent mechanical properties, corrosion resistance, and biocompatibility. Aside from the established Ti6Al4V alloy, shape memory materials such as nickel-titanium (NiTi have risen in importance, but are also discussed because of the adverse effects of nickel ions. These might be reduced by specific surface modifications. In the present in vitro study, the osteoblastic cell line MG-63 as well as primary human osteoblasts, fibroblasts, and macrophages were cultured on titanium alloys (forged Ti6Al4V, additive manufactured Ti6Al4V, NiTi, and Diamond-Like-Carbon (DLC-coated NiTi to verify their specific biocompatibility and inflammatory potential. Additive manufactured Ti6Al4V and NiTi revealed the highest levels of metabolic cell activity. DLC-coated NiTi appeared as a suitable surface for cell growth, showing the highest collagen production. None of the implant materials caused a strong inflammatory response. In general, no distinct cell-specific response could be observed for the materials and surface coating used. In summary, all tested titanium alloys seem to be biologically appropriate for application in orthopedic surgery.

  13. Inhibition of the differentiation of monocyte-derived dendritic cells by human gingival fibroblasts.

    Science.gov (United States)

    Séguier, Sylvie; Tartour, Eric; Guérin, Coralie; Couty, Ludovic; Lemitre, Mathilde; Lallement, Laetitia; Folliguet, Marysette; El Naderi, Samah; Terme, Magali; Badoual, Cécile; Lafont, Antoine; Coulomb, Bernard

    2013-01-01

    We investigated whether gingival fibroblasts (GFs) can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs) and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM) from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05) inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism.

  14. Simultaneous assay for plasmin and DNase using radiolabeled human fibroblasts on microcarriers

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, G.S.; Dimitrijevich, S.D.; Gracy, R.W. (Univ. of North Texas/Texas College of Osteopathic Medicine, Fort Worth (USA))

    1989-10-01

    A critical step in tissue and wound repair is the removal of eschar--accumulation of denatured cellular and extracellular macromolecules. Enzymatic debridement using a combination of plasmin (fibrinolysin) and DNase has been successfully utilized on a variety of types of wounds. Monitoring the activity of these enzymes by measuring the rate of fibrinolysis, or by viscometric changes due to DNA hydrolysis, is exceedingly cumbersome, time consuming, and, at best, only semiquantitative. Although spectrophotometric assays using synthetic substrates offer several advantages, they do not allow extrapolation of the data to the more complex natural substrates encountered in vivo. We have, therefore, developed an in vitro radioisotopic assay for the simultaneous and quantitative measurement of the hydrolytic activity of both plasmin and DNase. Double labeled ((3H)thymidine, (14C)leucine) human dermal fibroblasts grown on microcarrier beads are utilized as sources of nucleic acid and protein substrates. The assay meets all the criteria of analytical validity, is sensitive and rapid, and is amenable to adaptation for analysis of other hydrolytic enzymes. The method offers a direct evaluation of the enzymatic debridement of wounds using actual human cellular substrates. Moreover, the microcarriers provide a greatly increased surface area for cell attachment and growth, are amenable to rapid separation from the cells by simple mechanical methods, and are ideally suited to analytical manipulations.

  15. Modulation of the Senescence-Associated Inflammatory Phenotype in Human Fibroblasts by Olive Phenols

    Science.gov (United States)

    Menicacci, Beatrice; Cipriani, Caterina; Margheri, Francesca

    2017-01-01

    Senescent cells display an increase in the secretion of growth factors, inflammatory cytokines and proteolytic enzymes, termed the “senescence-associated-secretory-phenotype” (SASP), playing a major role in many age-related diseases. The phenolic compounds present in extra-virgin olive oil are inhibitors of oxidative damage and have been reported to play a protective role in inflammation-related diseases. Particularly, hydroxytyrosol and oleuropein are the most abundant and more extensively studied. Pre-senescent human lung (MRC5) and neonatal human dermal (NHDF) fibroblasts were used as cellular model to evaluate the effect of chronic (4–6 weeks) treatment with 1 μM hydroxytyrosol (HT) or 10 μM oleuropein aglycone (OLE) on senescence/inflammation markers. Both phenols were effective in reducing β-galactosidase-positive cell number and p16 protein expression. In addition, senescence/inflammation markers such as IL-6 and metalloprotease secretion, and Ciclooxigenase type 2 (COX-2) and α-smooth-actin levels were reduced by phenol treatments. In NHDF, COX-2 expression, Nuclear Factor κ-light-chain-enhancer of activated B cells (NFκB) protein level and nuclear localization were augmented with culture senescence and decreased by OLE and HT treatment. Furthermore, the inflammatory effect of Tumor Necrosis Factor α (TNFα) exposure was almost completely abolished in OLE- and HT-pre-treated NHDF. Thus, the modulation of the senescence-associated inflammatory phenotype might be an important mechanism underlying the beneficial effects of olive oil phenols. PMID:29084133

  16. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    Science.gov (United States)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (Pmuscle cells is likely due to transient membrane disruption on initiation of flow.

  17. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    Science.gov (United States)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (Phuman aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  18. Simulated studies on the biological effects of space radiation on quiescent human fibroblasts

    Science.gov (United States)

    Ding, Nan; Pei, Hailong; He, Jinpeng; Furusawa, Yoshiya; Hirayama, Ryoichi; Liu, Cuihua; Matsumoto, Yoshitaka; Li, He; Hu, Wentao; Li, Yinghui; Wang, Jufang; Wang, Tieshan; Zhou, Guangming

    2013-10-01

    High charge and energy (HZE) particles are severe risk to manned long-term outer space exploration. Studies on the biological effects of space HZE particles and the underlying mechanisms are essential to the accurate risk assessment and the development of efficient countermeasure. Since majority of the cells in human body stay quiescent (G0 phase), in this study, we established G0 cell and G1 cell models by releasing human normal embryonic lung fibroblast cells from contact inhibition and studied the radiation toxicity of various kinds of HZE particles. Results showed that all of the particles were dose-dependently lethal and G0 cells were more radioresistant than G1 cells. We also found that 53BP1 foci were induced in a LET- and fluence-dependent manner and fewer foci were induced in G0 cells than G1 cells, however, the decrease of foci in 24 h after irradiation was highly relevant to the type of particles. These results imply that even though health risk of space radiation is probably overestimated by the data obtained with exponentially growing cells, whose radiosensitivity is similar to G1 cells, the risk of space HZE particles is un-ignorable and accurate assessment and mechanistic studies should be deepened. The diverse abilities of G0 cells and G1 cells in repairing DNA damages induced by HZE particles emphasize the importance in studying the impact of HZE particles on DNA damage repair pathways.

  19. Deceleration of senescence in normal human fibroblasts by withanone extracted from ashwagandha leaves.

    Science.gov (United States)

    Widodo, Nashi; Shah, Navjot; Priyandoko, Didik; Ishii, Tetsuro; Kaul, Sunil C; Wadhwa, Renu

    2009-10-01

    Ashwagandha is an Ayurvedic shrub that forms a common ingredient of health supplements, tonics, and Indian home remedies designed to promote health and quality of life. Though sustained through experience and history, there are only a limited laboratory studies and experimental evidence to its effects. In our efforts to characterize Ashwagandha activities and their molecular mechanisms, we initially prepared leaf extract of Ashwagandha (i-Extract) that showed tumor-inhibitory activity. In the present study, we demonstrate that a major component of i-Extract and withanone (i-Factor) protected the normal human fibroblasts against the toxicity caused by withaferin A. It increased the in vitro division potential of normal human cells that appeared to be mediated by decreased accumulation of molecular damage, downregulation of the senescence-specific beta-galactosidase activity and the senescence marker protein, p21(WAF-1), protection against oxidative damage, and induction of proteasomal activity. To the best of our knowledge, we provide the first example of phytochemical(s) (i-Extract and withanone) that have both anticancer and antiaging activities and point to the molecular link between aging and cancer.

  20. Persea americana Mill. Seed: Fractionation, Characterization, and Effects on Human Keratinocytes and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Maria del R. Ramos-Jerz

    2013-01-01

    Full Text Available Methanolic avocado (Persea americana Mill., Lauraceae seed extracts were separated by preparative HSCCC. Partition and HSCCC fractions were principally characterized by LC-ESI-MS/MS analysis. Their in vitro influence was investigated on proliferation, differentiation, cell viability, and gene expression on HaCaT and normal human epidermal keratinocytes (NHEK and normal human dermal fibroblasts (NHDF. The methanol-water partition (M from avocado seeds and HSCCC fraction 3 (M.3 were mostly composed of chlorogenic acid and its isomers. Both reduced NHDF but enhanced HaCaT keratinocytes proliferation. HSCCC fraction M.2 composed of quinic acid among chlorogenic acid and its isomers inhibited proliferation and directly induced differentiation of keratinocytes as observed on gene and protein level. Furthermore, M.2 increased NHDF proliferation via upregulation of growth factor receptors. Salidrosides and ABA derivatives present in HSCCC fraction M.6 increased NHDF and keratinocyte proliferation that resulted in differentiation. The residual solvent fraction M.7 contained among low concentrations of ABA derivatives high amounts of proanthocyanidins B1 and B2 as well as an A-type trimer and stimulated proliferation of normal cells and inhibited the proliferation of immortalized HaCaT keratinocytes.

  1. Persea americana Mill. Seed: Fractionation, Characterization, and Effects on Human Keratinocytes and Fibroblasts.

    Science.gov (United States)

    Ramos-Jerz, Maria Del R; Villanueva, Socorro; Jerz, Gerold; Winterhalter, Peter; Deters, Alexandra M

    2013-01-01

    Methanolic avocado (Persea americana Mill., Lauraceae) seed extracts were separated by preparative HSCCC. Partition and HSCCC fractions were principally characterized by LC-ESI-MS/MS analysis. Their in vitro influence was investigated on proliferation, differentiation, cell viability, and gene expression on HaCaT and normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF). The methanol-water partition (M) from avocado seeds and HSCCC fraction 3 (M.3) were mostly composed of chlorogenic acid and its isomers. Both reduced NHDF but enhanced HaCaT keratinocytes proliferation. HSCCC fraction M.2 composed of quinic acid among chlorogenic acid and its isomers inhibited proliferation and directly induced differentiation of keratinocytes as observed on gene and protein level. Furthermore, M.2 increased NHDF proliferation via upregulation of growth factor receptors. Salidrosides and ABA derivatives present in HSCCC fraction M.6 increased NHDF and keratinocyte proliferation that resulted in differentiation. The residual solvent fraction M.7 contained among low concentrations of ABA derivatives high amounts of proanthocyanidins B1 and B2 as well as an A-type trimer and stimulated proliferation of normal cells and inhibited the proliferation of immortalized HaCaT keratinocytes.

  2. Streptococcus mutans and Streptococcus sobrinus are able to adhere and invade human gingival fibroblast cell line.

    Science.gov (United States)

    Berlutti, F; Catizone, A; Ricci, G; Frioni, A; Natalizi, T; Valenti, P; Polimeni, A

    2010-01-01

    Streptococcus mutans and Streptococcus sobrinus, the principal etiologic agents of caries decay of teeth, are generally acquired in oral cavity at the moment of tooth eruption. However, as S. mutans has been detected in oral cavity of predentate children, the eruption of teeth seems not to be a necessary prerequisite, suggesting that this species may be not confined to dental plaque. Here, we evaluate the ability of S. mutans and S. sobrinus in planktonic and biofilm lifestyle to adhere, invade and survive within human gingival fibroblast (HGF-1) cells. Planktonic and biofilm streptococci adhered and invaded host cells to different extents, showing higher efficiencies of biofilm than planktonic counterparts. Moreover, planktonic and biofilm streptococci showed the same percentage of survival within host cells. Transmission electron and confocal microscopy observations confirmed intracellular localization of planktonic and biofilm bacteria. The adhesion, invasion and survival abilities within human oral cells may be considered S. mutans and S. sobrinus virulence mechanisms to colonize and persist in the oral cavity in the absence of tooth surface.

  3. Human fibroblasts treated with hydrogen peroxide stimulate human melanoblast proliferation and melanocyte differentiation, but inhibit melanocyte proliferation in serum-free co-culture system.

    Science.gov (United States)

    Hirobe, Tomohisa; Shibata, Tatako; Sato, Kiyoshi

    2016-12-01

    Oxidative stress caused by hydrogen peroxide (H2O2) elicits harmful effects on human melanocytes such as DNA damage and cell death. On the contrary, H2O2 is known to possess beneficial effects on melanocytes. However, mechanisms of the beneficial effects of H2O2 on melanocytes have not been fully understood, especially the indirect effects on melanocyte proliferation and differentiation from cells constituting surrounding tissue environment such as fibroblasts. The aim of this study was to clarify whether H2O2-treated human fibroblasts affect the proliferation and differentiation of human melanocytes using serum-free co-culture system. Epidermal melanoblasts and melanocytes were co-cultured with H2O2-treated or control fibroblasts in serum-free culture media. The effects of H2O2-treated fibroblasts were detected by changes in the proliferation and differentiation of melanoblasts/melanocytes. H2O2-treated fibroblasts stimulated the proliferation of melanoblasts and the differentiation, melanogenesis, and dendritogenesis of melanocytes, but inhibited the proliferation of melanocytes. In the melanocytes co-cultured with H2O2-treated fibroblasts, the expression of tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), and KIT was increased, whereas TYRP2 and microphthalmia-associated transcription factor showed no change. These results suggest that H2O2-treated fibroblasts can produce and release some mitogenic and melanogenic factors toward melanoblasts in addition to some proliferation-inhibiting factors toward melanocytes. The stimulation of melanocyte differentiation seems to be performed through the upregulation of TYR, TYRP1, and KIT. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells.

    Science.gov (United States)

    Patwardhan, Juilee; Bhatt, Purvi

    2015-10-01

    The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast cells. Protective ability of flavonoid-enriched (FE) fraction of clove was studied against UV-B induced cytotoxicity, anti-oxidant regulation, oxidative DNA damage, intracellular reactive oxygen species (ROS) generation, apoptotic morphological changes, and regulation of heme oxygenase-1 (HO-1) gene through nuclear factor E2-related factor 2 antioxidant response element (Nrf2 ARE) pathway. FE fraction showed a significant antioxidant potential. Pretreatment of cells with FE fraction (10-40 μg/ml) reversed the effects of UV-B induced cytotoxicity, depletion of endogenous enzymatic antioxidants, oxidative DNA damage, intracellular ROS production, apoptotic changes, and overexpression of Nrf2 and HO-1. The present study demonstrated for the first time that the FE fraction from clove could confer UV-B protection probably through the Nrf2-ARE pathway, which included the down-regulation of Nrf2 and HO-1. These findings suggested that the flavonoids from clove could potentially be considered as UV-B protectants and can be explored further for its topical application to the area of the skin requiring protection. Pretreatment of human dermal fibroblast with flavonoid-enriched fraction of Eugenia caryophylata attenuated effects of ultraviolet-B radiationsIt also conferred protection through nuclear factor E2-related factor 2-antioxidant response pathway and increased tolerance of cells against oxidative stressFlavonoid-enriched fraction can be explored further for topical application to the skin as a

  5. Generation of human induced pluripotent stem cell lines from human dermal fibroblasts using a modified RNA system

    Directory of Open Access Journals (Sweden)

    Kyung-Ok Uhm

    2017-10-01

    Full Text Available We generated human induced pluripotent stem cells (KSCBi002-B and KSCBi002-B-1 from the dermal fibroblasts of a donor using a modified RNA-based gene delivery method. According to GTG-banding analysis, the generated KSCBi002-B line has a cytogenetic abnormality (46,XY, t(1;4(q21;q25 that is distinct from that of the donor, whereas KSCBi002-B-1 has a normal karyotype (46,XY. These cell lines can be useful as a model for characterizing the hiPSCs generated by a non-viral and non-integrative system, or as a chromosomal balanced translocation model. These two cell lines are registered and available from the National Stem Cell Bank, Korea National Institute of Health.

  6. Generation of human induced pluripotent stem cell lines from human dermal fibroblasts using a modified RNA system.

    Science.gov (United States)

    Uhm, Kyung-Ok; Go, Gue Youn; Kim, So-Jung; Jo, Eun Hee; Choi, Hye Young; Im, Young Sam; Ha, Hye-Yeong; Kim, Jung-Hyun; Koo, Soo Kyung

    2017-10-01

    We generated human induced pluripotent stem cells (KSCBi002-B and KSCBi002-B-1) from the dermal fibroblasts of a donor using a modified RNA-based gene delivery method. According to GTG-banding analysis, the generated KSCBi002-B line has a cytogenetic abnormality (46,XY, t(1;4)(q21;q25)) that is distinct from that of the donor, whereas KSCBi002-B-1 has a normal karyotype (46,XY). These cell lines can be useful as a model for characterizing the hiPSCs generated by a non-viral and non-integrative system, or as a chromosomal balanced translocation model. These two cell lines are registered and available from the National Stem Cell Bank, Korea National Institute of Health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Lysophosphatidic acid (LPA 18:1 transcriptional regulation of primary human gingival fibroblasts

    Directory of Open Access Journals (Sweden)

    D. Roselyn Cerutis

    2014-12-01

    Full Text Available The pleiotropic, bioactive lipid lysophosphatidic acid [(LPA, 1-acyl-sn-glycerol-3-phosphate] exerts critical regulatory actions in physiology and pathophysiology in many systems. It is present in normal bodily fluids, and is elevated in pathology (1. In vivo, “LPA” exists as distinct molecular species, each having a single fatty acid of varying chain length and degree of unsaturation covalently attached to the glycerol backbone via an acyl, alkyl, or alkenyl link. These species differ in affinities for the individual LPA receptors [(LPARs, LPA1-6] and coupling to G proteins (2. However, LPA 18:1 has been and continues to be the most commonly utilized species in reported studies. The actions of “LPA” remain poorly defined in oral biology and pathophysiology. Our laboratory has addressed this knowledge gap by studying in vitro the actions of the major human salivary LPA species [18:1, 18:0, and 16:0 (3] in human oral cells (4–7. This includes gingival fibroblasts (GF, which our flow cytometry data from multiple donors found that they express LPA1-5 (6. We have also reported that these species are ten-fold elevated to pharmacologic levels in the saliva and gingival crevicular fluid obtained from patients with moderate–severe periodontitis (8. As the potential of LPA to regulate transcriptional activity had not been examined in the oral system, this study used whole human genome microarray analysis to test the hypothesis that LPA 18:1-treated human GF would show significant changes in gene transcripts relevant to their biology, wound-healing, and inflammatory responses. LPA 18:1 was found to significantly regulate a large, complex set of genes critical to GF biology in these categories and to periodontal disease. The raw data has been deposited at NCBI's GEO database as record GSE57496.

  8. Lysophosphatidic acid (LPA) 18:1 transcriptional regulation of primary human gingival fibroblasts.

    Science.gov (United States)

    Cerutis, D Roselyn; Weston, Michael D; Ogunleye, Afolabi O; McVaney, Timothy P; Miyamoto, Takanari

    2014-12-01

    The pleiotropic, bioactive lipid lysophosphatidic acid [(LPA), 1-acyl-sn-glycerol-3-phosphate] exerts critical regulatory actions in physiology and pathophysiology in many systems. It is present in normal bodily fluids, and is elevated in pathology (1). In vivo, "LPA" exists as distinct molecular species, each having a single fatty acid of varying chain length and degree of unsaturation covalently attached to the glycerol backbone via an acyl, alkyl, or alkenyl link. These species differ in affinities for the individual LPA receptors [(LPARs), LPA1-6] and coupling to G proteins (2). However, LPA 18:1 has been and continues to be the most commonly utilized species in reported studies. The actions of "LPA" remain poorly defined in oral biology and pathophysiology. Our laboratory has addressed this knowledge gap by studying in vitro the actions of the major human salivary LPA species [18:1, 18:0, and 16:0 (3)] in human oral cells (4-7). This includes gingival fibroblasts (GF), which our flow cytometry data from multiple donors found that they express LPA1-5 (6). We have also reported that these species are ten-fold elevated to pharmacologic levels in the saliva and gingival crevicular fluid obtained from patients with moderate-severe periodontitis (8). As the potential of LPA to regulate transcriptional activity had not been examined in the oral system, this study used whole human genome microarray analysis to test the hypothesis that LPA 18:1-treated human GF would show significant changes in gene transcripts relevant to their biology, wound-healing, and inflammatory responses. LPA 18:1 was found to significantly regulate a large, complex set of genes critical to GF biology in these categories and to periodontal disease. The raw data has been deposited at NCBI's GEO database as record GSE57496.

  9. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF).

    Science.gov (United States)

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh

    2015-12-01

    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast division stimulation. It also suggests that the effects of bFGF on different cell types with

  10. Apoptosis-Like Cell Death Induction and Aberrant Fibroblast Properties in Human Incisional Hernia Fascia

    Science.gov (United States)

    Diaz, Ramon; Quiles, Maria T.; Guillem-Marti, Jordi; Lopez-Cano, Manuel; Huguet, Pere; Ramon-y-Cajal, Santiago; Reventos, Jaume; Armengol, Manel; Arbos, Maria A.

    2011-01-01

    Incisional hernia often occurs following laparotomy and can be a source of serious problems. Although there is evidence that a biological cause may underlie its development, the mechanistic link between the local tissue microenvironment and tissue rupture is lacking. In this study, we used matched tissue-based and in vitro primary cell culture systems to examine the possible involvement of fascia fibroblasts in incisional hernia pathogenesis. Fascia biopsies were collected at surgery from incisional hernia patients and non-incisional hernia controls. Tissue samples were analyzed by histology and immunoblotting methods. Fascia primary fibroblast cultures were assessed at morphological, ultrastructural, and functional levels. We document tissue and fibroblast loss coupled to caspase-3 activation and induction of apoptosis-like cell-death mechanisms in incisional hernia fascia. Alterations in cytoskeleton organization and solubility were also observed. Incisional hernia fibroblasts showed a consistent phenotype throughout early passages in vitro, which was characterized by significantly enhanced cell proliferation and migration, reduced adhesion, and altered cytoskeleton properties, as compared to non-incisional hernia fibroblasts. Moreover, incisional hernia fibroblasts displayed morphological and ultrastructural alterations compatible with autophagic processes or lysosomal dysfunction, together with enhanced sensitivity to proapoptotic challenges. Overall, these data suggest an ongoing complex interplay of cell death induction, aberrant fibroblast function, and tissue loss in incisional hernia fascia, which may significantly contribute to altered matrix maintenance and tissue rupture in vivo. PMID:21641387

  11. A novel system for correcting large-scale chromosomal aberrations: ring chromosome correction via reprogramming into induced pluripotent stem cell (iPSC).

    Science.gov (United States)

    Kim, Taehyun; Plona, Kathleen; Wynshaw-Boris, Anthony

    2017-08-01

    Approximately 1 in 500 newborns are born with chromosomal abnormalities that include trisomies, translocations, large deletions, and duplications. There is currently no therapeutic approach for correcting such chromosomal aberrations in vivo or in vitro. When we attempted to produce induced pluripotent stem cell (iPSC) models from patient-derived fibroblasts that contained ring chromosomes, we found that the ring chromosomes were eliminated and replaced by duplicated normal copies of chromosomes through a mechanism of uniparental isodisomy (Bershteyn et al. 2014, Nature 507:99). The discovery of this previously unforeseen system for aberrant chromosome correction during reprogramming enables us for the first time to model and understand this process of cell-autonomous correction of ring chromosomes during human patient somatic cell reprograming to iPSCs. This knowledge could lead to a potential therapeutic strategy to correct common large-scale chromosomal aberrations, termed "chromosome therapy".

  12. Gata4 blocks somatic cell reprogramming by directly repressing Nanog.

    Science.gov (United States)

    Serrano, Felipe; Calatayud, Carles F; Blazquez, Marina; Torres, Josema; Castell, Jose V; Bort, Roque

    2013-01-01

    Somatic cells can be reprogrammed to induced pluripotent stem (iPS) cells by ectopic expression of the four factors Oct4, Klf4, Sox2, and Myc. Here, we investigated the role of Gata4 in the reprogramming process and present evidence for a negative role of this family of transcription factors in the induction of pluripotency. Coexpression of Gata4 with Oct4, Klf4, and Sox2 with or without Myc in mouse embryonic fibroblasts greatly impaired reprogramming and endogenous Nanog expression. The lack of Nanog upregulation was associated with a blockade in the transition from the initiation phase of reprogramming to the full pluripotent state characteristic of iPS cells. Addition of Nanog to the reprogramming cocktail blocked the deleterious effects observed with Gata4 expression. Downregulation of endogenous Gata4 by short hairpin RNAs during reprogramming both accelerated and increased the efficiency of the process and augmented the mRNA levels of endogenous Nanog. Using comparative genomics, we identified a consensus binding site for Gata factors in an evolutionary conserved region located 9 kb upstream of the Nanog gene. Using chromatin immunoprecipitation, gel retardation, and luciferase assays, we found that Gata4 bound to this region and inhibited Nanog transcription in mouse embryonic stem cells. Overall, our results describe for first time the negative effect of Gata4 in the reprogramming of somatic cells and highlight the role of Gata factors in the transcriptional networks that control cell lineage choices in the early embryo. Copyright © 2012 AlphaMed Press.

  13. Generation of a human induced pluripotent stem cell line CERAi001-A-6 using episomal vectors

    Directory of Open Access Journals (Sweden)

    Raymond C.B. Wong

    2017-07-01

    Full Text Available We report the generation of the hiPSC line CERAi001-A-6 from primary human dermal fibroblasts. Reprogramming was performed using episomal vector delivery of OCT4, SOX2, KLF4, L-MYC, LIN28 and shRNA for p53.

  14. Generation of a human induced pluripotent stem cell line CERAi001-A-6 using episomal vectors.

    Science.gov (United States)

    Wong, Raymond C B; Hung, Sandy S; Jackson, Stacey; Singh, Vikrant; Khan, Shahnaz; Liang, Helena H; Kearns, Lisa S; Nguyen, Tu; Conquest, Alison; Daniszewski, Maciej; Hewitt, Alex W; Pébay, Alice

    2017-07-01

    We report the generation of the hiPSC line CERAi001-A-6 from primary human dermal fibroblasts. Reprogramming was performed using episomal vector delivery of OCT4, SOX2, KLF4, L-MYC, LIN28 and shRNA for p53. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Analysis of sphingolipids in human corneal fibroblasts from normal and keratoconus patients.

    Science.gov (United States)

    Qi, Hui; Priyadarsini, Shrestha; Nicholas, Sarah E; Sarker-Nag, Akhee; Allegood, Jeremy; Chalfant, Charles E; Mandal, Nawajes A; Karamichos, Dimitrios

    2017-04-01

    The pathophysiology of human keratoconus (KC), a bilateral progressive corneal disease leading to protrusion of the cornea, stromal thinning, and scarring, is not well-understood. In this study, we investigated a novel sphingolipid (SPL) signaling pathway through which KC may be regulated. Using human corneal fibroblasts (HCFs) and human KC cells (HKCs), we examined the SPL pathway modulation. Both cell types were stimulated by the three transforming growth factor (TGF)-β isoforms: TGF-β1 (T1), TGF-β2 (T2), and TGF-β3 (T3). All samples were analyzed using lipidomics and real-time PCR. Our data showed that HKCs have increased levels of signaling SPLs, ceramide (Cer), and sphingosine 1-phosphate (S1P). Treatment with T1 reversed the increase in Cer in HKCs and treatment with T3 reversed the increase in S1P. S1P3 receptor mRNA levels were also significantly upregulated in HKCs, but were reduced to normal levels following T3 treatment. Furthermore, stimulation with Cer and S1P led to significant upregulation of fibrotic markers in HCFs, but not in HKCs. Additionally, stimulation with a Cer synthesis inhibitor (FTY720) led to significant downregulation of specific fibrotic markers in HKCs (TGF-β1, collagen type III, and α smooth muscle actin) without an effect on healthy HCFs, suggesting a causative role of Cer and S1P in fibrogenesis. Overall, this study suggests an association of the SPL signaling pathway in KC disease and its relation with the TGF-β pathway.

  16. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Neta, E-mail: netaerez@post.tau.ac.il [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Glanz, Sarah [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Raz, Yael [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Avivi, Camilla [Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Barshack, Iris [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  17. Patient-Derived Human Induced Pluripotent Stem Cells From Gingival Fibroblasts Composited With Defined Nanohydroxyapatite/Chitosan/Gelatin Porous Scaffolds as Potential Bone Graft Substitutes.

    Science.gov (United States)

    Ji, Jun; Tong, Xin; Huang, Xiaofeng; Zhang, Junfeng; Qin, Haiyan; Hu, Qingang

    2016-01-01

    Human embryonic stem cells and adult stem cells have always been the cell source for bone tissue engineering. However, their limitations are obvious, including ethical concerns and/or a short lifespan. The use of human induced pluripotent stem cells (hiPSCs) could avoid these problems. Nanohydroxyapatite (nHA) is an important component of natural bone and bone tissue engineering scaffolds. However, its regulation on osteogenic differentiation with hiPSCs from human gingival fibroblasts (hGFs) is unknown. The purpose of the present study was to investigate the osteogenic differentiation of hiPSCs from patient-derived hGFs regulated by nHA/chitosan/gelatin (HCG) scaffolds with different nHA ratios, such as HCG-111 (1 wt/vol% nHA) and HCG-311 (3 wt/vol% nHA). First, hGFs were reprogrammed into hiPSCs, which have enhanced osteogenic differentiation capability. Second, HCG-111 and HCG-311 scaffolds were successfully synthesized. Finally, hiPSC/HCG complexes were cultured in vitro or subcutaneously transplanted into immunocompromised mice in vivo. The osteogenic differentiation effects of two types of HCG scaffolds on hiPSCs were assessed for up to 12 weeks. The results showed that HCG-311 increased osteogenic-related gene expression of hiPSCs in vitro proved by quantitative real-time polymerase chain reaction, and hiPSC/HCG-311 complexes formed much bone-like tissue in vivo, indicated by cone-beam computed tomography imaging, H&E staining, Masson staining, and RUNX-2, OCN immunohistochemistry staining. In conclusion, our study has shown that osteogenic differentiation of hiPSCs from hGFs was improved by HCG-311. The mechanism might be that the nHA addition stimulates osteogenic marker expression of hiPSCs from hGFs. Our work has provided an innovative autologous cell-based bone tissue engineering approach with soft tissues such as clinically abundant gingiva. The present study focused on patient-personalized bone tissue engineering. Human induced pluripotent stem cells

  18. Caffeine alters mitochondrial dehydrogenase and alkaline phosphatase activity of human gingival fibroblasts in vitro.

    Science.gov (United States)

    Bozchaloei, Shabnam Soltani; Gong, Siew-Ging; Dehpour, Ahmad R; Farrokh, Parisa; Khoshayand, Mohammad R; Oskoui, Mahvash

    2013-11-01

    Caffeine is one of the most widely consumed behaviorally active substances in the world. Although its effects on the central nervous system and bone metabolism have been documented, as yet there is no report on its effect on tissues in the oral cavity. In this study we analyzed the viability of human gingival fibroblasts (HGF) and alkaline phosphatase (ALP) enzyme activity after exposure to different concentrations of caffeine for different exposure time periods. The HGF were cultured with different concentrations of caffeine. Viability of cells exposed to caffeine was analyzed by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay to assess mitochondrial dehydrogenase activity. The activity of ALP was analyzed at specific time intervals after caffeine addition. Our results showed that caffeine of concentrations caffeine at 5 and 10 mm dramatically decreased the viability and ALP activity of the cells after 4 days such that, by day 9, the viability of cells declined to near zero in the 10 mm group. These results provided evidence that caffeine in high concentrations can decrease cellular viability and ALP activity in HGF. © 2012 Wiley Publishing Asia Pty Ltd.

  19. Characterization of Human Gingival Fibroblasts on Zirconia Surfaces Containing Niobium Oxide

    Directory of Open Access Journals (Sweden)

    Young-Dan Cho

    2015-09-01

    Full Text Available It was indicated that tetragonal zirconia polycrystal (TZP containing yttria (Y2O3 and niobium oxide (Nb2O5 ((Y,Nb-TZP could be an adequate dental material to be used at esthetically important sites. The (Y,Nb-TZP was also proved to possess its osteogenic potential comparable with those conventional dental implant material, titanium (Ti. The objective of the current study was to characterize cellular response of human gingival fibroblasts (HGFs to smooth and rough surfaces of the (Y,Nb-TZP disc, which were obtained by polishing and sandblasting, respectively. Various microscopic, biochemical, and molecular techniques were used to investigate the disc surfaces and cellular responses for the experimental (Y,Nb-TZP and the comparing Ti groups. Sandblasted rough (Y,Nb-TZP (Zir-R discs had the highest surface roughness. HGFs cultured on polished (Y,Nb-TZP (Zir showed a rounded cell morphology and light spreading at 6 h after seeding and its proliferation rate significantly increased during seven days of culture compared to other surfaces. The mRNA expressions of type I collagen, integrin α2 and β1 were significantly stimulated for the Zir group at 24 h after seeding. The current findings, combined with the previous results, indicate that (Y,Nb-TZP provides appropriate surface condition for osseointegration at the fixture level and for peri-implant mucosal sealing at the abutment level producing a suitable candidate for dental implantation with an expected favorable clinical outcome.

  20. Expression of Heat Shock Proteins in Human Fibroblast Cells under Magnetic Resonant Coupling Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Kohei Mizuno

    2015-10-01

    Full Text Available Since 2007, resonant coupling wireless power transfer (WPT technology has been attracting attention and has been widely researched for practical use. Moreover, dosimetric evaluation has also been discussed to evaluate the potential health risks of the electromagnetic field from this WPT technology based on the International Commission on Non-Ionizing Radiation Protection (ICNIRP guidelines. However, there has not been much experimental evaluation of the potential health risks of this WPT technology. In this study, to evaluate whether magnetic resonant coupling WPT induces cellular stress, we focused on heat shock proteins (Hsps and determined the expression level of Hsps 27, 70 and 90 in WI38VA13 subcloned 2RA human fibroblast cells using a western blotting method. The expression level of Hsps under conditions of magnetic resonant coupling WPT for 24 h was not significantly different compared with control cells, although the expression level of Hsps for cells exposed to heat stress conditions was significantly increased. These results suggested that exposure to magnetic resonant coupling WPT did not cause detectable cell stress.

  1. Effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts in vitro.

    Science.gov (United States)

    Zhang, Hai-Yuan; Liu, Rui; Xing, Yong-Jun; Xu, Ping; Li, Yan; Li, Chen-Jun

    2013-12-01

    This study aimed to investigate the effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts (HPLFs) at various times in vitro in order to further study plateau-hypoxia-induced periodontal disease. HPLFs (fifth passage) cultured by the tissue culture method were assigned to the slight (5% O2), middle (2% O2), and severe hypoxia (1% O2) groups and the control (21% O2) group, respectively. At 12, 24, 48 and 72 h, the proliferation and alkaline phosphatase (ALP) activities were detected. The ultrastructure of the severe hypoxia group was observed. HPLFs grew more rapidly with an increase in the degree of hypoxia at 12 and 24 h, and significant levels of proliferation (Pstructures, in the severe hypoxia group at 24 h. At 48 h, the number of mitochondria and RER decreased as the mitochondria increased in size. Furthermore, mitochondrial cristae appeared to be vague, and a RER structural disorder was observed. At 72 h, the number of mitochondria and RER decreased further when the mitochondrial cristae were broken, vacuolar degeneration occurred, and the RER particles were reduced while the number of lysosomes increased. HPLF proliferation and mineralization was restrained. Additionally, HPLF structure was broken for a relatively long period of time in the middle and severe hypoxia groups. This finding demonstrated that hypoxia was capable of damaging the metabolism, reconstruction and recovery of HPLFs. The poor state of HPLFs under hypoxic conditions may therefore initiate or aggravate periodontal disease.

  2. [Effects of different concentrations of putrescine on proliferation, migration and apoptosis of human skin fibroblasts].

    Science.gov (United States)

    Chen, Jianxia; Rong, Xinzhou; Fan, Guicheng; Li, Songze; Li, Qinghui

    2015-05-01

    To explore the effects of different concentrations of putrescine on the proliferation, migration and apoptosis of human skin fibroblasts (HSF). HSF cultured in the presence of 0.5, 1.0, 5.0, 10, 50, 100, 500, and 1000 µg/ putrescine for 24 h were examined for the changes in the cell proliferation, migration, and apoptosis using MTS assay, Transwell migration assay, and flow cytometry, respectively. Compared with the control cells, HSF cultured with 0.5, 1.0, 5.0, and 10 µg/ putrescine showed significantly increased cell proliferation (Pputrescine, whereas 500 and 1000 µg/ putrescine significantly reduced the cell proliferation (P0.05). Putrescine at 1 µg/ most significantly enhanced the cell migration (Pputrescine significantly suppressed the cell migration (Pputrescine produced no obvious effects on the cell migration (P>0.05). HSF treated with 0.5, 1.0, 5.0, and 10 µg/ putrescine obvious lowered the cell apoptosis rate compared with the control group (Pputrescine; but at the concentrations of 100, 500, and 1000 µg/, putrescine significantly increased the cell apoptosis rate (Pputrescine produced no obvious effect on cell apoptosis (P>0.05). Low concentrations of putrescine can obviously enhance the proliferation ability and maintain normal migration ability of HSF in vitro, but at high concentrations, putrescine can obviously inhibit the cell migration and proliferation and induce cells apoptosis, suggesting the different roles of different concentrations of putrescine in wound healing.

  3. Changes in gene expression by 193- and 248-nm excimer laser radiation in cultured human fibroblasts.

    Science.gov (United States)

    Rimoldi, D; Flessate, D M; Samid, D

    1992-09-01

    Tissue ablation by ultraviolet excimer lasers results in exposure of viable cells to subablative doses of radiation. To understand the potential biological consequences better, we have studied changes in gene expression in cultured human skin fibroblasts exposed to either 193- or 248-nm laser light. Northern blot analyses revealed that both treatments up-regulate a common set of genes, including interstitial collagenase, tissue inhibitor of metalloprotease, metallothionein, and the proto-oncogene c-fos. Dose-response and kinetic studies of collagenase induction by 193-nm radiation showed a maximal effect with 60 J/m2 and at approximately 24 h. The induction was still persistent 96 h later. In addition to the commonly affected genes, known to be activated also by conventional UV light (254 nm) and tumor-promoting phorbol esters, other genes were found to be selectively induced by the 193-nm radiation. The heat-shock hsp70 mRNA, undetectable in controls and in cultures irradiated at 248 nm, was transiently induced 8 h after exposure to 193-nm radiation. Furthermore, a selective up-regulation of collagen type I expression was observed. The results indicate that the 193- and 248-nm radiations by excimer lasers elicit specific and different cellular responses, in addition to an overlapping pathway of gene activation common also to UV radiation by germicidal lamps. The laser-induced genes could serve as molecular markers in evaluating cell injury in situ.

  4. Modification of Bacterial Cellulose with Organosilanes to Improve Attachment and Spreading of Human Fibroblasts

    Science.gov (United States)

    Taokaew, Siriporn; Phisalaphong, Muenduen; Newby, Bi-min Zhang

    2015-01-01

    Bacterial Cellulose (BC) synthesized by Acetobacter xylinum has been a promising candidate for medical applications. Modifying BC to possess the properties needed for specific applications has been reported. In this study, BCs functionalized by organosilanes were hypothesized to improve the attachment and spreading of Normal Human Dermal Fibroblast (NHDF). The BC gels obtained from biosynthesis were dried by either ambient-air drying or freeze drying. The surfaces of those dried BCs were chemically modified by grafting methyl terminated octadecyltrichlorosilane (OTS) or amine terminated 3-aminopropyltriethoxysilane (APTES) to expectedly increase hydrophobic or electrostatic interactions with NHDF cells, respectively. NHDF cells improved their attachment and spreading on the majority of APTES-modified BCs (∼70-80% of area coverage by cells) with more rapid growth (∼2.6-2.8× after incubations from 24 to 48h) than on tissue culture polystyrene (∼2×); while the inverse results (< 5% of area coverage and stationary growth) were observed on the OTS-modified BCs. For organosilane modified BCs, the drying method had no effect on in vitro cell attachment/spreading behaviors. PMID:26478661

  5. In vitro cytotoxicity of carbon black nanoparticles synthesized from solution plasma on human lung fibroblast cells

    Science.gov (United States)

    Panomsuwan, Gasidit; Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Ueno, Tomonaga; Saito, Nagahiro

    2018-01-01

    Carbon black nanoparticles (CB-NPs) have been synthesized from liquid benzene by a solution plasma method at room temperature and atmospheric pressure. The morphological observation by scanning electron microscopy revealed the agglomeration of aggregated fine particles. The synthesized CB-NPs were predominantly amorphous as confirmed by X-ray diffraction. The in vitro cytotoxicity of CB-NPs on the human lung fibroblast (MRC-5) cell line was assessed by the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and systematically compared with those of two types of commercial carbon blacks (i.e., Vulcan XC-72 and Ketjenblack EC-600JD). Cell viabilities were studied at different concentrations of 32.5, 65, 125, and 250 µg/mL. It was found that the CB-NPs derived from solution plasma exhibited a lower cytotoxicity on the MRC-5 cells than the other two comparative carbon blacks. The viability of MRC-5 cells exposed to CB-NPs remained higher than 90% even at a high concentration of 250 µg/mL. This result preliminarily confirmed the biosafety and potential use of CB-NPs in the field of biological applications.

  6. Cytotoxicity of two available mineral trioxide aggregate cements and a new formulation on human gingival fibroblasts.

    Science.gov (United States)

    Torshabi, Maryam; Amid, Reza; Kadkhodazadeh, Mahdi; Shahrbabaki, Sara Eslami; Tabatabaei, Fahimeh S

    2016-01-01

    The purpose of this study was to investigate the cytotoxicity of nanohybrid mineral trioxide aggregate (MTA) in comparison with calcium-enriched mixture (CEM) cement and MTA-Angelus, using human gingival fibroblasts (HGFs). Nine disc-shaped specimens of each material (in 2 set stat: A, set for 24 h; B, set for 30 min; and C, fresh stat) were prepared. HGFs were exposed to tested materials' extracts or control media. Cytotoxicity testing was performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay in two time intervals. Results were evaluated by one-way ANOVA and t-test. Statistical significance was set at P MTA = 24 h set CEM) at both time intervals. Interestingly, 24 h after incubation, CEM in Groups B and C demonstrated higher cell viability values than MTA (P MTA showed equal cell viability. All samples of nanohybrid MTA had slight cytotoxic effects after 24 h of incubation, and moderate cytotoxic effects after 72 h of incubation. Set CEM and set MTA-Angelus exerted similar, favorable effects on cell viability. However, within the limitations of this in vitro study, the results suggest that nanohybrid MTA could not be recommended as a material of choice for cervical root resorption.

  7. Expression of bioactive recombinant human fibroblast growth factor 10 in Carthamus tinctorius L. seeds.

    Science.gov (United States)

    Huang, Jian; Yang, Jing; Guan, Lili; Yi, Shanyong; Du, Linna; Tian, Haishan; Guo, Yongxin; Zhai, Feng; Lu, Zhen; Li, Haiyan; Li, Xiaokun; Jiang, Chao

    2017-10-01

    Fibroblast growth factor 10 (FGF10) is a member of the FGF superfamily. It exhibits diverse biological functions, and is extensively used for fundamental research and clinical applications involving hair growth, tissue repair, and burn wounds. Oil bodies, obtained from oil seeds, have been exploited for a variety of biotechnology applications. The use of oil bodies reduces purification steps and costs associated with the production of heterogonous proteins. Here, recombinant human FGF10 (rhFGF10) was expressed in safflower (Carthamus tinctorius L.) seeds using oilbody-oleosin technology. A plant expression vector, pOTBar-oleosin-rhFGF10, was constructed and introduced into safflower using Agrobacterium tumefaciens transformation, and mature safflower plants were obtained by grafting. Oleosin-rhFGF10 was successfully transformed and expressed in safflower seeds and inherited to the T3 generation. Moreover, MTT assays demonstrated that oil bodies expressed oleosin-FGF10 had a dose-dependent effect on cellular proliferation. In conclusion, this may provide a method of producing oleosin-rhFGF10, and help us meet the increasing pharmacological demands for the protein. Copyright © 2016. Published by Elsevier Inc.

  8. Passiflora tarminiana fruits reduce UVB-induced photoaging in human skin fibroblasts.

    Science.gov (United States)

    Bravo, Karent; Duque, Luisa; Ferreres, Federico; Moreno, Diego A; Osorio, Edison

    2017-03-01

    Skin aging is a complex process that is strongly affected by UV radiation, which stimulates the production of reactive oxygen species (ROS) in the epidermis and dermis and subsequently causes skin damage. Among the major consequences are increased collagen degradation and reduced collagen synthesis. Previous reports have demonstrated the beneficial effects of polyphenols for healthy skin. Passiflora tarminiana Coppens & V.E. Barney, a species of the Passifloraceae family, is widely distributed in South America and is rich in flavonoids. We show that UVB radiation increases metalloproteinase 1 (MMP-1) and reduces procollagen production in human dermal fibroblast (HDF) cells in a dose- and time-dependent manner. We examined the antioxidant and antiaging effects of the extract and fractions of P. tarminiana fruits. The fractions showed high polyphenol content (620mg EAG/g) and antioxidant activity, as measured by ORAC (4097μmol ET/g) and ABTS (2992μmol ET/g) assays. The aqueous fraction drastically inhibited the collagenase enzyme (IC 50 0.43μg/mL). The extract and fractions presented photoprotective effects by reducing UVB-induced MMP-1 production, increasing UVB-inhibited procollagen production, and decreasing ROS production after UVB irradiation in HDF. Finally, the polyphenol contents of the extracts and fractions from P. tarminiana were analyzed by HPLC-DAD-ESI-MS n , and procyanidins and glycosylated flavonoids were identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Strawberry-Based Cosmetic Formulations Protect Human Dermal Fibroblasts against UVA-Induced Damage

    Directory of Open Access Journals (Sweden)

    Massimiliano Gasparrini

    2017-06-01

    Full Text Available Extreme exposure of skin to Ultraviolet A (UVA-radiation may induce a dysregulated production of reactive oxygen species (ROS which can interact with cellular biomolecules leading to oxidative stress, inflammation, DNA damage, and alteration of cellular molecular pathways, responsible for skin photoaging, hyperplasia, erythema, and cancer. For these reasons, the use of dietary natural bioactive compounds with remarkable antioxidant activity could be a strategic tool to counteract these UVA-radiation-caused deleterious effects. Thus, the purpose of the present work was to test the efficacy of strawberry (50 μg/mL-based formulations supplemented with Coenzyme Q10 (100 μg/mL and sun protection factor 10 in human dermal fibroblasts irradiated with UVA-radiation. The apoptosis rate, the amount of intracellular reactive oxygen species (ROS production, the expression of proteins involved in antioxidant and inflammatory response, and mitochondrial functionality were evaluated. The results showed that the synergic topical use of strawberry and Coenzyme Q10 provided a significant (p < 0.05 photoprotective effect, reducing cell death and ROS, increasing antioxidant defense, lowering inflammatory markers, and improving mitochondrial functionality. The obtained results suggest the use of strawberry-based formulations as an innovative, natural, and useful tool for the prevention of UVA exposure-induced skin diseases in order to decrease or substitute the amount of synthetic sunscreen agents.

  10. Strawberry-Based Cosmetic Formulations Protect Human Dermal Fibroblasts against UVA-Induced Damage.

    Science.gov (United States)

    Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Afrin, Sadia; Reboredo-Rodriguez, Patricia; Cianciosi, Danila; Mezzetti, Bruno; Quiles, Josè L; Bompadre, Stefano; Battino, Maurizio; Giampieri, Francesca

    2017-06-14

    Extreme exposure of skin to Ultraviolet A (UVA)-radiation may induce a dysregulated production of reactive oxygen species (ROS) which can interact with cellular biomolecules leading to oxidative stress, inflammation, DNA damage, and alteration of cellular molecular pathways, responsible for skin photoaging, hyperplasia, erythema, and cancer. For these reasons, the use of dietary natural bioactive compounds with remarkable antioxidant activity could be a strategic tool to counteract these UVA-radiation-caused deleterious effects. Thus, the purpose of the present work was to test the efficacy of strawberry (50 μg/mL)-based formulations supplemented with Coenzyme Q10 (100 μg/mL) and sun protection factor 10 in human dermal fibroblasts irradiated with UVA-radiation. The apoptosis rate, the amount of intracellular reactive oxygen species (ROS) production, the expression of proteins involved in antioxidant and inflammatory response, and mitochondrial functionality were evaluated. The results showed that the synergic topical use of strawberry and Coenzyme Q10 provided a significant (p defense, lowering inflammatory markers, and improving mitochondrial functionality. The obtained results suggest the use of strawberry-based formulations as an innovative, natural, and useful tool for the prevention of UVA exposure-induced skin diseases in order to decrease or substitute the amount of synthetic sunscreen agents.

  11. BIOACTIVATION, PROTEIN HAPTENATION, AND TOXICITY OF SULFAMETHOXAZOLE AND DAPSONE IN NORMAL HUMAN DERMAL FIBROBLASTS1

    Science.gov (United States)

    Bhaiya, Payal; Roychowdhury, Sanjoy; Vyas, Piyush M.; Doll, Mark A.; Hein, David W.; Svensson, Craig K.

    2006-01-01

    Cutaneous drug reactions (CDRs) associated with sulfonamides are believed to be mediated through the formation of reactive metabolites that result in cellular toxicity and protein haptenation. We evaluated the bioactivation and toxicity of sulfamethoxazole (SMX) and dapsone (DDS) in normal human dermal fibroblasts (NHDF). Incubation of cells with DDS or its metabolite (D-NOH) resulted in protein haptenation readily detected by confocal microscopy and ELISA. While the metabolite of SMX (S-NOH) haptenated intracellular proteins, adducts were not evident in incubations with SMX. Cells expressed abundant N-acetyltransferase-1 (NAT1) mRNA and activity, but little NAT2 mRNA or activity. Neither NAT1 nor NAT2 protein were detectable. Incubation of NHDF with S-NOH or D-NOH increased reactive oxygen species formation and reduced glutathione content. NHDF were less susceptible to the cytotoxic effect of S-NOH and D-NOH than are keratinocytes. Our studies provide the novel observation that NHDF are able to acetylate both arylamine compounds and bioactivate the sulfone, DDS, giving rise to haptenated proteins. The reactive metabolites of SMX and DDS also provoke oxidative stress in these cells in a time- and concentration-dependent fashion. Further work is needed to determine the role of the observed toxicity in mediating CDRs observed with these agents. PMID:16603214

  12. Photodynamically induced cytotoxicity of hypericin dye on human fibroblast cell line MRC5.

    Science.gov (United States)

    Hadjur, C; Richard, M J; Parat, M O; Favier, A; Jardon, P

    1995-02-01

    The possible application of hypericin (hyp) in the photodynamic therapy (PDT) of cancer was investigated using the human fibroblast cell line MRC5. In aerobic conditions, at pH 7.4, irradiation of MRC5 cells was carried out with different doses of visible light and different doses of hyp. A low concentration of hyp (5 x 10(-9) M) was highly toxic to MRC5 cells, producing 15% survival for an irradiation period of 40 min. In the dark, no cytotoxicity was observed in the range 10(-9)-10(-7) M hyp. The mechanism of cell killing by hyp was also examined. Significant inhibition of MRC5 killing was observed on addition of 1,4-diazabicyclo[2,2,2]octane (DABCO) or histidine, known quenchers of type II mechanisms. In addition, the photodynamic effect of hyp was enhanced by deuterium oxide. The addition of desferrioxamine, catalase or superoxide dismutase (SOD), known scavenging agents of the type I mechanism, had a significant inhibitory effect on the rate of photodynamic action of hyp. The experimental results suggest that hyp has considerable potential for use as a sensitizer in the PDT of cancer.

  13. In vitro toxicity of propolis in comparison with other primary teeth pulpotomy agents on human fibroblasts.

    Science.gov (United States)

    Al-Haj Ali, Sanaa Najeh

    2016-08-01

    The aim of this study was to assess and compare the in vitro toxicity of propolis with other primary teeth pulpotomy medicaments. Human periodontal ligament (PDL) cells were subjected to different concentrations of propolis, formocresol, ferric sulfate, and gray mineral trioxide aggregate (MTA) (0.05, 0.5, 5, 50, and 100 μg/mL) for 24 h at 37°C. Cells that were not exposed to the tested materials served as the negative control. In vitro toxicity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Statistical analysis of the data was accomplished using anova and Tukey statistical tests (P propolis and gray MTA had comparable cell viability to the negative control group. Almost all remaining concentrations of tested materials were significantly inferior to the negative control after 24 h of exposure (P Propolis and MTA are more biocompatible than formocresol and ferric sulfate since they were both able to preserve PDL fibroblasts for up to 24 h. © 2015 Wiley Publishing Asia Pty Ltd.

  14. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Directory of Open Access Journals (Sweden)

    J.C. Zhang

    2014-10-01

    Full Text Available Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs expressing human basic fibroblast growth factor (hbFGF. After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC, MSCs expressing hbFGF (hbFGF-MSC, MSC controls, and phosphate-buffered saline (PBS controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001; however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008 and microvessel density (P<0.001. Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  15. Distinct cell stress responses induced by ATP restriction in quiescent human fibroblasts

    Directory of Open Access Journals (Sweden)

    Nirupama Yalamanchili

    2016-10-01

    Full Text Available Quiescence is the prevailing state of many cell types under homeostatic conditions. Yet, surprisingly little is known about how quiescent cells respond to energetic and metabolic challenges. To better understand compensatory responses of quiescent cells to metabolic stress, we established, in human primary dermal fibroblasts, an experimental ‘energy restriction’ model. Quiescence was achieved by short-term culture in serum-deprived media and ATP supply restricted using a combination of glucose transport inhibitors and mitochondrial uncouplers. In aggregate, these measures led to markedly reduced intracellular ATP levels while not compromising cell viability over the observation period of 48 h. Analysis of the transcription factor landscape induced by this treatment revealed alterations in several signal transduction nodes beyond the expected biosynthetic adaptations. These included increased abundance of NF-κB regulated transcription factors and altered transcription factor subsets regulated by Akt and p53. The observed changes in gene regulation and corresponding alterations in key signaling nodes are likely to contribute to cell survival at intracellular ATP concentrations substantially below those achieved by growth factor deprivation alone. This experimental model provides a benchmark for the investigation of cell survival pathways and related molecular targets that are associated with restricted energy supply associated with biological aging and metabolic diseases.

  16. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.C. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zheng, G.F. [Department of Vascular Surgery, The People' s Hospital of Ganzhou, Ganzhou (China); Wu, L.; Ou Yang, L.Y.; Li, W.X. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-08-08

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  17. ATM-mediated mitochondrial damage response triggered by nuclear DNA damage in normal human lung fibroblasts.

    Science.gov (United States)

    Shimura, Tsutomu; Sasatani, Megumi; Kawai, Hidehiko; Kamiya, Kenji; Kobayashi, Junya; Komatsu, Kenshi; Kunugita, Naoki

    2017-11-03

    Ionizing radiation (IR) elevates mitochondrial oxidative phosphorylation (OXPHOS) in response to the energy requirement for DNA damage responses. Reactive oxygen species (ROS) released during mitochondrial OXPHOS may cause oxidative damage to mitochondria in irradiated cells. In this paper, we investigated the association between nuclear DNA damage and mitochondrial damage following IR in normal human lung fibroblasts. In contrast to low-doses of acute single radiation, continuous exposure of chronic radiation or long-term exposure of fractionated radiation (FR) induced persistent Rad51 and γ-H2AX foci at least 24 hours after IR in irradiated cells. Additionally, long-term FR increased mitochondrial ROS accompanied with enhanced mitochondrial membrane potential (ΔΨm) and mitochondrial complex IV (cytochrome c oxidase) activity. Mitochondrial ROS released from the respiratory chain complex I caused oxidative damage to mitochondria. Inhibition of ATM kinase or ATM loss eliminated nuclear DNA damage recognition and mitochondrial radiation responses. Consequently, nuclear DNA damage activates ATM which in turn increases ROS level and subsequently induces mitochondrial damage in irradiated cells. In conclusion, we demonstrated that ATM is essential in the mitochondrial radiation responses in irradiated cells. We further demonstrated that ATM is involved in signal transduction from nucleus to the mitochondria in response to IR.

  18. Subfractions of enamel matrix derivative differentially influence cytokine secretion from human oral fibroblasts.

    Science.gov (United States)

    Villa, Oscar; Brookes, Steven J; Thiede, Bernd; Heijl, Lars; Lyngstadaas, Staale P; Reseland, Janne E

    2015-01-01

    Enamel matrix derivative is used to promote periodontal regeneration during the corrective phase of the treatment of periodontal defects. Our main goal was to analyze the bioactivity of different molecular weight fractions of enamel matrix derivative. Enamel matrix derivative, a complex mixture of proteins, was separated into 13 fractions using size-exclusion chromatography and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and liquid chromatography-electrospray ionization-tandem mass spectrometry. Human periodontal ligament fibroblasts were treated with either enamel matrix derivative or the different fractions. Proliferation and cytokine secretion to the cell culture medium were measured and compared to untreated cells. The liquid chromatography-electrospray ionization-tandem mass spectrometry analyses revealed that the most abundant peptides were amelogenin and leucine-rich amelogenin peptide related. The fractions containing proteins above 20 kDa induced an increase in vascular endothelial growth factor and interleukin-6 secretion, whereas lower molecular weight fractions enhanced proliferation and secretion of interleukin-8 and monocyte chemoattractant protein-1 and reduced interleukin-4 release. The various molecular components in the enamel matrix derivative formulation might contribute to reported effects on tissue regeneration through their influence on vascularization, the immune response, and chemotaxis.

  19. Effects of titania nanotubes with or without bovine serum albumin loaded on human gingival fibroblasts.

    Science.gov (United States)

    Liu, Xiangning; Zhou, Xiaosong; Li, Shaobing; Lai, Renfa; Zhou, Zhiying; Zhang, Ye; Zhou, Lei

    2014-01-01

    Modifying the surface of the transmucosal area is a key research area because this process positively affects the three functions of implants: attachment to soft tissue, inhibiting bacterial biofilm adhesion, and the preservation of the crestal bone. To exploit the potential of titania nanotube arrays (TNTs) with or without using bovine serum albumin (BSA) to modify the surface of a dental implant in contact with the transmucosal area, BSA was loaded into TNTs that were fabricated by anodizing Ti sheets; the physical characteristics of these arrays, including their morphology, chemical composition, surface roughness, contact angle, and surface free energy (SFE), were assessed. The effect of Ti surfaces with TNTs or TNTs-BSA on human gingival fibroblasts (HGFs) was determined by analyzing cell morphology, early adhesion, proliferation, type I collagen (COL-1) gene expression, and the extracellular secretion of COL-1. The results indicate that early HGF adhesion and spreading behavior is positively correlated with surface characteristics, including hydrophilicity, SFE, and surface roughness. Additionally, TNT surfaces not only promoted early HGF adhesion, but also promoted COL-1 secretion. BSA-loaded TNT surfaces promoted early HGF adhesion, while suppressing late proliferation and COL-1 secretion. Therefore, TNT-modified smooth surfaces are expected to be applicable for uses involving the transmucosal area. Further study is required to determine whether BSA-loaded TNT surfaces actually affect closed loop formation of connective tissue because BSA coating actions in vivo are very rapid.

  20. Modulation of Cell Cycle Profile by Chlorella vulgaris Prevents Replicative Senescence of Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Tayyebeh Saberbaghi

    2013-01-01

    Full Text Available In this study, the effects of Chlorella vulgaris (CV on replicative senescence of human diploid fibroblasts (HDFs were investigated. Hot water extract of CV was used to treat HDFs at passages 6, 15, and 30 which represent young, presenescence, and senescence ages, respectively. The level of DNA damage was determined by comet assay while apoptosis and cell cycle profile were determined using FACSCalibur flow cytometer. Our results showed direct correlation between increased levels of damaged DNA and apoptosis with senescence in untreated HDFs (P<0.05. Cell cycle profile showed increased population of untreated senescent cells that enter G0/G1 phase while the cell population in S phase decreased significantly (P<0.05. Treatment with CV however caused a significant reduction in the level of damaged DNA and apoptosis in all age groups of HDFs (P<0.05. Cell cycle analysis showed that treatment with CV increased significantly the percentage of senescent HDFs in S phase and G2/M phases but decreased the population of cells in G0/G1 phase (P<0.05. In conclusion, hot water extract of Chlorella vulgaris effectively decreased the biomarkers of ageing, indicating its potential as an antiageing compound.

  1. Analysis of Gene Expression in Human Dermal Fibroblasts Treated with Senescence-Modulating COX Inhibitors

    Directory of Open Access Journals (Sweden)

    Jeong A. Han

    2017-06-01

    Full Text Available We have previously reported that NS-398, a cyclooxygenase-2 (COX-2–selective inhibitor, inhibited replicative cellular senescence in human dermal fibroblasts and skin aging in hairless mice. In contrast, celecoxib, another COX-2–selective inhibitor, and aspirin, a non-selective COX inhibitor, accelerated the senescence and aging. To figure out causal factors for the senescence-modulating effect of the inhibitors, we here performed cDNA microarray experiment and subsequent Gene Set Enrichment Analysis. The data showed that several senescence-related gene sets were regulated by the inhibitor treatment. NS-398 up-regulated gene sets involved in the tumor necrosis factor β receptor pathway and the fructose and mannose metabolism, whereas it down-regulated a gene set involved in protein secretion. Celecoxib up-regulated gene sets involved in G2M checkpoint and E2F targets. Aspirin up-regulated the gene set involved in protein secretion, and down-regulated gene sets involved in RNA transcription. These results suggest that COX inhibitors modulate cellular senescence by different mechanisms and will provide useful information to understand senescence-modulating mechanisms of COX inhibitors.

  2. Piper betle L. Modulates Senescence-Associated Genes Expression in Replicative Senescent Human Diploid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Lina Wati Durani

    2017-01-01

    Full Text Available Piper betle (PB is a traditional medicine that is widely used to treat different diseases around Asian region. The leaf extracts contain various bioactive compounds, which were reported to have antidiabetic, antibacterial, anti-inflammatory, antioxidant, and anticancer effects. In this study, the effect of PB aqueous extracts on replicative senescent human diploid fibroblasts (HDFs was investigated by determining the expressions of senescence-associated genes using quantitative PCR. Our results showed that PB extracts at 0.4 mg/ml can improve cell proliferation of young (143%, presenescent (127.3%, and senescent (157.3% HDFs. Increased expressions of PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were observed in senescent HDFs compared to young and/or presenescent HDFs. Treatment with PB extracts modulates the transcriptional profile changes in senescent HDFs. By contrast, expressions of SOD1 increased, whereas GPX1, PRDX6, TP53, CDKN2A, PAK2, and MAPK14 were decreased in PB-treated senescent HDFs compared to untreated senescent HDFs. In conclusion, this study indicates the modulation of PB extracts on senescence-associated genes expression of replicative senescent HDFs. Further studies warrant determining the mechanism of PB in modulating replicative senescence of HDFs through these signaling pathways.

  3. Photobiomodulation on the proliferation and collagen synthesis of normal human skin fibroblast cells

    Science.gov (United States)

    Cheng, Lei; Liu, Timon Cheng-Yi; Chi, Jin-Quan; Li, Yan; Jin, Hua

    2006-01-01

    Background and Objective: Cultured normal human skin fibroblast cells (HSFs) were once used to study the mechanism of the effects of low intensity He-Ne laser irradiation (LHNL) on wound healing. The proliferation and collagen synthesis of HFSs were modulated by LHNL in different papers, respectively, and both of them are studied in this paper. Study Design/Materials and Methods: The dosage was studied for the same radiation time 300s. The proliferation and collagen synthesis were measured by 3-[4,5-Dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and the spectrophotometric method for the determination of hydroxyproline, respectively. Results: The dose zones were called dose 1, dose 2 and dose 3 from low dose on so that HSF proliferation was inhibited in dose 1 (16, 24 mJ/cm2), and promoted in dose 2 (298, 503, 597mJ/cm2), and the collagen synthesis was inhibited in dose 2 (401, 526 mJ/cm2), and promoted in dose 3 (714, 926, 1539, 1727mJ/cm2), which supports our biological model of photobiomodulation. It was found there is the linear relationship of the effect with dose with dose in each dose zone. Conclusions: The photobiomodulation on the proliferation and collagen synthesis of HSFs might be linearly dose-dependent in limited dosage with radiation time kept constant, which provides a foundation to discuss photobiomodulation on wound healing.

  4. Relation between maximum replicative capacity and oxidative stress-induced responses in human skin fibroblasts in vitro.

    Science.gov (United States)

    Dekker, Pim; de Lange, Mark J; Dirks, Roeland W; van Heemst, Diana; Tanke, Hans J; Westendorp, Rudi G J; Maier, Andrea B

    2011-01-01

    Cellular senescence, an important factor in ageing phenotypes, can be induced by replicative exhaustion or by stress. We investigated the relation between maximum replicative capacity, telomere length, stress-induced cellular senescence, and apoptosis/cell death in human primary fibroblast strains obtained from nonagenarians of the Leiden 85-plus Study. Fibroblast strains were cultured until replicative senescence and stressed with rotenone at low passage. Telomere length, senescence-associated-β-galactosidase activity, sub-G1 content, and Annexin-V/PI positivity were measured in nonstressed and stressed conditions. Fibroblast strains with a higher replicative capacity had longer telomeres (p = .054). In nonstressed conditions, replicative capacity was not associated with β-gal activity (p = .07) and negatively with sub-G1 (p = .008). In rotenone-stressed conditions, replicative capacity was negatively associated with β-gal activity (p = .034) and positively with sub-G1 (p = .07). Summarizing, fibroblast strains with a higher maximum replicative capacity have longer telomeres, are less prone to go into stress-induced cellular senescence, and more prone to die after stress.

  5. Radiation response of chemically derived mitochondrial DNA-deficient AG01522 human primary fibroblasts.

    Science.gov (United States)

    Nieri, D; Fioramonti, M; Berardinelli, F; Leone, S; Cherubini, R; De Nadal, V; Gerardi, S; Moreno, S; Nardacci, R; Tanzarella, C; Antoccia, A

    2013-08-30

    Mitochondria are the main cellular source of Reactive Oxygen Species (ROS). Alterations of mitochondrial metabolism and consequent loss of mitochondrial membrane potential may lead to redox imbalance and in turn to DNA damage, chromosomal instability and apoptosis. On the other hand, impaired mitochondrial functions may either exacerbate the detrimental effects of geno- and cytotoxic agents or may bring beneficial cellular responses. To study the role of mitochondria within this framework, AG01522 human primary fibroblasts were incubated with the mitochondrial polymerase γ inhibitor 2',3'-dideoxycytidine (ddC), leading to mitochondrial DNA (mtDNA) depletion and to mitochondrial dysfunctions. The successful treatment toward mtDNA depletion was confirmed by Complex-IV subunit I (COX-I) immunofluorescence and western blot assays. mtDNA-depleted cells and their counterparts were ultrastructurally characterized by transmission electron microscopy. mtDNA-depleted cells showed dramatic mitochondrial alterations such as fragmentation and cristae disruption along with a reduction of the mitochondrial membrane potential and elevated levels of ROS. Despite increased ROS levels, we did not find any difference in telomere length between ddC-treated and untreated cells. The spontaneous rate of DNA double-strand breaks (DSBs) and chromosome aberrations was significantly enhanced in mtDNA-depleted cells whereas the induction of DSBs by low-Linear Energy Transfer (LET) (X-rays; 7.7keV/μm protons) and high-LET radiations (28.5keV/μm protons) did not differ when compared with normal cells. However, in irradiated cells impaired mitochondrial functions seemed to bring beneficial cellular responses to the detrimental effect of radiations. In fact, after X-irradiation mtDNA-depleted cells show less remaining unrejoined DSBs than normal cells and furthermore a lower induction of cytogenetic damage. Overall, these data show that active mitochondrial functions are required for the proper

  6. Biological characteristics and genetic heterogeneity between carcinoma-associated fibroblasts and their paired normal fibroblasts in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Qiongle Peng

    Full Text Available BACKGROUND: The extensional signals in cross-talk between stromal cells and tumor cells generated from extracellular matrix molecules, soluble factor, and cell-cell adhesion complexes cooperate at the extra- and intracellular level in the tumor microenvironment. CAFs are the primary type of stromal cells in the tumor microenvironment and play a pivotal role in tumorigenesis and development. Hitherto, there is hardly any systematic analysis of the intrinsic relationship between CAFs function and its abnormal signaling pathway. The extreme complexity of CAFs' features and their role in tumor development are needed to be further investigated. METHODOLOGY/PRINCIPAL FINDINGS: We primary cultured CAFs and NFs from early stages of breast cancer tissue and identified them using their biomarker by immunohistochemistry for Fibronectin, α-SMA and FAP. Microarray was applied to analyze gene expression profiles of human breast CAFs and the paired NFs. The Up-regulated genes classified by Gene Ontology, signal pathways enriched by DAVID pathway analysis. Abnormal signaling pathways in breast cancer CAFs are involved in cell cycle, cell adhesion, signal transduction and protein transport being reported in CAFs derived from other tumors. Significantly, the altered ATM signaling pathway, a set of cell cycle regulated signaling, and immune associated signaling are identified to be changed in CAFs. CONCLUSIONS/SIGNIFICANCE: CAFs have the vigorous ability of proliferation and potential of invasion and migration comparing with NFs. CAFs could promote breast cancer cell invasion under co-culture conditions through up-regulated CCL18 and CXCL12. Consistently with its biologic behavior, the gene expression profiling analyzed by microarray shows that some of key signaling pathways, such as cell cycle, cell adhesion, and secreting factors play an important role in CAFs. The altered ATM signaling pathway is abnormally active in the early stage of breast cancer. The set

  7. Lidocaine Impairs Proliferative and Biosynthetic Functions of Aged Human Dermal Fibroblasts.

    Science.gov (United States)

    Bentov, Itay; Damodarasamy, Mamatha; Spiekerman, Charles; Reed, May J

    2016-09-01

    The aged are at increased risk of postoperative wound healing complications. Because local anesthetics are infiltrated commonly into the dermis of surgical wounds, we sought to determine whether local anesthetics adversely affect proliferative and biosynthetic functions of dermal fibroblasts. We also evaluated the effect of local anesthetics on insulin-like growth factor-1 (IGF-1) and transforming growth factor-β1 (TGF-β1), growth factors that are important regulators of wound healing. Human dermal fibroblasts (HFB) from aged and young donors were exposed to local anesthetic agents at clinically relevant concentrations. We screened the effects of lidocaine, bupivacaine, mepivacaine, and ropivacaine on proliferation of HFB. Lidocaine was most detrimental to proliferation in HFB. We then evaluated the effect of lidocaine on expression and function of the growth factors, IGF-1 and TGF-β1. Lastly, concurrent exposure to lidocaine and IGF-1 or TGF-β1 was evaluated for their effects on proliferation and expression of dermal collagens, respectively. Lidocaine and mepivacaine inhibited proliferation in aged HFB (for lidocaine 88% of control, 95% confidence interval [CI], 80%-98%, P = .009 and for mepivacaine 90% of control, 95% CI, 81%-99%, P = .032) but not in young HFB. Ropivacaine and bupivacaine did not inhibit proliferation. Because of the clinical utility of lidocaine relative to mepivacaine, we focused on lidocaine. Lidocaine decreased proliferation in aged HFB, which was abrogated by IGF-1. Lidocaine inhibited transcripts for IGF-1 and insulin-like growth factor-1 receptor (IGF1R) in fibroblasts from aged donors (IGF-1, log2 fold-change -1.25 [42% of control, 95% CI, 19%-92%, P = .035] and IGF1R, log2 fold-change -1.00 [50% of control, 95% CI, 31%-81%, P = .014]). In contrast, lidocaine did not affect the expression of IGF-1 or IGF1R transcripts in the young HFB. Transcripts for collagen III were decreased after lidocaine exposure in aged and young HFB (log2

  8. Few single nucleotide variations in exomes of human cord blood induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Rui-Jun Su

    Full Text Available The effect of the cellular reprogramming process per se on mutation load remains unclear. To address this issue, we performed whole exome sequencing analysis of induced pluripotent stem cells (iPSCs reprogrammed from human cord blood (CB CD34(+ cells. Cells from a single donor and improved lentiviral vectors for high-efficiency (2-14% reprogramming were used to examine the effects of three different combinations of reprogramming factors: OCT4 and SOX2 (OS, OS and ZSCAN4 (OSZ, OS and MYC and KLF4 (OSMK. Five clones from each group were subject to whole exome sequencing analysis. We identified 14, 11, and 9 single nucleotide variations (SNVs, in exomes, including untranslated regions (UTR, in the five clones of OSMK, OS, and OSZ iPSC lines. Only 8, 7, and 4 of these, respectively, were protein-coding mutations. An average of 1.3 coding mutations per CB iPSC line is remarkably lower than previous studies using fibroblasts and low-efficiency reprogramming approaches. These data demonstrate that point nucleotide mutations during cord blood reprogramming are negligible and that the inclusion of genome stabilizers like ZSCAN4 during reprogramming may further decrease reprogramming-associated mutations. Our findings provide evidence that CB is a superior source of cells for iPSC banking.

  9. Spiral-Wave Dynamics in a Mathematical Model of Human Ventricular Tissue with Myocytes and Fibroblasts

    Science.gov (United States)

    Nayak, Alok Ranjan; Shajahan, T. K.; Panfilov, A. V.; Pandit, Rahul

    2013-01-01

    Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as , the fibroblast resting-membrane potential, the fibroblast conductance , and the MF gap-junctional coupling . Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as , and , and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity decreases as a function of , for zero-sided and one-sided couplings; however, for two-sided coupling, decreases initially and then increases as a function of , and, eventually, we observe that conduction failure occurs for low values of . In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling or . Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities. PMID:24023798

  10. Differentiation of Human Amniotic Mesenchymal Stem Cells into Human Anterior Cruciate Ligament Fibroblast Cells by In Vitro Coculture

    Directory of Open Access Journals (Sweden)

    Yuwan Li

    2017-01-01

    Full Text Available Anterior cruciate ligament injuries are common in humans, though cellular components of the knee have little regenerative or proliferation potential. This study investigated the differentiation of human amnion-derived mesenchymal stem cells (hAMSCs into human anterior cruciate ligament fibroblasts (hACLFs in vitro through induction with bFGF and TGF-β1 with coculture systems. Groups A and B comprised hAMSCs at the 3rd passage cultured with and without bFGF and TGF-β1, respectively; Groups C and D consisted of hAMSCs and hACLFs in monolayer coculture with and without bFGF and TGF-β1, respectively; Groups E and F were composed of hAMSCs and hACLFs in Transwell coculture with and without bFGF and TGF-β1, respectively. Cell morphology and proliferation were recorded. Protein expression and relative mRNA expression were evaluated in each group. Cell proliferation was significantly higher in the induced groups than in the noninduced groups. Protein expression increased over time with the highest expression observed in Group E. mRNA levels were significantly higher in Group E than in other groups. This study is the first to demonstrate the use of the Transwell coculture system for this purpose, and hAMSCs were successfully differentiated into hACLFs. Thus, hAMSCs may be a superior choice for hACLF differentiation via Transwell coculture.

  11. Metabolic Reprogramming Commits Differentiation of Human CD27(+)IgD(+) B Cells to Plasmablasts or CD27(-)IgD(-) Cells.

    Science.gov (United States)

    Torigoe, Masataka; Iwata, Shigeru; Nakayamada, Shingo; Sakata, Kei; Zhang, Mingzeng; Hajime, Maiko; Miyazaki, Yusuke; Narisawa, Manabu; Ishii, Koji; Shibata, Hirotaka; Tanaka, Yoshiya

    2017-07-15

    B cells play a crucial role in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE). However, the relevance of the metabolic pathway in the differentiation of human B cell subsets remains unknown. In this article, we show that the combination of CpG/TLR9 and IFN-α markedly induced the differentiation of CD27(+)IgD(+) unswitched memory B cells into CD27(hi)CD38(hi) plasmablasts. The response was accompanied by mammalian target of rapamycin complex 1 (mTORC1) activation and increased lactate production, indicating a shift to glycolysis. However, CpG alone induced the differentiation of unswitched memory B cells into CD27(-)IgD(-) memory B cells with high cytokine production, but such differentiation was suppressed by IFN-α. AMP-activated protein kinase activation enhanced the differentiation to CD27(-)IgD(-) B cells, but it attenuated mTORC1 activation and differentiation into plasmablasts. High mTORC1 activation was noted in CD19(+) B cells of patients with SLE and correlated with plasmablast differentiation and disease activity. Taken together, differential metabolic reprogramming commits the differentiation of human unswitched memory B cells into plasmablasts (the combination of CpG and IFN-α amplifies mTORC1-glycolysis pathways) or CD27(-)IgD(-) memory B cells (CpG alone amplifies the AMP-activated protein kinase pathway). The former metabolic pathway may play a pivotal role in SLE. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. Effect of enoxaparin and onion extract on human skin fibroblast cell line - therapeutic implications for the treatment of keloids.

    Science.gov (United States)

    Pikuła, Michał; Żebrowska, Maria E; Pobłocka-Olech, Loretta; Krauze-Baranowska, Mirosława; Sznitowska, Małgorzata; Trzonkowski, Piotr

    2014-02-01

    Keloids and hypertrophic scars are hyperproliferative skin disorders resulting in abnormal wound healing. In the prevention and treatment of keloids and hypertrophic scars, ointments containing heparin and onion extract are very popular. Their therapeutic effects, however, are still controversial and the mechanism of action is not fully understood. The aim of this study was to assess the effect of enoxaparin and dry onion extract on proliferation, apoptosis and β1 integrin expression in human fibroblasts. Fibroblast human cell lines (46 BR.1 N) were treated for 48 h with various concentrations of enoxaparin sodium (20, 100, 500 µg/mL) and/or onion [Allium cepa L. (Alliaceae)] extract (50, 250, 1000 µg/mL). The cell proliferation was evaluated by [(3)H]-thymidine incorporation assay. Furthermore, the expression of β1 integrin and apoptosis was determined by flow cytometry. The results demonstrate that enoxaparin and onion extract inhibited the proliferation of human fibroblasts. Almost complete inhibition of cell proliferation was achieved by enoxaparin in 500 µg/mL concentration (91.5% reduction). The onion extract at a concentration of 250 µg/mL also strongly inhibited the proliferation of cells (50.8% reduction). Depending on concentration, enoxaparin and onion extract induced apoptosis (500 and 1000 µg/mL, respectively) and, depending on concentration, downregulated the expression of β1 integrin on human fibroblasts. This work points at possible mechanism of action of enoxaparin and onion extract, when administered in the treatment of patients with keloids and hypertrophic scars.

  13. CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells.

    Science.gov (United States)

    Zhang, Hui; Kho, Alvin T; Wu, Qing; Halayko, Andrew J; Limbert Rempel, Karen; Chase, Robert P; Sweezey, Neil B; Weiss, Scott T; Kaplan, Feige

    2016-09-01

    Chronic lung disease of prematurity/bronchopulmonary dysplasia (BPD) is the leading cause of perinatal morbidity in developed countries. Inflammation is a prominent finding. Currently available interventions have associated toxicities and limited efficacy. While BPD often resolves in childhood, survivors of preterm birth are at risk for acquired respiratory disease in early life and are more likely to develop chronic obstructive pulmonary disease (COPD) in adulthood. We previously cloned Crispld2 (Lgl1), a glucocorticoid-regulated mesenchymal secretory protein that modulates lung branching and alveogenesis through mesenchymal-epithelial interactions. Absence of Crispld2 is embryonic lethal. Heterozygous Crispld2+/- mice display features of BPD, including distal airspace enlargement, disruption of elastin, and neonatal lung inflammation. CRISPLD2 also plays a role in human fetal lung fibroblast cell expansion, migration, and mesenchymal-epithelial signaling. This study assessed the effects of endogenous and exogenous CRISPLD2 on expression of proinflammatory mediators in human fetal and adult (normal and COPD) lung fibroblasts and epithelial cells. CRISPLD2 expression was upregulated in a lipopolysaccharide (LPS)-induced human fetal lung fibroblast line (MRC5). LPS-induced upregulation of the proinflammatory cytokines IL-8 and CCL2 was exacerbated in MRC5-CRISPLD2(knockdown) cells. siRNA suppression of endogenous CRISPLD2 in adult lung fibroblasts (HLFs) led to augmented expression of IL-8, IL-6, CCL2. LPS-stimulated expression of proinflammatory mediators by human lung epithelial HAEo- cells was attenuated by purified secretory CRISPLD2. RNA sequencing results from HLF-CRISPLD2(knockdown) suggest roles for CRISPLD2 in extracellular matrix and in inflammation. Our data suggest that suppression of CRISPLD2 increases the risk of lung inflammation in early life and adulthood. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

  14. Irradiation effect on the apoptosis induction in the human cancer cell lines and the gingival fibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mu Soon; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; You, Dong Soo [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1998-02-15

    The radiation-induced apoptosis was studied for two human cancer cell lines (KB cells, RPMI 2650 cells) and the human gingival fibroblast cell line (HGF-1 cells). The single irradiation of 2, 10, 20 Gy was done with 241.5 cGy/min dose rate using the 137 Cs MK cell irradiator. The cell were stained with propidium iodide and examined under the fluoro-microscope and assayed with the flow cytometry a day after irradiation. Also, the LDH assay was done to determine the amount of necrotic cells. The obtained results were as follows : 1. On the fluoro-microscope, many fragmented nuclei were detected in the KB, RPMI 2650, and HGF-1 cells after irradiation. 2. On the DNA content histogram obtained from the flow cytometry, the percentages of the pre-G1 peak of the control and 2, 10 and 20 Gy irradiation group were 4.5, 55.0, 52.3, and 66.6% on KB cells, 2.7, 3.3, 31.8, and 32.6% on RPMI 2650 cells and 2.8, 21.8, 30.4, and 40.2% on HGF-1 cells respectively. 3. The number of G1-stage cells was abruptly decreased after 2 Gy irradiation on KB cells and 10 Gy irradiation on RPMI 2650 cells, But there was a slight decrease without regard to irradiation dose on HGF-1 cells. 4. There was no significantly different absorbance in extracellular LDH assay along the experimental cell lines

  15. Sodium L-ascorbate enhances elastic fibers deposition by fibroblasts from normal and pathologic human skin.

    Science.gov (United States)

    Hinek, Aleksander; Kim, Hyunjun J; Wang, Yanting; Wang, Andrew; Mitts, Thomas F

    2014-09-01

    Vitamin C (L-ascorbic acid), a known enhancer of collagen deposition, has also been identified as an inhibitor of elastogenesis. Present studies explored whether and how the L-ascorbic acid derivative (+) sodium L-ascorbate (SA) would affect production of collagen and elastic fibers in cultures of fibroblasts derived from normal human skin and dermal fat, as well as in explants of normal human skin, stretch-marked skin and keloids. Effects of SA on the extracellular matrix production were assessed quantitatively by PCR analyses, western blots, biochemical assay of insoluble elastin and by immuno-histochemistry. We also evaluated effects of SA on production of the reactive oxygen species (ROS) and phosphorylation of IGF-I and insulin receptors. SA, applied in 50-200 μM concentrations, stimulates production of both collagen and elastic fibers in all tested cultures. Moreover, combination of SA with a proline hydroxylase inhibitor induces a beneficial remodelling in explants of dermal scars, resulting in the inhibition of collagen deposition and induction of new elastogenesis. Importantly, we revealed that SA stimulates elastogenesis only after intracellular influx of non-oxidized ascorbate anions (facilitated by the sodium-dependent ascorbate transporter), that causes reduction of intracellular ROS, activation of c-Src tyrosine kinase and the enhancement of IGF-1-induced phosphorylation of the IGF-1 receptor that ultimately triggers elastogenic signalling pathway. Our results endorse the use of this potent stimulator of collagen and elastin production in the treatment of wrinkled and stretch-marked skin. They also encourage inclusion of SA into therapeutic combinations with collagenogenesis inhibitors to prevent formation of dermal scars and keloids. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Modulation of the Senescence-Associated Inflammatory Phenotype in Human Fibroblasts by Olive Phenols

    Directory of Open Access Journals (Sweden)

    Beatrice Menicacci

    2017-10-01

    Full Text Available Senescent cells display an increase in the secretion of growth factors, inflammatory cytokines and proteolytic enzymes, termed the “senescence-associated-secretory-phenotype” (SASP, playing a major role in many age-related diseases. The phenolic compounds present in extra-virgin olive oil are inhibitors of oxidative damage and have been reported to play a protective role in inflammation-related diseases. Particularly, hydroxytyrosol and oleuropein are the most abundant and more extensively studied. Pre-senescent human lung (MRC5 and neonatal human dermal (NHDF fibroblasts were used as cellular model to evaluate the effect of chronic (4–6 weeks treatment with 1 μM hydroxytyrosol (HT or 10 μM oleuropein aglycone (OLE on senescence/inflammation markers. Both phenols were effective in reducing β-galactosidase-positive cell number and p16 protein expression. In addition, senescence/inflammation markers such as IL-6 and metalloprotease secretion, and Ciclooxigenase type 2 (COX-2 and α-smooth-actin levels were reduced by phenol treatments. In NHDF, COX-2 expression, Nuclear Factor κ-light-chain-enhancer of activated B cells (NFκB protein level and nuclear localization were augmented with culture senescence and decreased by OLE and HT treatment. Furthermore, the inflammatory effect of Tumor Necrosis Factor α (TNFα exposure was almost completely abolished in OLE- and HT-pre-treated NHDF. Thus, the modulation of the senescence-associated inflammatory phenotype might be an important mechanism underlying the beneficial effects of olive oil phenols.

  17. Protein expression profile changes in human fibroblasts induced by low dose energetic protons

    Science.gov (United States)

    Zhang, Ye; Clement, Jade Q.; Gridley, Daila S.; Rodhe, Larry H.; Wu, Honglu

    2009-12-01

    Extrapolation of known radiation risks to the risks from low dose and low dose-rate exposures of human population, especially prolonged exposures of astronauts in the space radiation environment, relies in part on the mechanistic understanding of radiation induced biological consequences at the molecular level. While some genomic data at the mRNA level are available for cells or animals exposed to radiation, the data at the protein level are still lacking. Here, we studied protein expression profile changes using Panorama antibody microarray chips that contain antibodies to 224 proteins (or their phosphorylated forms) involved in cell signaling that included mostly apoptosis, cytoskeleton, cell cycle and signal transduction. Normal human fibroblasts were cultured until fully confluent and then exposed to 2 cGy of 150 MeV protons at high-dose rate. The proteins were isolated at 2 or 6 h after exposure and labeled with Cy3 for the irradiated cells and with Cy5 for the control samples before loading onto the protein microarray chips. The intensities of the protein spots were analyzed using ScanAlyze software and normalized by the summed fluorescence intensities and the housekeeping proteins. The results showed that low dose protons altered the expression of more than 10% of the proteins listed in the microarray analysis in various protein functional groups. Cell cycle (24%) related proteins were induced by protons and most of them were regulators of G1/S-transition phase. Comparison of the overall protein expression profiles, cell cycle related proteins, cytoskeleton and signal transduction protein groups showed significantly more changes induced by protons compared with other protein functional groups.

  18. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Damages in the DNA were measured by the phosphorylation of a histone protein H2AX (g-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ki-67 signals. Our results suggested that the difference in g-H2AX focus counts between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect initial transcriptional responses of the DNA damage response genes to

  19. Dose-dependent microRNA expression in human fibroblasts after LET irradiation

    Science.gov (United States)

    Maes, Olivier Charles; An, Jin; Wu, Honglu; Wang, Eugenia; Sarojini, Harshini

    Humans are exposed to various levels of radiation during spaceflight voyages. In cells, exposure to linear energy transfer (LET) radiation causes cellular damage and triggers responses controlled by unique gene-directed signaling pathways. MicroRNAs (miRNAs) are small ( 22- nucleotide) non-coding RNAs, which regulate gene expression generally by either degrading the messager RNA or inhibiting translation. Their implication in specific cellular response pathways is largely unknown. Here, we investigated the role of radiation-dependent changes in miRNA expression patterns after low (0.1 Gy) and high (2.0 Gy) doses of X-ray exposure in human fibroblasts, and correlated their predicted targets with the cells' genomics and proteomics profiles. A differential miRNA expression pattern was observed between low and high doses of irradiation, with early (0.5 and 2 hrs) significant changes mostly after a high dose and, late (6 and 24 hrs) significant changes after both low and high doses of irradiation. The results suggest that miRNAs may act as ‘hub' regulators of signaling pathways initially to derepress their target genes for cellular responses such as DNA repair, followed by up-regulation to suppress apoptosis, and finally down-regulation to reestablish cellular normalcy. Functional attributions are made to key microRNAs, potentially regulating known radiation biomarkers as well as radiation-responsive mechanisms of cell cycle checkpoint, proliferation and apoptosis. In summary, radiation-responsive miRNAs may have functional roles in the regulation of cell death or survival, and may become biodosimeters for radiation dose exposure. Specific microRNAs may exert a hormetic effect after low-dose radiation, and prove useful in future applications for radiation adaptive therapy and in the prevention and treatment of radiation-induced damage. The confirmation of specific miRNAs as biodosimetry markers with therapeutic applications will be necessary in future functional

  20. Skin Protective Effects of Nannochloropsis gaditana Extract on H2O2-Stressed Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Sophia Letsiou

    2017-07-01

    Full Text Available Nowadays, there is huge interest in natural products obtained from marine organisms that can promote a state of health and well-being for humans. Microalgae represent a primary source of bioactive compounds that could be used as functional ingredients in cosmetic formulations. The aim of the present study is to evaluate, for the first time, the effects of Nannochloropsis gaditana extract against oxidative stress in human primary fibroblasts so as to investigate the potential applications of it in cosmetics. To gain an insight into the molecular mechanisms of N. gaditana bioactivity, we developed a new RT-qPCR platform for studying transcript accumulation for an array of selected genes (up to 100 involved in many skin-related processes including anti-aging, hydration, oxidative stress response, and DNA damage. For the oxidative stress evaluation, H2O2 was used as a stressor. The study of the transcript accumulation of genes revealed that N. gaditana extract exhibits skin protection properties by mediating oxidative responses and apoptosis (including SOD1, GPX1, BID, positively regulates genes involves in skin texture and hydration (including AQP3, Col6A1, FBN1 and modulates the expression of genes involved in skin irritation, DNA damage and aging (including IL1R, PCNA, FOXO3. These findings indicate that the specific N. gaditana extract possesses significant in vitro skin protection activity against induced oxidative stress, and provide new insights into the beneficial role of microalgae bioactive compounds in cosmetic formulations protecting skin from oxidative stress.

  1. Endoplasmic reticulum stress signaling is involved in mitomycin C (MMC)-induced apoptosis in human fibroblasts via PERK pathway.

    Science.gov (United States)

    Shi, Kun; Wang, Daode; Cao, Xiaojian; Ge, Yingbin

    2013-01-01

    Endoplasmic reticulum (ER) stress-mediated cell apoptosis has been implicated in various cell types, including fibroblasts. Previous studies have shown that mitomycin C (MMC)-induced apoptosis occurs in fibroblasts, but the effects of MMC on ER stress-mediated apoptosis in fibroblasts have not been examined. Here, MMC-induced apoptosis in human primary fibroblasts was investigated by exposing cells to a single dose of MMC for 5 minutes. Significant inhibition of cell proliferation and increased apoptosis were observed using a cell viability assay, Annexin V/propidium iodide double staining, cell cycle analysis, and TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) staining. Upregulation of proapoptotic factors, including cleaved caspase-3 and poly ADP-ribose polymerase (PARP), was detected by Western blotting. MMC-induced apoptosis was correlated with elevation of 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP), which are hallmarks of ER stress. Three unfolded protein response (UPR) sensors (inositol-requiring enzyme 1, IRE1; activating transcription factor 6, ATF6; and PKR-like ER kinase, PERK) and their downstream signaling pathways were also activated. Knockdown of CHOP attenuated MMC-induced apoptosis by increasing the ratio of BCL-2/BAX and decreasing BIM expression, suggesting that ER stress is involved in MMC-induced fibroblast apoptosis. Interestingly, knockdown of PERK significantly decreased ER stress-mediated apoptosis by reducing the expression of CHOP, BIM and cleaved caspase-3. Reactive oxygen species (ROS) scavenging also decreased the expression of GRP78, phospho-PERK, CHOP, and BIM. These results demonstrate that MMC-induced apoptosis is triggered by ROS generation and PERK activation.

  2. Reprogrammed Functional Brown Adipocytes Ameliorate Insulin Resistance and Dyslipidemia in Diet-Induced Obesity and Type 2 Diabetes.

    Science.gov (United States)

    Kishida, Tsunao; Ejima, Akika; Yamamoto, Kenta; Tanaka, Seiji; Yamamoto, Toshiro; Mazda, Osam

    2015-10-13

    Brown adipocytes (BAs) play important roles in body temperature regulation, energy balance, and carbohydrate and lipid metabolism. Activities of BAs are remarkably diminished in obese and diabetic patients, providing possibilities of transplanting functional BAs resulting in therapeutic benefit. Here, we show generation of functional BAs by cellular reprogramming procedures. Transduction of the PRDM16 gene into iPSC-derived embryoid bodies induced BA phenotypes (iBAs). Moreover, normal human fibroblasts were directly converted into BAs (dBAs) by C/EBP-β and C-MYC gene transduction. Approximately 90% of the fibroblasts were successfully converted within 12 days. The dBAs were highly active in mitochondrial biogenesis and oxidative metabolism. Mouse dBAs were induced by Prdm16, C/ebp-β, and L-myc genes, and after transplantation, they significantly reduced diet-induced obesity and insulin resistance in an UCP1-dependent manner. Thus, highly functional BAs can be generated by cellular reprogramming, suggesting a promising tailor-made cell therapy against metabolic disorders including type 2 diabetes mellitus. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway

    Directory of Open Access Journals (Sweden)

    Wang Jun

    2012-10-01

    Full Text Available Abstract Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4 antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB, which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1, compared with transforming growth factor-β1 (TGF-β1. Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial