WorldWideScience

Sample records for replica carbon production

  1. Effect of cation nature of zeolite on carbon replicas and their electrochemical capacitance

    International Nuclear Information System (INIS)

    Zhou, Jin; Li, Wen; Zhang, Zhongshen; Wu, Xiaozhong; Xing, Wei; Zhuo, Shuping

    2013-01-01

    Graphical abstract: Cation nature of zeolite influences the porosity, surface chemical properties of carbon replicas of zeolite, resulting in different electrochemical capacitance. Highlights: ► The porosity of carbon replica strongly depends on zeolite's effective pore size. ► The surface chemical properties influence by the cation nature of zeolite. ► The N-doping introduces large pseudo-capacitance. ► The HYC800 carbon showed a high capacitance of up to 312 F g −1 in 1 M H 2 SO 4 . ► The prepared carbons show good durability of galvanostatic cycle. -- Abstract: N-doped carbon replicas of zeolite Y are prepared, and the effect of cation nature of zeolite (H + or Na + ) on the carbon replicas is studied. The morphology, structure and surface properties of the carbon materials are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N 2 adsorption, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The pore regularity, pore parameter and surface chemical properties of the carbons may strongly depend on the cation nature of the zeolite Y. The carbon replicas of zeolite HY (H-form of zeolite Y) possesses higher pore regularity and much larger surface area than those of zeolite NaY (Na-form of zeolite Y), while the latter carbons seem to possess higher carbonization degrees. Electrochemical measurements show a large faradaic capacitance related to the N- or O-containing groups for the prepared carbons. Owing to the large specific surface area, high pore regularity and heteroatom-doping, the HYC800 sample derived from zeolite HY presents very high gravimetric capacitance, up to 312.4 F g −1 in H 2 SO 4 electrolyte, and this carbon can operate at 1.2 V with good retention ratio in the range of 0.25 to 10 A g −1

  2. Zeolite-templated carbon replica: a Grand Canonical Monte-Carlo simulation study

    International Nuclear Information System (INIS)

    Thomas Roussel; Roland J M Pellenq; Christophe Bichara; Roger Gadiou; Antoine Didion; Cathie Vix Guterl; Fabrice Gaslain; Julien Parmentier; Valentin Valtchev; Joel Patarin

    2005-01-01

    Microporous carbon materials are interesting for several applications such as hydrogen storage, catalysis or electrical double layer capacitors. The development of the negative templating method to obtain carbon replicas from ordered templates, has lead to the synthesis of several new materials which have interesting textural properties, attractive for energy storage. Among the possible templates, zeolites can be used to obtain highly microporous carbon materials. Nevertheless, the phenomena involved in the replica synthesis are not fully understood, and the relationships between the structure of the template, the carbon precursor and the resulting carbon material need to be investigated. Experimental results for carbon zeolite-templated nano-structures can be found in a series of papers; see for instance ref. [1] in which Wang et al describe a route to ultra-small Single Wall Carbon Nano-tubes (SWNTs) using the porosity of zeolite AlPO 4 -5. After matrix removal, the resulting structure is a free-standing bundle of 4 Angstroms large nano-tubes. However, it is highly desirable to obtain an ordered porous carbon structure that forms a real 3D network to be used for instance in gas storage applications. Carbon replica of faujasite and EMT zeolites can have these properties since these zeolites have a 3D porous network made of 10 Angstroms cages connected to each other through 7 Angstroms large windows. The first step of this study was to generate a theoretical carbon replica structure of various zeolites (faujasite, EMT, AlPO 4 -5, silicalite). For this purpose, we used the Grand Canonical Monte-Carlo (GCMC) technique in which the carbon-carbon interactions were described within the frame of a newly developed Tight Binding approach and the carbon-zeolite interactions assumed to be characteristic of physi-sorption. The intrinsic stability of the subsequent carbon nano-structures was then investigated after mimicking the removal of the inorganic phase by switching

  3. Standard practice for production and evaluation of field metallographic replicas

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice covers recognized methods for the preparation and evaluation of cellulose acetate or plastic film replicas which have been obtained from metallographically prepared surfaces. It is designed for the evaluation of replicas to ensure that all significant features of a metallographically prepared surface have been duplicated and preserved on the replica with sufficient detail to permit both LM and SEM examination with optimum resolution and sensitivity. 1.2 This practice may be used as a controlling document in commercial situations. 1.3 The values stated in SI units are to be regarded as the standard. Inch-pound units given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  4. Zeolite-templated carbon replica: a grand canonical Monte-Carlo simulation study

    International Nuclear Information System (INIS)

    Roussel, Th.; Pellenq, R.J.M.; Bichara, Ch.; Gadiou, R.; Didion, A.; Vix-Guterl, C.; Gaslain, F.; Parmentier, J.; Valtchev, V.; Patarin, J.

    2005-01-01

    Microporous carbon materials are interesting for several applications such as hydrogen storage, catalysis or electrical double layer capacitors. The development of the negative templating method to obtain carbon replicas from ordered templates, has lead to the synthesis of several new materials which have interesting textural properties, attractive for energy storage. Among the possible templates, zeolites can be used to obtain highly microporous carbon materials. Nevertheless, the phenomena involved in the replica synthesis are not fully understood, and the relationships between the structure of the template, the carbon precursor and the resulting carbon material need to be investigated. Experimental results for carbon zeolite-templated nano-structures can be found in a series of papers; see for instance ref. [1] in which Wang et al describe a route to ultra-small Single Wall Carbon Nano-tubes (SWNTs) using the porosity of zeolite AlPO 4 -5. After matrix removal, the resulting structure is a free-standing bundle of 4 Angstroms large nano-tubes. However, it is highly desirable to obtain an ordered porous carbon structure that forms a real 3D network to be used for instance in gas storage applications. Carbon replica of faujasite and EMT zeolites can have these properties since these zeolites have a 3D porous network made of 10 Angstroms cages connected to each other through 7 Angstroms large windows. The first step of this study was to generate a theoretical carbon replica structure of various zeolites (faujasite, EMT, AlPO 4 -5, silicalite). For this purpose, we used the Grand Canonical Monte-Carlo (GCMC) technique in which the carbon-carbon interactions were described within the frame of a newly developed Tight Binding approach and the carbon-zeolite interactions assumed to be characteristic of physisorption. The intrinsic stability of the subsequent carbon nano-structures was then investigated after mimicking the removal of the inorganic phase by switching

  5. Computer simulation study of in-zeolites templated carbon replicas: structural and adsorption properties for hydrogen storage application

    International Nuclear Information System (INIS)

    Roussel, T.

    2007-05-01

    Hydrogen storage is the key issue to envisage this gas for instance as an energy vector in the field of transportation. Porous carbons are materials that are considered as possible candidates. We have studied well-controlled microporous carbon nano-structures, carbonaceous replicas of meso-porous ordered silica materials and zeolites. We realized numerically (using Grand Canonical Monte Carlo Simulations, GCMC) the atomic nano-structures of the carbon replication of four zeolites: AlPO 4 -5, silicalite-1, and Faujasite (FAU and EMT). The faujasite replicas allow nano-casting of a new form of carbon crystalline solid made of tetrahedrally or hexagonally interconnected single wall nano-tubes. The pore size networks are nano-metric giving these materials optimized hydrogen molecular storage capacities (for pure carbon phases). However, we demonstrate that these new carbon forms are not interesting for room temperature efficient storage compared to the void space of a classical gas cylinder. We showed that doping with an alkaline element, such as lithium, one could store the same quantities at 350 bar compared to a classical tank at 700 bar. This result is a possible route to achieve interesting performances for on-board docking systems for instance. (author)

  6. Application of carbon extraction replicas in grain-size measurements of high-strength steels using TEM

    International Nuclear Information System (INIS)

    Poorhaydari, Kioumars; Ivey, Douglas G.

    2007-01-01

    In this paper, the application of carbon extraction replicas in grain-size measurements is introduced and discussed. Modern high-strength microalloyed steels, used as structural or pipeline materials, have very small grains with substructures. Replicas used in transmission electron microscopes can resolve the grain boundaries and can be used for systematic measurement of grain size in cases where the small size of the grains pushes the resolution of conventional optical microscopes. The grain-size variations obtained from replicas are compared with those obtained from optical and scanning electron microscopy. An emphasis is placed on the importance of using the correct technique for imaging and the optimal magnification. Grain-size measurements are used for estimation of grain-boundary strengthening contribution to yield strength. The variation in grain size is also correlated with hardness in the base metal of several microalloyed steels, as well as the fine-grained heat-affected zone of a weld structure with several heat inputs

  7. Hydrogen storage enhanced in Li-doped carbon replica of zeolites: a possible route to achieve fuel cell demand.

    Science.gov (United States)

    Roussel, Thomas; Bichara, Christophe; Gubbins, Keith E; Pellenq, Roland J-M

    2009-05-07

    We first report the atomistic grand canonical Monte Carlo simulations of the synthesis of two realistic ordered microporous carbon replica in two siliceous forms of faujasite zeolite (cubic Y-FAU and hexagonal EMT). Atomistic simulations of hydrogen adsorption isotherms in these two carbon structures and their Li-doped composites were carried out to determine their storage capacities at 77 and 298 K. We found that these new forms of carbon solids and their Li-doped versions show very attractive hydrogen storage capacities at 77 and 298 K, respectively. However, for a filling pressure of 300 bars and at room temperature, bare carbons do not show advantageous performances compared to a classical gas cylinder despite of their crystalline micropore network. In comparison, Li-doped nanostructures provide reversible gravimetric and volumetric hydrogen storage capacities twice larger (3.75 wt % and 33.7 kg/m(3)). The extreme lattice stiffness of their skeleton will prevent them from collapsing under large external applied pressure, an interesting skill compared to bundle of carbon nanotubes, and metal organic frameworks (MOFs). These new ordered composites are thus very promising materials for hydrogen storage issues by contrast with MOFs.

  8. Hyper-V Replica essentials

    CERN Document Server

    Krstevski, Vangel

    2013-01-01

    a in various deployment scenarios.Hyper-V Replica Essentials is for Windows Server administrators who want to improve their system availability and speed up disaster recovery. You will need experience in Hyper-V deployment because Hyper-V Replica is built in the Hyper-V platform.

  9. T2K Replica Target Hadron Production Measurements in NA61/SHINE and T2K Neutrino Flux Predictions

    CERN Document Server

    AUTHOR|(SzGeCERN)710687

    Accelerator based neutrino experiments generate their neutrino beams by impinging high energy protons on thick targets. The neutrino beam predictions are thus based on modeling the interactions of the beam protons inside the targets. Different hadronic models can be used with different accuracies depending on the energy range of the incident protons and on the target material. Nevertheless, none of the models can be seen as perfectly describing all different interactions. In order to reach high precision neutrino flux predictions, it is thus mandatory to be able to test and constrain the models with hadron production measurements. The T2K experiment in Japan uses the ancillary NA61/SHINE facility at CERN to constrain the production of hadrons resulting from the interactions of proton beam particles impinging on a 90cm long graphite target. Data taken by NA61/SHINE with a 30 GeV proton beam on a thin (4% interaction length) graphite target have been recorded in 2007 and 2009. They have been analysed and extens...

  10. Reducing carbon dioxide to products

    Science.gov (United States)

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  11. Minimizing activated carbons production cost

    International Nuclear Information System (INIS)

    Stavropoulos, G.G.; Zabaniotou, A.A.

    2009-01-01

    A detailed economic evaluation of activated carbons production process from various raw materials is undertaken using the conventional economic indices (ROI, POT, and NPV). The fundamental factors that affect production cost were taken into account. It is concluded that for an attractive investment in activated carbons production one should select the raw material with the highest product yield, adopt a chemical activation production scheme and should base product price on product-surface area (or more generally on product adsorption capacity for the adsorbate in consideration). A raw material that well meets the above-mentioned criteria is petroleum coke but others are also promising (charcoals, and carbon black). Production cost then can be optimized by determining its minimum value of cost that results from the intercept between the curves of plant capacity and raw material cost - if any. Taking into account the complexity of such a techno-economic analysis, a useful suggestion could be to start the evaluations from a plant capacity corresponding to the break-even point, i. e. the capacity at which income equals production cost. (author)

  12. 3D printed replicas for endodontic education.

    Science.gov (United States)

    Reymus, M; Fotiadou, C; Kessler, A; Heck, K; Hickel, R; Diegritz, C

    2018-06-14

    To assess the feasibility of producing artificial teeth for endodontic training using 3D printing technology, to analyse the accuracy of the printing process, and to evaluate the teeth by students when used during training. Sound extracted human teeth were selected, digitalized by cone beam computed tomography (CBCT) and appropriate software and finally reproduced by a stereolithographic printer. The printed teeth were scanned and compared with the original ones (trueness) and to one another (precision). Undergraduate dental students in the third and fourth years performed root canal treatment on printed molars and were subsequently asked to evaluate their experience with these compared to real teeth. The workflow was feasible for manufacturing 3D printed tooth replicas. The absolute deviation after printing (trueness) ranged from 50.9μm to 104.3μm. The values for precision ranged from 43.5μm to 68.2μm. Students reported great benefits in the use of the replicated teeth for training purposes. The presented workflow is feasible for any dental educational institution who has access to a CBCT unit and a stereolithographic printer. The accuracy of the printing process is suitable for the production of tooth replicas for endodontic training. Undergraduate students favoured the availability of these replicas and the fairness they ensured in training due to standardization. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Computer simulation study of in-zeolites templated carbon replicas: structural and adsorption properties for hydrogen storage application; simulation numerique de repliques de zeolithes en carbone: structures et proprietes d'adsorption en vue d'une application au stockage d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, T

    2007-05-15

    Hydrogen storage is the key issue to envisage this gas for instance as an energy vector in the field of transportation. Porous carbons are materials that are considered as possible candidates. We have studied well-controlled microporous carbon nano-structures, carbonaceous replicas of meso-porous ordered silica materials and zeolites. We realized numerically (using Grand Canonical Monte Carlo Simulations, GCMC) the atomic nano-structures of the carbon replication of four zeolites: AlPO{sub 4}-5, silicalite-1, and Faujasite (FAU and EMT). The faujasite replicas allow nano-casting of a new form of carbon crystalline solid made of tetrahedrally or hexagonally interconnected single wall nano-tubes. The pore size networks are nano-metric giving these materials optimized hydrogen molecular storage capacities (for pure carbon phases). However, we demonstrate that these new carbon forms are not interesting for room temperature efficient storage compared to the void space of a classical gas cylinder. We showed that doping with an alkaline element, such as lithium, one could store the same quantities at 350 bar compared to a classical tank at 700 bar. This result is a possible route to achieve interesting performances for on-board docking systems for instance. (author)

  14. Computer simulation study of in-zeolites templated carbon replicas: structural and adsorption properties for hydrogen storage application; simulation numerique de repliques de zeolithes en carbone: structures et proprietes d'adsorption en vue d'une application au stockage d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, T

    2007-05-15

    Hydrogen storage is the key issue to envisage this gas for instance as an energy vector in the field of transportation. Porous carbons are materials that are considered as possible candidates. We have studied well-controlled microporous carbon nano-structures, carbonaceous replicas of meso-porous ordered silica materials and zeolites. We realized numerically (using Grand Canonical Monte Carlo Simulations, GCMC) the atomic nano-structures of the carbon replication of four zeolites: AlPO{sub 4}-5, silicalite-1, and Faujasite (FAU and EMT). The faujasite replicas allow nano-casting of a new form of carbon crystalline solid made of tetrahedrally or hexagonally interconnected single wall nano-tubes. The pore size networks are nano-metric giving these materials optimized hydrogen molecular storage capacities (for pure carbon phases). However, we demonstrate that these new carbon forms are not interesting for room temperature efficient storage compared to the void space of a classical gas cylinder. We showed that doping with an alkaline element, such as lithium, one could store the same quantities at 350 bar compared to a classical tank at 700 bar. This result is a possible route to achieve interesting performances for on-board docking systems for instance. (author)

  15. Carbon footprinting of electronic products

    International Nuclear Information System (INIS)

    Vasan, Arvind; Sood, Bhanu; Pecht, Michael

    2014-01-01

    Highlights: • Challenges in adopting existing CF standards for electronic products are discussed. • Carbon footprint of electronic products is underestimated using existing standards. • Multipronged approach is presented to overcome the identified challenges. • Multipronged approach demonstrated on commercial and military grade DC–DC converter system. - Abstract: In order to mitigate the effects of global warming, companies are being compelled by governments, investors, and customers to control their greenhouse gas (GHG) emissions. Similar to the European Union’s legislation on the airline industry, legislation is expected to require the electronics industry to assess their product’s carbon footprint before sale or use, as the electronics industry’s contribution to global GHG emissions is comparable to the airline industry’s contribution. Thus, it is necessary for members of the electronics industry to assess their current GHG emission rates and identify methods to reduce environmental impacts. Organizations use Carbon Footprint (CF) analysis methods to identify and quantify the GHG emissions associated with the life cycle stages of their product or services. This paper discusses the prevailing methods used by organizations to estimate the CF of their electronics products and identifies the challenges faced by the electronics industry when adopting these methods in an environment of decreasing product development cycles with complex and diffuse supply chains. We find that, as a result of the inconsistencies arising from the system boundary selection methods and databases, the use of outdated LCA approaches, and the lack of supplier’s emissions-related data, the CFs of electronic products are typically underestimated. To address these challenges, we present a comprehensive approach to the carbon footprinting of electronic products that involves the use of product-group-oriented standards, hybrid life cycle assessment techniques, and the

  16. Biochar production for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Thakkar, J.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This study examined the use of agricultural biomass for biochar production and its storage in a landfill to sequester carbon. Capturing the energy from biomass that would otherwise decay, is among the many options available to mitigate the impact of the greenhouse gas (GHG) emissions associated with fossil fuel consumption. Biochar is a solid fuel which can be produced from agricultural biomass such as wheat and barley straw. This organic solid can be produced by slow pyrolysis of straw. A conceptual techno-economic model based on actual data was used to estimate the cost of producing biochar from straw in a centralized plant. The objectives of the study were to estimate the overall delivered cost of straw to the charcoal production plant; estimate the transportation costs of charcoal to the landfill site; estimate the cost of landfill; and estimate the overall cost of carbon sequestration through a charcoal landfill. According to preliminary results, the cost of carbon sequestration through this pathway is greater than $50 per tonne of carbon dioxide.

  17. Multiscale implementation of infinite-swap replica exchange molecular dynamics.

    Science.gov (United States)

    Yu, Tang-Qing; Lu, Jianfeng; Abrams, Cameron F; Vanden-Eijnden, Eric

    2016-10-18

    Replica exchange molecular dynamics (REMD) is a popular method to accelerate conformational sampling of complex molecular systems. The idea is to run several replicas of the system in parallel at different temperatures that are swapped periodically. These swaps are typically attempted every few MD steps and accepted or rejected according to a Metropolis-Hastings criterion. This guarantees that the joint distribution of the composite system of replicas is the normalized sum of the symmetrized product of the canonical distributions of these replicas at the different temperatures. Here we propose a different implementation of REMD in which (i) the swaps obey a continuous-time Markov jump process implemented via Gillespie's stochastic simulation algorithm (SSA), which also samples exactly the aforementioned joint distribution and has the advantage of being rejection free, and (ii) this REMD-SSA is combined with the heterogeneous multiscale method to accelerate the rate of the swaps and reach the so-called infinite-swap limit that is known to optimize sampling efficiency. The method is easy to implement and can be trivially parallelized. Here we illustrate its accuracy and efficiency on the examples of alanine dipeptide in vacuum and C-terminal β-hairpin of protein G in explicit solvent. In this latter example, our results indicate that the landscape of the protein is a triple funnel with two folded structures and one misfolded structure that are stabilized by H-bonds.

  18. File-based replica management

    CERN Document Server

    Kunszt, Peter Z; Stockinger, Heinz; Stockinger, Kurt

    2005-01-01

    Data replication is one of the best known strategies to achieve high levels of availability and fault tolerance, as well as minimal access times for large, distributed user communities using a world-wide Data Grid. In certain scientific application domains, the data volume can reach the order of several petabytes; in these domains, data replication and access optimization play an important role in the manageability and usability of the Grid. In this paper, we present the design and implementation of a replica management Grid middleware that was developed within the EDG project left bracket European Data Grid Project (EDG), http://www.eu-egee.org right bracket and is designed to be extensible so that user communities can adjust its detailed behavior according to their QoS requirements.

  19. Carbon dioxide production in animal houses

    DEFF Research Database (Denmark)

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.

    2008-01-01

    cellars are emptied regularly in a four weeks interval. Due to a high and variable carbon dioxide production in deep straw litter houses and houses with indoor storage of manure longer than four weeks, we do not recommend to calculate the ventilation flow based on the carbon dioxide concentration......This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o...

  20. Validation of the replica trick for simple models

    Science.gov (United States)

    Shinzato, Takashi

    2018-04-01

    We discuss the replica analytic continuation using several simple models in order to prove mathematically the validity of the replica analysis, which is used in a wide range of fields related to large-scale complex systems. While replica analysis consists of two analytical techniques—the replica trick (or replica analytic continuation) and the thermodynamical limit (and/or order parameter expansion)—we focus our study on replica analytic continuation, which is the mathematical basis of the replica trick. We apply replica analysis to solve a variety of analytical models, and examine the properties of replica analytic continuation. Based on the positive results for these models we propose that replica analytic continuation is a robust procedure in replica analysis.

  1. Replica Fourier Transform: Properties and applications

    International Nuclear Information System (INIS)

    Crisanti, A.; De Dominicis, C.

    2015-01-01

    The Replica Fourier Transform is the generalization of the discrete Fourier Transform to quantities defined on an ultrametric tree. It finds use in conjunction of the replica method used to study thermodynamics properties of disordered systems such as spin glasses. Its definition is presented in a systematic and simple form and its use illustrated with some representative examples. In particular we give a detailed discussion of the diagonalization in the Replica Fourier Space of the Hessian matrix of the Gaussian fluctuations about the mean field saddle point of spin glass theory. The general results are finally discussed for a generic spherical spin glass model, where the Hessian can be computed analytically

  2. Overview of the carbon products consortium (CPC)

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, C.L. [West Virginia Univ., Morgantown, WV (United States)

    1996-08-01

    The Carbon Products Consortium (CPC) is an industry, university, government cooperative research team which has evolved over the past seven years to produce and evaluate coal-derived feedstocks for carbon products. The members of the Carbon Products Consortium are UCAR Carbon Company, Koppers Industries, CONOCO, Aluminum Company of America, AMOCO Polymers, and West Virginia University. The Carbon and Insulation Materials Technology Group at Oak Ridge National Laboratory, Fiber Materials Inc., and BASF Corporation are affiliates of the CPC. The initial work on coal-derived nuclear graphites was supported by a grant to WVU, UCAR Carbon, and ORNL from the U.S. DOE New Production Reactor program. More recently, the CPC program has been supported through the Fossil Energy Materials program and through PETC`s Liquefaction program. The coal processing technologies involve hydrogenation, extraction by solvents such as N-methyl pyrolidone and toluene, material blending, and calcination. The breadth of carbon science expertise and manufacturing capability available in the CPC enables it to address virtually all research and development issues of importance to the carbon products industry.

  3. Carbon beams, production and acceleration

    International Nuclear Information System (INIS)

    Belmont M, E.

    1979-01-01

    Installation, test and working conditions of a new negative-ion facility of the Salazar EN tandem are briefly described. Carbon is the material used for the test and the heavy ion stripping phenomenon is reviewed. (author)

  4. Carbon footprint of grain production in China.

    Science.gov (United States)

    Zhang, Dan; Shen, Jianbo; Zhang, Fusuo; Li, Yu'e; Zhang, Weifeng

    2017-06-29

    Due to the increasing environmental impact of food production, carbon footprint as an indicator can guide farmland management. This study established a method and estimated the carbon footprint of grain production in China based on life cycle analysis (LCA). The results showed that grain production has a high carbon footprint in 2013, i.e., 4052 kg ce/ha or 0.48 kg ce/kg for maize, 5455 kg ce/ha or 0.75 kg ce/kg for wheat and 11881 kg ce/ha or 1.60 kg ce/kg for rice. These footprints are higher than that of other countries, such as the United States, Canada and India. The most important factors governing carbon emissions were the application of nitrogen fertiliser (8-49%), straw burning (0-70%), energy consumption by machinery (6-40%), energy consumption for irrigation (0-44%) and CH 4 emissions from rice paddies (15-73%). The most important carbon sequestration factors included returning of crop straw (41-90%), chemical nitrogen fertiliser application (10-59%) and no-till farming practices (0-10%). Different factors dominated in different crop systems in different regions. To identity site-specific key factors and take countermeasures could significantly lower carbon footprint, e.g., ban straw burning in northeast and south China, stopping continuous flooding irrigation in wheat and rice production system.

  5. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-08-31

    This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be

  6. Replica consistency in a Data Grid

    International Nuclear Information System (INIS)

    Domenici, Andrea; Donno, Flavia; Pucciani, Gianni; Stockinger, Heinz; Stockinger, Kurt

    2004-01-01

    A Data Grid is a wide area computing infrastructure that employs Grid technologies to provide storage capacity and processing power to applications that handle very large quantities of data. Data Grids rely on data replication to achieve better performance and reliability by storing copies of data sets on different Grid nodes. When a data set can be modified by applications, the problem of maintaining consistency among existing copies arises. The consistency problem also concerns metadata, i.e., additional information about application data sets such as indices, directories, or catalogues. This kind of metadata is used both by the applications and by the Grid middleware to manage the data. For instance, the Replica Management Service (the Grid middleware component that controls data replication) uses catalogues to find the replicas of each data set. Such catalogues can also be replicated and their consistency is crucial to the correct operation of the Grid. Therefore, metadata consistency generally poses stricter requirements than data consistency. In this paper we report on the development of a Replica Consistency Service based on the middleware mainly developed by the European Data Grid Project. The paper summarises the main issues in the replica consistency problem, and lays out a high-level architectural design for a Replica Consistency Service. Finally, results from simulations of different consistency models are presented

  7. PRESTO: online calculation of carbon in harvested wood products

    Science.gov (United States)

    Coeli M. Hoover; Sarah J. Beukema; Donald C.E. Robinson; Katherine M. Kellock; Diana A. Abraham

    2014-01-01

    Carbon stored in harvested wood products is recognized under international carbon accounting protocols, and some crediting systems may permit the inclusion of harvested wood products when calculating carbon sequestration. For managers and landowners, however, estimating carbon stored in harvested wood products may be difficult. PRESTO (PRoduct EStimation Tool Online)...

  8. STATEMENT OF THE OPTIMIZATION PROBLEM OF CARBON PRODUCTS PRODUCTION

    Directory of Open Access Journals (Sweden)

    O. A. Zhuchenko

    2016-08-01

    Full Text Available The paper formulated optimization problem formulation production of carbon products. The analysis of technical and economic parameters that can be used to optimize the production of carbonaceous products had been done by the author. To evaluate the efficiency of the energy-intensive production uses several technical and economic indicators. In particular, the specific cost, productivity, income and profitability of production. Based on a detailed analysis had been formulated optimality criterion that takes into account the technological components of profitability. The components in detail the criteria and the proposed method of calculating non-trivial, one of them - the production cost of each product. When solving the optimization problem of technological modes of production into account constraints on the variables are optimized. Thus, restrictions may be expressed on the number of each product produced. Have been formulated the method of calculating the cost per unit of product. Attention is paid to the quality indices of finished products as an additional constraint in the optimization problem. As a result have been formulated the general problem of optimizing the production of carbon products, which includes the optimality criterion and restrictions.

  9. Is Sputtering Sufficient for Production of Replicas?

    Czech Academy of Sciences Publication Activity Database

    Vaškovicová, Naděžda; Hrubanová, Kamila; Krzyžánek, Vladislav

    2016-01-01

    Roč. 22, S3 (2016), s. 44-45 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : biological structures * BAF060 * ACE600 * MED020 Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.891, year: 2016

  10. A furnace for firing carbon products

    Energy Technology Data Exchange (ETDEWEB)

    Sudavskii, A M

    1979-12-05

    A furnace for firing carbon products is patented that consists of several chambers with a perforated hearth, which are interconnected by a lower and an upper reservoir with a locking fixture, and a flue. In order to intensify the firing process by increasing the specific hearth productivity, the flue is connected to the upper reservoir. A block diagram of the patented furnace is given, together with a description of its operation.

  11. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  12. Production of activated carbons from almond shell

    Energy Technology Data Exchange (ETDEWEB)

    Nabais, Joao M. Valente; Laginhas, Carlos Eduardo C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Evora Univ. (Portugal). Centro de Quimica de Evora

    2011-02-15

    The production of activated carbons from almond shell, using physical activation by CO{sub 2} is reported in this work. The used method has produced activated carbons with apparent BET surface areas and micropore volume as high as 1138 m{sup 2} g{sup -1} and 0.49 cm{sup 3} g{sup -1}, respectively. The activated carbons produced have essentially primary micropores and only a small volume of wider micropores. By FTIR analysis it was possible to identify, in the surface of the activated carbons, several functional groups, namely hydroxyls (free and phenol), ethers, esters, lactones, pyrones and Si-H bonds. By the analysis of the XRD patterns it was possible to calculate the microcrystallites dimensions with height between 1.178 and 1.881 nm and width between 3.106 and 5.917 nm. From the XRD it was also possible to identify the presence of traces of inorganic heteroatoms such as Si, Pb, K, Fe and P. All activated carbons showed basic characteristics with point of zero charge between 9.42 and 10.43. (author)

  13. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  14. Graphene nanoribbons production from flat carbon nanotubes

    International Nuclear Information System (INIS)

    Melo, W. S.; Guerini, S.; Diniz, E. M.

    2015-01-01

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons

  15. Synthesis and properties of ZnFe2O4 replica with biological hierarchical structure

    International Nuclear Information System (INIS)

    Liu, Hongyan; Guo, Yiping; Zhang, Yangyang; Wu, Fen; Liu, Yun; Zhang, Di

    2013-01-01

    Highlights: • ZFO replica with hierarchical structure was synthesized from butterfly wings. • Biotemplate has a significant impact on the properties of ZFO material. • Our method opens up new avenues for the synthesis of spinel ferrites. -- Abstract: ZnFe 2 O 4 replica with biological hierarchical structure was synthesized from Papilio paris by a sol–gel method followed by calcination. The crystallographic structure and morphology of the obtained samples were characterized by X-ray diffraction, field-emission scanning electron microscope, and transmittance electron microscope. The results showed that the hierarchical structures were retained in the ZFO replica of spinel structure. The magnetic behavior of such novel products was measured by a vibrating sample magnetometer. A superparamagnetism-like behavior was observed due to nanostructuration size effects. In addition, the ZFO replica with “quasi-honeycomb-like structure” showed a much higher specific capacitance of 279.4 F g −1 at 10 mV s −1 in comparison with ZFO powder of 137.3 F g −1 , attributing to the significantly increased surface area. These results demonstrated that ZFO replica is a promising candidate for novel magnetic devices and supercapacitors

  16. Replica methods for loopy sparse random graphs

    International Nuclear Information System (INIS)

    Coolen, ACC

    2016-01-01

    I report on the development of a novel statistical mechanical formalism for the analysis of random graphs with many short loops, and processes on such graphs. The graphs are defined via maximum entropy ensembles, in which both the degrees (via hard constraints) and the adjacency matrix spectrum (via a soft constraint) are prescribed. The sum over graphs can be done analytically, using a replica formalism with complex replica dimensions. All known results for tree-like graphs are recovered in a suitable limit. For loopy graphs, the emerging theory has an appealing and intuitive structure, suggests how message passing algorithms should be adapted, and what is the structure of theories describing spin systems on loopy architectures. However, the formalism is still largely untested, and may require further adjustment and refinement. (paper)

  17. Kinetics from Replica Exchange Molecular Dynamics Simulations.

    Science.gov (United States)

    Stelzl, Lukas S; Hummer, Gerhard

    2017-08-08

    Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and RNA folding from REMD simulations.

  18. Technique for production of graphite-carbon products

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.N.; Bentsianovskaya, I.A.; Filatova, V.A.; Nabokov, V.S.; Nestor, V.P.; Zil' bergleyt, I.M.

    1982-01-01

    The technique for producing carbon-graphite products that includes filtration under a pressure of 0.1-015 MPa (through graphite stock) of an aqueous carbon material with the addition of surfactant, drying, and subsequent thermal treatment, is simplified and made less lengthy. Oxidized graphite is utilized with a prior addition of 1-10% water-soluble organic substance into the suspension -molasses, hemicellulose, sugar or polyacrylamide. A 0.03-1.5% suspension of oxidized graphite is utilized, with a particle size of 0.02-0.1 mkm. Thermal processing is done in a carbon fill, at a rate of 10-20 degrees/hour to 700-800/sup 0/, maintained 2-3 hours.

  19. A critical inventory of preoperative skull replicas.

    Science.gov (United States)

    Fasel, J H D; Beinemann, J; Schaller, K; Gailloud, P

    2013-09-01

    Physical replicas of organs are used increasingly for preoperative planning. The quality of these models is generally accepted by surgeons. In view of the strong trend towards minimally invasive and personalised surgery, however, the aim of this investigation was to assess qualitatively the accuracy of such replicas, using skull models as an example. Skull imaging was acquired for three cadavers by computed tomography using clinical routine parameters. After digital three-dimensional (3D) reconstruction, physical replicas were produced by 3D printing. The facsimilia were analysed systematically and compared with the best gold standard possible: the macerated skull itself. The skull models were far from anatomically accurate. Non-conforming rendering was observed in particular for foramina, sutures, notches, fissures, grooves, channels, tuberosities, thin-walled structures, sharp peaks and crests, and teeth. Surgeons should be aware that preoperative models may not yet render the exact anatomy of the patient under consideration and are advised to continue relying, in specific conditions, on their own analysis of the native computed tomography or magnetic resonance imaging.

  20. Surgery planning and navigation by laser lithography plastic replica. Features, clinical applications, and advantages

    International Nuclear Information System (INIS)

    Kihara, Tomohiko; Tanaka, Yuuko; Furuhata, Kentaro

    1995-01-01

    The use of three-dimensional replicas created using laserlithography has recently become popular for surgical planning and intraoperative navigation in plastic surgery and oral maxillofacial surgery. In this study, we investigated many clinical applications that we have been involved in regarding the production of three-dimensional replicas. We have also analyzed the features, application classes, and advantages of this method. As a result, clinical applications are categorized into three classes, which are 'three-dimensional shape recognition', 'simulated surgery', and 'template'. The distinct features of three-dimensional replicas are 'direct recognition', 'fast manipulation', and 'free availability'. Meeting the requirements of surgical planning and intraoperative navigation, they have produced satisfactory results in clinical applications. (author)

  1. How Glassy States Affect Brown Carbon Production?

    Science.gov (United States)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  2. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  3. Production of activated carbon from TCR char

    Science.gov (United States)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  4. Product carbon footprint developments and gaps

    DEFF Research Database (Denmark)

    Kronborg Jensen, Jesper

    2012-01-01

    Purpose - Over the last decade, multiple initiatives have been undertaken to learn how to capture the carbon footprint of a supply chain at a product level. The purpose of this paper is to focus on the process of standardization to secure consistency of product carbon footprinting (PCF) and to ou....../value - Papers that outline the standardization process for PCF have been examined, but this paper adds value by categorizing the field, outlining the latest standards, and by being the first paper to compare standards for PCF on selected criteria and identify gaps....... when conducting a PCF, and a paradox exists concerning methods for securing future standardization of PCF. Research limitations/implications - Standards for evaluating emission of greenhouse gases (GHGs) in supply chains are evaluated without consideration of other environmental impacts. In addition......, the research only compares international standards, thereby excluding national initiatives. Practical implications - Standardization efforts can be expected to shape the future practice of measuring emission of GHGs in companies and supply chains which provides a framework for reducing impacts. Originality...

  5. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  6. Fabrication of micropillar substrates using replicas of alpha-particle irradiated and chemically etched PADC films

    International Nuclear Information System (INIS)

    Ng, C.K.M.; Chong, E.Y.W.; Roy, V.A.L.; Cheung, K.M.C.; Yeung, K.W.K.; Yu, K.N.

    2012-01-01

    We proposed a simple method to fabricate micropillar substrates. Polyallyldiglycol carbonate (PADC) films were irradiated by alpha particles and then chemically etched to form a cast with micron-scale spherical pores. A polydimethylsiloxane (PDMS) replica of this PADC film gave a micropillar substrate with micron-scale spherical pillars. HeLa cells cultured on such a micropillar substrate had significantly larger percentage of cells entering S-phase, attached cell numbers and cell spreading areas. - Highlights: ► We proposed a simple method to fabricate micropillar substrates. ► Polyallyldiglycol carbonate films were irradiated and etched to form casts. ► Polydimethylsiloxane replica then formed the micropillar substrates. ► Attachment and proliferation of HeLa cells were enhanced on these substrates.

  7. Fabrication of micropillar substrates using replicas of alpha-particle irradiated and chemically etched PADC films

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.K.M. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chong, E.Y.W. [Department of Orthopaedics and Traumatology, University of Hong Kong (Hong Kong); Roy, V.A.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Cheung, K.M.C.; Yeung, K.W.K. [Department of Orthopaedics and Traumatology, University of Hong Kong (Hong Kong); Yu, K.N., E-mail: appetery@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2012-07-15

    We proposed a simple method to fabricate micropillar substrates. Polyallyldiglycol carbonate (PADC) films were irradiated by alpha particles and then chemically etched to form a cast with micron-scale spherical pores. A polydimethylsiloxane (PDMS) replica of this PADC film gave a micropillar substrate with micron-scale spherical pillars. HeLa cells cultured on such a micropillar substrate had significantly larger percentage of cells entering S-phase, attached cell numbers and cell spreading areas. - Highlights: Black-Right-Pointing-Pointer We proposed a simple method to fabricate micropillar substrates. Black-Right-Pointing-Pointer Polyallyldiglycol carbonate films were irradiated and etched to form casts. Black-Right-Pointing-Pointer Polydimethylsiloxane replica then formed the micropillar substrates. Black-Right-Pointing-Pointer Attachment and proliferation of HeLa cells were enhanced on these substrates.

  8. Method for production of carbon nanofiber mat or carbon paper

    Science.gov (United States)

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  9. Carbon sequestration from boreal wildfires via Pyrogenic Carbon production

    Science.gov (United States)

    Santin, Cristina; Doerr, Stefan; Preston, Caroline

    2014-05-01

    Fire releases important quantities of carbon (C) to the atmosphere. Every year, an average of 460 Million ha burn around the globe, generating C emissions equivalent to a third of the current annual contribution from fossil fuel combustion. Over the longer-term wildfires are widely considered as 'net zero C emission events', because C emissions from fires, excluding those associated with deforestation and peatland fires, are balanced by C uptake by regenerating vegetation. This 'zero C emission' scenario, however, may be flawed, as it does not consider the production of pyrogenic C (PyC). During fire, part of the biomass C burnt is emitted to the atmosphere but part is transformed into PyC (i.e. charcoal). The enhanced resistance of PyC to environmental degradation compared to unburnt biomass gives it the potential to sequester C over the medium/long term. Therefore, after complete regeneration of the vegetation, the PyC generated may represent an additional C pool and, hence, recurring fire-regrowth cycles could represent net sinks of atmospheric C. To estimate the quantitative importance of PyC production, accurate data on PyC generation with respect to the fuel combusted are needed. Unfortunately, detailed quantification of fuel prior to fire is normally only available for prescribed and experimental fires, which are usually of low-intensity and therefore not representative of higher-intensity wildfires. Furthermore, what little data is available is usually based on only a specific fraction of the PyC present following burning rather than the whole range of PyC products and pools (i.e. PyC in soil, ash, downed wood and standing vegetation). To address this research gap, we utilized the globally unique FireSmart experimental forest fires in Northwest Canada. They are aimed to reproduce wildfire conditions typical for boreal forest and, at the same time, allow pre-fire fuel assessment, fire behaviour monitoring and immediate post-fire fuel and PyC inventory. This

  10. The carbon footprint of indoor Cannabis production

    International Nuclear Information System (INIS)

    Mills, Evan

    2012-01-01

    The emergent industry of indoor Cannabis production – legal in some jurisdictions and illicit in others – utilizes highly energy intensive processes to control environmental conditions during cultivation. This article estimates the energy consumption for this practice in the United States at 1% of national electricity use, or $6 billion each year. One average kilogram of final product is associated with 4600 kg of carbon dioxide emissions to the atmosphere, or that of 3 million average U.S. cars when aggregated across all national production. The practice of indoor cultivation is driven by criminalization, pursuit of security, pest and disease management, and the desire for greater process control and yields. Energy analysts and policymakers have not previously addressed this use of energy. The unchecked growth of electricity demand in this sector confounds energy forecasts and obscures savings from energy efficiency programs and policies. While criminalization has contributed to the substantial energy intensity, legalization would not change the situation materially without ancillary efforts to manage energy use, provide consumer information via labeling, and other measures. Were product prices to fall as a result of legalization, indoor production using current practices could rapidly become non-viable. - Highlights: ► The emergent industry of indoor Cannabis production utilizes highly energy intensive processes and is highly inefficient. ► In the United States, this represents an annual energy expenditure of $6 billion. ► One kg of final product is associated with emissions of 4600 kg of CO 2 emissions to the atmosphere. ► Aggregate U.S. emissions are equivalent those of 3 million cars. ► Energy analysts and policymakers have not previously addressed this use of energy.

  11. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  12. Taxation of carbon intensive imported products

    International Nuclear Information System (INIS)

    De La Fuente Sanchez, C.; Dubilly, A.L.; Lescal, N.

    2010-01-01

    It is one of the greatest challenges of our time to make the link between development issues and climate change actions. The EU has committed itself, throughout the Kyoto Protocol and the current negotiation mechanisms, to reduce its emissions of greenhouse gas, but the question is still pending on the possible ways to have those efforts harmonized globally, and in particular with developing countries. Why not set taxation on carbon intensive products imported, ted, in the European Union, from countries that do not provide 'green' guarantees in their fabrication process? We begin this study with a thorough analysis of the ins and outs of the carbon tax. On the one hand, it is a good way of adjusting prices and rectifying a competition distortion between those paying or their emissions and those exempted of constraints. On the other hand, one can ask oneself if it is fair to discriminate developing countries when they need growth and better living standards. After going through the legal issues in which this debate is imbricated, the third and last part of this study investigates the possible implementation issues in terms of tax level and of benefits' generation and use. This study illustrates the complexity of reuniting particular interests and global interests on global warming, as well as the complexity of sharing responsibilities on a fair way between industrialized and developing countries on climate change issues. The challenge is big and complex yet it is worth the effort. (authors)

  13. A Validation Study of the Impression Replica Technique.

    Science.gov (United States)

    Segerström, Sofia; Wiking-Lima de Faria, Johanna; Braian, Michael; Ameri, Arman; Ahlgren, Camilla

    2018-04-17

    To validate the well-known and often-used impression replica technique for measuring fit between a preparation and a crown in vitro. The validation consisted of three steps. First, a measuring instrument was validated to elucidate its accuracy. Second, a specimen consisting of male and female counterparts was created and validated by the measuring instrument. Calculations were made for the exact values of three gaps between the male and female. Finally, impression replicas were produced of the specimen gaps and sectioned into four pieces. The replicas were then measured with the use of a light microscope. The values received from measuring the specimen were then compared with the values received from the impression replicas, and the technique was thereby validated. The impression replica technique overvalued all measured gaps. Depending on location of the three measuring sites, the difference between the specimen and the impression replicas varied from 47 to 130 μm. The impression replica technique overestimates gaps within the range of 2% to 11%. The validation of the replica technique enables the method to be used as a reference when testing other methods for evaluating fit in dentistry. © 2018 by the American College of Prosthodontists.

  14. Problems of metrological supply of carbon materials production

    International Nuclear Information System (INIS)

    Belov, G.V.; Bazilevskij, L.P.; Cherkashina, N.V.

    1989-01-01

    Carbon materials and products contain internal residual stresses and have an anisotropy of properties therefore special methods of tests are required to control their quality. The main metrological problems during development, production and application of carbon products are: metrological supply of production forms and records during the development of production conditions; metrological supply of quality control of the product; metrological supply of methods for the tests of products and the methods to forecast the characteristics of product quality for the period of quaranteed service life

  15. RESEARCH OF LIMY AND CARBONATE SYSTEM OF SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. G. Kulneva

    2012-01-01

    Full Text Available Influence of рН and temperature on activity of suspension of lime and carbonate in sugar production is investigated. Possibility of decrease in a consumption of reagents on purification of production sugar solutions is established.

  16. Production and characterization of activated carbon using indigenous waste materials

    International Nuclear Information System (INIS)

    Shahid, M.; Ibrahim, F.

    2011-01-01

    Activated carbon was produced from shisham wood and coconut shell through chemical activation, using phosphoric acid and low temperature carbonization. Proximate analysis and characterization of the product were carried out and Brunauer Emmett Teller (BET) surface area, total ash content, moisture content, pH value and iodine number were determined. The product characteristics were well comparable with those of the commercially available activated carbon. (author)

  17. Product carbon footprints and their uncertainties in comparative decision contexts.

    Directory of Open Access Journals (Sweden)

    Patrik J G Henriksson

    Full Text Available In response to growing awareness of climate change, requests to establish product carbon footprints have been increasing. Product carbon footprints are life cycle assessments restricted to just one impact category, global warming. Product carbon footprint studies generate life cycle inventory results, listing the environmental emissions of greenhouse gases from a product's lifecycle, and characterize these by their global warming potentials, producing product carbon footprints that are commonly communicated as point values. In the present research we show that the uncertainties surrounding these point values necessitate more sophisticated ways of communicating product carbon footprints, using different sizes of catfish (Pangasius spp. farms in Vietnam as a case study. As most product carbon footprint studies only have a comparative meaning, we used dependent sampling to produce relative results in order to increase the power for identifying environmentally superior products. We therefore argue that product carbon footprints, supported by quantitative uncertainty estimates, should be used to test hypotheses, rather than to provide point value estimates or plain confidence intervals of products' environmental performance.

  18. Three-dimensional decomposition models for carbon productivity

    International Nuclear Information System (INIS)

    Meng, Ming; Niu, Dongxiao

    2012-01-01

    This paper presents decomposition models for the change in carbon productivity, which is considered a key indicator that reflects the contributions to the control of greenhouse gases. Carbon productivity differential was used to indicate the beginning of decomposition. After integrating the differential equation and designing the Log Mean Divisia Index equations, a three-dimensional absolute decomposition model for carbon productivity was derived. Using this model, the absolute change of carbon productivity was decomposed into a summation of the absolute quantitative influences of each industrial sector, for each influence factor (technological innovation and industrial structure adjustment) in each year. Furthermore, the relative decomposition model was built using a similar process. Finally, these models were applied to demonstrate the decomposition process in China. The decomposition results reveal several important conclusions: (a) technological innovation plays a far more important role than industrial structure adjustment; (b) industry and export trade exhibit great influence; (c) assigning the responsibility for CO 2 emission control to local governments, optimizing the structure of exports, and eliminating backward industrial capacity are highly essential to further increase China's carbon productivity. -- Highlights: ► Using the change of carbon productivity to measure a country's contribution. ► Absolute and relative decomposition models for carbon productivity are built. ► The change is decomposed to the quantitative influence of three-dimension. ► Decomposition results can be used for improving a country's carbon productivity.

  19. Modeling Vocal Fold Intravascular Flow using Synthetic Replicas

    Science.gov (United States)

    Terry, Aaron D.; Ricks, Matthew T.; Thomson, Scott L.

    2017-11-01

    Vocal fold vibration that is induced by air flowing from the lungs is believed to decrease blood flow through the vocal folds. This is important due to the critical role of blood flow in maintaining tissue health. However, the precise mechanical relationships between vocal fold vibration and blood perfusion remain understudied. A platform for studying liquid perfusion in a synthetic, life-size, self-oscillating vocal fold replica has recently been developed. The replicas are fabricated using molded silicone with material properties comparable to those of human vocal fold tissues and that include embedded microchannels through which liquid is perfused. The replicas are mounted on an air flow supply tube to initiate flow-induced vibration. A liquid reservoir is attached to the microchannel to cause liquid to perfuse through replica in the anterior-posterior direction. As replica vibration is initiated and amplitude increases, perfusion flow rate decreases. In this presentation, the replica design will be presented, along with data quantifying the relationships between parameters such as replica vibration amplitude, stiffness, microchannel diameter, and perfusion flow rate. This work was supported by Grant NIDCD R01DC005788 from the National Institutes of Health.

  20. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yixin [McGill Univ., Montreal, QC (Canada)

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  1. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  2. Production and emission of methane and carbon dioxide by ruminants

    International Nuclear Information System (INIS)

    Chouinard, Y.

    2003-01-01

    Animal digestion is responsible for the production of both carbon dioxide and methane, while breathing produces only carbon dioxide. The author described the digestion mechanism of ruminants, explaining that they produce higher levels of methane and carbon dioxide than other animals. Fermentation stoichiometry of ruminants was also discussed along with the influence that diet has on methane production. It was noted that methane production can be decreased by increasing animal productivity, or by using ionophore antibiotics and long chain fatty acids. Test results from each of these methods have revealed side effects and none appears to be applicable for the time being. 10 refs., 1 tab., 1 fig

  3. Solubility Products of M(II) - Carbonates

    International Nuclear Information System (INIS)

    Grauer, Rolf; Berner, Urs

    1999-01-01

    Many solubility data for M(II) carbonates commonly compiled in tables are contradictory and sometimes obviously wrong. The quality of such data has been evaluated based on the original publications and reliable solubility constants have been selected for the carbonates of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb with the help of cross-comparisons. (author)

  4. Carbon sequestration in wood and paper products

    Science.gov (United States)

    Kenneth E. Skog; Geraldine A. Nicholson

    2000-01-01

    Recognition that increasing levels of CO2 in the atmosphere will affect the global climate has spurred research into reduction global carbon emissions and increasing carbon sequestration. The main nonhuman sources of atmospheric CO2 are animal respiration and decay of biomass. However, increases in atmospheric levels are...

  5. Evaluation of Production and Carbon Benefit of Different Vegetables

    Directory of Open Access Journals (Sweden)

    HU Liang

    2016-01-01

    Full Text Available This study analyzed environmental and economic benefits of 8 types of vegetables in 4 different farms over 3 years. The specific results were as follows:(1The input-output ratio and carbon footprint of organic production mode was 18.5% and 87.4% of that of pollution-free mode, respectively; (2Fertilizer and power consumption was the main source of carbon emissions, accounting for 58.76% and 16.67% of total carbon emissions, respectively; (3There were positive correlations between N fertilizer and both carbon emissions and carbon footprint. In other words, higher use of N fertilizer resulted in higher carbon emissions and carbon footprint; (4 When organic fertilizers use reached 122 352 kg·hm-2, the crop production could reach the maximum under organic mode. Under the mode of pollution-free production, when agricultural chemicals input reached 20 103 yuan·hm-2, leafy vegetable production could reach the maximum. Therefore, to increase production and reduce carbon emissions in the process of vegetable production, the main approach was to use organic mode, increase the quantity of organic fertilizer, instead of the use of inorganic N fertilizer and other agricultural chemicals and establish water-saving irrigation system for electricity efficiency.

  6. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and

  7. Synthesis and properties of ZnFe{sub 2}O{sub 4} replica with biological hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongyan; Guo, Yiping, E-mail: ypguo@sjtu.edu.cn; Zhang, Yangyang; Wu, Fen; Liu, Yun; Zhang, Di, E-mail: zhangdi@sjtu.edu.cn

    2013-09-20

    Highlights: • ZFO replica with hierarchical structure was synthesized from butterfly wings. • Biotemplate has a significant impact on the properties of ZFO material. • Our method opens up new avenues for the synthesis of spinel ferrites. -- Abstract: ZnFe{sub 2}O{sub 4} replica with biological hierarchical structure was synthesized from Papilio paris by a sol–gel method followed by calcination. The crystallographic structure and morphology of the obtained samples were characterized by X-ray diffraction, field-emission scanning electron microscope, and transmittance electron microscope. The results showed that the hierarchical structures were retained in the ZFO replica of spinel structure. The magnetic behavior of such novel products was measured by a vibrating sample magnetometer. A superparamagnetism-like behavior was observed due to nanostructuration size effects. In addition, the ZFO replica with “quasi-honeycomb-like structure” showed a much higher specific capacitance of 279.4 F g{sup −1} at 10 mV s{sup −1} in comparison with ZFO powder of 137.3 F g{sup −1}, attributing to the significantly increased surface area. These results demonstrated that ZFO replica is a promising candidate for novel magnetic devices and supercapacitors.

  8. Gamma-ray dosimetry measurements of the Little Boy replica

    International Nuclear Information System (INIS)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis

  9. SRF Cavity Surface Topography Characterization Using Replica Techniques

    Energy Technology Data Exchange (ETDEWEB)

    C. Xu, M.J. Kelley, C.E. Reece

    2012-07-01

    To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosen at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

  10. Forest and wood products role in carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  11. Solubility Products of M(II) - Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Grauer, Rolf; Berner, Urs [ed.

    1999-01-01

    Many solubility data for M(II) carbonates commonly compiled in tables are contradictory and sometimes obviously wrong. The quality of such data has been evaluated based on the original publications and reliable solubility constants have been selected for the carbonates of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb with the help of cross-comparisons. (author) translated from a PSI internal report written in German in 1994 (TM-44-94-05). 5 figs., 1 tab., 68 refs.

  12. Patrol Detection for Replica Attacks on Wireless Sensor Networks

    OpenAIRE

    Wang, Liang-Min; Shi, Yang

    2011-01-01

    Replica attack is a critical concern in the security of wireless sensor networks. We employ mobile nodes as patrollers to detect replicas distributed in different zones in a network, in which a basic patrol detection protocol and two detection algorithms for stationary and mobile modes are presented. Then we perform security analysis to discuss the defense strategies against the possible attacks on the proposed detection protocol. Moreover, we show the advantages of the proposed protocol by d...

  13. Accuracy of three-dimensional printing for manufacturing replica teeth

    OpenAIRE

    Lee, Keun-Young; Cho, Jin-Woo; Chang, Na-Young; Chae, Jong-Moon; Kang, Kyung-Hwa; Kim, Sang-Cheol; Cho, Jin-Hyoung

    2015-01-01

    Objective Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Methods Fifty extracted molar teeth were selected as samples. They were sc...

  14. Process for the production of sodium carbonate anhydrate

    OpenAIRE

    Oosterhof, H.; Van Rosmalen, G.M.; Witkamp, G.J.; De Graauw, J.

    2000-01-01

    The invention is directed to a process for the production of sodium carbonate-anhydrate having a bulk density of at least 800 kg/m, said process comprising: providing a suspension of solid sodium carbonate and/or solid sodium bicarbonate and/or solid double salts at least comprising one of sodium carbonate and sodium bicarbonate, in a mixture containing water and an organic, water miscible or partly water miscible solvent, which solvent influences the transition temperature below which sodium...

  15. Bayesian ensemble refinement by replica simulations and reweighting

    Science.gov (United States)

    Hummer, Gerhard; Köfinger, Jürgen

    2015-12-01

    We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.

  16. Carbon Dissolution Using Waste Biomass—A Sustainable Approach for Iron-Carbon Alloy Production

    Directory of Open Access Journals (Sweden)

    Irshad Mansuri

    2018-04-01

    Full Text Available This paper details the characterisation of char obtained by high-temperature pyrolysis of waste macadamia shell biomass and its application as carbon source in iron-carbon alloy production. The obtained char was characterised by ultimate and proximate analysis, X-ray diffraction (XRD, Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR, X-ray photon spectroscopy (XPS, Brunauer-Emmett-Teller (BET surface area via N2 isothermal adsorption and scanning electron microscopy (SEM. The results indicated that obtained char is less porous, low in ash content, and high in carbon content. Investigation of iron-carbon alloy formation through carbon dissolution at 1550 °C was carried out using sessile drop method by using obtained char as a carbon source. Rapid carbon pickup by iron was observed during first two minutes of contact and reached a saturation value of ~5.18 wt % of carbon after 30 min. The carbon dissolution rate using macadamia char as a source of carbon was comparatively higher using than other carbonaceous materials such as metallurgical coke, coal chars, and waste compact discs, due to its high percentage of carbon and low ash content. This research shows that macadamia shell waste, which has a low content of ash, is a valuable supplementary carbon source for iron-carbon alloy industries.

  17. Mangrove litter production and organic carbon pools in the ...

    African Journals Online (AJOL)

    Mngazana Estuary is an important source of mangrove litter and POC for the adjacent marine environment, possibly sustaining nearshore food webs. Keywords: Dissolved organic carbon, harvesting, litter production, mangroves, particulate organic carbon, Rhizophora mucronata, South Africa African Journal of Aquatic ...

  18. Production and characterization of activated carbon from a ...

    African Journals Online (AJOL)

    In this study, the use of a bituminous coal for the production of activated carbons with chemical activation was investigated. The effects of process variables such as chemical reagents, activation temperature, impregnation ratio and carbonization temperature were investigated to optimize these parameters. The resultant ...

  19. Process for the production of sodium carbonate anhydrate

    NARCIS (Netherlands)

    Oosterhof, H.; Van Rosmalen, G.M.; Witkamp, G.J.; De Graauw, J.

    2000-01-01

    The invention is directed to a process for the production of sodium carbonate-anhydrate having a bulk density of at least 800 kg/m<3>, said process comprising: providing a suspension of solid sodium carbonate and/or solid sodium bicarbonate and/or solid double salts at least comprising one of sodium

  20. Accounting for forest carbon pool dynamics in product carbon footprints: Challenges and opportunities

    International Nuclear Information System (INIS)

    Newell, Joshua P.; Vos, Robert O.

    2012-01-01

    Modification and loss of forests due to natural and anthropogenic disturbance contribute an estimated 20% of annual greenhouse gas (GHG) emissions worldwide. Although forest carbon pool modeling rarely suggests a ‘carbon neutral’ flux profile, the life cycle assessment community and associated product carbon footprint protocols have struggled to account for the GHG emissions associated with forestry, specifically, and land use generally. Principally, this is due to underdeveloped linkages between life cycle inventory (LCI) modeling for wood and forest carbon modeling for a full range of forest types and harvest practices, as well as a lack of transparency in globalized forest supply chains. In this paper, through a comparative study of U.S. and Chinese coated freesheet paper, we develop the initial foundations for a methodology that rescales IPCC methods from the national to the product level, with reference to the approaches in three international product carbon footprint protocols. Due to differences in geographic origin of the wood fiber, the results for two scenarios are highly divergent. This suggests that both wood LCI models and the protocols need further development to capture the range of spatial and temporal dimensions for supply chains (and the associated land use change and modification) for specific product systems. The paper concludes by outlining opportunities to measure and reduce uncertainty in accounting for net emissions of biogenic carbon from forestland, where timber is harvested for consumer products. - Highlights: ► Typical life cycle assessment practice for consumer products often excludes significant land use change emissions when estimating carbon footprints. ► The article provides a methodology to rescale IPCC guidelines for product-level carbon footprints. ► Life cycle inventories and product carbon footprint protocols need more comprehensive land use-related accounting. ► Interdisciplinary collaboration linking the LCA and

  1. Biomass production and carbon storage of Populus ×canadensis ...

    African Journals Online (AJOL)

    euramericana (Dode) Guinier ex Piccarolo) clone I-214 have good potential for biomass production. The objective of the study was estimation of biomass using allometric equations and estimation of carbon allocation according to tree components.

  2. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide

    International Nuclear Information System (INIS)

    Teir, Sebastian; Eloneva, Sanni; Zevenhoven, Ron

    2005-01-01

    The possibilities for reducing carbon dioxide emissions from the pulp and paper industry by calcium carbonation are presented. The current precipitated calcium carbonate (PCC) production uses mined, crushed calcium carbonate as raw materials. If calcium silicates were used instead, carbon dioxide emissions from the calcination of carbonates would be eliminated. In Finland, there could, thus, be a potential for eliminating 200 kt of carbon dioxide emissions per year, considering only the PCC used in the pulp and paper industry. A preliminary investigation of the feasibility to produce PCC from calcium silicates and the potential to replace calcium carbonate as the raw material was made. Calcium carbonate can be manufactured from calcium silicates by various methods, but only a few have been experimentally verified. The possibility and feasibility of these methods as a replacement for the current PCC production process was studied by thermodynamic equilibrium calculations using HSC software and process modelling using Aspen Plus[reg]. The results from the process modelling showed that a process that uses acetic acid for extraction of the calcium ions is a high potential option for sequestering carbon dioxide by mineral carbonation. The main obstacle seems to be the limited availability and relatively high price of wollastonite, which is a mineral with high calcium silicate content. An alternative is to use the more common, but also more complex, basalt rock instead

  3. Replica Fourier Tansforms on Ultrametric Trees, and Block-Diagonalizing Multi-Replica Matrices

    Science.gov (United States)

    de Dominicis, C.; Carlucci, D. M.; Temesvári, T.

    1997-01-01

    The analysis of objects living on ultrametric trees, in particular the block-diagonalization of 4-replica matrices M^{α β;γ^δ}, is shown to be dramatically simplified through the introduction of properly chosen operations on those objects. These are the Replica Fourier Transforms on ultrametric trees. Those transformations are defined and used in the present work. On montre que l'analyse d'objets vivant sur un arbre ultramétrique, en particulier, la diagonalisation par blocs d'une matrice M^{α β;γ^δ} dépendant de 4-répliques, se simplifie de façon dramatique si l'on introduit les opérations appropriées sur ces objets. Ce sont les Transformées de Fourier de Répliques sur un arbre ultramétrique. Ces transformations sont définies et utilisées dans le présent travail.

  4. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    Science.gov (United States)

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  5. Carbon and environmental footprinting of global biofuel production

    OpenAIRE

    Hammond, Geoff P.; Seth, S.M.

    2013-01-01

    The carbon and environmental footprints associated with the global production of biofuels have been computed from a baseline of 2007-2009 out until 2019. Estimates of future global biofuel production were adopted from OECD-FAO and related projections. In order to determine the footprints associated with these (essentially 'first generation') biofuel resources, the overall environmental footprint was disaggregated into bioproductive land, built land, carbon, embodied energy, materials and wast...

  6. CRADA Carbon Sequestration in Soils and Commercial Products

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, G.K.

    2002-01-31

    ORNL, through The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE), collaborated with The Village Botanica, Inc. (VB) on a project investigating carbon sequestration in soils and commercial products from a new sustainable crop developed from perennial Hibiscus spp. Over 500 pre-treated samples were analyzed for soil carbon content. ORNL helped design a sampling scheme for soils during the planting phase of the project. Samples were collected and prepared by VB and analyzed for carbon content by ORNL. The project did not progress to a Phase II proposal because VB declined to prepare the required proposal.

  7. Carbon sequestration in harvested wood products

    Science.gov (United States)

    K. Skog

    2013-01-01

    Carbon is continuously cycled among these storage pools and between forest ecosystems and the atmosphere as a result of biological processes in forests (e.g., photosynthesis, respiration, growth, mortality, decomposition, and disturbances such as fires or pest outbreaks) and anthropogenic activities (e.g., harvesting, thinning, clearing, and replanting). As trees...

  8. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  9. Carbon debt and carbon sequestration parity in forest bioenergy production

    Science.gov (United States)

    S.R. Mitchell; M.E. Harmon; K.B. O' Connell

    2012-01-01

    The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and...

  10. Capacity and production planning with carbon emission constraints

    DEFF Research Database (Denmark)

    Govindan, Kannan; Song, Shuang; Xu, Lei

    2017-01-01

    This paper builds a two-stage, stochastic model to study capacity expansion problem in logistics under cap-and-trade and carbon tax regulations. The optimal capacity expansion and production decisions are obtained, and the effects of carbon emission regulations on capacity expansion are studied....... Through analytical study and a real case numerical analysis, we find that the carbon tax exhibits different impacts on optimal capacity expansion decisions in low tax rate and high tax rate, and the volatility of capacity investment cost has a larger impact on optimal capacity expansion than...... that of production cost....

  11. Carbon composite manufacturing in automotive volume production

    DEFF Research Database (Denmark)

    Geiger, Raphael; Pahl, Julia

    2017-01-01

    Lightweight constructions are a continuously increasing trend in the automotive industry. Main drivers for that trend are the challenging emission reduction targets regarding combustion engines and increasing ranges in electric mobility. This article presents different composite production methods...... and discusses their ability within mass production giving also an example within the automotive production....

  12. Neurovascular Modeling: Small-Batch Manufacturing of Silicone Vascular Replicas

    Science.gov (United States)

    Chueh, J.Y.; Wakhloo, A.K.; Gounis, M.J.

    2009-01-01

    BACKGROUND AND PURPOSE Realistic, population based cerebrovascular replicas are required for the development of neuroendovascular devices. The objective of this work was to develop an efficient methodology for manufacturing realistic cerebrovascular replicas. MATERIALS AND METHODS Brain MR angiography data from 20 patients were acquired. The centerline of the vasculature was calculated, and geometric parameters were measured to describe quantitatively the internal carotid artery (ICA) siphon. A representative model was created on the basis of the quantitative measurements. Using this virtual model, we designed a mold with core-shell structure and converted it into a physical object by fused-deposit manufacturing. Vascular replicas were created by injection molding of different silicones. Mechanical properties, including the stiffness and luminal coefficient of friction, were measured. RESULTS The average diameter, length, and curvature of the ICA siphon were 4.15 ± 0.09 mm, 22.60 ± 0.79 mm, and 0.34 ± 0.02 mm-1 (average ± standard error of the mean), respectively. From these image datasets, we created a median virtual model, which was transformed into a physical replica by an efficient batch-manufacturing process. The coefficient of friction of the luminal surface of the replica was reduced by up to 55% by using liquid silicone rubber coatings. The modulus ranged from 0.67 to 1.15 MPa compared with 0.42 MPa from human postmortem studies, depending on the material used to make the replica. CONCLUSIONS Population-representative, smooth, and true-to-scale silicone arterial replicas with uniform wall thickness were successfully built for in vitro neurointerventional device-testing by using a batch-manufacturing process. PMID:19321626

  13. Comparison of methods for estimating carbon in harvested wood products

    International Nuclear Information System (INIS)

    Claudia Dias, Ana; Louro, Margarida; Arroja, Luis; Capela, Isabel

    2009-01-01

    There is a great diversity of methods for estimating carbon storage in harvested wood products (HWP) and, therefore, it is extremely important to agree internationally on the methods to be used in national greenhouse gas inventories. This study compares three methods for estimating carbon accumulation in HWP: the method suggested by Winjum et al. (Winjum method), the tier 2 method proposed by the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry (GPG LULUCF) (GPG tier 2 method) and a method consistent with GPG LULUCF tier 3 methods (GPG tier 3 method). Carbon accumulation in HWP was estimated for Portugal under three accounting approaches: stock-change, production and atmospheric-flow. The uncertainty in the estimates was also evaluated using Monte Carlo simulation. The estimates of carbon accumulation in HWP obtained with the Winjum method differed substantially from the estimates obtained with the other methods, because this method tends to overestimate carbon accumulation with the stock-change and the production approaches and tends to underestimate carbon accumulation with the atmospheric-flow approach. The estimates of carbon accumulation provided by the GPG methods were similar, but the GPG tier 3 method reported the lowest uncertainties. For the GPG methods, the atmospheric-flow approach produced the largest estimates of carbon accumulation, followed by the production approach and the stock-change approach, by this order. A sensitivity analysis showed that using the ''best'' available data on production and trade of HWP produces larger estimates of carbon accumulation than using data from the Food and Agriculture Organization. (author)

  14. Management options to reduce the carbon footprint of livestock products

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Kristensen, Troels

    2011-01-01

    Livestock products carry a large carbon footprint compared with other foods, and thus there is a need to focus on how to reduce it. The major contributing factors are emissions related to feed use and manure handling as well as the nature of the land required to produce the feed in question. We can....... Basically, it is important to make sure that all beneficial interactions in the livestock system are optimized instead of focusing only on animal productivity. There is an urgent need to arrive at a sound framework for considering the interaction between land use and carbon footprints of foods....... conclude that the most important mitigation options include - better feed conversion at the system level, - use of feeds that increase soil carbon sequestration versus carbon emission, - ensure that the manure produced substitutes for synthetic fertilizer, and - use manure for bio-energy production...

  15. Carbon-14 production in nuclear reactors

    International Nuclear Information System (INIS)

    Davis, W. Jr.

    1977-01-01

    The radioactive nuclide 14 C is formed in all nuclear reactors due to absorption of neutrons by carbon, nitrogen, or oxygen. These may be present as components of the fuel, moderator, or structural hardware, or they may be present as impurities. Most of the 14 C formed in the fuels or in the graphite of HTGRs will be converted to a gaseous form at the fuel reprocessing plant, primarily as carbon dioxide; this will be released to the environment unless special equipment is installed to collect it and convert it to a solid for essentially permanent storage. If the 14 C is released as carbon dioxide or in any other chemical form, it will enter the biosphere, be inhaled or ingested as food by nearly all living organisms including man, and will thus contribute to the radiation burden of these organisms. Detailed estimates are presented of the amounts of 14 C formed in LWRs, HTGR, and LMFBR with emphasis on those pathways that are likely to lead to the release of this nuclide, either at the reactor site or at the fuel reprocessing plant. 83 references

  16. Active carbon production from modified asphalt

    International Nuclear Information System (INIS)

    Fadhi, A.B.

    2006-01-01

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  17. Carbon Footprint Analysis for a GRAPE Production Case Study

    Science.gov (United States)

    Sirca, C.; Marras, S.; Masia, S.; Duce, P.; Zara, P.; Spano, D.

    2013-12-01

    Agriculture activities can play a double role in emitting or sequestering carbon from the atmosphere. Mitigation of greenhouse gas (GHG) emissions in agriculture is one of the most urgent research subjects in the framework of enhancing environmental stewardship. However, little is known about the role of the agriculture in the global carbon balance, since most of the studies applied the Eddy Covariance technique in natural or semi-natural ecosystems to investigate their role in mitigate the anthropogenic carbon release. The application of the Eddy Covariance technique in agricultural systems could greatly improve our knowledge about their role on the global carbon budget and help in modeling the related processes. In addition, there is a growing request from producers, trade companies, and customers on the assessment of the environmental impact of a production process related to agricultural high quality products. In recent years, particular attention was put on the estimation of GHG emissions deriving from productive processes. In this context, a useful tool is the Life Cycle Assessment (LCA), which represents a methodology to estimate GHG emissions related to the entire life cycle of a product. The Carbon Footprint (CF) analysis represents a subset of the LCA, which only considers CO2 emissions with an impact on climate change. With respect to the wine industry, most of studies focused on the CF analysis related to the wine making process in the cellar, while a few studies analyzed the GHG emissions related to the grape production. The aim of this work was to quantify the CO2 emissions due to the grape production and emphasize the double role of a vineyard as a carbon sink or source. An Eddy Covariance station was set up in a representative vineyard located in the Mediterranean Basin (Sardinia, Italy) to measure the net carbon exchange between the surface and the atmosphere. The CF analysis was also conducted to compute the carbon balance of the grape production

  18. CARBON CRYOGEL MICROSPHERE FOR ETHYL LEVULINATE PRODUCTION: EFFECT OF CARBONIZATION TEMPERATURE AND TIME

    Directory of Open Access Journals (Sweden)

    MUZAKKIR M. ZAINOL

    2016-07-01

    Full Text Available The side products of biomass and bio-fuel industry have shown potential in producing carbon catalyst. The carbon cryogel was synthesized from ligninfurfural mixture based on the following details: 1.0 of lignin to furfural (L/F ratio, 1.0 of lignin to water (L/W ratio, and 8M of acid concentration. The lignin-furfural sol-gel mixture, initially prepared via polycondensation reaction at 90 °C for 30 min, was followed by freeze drying and carbonization process. Effects of carbonization temperature and time were investigated on the total acidity and surface area of the carbon cryogel. Furthermore, the effects of these parameters were studied on the ethyl levulinate yield through esterification reaction of levulinic acid in ethanol. The esterification reaction was conducted at reflux temperature, 10 h of reaction time, 19 molar ratio of ethanol to levulinic acid, and 15.0 wt.% carbon cryogel loading. Based on the carbonization temperature and time studies, the carbon cryogel carbonized at 500 °C and 4 h exhibited good performance as solid acid catalyst. Large total surface area and acidity significantly influenced the catalytic activity of carbon cryogel with 80.0 wt.% yield of ethyl levulinate. Thus, carbon cryogel is highly potential as acid catalyst for the esterification of levulinic acid with ethanol.

  19. Characterization of Nb SRF cavity materials by white light interferometry and replica techniques

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); The Applied Science Department, The College of William and Mary, Williamsburg, VA 23185 (United States); Reece, Charles [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Kelley, Michael, E-mail: mkelley@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); The Applied Science Department, The College of William and Mary, Williamsburg, VA 23185 (United States)

    2013-06-01

    Much work has shown that the topography of the interior surface is an important contributor to the performance of Nb superconducting radiofrequency (SRF) accelerator cavities. Micron-scale topography is implicated in non-linear loss mechanisms that limit the useful accelerating gradient range and impact cryogenic cost. Aggressive final chemical treatments in cavity production seek to reliably obtain “smoothest” surfaces with superior performance. Process development suffers because the cavity interior surface cannot be viewed directly without cutting out pieces, rendering the cavities unavailable for further study. Here we explore replica techniques as an alternative, providing imprints of cavity internal surface that can be readily examined. A second matter is the topography measurement technique used. Atomic force microscopy (AFM) has proven successful, but too time intensive for routine use in this application. We therefore introduce white light interferometry (WLI) as an alternative approach. We examined real surfaces and their replicas, using AFM and WLI. We find that the replica/WLI is promising to provide the large majority of the desired information, recognizing that a trade-off is being made between best lateral resolution (AFM) and the opportunity to examine much more surface area (WLI).

  20. Accuracy of three-dimensional printing for manufacturing replica teeth.

    Science.gov (United States)

    Lee, Keun-Young; Cho, Jin-Woo; Chang, Na-Young; Chae, Jong-Moon; Kang, Kyung-Hwa; Kim, Sang-Cheol; Cho, Jin-Hyoung

    2015-09-01

    Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Fifty extracted molar teeth were selected as samples. They were scanned to generate high-resolution 3D surface model stereolithography files. These files were converted into physical models using two types of 3D printing technologies: Fused deposition modeling (FDM) and PolyJet technology. All replica teeth were scanned and 3D images generated. Computer software compared the replica teeth to the original teeth with linear measurements, volumetric measurements, and mean deviation measurements with best-fit alignment. Paired t-tests were used to statistically analyze the measurements. Most measurements of teeth formed using FDM tended to be slightly smaller, while those of the PolyJet replicas tended to be slightly larger, than those of the extracted teeth. Mean deviation measurements with best-fit alignment of FDM and PolyJet group were 0.047 mm and 0.038 mm, respectively. Although there were statistically significant differences, they were regarded as clinically insignificant. This study confirms that FDM and PolyJet technologies are accurate enough to be usable in orthodontic diagnosis and treatment.

  1. The Carbon Impacts of Wood Products

    Science.gov (United States)

    Richard Bergman; Maureen Puettmann; Adam Taylor; Kenneth E. Skog

    2014-01-01

    Wood products have many environmental advantages over nonwood alternatives. Documenting and publicizing these merits helps the future competitiveness of wood when climate change impacts are being considered. The manufacture of wood products requires less fossil fuel than nonwood alternative building materials such as concrete, metals, or plastics. By nature, wood is...

  2. Early Age Carbonation Heat and Products of Tricalcium Silicate Paste Subject to Carbon Dioxide Curing

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2018-05-01

    Full Text Available This paper presents a study on the carbonation reaction heat and products of tricalcium silicate (C3S paste exposed to carbon dioxide (CO2 for rapid curing. Reaction heat was measured using a retrofitted micro-calorimeter. The highest heat flow of a C3S paste subject to carbonation curing was 200 times higher than that by hydration, and the cumulative heat released by carbonation was three times higher. The compressive strength of a C3S paste carbonated for 2 h and 24 h was 27.5 MPa and 62.9 MPa, respectively. The 24-h carbonation strength had exceeded the hydration strength at 28 days. The CO2 uptake of a C3S paste carbonated for 2 h and 24 h was 17% and 26%, respectively. The X-ray diffraction (XRD, transmission electron microscope coupled with energy dispersive spectrometer (TEM-EDS, and 29Si magic angle spinning–nuclear magnetic resonance (29Si MAS-NMR results showed that the products of a carbonated C3S paste were amorphous silica (SiO2 and calcite crystal. There was no trace of calcium silicate hydrate (C–S–H or other polymorphs of calcium carbonate (CaCO3 detected.

  3. Production of dissolved organic carbon in aquatic sediment suspensions

    NARCIS (Netherlands)

    Koelmans, A.A.; Prevo, L.

    2003-01-01

    In many water quality models production of dissolved organic carbon (DOC) is modelled as mineralisation from particulate organic matter (POM). In this paper it is argued that the DOC production from dessicated sediments by water turbulence may be of similar importance
    In many water quality

  4. Carbon catalysts for electrochemical hydrogen peroxide production in acidic media

    DEFF Research Database (Denmark)

    Čolić, Viktor; Yang, Sungeun; Révay, Zsolt

    2018-01-01

    Hydrogen peroxide is a commodity chemical, as it is an environmentally friendly oxidant. The electrochemical production of H2O2 from oxygen and water by the reduction of oxygen is of great interest, as it would allow the decentralized, on-site, production of pure H2O2. The ability to run...... the reaction in an acidic electrolyte with high performance is particularly important, as it would allow the use of polymer solid electrolytes and the production of pH-neutral hydrogen peroxide. Carbon catalysts, which are cheap, abundant, durable and can be highly selective show promise as potential catalysts...... for such systems. In this work, we examine the electrocatalytic performance and properties of seven commercially available carbon materials for H2O2 production by oxygen electroreduction. We show that the faradaic efficiencies for the reaction lie in a wide range of 18-82% for different carbon catalysts. In order...

  5. Create a Consortium and Develop Premium Carbon Products from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the

  6. Reconstruction of Monte Carlo replicas from Hessian parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Tie-Jiun [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Gao, Jun [INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,Department of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240 (China); High Energy Physics Division, Argonne National Laboratory,Argonne, Illinois, 60439 (United States); Huston, Joey [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); Nadolsky, Pavel [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Schmidt, Carl; Stump, Daniel [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); Wang, Bo-Ting; Xie, Ke Ping [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Dulat, Sayipjamal [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); School of Physics Science and Technology, Xinjiang University,Urumqi, Xinjiang 830046 (China); Center for Theoretical Physics, Xinjiang University,Urumqi, Xinjiang 830046 (China); Pumplin, Jon; Yuan, C.P. [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States)

    2017-03-20

    We explore connections between two common methods for quantifying the uncertainty in parton distribution functions (PDFs), based on the Hessian error matrix and Monte-Carlo sampling. CT14 parton distributions in the Hessian representation are converted into Monte-Carlo replicas by a numerical method that reproduces important properties of CT14 Hessian PDFs: the asymmetry of CT14 uncertainties and positivity of individual parton distributions. The ensembles of CT14 Monte-Carlo replicas constructed this way at NNLO and NLO are suitable for various collider applications, such as cross section reweighting. Master formulas for computation of asymmetric standard deviations in the Monte-Carlo representation are derived. A correction is proposed to address a bias in asymmetric uncertainties introduced by the Taylor series approximation. A numerical program is made available for conversion of Hessian PDFs into Monte-Carlo replicas according to normal, log-normal, and Watt-Thorne sampling procedures.

  7. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  8. Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit K.; Ozcan, Soydan; Eberle, Claude C.; Abdallah, Mohamed Gabr; Mackiewicz, Ludtka Gail; Ludtka, Gerard Michael; Paulauskas, Felix Leonard; Rivard, John Daniel Kennedy

    2017-08-08

    Method for the preparation of carbon fiber from fiber precursor, wherein the fiber precursor is subjected to a magnetic field of at least 3 Tesla during a carbonization process. The carbonization process is generally conducted at a temperature of at least 400.degree. C. and less than 2200.degree. C., wherein, in particular embodiments, the carbonization process includes a low temperature carbonization step conducted at a temperature of at least or above 400.degree. C. or 500.degree. C. and less than or up to 1000.degree. C., 1100.degree. C., or 1200.degree. C., followed by a high temperature carbonization step conducted at a temperature of at least or above 1200.degree. C. In particular embodiments, particularly in the case of a polyacrylonitrile (PAN) fiber precursor, the resulting carbon fiber may possess a minimum tensile strength of at least 600 ksi, a tensile modulus of at least 30 Msi, and an ultimate elongation of at least 1.5%.

  9. The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration.

    Science.gov (United States)

    Song, Zhaoliang; Liu, Hongyan; Li, Beilei; Yang, Xiaomin

    2013-09-01

    The persistent terrestrial carbon sink regulates long-term climate change, but its size, location, and mechanisms remain uncertain. One of the most promising terrestrial biogeochemical carbon sequestration mechanisms is the occlusion of carbon within phytoliths, the silicified features that deposit within plant tissues. Using phytolith content-biogenic silica content transfer function obtained from our investigation, in combination with published silica content and aboveground net primary productivity (ANPP) data of leaf litter and herb layer in China's forests, we estimated the production of phytolith-occluded carbon (PhytOC) in China's forests. The present annual phytolith carbon sink in China's forests is 1.7 ± 0.4 Tg CO2  yr(-1) , 30% of which is contributed by bamboo because the production flux of PhytOC through tree leaf litter for bamboo is 3-80 times higher than that of other forest types. As a result of national and international bamboo afforestation and reforestation, the potential of phytolith carbon sink for China's forests and world's bamboo can reach 6.8 ± 1.5 and 27.0 ± 6.1 Tg CO2  yr(-1) , respectively. Forest management practices such as bamboo afforestation and reforestation may significantly enhance the long-term terrestrial carbon sink and contribute to mitigation of global climate warming. © 2013 John Wiley & Sons Ltd.

  10. Patrol Detection for Replica Attacks on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yang Shi

    2011-02-01

    Full Text Available Replica attack is a critical concern in the security of wireless sensor networks. We employ mobile nodes as patrollers to detect replicas distributed in different zones in a network, in which a basic patrol detection protocol and two detection algorithms for stationary and mobile modes are presented. Then we perform security analysis to discuss the defense strategies against the possible attacks on the proposed detection protocol. Moreover, we show the advantages of the proposed protocol by discussing and comparing the communication cost and detection probability with some existing methods.

  11. Creating technical heritage object replicas in a virtual environment

    Science.gov (United States)

    Egorova, Olga; Shcherbinin, Dmitry

    2016-03-01

    The paper presents innovative informatics methods for creating virtual technical heritage replicas, which are of significant scientific and practical importance not only to researchers but to the public in general. By performing 3D modeling and animation of aircrafts, spaceships, architectural-engineering buildings, and other technical objects, the process of learning is achieved while promoting the preservation of the replicas for future generations. Modern approaches based on the wide usage of computer technologies attract a greater number of young people to explore the history of science and technology and renew their interest in the field of mechanical engineering.

  12. Hydrothermal Carbonization of Seaweed For Advanced Biochar Production

    Directory of Open Access Journals (Sweden)

    Prakoso Tirto

    2018-01-01

    Full Text Available Seaweed such as Eucheuma Cottonii is a potential source of biomaterialIts high moisture content makes it suitable for hydrothermal conversion process since it doesn’t need to utilize dry feedstock. The aim of this study is to convert the biomass of red seaweed Eucheuma Cottonii into alternative fuels and high value biomaterials using hydrothermal process. The hydrothermal process seaweed Eucheuma Cottonii produce two types of products, liquid product and char (solid. This research focus on the char product. The char from hydrothermal process was then activated using the tubular furnace. The yield for activated char is 7.5 % and results of SEM analysis of activated char showed the formation of allotropes carbon include carbon micro spheres, carbon micro fibres and graphene. These structures have encountered application in a wide range of technological fields, such as adsorption, catalysis, hydrogen storage or electronics.

  13. Carbon nano structures: Production and characterization

    Science.gov (United States)

    Beig Agha, Rosa

    L'objectif de ce memoire est de preparer et de caracteriser des nanostructures de carbone (CNS -- Carbon Nanostructures, en licence a l'Institut de recherche sur l'hydrogene, Quebec, Canada), un carbone avec un plus grand degre de graphitisation et une meilleure porosite. Le Chapitre 1 est une description generale des PEMFCs (PEMFC -- Polymer Electrolyte Membrane Fuel Cell) et plus particulierement des CNS comme support de catalyseurs, leur synthese et purification. Le Chapitre 2 decrit plus en details la methode de synthese et la purification des CNS, la theorie de formation des nanostructures et les differentes techniques de caracterisation que nous avons utilises telles que la diffraction aux rayons-X (XRD -- X-ray diffraction), la microscopie electronique a transmission (TEM -- transmission electron microscope ), la spectroscopie Raman, les isothermes d'adsorption d'azote a 77 K (analyse BET, t-plot, DFT), l'intrusion au mercure, et l'analyse thermogravimetrique (TGA -- thermogravimetric analysis). Le Chapitre 3 presente les resultats obtenus a chaque etape de la synthese des CNS et avec des echantillons produits a l'aide d'un broyeur de type SPEXRTM (SPEX/CertiPrep 8000D) et d'un broyeur de type planetaire (Fritsch Pulverisette 5). La difference essentielle entre ces deux types de broyeur est la facon avec laquelle les materiaux sont broyes. Le broyeur de type SPEX secoue le creuset contenant les materiaux et des billes d'acier selon 3 axes produisant ainsi des impacts de tres grande energie. Le broyeur planetaire quant a lui fait tourner et deplace le creuset contenant les materiaux et des billes d'acier selon 2 axes (plan). Les materiaux sont donc broyes differemment et l'objectif est de voir si les CNS produits ont les memes structures et proprietes. Lors de nos travaux nous avons ete confrontes a un probleme majeur. Nous n'arrivions pas a reproduire les CNS dont la methode de synthese a originellement ete developpee dans les laboratoires de l'Institut de

  14. Influence of temperature on products yield of Eucalyptus microcorys carbonization

    Directory of Open Access Journals (Sweden)

    Renato da Silva Vieira

    2013-03-01

    Full Text Available During charcoal production different products are formed. These products are influenced primarily by the temperature of carbonization. Given that charcoal is the main input in the production of pig iron in Brazil, this study evaluated the influence of final temperature of carbonization of the products generated and also the influence of the radial and longitudinal sampling on the yield of each product. Samples were taken from internal and external position along the radius and also from three different heights from four Eucalyptus microcorys trees. The samples were carbonized in an electric furnace with an experimental water-cooled condenser and a collecting bottle of condensable volatile materials. The final temperatures of carbonization were 500, 600, 700, 800 and 900°C. The gravimetric yield, tar and non-condensable gases were calculated. The results showed no difference in the gravimetric yield in the longitudinal and radial positions studied, while the tar yield and non-condensable gases showed temperature variations of 700°C and 800°C and the variation of the gravimetric yield temperatures between 500°C to 900°C was 15%, the change of yield of tar from the radial direction of sampling was on average 8%, the variation of the yield of non-condensable gases in a radial sampling was on average 16%.

  15. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest

  16. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T

    1987-01-01

    studied CO2 production (VCO2) and oxygen consumption (VO2) in mechanically ventilated ICU patients, where CO2 stores were altered by: a) changing minute ventilation by 15%, b) reducing body temperature, and c) changing the level of sedation. Expired gases went through a mixing chamber and were analyzed...

  17. Characterization of products from hydrothermal carbonization of pine.

    Science.gov (United States)

    Wu, Qiong; Yu, Shitao; Hao, Naijia; Wells, Tyrone; Meng, Xianzhi; Li, Mi; Pu, Yunqiao; Liu, Shouxin; Ragauskas, Arthur J

    2017-11-01

    This study aims to reveal the structural features and reaction pathways for solid-liquid products from hydrothermal carbonization of Loblolly pine, where the solid products can be used as catalysts, adsorbents and electrode materials while liquid products can be treated yielding fuels and platform chemicals. Results revealed when treated at 240°C, cellulose and hemicellulose were degraded, in part, to 5-hydroxy-methyl furfural and furfural which were further transformed to aromatic structures via ring opening and Diels Alder reactions. Lignin degradation and formation of carbon-carbon bonds, forming aromatic motifs in the presence of furanic compounds connected via aliphatic bridges, ether or condensation reactions. After hydrothermal treatment, condensed aromatic carbon materials with methoxy groups were recovered with high fixed carbon content and HHV. The recovered liquid products are lignin-like value-added chemicals consisting of furfural and polyaromatic structure with alkanes and carboxyl, their total hydroxyl group content decreased when increasing reaction time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Tracking urban carbon footprints from production and consumption perspectives

    International Nuclear Information System (INIS)

    Lin, Jianyi; Hu, Yuanchao; Cui, Shenghui; Kang, Jiefeng; Ramaswami, Anu

    2015-01-01

    Cities are hotspots of socio-economic activities and greenhouse gas emissions. The aim of this study was to extend the research range of the urban carbon footprint (CF) to cover emissions embodied in products traded among regions and intra-city sectors. Using Xiamen City as a study case, the total urban-related emissions were evaluated, and the carbon flows among regions and intra-city sectors were tracked. Then five urban CF accountings were evaluated, including purely geographic accounting (PGA), community-wide infrastructure footprint (CIF), and consumption-based footprint (CBF) methods, as well as the newly defined production-based footprint (PBF) and purely production footprint (PPF). Research results show that the total urban-related emissions of Xiamen City in 2010 were 55.2 Mt CO 2 e/y, of which total carbon flow among regions or intra-city sectors accounted for 53.7 Mt CO 2 e/y. Within the total carbon flow, import and export respectively accounted for 59 and 65%, highlighting the importance of emissions embodied in trade. By regional trade balance, North America and Europe were the largest net carbon exported-to regions, and Mainland China and Taiwan the largest net carbon imported-from regions. Among intra-sector carbon flows, manufacturing was the largest emission-consuming sector of the total urban carbon flow, accounting for 77.4, and 98% of carbon export was through industrial products trade. By the PBF, PPF, CIF, PGA and CBF methods, the urban CFs were respectively 53.7 Mt CO 2 e/y, 44.8 Mt CO 2 e/y, 28.4 Mt CO 2 e/y, 23.7 Mt CO 2 e/y, and 19.0 Mt CO 2 e/y, so all of the other four CFs were higher than the CBF. All of these results indicate that urban carbon mitigation must consider the supply chain management of imported goods, the production efficiency within the city, the consumption patterns of urban consumers, and the responsibility of the ultimate consumers outside the city. (letter)

  19. Tracking urban carbon footprints from production and consumption perspectives

    Science.gov (United States)

    Lin, Jianyi; Hu, Yuanchao; Cui, Shenghui; Kang, Jiefeng; Ramaswami, Anu

    2015-05-01

    Cities are hotspots of socio-economic activities and greenhouse gas emissions. The aim of this study was to extend the research range of the urban carbon footprint (CF) to cover emissions embodied in products traded among regions and intra-city sectors. Using Xiamen City as a study case, the total urban-related emissions were evaluated, and the carbon flows among regions and intra-city sectors were tracked. Then five urban CF accountings were evaluated, including purely geographic accounting (PGA), community-wide infrastructure footprint (CIF), and consumption-based footprint (CBF) methods, as well as the newly defined production-based footprint (PBF) and purely production footprint (PPF). Research results show that the total urban-related emissions of Xiamen City in 2010 were 55.2 Mt CO2e/y, of which total carbon flow among regions or intra-city sectors accounted for 53.7 Mt CO2e/y. Within the total carbon flow, import and export respectively accounted for 59 and 65%, highlighting the importance of emissions embodied in trade. By regional trade balance, North America and Europe were the largest net carbon exported-to regions, and Mainland China and Taiwan the largest net carbon imported-from regions. Among intra-sector carbon flows, manufacturing was the largest emission-consuming sector of the total urban carbon flow, accounting for 77.4, and 98% of carbon export was through industrial products trade. By the PBF, PPF, CIF, PGA and CBF methods, the urban CFs were respectively 53.7 Mt CO2e/y, 44.8 Mt CO2e/y, 28.4 Mt CO2e/y, 23.7 Mt CO2e/y, and 19.0 Mt CO2e/y, so all of the other four CFs were higher than the CBF. All of these results indicate that urban carbon mitigation must consider the supply chain management of imported goods, the production efficiency within the city, the consumption patterns of urban consumers, and the responsibility of the ultimate consumers outside the city.

  20. Improvements in Production of Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to

  1. Carbon footprint and ammonia emissions of California beef production systems.

    Science.gov (United States)

    Stackhouse-Lawson, K R; Rotz, C A; Oltjen, J W; Mitloehner, F M

    2012-12-01

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH(3)) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California. The IFSM is a process-level farm model that simulates crop growth, feed production and use, animal growth, and the return of manure nutrients back to the land to predict the environmental impacts and economics of production systems. Ammonia emissions are determined by summing the emissions from animal housing facilities, manure storage, field applied manure, and direct deposits of manure on pasture and rangeland. All important sources and sinks of methane, nitrous oxide, and carbon dioxide are predicted from primary and secondary emission sources. Primary sources include enteric fermentation, manure, cropland used in feed production, and fuel combustion. Secondary emissions occur during the production of resources used on the farm, which include fuel, electricity, machinery, fertilizer, and purchased animals. The carbon footprint is the net exchange of all GHG in carbon dioxide equivalent (CO(2)e) units per kg of HCW produced. Simulated beef production systems included cow-calf, stocker, and feedlot phases for the traditional British beef breeds and calf ranch and feedlot phases for Holstein steers. An evaluation of differing production management strategies resulted in ammonia emissions ranging from 98 ± 13 to 141 ± 27 g/kg HCW and carbon footprints of 10.7 ± 1.4 to 22.6 ± 2.0 kg CO(2)e/kg HCW. Within the British beef production cycle, the cow-calf phase was responsible for 69 to 72% of total GHG emissions with 17 to 27% from feedlot sources. Holstein steers that entered the beef production system as a by-product of dairy production had the lowest carbon footprint because the emissions

  2. Thermal motion of carbon clusters and production of carbon nanotubes by gravity-free arc discharge

    International Nuclear Information System (INIS)

    Mieno, T.; Takeguchi, M.

    2006-01-01

    Thermal and diffusion properties of hot gas around a dc arc discharge under a gravity-free condition are investigated using a jet plane in order to improve the arc production of carbon clusters. Spherically symmetric temperature distribution of He gas around the arc plasma and monotonic slow expansion of the high-temperature region are observed. By means of the passive-type Mie scattering method, random slow diffusion of carbon clusters around the arc plasma is clearly observed under the gravity-free condition. This indicates that carbon clusters including single-walled carbon nanotubes are synthesized around the arc plasma where the He temperature is higher than 1000 K. It is confirmed that large bundles of fatter single-walled carbon nanotubes are produced under the gravity-free condition

  3. Soil Carbon Chemistry and Greenhouse Gas Production in Global Peatlands

    Science.gov (United States)

    Normand, A. E.; Turner, B. L.; Lamit, L. J.; Smith, A. N.; Baiser, B.; Clark, M. W.; Hazlett, C.; Lilleskov, E.; Long, J.; Grover, S.; Reddy, K. R.

    2017-12-01

    Peatlands play a critical role in the global carbon cycle because they contain approximately 30% of the 1500 Pg of carbon stored in soils worldwide. However, the stability of these vast stores of carbon is under threat from climate and land-use change, with important consequences for global climate. Ecosystem models predict the impact of peatland perturbation on carbon fluxes based on total soil carbon pools, but responses could vary markedly depending on the chemical composition of soil organic matter. Here we combine experimental and observational studies to quantify the chemical nature and response to perturbation of soil organic matter in peatlands worldwide. We quantified carbon functional groups in a global sample of 125 freshwater peatlands using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to determine the drivers of molecular composition of soil organic matter. We then incubated a representative subset of the soils under aerobic and anaerobic conditions to determine how organic matter composition influences carbon dioxide (CO2) and methane (CH4) emissions following drainage or flooding. The functional chemistry of peat varied markedly at large and small spatial scales, due to long-term land use change, mean annual temperature, nutrient status, and vegetation, but not pH. Despite this variation, we found predictable responses of greenhouse gas production following drainage based on soil carbon chemistry, defined by a novel Global Peat Stability Index, with greater CO2 and CH4 fluxes from soils enriched in oxygen-containing organic carbon (O-alkyl C) and depleted in aromatic and hydrophobic compounds. Incorporation of the Global Peat Stability Index of peatland organic matter into earth system models and management strategies, which will improve estimates of GHG fluxes from peatlands and ultimately advance management to reduce carbon loss from these sensitive ecosystems.

  4. HIV: mecanismo de replicação, alvos farmacológicos e inibição por produtos derivados de plantas HIV: replication mechanism, pharmacological targets and inhibition by products derived from plants

    Directory of Open Access Journals (Sweden)

    Roberta Costa Santos Ferreira

    2010-01-01

    Full Text Available The AIDS epidemy has spread out and led to the diversification on the research for new antiviral drugs. Natural products, especially those derived from plants, are well-recognized as excellent sources of new drugs. Several of them have inhibitory activity against HIV replication, and some have been already clinically tested, with favorable results. This review presents the biochemical basis of the viral cycle and the research up to date on the identification, determination of the mechanism of biological action together with the therapeutical potential of plants-derived natural products, in the inhibition of HIV.

  5. Sequestration of carbon dioxide with hydrogen to useful products

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  6. Replica-Based High-Performance Tuple Space Computing

    DEFF Research Database (Denmark)

    Andric, Marina; De Nicola, Rocco; Lluch Lafuente, Alberto

    2015-01-01

    of concurrency and data access. We investigate issues related to replica consistency, provide an operational semantics that guides the implementation of the language, and discuss the main synchronization mechanisms of our prototypical run-time framework. Finally, we provide a performance analysis, which includes...

  7. Replica scaling studies of hard missile impacts on reinforced concrete

    International Nuclear Information System (INIS)

    Barr, P.; Carter, P.G.; Howe, W.D.; Neilson, A.J.

    1982-01-01

    Missile and target combinations at three different liners scales have been used in an experimental assessment of the applicability of replica scaling to the dynamic behaviour of reinforced concrete structures impacted by rigid missiles. Experimental results are presented for models with relative linear scales of 1, 0.37 and 0.12. (orig.) [de

  8. Roll-to-Roll production of carbon nanotubes based supercapacitors

    Science.gov (United States)

    Zhu, Jingyi; Childress, Anthony; Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Carbon nanomaterials provide an excellent platform for electrochemical double layer capacitors (EDLCs). However, current industrial methods for producing carbon nanotubes are expensive and thereby increase the costs of energy storage to more than 10 Wh/kg. In this regard, we developed a facile roll-to-roll production technology for scalable manufacturing of multi-walled carbon nanotubes (MWNTs) with variable density on run-of-the-mill kitchen Al foils. Our method produces MWNTs with diameter (heights) between 50-100 nm (10-100 μm), and a specific capacitance as high as ~ 100 F/g in non-aqueous electrolytes. In this talk, the fundamental challenges involved in EDLC-suitable MWNT growth, roll-to-roll production, and device manufacturing will be discussed along with electrochemical characteristics of roll-to-roll MWNTs. Research supported by NSF CMMI Grant1246800.

  9. Method for creating high carbon content products from biomass oil

    Science.gov (United States)

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  10. Production of Solar Fuels by Photoelectrochemical Conversion of Carbon Dioxide

    OpenAIRE

    Irtem, Ibrahim Erdem

    2017-01-01

    Growing global emission of carbon dioxide gas (CO2) reflects the world’s energy dependence on fossil fuels. The conversion of CO2 emission into value-added products, like fuels completes a circular CO2 economy which requires a renewable energy conversion and storage system. Amongst a few, photo/electrochemistry has been particularly appealing thanks to its energy efficiency and enormous potential for industrial applications. Formic acid (HCOOH) production from CO2 reduction appears as an al...

  11. Production of Ethylene and Carbon Monoxide by Microorganisms

    Science.gov (United States)

    T. H. Filer; L. R. Brown; S. Brown-Sarobot; S. Martin

    1984-01-01

    Various quantities of ethylene and carbon monoxide were produced on PDA by Fusicladium effusum, Pestilotia nucicola, Alternaria tenuis, and Fusarium oxysporum subcultured from diseased pecan shucks. Repeated subculturing of these fungi on potato dextrose broth supplemented with iron powder produced ethylene. The production of...

  12. Changes in carbon storage and oxygen production in forest timber ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... treaties and processes, has shown itself around the world and in our country as the concept of planning and ... Key words: Carbon storage, oxygen production, forest management, geographic information systems, land cover change. .... biomass transformation factors developed for the forests in Turkey are ...

  13. Field windbreaks for bioenergy production and carbon sequestration

    Science.gov (United States)

    Tree windbreaks are a multi-benefit land use with the ability to mitigate climate change by modifying the local microclimate for improved crop growth and sequestering carbon in soil and biomass. Agroforestry practices are also being considered for bioenergy production by direct combustion or produci...

  14. Effects of Globalisation on Carbon Footprints of Products

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Zwicky

    2009-01-01

    Outsourcing of production from the industrialised countries to the newly industrialised economies holds the potential to increase wealth in both places, but what are the environmental costs of the globalised manufacturing systems? This paper looks into the changes in carbon footprint...

  15. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.

    Science.gov (United States)

    Lu, Xiaowei; Jordan, Beth; Berge, Nicole D

    2012-07-01

    Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 °C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO(2)-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage). Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Production and characterization of granular activated carbon from activated sludge

    Directory of Open Access Journals (Sweden)

    Z. Al-Qodah

    2009-03-01

    Full Text Available In this study, activated sludge was used as a precursor to prepare activated carbon using sulfuric acid as a chemical activation agent. The effect of preparation conditions on the produced activated carbon characteristics as an adsorbent was investigated. The results indicate that the produced activated carbon has a highly porous structure and a specific surface area of 580 m²/g. The FT-IR analysis depicts the presence of a variety of functional groups which explain its improved adsorption behavior against pesticides. The XRD analysis reveals that the produced activated carbon has low content of inorganic constituents compared with the precursor. The adsorption isotherm data were fitted to three adsorption isotherm models and found to closely fit the BET model with R² equal 0.948 at pH 3, indicating a multilayer of pesticide adsorption. The maximum loading capacity of the produced activated carbon was 110 mg pesticides/g adsorbent and was obtained at this pH value. This maximum loading was found experimentally to steeply decrease as the solution pH increases. The obtained results show that activated sludge is a promising low cost precursor for the production of activated carbon.

  17. The impact of a carbon tax on Greek electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Vassos, S [Strategy and Planning Dept., Public Power Corp., Athens (Greece); Vlachou, A [Department of Economics, Athens Univ. of Economics and Business, Athens (Greece)

    1997-09-01

    The impact of proposed carbon taxes on the electric power industry, using the Greek power system as a case study, is investigated in this paper. It uses the WASP model for electric generation capacity expansion to explore the optimal expansion path under alternative carbon tax scenarios and to estimate their impact on CO{sub 2} and other types of emissions and on electricity production costs. The findings suggest that low carbon taxes would lead to a considerable reduction of the use of conventional lignite fired power plants counterbalanced predominantly by natural gas fired plants. High carbon taxes (100-200 US dollars per ton of carbon) would lead to a drastic reduction of the use of conventional lignite fired power plants which would be mainly replaced by coal or lignite fired technologies with CO{sub 2} removal capabilities, which are not available today but might become available within the time horizon of the present study. Hydropower and renewable sources would be the second least-cost alternatives to lignite under both low and high tax scenarios. The study provides evidence that carbon taxes also result in significant increases in the cost of producing electricity, implying adverse economic effects on electricity consumers and the Greek economy in general. (author). 35 refs, 1 fig., 7 tabs.

  18. The impact of a carbon tax on Greek electricity production

    International Nuclear Information System (INIS)

    Vassos, S.; Vlachou, A.

    1997-01-01

    The impact of proposed carbon taxes on the electric power industry, using the Greek power system as a case study, is investigated in this paper. It uses the WASP model for electric generation capacity expansion to explore the optimal expansion path under alternative carbon tax scenarios and to estimate their impact on CO 2 and other types of emissions and on electricity production costs. The findings suggest that low carbon taxes would lead to a considerable reduction of the use of conventional lignite fired power plants counterbalanced predominantly by natural gas fired plants. High carbon taxes (100-200 US dollars per ton of carbon) would lead to a drastic reduction of the use of conventional lignite fired power plants which would be mainly replaced by coal or lignite fired technologies with CO 2 removal capabilities, which are not available today but might become available within the time horizon of the present study. Hydropower and renewable sources would be the second least-cost alternatives to lignite under both low and high tax scenarios. The study provides evidence that carbon taxes also result in significant increases in the cost of producing electricity, implying adverse economic effects on electricity consumers and the Greek economy in general. (author). 35 refs, 1 fig., 7 tabs

  19. Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances

    International Nuclear Information System (INIS)

    Patthanaissaranukool, Withida; Polprasert, Chongchin; Englande, Andrew J.

    2013-01-01

    Highlights: ► We evaluate energy and carbon equivalence from CPO production based on a CBM. ► Energy spent and produced via carbon movement from palm oil mill was determined. ► Scenarios were formulated to evaluate the potential reduction of carbon emission. ► Utilization of biomass from palm oil mill shows the high potential of C-reduction. -- Abstract: This study aimed to evaluate energy and carbon equivalences (CE) associated with palm oil milling and to evaluate sustainability alternatives for energy consumption. Appropriate ways to reduce carbon emissions were also evaluated. A field survey was carried out to quantify the input and output of energy and materials following the conceptual framework of a carbon-balanced model (CBM), which exclude other non-CO 2 greenhouse gases. Survey results indicate that the electrical energy consumption for daily mill start-up averaged 18.7 ± 5.4 kWh/ton Fresh Fruit Bunches (FFBs). This energy is equivalent to 114.4 ± 33.2 kWh/ton Crude Palm Oil (CPO) which was found to be offset by that generated in the mills using palm fiber as a solid fuel. Currently, organic residues contained in the wastewater are anaerobically converted to methane. The methane is used as fuel to generate electricity and sold to an outside grid network at a generation rate of 8.1 ± 2.1 kWh/ton FFB. Based on the CBM approach, carbon emissions observed from the use of fossil energy in palm oil milling were very small; however, total carbon emission from oil palm plantation and palm oil milling were found to be 12.3 kg CE/ton FFB, resulting in the net carbon reduction in CPO production of 2.8 kg CE/ton FFB or 53.7 kg CE/ha-y. Overall, the sum of C-reduction was found 1.2 times greater than that of C-emission. This figure can be increased up to 5.5, if all biomass by-products are used as fuel to generate electricity only. The full potential for carbon reduction from palm oil milling is estimated at 0.94 kW of electric power for every hectare of

  20. Impact of bioenergy production on carbon storage and soil functions

    Science.gov (United States)

    Prays, Nadia; Franko, Uwe

    2016-04-01

    An important renewable energy source is methane produced in biogas plants (BGPs) that convert plant material and animal excrements to biogas and a residue (BGR). If the plant material stems from crops produced specifically for that purpose, a BGP have a 'footprint' that is defined by the area of arable land needed for the production of these energy crops and the area for distributing the BGRs. The BGR can be used to fertilize these lands (reducing the need for carbon and nitrogen fertilizers), and the crop land can be managed to serve as a carbon sink, capturing atmospheric CO2. We focus on the ecological impact of different BGPs in Central Germany, with a specific interest in the long-term effect of BGR-fertilization on carbon storage within the footprint of a BGP. We therefore studied nutrient fluxes using the CANDY (CArbon and Nitrogen Dynamics) model, which processes site-specific information on soils, crops, weather, and land management to compute stocks and fluxes of carbon and nitrogen for agricultural fields. We used CANDY to calculated matter fluxes within the footprints of BGPs of different sizes, and studied the effect of the substrate mix for the BGP on the carbon dynamics of the soil. This included the land requirement of the BGR recycling when used as a fertilizer: the footprint of a BGP required for the production of the energy crop generally differs from its footprint required to take up its BGR. We demonstrate how these findings can be used to find optimal cropping choices and land management for sustainable soil use, maintaining soil fertility and other soil functions. Furthermore, site specific potentials and limitations for agricultural biogas production can be identified and applied in land-use planning.

  1. Coal production forecast and low carbon policies in China

    International Nuclear Information System (INIS)

    Wang Jianzhou; Dong Yao; Wu Jie; Mu Ren; Jiang He

    2011-01-01

    With rapid economic growth and industrial expansion, China consumes more coal than any other nation. Therefore, it is particularly crucial to forecast China's coal production to help managers make strategic decisions concerning China's policies intended to reduce carbon emissions and concerning the country's future needs for domestic and imported coal. Such decisions, which must consider results from forecasts, will have important national and international effects. This article proposes three improved forecasting models based on grey systems theory: the Discrete Grey Model (DGM), the Rolling DGM (RDGM), and the p value RDGM. We use the statistical data of coal production in China from 1949 to 2005 to validate the effectiveness of these improved models to forecast the data from 2006 to 2010. The performance of the models demonstrates that the p value RDGM has the best forecasting behaviour over this historical time period. Furthermore, this paper forecasts coal production from 2011 to 2015 and suggests some policies for reducing carbon and other emissions that accompany the rise in forecasted coal production. - Highlights: → Improved forecasting models make full use of the advantages of individual model. → Proposed models create commendable improvements for current research. → Proposed models do not make complicated decisions about the explicit form. → We forecast coal production of China from 2011 to 2015. → We suggest some policies for reducing carbon emissions.

  2. Coal production forecast and low carbon policies in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianzhou [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Dong Yao, E-mail: dongyao20051987@yahoo.cn [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China); Wu Jie; Mu Ren; Jiang He [School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000 (China)

    2011-10-15

    With rapid economic growth and industrial expansion, China consumes more coal than any other nation. Therefore, it is particularly crucial to forecast China's coal production to help managers make strategic decisions concerning China's policies intended to reduce carbon emissions and concerning the country's future needs for domestic and imported coal. Such decisions, which must consider results from forecasts, will have important national and international effects. This article proposes three improved forecasting models based on grey systems theory: the Discrete Grey Model (DGM), the Rolling DGM (RDGM), and the p value RDGM. We use the statistical data of coal production in China from 1949 to 2005 to validate the effectiveness of these improved models to forecast the data from 2006 to 2010. The performance of the models demonstrates that the p value RDGM has the best forecasting behaviour over this historical time period. Furthermore, this paper forecasts coal production from 2011 to 2015 and suggests some policies for reducing carbon and other emissions that accompany the rise in forecasted coal production. - Highlights: > Improved forecasting models make full use of the advantages of individual model. > Proposed models create commendable improvements for current research. > Proposed models do not make complicated decisions about the explicit form. > We forecast coal production of China from 2011 to 2015. > We suggest some policies for reducing carbon emissions.

  3. Simulated Tempering Distributed Replica Sampling, Virtual Replica Exchange, and Other Generalized-Ensemble Methods for Conformational Sampling.

    Science.gov (United States)

    Rauscher, Sarah; Neale, Chris; Pomès, Régis

    2009-10-13

    Generalized-ensemble algorithms in temperature space have become popular tools to enhance conformational sampling in biomolecular simulations. A random walk in temperature leads to a corresponding random walk in potential energy, which can be used to cross over energetic barriers and overcome the problem of quasi-nonergodicity. In this paper, we introduce two novel methods: simulated tempering distributed replica sampling (STDR) and virtual replica exchange (VREX). These methods are designed to address the practical issues inherent in the replica exchange (RE), simulated tempering (ST), and serial replica exchange (SREM) algorithms. RE requires a large, dedicated, and homogeneous cluster of CPUs to function efficiently when applied to complex systems. ST and SREM both have the drawback of requiring extensive initial simulations, possibly adaptive, for the calculation of weight factors or potential energy distribution functions. STDR and VREX alleviate the need for lengthy initial simulations, and for synchronization and extensive communication between replicas. Both methods are therefore suitable for distributed or heterogeneous computing platforms. We perform an objective comparison of all five algorithms in terms of both implementation issues and sampling efficiency. We use disordered peptides in explicit water as test systems, for a total simulation time of over 42 μs. Efficiency is defined in terms of both structural convergence and temperature diffusion, and we show that these definitions of efficiency are in fact correlated. Importantly, we find that ST-based methods exhibit faster temperature diffusion and correspondingly faster convergence of structural properties compared to RE-based methods. Within the RE-based methods, VREX is superior to both SREM and RE. On the basis of our observations, we conclude that ST is ideal for simple systems, while STDR is well-suited for complex systems.

  4. The industrial production of dimethyl carbonate from methanol and carbon dioxide

    NARCIS (Netherlands)

    De Groot, Frank F T; Lammerink, Roy R G J; Heidemann, Casper; Van Der Werff, Michiel P M; Garcia, Taiga Cafiero; Van Der Ham, Louis A G J; Van Den Berg, Henk

    2014-01-01

    This work discusses the design of a dimethyl carbonate (DMC) production plant based on methanol and CO2 as feed materials, which are a cheap and environment-friendly feedstock. DMC is a good alternative for methyl-tert-butyl ether (MTBE) as a fuel oxygenating agent, due to its low toxicity and fast

  5. Storing files in a parallel computing system using list-based index to identify replica files

    Science.gov (United States)

    Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Zhang, Zhenhua; Grider, Gary

    2015-07-21

    Improved techniques are provided for storing files in a parallel computing system using a list-based index to identify file replicas. A file and at least one replica of the file are stored in one or more storage nodes of the parallel computing system. An index for the file comprises at least one list comprising a pointer to a storage location of the file and a storage location of the at least one replica of the file. The file comprises one or more of a complete file and one or more sub-files. The index may also comprise a checksum value for one or more of the file and the replica(s) of the file. The checksum value can be evaluated to validate the file and/or the file replica(s). A query can be processed using the list.

  6. Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts

    Directory of Open Access Journals (Sweden)

    Hannu-Petteri eMattila

    2015-11-01

    Full Text Available Phosphogypsum (CaSO4·2H2O waste is produced in large amounts during phosphoric acid (H3PO4 production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred Mt of carbon dioxide (CO2. For example, when gypsum is converted to ammonium sulfate ((NH42SO4 with ammonia (NH3 and CO2, also solid calcium carbonate (CaCO3 is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as e.g. filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from phosphogypsum to calcium carbonate are obtained. Scalenohedral, rhombohedral and prismatic calcite particles can be produced, though the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  7. Carbon and nitrogen trade-offs in biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cucek, Lidija; Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI" 2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary); Kravanja, Zdravko [University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor (Slovenia)

    2012-06-15

    This contribution provides an overview of carbon (CFs) and nitrogen footprints (NFs) concerning their measures and impacts on the ecosystem and human health. The adversarial relationship between them is illustrated by the three biomass energy production applications, which substitute fossil energy production applications: (i) domestic wood combustion where different fossil energy sources (natural gas, coal, and fuel oil) are supplemented, (ii) bioethanol production from corn grain via the dry-grind process, where petrol is supplemented, and (iii) rape methyl ester production from rape seed oil via catalytic trans-esterification, where diesel is supplemented. The life cycle assessment is applied to assess the CFs and NFs resulting from different energy production applications from 'cradle-to-grave' span. The results highlighted that all biomass-derived energy generations have lower CFs and higher NFs whilst, on the other hand, fossil energies have higher CFs and lower NFs. (orig.)

  8. Physical replicas and the Bose glass in cold atomic gases

    International Nuclear Information System (INIS)

    Morrison, S; Kantian, A; Daley, A J; Zoller, P; Katzgraber, H G; Lewenstein, M; Buechler, H P

    2008-01-01

    We study cold atomic gases in a disorder potential and analyse the correlations between different systems subjected to the same disorder landscape. Such independent copies with the same disorder landscape are known as replicas. While, in general, these are not accessible experimentally in condensed matter systems, they can be realized using standard tools for controlling cold atomic gases in an optical lattice. Of special interest is the overlap function which represents a natural order parameter for disordered systems and is a correlation function between the atoms of two independent replicas with the same disorder. We demonstrate an efficient measurement scheme for the determination of this disorder-induced correlation function. As an application, we focus on the disordered Bose-Hubbard model and determine the overlap function within the perturbation theory and a numerical analysis. We find that the measurement of the overlap function allows for the identification of the Bose-glass phase in certain parameter regimes

  9. Physical replicas and the Bose glass in cold atomic gases

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, S; Kantian, A; Daley, A J; Zoller, P [Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Katzgraber, H G [Theoretische Physik, ETH Zurich, CH-8093 Zuerich (Switzerland); Lewenstein, M [ICAO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Castelldefels, Barcelona (Spain); Buechler, H P [Institute for Theoretical Physics III, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany)], E-mail: sarah.morrison@uibk.ac.at

    2008-07-15

    We study cold atomic gases in a disorder potential and analyse the correlations between different systems subjected to the same disorder landscape. Such independent copies with the same disorder landscape are known as replicas. While, in general, these are not accessible experimentally in condensed matter systems, they can be realized using standard tools for controlling cold atomic gases in an optical lattice. Of special interest is the overlap function which represents a natural order parameter for disordered systems and is a correlation function between the atoms of two independent replicas with the same disorder. We demonstrate an efficient measurement scheme for the determination of this disorder-induced correlation function. As an application, we focus on the disordered Bose-Hubbard model and determine the overlap function within the perturbation theory and a numerical analysis. We find that the measurement of the overlap function allows for the identification of the Bose-glass phase in certain parameter regimes.

  10. Replica approach to mean-variance portfolio optimization

    Science.gov (United States)

    Varga-Haszonits, Istvan; Caccioli, Fabio; Kondor, Imre

    2016-12-01

    We consider the problem of mean-variance portfolio optimization for a generic covariance matrix subject to the budget constraint and the constraint for the expected return, with the application of the replica method borrowed from the statistical physics of disordered systems. We find that the replica symmetry of the solution does not need to be assumed, but emerges as the unique solution of the optimization problem. We also check the stability of this solution and find that the eigenvalues of the Hessian are positive for r  =  N/T  optimal in-sample variance is found to vanish at the critical point inversely proportional to the divergent estimation error.

  11. Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.

    Science.gov (United States)

    Svitkina, Tatyana M

    2017-05-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Difficult Sudoku Puzzles Created by Replica Exchange Monte Carlo Method

    OpenAIRE

    Watanabe, Hiroshi

    2013-01-01

    An algorithm to create difficult Sudoku puzzles is proposed. An Ising spin-glass like Hamiltonian describing difficulty of puzzles is defined, and difficult puzzles are created by minimizing the energy of the Hamiltonian. We adopt the replica exchange Monte Carlo method with simultaneous temperature adjustments to search lower energy states efficiently, and we succeed in creating a puzzle which is the world hardest ever created in our definition, to our best knowledge. (Added on Mar. 11, the ...

  13. Replica treatment of the Calogero-Sutherland model

    International Nuclear Information System (INIS)

    Gangardt, Dimitry M.; Kamenev, Alex

    2001-01-01

    Employing Forrester-Ha method of Jack polynomials, we derive an integral identity connecting certain N-fold coordinate average of the Calogero-Sutherland model with the n-fold replica integral. Subsequent analytical continuation in n leads to asymptotic expressions for the (static and dynamic) density-density correlation function of the model as well as the Green's function for an arbitrary coupling constant λ

  14. Carbon emission intensity in electricity production: A global analysis

    International Nuclear Information System (INIS)

    Ang, B.W.; Su, Bin

    2016-01-01

    We study changes in the aggregate carbon intensity (ACI) for electricity at the global and country levels. The ACI is defined as the energy-related CO_2 emissions in electricity production divided by the electricity produced. It is a performance indicator since a decrease in its value is a desirable outcome from the environmental and climate change viewpoints. From 1990 to 2013, the ACI computed at the global level decreased only marginally. However, fairly substantial decreases were observed in many countries. This apparent anomaly arises from a geographical shift in global electricity production with countries having a high ACI increasingly taking up a larger electricity production share. It is found that globally and in most major electricity producing countries, reduction in their ACI was due mainly to improvements in the thermal efficiency of electricity generation rather than to fuel switching. Estimates of the above-mentioned effects are made using LMDI decomposition analysis. Our study reveals several challenges in reducing global CO_2 emissions from the electricity production sector although technically the reduction potential for the sector is known to be great. - Highlights: •Variations of aggregate carbon intensity (ACI) for electricity of world countries are analysed. •Main drivers of changes in ACI of major electricity producing countries are studied using index decomposition analysis. •Geographical shift in electricity production had a significant impact on global ACI. •Improvements in the thermal efficiency of generation were the main driver of reduction in ACI.

  15. Carbon Footprint of Tree Nuts Based Consumer Products

    Directory of Open Access Journals (Sweden)

    Roberto Volpe

    2015-11-01

    Full Text Available This case study shows results of a calculation of carbon footprint (CFP resulting from the production of nuts added value products for a large consumer market. Nuts consumption is increasing in the world and so is the consumer awareness of the environmental impact of goods, hence the calculation of greenhouse gas (GHG emissions of food production is of growing importance for producers. Calculation of CO2eq emissions was performed for all stages of the production chain to the final retail point for flour, grains, paste, chocolate covered nuts and spreadable cream produced from almonds, pistachios and hazelnuts grown and transformed in Italy and for peanuts grown in Argentina and transformed in Italy. Data from literature was used to evaluate CFP of raw materials, emissions from transport and packing were calculated using existing models, while emissions deriving from transformation were calculated empirically by multiplying the power of production lines (electrical and/or thermal by its productivity. All values were reported in kg of CO2 equivalent for each kg of packed product (net weight. Resulting values ranged between 1.2 g of CO2/kg for a 100 g bag of almond to 4.8 g of CO2/kg for the 100 g bag of chocolate covered almond. The calculation procedure can be well used for similar cases of large consumer food productions.

  16. Replica exchange with solute tempering: A method for sampling biological systems in explicit water

    Science.gov (United States)

    Liu, Pu; Kim, Byungchan; Friesner, Richard A.; Berne, B. J.

    2005-09-01

    An innovative replica exchange (parallel tempering) method called replica exchange with solute tempering (REST) for the efficient sampling of aqueous protein solutions is presented here. The method bypasses the poor scaling with system size of standard replica exchange and thus reduces the number of replicas (parallel processes) that must be used. This reduction is accomplished by deforming the Hamiltonian function for each replica in such a way that the acceptance probability for the exchange of replica configurations does not depend on the number of explicit water molecules in the system. For proof of concept, REST is compared with standard replica exchange for an alanine dipeptide molecule in water. The comparisons confirm that REST greatly reduces the number of CPUs required by regular replica exchange and increases the sampling efficiency. This method reduces the CPU time required for calculating thermodynamic averages and for the ab initio folding of proteins in explicit water. Author contributions: B.J.B. designed research; P.L. and B.K. performed research; P.L. and B.K. analyzed data; and P.L., B.K., R.A.F., and B.J.B. wrote the paper.Abbreviations: REST, replica exchange with solute tempering; REM, replica exchange method; MD, molecular dynamics.*P.L. and B.K. contributed equally to this work.

  17. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-06-08

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  18. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Madhavi Nallani-Chakravartula; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2006-03-27

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  19. Forests and ozone: productivity, carbon storage, and feedbacks.

    Science.gov (United States)

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-02-22

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.

  20. Solar production of catalytic filamentous carbon by thermal decomposition of hydrocarbons and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, V A; Kuvshinov, G G; Mogilnykh, Yu I [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Reller, A [University of Hamburg (Germany); Steinfeld, A; Weidenkaff, A; Meier, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Concentrated solar radiation was used as the clean source of process heat for the production of Catalytic Filamentous Carbon (CFC) by thermal decomposition of gaseous hydrocarbons and by CO disproportionation in the presence of small metal catalyst particles. Depending on the catalyst, two different types of CFC, namely nano tubes and nano fibers, were obtained in solar experiments at the PSI solar furnace. (author) 2 figs., 1 tab., 7 refs.

  1. Inorganic carbon addition stimulates snow algae primary productivity

    Science.gov (United States)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  2. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-05-07

    Coccolithophores play an important role in the marine carbon cycle. Variations in light intensity and external carbonate system composition alter intracellular carbon fluxes and therewith the production rates of particulate organic and inorganic carbon. Aiming to find a mechanistic explanation for the interrelation between dissolved inorganic carbon fluxes and particulate carbon production rates, we develop a numerical cell model for Emiliania huxleyi, one of the most abundant coccolithophore species. The model consists of four cellular compartments, for each of which the carbonate system is resolved dynamically. The compartments are connected to each other and to the external medium via substrate fluxes across the compartment-confining membranes. By means of the model we are able to explain several pattern observed in particulate organic and inorganic carbon production rates for different strains and under different acclimation conditions. Particulate organic and inorganic carbon production rates for instance decrease at very low external CO2 concentrations. Our model suggests that this effect is caused mainly by reduced HCO3(-) uptake rates, not by CO2 limitation. The often observed decrease in particulate inorganic carbon production rates under Ocean Acidification is explained by a downregulation of cellular HCO3(-) uptake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products.

    Science.gov (United States)

    Liu, Dong; Yuan, Peng; Tan, Daoyong; Liu, Hongmei; Wang, Tong; Fan, Mingde; Zhu, Jianxi; He, Hongping

    2012-12-15

    Hierarchically porous carbons were prepared using a facile preparation method in which diatomite was utilized as both template and catalyst. The porous structures of the carbon products and their formation mechanisms were investigated. The macroporosity and microporosity of the diatomite-templated carbons were derived from replication of diatom shell and structure-reconfiguration of the carbon film, respectively. The macroporosity of carbons was strongly dependent on the original morphology of the diatomite template. The macroporous structure composed of carbon plates connected by the pillar- and tube-like macropores resulted from the replication of the central and edge pores of the diatom shells with disk-shaped morphology, respectively. And another macroporous carbon tubes were also replicated from canoe-shaped diatom shells. The acidity of diatomite dramatically affected the porosity of the carbons, more acid sites of diatomite template resulted in higher surface area and pore volume of the carbon products. The diatomite-templated carbons exhibited higher adsorption capacity for methylene blue than the commercial activated carbon (CAC), although the specific surface area was much smaller than that of CAC, due to the hierarchical porosity of diatomite-templated carbons. And the carbons were readily reclaimed and regenerated. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Calcium carbonate production response to future ocean warming and acidification

    Directory of Open Access Journals (Sweden)

    A. J. Pinsonneault

    2012-06-01

    Full Text Available Anthropogenic carbon dioxide (CO2 emissions are acidifying the ocean, affecting calcification rates in pelagic organisms, and thereby modifying the oceanic carbon and alkalinity cycles. However, the responses of pelagic calcifying organisms to acidification vary widely between species, contributing uncertainty to predictions of atmospheric CO2 and the resulting climate change. At the same time, ocean warming caused by rising CO2 is expected to drive increased growth rates of all pelagic organisms, including calcifiers. It thus remains unclear whether anthropogenic CO2 emissions will ultimately increase or decrease pelagic calcification rates. Here, we assess the importance of this uncertainty by introducing a dependence of calcium carbonate (CaCO3 production on calcite saturation state (ΩCaCO3 in an intermediate complexity coupled carbon-climate model. In a series of model simulations, we examine the impact of several variants of this dependence on global ocean carbon cycling between 1800 and 3500 under two different CO2 emissions scenarios. Introducing a calcification-saturation state dependence has a significant effect on the vertical and surface horizontal alkalinity gradients, as well as on the removal of alkalinity from the ocean through CaCO3 burial. These changes result in an additional oceanic uptake of carbon when calcification depends on ΩCaCO3 (of up to 270 Pg C, compared to the case where calcification does not depend on acidification. In turn, this response causes a reduction of global surface air temperature of up to 0.4 °C in year 3500. Different versions of the model produced varying results, and narrowing this range of uncertainty will require better understanding of both temperature and acidification effects on pelagic calcifiers. Nevertheless, our results suggest that alkalinity observations can be used

  5. Mineral Carbonation of Phosphogypsum Waste for Production of Useful Carbonate and Sulfate Salts

    Energy Technology Data Exchange (ETDEWEB)

    Mattila, Hannu-Petteri, E-mail: hmattila@abo.fi; Zevenhoven, Ron [Thermal and Flow Engineering Laboratory, Åbo Akademi University, Turku (Finland)

    2015-11-16

    Phosphogypsum (CaSO{sub 4}·2H{sub 2}O, PG) waste is produced in large amounts during phosphoric acid (H{sub 3}PO{sub 4}) production. Minor quantities are utilized in construction or agriculture, while most of the material is stockpiled, creating an environmental challenge to prevent pollution of natural waters. In principle, the gypsum waste could be used to capture several hundred megatonnes of carbon dioxide (CO{sub 2}). For example, when gypsum is converted to ammonium sulfate [(NH{sub 4}){sub 2}SO{sub 4}] with ammonia (NH{sub 3}) and CO{sub 2}, also solid calcium carbonate (CaCO{sub 3}) is generated. The ammonium sulfate can be utilized as a fertilizer or in other mineral carbonation processes that use magnesium silicate-based rock as feedstock, while calcium carbonate has various uses as, e.g., filler material. The reaction extent of the described process was studied by thermodynamic modeling and experimentally as a function of reactant concentrations and temperature. Other essential properties such as purity and quality of the solid products are also followed. Conversion efficiencies of >95% calcium from PG to calcium carbonate are obtained. Scalenohedral, rhombohedral, and prismatic calcite particles can be produced, although the precipitates contain certain contaminants such as rare earth metals and sulfur from the gypsum. A reverse osmosis membrane cartridge is also tested as an alternative and energy-efficient method of concentrating the ammonium sulfate salt solution instead of the traditional evaporation of the process solution.

  6. Electrochemical formation of carbonated corrosion products on carbon steel in deaerated solutions

    International Nuclear Information System (INIS)

    Refait, Ph.; Bourdoiseau, J.A.; Jeannin, M.; Nguyen, D.D.

    2012-01-01

    Highlights: ► Green rust is electro-generated at low NaHCO 3 concentration (0.003 mol dm −3 ). ► Chukanovite and carbonated green rust are obtained in NaHCO 3 + Na 2 SO 4 deaerated electrolytes. ► The mechanisms of formation of carbonated corrosion products of carbon steel are specified. - Abstract: To investigate the nature and properties of carbonated rust layers, carbon steel electrodes were polarised anodically at a potential ∼100–200 mV higher than the open circuit potential in NaHCO 3 solutions (0.003, 0.1 and 1 mol dm −3 ) continuously deaerated by an argon flow. X-ray diffraction and μ-Raman spectroscopy were used to identify the electro-generated compounds. GR(CO 3 2− ) (=Fe II 4 Fe III 2 (OH) 12 CO 3 ·4H 2 O) is observed at 0.003 and 0.1 mol dm −3 NaHCO 3 whereas FeCO 3 is obtained at the largest concentration (1 mol dm −3 ). GR(CO 3 2− ) is accompanied by magnetite Fe 3 O 4 at the lowest NaHCO 3 concentration. The current density decreases to negligible values in each case, indicating that a passive film also forms independently of the nature of the carbonated compound. Experiments were performed similarly in solutions of NaHCO 3 and Na 2 SO 4 . Chukanovite Fe 2 (OH) 2 CO 3 could be obtained in solutions containing 0.03 mol dm −3 of each salt. In contrast with the results obtained in the solutions free of sulphate, the current density remains important during the formation of the rust layer

  7. Sequestration of carbon dioxide and production of biomolecules using cyanobacteria.

    Science.gov (United States)

    Upendar, Ganta; Singh, Sunita; Chakrabarty, Jitamanyu; Chandra Ghanta, Kartik; Dutta, Susmita; Dutta, Abhishek

    2018-07-15

    A cyanobacterial strain, Synechococcus sp. NIT18, has been applied to sequester CO 2 using sodium carbonate as inorganic carbon source due to its efficiency of CO 2 bioconversion and high biomass production. The biomass obtained is used for the extraction of biomolecules - protein, carbohydrate and lipid. The main objective of the study is to maximize the biomass and biomolecules production with CO 2 sequestration using cyanobacterial strain cultivated under different concentrations of CO 2 (5-20%), pH (7-11) and inoculum size (5-12.5%) within a statistical framework. Maximum sequestration of CO 2 and maximum productivities of protein, carbohydrate and lipid are 71.02%, 4.9 mg/L/day, 6.7 mg/L/day and 1.6 mg/L/day respectively, at initial CO 2 concentration: 10%, pH: 9 and inoculum size: 12.5%. Since flue gas contains 10-15% CO 2 and the present strain is able to sequester CO 2 in this range, the strain could be considered as a useful tool for CO 2 mitigation for greener world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Solvent production by engineered Ralstonia eutropha: channeling carbon to biofuel.

    Science.gov (United States)

    Chakravarty, Jayashree; Brigham, Christopher J

    2018-06-01

    Microbial production of solvents like acetone and butanol was a couple of the first industrial fermentation processes to gain global importance. These solvents are important feedstocks for the chemical and biofuel industry. Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H 2 and CO 2 under aerobic conditions. This bacterium is a natural producer of polyhydroxyalkanoate biopolymers. Recently, with the advances in the development of genetic engineering tools, the range of metabolites R. eutropha can produce has enlarged. Its ability to utilize various carbon sources renders it an interesting candidate host for synthesis of renewable biofuel and solvent production. This review focuses on progress in metabolic engineering of R. eutropha for the production of alcohols, terpenes, methyl ketones, and alka(e)nes using various resources. Biological synthesis of solvents still presents the challenge of high production costs and competition from chemical synthesis. Better understanding of R. eutropha biology will support efforts to engineer and develop superior microbial strains for solvent production. Continued research on multiple fronts is required to engineer R. eutropha for truly sustainable and economical solvent production.

  9. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

    2006-03-07

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

  10. Production of carbon molecular sieves from palm shell through carbon deposition from methane

    Directory of Open Access Journals (Sweden)

    Mohammadi Maedeh

    2011-01-01

    Full Text Available The possibility of production of carbon molecular sieve (CMS from palm shell as a waste lignocellulosic biomass was investigated. CMS samples were prepared through heat treatment processes including carbonization, physiochemical activation and chemical vapor deposition (CVD from methane. Methane was pyrolyzed to deposit fine carbon on the pore mouth of palm shell-based activated carbon to yield CMS. All the deposition experiments were performed at 800 ºC, while the methane flow rate (100, 200, 300 mL min-1 CH4 diluted in 500 mL min-1 N2 and deposition time (30 to 60 min were the investigated parameters. The textural characteristics of the CMSs were assessed by N2 adsorption. The largest BET surface area (752 m2 g-1, micropore surface area (902.2 m2 g-1 and micropore volume (0.3466 cm3 g-1 was obtained at the CH4 flow rate of 200 mL min-1 and deposition time of 30 min. However, prolonging the deposition time to 45 min yielded in a micropouros CMS with a narrow pore size distribution.

  11. One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity.

    Science.gov (United States)

    Rittmann, Simon K-M R; Lee, Hyun Sook; Lim, Jae Kyu; Kim, Tae Wan; Lee, Jung-Hyun; Kang, Sung Gyun

    2015-01-01

    Among four basic mechanisms for biological hydrogen (H2) production, dark fermentation has been considered to show the highest hydrogen evolution rate (HER). H2 production from one-carbon (C1) compounds such as formate and carbon monoxide (CO) is promising because formate is an efficient H2 carrier, and the utilization of CO-containing syngas or industrial waste gas may render the industrial biohydrogen production process cost-effective. A variety of microbes with the formate hydrogen lyase (FHL) system have been identified from phylogenetically diverse groups of archaea and bacteria, and numerous efforts have been undertaken to improve the HER for formate through strain optimization and bioprocess development. CO-dependent H2 production has been investigated to enhance the H2 productivity of various carboxydotrophs via an increase in CO gas-liquid mass transfer rates and the construction of genetically modified strains. Hydrogenogenic CO-conversion has been applied to syngas and by-product gas of the steel-mill process, and this low-cost feedstock has shown to be promising in the production of biomass and H2. Here, we focus on recent advances in the isolation of novel phylogenetic groups utilizing formate or CO, the remarkable genetic engineering that enhances H2 productivity, and the practical implementation of H2 production from C1 substrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The production of precipitated calcium carbonate from industrial gypsum wastes

    CSIR Research Space (South Africa)

    De Beer, Morris

    2014-05-01

    Full Text Available -step) process was tested. Although only a low-grade CaCO3 product (86-88 mass% as CaCO3) could be produced, experimental results on the characteristics of CaS in the presence of CO2 in the CaS-H2O-CO2 system showed that the reaction proceeded in two distinct... stages. In the first stage, CaS dissolution took place, with H2S stripping occurring in the second stage. Calcium carbonation and the resulting precipitation of CaCO3 were concurrent with the CaS dissolution and the H2S stripping reactions. Because...

  13. Laser-induced production of large carbon-based toroids

    International Nuclear Information System (INIS)

    Lyn, M. Elizabeth; He Jibao; Koplitz, Brent

    2005-01-01

    We report on the production of large carbon-based toroids (CBTs) from fullerenes. The process involves two-step laser irradiation of a mixed fullerene target (76% C 60 , 22% C 70 ). Transmission electron microscopy (TEM) clearly identifies toroidal-shaped structures as well as Q-shaped constructs. The typical diameters of the CBTs are ∼0.2-0.3 μm with tubular diameters of ∼50-100 nm, but toroids as wide as 0.5 μm are observed making them nanostructures on the verge of being microstructures

  14. Life Cycle Analysis of Carbon Flow and Carbon Footprint of Harvested Wood Products of Larix principis-rupprechtii in China

    Directory of Open Access Journals (Sweden)

    Fei Lun

    2016-03-01

    Full Text Available Larix principis-rupprechtii is a native tree species in North China with a large distribution; and its harvested timbers can be used for producing wood products. This study focused on estimating and comparing carbon flows and carbon footprints of different harvested wood products (HWPs from Larix principis-ruppechtii based on the life cycle analysis (from seedling cultivation to HWP final disposal. Based on our interviews and surveys, the system boundary in this study was divided into three processes: the forestry process, the manufacturing process, and the use and disposal process. By tracking carbon flows of HWPs along the entire life cycle, we found that, for one forest rotation period, a total of 26.81 tC/ha sequestered carbon was transferred into these HWPs, 66.2% of which were still stored in the HWP when the rotation period had ended; however, the HWP carbon storage decreased to 0.25 tC/ha (only 0.9% left in the 100th year after forest plantation. The manufacturing process contributed more than 90% of the total HWP carbon footprint, but it was still smaller than the HWP carbon storage. In terms of the carbon storage and the carbon footprint, construction products had the largest net positive carbon balance compared to furniture and panel products. In addition, HWP are known to have a positive impact on global carbon mitigation because they can store parts of the sequestered carbon for a certain period of time and they have a substitution effect on carbon mitigation. Furthermore, there still exist great opportunities for carbon mitigation from HWPs through the use of cleaner energy and increasing the utilization efficiency of wood fuel.

  15. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, Kazuo; Nagano, Tetsushi; Nakayama, Shinichi; Muraoka, Susumu

    1992-02-01

    As a part of evaluation of the long-term durability for the overpack containers for high-level radioactive waste, we have conducted corrosion tests for carbon steel in wet bentonite, a candidate buffer material. The corrosion rates were evaluated by weight difference of carbon steel and corrosion products were analyzed by Fourier transform infrared spectroscopy (FT-IR) and colorimetry. At 40degC, the corrosion rate of carbon steel in wet bentonite was smaller than that in pure water. At 95degC, however, the corrosion rate in wet bentonite was much higher than that in pure water. This high corrosion rate in wet bentonite at 95degC was considered to result from evaporation of moisture in bentonite in contact with the metal. This evaporation led to dryness and then to shrinkage of the bentonite, which generated ununiform contact of the metal with bentonite. Probably, this ununiform contact promoted the local corrosion. The locally corroded parts of specimen in wet bentonite at 95degC were analyzed by Fourier transform infrared microspectroscopy (micro-FT-IR), and lepidocrocite γ-FeO(OH) was found as well as goethite α-FeO(OH). In wet bentonite at 95degC, hematite α-Fe 2 O 3 was identified by means of colorimetry. (author)

  16. [Carbon efficiency of double-rice production system in Hunan Province, China].

    Science.gov (United States)

    Chen, Zhong-du; Wu, Yao; Ti, Jin-song; Chen, Fu; Li, Yong

    2015-01-01

    Improving the carbon efficiency of crop production systems is one of the important ways to realize low-carbon agriculture. A life cycle assessment approach and input-output calculation method was applied for a double-rice production system in the Hunan Province. Based on statistical data of crop yield and investment in the production system in the period from 2004 to 2012, carbon emission, carbon absorption, carbon efficiency and their dynamic changes of the double rice production systems were estimated. The results showed that the average of annual carbon emission from 2004 to 2012 was 656.4 x 10(7) kg CE. Carbon emissions from production and transport of fertilizer and pesticide accounted for a majority of agricultural input carbon emissions, approximately 70.0% and 15.9%, respectively. The carbon emission showed a decreasing trend from 2004 to 2012 in the Hunan Province, with an annual reduction rate of 2.4%, but the carbon emission intensity was in a trend of increase. The average of annual carbon absorption was 1547.0 x 10(7) kg C. The annual carbon absorption also showed a decreasing trend from 2004 to 2012 in Hunan Province, with an average annual reduction rate of 1.2%, and the carbon absorption intensity showed a trend of increase. Furthermore, production efficiency of carbon showed a slow upward trend. The economic efficiency of carbon showed a larger increasing rate with time, with an average annual growth rate of 9.9%. Ecological efficiency of carbon was stable and low, maintained at about 2.4 kg C . kg-1 CE. It indicated that the integrated carbon efficiency of Hunan double rice crop production system improved slowly with time and the key to improve the carbon efficiency of double rice production systems lies in reducing the rates of nitrogen fertilizer and pesticide, and improving their use efficiencies.

  17. Replica field theory for a polymer in random media

    International Nuclear Information System (INIS)

    Goldschmidt, Yadin Y.

    2000-01-01

    In this paper we revisit the problem of a (non-self-avoiding) polymer chain in a random medium which was previously investigated by Edwards and Muthukumar (EM) [J. Chem. Phys. 89, 2435 (1988)]. As noticed by Cates and Ball (CB) [J. Phys. (France) 49, 2009 (1988)] there is a discrepancy between the predictions of the replica calculation of EM and the expectation that in an infinite medium the quenched and annealed results should coincide (for a chain that is free to move) and a long polymer should always collapse. CB argued that only in a finite volume one might see a ''localization transition'' (or crossover) from a stretched to a collapsed chain in three spatial dimensions. Here we carry out the replica calculation in the presence of an additional confining harmonic potential that mimics the effect of a finite volume. Using a variational scheme with five variational parameters we derive analytically for d -1/(4-d) ∼(g ln V) -1/(4-d) , where R is the radius of gyration, g is the strength of the disorder, μ is the spring constant associated with the confining potential, and V is the associated effective volume of the system. Thus the EM result is recovered with their constant replaced by ln V as argued by CB. We see that in the strict infinite volume limit the polymer always collapses, but for finite volume a transition from a stretched to a collapsed form might be observed as a function of the strength of the disorder. For d V ' ∼exp(g 2/(2-d) L (4-d)/(2-d) ) the annealed results are recovered and R∼(Lg) 1/(d-2) , where L is the length of the polymer. Hence the polymer also collapses in the large L limit. The one-step replica symmetry breaking solution is crucial for obtaining the above results. (c) 2000 The American Physical Society

  18. Production of carbon molecular sieves from Illinois coal

    Science.gov (United States)

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-01-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for application in the separation of gas molecules that vary in size and shape. A study is in progress at the Illinois State Geological Survey to determine whether Illinois basin coals are suitable feedstocks for the production of CMS and to evaluate their potential application in gas separation processes of commercial importance. Chars were prepared from Illinois coal in a fixed-bed reactor under a wide range of heat treatment and activation conditions. The effects of various coal/char pretreatments, including coal demineralization, preoxidation, char activation, and carbon deposition, on the molecular sieve properties of the chars were also investigated. Chars with commercially significant BET surface areas of 1500 m2/g were produced by chemical activation using potassium hydroxide as the activant. These high-surface-area (HSA) chars had more than twice the adsorption capacity of commercial carbon and zeolite molecular sieves. The kinetics of adsorption of various gases, e.g., N2, O2, CO2, CH4, CO and H2, on these chars at 25??C was measured. The O2/N2 molecular sieve properties of one char prepared without chemical activation were similar to those of a commercial CMS. On the other hand, the O2/N2 selectivity of the HSA char was comparable to that of a commercial activated carbon, i.e., essentially unity. Carbon deposition, using methane as the cracking gas, increased the O2/N2 selectivity of the HSA char, but significantly decreased its adsorption capacity. Several chars showed good potential for efficient CO2/CH4 separation; both a relatively high CO2 adsorption capacity and CO2/CH4 selectivity were achieved. The micropore size distribution of selected chars was estimated by equilibrium adsorption of carbon dioxide, n-butane and iso-butane at O??C. The extent of adsorption of each gas corresponded to the effective surface area contained in pores with diameters greater than 3

  19. Replica Approach for Minimal Investment Risk with Cost

    Science.gov (United States)

    Shinzato, Takashi

    2018-06-01

    In the present work, the optimal portfolio minimizing the investment risk with cost is discussed analytically, where an objective function is constructed in terms of two negative aspects of investment, the risk and cost. We note the mathematical similarity between the Hamiltonian in the mean-variance model and the Hamiltonians in the Hopfield model and the Sherrington-Kirkpatrick model, show that we can analyze this portfolio optimization problem by using replica analysis, and derive the minimal investment risk with cost and the investment concentration of the optimal portfolio. Furthermore, we validate our proposed method through numerical simulations.

  20. Replica Analysis for Portfolio Optimization with Single-Factor Model

    Science.gov (United States)

    Shinzato, Takashi

    2017-06-01

    In this paper, we use replica analysis to investigate the influence of correlation among the return rates of assets on the solution of the portfolio optimization problem. We consider the behavior of an optimal solution for the case where the return rate is described with a single-factor model and compare the findings obtained from our proposed methods with correlated return rates with those obtained with independent return rates. We then analytically assess the increase in the investment risk when correlation is included. Furthermore, we also compare our approach with analytical procedures for minimizing the investment risk from operations research.

  1. Application of extraction replicas and analytical electron microscopy to precipitate phase studies

    International Nuclear Information System (INIS)

    Kenik, E.A.; Maziasz, P.J.

    1984-01-01

    Extraction replicas provide a powerful extension of AEM techniques for analysis of fine precipitates. In many cases, replicas allow more accurate analyses to be performed and, in some cases, allow unique analyses which cannot be performed in-foil. However, there are limitations to the use of extraction replicas in AEM, of which the analyst must be aware. Many can be eliminated by careful preparation. Often, combined AEM studies of precipitates in-foil and on extraction replicas provide complementary and corroborative information for the fullest analysis of precipitate phases

  2. Replica calibration artefacts for optical 3D scanning of micro parts

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Carmignato, S.; Cantatore, Angela

    2009-01-01

    This work deals with development of calibration artefacts produced by using hard replica materials, achieving high quality geometrical reproduction of suitable reference artefacts, high stability, and high surface cooperativeness. An investigation was carried out using a replica material for dental...... applications to reproduce the geometry of a step artefact, a miniature step gauge, and a curve standard for optical measuring machines. The replica artefacts were calibrated using a tactile coordinate measuring machine and measured on two different optical scanners. Replication quality and applicability...... of the artefacts to verify the accuracy of optical measurements as well as thermal expansion coefficient and stability of the replica artefacts over time were documented....

  3. Extension classification method for low-carbon product cases

    Directory of Open Access Journals (Sweden)

    Yanwei Zhao

    2016-05-01

    Full Text Available In product low-carbon design, intelligent decision systems integrated with certain classification algorithms recommend the existing design cases to designers. However, these systems mostly dependent on prior experience, and product designers not only expect to get a satisfactory case from an intelligent system but also hope to achieve assistance in modifying unsatisfactory cases. In this article, we proposed a new categorization method composed of static and dynamic classification based on extension theory. This classification method can be integrated into case-based reasoning system to get accurate classification results and to inform designers of detailed information about unsatisfactory cases. First, we establish the static classification model for cases by dependent function in a hierarchical structure. Then for dynamic classification, we make transformation for cases based on case model, attributes, attribute values, and dependent function, thus cases can take qualitative changes. Finally, the applicability of proposed method is demonstrated through a case study of screw air compressor cases.

  4. Carbon Sources Influence Fumonisin Production in Fusarium proliferatum.

    Science.gov (United States)

    Li, Taotao; Gong, Liang; Jiang, Guoxiang; Wang, Yong; Gupta, Vijai Kumar; Qu, Hongxia; Duan, Xuewu; Wang, Jiasheng; Jiang, Yueming

    2017-10-01

    Fusarium proliferatum is a worldwide fungal pathogen that produces fumonisins which are harmful to animal and human health. However, environmental factors affecting fumonisin biosynthesis in F. proliferatum are not well understood. Based on our preliminary results, in this study, we investigated the effect of sucrose or mannose as the sole carbon source on fumonisin B (FB) production by F. proliferatum and studied their underlying mechanisms via proteome and gene expression analysis. Our results showed that mannose, used as the sole carbon source, significantly blocked fumonisin B 1 and B 2 production by F. proliferatum as compared with the use of sucrose. Fifty-seven differentially expressed proteins were successfully identified. The downregulated proteins in the mannose-cultured strain were mainly involved in carbon metabolism, response to stress, and methionine metabolism, as compared with the sucrose-cultured strain. Moreover, quantitative real-time PCR analysis indicated that expression of several key genes involved in FB biosynthetic pathway and in transcription regulation were significantly downregulated in the mannose-cultured F. proliferatum, whereas expression of histone deacetylation-related genes were significantly upregulated. These results suggested that the blockage of FB biosynthesis by mannose was associated with the decreases in conversion of acetyl-CoA to polyketide, methionine biosynthesis, and NADPH regeneration. More importantly, milder oxidative stress, downregulated expression of genes involved in biosynthetic pathway and transcription regulation, and upregulated expression of genes with histone deacetylation possibly were responsible for the blockage of FB biosynthesis in F. proliferatum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Increasing carbon and material productivity through environmental tax reform

    International Nuclear Information System (INIS)

    Ekins, Paul; Pollitt, Hector; Summerton, Philip; Chewpreecha, Unnada

    2012-01-01

    Environmental tax reform (ETR), a shift in taxation towards environmental taxes, has been implemented on a small scale in a number of European countries. This paper first gives a short review of the literature about ETR. An Appendix briefly describes the model used for a modelling exercise to explore, through scenarios with low and high international energy prices, the implications of a large-scale ETR in the European Union, sufficient to reach the EU's emission reduction targets for 2020. The paper then reports the results of the exercise. The ETR results in increased carbon and materials, but reduced labour, productivity, with the emission reductions distributed across all sectors as a reduction in the demand for all fossil fuels. There are also small GDP increases for most, but not all, EU countries for all the scenarios, and for the EU as a whole. Both the environmental and macroeconomic outcomes are better with low than with high energy prices, because the former both increases the scale of the ETR required to reach the targets, and reduces the outflow of foreign exchange to pay for energy imports. ETR emerges from the exercise as an attractive and cost-effective policy for environmental improvement. - Highlights: ► European experience with environmental tax reform (ETR) is reviewed. ► Scenarios which meet EU carbon emission targets are modelled. ► The ETR results in increased carbon and materials, but reduced labour, productivity. ► There are small GDP increases for most, but not all, EU countries. ► ETR emerges as an attractive and cost-effective environmental policy.

  6. Photorespiration and carbon limitation determine productivity in temperate seagrasses.

    Science.gov (United States)

    Buapet, Pimchanok; Rasmusson, Lina M; Gullström, Martin; Björk, Mats

    2013-01-01

    The gross primary productivity of two seagrasses, Zostera marina and Ruppia maritima, and one green macroalga, Ulva intestinalis, was assessed in laboratory and field experiments to determine whether the photorespiratory pathway operates at a substantial level in these macrophytes and to what extent it is enhanced by naturally occurring shifts in dissolved inorganic carbon (DIC) and O2 in dense vegetation. To achieve these conditions in laboratory experiments, seawater was incubated with U. intestinalis in light to obtain a range of higher pH and O2 levels and lower DIC levels. Gross photosynthetic O2 evolution was then measured in this pretreated seawater (pH, 7.8-9.8; high to low DIC:O2 ratio) at both natural and low O2 concentrations (adjusted by N2 bubbling). The presence of photorespiration was indicated by a lower gross O2 evolution rate under natural O2 conditions than when O2 was reduced. In all three macrophytes, gross photosynthetic rates were negatively affected by higher pH and lower DIC. However, while both seagrasses exhibited significant photorespiratory activity at increasing pH values, the macroalga U. intestinalis exhibited no such activity. Rates of seagrass photosynthesis were then assessed in seawater collected from the natural habitats (i.e., shallow bays characterized by high macrophyte cover and by low DIC and high pH during daytime) and compared with open baymouth water conditions (where seawater DIC is in equilibrium with air, normal DIC, and pH). The gross photosynthetic rates of both seagrasses were significantly higher when incubated in the baymouth water, indicating that these grasses can be significantly carbon limited in shallow bays. Photorespiration was also detected in both seagrasses under shallow bay water conditions. Our findings indicate that natural carbon limitations caused by high community photosynthesis can enhance photorespiration and cause a significant decline in seagrass primary production in shallow waters.

  7. Photorespiration and carbon limitation determine productivity in temperate seagrasses.

    Directory of Open Access Journals (Sweden)

    Pimchanok Buapet

    Full Text Available The gross primary productivity of two seagrasses, Zostera marina and Ruppia maritima, and one green macroalga, Ulva intestinalis, was assessed in laboratory and field experiments to determine whether the photorespiratory pathway operates at a substantial level in these macrophytes and to what extent it is enhanced by naturally occurring shifts in dissolved inorganic carbon (DIC and O2 in dense vegetation. To achieve these conditions in laboratory experiments, seawater was incubated with U. intestinalis in light to obtain a range of higher pH and O2 levels and lower DIC levels. Gross photosynthetic O2 evolution was then measured in this pretreated seawater (pH, 7.8-9.8; high to low DIC:O2 ratio at both natural and low O2 concentrations (adjusted by N2 bubbling. The presence of photorespiration was indicated by a lower gross O2 evolution rate under natural O2 conditions than when O2 was reduced. In all three macrophytes, gross photosynthetic rates were negatively affected by higher pH and lower DIC. However, while both seagrasses exhibited significant photorespiratory activity at increasing pH values, the macroalga U. intestinalis exhibited no such activity. Rates of seagrass photosynthesis were then assessed in seawater collected from the natural habitats (i.e., shallow bays characterized by high macrophyte cover and by low DIC and high pH during daytime and compared with open baymouth water conditions (where seawater DIC is in equilibrium with air, normal DIC, and pH. The gross photosynthetic rates of both seagrasses were significantly higher when incubated in the baymouth water, indicating that these grasses can be significantly carbon limited in shallow bays. Photorespiration was also detected in both seagrasses under shallow bay water conditions. Our findings indicate that natural carbon limitations caused by high community photosynthesis can enhance photorespiration and cause a significant decline in seagrass primary production in shallow

  8. Burners and combustion apparatus for carbon nanomaterial production

    Science.gov (United States)

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  9. The added value of the replica simulators in the exploitation of nuclear power plants; El valor anadido de los simuladores replica en la explotacion de las centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Giron, P. a.; Ortega, F.; Rivero, N.

    2011-07-01

    Nuclear power plants full scope replica simulators were in the past solely designed following operational personnel training criteria. Nevertheless, these simulators not only feature a high replica control room but also provide an accurate process response. Control room replica simulators are presently based on complex technological platforms permitting highest physical and functional fidelity, allowing to be used as versatile and value added tools in diverse plants operation and maintenance activities. In recent years. Tecnatom has extended the use of such simulators to different engineering applications. this article intends to identify the simulators use in training and other applications beyond training. (Author)

  10. Produção de interleucina-10 na gestação reduz a taxa de replicação do HIV-1 em culturas de linfócitos maternos Interleukin-10 production during pregnancy reduces HIV-1 replicaction in cultures of maternal lymphocytes

    Directory of Open Access Journals (Sweden)

    Bruno Monção Paolino

    2005-07-01

    Full Text Available OBJETIVO: avaliar a proliferação de células T e a produção de citocinas em gestantes infectadas pelo HIV-1 e seu impacto na replicação viral in vitro. MÉTODOS: sangue periférico de 12 gestantes infectadas pelo HIV-1 e de seus neonatos, bem como de 10 gestantes HIV-1 negativas, foi colhido e a quantidade de linfócitos TCD4+ e TCD8+ periféricos foi avaliada por citometria de fluxo. Para obter plasma ou células mononucleares periféricas (PBMC, as amostras foram centrifugadas na ausência ou presença de um gradiente de Ficoll-Hypaque, respectivamente. As PBMC foram mantidas em cultura por sete dias na presença de fito-hemaglutinina mais IL-2 recombinante e a resposta linfoproliferativa de células T foi analisada pelo método de exclusão em azul de Trypan. Em alguns experimentos, as culturas foram mantidas na presença adicional de anticorpo anti-IL-10. Os plasmas e sobrenadantes das culturas de PBMC ativadas foram submetidos à análise da produção de citocinas, pelo método ELISA indireto, e a carga viral, detectada pelo RT-PCR. RESULTADOS: independente da carga viral plasmática, a resposta linfoproliferativa em culturas de células obtidas de gestantes infectadas pelo HIV foi inferior às amostras normais [4,2±0,37 vs 2,4±0,56 (x 10(6 células/mL; pPURPOSE: to evaluate T cell proliferation and cytokine production in HIV-1-infected pregnant women and their impact on in vitro virus replication. METHODS: peripheral blood from 12 HIV-1-infected pregnant women and from their neonates was collected. As control, 10 samples from non-infected pregnants were also colleted. The CD4+ and CD8+ T cell counts were assayed by flow cytometry. Peripheral blood mononuclear cells (PBMC and plasma were obtained by centrifugation with and without Ficoll-Hypaque gradient, respectively. The freshly purified PBMC were kept in cultures for seven days with PHA plus r-IL-2, and the lymphoproliferative response was assayed by Trypan blue dye exclusion

  11. Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Kronrad

    2006-09-19

    A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

  12. Carbon footprint of Canadian dairy products: calculations and issues.

    Science.gov (United States)

    Vergé, X P C; Maxime, D; Dyer, J A; Desjardins, R L; Arcand, Y; Vanderzaag, A

    2013-09-01

    The Canadian dairy sector is a major industry with about 1 million cows. This industry emits about 20% of the total greenhouse gas (GHG) emissions from the main livestock sectors (beef, dairy, swine, and poultry). In 2006, the Canadian dairy herd produced about 7.7 Mt of raw milk, resulting in about 4.4 Mt of dairy products (notably 64% fluid milk and 12% cheese). An integrated cradle-to-gate model (field to processing plant) has been developed to estimate the carbon footprint (CF) of 11 Canadian dairy products. The on-farm part of the model is the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES). It considers all GHG emissions associated with livestock production but, for this study, it was run for the dairy sector specifically. Off-farm GHG emissions were estimated using the Canadian Food Carbon Footprint calculator, (cafoo)(2)-milk. It considers GHG emissions from the farm gate to the exit gate of the processing plants. The CF of the raw milk has been found lower in western provinces [0.93 kg of CO2 equivalents (CO2e)/L of milk] than in eastern provinces (1.12 kg of CO2e/L of milk) because of differences in climate conditions and dairy herd management. Most of the CF estimates of dairy products ranged between 1 and 3 kg of CO2e/kg of product. Three products were, however, significantly higher: cheese (5.3 kg of CO2e/kg), butter (7.3 kg of CO2e/kg), and milk powder (10.1 kg of CO2e/kg). The CF results depend on the milk volume needed, the co-product allocation process (based on milk solids content), and the amount of energy used to manufacture each product. The GHG emissions per kilogram of protein ranged from 13 to 40 kg of CO2e. Two products had higher values: cream and sour cream, at 83 and 78 kg of CO2e/kg, respectively. Finally, the highest CF value was for butter, at about 730 kg of CO2e/kg. This extremely high value is due to the fact that the intensity indicator per kilogram of product is high and that butter is almost exclusively

  13. Method of carbon dioxide-free hydrogen production from hydrocarbon decomposition over metal salts

    Science.gov (United States)

    Erlebacher, Jonah; Gaskey, Bernard

    2017-10-03

    A process to decompose methane into carbon (graphitic powder) and hydrogen (H.sub.2 gas) without secondary production of carbon dioxide, employing a cycle in which a secondary chemical is recycled and reused, is disclosed.

  14. Behavioural responses of dogs to asymmetrical tail wagging of a robotic dog replica.

    Science.gov (United States)

    Artelle, K A; Dumoulin, L K; Reimchen, T E

    2011-03-01

    Recent evidence suggests that bilateral asymmetry in the amplitude of tail wagging of domestic dogs (Canis familiaris) is associated with approach (right wag) versus withdrawal (left wag) motivation and may be the by-product of hemispheric dominance. We consider whether such asymmetry in motion of the tail, a crucial appendage in intra-specific communication in all canids, provides visual information to a conspecific leading to differential behaviour. To evaluate this, we experimentally investigated the approach behaviour of free-ranging dogs to the asymmetric tail wagging of a life-size robotic dog replica. Our data, involving 452 separate interactions, showed a significantly greater proportion of dogs approaching the model continuously without stopping when the tail wagged to the left, compared with a right wag, which was more likely to yield stops. While the results indicate that laterality of a wagging tail provides behavioural information to conspecifics, the responses are not readily integrated into the predicted behaviour based on hemispheric dominance.

  15. Forests and wood consumption on the carbon balance. Carbon emission reduction by use of wood products

    International Nuclear Information System (INIS)

    Sikkema, R.; Nabuurs, G.J.

    1995-01-01

    Until now studies on the greenhouse effect paid much attention to carbon fixation by forests, while the entire CO2 cycle of forests and forest products remained underexposed. Utilization of wood products instead of energy-intensive materials (plastics/steel) and fossil fuels (coal) proves to play an important role as well. The effect of utilization is even greater than that of fixation. In all, additional forests together with the multiple use of trees can contribute substantially to the reduction of CO2 emissions. The contribution can run from 5.3 ton CO2/ha/yr for a mixed forest of oak/beech to 18.9 ton CO2/ha/yr for energy plantations (poplar). 2 figs., 3 tabs

  16. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  17. RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

    2002-03-31

    This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the

  18. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, K.; Nagano, T.; Kozai, N.; Nakashima, S.; Nakayama, S.; Muraoka, S.

    1991-01-01

    The following conclusions were obtained; (1) At 40degC, the average corrosion rate of SS41 carbon steel in wet bentonite was 0.025 mm/y. This is smaller than the value of 0.042 mm/y obtained in pure water at 40degC. However, at 95degC, the corrosion rate of SS41 carbon steel in wet bentonite was 0.27 mm/y, which is much larger than that in pure water at 95degC. (2) At 95degC, γ-FeO(OH) (lepidocrocite) was formed only in wet bentonite, and it was absent in pure water. Evaporation of moisture resulted in the formation of partial covering of bentonite, which promoted local corrosion. Consequently, γ-FeO(OH) was considered to be formed. (3) In wet bentonite at 95degC, α-Fe 2 O 3 (hematite) can be identified by means of colorimetry. The color of corrosion products is orangish, indicating the contribution of α-Fe 2 O 3 in iron hydroxides. (author)

  19. Central carbon metabolism influences cellulase production in Bacillus licheniformis.

    Science.gov (United States)

    Wang, J; Liu, S; Li, Y; Wang, H; Xiao, S; Li, C; Liu, B

    2018-01-01

    Bacillus licheniformis that can produce cellulase including endo glucanase and glucosidase is an important industrial microbe for cellulose degradation. The purpose of this research was to assess the effect of endo glucanase gene bglC and glucosidase gene bglH on the central metabolic flux in B. licheniformis. bglC and bglH were knocked out using homologous recombination method, respectively, and the corresponding knockout strains were obtained for 13 C metabolic flux analysis. A significant change was observed in metabolic fluxes after 13 C metabolic flux ratio analysis. In both of the knockout strains, the increased fluxes of the pentose phosphate pathway and malic enzyme reaction enabled an elevated supply of NADPH which provided enough reducing power for the in vivo synthesis reactions. The fluxes through tricarboxylic acid cycle and anaplerotic reactions increased fast in the two knockout strains, which meant more energy generated. The changed fluxes in central carbon metabolism provided a holistic view of the physiological status in B. licheniformis and possible targets for further strain engineering. Cellulase is very important in the field of agriculture and bioenergy because of its degrading effect on cellulosic biomass. This study presented the effect of central carbon metabolism on cellulase production in Bacillus licheniformis. The study also provided a holistic view of the physiological status in B. licheniformis. The shifted metabolism provided a quantitative evaluation of the biosynthesis of cellulase and a priority ranked target list for further strain engineering. © 2017 The Society for Applied Microbiology.

  20. Broken symmetry in the mean field theory of the ising spin glass: replica way and no replica way

    International Nuclear Information System (INIS)

    De Dominicis, C.

    1983-06-01

    We review the type of symmetry breaking involved in the solution discovered by Parisi and in the static derivation of the solution first introduced via dynamics by Sompolinsky. We turn to a formulation of the problem due to Thouless, Anderson and Palmer (TAP) that put a set of equations for the magnetization. A probability law for the magnetization is then built. We consider two cases: (i) a canonical distribution which is shown to give indentical results to the Hamiltonian formulation under a weak and physical assumption and (ii) a white distribution characterized by two matrices and a response. We show what symmetry breaking is necessary to recover Sompolinsky free energy. In section III we supplement replica indices in the Hamiltonian approach by ''time'' indices ans show in particular that the analytic continuation involved in Sompolinsky's equilibrium derivation, is trying to mimick a translational symmetry breaking in ''time'' that incorporates Sompolinsky's ansatz of a long time scale sequence. In section IV we apply the same treatment to the white average approach and show that, replicas can be altogether discorded and replaced by ''time''. Finally, we briefly discuss the attribution of distinct answers for the standard spin glass order parameter depending on the physical situation: equilibrium or non equilibrium associated with canonical or white (non canonical) initial conditions and density matrices

  1. Microbial production of poly(hydroxybutyrate) from C₁ carbon sources.

    Science.gov (United States)

    Khosravi-Darani, Kianoush; Mokhtari, Zahra-Beigom; Amai, Tomohito; Tanaka, Kenji

    2013-02-01

    Polyhydroxybutyrate (PHB) is an attractive substitute for petrochemical plastic due to its similar properties, biocompatibility, and biodegradability. The cost of scaled-up PHB production inhibits its widespread usage. Intensive researches are growing to reduce costs and improve thermomechanical, physical, and processing properties of this green biopolymer. Among cheap substrates which are used for reducing total cost of PHB production, some C₁ carbon sources, e.g., methane, methanol, and CO₂ have received a great deal of attention due to their serious role in greenhouse problem. This article reviews the fundamentals of strategies for reducing PHA production and moves on to the applications of several cheap substrates with a special emphasis on methane, methanol, and CO₂. Also, some explanation for involved microorganisms including the hydrogen-oxidizing bacteria and methanotrophs, their history, culture condition, and nutritional requirements are given. After description of some important strains among the hydrogen-oxidizing and methanotrophic producers of PHB, the article is focused on limitations, threats, and opportunities for application and their future trends.

  2. Carbon-free hydrogen production from low rank coal

    Science.gov (United States)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  3. Fabrication of free-standing replicas of fragile, laminar, chitinous biotemplates

    International Nuclear Information System (INIS)

    Lakhtakia, Akhlesh; Motyka, Michael A; MartIn-Palma, Raul J; Pantano, Carlo G

    2009-01-01

    The conformal-evaporated-film-by-rotation technique, followed by the dissolution of chitin in an aqueous solution of orthophosphoric acid, can be used to fabricate free-standing replicas of fragile, laminar, chitinous biotemplates. This novel approach was demonstrated using butterfly wings as biotemplates and GeSeSb chalcogenide glass for replicas. (communication)

  4. Fabrication of free-standing replicas of fragile, laminar, chitinous biotemplates

    Energy Technology Data Exchange (ETDEWEB)

    Lakhtakia, Akhlesh; Motyka, Michael A [Materials Research Institute and Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); MartIn-Palma, Raul J; Pantano, Carlo G [Materials Research Institute and Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)], E-mail: akhlesh@psu.edu

    2009-09-01

    The conformal-evaporated-film-by-rotation technique, followed by the dissolution of chitin in an aqueous solution of orthophosphoric acid, can be used to fabricate free-standing replicas of fragile, laminar, chitinous biotemplates. This novel approach was demonstrated using butterfly wings as biotemplates and GeSeSb chalcogenide glass for replicas. (communication)

  5. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    Science.gov (United States)

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  6. Efficient lactulose production from cheese whey using sodium carbonate.

    Science.gov (United States)

    Seo, Yeong Hwan; Park, Gwon Woo; Han, Jong-In

    2015-04-15

    An economical method of lactulose production from cheese whey was developed using sodium carbonate (Na2CO3). Three parameters such as temperature, reaction time, and Na2CO3 concentration were identified as experimental factors, and yield was selected as a response parameter. The experimental factors were optimised employing Response Surface Methodology (RSM). Maximum yield of 29.6% was obtained at reaction time of 20.41 min, Na2CO3 of 0.51% at 90 °C. To overcome this limited lactulose yield, due to the conversion of lactulose to galactose, fed batch system was applied using dried cheese whey as lactose source. By this system, limit was broken, and 15.8 g/L of lactulose is produced in hour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Establishment of the carbon label mechanism of coal chemical products based oncarbon footprint

    Directory of Open Access Journals (Sweden)

    Wu Bishan

    Full Text Available ABSTRACT After redefining the carbon footprint and carbon label, the paper analyzesthe significance of the carbon labels under the background of the low carbon economy development, and establishes the concept of model of the carbon labels mechanism to chemical products. At the same time, the paper quantitatively studies carbon label data sourceof three kinds of coal chemical industry power products, which are fromhaving not CCS technologies of supercritical boiler of coal, using CCS technologies of supercritical boiler of coal and adopting CCS and IGCC technologies to power generation in CCI. Based on the three kinds of differences, the paper puts forward of establishing the carbon labels mechanism of chemical products under the low carbon consumption.

  8. Sustainability Concept in Decision-Making: Carbon Tax Consideration for Joint Product Mix Decision

    OpenAIRE

    Wen-Hsien Tsai; Jui-Chu Chang; Chu-Lun Hsieh; Tsen-Shu Tsaur; Chung-Wei Wang

    2016-01-01

    Carbon emissions are receiving greater scrutiny in many countries due to international forces to reduce anthropogenic global climate change. Carbon taxation is one of the most common carbon emission regulation policies, and companies must incorporate it into their production and pricing decisions. Activity-based costing (ABC) and the theory of constraints (TOC) have been applied to solve product mix problems; however, a challenging aspect of the product mix problem involves evaluating joint m...

  9. Carbon footprint of dairy goat milk production in New Zealand.

    Science.gov (United States)

    Robertson, Kimberly; Symes, Wymond; Garnham, Malcolm

    2015-07-01

    The aim of this study was to assess the cradle-to-farm gate carbon footprint of indoor and outdoor dairy goat farming systems in New Zealand, identifying hotspots and discussing variability and methodology. Our study was based on the International Organization for Standardization standards for life cycle assessment, although only results for greenhouse gas emissions are presented. Two functional units were included: tonnes of CO2-equivalents (CO2e) per hectare (ha) and kilograms of CO2e per kilogram of fat- and protein-corrected milk (FPCM). The study covered 5 farms, 2 farming systems, and 3yr. Two methods for the calculation of enteric methane emissions were assessed. The Lassey method, as used in the New Zealand greenhouse gas inventory, provided a more robust estimate of emissions from enteric fermentation and was used in the final calculations. The alternative dry matter intake method was shown to overestimate emissions due to use of anecdotal assumptions around actual consumption of feed. Economic allocation was applied to milk and co-products. Scenario analysis was performed on the allocation method, nitrogen content of manure, manure management, and supplementary feed choice. The average carbon footprint for the indoor farms (n=3) was 11.05 t of CO2e/ha and 0.81kg of CO2e/kg of FPCM. For the outdoor farms (n=2), the average was 5.38 t of CO2e/ha and 1.03kg of CO2e/kg of FPCM. The average for all 5 farms was 8.78 t of CO2e/ha and 0.90kg of CO2e/kg of FPCM. The results showed relatively high variability due to differences in management practices between farms. The 5 farms covered 10% of the total dairy goat farms but may not be representative of an average farm. Methane from enteric fermentation was a major emission source. The use of supplementary feed was highly variable but an important contributor to the carbon footprint. Nitrous oxide can contribute up to 18% of emissions. Indoor goat farming systems produced milk with a significantly higher carbon

  10. Carbon footprint calculation of Finnish greenhouse products; Kasvihuonetuotteiden ilmastovaikutuslaskenta. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Yrjaenaeinen, H.; Silvenius, F.; Kaukoranta, T.; Naekkilae, J.; Saerkkae, L.; Tuhkanen, E.-M.

    2013-02-01

    This report presents the results of climate impact calculations for five products produced in Finnish greenhouses: tomatoes, cucumbers, salad crops, tulips and Elatior begonias. The study employed 16 greenhouses for the investigation; two greenhouses each for the tulips and the begonias and four each for the tomatoes, cucumbers and salad crops. Based on these calculations a greenhouse gas calculator was developed for greenhouse cultivators. The calculator is available at internet in www.kauppapuutarhaliitto.fi {yields} hiilijalanjaelki. In terms of environmental impacts this study concentrated on the climate impacts of the investigated products, and the calculations were made for the most significant greenhouse gases: carbon dioxide, methane and nitrous oxide. The following processes were included in the system boundaries: plant growing, manufacturing of lime, fertilizers and pesticides, manufacturing and disposal of pots, carbon dioxide production, irrigation, lighting, thermal curtains and cooling systems, the production and use of electricity and heat energy, distribution of products by the growers, other transportation, end-of-life and recycling. Processes excluded from the study were: distribution by other actors, retail functions, the consumer stage, and maintenance and manufacturing of infrastructure. The study used MTT's calculation model for the climate impact of food products excluding distribution and retail processes. The greenhouses selected for the study had some variation in their energy profiles and growing seasons. In addition, scenarios were created for different energy sources by using the average figures from this study. Monthly energy consumption values were also obtained from a number of the greenhouses and these were used to assess the variations in climate impact for different seasons. According to the results of the study the use of energy is the most significant source of climate impact of greenhouse products. In the tomato farms the

  11. Replica analysis for the duality of the portfolio optimization problem.

    Science.gov (United States)

    Shinzato, Takashi

    2016-11-01

    In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.

  12. Replica analysis for the duality of the portfolio optimization problem

    Science.gov (United States)

    Shinzato, Takashi

    2016-11-01

    In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.

  13. Beyond Virtual Replicas: 3D Modeling and Maltese Prehistoric Architecture

    Directory of Open Access Journals (Sweden)

    Filippo Stanco

    2013-01-01

    Full Text Available In the past decade, computer graphics have become strategic for the development of projects aimed at the interpretation of archaeological evidence and the dissemination of scientific results to the public. Among all the solutions available, the use of 3D models is particularly relevant for the reconstruction of poorly preserved sites and monuments destroyed by natural causes or human actions. These digital replicas are, at the same time, a virtual environment that can be used as a tool for the interpretative hypotheses of archaeologists and as an effective medium for a visual description of the cultural heritage. In this paper, the innovative methodology and aims and outcomes of a virtual reconstruction of the Borg in-Nadur megalithic temple, carried out by Archeomatica Project of the University of Catania, are offered as a case study for a virtual archaeology of prehistoric Malta.

  14. Production of palm kernel shell-based activated carbon by direct physical activation for carbon dioxide adsorption.

    Science.gov (United States)

    Rashidi, Nor Adilla; Yusup, Suzana

    2018-05-09

    The feasibility of biomass-based activated carbons has received a huge attention due to their excellent characteristics such as inexpensiveness, good adsorption behaviour and potential to reduce a strong dependency towards non-renewable precursors. Therefore, in this research work, eco-friendly activated carbon from palm kernel shell that has been produced from one-stage physical activation by using the Box-Behnken design of Response Surface Methodology is highlighted. The effect of three input parameters-temperature, dwell time and gas flow rate-towards product yield and carbon dioxide (CO 2 ) uptake at room temperature and atmospheric pressure are studied. Model accuracy has been evaluated through the ANOVA analysis and lack-of-fit test. Accordingly, the optimum condition in synthesising the activated carbon with adequate CO 2 adsorption capacity of 2.13 mmol/g and product yield of 25.15 wt% is found at a temperature of 850 °C, holding time of 60 min and CO 2 flow rate of 450 cm 3 /min. The synthesised activated carbon has been characterised by diverse analytical instruments including thermogravimetric analyser, scanning electron microscope, as well as N 2 adsorption-desorption isotherm. The characterisation analysis indicates that the synthesised activated carbon has higher textural characteristics and porosity, together with better thermal stability and carbon content as compared to pristine palm kernel shell. Activated carbon production via one-step activation approach is economical since its carbon yield is within the industrial target, whereas CO 2 uptake is comparable to the synthesised activated carbon from conventional dual-stage activation, commercial activated carbon and other published data from literature.

  15. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dagle, Vanessa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamelyn D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krause, Theodore R. [Argonne National Lab. (ANL), Argonne, IL (United States); Ahmed, Shabbir [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-16

    This report was prepared in response to the U.S. Department of Energy Fuel Cell Technologies Office Congressional Appropriation language to support research on carbon-free production of hydrogen using new chemical processes that utilize natural gas to produce solid carbon and hydrogen. The U.S. produces 9-10 million tons of hydrogen annually with more than 95% of the hydrogen produced by steam-methane reforming (SMR) of natural gas. SMR is attractive because of its high hydrogen yield; but it also converts the carbon to carbon dioxide. Non-oxidative thermal decomposition of methane to carbon and hydrogen is an alternative to SMR and produces CO2-free hydrogen. The produced carbon can be sold as a co-product, thus providing economic credit that reduces the delivered net cost of hydrogen. The combination of producing hydrogen with potentially valuable carbon byproducts has market value in that this allows greater flexibility to match the market prices of hydrogen and carbon. That is, the higher value product can subsidize the other in pricing decisions. In this report we highlight the relevant technologies reported in the literature—primarily thermochemical and plasma conversion processes—and recent research progress and commercial activities. Longstanding technical challenges include the high energetic requirements (e.g., high temperatures and/or electricity requirements) necessary for methane activation and, for some catalytic processes, the separation of solid carbon product from the spent catalyst. We assess current and new carbon product markets that could be served given technological advances, and we discuss technical barriers and potential areas of research to address these needs. We provide preliminary economic analysis for these processes and compare to other emerging (e.g., electrolysis) and conventional (e.g., SMR) processes for hydrogen production. The overarching conclusion of this study is that the cost of hydrogen can be potentially

  16. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  17. An integrated new product development framework - an application on green and low-carbon products

    Science.gov (United States)

    Lin, Chun-Yu; Lee, Amy H. I.; Kang, He-Yau

    2015-03-01

    Companies need to be innovative to survive in today's competitive market; thus, new product development (NPD) has become very important. This research constructs an integrated NPD framework for developing new products. In stage one, customer attributes (CAs) and engineering characteristics (ECs) for developing products are collected, and fuzzy interpretive structural modelling (FISM) is applied to understand the relationships among these critical factors. Based on quality function deployment (QFD), a house of quality is then built, and fuzzy analytic network process (FANP) is adopted to calculate the relative importance of ECs. In stage two, fuzzy failure mode and effects analysis (FFMEA) is applied to understand the potential failures of the ECs and to determine the importance of ECs with respect to risk control. In stage three, a goal programming (GP) model is constructed to consider the outcome from the FANP-QFD, FFMEA and other objectives, in order to select the most important ECs. Due to pollution and global warming, environmental protection has become an important topic. With both governments and consumers developing environmental consciousness, successful green and low-carbon NPD provides an important competitive advantage, enabling the survival or renewal of firms. The proposed framework is implemented in a panel manufacturing firm for designing a green and low-carbon product.

  18. Chicken eggshells (Gallus gallus domesticus) as carbonate calcium source for biomaterials production

    International Nuclear Information System (INIS)

    Junior, E.A. de O.; Bastos, J.S.B.; Silva, R.C. de S.; Macedo, H.R.A.; Macedo, M. O.C.; Bradim, A.S.

    2016-01-01

    The eggshells present high levels of calcium carbonate. Calcium carbonate obtained from eggshells has been used in the production of biomaterials with applications in bone regeneration, since it is biocompatible. In this work, calcium carbonate was obtained from eggshells to prepare a composite biomaterial. The presence of calcium carbonate bands was observed through spectrometry in the infrared region. Scanning electron microscopy showed the presence of calcium carbonate particles with different sizes and shapes. Carbonate predominance in the form of calcite was also observed through the X-ray diffraction

  19. Metal-doped single-walled carbon nanotubes and production thereof

    Science.gov (United States)

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  20. An economical device for carbon supplement in large-scale micro-algae production.

    Science.gov (United States)

    Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling

    2008-10-01

    One simple but efficient carbon-supplying device was designed and developed, and the correlative carbon-supplying technology was described. The absorbing characterization of this device was studied. The carbon-supplying system proved to be economical for large-scale cultivation of Spirulina sp. in an outdoor raceway pond, and the gaseous carbon dioxide absorptivity was enhanced above 78%, which could reduce the production cost greatly.

  1. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    OpenAIRE

    He, Longfei; Xu, Zhaoguang; Niu, Zhanwen

    2014-01-01

    We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optim...

  2. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

    2006-08-01

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

  3. Internal structure analysis of particle-double network gels used in a gel organ replica

    Science.gov (United States)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  4. Fabrication of the replica templated from butterfly wing scales with complex light trapping structures

    Science.gov (United States)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-11-01

    The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.

  5. Effect of applied environmental stress on growth, photosynthesis, carbon allocation, and hydrocarbon production in Euphorbia lathyris

    International Nuclear Information System (INIS)

    Taylor, S.E.; Calvin, M.

    1988-01-01

    Photosynthetic activity was reduced by salinity stress, but is was found to be less sensitive than growth. Salinity stress also caused changes in the concentrations of specific cations. Moderate water stress had little effect on growth, but large changes in hydrocarbon production were still observed. Carbon allocation experiments with radiolabeled carbon indicated that carbon for latex production was supplied by nearby leaves, with some translocation down the stem also occurring

  6. Production and carbon allocation in a clonal Eucalyptus plantation with water and nutrient manipulations

    Science.gov (United States)

    Jose Luiz Stape; Dan Binkley; Michael G. Ryan

    2008-01-01

    We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (...

  7. Sustainable forest management of tropical forests can reduce carbon emissions and stabilize timber production

    Science.gov (United States)

    N. Sasaki; G.P. Asner; Yude Pan; W. Knorr; P.B. Durst; H.O. Ma; I. Abe; A.J. Lowe; L.P. Koh

    2016-01-01

    The REDD+ scheme of the United Nations Framework Conventionon Climate Change has provided opportunities to manage tropical forests for timber production and carbon emission reductions. To determine the appropriate loggingtechniques, we analyzed potential timber production and carbon emission reductions under two logging techniques over a 40-year period of selective...

  8. Determining landscape-level carbon emissions from historically harvested forest products

    Science.gov (United States)

    Sean Healey; Todd Morgan; Jon Songster; Jason. Brandt

    2009-01-01

    Resources have been developed in the literature to enable landowners to estimate the carbon sequestration timeline of forest products derived from their land. These tools were used here to estimate sequestration and emissions related to harvests carried out in Ravalli County from 1945 to 2007. This county-level accounting of product carbon release can later be combined...

  9. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

    Science.gov (United States)

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-01-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3. Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r2 = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m−2) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (ΔNPP/ΔN) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2. Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. PMID:24604779

  10. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.

    Science.gov (United States)

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-08-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  11. The added value of the replica simulators in the exploitation of nuclear power plants

    International Nuclear Information System (INIS)

    Diaz Giron, P. a.; Ortega, F.; Rivero, N.

    2011-01-01

    Nuclear power plants full scope replica simulators were in the past solely designed following operational personnel training criteria. Nevertheless, these simulators not only feature a high replica control room but also provide an accurate process response. Control room replica simulators are presently based on complex technological platforms permitting highest physical and functional fidelity, allowing to be used as versatile and value added tools in diverse plants operation and maintenance activities. In recent years. Tecnatom has extended the use of such simulators to different engineering applications. this article intends to identify the simulators use in training and other applications beyond training. (Author)

  12. Fungal nanoscale metal carbonates and production of electrochemical materials.

    Science.gov (United States)

    Li, Qianwei; Gadd, Geoffrey Michael

    2017-09-01

    Fungal biomineralization of carbonates results in metal removal from solution or immobilization within a solid matrix. Such a system provides a promising method for removal of toxic or valuable metals from solution, such as Co, Ni, and La, with some carbonates being of nanoscale dimensions. A fungal Mn carbonate biomineralization process can be applied for the synthesis of novel electrochemical materials. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Production of polyol carbonates and their intercalation into Smectite clays

    OpenAIRE

    Shaheen, Uzma

    2017-01-01

    In hyper-saline conditions, clays in geosynthetic clay liners contract and fail to form a hydraulic barrier due to removal of water from the interlayer spaces of smectite, which is the swelling mineral component of bentonites used in geosynthetic clay liners. Five-membered cyclic carbonates such as propylene carbonate have been reported to form stable intercalated complexes with hydrated Na-smectite, which maintain swollen states at 1M). Glycerol carbonate was selected as an alternative c...

  14. Greenhouse gas emissions in milk and dairy product chains: Improving the carbon footprint of dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Flysjoe, A.M.

    2012-11-01

    The present PhD project has focused on some of the most critical methodological aspects influencing GHG emission estimates of milk and dairy products and how the methodology can be improved. In addition, the Carbon Footprint (CF) for different types of dairy products has been analysed. Based on these results, mitigation options have been identified along the entire dairy value chain. The key methodological challenges analysed in the present study are: estimation of CH{sub 4} and N{sub 2}O emissions, assessment of CO{sub 2} emissions from land use change (LUC), co-product handling, and definition of the functional unit. Estimates of the biogenic emissions CH{sub 4} and N{sub 2}O are associated with large uncertainties due to the complexity and natural variation in biological processes. Accounting for these variations resulted in a {+-}30-50% variation in the CF for milk in Sweden and New Zealand (excluding emissions from LUC). The inclusion of emissions from LUC can drastically affect the CF of dairy products, and different models can even provide contradictory results. Thus, it is suggested that emissions associated with LUC are reported separately and that underlying assumptions are clearly explained. Accounting for the by-product beef is decisive for the CF of milk, and when designing future strategies for the dairy sector, milk and meat production needs to be addressed in an integrated approach. It is shown that an increase in milk yield per cow does not necessarily result in a lower CF of milk, when taking into account the alternative production of the by-product beef. This demonstrates that it is important to investigate interactions between different product chains, i.e. to apply system thinking. The CF of dairy products from Arla Foods analysed in the present study range from: 1.2-5.5 kg CO{sub 2}e per kg fresh dairy products, 7.3-10.9 kg CO{sub 2}e per kg butter and butter blends, 4.5-9.9 kg CO{sub 2}e per kg cheese, and 1.0-17.4 kg CO{sub 2}e per kg milk

  15. Greenhouse gas emissions in milk and dairy product chains: Improving the carbon footprint of dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Flysjoe, A M

    2012-11-01

    The present PhD project has focused on some of the most critical methodological aspects influencing GHG emission estimates of milk and dairy products and how the methodology can be improved. In addition, the Carbon Footprint (CF) for different types of dairy products has been analysed. Based on these results, mitigation options have been identified along the entire dairy value chain. The key methodological challenges analysed in the present study are: estimation of CH{sub 4} and N{sub 2}O emissions, assessment of CO{sub 2} emissions from land use change (LUC), co-product handling, and definition of the functional unit. Estimates of the biogenic emissions CH{sub 4} and N{sub 2}O are associated with large uncertainties due to the complexity and natural variation in biological processes. Accounting for these variations resulted in a {+-}30-50% variation in the CF for milk in Sweden and New Zealand (excluding emissions from LUC). The inclusion of emissions from LUC can drastically affect the CF of dairy products, and different models can even provide contradictory results. Thus, it is suggested that emissions associated with LUC are reported separately and that underlying assumptions are clearly explained. Accounting for the by-product beef is decisive for the CF of milk, and when designing future strategies for the dairy sector, milk and meat production needs to be addressed in an integrated approach. It is shown that an increase in milk yield per cow does not necessarily result in a lower CF of milk, when taking into account the alternative production of the by-product beef. This demonstrates that it is important to investigate interactions between different product chains, i.e. to apply system thinking. The CF of dairy products from Arla Foods analysed in the present study range from: 1.2-5.5 kg CO{sub 2}e per kg fresh dairy products, 7.3-10.9 kg CO{sub 2}e per kg butter and butter blends, 4.5-9.9 kg CO{sub 2}e per kg cheese, and 1.0-17.4 kg CO{sub 2}e per kg milk

  16. Product carbon footprint assessment supporting the green supply chain construction in household appliance manufacturers

    Science.gov (United States)

    Chen, Jianhua; Sun, Liang; Guo, Huiting

    2017-11-01

    Supply chain carbon emission is one of the factors considered in the green supply chain management. A method was designed to support the green supply chain measures based on the carbon footprint assessment for products. A research for 3 typical household appliances carbon footprint assessment was conducted to explore using product carbon footprint assessment method to guide the green supply chain management of the manufacturers. The result could reflect the differences directions on green supply chain management of manufacturers of washing machine, air conditioner and microwave, respectively That is, the washing machine manufacturer should pay attention to the low carbon activities in upstream suppliers in highest priority, and also the promotion of product energy efficiency. The air conditioner manufacturer should pay attention to the product energy efficiency increasing in highest priority, and the improvement of refrigerant to decrease its GWP. And the microwave manufacture could only focus on the energy efficiency increasing because it contributes most of the carbon emission to its carbon footprint. Besides, the representativeness of product and the applicability of the method were also discussed. As the manufacturer could master the technical information on raw material and components of its products to conduct the product carbon footprint assessment, this method could help the manufacturer to identify the effective green supply chain measures in the preliminary stage.

  17. Calcium carbonate synthesis with prescribed properties based on liquid waste of soda production

    Directory of Open Access Journals (Sweden)

    E.O. Mikhailova

    2016-09-01

    Full Text Available A promising direction in solving of environmental problems of soda industry is the development of low-waste resource-saving technologies, which consist in recycling of valuable waste components with obtaining the commercial products. Aim: The aim is to establish the optimal conditions for obtaining calcium carbonate with prescribed properties from liquid waste of soda production. Materials and Methods: Chemically deposited calcium carbonate is used as filler and should have certain physical and chemical properties. To obtain a product of prescribed quality the process of calcium carbonate deposition was performed of still waste liquid, that is the waste of calcium carbonate production and contain significant amount of calcium ions, and excessive production of the purified stock solution of sodium bicarbonate, which is composed of carbonate and hydrocarbonate ions. Results: The dependence of bulk density and specific surface area of calcium carbonate sediments and degree of deposition from such technological parameters are established: method of mixing the stock solutions, the concentration and molar ratio of reactants, temperature and reaction time. Conclusions: The optimal mode of deposition process is determined and the concept of production of calcium carbonate is developed. The quality of calcium carbonate meets the modern requirements of high dispersion, low bulk density and evolved specific surface of the product.

  18. Production of carbon-14 and preparation of some key precursors for labeling organic molecules

    International Nuclear Information System (INIS)

    Moriya, T.; Motoishi, S.

    1992-01-01

    Production of carbon-14 on 50 GBq scale has been performed by neutron irradiation of aluminium nitride target in the JMTR. This nuclide is separated in carbon dioxide form by combustion of the irradiated target at 1100degC with oxygen. The [ 14 C] carbon dioxide liberated thus is trapped in caustic solution and finally recovered as [ 14 C] barium carbonate. Some precursors useful for incorporating carbon-14 into a given organic molecule have been prepared. Precursors such as [1- 14 C] sodium acetate, [ 14 C] methanol and [ 14 C] potassium cyanide are prepared by rather conventional methods involving carbonation of methyl magnesium iodine, reduction of carbon dioxide with lithium aluminium hydride and reduction of carbonate with metallic potassium in the presence of ammonium salt, respectively. A catalytic polymerization of acetylene is used to prepare benzene. (author)

  19. Regional carbon dioxide implications of forest bioenergy production

    NARCIS (Netherlands)

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-01-01

    Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions, and forest thinning to reduce wildfire emissions. Here, we use forest

  20. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.

    Science.gov (United States)

    Leßmeier, Lennart; Pfeifenschneider, Johannes; Carnicer, Marc; Heux, Stephanie; Portais, Jean-Charles; Wendisch, Volker F

    2015-12-01

    Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine.

  1. Production and characterization of supersonic carbon cluster beams

    International Nuclear Information System (INIS)

    Rohlfing, E.A.; Cox, D.M.; Kaldor, A.

    1984-01-01

    Laser vaporization of a substrate within the throat of a pulsed nozzle is used to generate a supersonic beam of carbon clusters. The neutral cluster beam is probed downstream by UV laser photoionization with time-of-flight mass analysis of the resulting photoions. Using graphite as the substrate, carbon clusters C/sub n/ for n = 1--190 have been produced having a distinctly bimodal cluster size distribution: (i) Both even and odd clusters for C/sub n/, 1 + /sub n/ signals are interpreted on the basis of cluster formation and stability arguments. Ionizing laser power dependences taken at several different photon energies are used to roughly bracket the carbon cluster ionization potentials, and, at high laser intensity, to observe the onset of multiphoton fragmentation. By treating the graphite rod with KOH, a greatly altered carbon cluster distribution with mixed carbon/potassium clusters of formula K 2 C/sub 2n/ is produced

  2. Production of activated carbon from Victorian brown coal and its application in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Jobson, G.; Swinbourne, D.

    1985-01-01

    A research grant was awarded by the Coal Council of Victoria to support investigations into the manufacture of a Victorian brown coal-based activated carbon suitable for Carbon-in-Pulp (CIP) gold recovery operations. This project was started on 31.1.84 and was completed by 27.9.85. The general aim of this study was to develop the technology needed for production of an indigenous activated carbon which could be a substitute for the carbons presently imported for use in CIP operations. There was a considerable economic incentive to achieve a carbon based on an inexpensive resource such as Victorian brown coal.

  3. Reductive coupling of carbon monoxide to C sub 2 products

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, J.L.

    1991-08-01

    We first prepared Tp{prime}(CO){sub 2}W{equivalent to}CH from a conversion of the cationic phosphonium carbyne Tp{prime}(CO){sub 2}W{equivalent to}CPMe{sub 3}+ to a neutral carbene by hydride addition at carbon. Removal of PMe{sub 3} with a Lewis acid trap yielded milligram quantities of the desired terminal carbyne. More recently we have prepared a silylcarbyne precursor which reacts with Bu{sub 4}NF in wet THF to form substantial amounts of the CH carbyne. Dimerization to form an unusual vinylidene bridged complex is a facile decomposition route which consumes the Tp{prime}(CO){sub 2}M{equivalent to}CH monometer for both M=MO and M=W,. Preparation of other carbyne complexes has been achieved using Tp{prime}(CO){sub 2}W{equivalent to}C-Cl as a reagent. Another carbyne derivative was synthesized from Tp{prime}(CO){sub 2}M{equivalent to}C-Cl by adding K(CpFe(Co){sub 2}) to displace the chloride. Organometallic products formed from the reaction of an electrophilic iron carbene complex with nitrosoarenes or azobenzene reflect net insertion of the ArN-X moiety into the Fe=CHAr bond. Cp(CO){sub 2}Fe-O-N(Ar{prime})=CHAr+ and Cp(CO){sub 2}FeN(Ph)-N(Pha)=CHAr+ have been isolated and spectroscopically characterized. More promising results for long term progress in building electrophilic nitrene complexes have been achieved with Group VI reagents. Simple methods for generating Tp{prime}(CO){sub 2}W=NHR for R= Ar and Bu{sup t} are encouraging. Furthermore, removal of H{sup minus} from the amido ligand with either I{sub 2} or (Ph{sub 3}C)(BF{sub 4}) provides access to cationic nitrene complexes.

  4. Process Reengineering of Cold Chain Logistics of Agricultural Products Based on Low-carbon Economy

    OpenAIRE

    Guo, Hong-xia; Shao, Ming

    2012-01-01

    Through the process analysis of cold chain logistics of agricultural products, we find that cold chain logistics of agricultural products contradict the development model of low-carbon economy to some extent. We apply the development idea of low-carbon economy, introduce the third-party logistics companies, establish distribution center of cold chain logistics of agricultural products, and strengthen information sharing, to reengineer the process of cold chain logistics of agricultural produc...

  5. Human skulls with turquoise inlays: pre hispanic origin or replicas?

    International Nuclear Information System (INIS)

    Silva V, Y.; Castillo M, M.T.; Bautista M, J.P.; Arenas A, J.

    2006-01-01

    The lack of archaeological context determining if the manufacture of two human skulls adorned with turquoise inlays have pre-Columbian origin or not (replicas), led to perform other studies. Under these conditions, besides orthodox methodology commonly used to assign chronology and cultural aspects as form, style, decoration, iconography, etc., it was necessary to obtain more results based on the use of characterization techniques. The techniques employed were Scanning Electron Microscopy (SEM), X-Ray Energy Dispersive Spectroscopy (EDS), Transmission Electron Microscopy (TEM) and Fourier Transform Infrared Spectroscopy (FTIR), in order to determine the manufacture techniques and chemical composition of the materials used for the cementant. SEM analysis showed the presence of zones composed by Ca, O, C and Al. In some cases Mg, Cl, Fe and Pb were identified. High concentration of Cu was present in all samples, due to residues of turquoise inlays (CuAI 6 (PO 4 ) 4 (OH) 8 (H 2 O) 4 ) with which the skulls were decorated. In the cementant was identified the Ca as base element of the cementant, as well as particles < 100 nm with irregular morphology and other amorphous zones. FTIR spectrums indicated the presence of organic substances that could be used as agglutinating in the cementant. The current work shows a progress identifying involved techniques in the manufacturing of two human skulls with turquoise inlays. (Author)

  6. Parylene C coating for high-performance replica molding.

    Science.gov (United States)

    Heyries, Kevin A; Hansen, Carl L

    2011-12-07

    This paper presents an improvement to the soft lithography fabrication process that uses chemical vapor deposition of poly(chloro-p-xylylene) (parylene C) to protect microfabricated masters and to improve the release of polymer devices following replica molding. Chemical vapor deposition creates nanometre thick conformal coatings of parylene C on silicon wafers having arrays of 30 μm high SU8 pillars with densities ranging from 278 to 10,040 features per mm(2) and aspect ratios (height : width) from 1 : 1 to 6 : 1. A single coating of parylene C was sufficient to permanently promote poly(dimethyl)siloxane (PDMS) mold release and to protect masters for an indefinite number of molding cycles. We also show that the improved release properties of parylene treated masters allow for fabrication with hard polymers, such as poly(urethane), that would otherwise not be compatible with SU8 on silicon masters. Parylene C provides a robust and high performance mold release coating for soft lithography microfabrication that extends the life of microfabricated masters and improves the achievable density and aspect ratio of replicated features.

  7. Foundations and latest advances in replica exchange transition interface sampling

    Science.gov (United States)

    Cabriolu, Raffaela; Skjelbred Refsnes, Kristin M.; Bolhuis, Peter G.; van Erp, Titus S.

    2017-10-01

    Nearly 20 years ago, transition path sampling (TPS) emerged as an alternative method to free energy based approaches for the study of rare events such as nucleation, protein folding, chemical reactions, and phase transitions. TPS effectively performs Monte Carlo simulations with relatively short molecular dynamics trajectories, with the advantage of not having to alter the actual potential energy surface nor the underlying physical dynamics. Although the TPS approach also introduced a methodology to compute reaction rates, this approach was for a long time considered theoretically attractive, providing the exact same results as extensively long molecular dynamics simulations, but still expensive for most relevant applications. With the increase of computer power and improvements in the algorithmic methodology, quantitative path sampling is finding applications in more and more areas of research. In particular, the transition interface sampling (TIS) and the replica exchange TIS (RETIS) algorithms have, in turn, improved the efficiency of quantitative path sampling significantly, while maintaining the exact nature of the approach. Also, open-source software packages are making these methods, for which implementation is not straightforward, now available for a wider group of users. In addition, a blooming development takes place regarding both applications and algorithmic refinements. Therefore, it is timely to explore the wide panorama of the new developments in this field. This is the aim of this article, which focuses on the most efficient exact path sampling approach, RETIS, as well as its recent applications, extensions, and variations.

  8. Critiques, replicas and proposals for the New Urbanism Vision

    Directory of Open Access Journals (Sweden)

    Alaide Retana

    2014-03-01

    Full Text Available The new urbanism (NU is a vision of planning and urban design emerged in 1993, which finds its basis in the design of traditional communities. This trend has had various criticisms and replicas, which were reviewed in relation to urban sprawl, transportation, re-densifying, mix of uses of land, design, gentrification, pedestrianization and safety, which were analyzed in the neighborhood of Santa Barbara in Toluca, Mexico. This area was chosen for being traditional and forming part of the historical center of the city, which even though it was not designed under the guidelines of the NU, it has the quality of traditional, from which the NU would theoretically has taken its essence. The objective of this analysis is to establish whether the NU has the essence of a traditional Mexican neighborhood, as well as to check if the criticisms of the NU are informed when applied to a space belonging to a Mexican historic center that has been abandoned by problems of insecurity and degradation. The general conclusion is that the traditional neighborhoods have provided design elements to the NU, which will refute some of the criticisms, however, proposals for NU in neighborhoods of his-toric centers have to be based on the community, the architecture and existing urbanism, since these elements are those that give the identity.

  9. Preserving the Boltzmann ensemble in replica-exchange molecular dynamics.

    Science.gov (United States)

    Cooke, Ben; Schmidler, Scott C

    2008-10-28

    We consider the convergence behavior of replica-exchange molecular dynamics (REMD) [Sugita and Okamoto, Chem. Phys. Lett. 314, 141 (1999)] based on properties of the numerical integrators in the underlying isothermal molecular dynamics (MD) simulations. We show that a variety of deterministic algorithms favored by molecular dynamics practitioners for constant-temperature simulation of biomolecules fail either to be measure invariant or irreducible, and are therefore not ergodic. We then show that REMD using these algorithms also fails to be ergodic. As a result, the entire configuration space may not be explored even in an infinitely long simulation, and the simulation may not converge to the desired equilibrium Boltzmann ensemble. Moreover, our analysis shows that for initial configurations with unfavorable energy, it may be impossible for the system to reach a region surrounding the minimum energy configuration. We demonstrate these failures of REMD algorithms for three small systems: a Gaussian distribution (simple harmonic oscillator dynamics), a bimodal mixture of Gaussians distribution, and the alanine dipeptide. Examination of the resulting phase plots and equilibrium configuration densities indicates significant errors in the ensemble generated by REMD simulation. We describe a simple modification to address these failures based on a stochastic hybrid Monte Carlo correction, and prove that this is ergodic.

  10. Replica Exchange Simulations of the Thermodynamics of Aβ Fibril Growth

    Science.gov (United States)

    Takeda, Takako; Klimov, Dmitri K.

    2009-01-01

    Abstract Replica exchange molecular dynamics and an all-atom implicit solvent model are used to probe the thermodynamics of deposition of Alzheimer's Aβ monomers on preformed amyloid fibrils. Consistent with the experiments, two deposition stages have been identified. The docking stage occurs over a wide temperature range, starting with the formation of the first peptide-fibril interactions at 500 K. Docking is completed when a peptide fully adsorbs on the fibril edge at the temperature of 380 K. The docking transition appears to be continuous, and occurs without free energy barriers or intermediates. During docking, incoming Aβ monomer adopts a disordered structure on the fibril edge. The locking stage occurs at the temperature of ≈360 K and is characterized by the rugged free energy landscape. Locking takes place when incoming Aβ peptide forms a parallel β-sheet structure on the fibril edge. Because the β-sheets formed by locked Aβ peptides are typically off-registry, the structure of the locked phase differs from the structure of the fibril interior. The study also reports that binding affinities of two distinct fibril edges with respect to incoming Aβ peptides are different. The peptides bound to the concave edge have significantly lower free energy compared to those bound on the convex edge. Comparison with the available experimental data is discussed. PMID:19167295

  11. Stability and replica symmetry in the ising spin glass: a toy model

    International Nuclear Information System (INIS)

    De Dominicis, C.; Mottishaw, P.

    1986-01-01

    Searching for possible replica symmetric solutions in an Ising spin glass (in the tree approximation) we investigate a toy model whose bond distribution has two non vanishing cumulants (instead of one only as in a gaussian distribution)

  12. Production of thin carbon stripper foils using heated-substrates in a cathodic arc deposition system

    International Nuclear Information System (INIS)

    Merchant, A.R.; Lobanov, N.; Elliman, R.G.; Ophel, T.R.; Rode, A.; Weisser, D.C.; Turkentine, R.B.

    1998-01-01

    The lifetime of carbon stripper foil can have a marked impact on the successful running of a beam line. Standard techniques for production of carbon stripper foils include evaporation of carbon (ec) and laser-pulsed ablation (Ipa). Recent work by a using Ipa has been successful in substantially increasing the lifetime of a very thin foil. The suspected mechanism for the increased lifetime of the foil is that the amorphous carbon foil is density-matched to that of graphite (around 2.26g/cc). In this work, we attempt to reproduce this result by producing carbon stripper foils with a mass-density similar to graphite using a cathodic arc deposition system. The cathodic arc is well known for the production of tetrahedral amorphous carbon: a high density, high stress form of carbon with over 90% sp 3 -like bonds; to reduce the density of the carbon and promote more graphitic structure, a high bias was initially attempted but this proved unsuccessful. Another method is to use a heated-substrate holder to reduce compressive stress within the deposited film. The performance of the density-matched carbon stripper foils and the implications for future production of high-quality carbon stripper foils in our laboratory will be discussed. (authors)

  13. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments.

    Science.gov (United States)

    Kelsey, Katharine C; Barnes, Kallie L; Ryan, Michael G; Neff, Jason C

    2014-01-01

    Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production.

  14. Designed-walk replica-exchange method for simulations of complex systems

    OpenAIRE

    Urano, Ryo; Okamoto, Yuko

    2015-01-01

    We propose a new implementation of the replica-exchange method (REM) in which replicas follow a pre-planned route in temperature space instead of a random walk. Our method satisfies the detailed balance condition in the proposed route. The method forces tunneling events between the highest and lowest temperatures to happen with an almost constant period. The number of tunneling counts is proportional to that of the random-walk REM multiplied by the square root of moving distance in temperatur...

  15. Utility of replica techniques for x-ray microanalysis of second phase particles

    International Nuclear Information System (INIS)

    Bentley, J.

    1984-01-01

    X-ray microanalysis of second phase particles in ion-milled or electropolished thin foils is often complicated by the presence of the matrix nearby. Extraction replica techniques provide a means to avoid many of the complications of thin-foil analyses. In this paper, three examples of the analysis of second phase particles are described and illustrate the improvement obtained by the use of extraction replicas for qualitative analysis, quantitative analysis, and analysis of radioactive specimens

  16. A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters

    International Nuclear Information System (INIS)

    Teng, Wai Keng; Ngoh, Gek Cheng; Yusoff, Rozita; Aroua, Mohamed Kheireddine

    2014-01-01

    Highlights: • Utilization of glycerol to synthesize glycerol carbonate through various routes. • Different types of carbonates and catalysts used for glycerol carbonate production via transesterification are elucidated. • Important factors influencing glycerol carbonate production performances are detailed. • Future research needs of glycerol carbonate production are proposed. - Abstract: Driven by high energy demand and environmental concerns, biodiesel as a substitute for fossil fuels is recognized to be promising renewable and clean energy. The increase in the biodiesel plant dramatically leads to the oversupply of its by-product glycerol in the biodiesel industries. Developing new industrial uses for glycerol is essential to increase the net energy and sustainability of biodiesel. Moreover, glycerol has great potential to be converted into marketable and valuable chemicals. The conversion of glycerol to glycerol carbonate (GC) has been extensively studied and transesterification of glycerol to GC has been proven to be the most promising route. Aimed to reveal the underlying mechanism of this successful conversion path, this paper reviews the chemo- and biocatalytic transesterification of glycerol with different carbonates sources. Also, a detail elucidation of the influence of the catalysts and operating conditions on the GC yield is included to provide an insight into the process. In addition, the future direction of glycerol carbonate production via catalytic transesterification is provided in this review

  17. Data Sets Replicas Placements Strategy from Cost-Effective View in the Cloud

    Directory of Open Access Journals (Sweden)

    Xiuguo Wu

    2016-01-01

    Full Text Available Replication technology is commonly used to improve data availability and reduce data access latency in the cloud storage system by providing users with different replicas of the same service. Most current approaches largely focus on system performance improvement, neglecting management cost in deciding replicas number and their store places, which cause great financial burden for cloud users because the cost for replicas storage and consistency maintenance may lead to high overhead with the number of new replicas increased in a pay-as-you-go paradigm. In this paper, towards achieving the approximate minimum data sets management cost benchmark in a practical manner, we propose a replicas placements strategy from cost-effective view with the premise that system performance meets requirements. Firstly, we design data sets management cost models, including storage cost and transfer cost. Secondly, we use the access frequency and the average response time to decide which data set should be replicated. Then, the method of calculating replicas’ number and their store places with minimum management cost is proposed based on location problem graph. Both the theoretical analysis and simulations have shown that the proposed strategy offers the benefits of lower management cost with fewer replicas.

  18. Calculation of absolute protein-ligand binding free energy using distributed replica sampling.

    Science.gov (United States)

    Rodinger, Tomas; Howell, P Lynne; Pomès, Régis

    2008-10-21

    Distributed replica sampling [T. Rodinger et al., J. Chem. Theory Comput. 2, 725 (2006)] is a simple and general scheme for Boltzmann sampling of conformational space by computer simulation in which multiple replicas of the system undergo a random walk in reaction coordinate or temperature space. Individual replicas are linked through a generalized Hamiltonian containing an extra potential energy term or bias which depends on the distribution of all replicas, thus enforcing the desired sampling distribution along the coordinate or parameter of interest regardless of free energy barriers. In contrast to replica exchange methods, efficient implementation of the algorithm does not require synchronicity of the individual simulations. The algorithm is inherently suited for large-scale simulations using shared or heterogeneous computing platforms such as a distributed network. In this work, we build on our original algorithm by introducing Boltzmann-weighted jumping, which allows moves of a larger magnitude and thus enhances sampling efficiency along the reaction coordinate. The approach is demonstrated using a realistic and biologically relevant application; we calculate the standard binding free energy of benzene to the L99A mutant of T4 lysozyme. Distributed replica sampling is used in conjunction with thermodynamic integration to compute the potential of mean force for extracting the ligand from protein and solvent along a nonphysical spatial coordinate. Dynamic treatment of the reaction coordinate leads to faster statistical convergence of the potential of mean force than a conventional static coordinate, which suffers from slow transitions on a rugged potential energy surface.

  19. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    International Nuclear Information System (INIS)

    Kamberaj, Hiqmet

    2015-01-01

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4,  5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias

  20. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    Science.gov (United States)

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  1. Natural Gas Based Electricity Production and Low Carbon Technology Options

    Science.gov (United States)

    Concerns regarding air quality, global climate change, and the national energy security impacts of the intensive use of fossil fuels and their environmental impacts in the power generation sector have raised interest in alternative low carbon electricity generation technology and...

  2. production and characterization of activated carbon from leather

    African Journals Online (AJOL)

    dell

    Powdered activated carbon (PAC) was prepared from leather buffing waste, sawdust and lignite by ... soil, air or water. (Baksi et al., 2006; ... anthracite and bituminous coal, lignite, lignocellulosic materials ..... waste water treatment: A review.

  3. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  4. Carbon emissions from U.S. ethylene production under climate change policies.

    Science.gov (United States)

    Ruth, Matthias; Amato, Anthony D; Davidsdottir, Brynhildur

    2002-01-15

    This paper presents the results from a dynamic computer model of U.S. ethylene production, designed to explore implications of alternative climate change policies for the industry's energy use and carbon emissions profiles. The model applies to the aggregate ethylene industry but distinguishes its main cracker types, fuels used as feedstocks and for process energy, as well as the industry's capital vintage structure and vintage-specific efficiencies. Results indicate that policies which increase the cost of carbon of process energy-such as carbon taxes or carbon permit systems-are relatively blunt instruments for cutting carbon emissions from ethylene production. In contrast, policies directly affecting the relative efficiencies of new to old capital-such as R&D stimuli or accelerated depreciation schedules-may be more effective in leveraging the industry's potential for carbon emissions reductions.

  5. Synthetic Strategies toward Natural Products Containing Contiguous Stereogenic Quaternary Carbon Atoms.

    Science.gov (United States)

    Büschleb, Martin; Dorich, Stéphane; Hanessian, Stephen; Tao, Daniel; Schenthal, Kyle B; Overman, Larry E

    2016-03-18

    Strategies for the total synthesis of complex natural products that contain two or more contiguous stereogenic quaternary carbon atoms in their intricate structures are reviewed with 12 representative examples. Emphasis has been put on methods to create quaternary carbon stereocenters, including syntheses of the same natural product by different groups, thereby showcasing the diversity of thought and individual creativity. A compendium of selected natural products containing two or more contiguous stereogenic quaternary carbon atoms and key reactions in their total or partial syntheses is provided in the Supporting Information. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sustainable bioenergy production with little carbon debt in the Loess Plateau of China.

    Science.gov (United States)

    Liu, Wei; Peng, Cheng; Chen, Zhifen; Liu, Yue; Yan, Juan; Li, Jianqiang; Sang, Tao

    2016-01-01

    As a key strategy for mitigating global climate change, bioenergy production by reducing CO2 emissions plays an important role in ensuring sustainable development. However, land-use change by converting natural ecosystems into energy crop field could create a carbon debt at the beginning. Thus, the potential carbon debt calculation is necessary for determining a promising bioenergy crop production, especially in the region rich of marginal land. Here, we used high-resolution historical land-use data to identify the marginal land available and to evaluate the carbon debt of planting Miscanthus in the Loess Plateau, China. We found that there were 27.6 Mha for energy production and 9.7 Mha for ecological restoration, with total annual production of 0.41 billion tons of biomass. We also found that soil carbon sequestration and total CO2 mitigation were 9.3 Mt C year(-1) and 542 Mt year(-1), respectively. More importantly, the result showed that planting Miscanthus on marginal land in the Loess Plateau only took 0.97 years on average to repay the carbon debt. Our study demonstrated that Miscanthus production in suitable marginal land in the Loess Plateau can offer considerable renewable energy and mitigate climate change with little carbon debt. These results suggested that bioenergy production in the similar arid and semiarid region worldwide would contribute to carbon sequestration in the context of rapid climate change.

  7. Global socioeconomic carbon stocks in long-lived products 1900–2008

    International Nuclear Information System (INIS)

    Lauk, Christian; Haberl, Helmut; Erb, Karl-Heinz; Gingrich, Simone; Krausmann, Fridolin

    2012-01-01

    A better understanding of the global carbon cycle as well as of climate change mitigation options such as carbon sequestration requires the quantification of natural and socioeconomic stocks and flows of carbon. A so-far under-researched aspect of the global carbon budget is the accumulation of carbon in long-lived products such as buildings and furniture. We present a comprehensive assessment of global socioeconomic carbon stocks and the corresponding in- and outflows during the period 1900–2008. These data allowed calculation of the annual carbon sink in socioeconomic stocks during this period. The study covers the most important socioeconomic carbon fractions, i.e. wood, bitumen, plastic and cereals. Our assessment was mainly based on production and consumption data for plastic, bitumen and wood products and the respective fractions remaining in stocks in any given year. Global socioeconomic carbon stocks were 2.3 GtC in 1900 and increased to 11.5 GtC in 2008. The share of wood in total C stocks fell from 97% in 1900 to 60% in 2008, while the shares of plastic and bitumen increased to 16% and 22%, respectively. The rate of gross carbon sequestration in socioeconomic stocks increased from 17 MtC yr −1 in 1900 to a maximum of 247 MtC yr −1 in 2007, corresponding to 2.2%–3.4% of global fossil-fuel-related carbon emissions. We conclude that while socioeconomic carbon stocks are not negligible, their growth over time is not a major climate change mitigation option and there is an only modest potential to mitigate climate change by the increase of socioeconomic carbon stocks. (letter)

  8. Global socioeconomic carbon stocks in long-lived products 1900-2008

    Science.gov (United States)

    Lauk, Christian; Haberl, Helmut; Erb, Karl-Heinz; Gingrich, Simone; Krausmann, Fridolin

    2012-09-01

    A better understanding of the global carbon cycle as well as of climate change mitigation options such as carbon sequestration requires the quantification of natural and socioeconomic stocks and flows of carbon. A so-far under-researched aspect of the global carbon budget is the accumulation of carbon in long-lived products such as buildings and furniture. We present a comprehensive assessment of global socioeconomic carbon stocks and the corresponding in- and outflows during the period 1900-2008. These data allowed calculation of the annual carbon sink in socioeconomic stocks during this period. The study covers the most important socioeconomic carbon fractions, i.e. wood, bitumen, plastic and cereals. Our assessment was mainly based on production and consumption data for plastic, bitumen and wood products and the respective fractions remaining in stocks in any given year. Global socioeconomic carbon stocks were 2.3 GtC in 1900 and increased to 11.5 GtC in 2008. The share of wood in total C stocks fell from 97% in 1900 to 60% in 2008, while the shares of plastic and bitumen increased to 16% and 22%, respectively. The rate of gross carbon sequestration in socioeconomic stocks increased from 17 MtC yr-1 in 1900 to a maximum of 247 MtC yr-1 in 2007, corresponding to 2.2%-3.4% of global fossil-fuel-related carbon emissions. We conclude that while socioeconomic carbon stocks are not negligible, their growth over time is not a major climate change mitigation option and there is an only modest potential to mitigate climate change by the increase of socioeconomic carbon stocks.

  9. Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process

    Directory of Open Access Journals (Sweden)

    Gelayol Golkarnarenji

    2018-03-01

    Full Text Available To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR and Artificial Neural Network (ANN, were studied and compared, with a limited dataset obtained to predict physical property (density of oxidative stabilized PAN fiber (OPF in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large.

  10. 75 FR 55745 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results...

    Science.gov (United States)

    2010-09-14

    ... Products covered by this order are certain corrosion-resistant carbon steel flat products from Korea. These... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... review of the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products (CORE...

  11. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity

    Science.gov (United States)

    Pellegrini, Adam F. A.; Ahlström, Anders; Hobbie, Sarah E.; Reich, Peter B.; Nieradzik, Lars P.; Staver, A. Carla; Scharenbroch, Bryant C.; Jumpponen, Ari; Anderegg, William R. L.; Randerson, James T.; Jackson, Robert B.

    2018-01-01

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  12. Mangrove production and carbon sinks: A revision of global budget estimates

    Science.gov (United States)

    Bouillon, S.; Borges, A.V.; Castaneda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.-Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V. H.; Smith, T. J.; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ???-218 ?? 72 Tg C a-1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ??? 112 ?? 85 Tg C a-1, equivalent in magnitude to ??? 30-40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far. Copyright 2008 by the American Geophysical Union.

  13. Elevated atmospheric carbon dioxide concentrations amplify Alternaria alternata sporulation and total antigen production

    Science.gov (United States)

    Background: Although the association between rising levels of carbon dioxide, the principle anthropogenic greenhouse gas, and pollen production has been established, few data are available regarding the function of rising carbon dioxide on quantitative or qualitative changes in allergenic fungal sp...

  14. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    Science.gov (United States)

    Fabien H. Wagner; Bruno Herault; Damien Bonal; Clement Stahl; Liana O. Anderson; Timothy R. Baker; Gabriel Sebastian Becker; Hans Beeckman; Danilo Boanerges Souza; Paulo Cesar Botosso; David M. J. S. Bowman; Achim Brauning; Benjamin Brede; Foster Irving Brown; Jesus Julio Camarero; Plinio Barbosa Camargo; Fernanda C. G. Cardoso; Fabricio Alvim Carvalho; Wendeson Castro; Rubens Koloski Chagas; Jerome Chave; Emmanuel N. Chidumayo; Deborah A. Clark; Flavia Regina Capellotto Costa; Camille Couralet; Paulo Henrique da Silva Mauricio; Helmut Dalitz; Vinicius Resende de Castro; Jacanan Eloisa de Freitas Milani; Edilson Consuelo de Oliveira; Luciano de Souza Arruda; Jean-Louis Devineau; David M. Drew; Oliver Dunisch; Giselda Durigan; Elisha Elifuraha; Marcio Fedele; Ligia Ferreira Fedele; Afonso Figueiredo Filho; Cesar Augusto Guimaraes Finger; Augusto Cesar Franco; Joao Lima Freitas Junior; Franklin Galvao; Aster Gebrekirstos; Robert Gliniars; Paulo Mauricio Lima de Alencastro Graca; Anthony D. Griffiths; James Grogan; Kaiyu Guan; Jurgen Homeier; Maria Raquel Kanieski; Lip Khoon Kho; Jennifer Koenig; Sintia Valerio Kohler; Julia Krepkowski; Jose Pires Lemos-Filho; Diana Lieberman; Milton Eugene Lieberman; Claudio Sergio Lisi; Tomaz Longhi Santos; Jose Luis Lopez Ayala; Eduardo Eijji Maeda; Yadvinder Malhi; Vivian R. B. Maria; Marcia C. M. Marques; Renato Marques; Hector Maza Chamba; Lawrence Mbwambo; Karina Liana Lisboa Melgaco; Hooz Angela Mendivelso; Brett P. Murphy; Joseph O' Brien; Steven F. Oberbauer; Naoki Okada; Raphael Pelissier; Lynda D. Prior; Fidel Alejandro Roig; Michael Ross; Davi Rodrigo Rossatto; Vivien Rossi; Lucy Rowland; Ervan Rutishauser; Hellen Santana; Mark Schulze; Diogo Selhorst; Williamar Rodrigues Silva; Marcos Silveira; Susanne Spannl; Michael D. Swaine; Jose Julio Toledo; Marcos Miranda Toledo; Marisol Toledo; Takeshi Toma; Mario Tomazello Filho; Juan Ignacio Valdez Hernandez; Jan Verbesselt; Simone Aparecida Vieira; Gregoire Vincent; Carolina Volkmer de Castilho; Franziska Volland; Martin Worbes; Magda Lea Bolzan Zanon; Luiz E. O. C. Aragao

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter...

  15. Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture

    NARCIS (Netherlands)

    Salvador, Andreia F.; Martins, Gilberto; Melle-Franco, Manuel; Serpa, Ricardo; Stams, Alfons J.M.; Cavaleiro, Ana J.; Pereira, M.A.; Alves, M.M.

    2017-01-01

    Carbon materials have been reported to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens improving methane production in anaerobic processes. In this work, the effect of increasing concentrations of carbon nanotubes (CNT) on the activity of pure cultures of

  16. The kinetics of steam-carbon dioxide conversion, rational ways and production catalysts of process gas

    International Nuclear Information System (INIS)

    Khamroev, F.B.

    2016-01-01

    The purpose of the present work is to study the kinetics of steam-carbon dioxide conversion, rational ways and production catalysts of process gas. The experimental equation of steam-carbon methane conversion, heat stability increasing and catalyst efficiency, decreasing of hydrodynamical resistance of catalyst layer were determined.

  17. The Environmental Impact of Industrial Bamboo Products : Life-cycle Assessment and Carbon Sequestration

    NARCIS (Netherlands)

    Vogtlander, J.G.; Van der Lugt, P.

    2014-01-01

    This report gives a Life-Cycle Assessment (LCA) and carbon footprint analysis on a selection of industrial bamboo products. The LCA is made for cradle-to-gate, plus the end-of-life stages of the bamboo products. For end-of-life it is assumed that 90% of the bamboo products are incinerated in an

  18. Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhuise gas emissions

    NARCIS (Netherlands)

    Cayuela, M.L.; Oenema, O.; Kuikman, P.J.; Bakker, R.R.; Groenigen, van J.W.

    2010-01-01

    An important but little understood aspect of bioenergy production is its overall impact on soil carbon (C) and nitrogen (N) cycling. Increased energy production from biomass will inevitably lead to higher input of its by-products to the soil as amendments or fertilizers. However, it is still unclear

  19. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage.

    Science.gov (United States)

    Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin

    2017-09-18

    Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

  20. The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata.

    Science.gov (United States)

    Brzonkalik, Katrin; Herrling, Tanja; Syldatk, Christoph; Neumann, Anke

    2011-05-27

    The aim of this study was to determine the influence of different carbon and nitrogen sources on the production of the mycotoxins alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) by Alternaria alternata at 28°C using a semi-synthetic medium (modified Czapek-Dox broth) supplemented with nitrogen and carbon sources. Additionally the effect of shaken and static cultivation on mycotoxin production was tested. Initial experiments showed a clear dependency between nitrogen depletion and mycotoxin production. To assess whether nitrogen limitation in general or the type of nitrogen source triggers the production, various nitrogen sources including several ammonium/nitrate salts and amino acids were tested. In static culture the production of AOH/AME can be enhanced greatly with phenylalanine whereas some nitrogen sources seem to inhibit the AOH/AME production completely. TA was not significantly affected by the choice of nitrogen source. In shaken culture the overall production of all mycotoxins was lower compared to static cultivation. Furthermore tests with a wide variety of carbon sources including monosaccharides, disaccharides, complex saccharides such as starch as well as glycerol and acetate were performed. In shaken culture AOH was produced when glucose, fructose, sucrose, acetate or mixtures of glucose/sucrose and glucose/acetate were used as carbon sources. AME production was not detected. The use of sodium acetate resulted in the highest AOH production. In static culture AOH production was also stimulated by acetate and the amount is comparable to shaken conditions. Under static conditions production of AOH was lower except when cultivated with acetate. In static cultivation 9 of 14 tested carbon sources induced mycotoxin production compared to 4 in shaken culture. This is the first study which analyses the influence of carbon and nitrogen sources in a semi-synthetic medium and assesses the effects of culture conditions on

  1. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil.

    Directory of Open Access Journals (Sweden)

    Vanessa Moura Dos Reis

    Full Text Available The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013-2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future.

  2. Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil.

    Science.gov (United States)

    Reis, Vanessa Moura Dos; Karez, Cláudia Santiago; Mariath, Rodrigo; de Moraes, Fernando Coreixas; de Carvalho, Rodrigo Tomazetto; Brasileiro, Poliana Silva; Bahia, Ricardo da Gama; Lotufo, Tito Monteiro da Cruz; Ramalho, Laís Vieira; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo Bastos; Pereira-Filho, Guilherme Henrique; Thompson, Fabiano Lopes; Bastos, Alex Cardoso; Salgado, Leonardo Tavares; Amado-Filho, Gilberto Menezes

    2016-01-01

    The abundance of reef builders, non-builders and the calcium carbonate produced by communities established in Calcification Accretion Units (CAUs) were determined in three Abrolhos Bank shallow reefs during the period from 2012 to 2014. In addition, the seawater temperature, the irradiance, and the amount and composition of the sediments were determined. The inner and outer reef arcs were compared. CAUs located on the inner reef shelf were under the influence of terrigenous sediments. On the outer reefs, the sediments were composed primarily of marine biogenic carbonates. The mean carbonate production in shallow reefs of Abrolhos was 579 ± 98 g m-2 y-1. The builder community was dominated by crustose coralline algae, while the non-builder community was dominated by turf. A marine heat wave was detected during the summer of 2013-2014, and the number of consecutive days with a temperature above or below the summer mean was positively correlated with the turf cover increase. The mean carbonate production of the shallow reefs of Abrolhos Bank was greater than the estimated carbonate production measured for artificial structures on several other shallow reefs of the world. The calcimass was higher than the non-calcareous mass, suggesting that the Abrolhos reefs are still in a positive carbonate production balance. Given that marine heat waves produce an increase of turf cover on the shallow reefs of the Abrolhos, a decrease in the cover represented by reef builders and shifting carbonate production are expected in the near future.

  3. Calcium carbonate synthesis with prescribed properties based on liquid waste of soda production

    OpenAIRE

    E.O. Mikhailova; V.O. Panasenko; N.B. Markova

    2016-01-01

    A promising direction in solving of environmental problems of soda industry is the development of low-waste resource-saving technologies, which consist in recycling of valuable waste components with obtaining the commercial products. Aim: The aim is to establish the optimal conditions for obtaining calcium carbonate with prescribed properties from liquid waste of soda production. Materials and Methods: Chemically deposited calcium carbonate is used as filler and should have certain physical a...

  4. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) Users’ Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Inst., Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois, Urbana-Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-12-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass, and a soy biodiesel pathway. This document discusses the version of CCLUB released September 30, 2017 which includes five ethanol LUC scenarios and four soy biodiesel LUC scenarios.

  5. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  6. A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings

    International Nuclear Information System (INIS)

    Gerlagh, Reyer

    2008-01-01

    We develop an endogenous growth model with capital, labor and carbon-energy as production factors and three technology variables that measure accumulated innovations for carbon-energy production, carbon-energy savings, and neutral growth. All markets are complete and perfect, except for research, for which we assume that the marginal social benefits exceed the marginal private benefits by factor four. The model constants are calibrated so that the model reproduces the relevant global trends over the 1970-2000 period. The model contains a simple climate module, and is used to assess the impact of Induced Technological Change (ITC) for a policy that aims at a maximum level of atmospheric CO 2 concentration (450 ppmv). ITC is shown to reduce the required carbon tax by more than a factor 2, and to reduce costs of such a policy by half. When we do not constrain aggregate R and D expenditures to benchmark levels, costs are further reduced. Numerical simulations show that knowledge accumulation shifts from energy production to energy saving technology. We discuss reasons for differences between our results and earlier results reported in the literature. (author)

  7. Empirical Research on China’s Carbon Productivity Decomposition Model Based on Multi-Dimensional Factors

    Directory of Open Access Journals (Sweden)

    Jianchang Lu

    2015-04-01

    Full Text Available Based on the international community’s analysis of the present CO2 emissions situation, a Log Mean Divisia Index (LMDI decomposition model is proposed in this paper, aiming to reflect the decomposition of carbon productivity. The model is designed by analyzing the factors that affect carbon productivity. China’s contribution to carbon productivity is analyzed from the dimensions of influencing factors, regional structure and industrial structure. It comes to the conclusions that: (a economic output, the provincial carbon productivity and energy structure are the most influential factors, which are consistent with China’s current actual policy; (b the distribution patterns of economic output, carbon productivity and energy structure in different regions have nothing to do with the Chinese traditional sense of the regional economic development patterns; (c considering the regional protectionism, regional actual situation need to be considered at the same time; (d in the study of the industrial structure, the contribution value of industry is the most prominent factor for China’s carbon productivity, while the industrial restructuring has not been done well enough.

  8. Enhanced production of green tide algal biomass through additional carbon supply.

    Science.gov (United States)

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  9. Enhanced production of green tide algal biomass through additional carbon supply.

    Directory of Open Access Journals (Sweden)

    Pedro H de Paula Silva

    Full Text Available Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2 enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (- as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (- affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9, and grew at similar rates up to pH 9, demonstrating HCO3 (- utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%, Chaetomorpha linum (24% and to a lesser extent for Cladophora patentiramea (11%, compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-.

  10. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2009-01-01

    Full Text Available This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV oxide, carbon(II oxide, hydrogen, methane, hydrogen sulfide, nitrogen, oxygen, and water vapor.The quantitative composition and lower caloric value of process tail gases change depending on the type of feedstock used in the production, as well as the type of process. The lower caloric value of process tail gases is relatively small with values ranging between 1500 and 2300 kJ m–3.In the conventional production of oil-furnace carbon black, process tail gases purified from carbon black dust are freely released into the atmosphere untreated. In this manner, the process tail gases pollute the air in the town of Kutina, because their quantitative values are much higher than the prescribed emissions limits for hydrogen sulfide and carbon(II oxide. A logical solution for the prevention of such air pollution is combustion of the process tail gases, i. e. their thermal oxidation. For this purpose, a specially designed flare system has been developed. Consuming minimum amounts of natural gas needed for oxidation, the flare system is designed to combust low caloric process tail gases with 99 % efficiency. Thus, the toxic and flammable components of the tail gases (hydrogen sulfide, hydrogen, carbon(II oxide, methane and other trace hydrocarbons would be transformed into environmentally acceptable components (sulfur(IV oxide, water, carbon(IV oxide and nitrogen(IV oxide, which are in compliance with the emissions limit values prescribed by law.Proper operation of this flare system in the production of oil-furnace carbon black would solve

  11. Changes in carbon storage and oxygen production in forest timber ...

    African Journals Online (AJOL)

    Decrease in forest areas world wide and the damaging of its structures is hazardous to human health, hinders and dries up the spread of oxygen in the air and also destroys carbon storage. In recent years, global warming and changes in climates depending on the increase in the green house gases have been affecting the ...

  12. Ethylene and Carbon Monoxide Production by Septoria musiva

    Science.gov (United States)

    S. Brown-Skrobot; L. R. Brown; T. H. Filer

    1984-01-01

    An investigation into the mechanism by which Septoria musiva causes the premature defoliation of cottonwood trees was undertaken. Gas-chromatograpic analysis of the atmosphere overlying the original culture indicated that this fungus produced significant quantities of ethylene and carbon monoxide. Subcultures failed to produce either gas on a variety...

  13. Carbon pools and flux in U.S. forest products

    Science.gov (United States)

    Linda S. Heath; Richard A. Birdsey; Clark Row; Andrew J. Plantinga

    1996-01-01

    Increasing recognition that anthropogenic CO2 and other greenhouse gas emissions may effect climate change has prompted research studies on global carbon (C) budgets and international agreements for action. At the United Nations Conference on Environment and Development in 1992, world leaders and citizens gathered and initiated the Framework...

  14. Sustainability Concept in Decision-Making: Carbon Tax Consideration for Joint Product Mix Decision

    Directory of Open Access Journals (Sweden)

    Wen-Hsien Tsai

    2016-11-01

    Full Text Available Carbon emissions are receiving greater scrutiny in many countries due to international forces to reduce anthropogenic global climate change. Carbon taxation is one of the most common carbon emission regulation policies, and companies must incorporate it into their production and pricing decisions. Activity-based costing (ABC and the theory of constraints (TOC have been applied to solve product mix problems; however, a challenging aspect of the product mix problem involves evaluating joint manufactured products, while reducing carbon emissions and environmental pollution to fulfill social responsibility. The aim of this paper is to apply ABC and TOC to analyze green product mix decision-making for joint products using a mathematical programming model and the joint production data of pharmaceutical industry companies for the processing of active pharmaceutical ingredients (APIs in drugs for medical use. This paper illustrates that the time-driven ABC model leads to optimal joint product mix decisions and performs sensitivity analysis to study how the optimal solution will change with the carbon tax. Our findings provide insight into ‘sustainability decisions’ and are beneficial in terms of environmental management in a competitive pharmaceutical industry.

  15. Trillo NPP full scope replica simulator project: The last great NPP simulation challenge in Spain

    International Nuclear Information System (INIS)

    Rivero, N.; Abascal, A.

    2006-01-01

    In the year 2000, Trillo NPP (Spanish PWR-KWU design nuclear power plant) and Tecnatom came to the agreement of developing a Trillo plant specific simulator, having as scope all the plant systems operated either from the main control room or from the emergency panels. The simulator operation should be carried out both through a control room replica and graphical user interface, this latter based on plant schematics and softpanels concept. Trillo simulator is to be primarily utilized as a pedagogical tool for the Trillo operational staff training. Because the engineering grade of the mathematical models, it will also have additional uses, such as: - Operation engineering (POE's validation, New Computerized Operator Support Systems Validation, etc).; - Emergency drills; -Plant design modifications assessment. This project has become the largest simulation task Tecnatom has ever undertaken, being structured in three different subprojects, namely: - Simulator manufacture, Simulator acceptance and Training material production. Most relevant technological innovations the project brings are: Highest accuracy in the Nuclear Island models, Advanced Configuration Management System, Open Software architecture, Human machine interface new design, Latest design I/O system and an Instructor Station with extended functionality. The Trillo simulator 'Ready for Training' event is due on September 2003, having started the Factory Acceptance Tests in Autumn 2002. (author)

  16. Production of activated carbon from peat. A techno-economic feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K; Asplund, D; Ekman, E

    1984-05-01

    The production of activated carbon from peat was studied both with laboratory and pilot plant experiments in a fluidized-bed furnace. Peat coke was mainly used as raw material, and it was gasified partially with steam to granular activated carbon. The activated carbon grades produced were evaluated on the basis of physical characteristics, for example, volume weight, hardness, specific surface, and pore structure. The proximated analysis of activated carbon crush produced from peat coke: volume weight 220-260 g/l, specific surface 700-1100 msup/g, ash content 13-15%. The physical properties of the produced activated carbon grades were equal to those of commercial carbon brands. On the basis of these trial runs, an activated carbon plant for capacities of 400 t/a and 1500 t/a was preliminary designed adn the use of the fluidized-bed furnace for regenerating activated carbon was evaluated. The initial investment in the production plant was estimated to amount to FIM 3.5 mill. and FIM 5.9 mill. The refund periods of the basic alternatives would be 26 and 2 years, and the minimum capacity of profitable production 900 t/a.

  17. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants

    DEFF Research Database (Denmark)

    Madsen, Jørgen; Bjerg, Bjarne Schmidt; Hvelplund, Torben

    2010-01-01

    This technical note presents a simple, fast, reliable and cheap method to estimate the methane (CH4) production from animals by using the CH4 and carbon dioxide (CO2) concentrations in air near the animals combined with an estimation of the total CO2 production from information on intake of metab......This technical note presents a simple, fast, reliable and cheap method to estimate the methane (CH4) production from animals by using the CH4 and carbon dioxide (CO2) concentrations in air near the animals combined with an estimation of the total CO2 production from information on intake...

  18. Organic carbon production, mineralization and preservation on the Peruvian margin

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Montes, I.; Treude, T.; Gier, J.; Hensen, C.; Dengler, M.; Stolpovsky, K.; Bryant, L. D.; Wallmann, K.

    2014-09-01

    Carbon cycling in Peruvian margin sediments (11° S and 12° S) was examined at 16 stations from 74 m on the inner shelf down to 1024 m water depth by means of in situ flux measurements, sedimentary geochemistry and modeling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates and benthic dissolved inorganic carbon fluxes decreased rapidly with water depth. Particulate organic carbon (POC) content was lowest on the inner shelf and at the deep oxygenated stations (< 5%) and highest between 200 and 400 m in the oxygen minimum zone (OMZ, 15-20%). The organic carbon burial efficiency (CBE) was unexpectedly low on the inner shelf (< 20%) when compared to a global database, for reasons which may be linked to the frequent ventilation of the shelf by oceanographic anomalies. CBE at the deeper oxygenated sites was much higher than expected (max. 81%). Elsewhere, CBEs were mostly above the range expected for sediments underlying normal oxic bottom waters, with an average of 51 and 58% for the 11° S and 12° S transects, respectively. Organic carbon rain rates calculated from the benthic fluxes alluded to a very efficient mineralization of organic matter in the water column, with a Martin curve exponent typical of normal oxic waters (0.88 ± 0.09). Yet, mean POC burial rates were 2-5 times higher than the global average for continental margins. The observations at the Peruvian margin suggest that a lack of oxygen does not affect the degradation of organic matter in the water column but promotes the preservation of organic matter in marine sediments.

  19. Sustainable production of cannabinoids with supercritical carbon dioxide technologies

    NARCIS (Netherlands)

    Perrotin-Brunel, H.

    2011-01-01

    This thesis concerns the production of natural compounds from plant material for pharmaceutical and food applications. It describes the production (extraction and isolation) of cannabinoids, the active components present in cannabis. Many cannabinoids have medicinal properties but not all

  20. Sustainable Production of Cannabinoids with Supercritical Carbon Dioxide Technologies

    NARCIS (Netherlands)

    Perrotin-Brunel, H.

    2011-01-01

    This thesis concerns the production of natural compounds from plant material for pharmaceutical and food applications. It describes the production (extraction and isolation) of cannabinoids, the active components present in cannabis. Many cannabinoids have medicinal properties but not all

  1. A brief review on activated carbon derived from agriculture by-product

    Science.gov (United States)

    Yahya, Mohd Adib; Mansor, Muhammad Humaidi; Zolkarnaini, Wan Amani Auji Wan; Rusli, Nurul Shahnim; Aminuddin, Anisah; Mohamad, Khalidah; Sabhan, Fatin Aina Mohamad; Atik, Arif Abdallah Aboubaker; Ozair, Lailatun Nazirah

    2018-06-01

    A brief review focusing on preparation of the activated carbon derived from agriculture by-products is presented. The physical and chemical activation of activated carbon were also reviewed. The effects of various parameters including types of activating agents, temperature, impregnation ratio, were also discussed. The applications of activated carbon from agricultural by products were briefly reviewed. It is provenly evident in this review, the relatively inexpensive and renewable resources of the agricultural waste were found to be effectively being converted into wealth materials.

  2. Integrated carbon analysis of biomass production on fallow agricultural land and product substitution in Sweden - Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Dornburg, Veronika; Eggers, Thies; Gustavsson, Leif [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    An important option in the Swedish context to reduce its net emissions of carbon dioxide (CO{sub 2}) is the increased use of biomass for energy and material substitution. On fallow agricultural land additional production of biomass would be possible. We analyse biomass production systems based on Norway spruce, hybrid poplar and willow hybrids and the use of this biomass to replace fossil energy and energy intensive material systems. The highest biomass production potential is for willow in southern Sweden. Fertilisation management of spruce could shorten the rotation lengths by about 17%. The fertilised production of Norway spruce with use of harvested timber for construction and use of remaining woody biomass for heat and power production gives the largest reductions of carbon emissions per hectare under the assumptions made. The use of willow for heat and power and of fertilised spruce for a wood product mix lead to the highest fossil primary energy savings in our scenarios. Spruce cultivations can achieve considerable carbon emission reductions in the long term, but willow and poplar might be a good option when fossil energy savings and carbon emission reductions should be achieved in the short term.

  3. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-04-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. A process has been developed which results in high quality binder pitch suitable for use in graphite electrodes or carbon anodes. A detailed description of the protocol is given by Clendenin. Briefly, aromatic heavy oils are hydro-treated under mild conditions in order to increase their ability to dissolve coal. An example of an aromatic heavy oil is Koppers Carbon Black Base (CBB) oil. CBB oil has been found to be an effective solvent and acceptably low cost (i.e., significantly below the market price for binder pitch, or about $280 per ton at the time of this writing). It is also possible to use solvents derived from hydrotreated coal and avoid reliance on coke oven recovery products completely if so desired.

  4. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  5. Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis

    International Nuclear Information System (INIS)

    Wang, Qunwei; Chiu, Yung-Ho; Chiu, Ching-Ren

    2015-01-01

    Research on the driving factors behind carbon dioxide emission changes in China can inform better carbon emission reduction policies and help develop a low-carbon economy. As one of important methods, production-theoretical decomposition analysis (PDA) has been widely used to understand these driving factors. To avoid the infeasibility issue in solving the linear programming, this study proposed a modified PDA approach to decompose carbon dioxide emission changes into seven drivers. Using 2005–2010 data, the study found that economic development was the largest factor of increasing carbon dioxide emissions. The second factor was energy structure (reflecting potential carbon), and the third factor was low energy efficiency. Technological advances, energy intensity reductions, and carbon dioxide emission efficiency improvements were the negative driving factors reducing carbon dioxide emission growth rates. Carbon dioxide emissions and driving factors varied significantly across east, central and west China. - Highlights: • A modified PDA used to decompose carbon dioxide emission changes into seven drivers. • Two models were proposed to ameliorate the infeasible occasions. • Economic development was the largest factor of increasing CO_2 emissions in China.

  6. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour

    Directory of Open Access Journals (Sweden)

    Antonia Nette

    2016-03-01

    Full Text Available Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein–based pasta products proved to cause 0.57 kg CO2 equivalents (CO2eq (31% per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta.

  7. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour

    Science.gov (United States)

    Nette, Antonia; Wolf, Patricia; Schlüter, Oliver; Meyer-Aurich, Andreas

    2016-01-01

    Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein–based pasta products proved to cause 0.57 kg CO2 equivalents (CO2eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta. PMID:28231112

  8. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour.

    Science.gov (United States)

    Nette, Antonia; Wolf, Patricia; Schlüter, Oliver; Meyer-Aurich, Andreas

    2016-03-04

    Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein-based pasta products proved to cause 0.57 kg CO₂ equivalents (CO₂eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta.

  9. Estimates of carbon stored in harvested wood products from United States Forest Service Northern Region, 1906-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  10. Estimates of carbon stored in harvested wood products from United States Forest Service Rocky Mountain Region, 1906-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  11. Estimates of carbon stored in harvested wood products from United States Forest Service Southern Region, 1911-2012

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson; Keith Stockmann; Ken Skog; Sean Healey; J. Greg Jones; James Morrison; Jesse Young

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  12. Estimates of carbon stored in harvested wood products from United States Forest Service Intermountain Region, 1911-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  13. Estimates of carbon stored in harvested wood products from United States Forest Service Pacific Northwest Region, 1909-2012

    Science.gov (United States)

    Edward Butler; Keith Stockmann; Nathaniel Anderson; Ken Skog; Sean Healey; Dan Loeffler; J. Greg Jones; James Morrison; Jesse Young

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  14. Estimates of carbon stored in harvested wood products from United States Forest Service Pacific Southwest Region, 1909-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  15. Estimates of carbon stored in harvested wood products from United States Forest Service Eastern Region, 1911-2012

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson; Keith Stockmann; Ken Skog; Sean Healey; J. Greg Jones; James Morrison; Jesse Young

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  16. Estimates of carbon stored in harvested wood products from United States Forest Service Alaska Region, 1910-2012

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson; Keith Stockmann; Ken Skog; Sean Healey; J. Greg Jones; James Morrison; Jesse Young

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  17. Estimates of carbon stored in harvested wood products from United States Forest Service Southwestern Region, 1909-2012

    Science.gov (United States)

    Edward Butler; Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  18. Production and screening of carbon products precursors from coal. Quarterly progress report, July 1, 1996--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Zondlo, J.; Stiller, A.

    1996-10-25

    This quarterly report covers activities during the period from July 1, 1996 through September 30, 1996 on the development of carbon products precursor materials from coal. The first year of the project ended in February, 1996; however, the WVU research effort continued through August 14, 1997 on a no-cost extension of the original contract. PETC chose to exercise the option for continuation of the projects and $100,000 became available on August 9, 1996. The objective for year two is to focus on development of those carbon products from coal-based solvent extract precursors which have the greatest possibility for commercial success.

  19. A Greenhouse Gas and Soil Carbon Model for Estimating the Carbon Footprint of Livestock Production in Canada

    Science.gov (United States)

    Vergé, Xavier P.C.; Dyer, James A.; Worth, Devon E.; Smith, Ward N.; Desjardins, Raymond L.; McConkey, Brian G.

    2012-01-01

    Simple Summary We developed a model to estimate the carbon footprint of Canadian livestock production. To include long term soil carbon storage and loss potential we introduced a payback period concept. The model was tested by reallocating 10% only of the protein production from a ruminant to a non ruminant source to minimize the risk of including rangeland or marginal lands. This displacement generated residual land which was found to play a major role in the potential mitigation of GHG emissions. The model will allow land use policies aimed at reducing the agricultural GHG emissions to be assessed. Abstract To assess tradeoffs between environmental sustainability and changes in food production on agricultural land in Canada the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES) was developed. It incorporates four livestock specific GHG assessments in a single model. To demonstrate the application of ULICEES, 10% of beef cattle protein production was assumed to be displaced with an equivalent amount of pork protein. Without accounting for the loss of soil carbon, this 10% shift reduced GHG emissions by 2.5 TgCO2e y−1. The payback period was defined as the number of years required for a GHG reduction to equal soil carbon lost from the associated land use shift. A payback period that is shorter than 40 years represents a net long term decrease in GHG emissions. Displacing beef cattle with hogs resulted in a surplus area of forage. When this residual land was left in ungrazed perennial forage, the payback periods were less than 4 years and when it was reseeded to annual crops, they were equal to or less than 40 years. They were generally greater than 40 years when this land was used to raise cattle. Agricultural GHG mitigation policies will inevitably involve a trade-off between production, land use and GHG emission reduction. ULICEES is a model that can objectively assess these trade-offs for Canadian agriculture. PMID:26487032

  20. Production and Properties of Carbon Nanotube/Cellulose Composite Paper

    OpenAIRE

    Maria, Kazi Hanium; Mieno, Tetsu

    2017-01-01

    Multiwalled carbon nanotube/cellulose composite papers have been prepared by mixing the cellulose with MWNT/gelatin solution and drying at room temperature. The CNTs form an interconnected network on the cellulose paper and as a result CNT paper sheet exhibits enhanced electrical properties and thermal stabilities. It is found that both sides of CNT paper sheet have the uniform electrical conductivities. The sheet exhibits strong microwave absorption in the microwave range of 10.5 GHz. The CN...

  1. A distance-aware replica adaptive data gathering protocol for Delay Tolerant Mobile Sensor Networks.

    Science.gov (United States)

    Feng, Yong; Gong, Haigang; Fan, Mingyu; Liu, Ming; Wang, Xiaomin

    2011-01-01

    In Delay Tolerant Mobile Sensor Networks (DTMSNs) that have the inherent features of intermitted connectivity and frequently changing network topology it is reasonable to utilize multi-replica schemes to improve the data gathering performance. However, most existing multi-replica approaches inject a large amount of message copies into the network to increase the probability of message delivery, which may drain each mobile node's limited battery supply faster and result in too much contention for the restricted resources of the DTMSN, so a proper data gathering scheme needs a trade off between the number of replica messages and network performance. In this paper, we propose a new data gathering protocol called DRADG (for Distance-aware Replica Adaptive Data Gathering protocol), which economizes network resource consumption through making use of a self-adapting algorithm to cut down the number of redundant replicas of messages, and achieves a good network performance by leveraging the delivery probabilities of the mobile sensors as main routing metrics. Simulation results have shown that the proposed DRADG protocol achieves comparable or higher message delivery ratios at the cost of the much lower transmission overhead than several current DTMSN data gathering schemes.

  2. Carbon Stable Isotope Values in Plankton and Mussels Reflect Changes in Carbonate Chemistry Associated with Nutrient Enhanced Net Production

    Directory of Open Access Journals (Sweden)

    Autumn Oczkowski

    2018-02-01

    Full Text Available Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C measurements could play in understanding that adaptation with a series of three Ecostat (i.e., continuous culture experiments. We quantified linkages among δ13C, nutrients, carbonate chemistry, primary, and secondary production in temperate estuarine waters. Experimental culture vessels (9.1 L containing 33% whole and 67% filtered (0.2 μm seawater were amended with dissolved inorganic nitrogen (N and phosphorous (P in low (3 vessels; 5 μM N, 0.3 μM P, moderate (3 vessels; 25 μM N, 1.6 μM P, and high amounts (3 vessels; 50 μM N, 3.1 μM P. The parameters necessary to calculate carbonate chemistry, chlorophyll-a concentrations, and particulate δ13C values were measured throughout the 14 day experiments. Outflow lines from the experimental vessels fed 250 ml containers seeded with juvenile blue mussels (Mytilus edulis. Mussel subsamples were harvested on days 0, 7, and 14 and their tissues were analyzed for δ13C values. We consistently observed that particulate δ13C values were positively correlated with chlorophyll-a, carbonate chemistry, and to changes in the ratio of bicarbonate to dissolved carbon dioxide (HCO3-:CO2. While the relative proportion of HCO3- to CO2 increased over the 14 days, concentrations of each declined, reflecting the drawdown of carbon associated with enhanced production. Plankton δ13C values, like chlorophyll-a concentrations, increased over the course of each experiment, with the greatest increases in the moderate and high treatments. Trends in δ13C over time were also observed in the mussel tissues. Despite ecological variability and different plankton abundances the experiments consistently demonstrated how δ13C values in primary producers and consumers reflected nutrient availability, via its impact on carbonate chemistry. We

  3. Organic carbon production, mineralisation and preservation on the Peruvian margin

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Montes, I.; Treude, T.; Liebetrau, V.; Gier, J.; Hensen, C.; Dengler, M.; Stolpovsky, K.; Bryant, L. D.; Wallmann, K.

    2015-03-01

    Carbon cycling in Peruvian margin sediments (11 and 12° S) was examined at 16 stations, from 74 m water depth on the middle shelf down to 1024 m, using a combination of in situ flux measurements, sedimentary geochemistry and modelling. Bottom water oxygen was below detection limit down to ca. 400 m and increased to 53 μM at the deepest station. Sediment accumulation rates decreased sharply seaward of the middle shelf and subsequently increased at the deep stations. The organic carbon burial efficiency (CBE) was unusually low on the middle shelf (60%) at the deep oxygenated sites. In line with other studies, CBE was elevated under oxygen-deficient waters in the mid-water oxygen minimum zone. Organic carbon rain rates calculated from the benthic fluxes alluded to efficient mineralisation of organic matter in the water column compared to other oxygen-deficient environments. The observations at the Peruvian margin suggest that a lack of oxygen does not greatly affect the degradation of organic matter in the water column but promotes the preservation of organic matter in sediments.

  4. Determination of the equation parameters of carbon flow curves and estimated carbon flow and CO2 emissions from broiler production.

    Science.gov (United States)

    Henn, J D; Bockor, L; Borille, R; Coldebella, A; Ribeiro, A M L; Kessler, A M

    2015-09-01

    The objective of this study was to determine the equation parameters of carbon (i.e., C) flow curves and to estimate C flow and carbon dioxide (i.e., CO2) emissions from the production of 1- to 49-day-old broilers from different genetic strains. In total, 384 1-day-old chicks were used, distributed into 4 groups: high-performance males (Cobb-M) and females (Cobb-F), and intermediate-performance males (C44-M) and females (C44-F), with 6 replicates/treatment according to a completely randomized study design. Carbon intake and retention were calculated based on diet and body C composition, and expired C was stoichiometrically estimated as digestible C intake-C retention-C in the urine. Litter C emission was estimated as initial litter C+C in the excreta-final litter C. Carbon flow curves were determined fitting data by nonlinear regression using the Gompertz function. Expired CO2 was calculated based on expired C. The applied nonlinear model presented goodness-of-fit for all responses (R2>0.99). Carbon dioxide production was highly correlated with growth rate. At 42 d age, CO2 expiration (g/bird) was 3,384.4 for Cobb-M, 2,947.9 for Cobb-F, 2,512.5 for C44-M, and 2185.1 for C44-F. Age also significantly affected CO2 production: to achieve 2.0 kg BW, CO2 expiration (g/bird) was 1,794.3 for Cobb-M, 2,016.5 for Cobb-F, 2617.7 for C44-M, and 3,092.3 for C44-F. The obtained equations present high predictability to estimate individual CO2 emissions in strains of Cobb and C44 broilers of any weight, or age, reared between 1 and 49 d age. © 2015 Poultry Science Association Inc.

  5. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems

    Science.gov (United States)

    Brandt, L. A.; Bohnet, C.; King, J. Y.

    2009-06-01

    We investigated the potential for abiotic mineralization to carbon dioxide (CO2) via photodegradation to account for carbon (C) loss from plant litter under conditions typical of arid ecosystems. We exposed five species of grass and oak litter collected from arid and mesic sites to a factorial design of ultraviolet (UV) radiation (UV pass, UV block), and sterilization under dry conditions in the laboratory. UV pass treatments produced 10 times the amount of CO2 produced in UV block treatments. CO2 production rates were unaffected by litter chemistry or sterilization. We also exposed litter to natural solar radiation outdoors on clear, sunny days close to the summer solstice at midlatitudes and found that UV radiation (280-400 nm) accounted for 55% of photochemically induced CO2 production, while shortwave visible radiation (400-500 nm) accounted for 45% of CO2 production. Rates of photochemically induced CO2 production on a per-unit-mass basis decreased with litter density, indicating that rates depend on litter surface area. We found no evidence for leaching, methane production, or facilitation of microbial decomposition as alternative mechanisms for significant photochemically induced C loss from litter. We conclude that abiotic mineralization to CO2 is the primary mechanism by which C is lost from litter during photodegradation. We estimate that CO2 production via photodegradation could be between 1 and 4 g C m-2 a-1 in arid ecosystems in the southwestern United States. Taken together with low levels of litter production in arid systems, photochemical mineralization to CO2 could account for a significant proportion of annual carbon loss from litter in arid ecosystems.

  6. 78 FR 19210 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2013-03-29

    .... Scope of the Order Products covered by this order are certain corrosion-resistant carbon steel flat... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... countervailing duty (CVD) order on corrosion-resistant carbon steel flat products from the Republic of Korea for...

  7. 78 FR 55241 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-10

    ... merchandise covered by this Order \\2\\ is certain corrosion- resistant carbon steel flat products from Korea... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products (CORE) from the...

  8. 78 FR 16832 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation...

    Science.gov (United States)

    2013-03-19

    ...] Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation of... ``ITC'') that revocation of the antidumping duty (``AD'') orders on corrosion-resistant carbon steel... (``Sunset'') Review, 77 FR 85 (January 3, 2012). \\2\\ See Corrosion-Resistant Carbon Steel Flat Products From...

  9. Production of activated carbons from waste tyres for low temperature NOx control.

    Science.gov (United States)

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Short Term Electric Production Technology Switching Under Carbon Cap and Trade

    Directory of Open Access Journals (Sweden)

    Donald F. Larson

    2012-10-01

    Full Text Available This study examines fuel switching in electricity production following the introduction of the European Union’s Emissions Trading System (EU ETS for greenhouse gas emissions. A short-run restricted cost equation is estimated with carbon permits, high-carbon fuels, and low carbon fuels as variable inputs. Shadow values and substitution elasticities for carbon-free energy resources from nuclear, hydroelectric and renewable sources are imputed from the cost equation. The empirical analysis examines 12 European countries using monthly data on fuel use, prices, and electricity generation during the first phase of the European Emissions Trading System. Despite low emission permit prices, this study finds statistically significant substitution between fossil fuels and carbon free sources of energy for electric power production. Significant substitution between fossil fuels and nuclear energy also was found. Still, while 18 of the 20 substitution elasticities are statistically significant, they are all less than unity, consistent with limited substitution. Overall, these results suggest that prices for carbon emission permits relative to prices for carbon and carbon free sources of energy do matter but that electric power producers have limited operational flexibility in the short-run to satisfy greenhouse gas emission limits.

  11. Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hyun; Lee, Dong Woog; Jang, Se Gyu; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo [KEPCO Research Institute, Daejon (Korea, Republic of); Choi, Jong Shin [Korea East-West Power Co. LTD, Seoul (Korea, Republic of)

    2014-06-15

    Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this CO2 carbonation technology is an cost-effective technology option for the reduction of greenhouse gas.

  12. Economic Evaluations for the Carbon Dioxide-involved Production of High-value Chemicals

    International Nuclear Information System (INIS)

    Lee, Ji Hyun; Lee, Dong Woog; Jang, Se Gyu; Kwak, No-Sang; Lee, In Young; Jang, Kyung Ryoung; Shim, Jae-Goo; Choi, Jong Shin

    2014-01-01

    Economic evaluation of the manufacturing technology of high-value chemicals through the carbonation reaction of carbon dioxide contained in the flue gas was performed, and analysis of the IRR (Internal Rate of Return) and whole profit along the production plan of the final product was conducted. Through a carbonation reaction with sodium hydroxide that is generated from electrolysis and by using carbon dioxide in the combustion gas that is generated in the power plant, it is possible to get a high value products such as sodium bicarbonate compound and also to reduce the carbon dioxide emission simultaneously. The IRR (Internal Rate of Return) and NPV (Net Present Value) methods were used for the economic evaluation of the process which could handle carbon dioxide of 100 tons per day in the period of the 20 years of plant operation. The results of economic evaluation showed that the IRR of baseline case of technology was 67.2% and the profit that obtained during the whole operation period (20 years) was 346,922 million won based on NPV value. When considering ETS due to the emissions trading enforcement that will be activated in 2015, the NPV was improved to a 6,000 million won. Based on this results, it could be concluded that this CO2 carbonation technology is an cost-effective technology option for the reduction of greenhouse gas

  13. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

    2006-05-12

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

  14. Carbon dioxide emission in hydrogen production technology from coke oven gas with life cycle approach

    Directory of Open Access Journals (Sweden)

    Burmistrz Piotr

    2016-01-01

    Full Text Available The analysis of Carbon Footprint (CF for technology of hydrogen production from cleaned coke oven gas was performed. On the basis of real data and simulation calculations of the production process of hydrogen from coke gas, emission indicators of carbon dioxide (CF were calculated. These indicators are associated with net production of electricity and thermal energy and direct emission of carbon dioxide throughout a whole product life cycle. Product life cycle includes: coal extraction and its transportation to a coking plant, the process of coking coal, purification and reforming of coke oven gas, carbon capture and storage. The values were related to 1 Mg of coking blend and to 1 Mg of the hydrogen produced. The calculation is based on the configuration of hydrogen production from coke oven gas for coking technology available on a commercial scale that uses a technology of coke dry quenching (CDQ. The calculations were made using ChemCAD v.6.0.2 simulator for a steady state of technological process. The analysis of carbon footprint was conducted in accordance with the Life Cycle Assessment (LCA.

  15. Production of activated carbon from cellulosic fibers for environment protection

    International Nuclear Information System (INIS)

    Le Coq, L.; Faur, C.; Le Cloirec, P.; Phan Ngoc, H.

    2005-01-01

    Activated carbon fibers (ACF) have received an increasing attention in recent years as an adsorbent for purifying polluted gaseous and aqueous streams. Their preparation, characterization and application have been reported in many studies [1], which show that the porosity of ACF is dependent on activation conditions, as temperature, time or gas. ACF provide adsorption rates 2 to 50 times higher than Granular Activated Carbon [2], because of their low diameter (∼10 m) providing a larger external surface area in contact with the fluid compared with that of granules. Furthermore, their potential for the removal of various pollutants from water was demonstrated towards micro-organics like phenols [3], pesticides or dyes [4]. Generally, fibrous activated carbons are produced from natural or synthetic precursors by carbonization at 600-1000 C followed by an activation step by CO 2 oe steam at higher temperature [2]. Another way to produce the fibrous activated carbons is chemical activation with H 3 PO 4 , HNO 3 , KOH...[5]. Different types of synthetic or natural fibers have been used as precursors of fibrous activated carbons since 1970: polyacrylonitrile (PAN), polyphenol, rayon, cellulose phosphate, pitch, etc. Each of them has its own applications and limitations. The synthetic fibers being generally expensive, it would be interesting to find out low-cost precursors from local material resources. This work is a part of a research exchange program between the Vietnamese National Center of Natural Sciences and Technology (Vietnam) and the Ecole des Mines de Nantes (Gepea, France), with the aim to find some economical solutions for water treatment. Fibrous activated carbons are produced from natural cellulose fibers, namely jute and coconut fibers, which are abundant in Vietnam as well as in other tropical countries, have a low ash content and a low cost in comparison with synthetic fibers. Two methods are compared to produce activated carbons: 1) a physical

  16. Combining multiple ecosystem productivity measurements to constrain carbon uptake estimates in semiarid grasslands and shrublands

    Science.gov (United States)

    Maurer, G. E.; Krofcheck, D. J.; Collins, S. L.; Litvak, M. E.

    2016-12-01

    Recent observational and modeling studies have indicated that semiarid ecosystems are more dynamic contributors to the global carbon budget than once thought. Semiarid carbon fluxes, however, are generally small, with high interannual and spatial variability, which suggests that validating their global significance may depend on examining multiple productivity measures and their associated uncertainties and inconsistencies. We examined ecosystem productivity from eddy covariance (NEE), harvest (NPP), and terrestrial biome models (NEPm) at two very similar grassland sites and one creosote shrubland site in the Sevilleta National Wildlife Refuge of central New Mexico, USA. Our goal was to assess site and methodological correspondence in annual carbon uptake, patterns of interannual variability, and measurement uncertainty. One grassland site was a perennial carbon source losing 30 g C m-2 per year on average, while the other two sites were carbon sources or sinks depending on the year, with average net uptake of 5 and 25 g C m-2 per year at the grassland and shrubland site, respectively. Uncertainty values for cumulative annual NEE overlapped between the three sites in most years. When combined, aboveground and belowground annual NPP measurements were 15% higher than annual NEE values and did not confirm a loss of carbon at any site in any year. Despite differences in mean site carbon balance, year-to-year changes in cumulative annual NEE and NPP were similar at all sites with years 2010 and 2013 being favorable for carbon uptake and 2011 and 2012 being unfavorable at all sites. Modeled NEPm data for a number of nearby grid cells reproduced only a fraction of the observed range in carbon uptake and its interannual variability. These three sites are highly similar in location and climate and multiple carbon flux measurements confirm the high interannual variability in carbon flux. The exact magnitude of these fluxes, however, remains difficult to discern.

  17. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

    Science.gov (United States)

    Alan F. Talhelm; Kurt S. Pregitzer; Mark E. Kubiske; Donald R. Zak; Courtney E. Campany; Andrew J. Burton; Richard E. Dickson; George R. Hendrey; J. G. Isebrands; Keith F. Lewin; John Nagy; David F. Karnosky

    2014-01-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment...

  18. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    Science.gov (United States)

    F.S. Peterson; K. Lajtha

    2013-01-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil...

  19. Bio-based products from solar energy and carbon dioxide.

    Science.gov (United States)

    Yu, Jian

    2014-01-01

    Producing bio-based products directly from CO₂ and solar energy is a desirable alternative to the conventional biorefining that relies on biomass feedstocks. The production paradigm is based on an artificial photosynthetic system that converts sunlight to electricity and H₂ via water electrolysis. An autotrophic H₂-oxidizing bacterium fixes CO₂ in dark conditions. The assimilated CO₂ is stored in bacterial cells as polyhydroxybutyrate (PHB), from which a range of products can be derived. Compared with natural photosynthesis of a fast-growing cyanobacterium, the artificial photosynthetic system has much higher energy efficiency and productivity of bio-based products. The new technology looks promising because of possible cost reduction in feedstock, equipment, and operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    Science.gov (United States)

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure.

  1. Carbon-10: Example of cyclotron production of positron emitters as an open research field

    DEFF Research Database (Denmark)

    Alves, F.; Lima, J.J.P.; Nickles, R.J.

    2007-01-01

    This paper supports the thesis that significant improvement of PET output response to clinical questions can be achieved by innovation in radionuclide production. Moreover, that development can be performed with the resources available at a clinical centre. Carbon-10 production parameters studies...

  2. Future carbon storage in harvested wood products from Ontario's Crown forests

    Science.gov (United States)

    Jiaxin Chen; Stephen J. Colombo; Michael T. Ter-Mikaelian; Linda S. Heath

    2008-01-01

    This analysis quantifies projected carbon (C) storage in harvested wood products (HWP) from Ontario's Crown forests. The large-scale forest C budget model, FORCARB-ON, was applied to estimate HWP C stock changes using the production approach defined by the Intergovernmental Panel on Climate Change. Harvested wood volume was converted to C mass and allocated to...

  3. Natural carbon isotopes used to study methane consumption and production in soil

    DEFF Research Database (Denmark)

    Ambus, Per; Andersen, Bertel Lohmann; Kemner, Marianne

    2002-01-01

    Changes in the isotopic composition of carbon can be used to reveal simultaneous occurrence of methane production and oxidation in soil. The method is conducted in laboratory jar experiments as well as in the field by using flux chambers. Simultaneous occurrence of production and oxidation of met...

  4. Production and characterization of cellulolytic enzymes from Trichoderma reesei grown on various carbon sources

    Energy Technology Data Exchange (ETDEWEB)

    Warzywoda, Michel; Labre, Elisabeth; Pourquie, Jacques [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)

    1992-01-01

    Ethanol production from lignocellulosics is considered, using a process in which biomass is first pretreated by steam explosion, yielding freely water-extractible pentoses and a cellulose-rich residue which can be further hydrolyzed by cellulases into glucose to be fermented into ethanol. Results that are reported show that both the pentose extracts and the glucose-rich hydrolyzates can be used as carbon sources for cellulase production by Trichoderma reesei. When compared with lactose as the main carbon source, pentose extracts support lower but satisfactory protein productions which are characterized by an increase in hemicellulolytic activities, which significantly improves the saccharifying potential of these enzyme preparations. (author).

  5. The economic value of biochar in crop production and carbon sequestration

    International Nuclear Information System (INIS)

    Galinato, Suzette P.; Yoder, Jonathan K.; Granatstein, David

    2011-01-01

    This paper estimates the economic value of biochar application on agricultural cropland for carbon sequestration and its soil amendment properties. In particular, we consider the carbon emissions avoided when biochar is applied to agricultural soil, instead of agricultural lime, the amount of carbon sequestered, and the value of carbon offsets, assuming there is an established carbon trading mechanism for biochar soil application. We use winter wheat production in Eastern Whitman County, Washington as a case study, and consider different carbon offset price scenarios and different prices of biochar to estimate a farm profit. Our findings suggest that it may be profitable to apply biochar as a soil amendment under some conditions if the biochar market price is low enough and/or a carbon offset market exists. - Highlights: → We estimate the economic value of biochar application on agricultural cropland. → We consider biochar's carbon sequestration and soil amendment properties. → Biochar soil application may be profitable if a carbon offset market exists for it. → Farmers may use biochar if its market price is low enough to earn a profit.

  6. Metal adsorption process in activated carbon fiber from textile PAN fiber aim electrode production

    International Nuclear Information System (INIS)

    Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento; Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Cuna, Andres

    2016-01-01

    Full text: Carbon fibers have a variety of applications in industry and have been increasingly studied to explore their various characteristics. Studies show that the activated carbon fiber has been effective in removing small contaminants as well as activated carbon, because of its characteristic porosity. Other studies relate carbonaceous materials to the electrical conductivity devices application. This work is based on the use of an activated carbon fiber from textile polyacrylonitrile (PAN) for metallic ion adsorption from aqueous solution. Consequently, it improves the electrical characteristics and this fact show the possibility to use this material as electrode. The work was performed by adsorption process in saline solution (NO 3 Ag and ClPd) and activated carbon fiber in felt form as adsorbent. The metal adsorption on activated carbon fiber was characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). It was observed that activated carbon fiber showed good adsorption capacity for the metals used. At the end of the process, the activated carbon fiber samples gained about 15% by weight, related to metallic fraction incorporated into the fiber and the process of adsorption does not changed the structural, morphological and chemistry inertness of the samples. The results indicate the feasibility of this metal incorporation techniques activated carbon fiber for the production of electrodes facing the electrochemical area. (author)

  7. Metal adsorption process in activated carbon fiber from textile PAN fiber aim electrode production

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento, E-mail: alinerodrigues_1@msn.com [Instituto Tecnologico Aeroespacial (ITA), Sao Jose dos Campos, SP (Brazil); Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Cuna, Andres [Faculdade de Quimica, Universidad de la Republica (Uruguay)

    2016-07-01

    Full text: Carbon fibers have a variety of applications in industry and have been increasingly studied to explore their various characteristics. Studies show that the activated carbon fiber has been effective in removing small contaminants as well as activated carbon, because of its characteristic porosity. Other studies relate carbonaceous materials to the electrical conductivity devices application. This work is based on the use of an activated carbon fiber from textile polyacrylonitrile (PAN) for metallic ion adsorption from aqueous solution. Consequently, it improves the electrical characteristics and this fact show the possibility to use this material as electrode. The work was performed by adsorption process in saline solution (NO{sub 3}Ag and ClPd) and activated carbon fiber in felt form as adsorbent. The metal adsorption on activated carbon fiber was characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). It was observed that activated carbon fiber showed good adsorption capacity for the metals used. At the end of the process, the activated carbon fiber samples gained about 15% by weight, related to metallic fraction incorporated into the fiber and the process of adsorption does not changed the structural, morphological and chemistry inertness of the samples. The results indicate the feasibility of this metal incorporation techniques activated carbon fiber for the production of electrodes facing the electrochemical area. (author)

  8. The Role of Eucalyptus Globulus Forest and Products in Carbon Sequestration

    International Nuclear Information System (INIS)

    Arroja, L.; Dias, A.C.; Capela, I.

    2006-01-01

    This study is a contribution to the ongoing debate about the selection of the approach for carbon accounting in wood products to be used, in the future, in the national greenhouse gas inventories under the UNFCCC (United Nations Framework Convention on Climate Change). Two accounting approaches are used in this analysis: the stock-change approach and the atmospheric-flow approach. They are applied to the Portuguese Eucalyptus globulus forest sector. To achieve this objective, the fluxes of wood removed from the forest are tracked through its life cycle, which includes products manufacture (mainly pulp and paper), use and final disposal (landfilling, incineration and composting). This study develops a framework to the estimation of carbon sequestration in the forest of E. globulus, a fast growing species, more specifically, in the calculation of the conversion factors such as bark and foliage percentages and densities, used to convert wood volumes into total biomass. A mass balance approach based on real data from mills is also proposed, in order to assess carbon emissions from wood processing. The results show that E. globulus forest sector was a carbon sink, but the magnitude of the carbon sequestration differs substantially depending on the accounting approach used. The contribution of the forest ecosystem was smaller than the aggregated contribution of wood products in use and in landfills (including industrial waste), which reinforces the role that wood products play in national carbon budgets

  9. Influence of carbon source on alpha-amylase production by Aspergillus oryzae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Nielsen, Jens

    2001-01-01

    on sucrose, fructose, glycerol, mannitol and acetate. During growth on acetate there was no production of alpha -amylase, whereas addition of small amounts of glucose resulted in alpha -amylase production. A possible induction by alpha -methyl-D-glucoside during growth on glucose was also investigated......, but this compound was not found to be a better inducer of alpha -amylase production than glucose. The results strongly indicate that besides acting as a repressor via the CreA protein, glucose acts as an inducer.......The influence of the carbon source on a-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol...

  10. Improving farming practices reduces the carbon footprint of spring wheat production.

    Science.gov (United States)

    Gan, Yantai; Liang, Chang; Chai, Qiang; Lemke, Reynald L; Campbell, Con A; Zentner, Robert P

    2014-11-18

    Wheat is one of the world's most favoured food sources, reaching millions of people on a daily basis. However, its production has climatic consequences. Fuel, inorganic fertilizers and pesticides used in wheat production emit greenhouse gases that can contribute negatively to climate change. It is unknown whether adopting alternative farming practices will increase crop yield while reducing carbon emissions. Here we quantify the carbon footprint of alternative wheat production systems suited to semiarid environments. We find that integrating improved farming practices (that is, fertilizing crops based on soil tests, reducing summerfallow frequencies and rotating cereals with grain legumes) lowers wheat carbon footprint effectively, averaging -256 kg CO2 eq ha(-1) per year. For each kg of wheat grain produced, a net 0.027-0.377 kg CO2 eq is sequestered into the soil. With the suite of improved farming practices, wheat takes up more CO2 from the atmosphere than is actually emitted during its production.

  11. Implementation and performance analysis of the LHCb LFC replica using Oracle streams technology

    CERN Document Server

    Düllmann, D; Martelli, B; Peco, G; Bonifazzi, F; Da Fonte Perez, E; Baranowski, Z; Vagnoni, V

    2007-01-01

    The presentation will describe the architecture and the deployment of the LHCb read-only File Catalogue for the LHC Computing Grid (LFC) replica implemented at the Italian INFN National Centre for Telematics and Informatics (CNAF), and evaluate a series of tests on the LFC with replica. The LHCb computing model foresees the replication of the central LFC database in every Tier-1, in order to assure more scalability and fault tolerance to LHCb applications Scientific data intensive applications use a large collection of files for storing data. In particular, as regards the HEP community, data generated by large detectors will be managed and stored using databases. The intensive access to information stored in databases by the Grid computing applications requires a distributed database replication in order to guarantee the scalability and, in case of failure, redundancy. Besides the results of the tests will be an important reference for all the Grid users This talk will describe the replica implementation of L...

  12. Microlens fabrication by replica molding of frozen laser-printed droplets

    Science.gov (United States)

    Surdo, Salvatore; Diaspro, Alberto; Duocastella, Martí

    2017-10-01

    In this work, we synergistically combine laser-induced forward transfer (LIFT) and replica molding for the fabrication of microlenses with control of their geometry and size independent of the material or substrate used. Our approach is based on a multistep process in which liquid microdroplets of an aqueous solution are first printed on a substrate by LIFT. Following a freezing step, the microdroplets are used as a master to fabricate a polydimethylsiloxane (PDMS) mold. A subsequent replica molding step enables the creation of microlenses and microlens arrays on arbitrary selected substrates and by using different curable polymers. Thus, our method combines the rapid fabrication capabilities of LIFT and the perfectively smooth surface quality of the generated microdroplets, with the advantages of replica molding in terms of parallelization and materials flexibility. We demonstrate our strategy by generating microlenses of different photocurable polymers and by characterizing their optical and morphological properties.

  13. Multiply charged carbon-ion production for medical application

    International Nuclear Information System (INIS)

    Kitagawa, A.; Muramatsu, M.; Sasaki, N.; Takasugi, W.; Wakaisami, S.; Biri, S.; Drentje, A. G.

    2008-01-01

    Over 3000 cancer patients have already been treated by the heavy-ion medical accelerator in Chiba at the National Institute of Radiological Sciences since 1994. The clinical results have clearly verified the effectiveness and safety of heavy-ion radiotherapy. The most important result has been to establish that the carbon ion is one of the most effective radiations for radiotherapy. The ion source is required to realize a stable beam with the same conditions for daily operation. However, the deposition of carbon ions on the wall of the plasma chamber is normally unavoidable. This causes an ''anti-wall-coating effect,'' i.e., a decreasing of the beam, especially for the higher charge-state ions due to the surface material of the wall. The ion source must be required to produce a sufficiently intense beam under the bad condition. Other problems were solved by improvements and maintenance, and thus we obtained enough reproducibility and stability along with decreased failures. We summarize our over 13 years of experience, and show the scope for further developments

  14. Acceleration of Lateral Equilibration in Mixed Lipid Bilayers Using Replica Exchange with Solute Tempering.

    Science.gov (United States)

    Huang, Kun; García, Angel E

    2014-10-14

    The lateral heterogeneity of cellular membranes plays an important role in many biological functions such as signaling and regulating membrane proteins. This heterogeneity can result from preferential interactions between membrane components or interactions with membrane proteins. One major difficulty in molecular dynamics simulations aimed at studying the membrane heterogeneity is that lipids diffuse slowly and collectively in bilayers, and therefore, it is difficult to reach equilibrium in lateral organization in bilayer mixtures. Here, we propose the use of the replica exchange with solute tempering (REST) approach to accelerate lateral relaxation in heterogeneous bilayers. REST is based on the replica exchange method but tempers only the solute, leaving the temperature of the solvent fixed. Since the number of replicas in REST scales approximately only with the degrees of freedom in the solute, REST enables us to enhance the configuration sampling of lipid bilayers with fewer replicas, in comparison with the temperature replica exchange molecular dynamics simulation (T-REMD) where the number of replicas scales with the degrees of freedom of the entire system. We apply the REST method to a cholesterol and 1,2-dipalmitoyl- sn -glycero-3-phosphocholine (DPPC) bilayer mixture and find that the lateral distribution functions of all molecular pair types converge much faster than in the standard MD simulation. The relative diffusion rate between molecules in REST is, on average, an order of magnitude faster than in the standard MD simulation. Although REST was initially proposed to study protein folding and its efficiency in protein folding is still under debate, we find a unique application of REST to accelerate lateral equilibration in mixed lipid membranes and suggest a promising way to probe membrane lateral heterogeneity through molecular dynamics simulation.

  15. Quantitative Analysis of Carbon Flow into Photosynthetic Products Functioning as Carbon Storage in the Marine Coccolithophore, Emiliania huxleyi.

    Science.gov (United States)

    Tsuji, Yoshinori; Yamazaki, Masatoshi; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2015-08-01

    The bloom-forming coccolithophore Emiliania huxleyi (Haptophyta) is a dominant marine phytoplankton, cells of which are covered with calcareous plates (coccoliths). E. huxleyi produces unique lipids of C37-C40 long-chain ketones (alkenones) with two to four trans-unsaturated bonds, β-glucan (but not α-glucan) and acid polysaccharide (AP) associated with the morphogenesis of CaCO3 crystals in coccoliths. Despite such unique features, there is no detailed information on the patterns of carbon allocation into these compounds. Therefore, we performed quantitative estimation of carbon flow into various macromolecular products by conducting (14)C-radiotracer experiments using NaH(14)CO3 as a substrate. Photosynthetic (14)C incorporation into low molecular-mass compounds (LMC), extracellular AP, alkenones, and total lipids except alkenones was estimated to be 35, 13, 17, and 25 % of total (14)C fixation in logarithmic growth phase cells and 33, 19, 18, and 18 % in stationary growth phase cells, respectively. However, less than 1 % of (14)C was incorporated into β-glucan in both cells. (14)C-mannitol occupied ca. 5 % of total fixed (14)C as the most dominant LMC product. Levels of all (14)C compounds decreased in the dark. Therefore, alkenones and LMC (including mannitol), but not β-glucan, function in carbon/energy storage in E. huxleyi, irrespective of the growth phase. Compared with other algae, the low carbon flux into β-glucan is a unique feature of carbon metabolism in E. huxelyi.

  16. Characterization of cellulase production by carbon sources in two ...

    African Journals Online (AJOL)

    user7

    2013-11-27

    Nov 27, 2013 ... 7State Key Laboratory of Urban Water Resource and Environment, Harbin ... China. Accepted 28 March, 2012. The induction of cellulase production in two .... prevent the contamination with bacteria, 0.02% sodium azide was.

  17. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    Science.gov (United States)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  18. Low Carbon-Oriented Optimal Reliability Design with Interval Product Failure Analysis and Grey Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yixiong Feng

    2017-03-01

    Full Text Available The problem of large amounts of carbon emissions causes wide concern across the world, and it has become a serious threat to the sustainable development of the manufacturing industry. The intensive research into technologies and methodologies for green product design has significant theoretical meaning and practical value in reducing the emissions of the manufacturing industry. Therefore, a low carbon-oriented product reliability optimal design model is proposed in this paper: (1 The related expert evaluation information was prepared in interval numbers; (2 An improved product failure analysis considering the uncertain carbon emissions of the subsystem was performed to obtain the subsystem weight taking the carbon emissions into consideration. The interval grey correlation analysis was conducted to obtain the subsystem weight taking the uncertain correlations inside the product into consideration. Using the above two kinds of subsystem weights and different caution indicators of the decision maker, a series of product reliability design schemes is available; (3 The interval-valued intuitionistic fuzzy sets (IVIFSs were employed to select the optimal reliability and optimal design scheme based on three attributes, namely, low carbon, correlation and functions, and economic cost. The case study of a vertical CNC lathe proves the superiority and rationality of the proposed method.

  19. Carbon sequestration in wood products: a method for attribution to multiple parties

    International Nuclear Information System (INIS)

    Tonn, Bruce; Marland, Gregg

    2007-01-01

    When forest is harvested some of the forest carbon ends up in wood products. If the forest is managed so that the standing stock of the forest remains constant over time, and the stock of wood products is increasing, then carbon dioxide is being removed from the atmosphere in net and this should be reflected in accounting for greenhouse gas emissions. We suggest that carbon sequestration in wood products requires cooperation of multiple parties; from the forest owner to the product manufacturer to the product user, and perhaps others. Credit for sequestering carbon away from the atmosphere could acknowledge the contributions of these multiple parties. Accounting under a cap-and-trade or tax system is not necessarily an inventory system, it is a system designed to motivate and/or reward an environmental objective. We describe a system of attribution whereby credits for carbon sequestration would be shared among multiple, contributing parties. It is hoped that the methodology outlined herein proves attractive enough to parties concerned to spur them to address the details of such a system. The system of incentives one would choose for limiting or controlling greenhouse gas emissions could be quite different, depending on how the attribution for emissions and sequestration is chosen

  20. Replica analysis of partition-function zeros in spin-glass models

    International Nuclear Information System (INIS)

    Takahashi, Kazutaka

    2011-01-01

    We study the partition-function zeros in mean-field spin-glass models. We show that the replica method is useful to find the locations of zeros in a complex parameter plane. For the random energy model, we obtain the phase diagram in the plane and find that there are two types of distributions of zeros: two-dimensional distribution within a phase and one-dimensional one on a phase boundary. Phases with a two-dimensional distribution are characterized by a novel order parameter defined in the present replica analysis. We also discuss possible patterns of distributions by studying several systems.

  1. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    Science.gov (United States)

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Retention of gaseous fission products by pure and modified activated carbon

    International Nuclear Information System (INIS)

    Wilhelmova, L.; Cejnar, F.

    1975-01-01

    The results are reported of research into Czechoslovak-made activated carbon Desorex DB-2 and Supersorbon HS-1 and their retention properties. Krypton, xenon and helium of spectral purity were used in the investigation. The effect of surface impregnation was also studied on the retention efficiency of the activated carbon. It was found that the impregnation with alkali metal fluorides, such as RbF and CsF favourably affected the retention properties of the activated carbon as concerns gaseous fission products. (L.O.)

  3. The influence of various carbon and nitrogen sources on oil production by Fusarium oxysporum.

    Science.gov (United States)

    Joshi, S; Mathur, J M

    1987-01-01

    The oil-synthesizing capacity of Fusarium oxysporum, cultivated on basal nutrient medium, was evaluated using different carbon and nitrogen sources. In one of the media, molasses was also used as a principal carbon source. Media containing glucose and ammonium nitrate were found to be most efficient for oil production. Fatty acid profile of the fungal oil indicated the presence of a wide range of fatty acids ranging from C8 to C24. Fatty acid composition largely depends on the type of carbon and nitrogen sources.

  4. Neutron induced alpha production from carbon between 18 and 22 MeV

    International Nuclear Information System (INIS)

    Stevens, A.P.

    1976-10-01

    Cross sections for neutron induced alpha production in carbon were measured at seventeen energies between 18 and 22 MeV, using a deuterated anthracene crystal as both target and detector. Pulse shape discrimination was employed to separate the alphas and elastically scattered deuterons from the other reaction products. Published (n,d) elastic scattering data were used as a standard to obtain the alpha production cross sections. Comparison with available measurements shows good agreement

  5. The Impact of Energy Consumption and Productivity Growth on Carbon Emissions in Ghana

    OpenAIRE

    Ishmael Ackah

    2014-01-01

    The environment plays two vital roles for mankind. It provides food and raw materials for production and consumption and also accepts the wastes generated through man’s activities and renders them harmless. This calls for sustainable environmental management. This study examines the impact of productivity growth, forest depletion, renewable energy consumption and non-renewable energy consumption on carbon emissions in Ghana. The findings suggest that productivity growth is the most important ...

  6. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, H. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Rashidi, A.M., E-mail: Rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rastegari, S.; Mirdamadi, S. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Alaei, M. [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  7. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    International Nuclear Information System (INIS)

    Ghorbani, H.; Rashidi, A.M.; Rastegari, S.; Mirdamadi, S.; Alaei, M.

    2011-01-01

    Research highlights: → Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. → Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. → Optimum growth condition is CO/H 2 = 1/1, 100 cm 3 /min, at 620 o C under long term repetitive thermal cycling. → Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H 2 = 1/1, total gas flow rate 100 cm 3 /min, at 620 o C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  8. Proposal to realize a cost breakthrough in carbon-13 production by photochemical separation

    International Nuclear Information System (INIS)

    Marling, J.B.

    1979-10-01

    A cost breakthrough can now be made in photochemical production of the rare stable isotope carbon-13. This cost breakthrough is achieved by CO 2 laser infrared multiple-photon dissociation of any of several halocarbons (Freon derivatives) such as CF 3 Cl, CF 3 Br, or CF 2 Cl 2 . The single-step carbon-13 enrichment factor for this process is approximately 50, yielding 30% pure C-13 in one step, or up to 97% pure C-13 in two steps. A three-fold carbon-13 cost reduction to below $20/gram is expected to be achieved in a small laboratory-scale demonstration facility capable of producing 4 to 8 kg/year of carbon-13, using presently available pulsed CO 2 TEA lasers at an average power level of 50 watts. Personnel costs dominate the attainable C-13 production costs in a small photochemical enrichment facility. A price reduction to $2/gm carbon-13 is feasible at carbon-13 production levels of 100 to 1000 kg/year, dominated by the Freon raw material costs

  9. Carbon sequestration potential of forest land: Management for products and bioenergy versus preservation

    International Nuclear Information System (INIS)

    Van Deusen, P.

    2010-01-01

    A 40 year projection of potential carbon sequestration is based on USDA Forest Service Forest Inventory and Analysis (FIA) data from the state of Georgia. The objective is to compare carbon sequestration under a sustainable management strategy versus a preservation strategy. FIA plots are projected ahead in time with hotdeck matching. This matches each subject plot with another plot from the database that represents the subject plot at a future time. The matched plot sequences are used to provide input data to a harvest scheduling program to generate a management strategy for the state. The sequestration from the management strategy is compared with a preservation strategy that involves no harvesting. Harvested wood is assumed to go into products with various half life decay rates. Carbon sequestration is increased as increasing proportions go into wood for energy, which is treated like a product with an infinite half life. Therefore, the harvested carbon does not return immediately to the atmosphere. Public land and land close to cities is assumed to be unavailable, and all other private land is assumed to be accessible. The results are presented as gigatonnes of CO 2 equivalent to make them directly comparable to US annual carbon emissions. The conclusion is that forest management will sequester more above-ground carbon than preservation over a 40 year period if the wood is used for products with an average half life greater than 5 years.

  10. Production of carbon 14-labeled fumonisin in liquid culture

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, B. A.; Miller, J. D.; Savard, M. E.

    1994-03-15

    Currently, fumonisin B{sub 1} is obtained primarily by using solid culture methods. Although fumonisin B{sub 1} concentrations obtained in solid culture are typically quite high, subsequent extraction and purification present problems. In addition, current methods utilize complex media which makes analysis of biosynthetic pathways and control mechanisms difficult. Liquid culture methods of production could eliminate many problems associated with production in solid culture. However, in the past, concentrations obtained in liquid culture have been relatively low. In this work, factors affecting the production of fumonisin B{sub 1} from a shake flask scale of 100 ml to a fermenter scale of 100 liters were examined. Best results were obtained by using a fed batch method that is nitrogen limited, with pH control. With this method, concentrations in excess of 1000 ppm can be obtained. (author)

  11. Production of carbon 14-labeled fumonisin in liquid culture

    International Nuclear Information System (INIS)

    Blackwell, B.A.; Miller, J.D.; Savard, M.E.

    1994-01-01

    Currently, fumonisin B 1 is obtained primarily by using solid culture methods. Although fumonisin B 1 concentrations obtained in solid culture are typically quite high, subsequent extraction and purification present problems. In addition, current methods utilize complex media which makes analysis of biosynthetic pathways and control mechanisms difficult. Liquid culture methods of production could eliminate many problems associated with production in solid culture. However, in the past, concentrations obtained in liquid culture have been relatively low. In this work, factors affecting the production of fumonisin B 1 from a shake flask scale of 100 ml to a fermenter scale of 100 liters were examined. Best results were obtained by using a fed batch method that is nitrogen limited, with pH control. With this method, concentrations in excess of 1000 ppm can be obtained. (author)

  12. Long term estimation of carbon dynamic and sequestration for Iranian agro-ecosystem: I- Net primary productivity and annual carbon input for common agricultural crops

    Directory of Open Access Journals (Sweden)

    M Nassiri Mahalati

    2016-05-01

    Full Text Available Evaluation of carbon input is one of the most important factors for estimating soil carbon changes and potential for carbon sequestration. To evaluate the net primary productivity (NPP and soil carbon input in agricultural eco-systems of Iran, data for yield, cultivated area, harvest index (HI and shoot /root ratio in different crops including: wheat, barley, maize, cotton, rice, alfalfa and chickpea were obtained for different provinces. Then, allocated carbon to different organs of plant were calculated based on carbon allocation coefficients and finally, the net primary productivity based on carbon (NPPc was calculated. The ratio of NPPc that was annually returned to soil was considered as carbon annual input. The results showed that the maximum amount of NPPc for wheat, barely and alfalfa were obtained in Khazari climate for rice, chickpea and cotton was achieved in warm-wet climate and for maize was gained in warm-dry climate. In all regions of Iran, chickpea had the lowest effect on NPPc and consequently on carbon sequestration. The highest amount of carbon input per unit area among studied crops and different regions were observed in Khazari region for alfalfa whereas, the lowest carbon input per unit area was relation to chickpea in cold region. The lowest gap between actual and potential of carbon sequestration was observed in alfalfa whereas wheat, rice and cotton showed the most gap by 0.4, 0.38 and 0.37, respectively.

  13. Study of particle production in hadron-nucleus interactions for neutrino experiments

    CERN Document Server

    Palczewski, Tomasz Jan

    The dissertation presents a study of hadron product ion in the NA61/SHINE large acceptance spectrometer at CERN SPS. The differential cross se ctions were obtained for the production of negatively charged pions, neutral Kaons, and Lam bdas from the proton-Carbon interactions at 31 GeV/c. Methods of particle yields extraction from proton Carbon interactions were developed. An analysis chain of global correction m ethod (h- method) was established for the thin carbon target and as well for T2K replica targ et and compared to the results obtained with full particle identification. The h- method permits to cover larger phase space region not otherwise accessible. In addition, a full chain of V 0 analysis was prepared to obtain neutral Kaon and Lambda results in polar angle and momentum variables (p, θ ). Results on the differential production cross sections and mean mul tiplicities in production processes for negatively charge...

  14. Transient pressure and productivity analysis in carbonate geothermal reservoirs with changing external boundary flux

    Directory of Open Access Journals (Sweden)

    Wang Dongying

    2017-01-01

    Full Text Available In this paper, a triple-medium flow model for carbonate geothermal reservoirs with an exponential external boundary flux is established. The pressure solution under constant production conditions in Laplace space is solved. The geothermal wellbore pressure change considering wellbore storage and skin factor is obtained by Stehfest numerical inversion. The well test interpretation charts and Fetkovich production decline chart for carbonate geothermal reservoirs are proposed for the first time. The proposed Fetkovich production decline curves are applied to analyze the production decline behavior. The results indicate that in carbonate geothermal reservoirs with exponential external boundary flux, the pressure derivative curve contains a triple dip, which represents the interporosity flow between the vugs or matrix and fracture system and the invading flow of the external boundary flux. The interporosity flow of carbonate geothermal reservoirs and changing external boundary flux can both slow down the extent of production decline and the same variation tendency is observed in the Fetkovich production decline curve.

  15. Improved production efficiency in cattle to reduce their carbon ...

    African Journals Online (AJOL)

    p2492989

    Keywords: Methane, global warming, greenhouse gas, crossbreeding, residual feed intake, feed efficiency. #Corresponding ... improved production per constant unit, crossbreeding and selection for residual feed intake. ... convert such a measure into kg calf produced per kg CO2 equivalent (CH4 can be converted to a CO2.

  16. Low Carbon Technology Options for the Natural Gas Electricity Production

    Science.gov (United States)

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the...

  17. Improved production efficiency in cattle to reduce their carbon ...

    African Journals Online (AJOL)

    The FAO publication, Livestock's Long Shadow, indicated that livestock is responsible for 18% of the world's greenhouse gas production thereby creating the perception that livestock is a major cause of global warming. Methane (CH4) makes up 16% of total world gas emissions and is the second most important ...

  18. Characterization of cellulase production by carbon sources in two ...

    African Journals Online (AJOL)

    user7

    2013-11-27

    Nov 27, 2013 ... 7State Key Laboratory of Urban Water Resource and Environment, ... acted on these inducers, analysis of reaction products by high performance liquid chromatography. (HPLC) revealed that cell wall/envelope enzyme and endoenzyme from two ... specific activity are major factors in preventing application.

  19. 75 FR 29976 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Extension of the Final...

    Science.gov (United States)

    2010-05-28

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-475-826] Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Extension of the Final Results of Antidumping Duty Administrative...-quality steel plate products from Italy. See Certain Cut-to-Length Carbon-Quality Steel Plate Products...

  20. 78 FR 29113 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Final...

    Science.gov (United States)

    2013-05-17

    ...-Quality Steel Plate Products From the Republic of Korea: Final Results of Antidumping Duty Administrative... administrative review of the antidumping duty order on certain cut-to-length carbon-quality steel plate products... duty order on certain cut-to-length carbon-quality steel plate products from the Republic of Korea...

  1. 78 FR 4385 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Preliminary...

    Science.gov (United States)

    2013-01-22

    ...-Quality Steel Plate Products From the Republic of Korea: Preliminary Results of Antidumping Duty... the antidumping duty order on certain cut-to- length carbon-quality steel plate products (CTL plate... Carbon-Quality Steel Plate Products from the Republic of Korea'' dated concurrently with this notice...

  2. Carbon and nitrogen distribution in oak-hickory forests distributed along a productivity gradient

    Energy Technology Data Exchange (ETDEWEB)

    Reber, R.T.; Kaczmarek, D.J.; Pope, P.E.; Rodkey, K.S. [Purdue Univ., West Lafayette, IN (United States)

    1993-12-31

    Biomass, carbon and nitrogen pools were determined for oak-hickory forests of varying productivity. Little information of this type is available for the central hardwood region. Six oak-hickory dominated forests were chosen to represent a range in potential site productivity as influenced by soil type, amount of recyclable nutrients and available water. Biomass, carbon and nitrogen storage were determined for the following components: above ground standing biomass, fine root biomass, forest floor organic layers and litterfall. As site sequestered at each site was dependent more on the amount of living biomass at each site Litterfall, to some extent, increased with increasing site productivity. As potential site productivity decreased, total fine root biomass increased. The data suggest that as site quality decreased fine root production and turnover may become as important in nutrient cycling as annual litterfall.

  3. Production of fluorine-18 from eithium carbonate in a research reactor

    International Nuclear Information System (INIS)

    Gasiglia, H.T.

    1978-01-01

    A method for the production of fluorine-18 in a research reactor, from irradiated lithium carbonate, is described. Fluorine-18 is separated from impurities in a alumina column, which is an appropriate procedure for its production as a carrier-free radioisotope for oral administration. Characteristics of the product, when fluorine is separated from irradiated target in an usual alumina column, are compared with those when fluorine is separated in a previously calcined(1000 0 C) alumina column: Yields of chemical separation and chemical forms of radioisotope obtained are studied. Fluorine elution is investigated for several eluant concentrations and the use of a lower concentrated eluant is emphasized. Purity degree of fluorine-18 solutions separated. A routine production procedure is determined by irradiating enriched lithium carbonate (95% 6 Li). Theoretical yields are compared with fluorine-18 production yields obtained in several irradiations [pt

  4. Potential Applications of Gosat Based Carbon Budget Products to Refine Terrestrial Ecosystem Model

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2011-12-01

    Estimation of carbon exchange in terrestrial ecosystem associates with difficulties due to complex entanglement of physical and biological processes: thus, the net ecosystem productivity (NEP) estimated from simulation often differs among process-based terrestrial ecosystem models. In addition to complexity of the system, validation can only be conducted in a point scale since reliable observation is only available from ground observations. With a lack of large spatial data, extension of model simulation to a global scale results in significant uncertainty in the future carbon balance and climate change. Greenhouse gases Observing SATellite (GOSAT), launched by the Japanese space agency (JAXA) in January, 2009, is the 1st operational satellite promised to deliver the net land-atmosphere carbon budget to the terrestrial biosphere research community. Using that information, the model reproducibility of carbon budget is expected to improve: hence, gives a better estimation of the future climate change. This initial analysis is to seek and evaluate the potential applications of GOSAT observation toward the sophistication of terrestrial ecosystem model. The present study was conducted in two processes: site-based analysis using eddy covariance observation data to assess the potential use of terrestrial carbon fluxes (GPP, RE, and NEP) to refine the model, and extension of the point scale analysis to spatial using Carbon Tracker product as a prototype of GOSAT product. In the first phase of the experiment, it was verified that an optimization routine adapted to a terrestrial model, Biome-BGC, yielded the improved result with respect to eddy covariance observation data from AsiaFlux Network. Spatial data sets used in the second phase were consists of GPP from empirical algorithm (e.g. support vector machine), NEP from Carbon Tracker, and RE from the combination of these. These spatial carbon flux estimations was used to refine the model applying the exactly same

  5. Peatlands in Finland accumulate carbon more than the peat production and utilization liberates it

    International Nuclear Information System (INIS)

    Maentymaa, E.

    1997-01-01

    The peatlands in Finland bind more carbon dioxide then it is liberated into the air in peat combustion and production. Because the carbon accumulation into peatlands is higher than that of liberation, the peat deposits increase all the time in spite of peat economy. The emissions of methane, which is tens of times worse greenhouse gas then CO 2 , have decreased by 40 % due to forest drainage. Very small amounts of methane is released into the atmosphere from peat production sites. This is proven by the national SILMU research programme investigating the atmospheric changes

  6. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.

    Science.gov (United States)

    Lu, Xiaowei; Berge, Nicole D

    2014-08-01

    As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Carbon Footprint Analysis for Mechanization of Maize Production Based on Life Cycle Assessment: A Case Study in Jilin Province, China

    Directory of Open Access Journals (Sweden)

    Haina Wang

    2015-11-01

    Full Text Available The theory on the carbon footprint of agriculture can systematically evaluate the carbon emissions caused by artificial factors from the agricultural production process, which is the theoretical basis for constructing low-carbon agriculture and has important guiding significance for realizing low-carbon agriculture. Based on farm production survey data from Jilin Province in 2014, this paper aims to obtain a clear understanding of the carbon footprint of maize production through the following method: (1 one ton of maize production was evaluated systematically by using the Life Cycle Assessment (LCA; (2 the carbon emissions of the whole system were estimated based on field measurement data, (3 using the emission factors we estimated Jilin’s carbon footprint for the period 2006–2013, and forecasted it for the period from 2014 to 2020 using the grey system model GM (1, 1.

  8. Factors controlling Eucalyptus productivity: How water availability and stand structure alter production and carbon allocation

    Science.gov (United States)

    Michael G. Ryan; Jose Luiz Stape; Dan Binkley; Sebastiao Fonseca; Rodolfo A. Loos; Ernesto N. Takahashi; Claudio R. Silva; Sergio R. Silva; Rodrigo E. Hakamada; Jose Mario Ferreira; Augusto M. N. Lima; Jose Luiz Gava; Fernando P. Leite; Helder B. Andrade; Jacyr M. Alves; Gualter G. C. Silva

    2010-01-01

    Wood production varies substantially with resource availability, and the variation in wood production can result from several mechanisms: increased photosynthesis, and changes in partitioning of photosynthesis to wood production, belowground flux, foliage production or respiration. An understanding of the mechanistic basis for patterns in wood production...

  9. Valuing external effects of carbon sink in ley production for energy use

    International Nuclear Information System (INIS)

    Aengquist, P.

    1997-01-01

    In this study, an attempt is made to calculate the external effects of carbon sink in soil and biomass on land use for ley production. A crop production including ley is compared with the energy obtained from the forest and other crop outputs without ley. Ley production occupies a larger portion of the carbon sink into the soil than the energy obtained either from the forest or from crop production without ley. Considering the amount of energy obtained from living materials, the portion gained from the forest covers a larger sink than the two other crop systems. A carbon sink, which keeps the carbon away from the atmosphere, helps reduce the greenhouse effect. Hence, the value of this effect is calculated by following the overall cost-benefit analysis principles. Furthermore, as the carbon sink will be in use for a very long time, the analysis also covers the issue, importance and choice of discounting rates. Accordingly, it is argued that the social discount rate should be the same as the expected economic growth rate for the actual period in question. For instance, during the last 20 years, the growth rate has been less than 2% per year. From this rate one must subtract environmental costs which were not included in the GDP. Likewise, including the logistic discount rate, the future growth rate may be restricted by environmental legislations. In addition to the choice of social and logistic discount rates, different valuation methods are also discussed. The Swedish Parliament's target for stabilizing the emission rate of carbon dioxide by the year 2000 to the level of 1990 is taken as a basis for valuation. The marginal cost for reaching this target is used as a main valuation method and is calculated at the rate of 0.386 SEK/kg carbon dioxide. 38 refs, 11 figs, 26 tabs

  10. Mine dirt production. Produccion de esteriles del carbon

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Canibano, J [HUNOSA, Madrid (Spain)

    1990-02-01

    The article deals with the production of dirt from coal mines in various countries giving an idea of the huge quantities of waste material generated by the mining industry. Discusses the difficulty of finding industrial applications for such large amounts of material with the aim of solving and/or minimising the problems created by this waste matter, namely, pollution, degradation of the countryside, storage, etc. 25 refs., 11 tabs., 14 figs.

  11. Farm and product carbon footprints of China's fruit production--life cycle inventory of representative orchards of five major fruits.

    Science.gov (United States)

    Yan, Ming; Cheng, Kun; Yue, Qian; Yan, Yu; Rees, Robert M; Pan, Genxing

    2016-03-01

    Understanding the environmental impacts of fruit production will provide fundamental information for policy making of fruit consumption and marketing. This study aims to characterize the carbon footprints of China's fruit production and to figure out the key greenhouse gas emissions to cut with improved orchard management. Yearly input data of materials and energy in a full life cycle from material production to fruit harvest were obtained via field visits to orchards of five typical fruit types from selected areas of China. Carbon footprint (CF) was assessed with quantifying the greenhouse gas emissions associated with the individual inputs. Farm and product CFs were respectively predicted in terms of land use and of fresh fruit yield. Additionally, product CFs scaled by fruit nutrition value (vitamin C (Vc) content) and by the economic benefit from fruit production were also evaluated. The estimated farm CF ranged from 2.9 to 12.8 t CO2-eq ha(-1) across the surveyed orchards, whereas the product CF ranged from 0.07 to 0.7 kg CO2-eq kg(-1) fruit. While the mean product CFs of orange and pear were significantly lower than those of apple, banana, and peach, the nutrition-scaled CF of orange (0.5 kg CO2-eq g(-1) Vc on average) was significantly lower than others (3.0-5.9 kg CO2-eq g(-1) Vc). The income-scaled CF of orange and pear (1.20 and 1.01 kg CO2-eq USD(-1), respectively) was higher than apple, banana, and peach (0.87~0.39 kg CO2-eq USD(-1)). Among the inputs, synthetic nitrogen fertilizer contributed by over 50 % to the total greenhouse gas (GHG) emissions, varying among the fruit types. There were some tradeoffs in product CFs between fruit nutrition value and fruit growers' income. Low carbon production and consumption policy and marketing mechanism should be developed to cut down carbon emissions from fruit production sector, with balancing the nutrition value, producer's income, and climate change mitigation.

  12. Technoeconomical analysis of the co-production of hydrogen energy and carbon materials

    Science.gov (United States)

    Guerra, Zuimdie

    HECAM (Hydrogen Energy and Carbon Materials) is a new energy production strategy. The main paradigm of HECAM is that energy extracted from the carbon in hydrocarbon fuels is not worth the production of carbon dioxide. The hydrocarbon fuel is heated in an oxygen free environment and it is chemically decomposed by the heat into gases (mostly hydrogen and methane), small quantities of liquid (light oil and tar), and a solid residue containing carbon and ash (char or coke). More quantities of hydrocarbons will need to be used, but less carbon dioxide will be produced. HECAM is going to compete with steam methane reforming (SMR) to produce hydrogen. HECAM with thermocatalytic decomposition of methane and efficient sensible heat recovery has a production cost per gigajoule of hydrogen about 9% higher than SMR, but will produce about half the carbon dioxide emissions that SMR produces. If HECAM with efficient sensible heat recovery is used to produce electricity in a power plant, it will have a comparable electricity production cost and carbon dioxide emissions to a natural gas combined cycle (NGCC) power plant. The byproduct coke is not a waste residue, but a valuable co-product. Uses for the byproduct coke material may be carbon sequestration, mine land restoration, additive to enhance agricultural soils, low sulfur and mercury content heating fuel for power plants, new construction materials, or carbon-base industrial materials. This study investigated the use of byproduct coke for new construction materials. HECAM concrete substitute (HCS) materials will have a comparable cost with concrete when the cost of the raw materials is $65 per metric ton of HCS produced. HECAM brick substitute (HBS) materials will have 20% higher cost per brick than clay bricks. If the HECAM byproduct coke can be formed into bricks as a product of the HECAM process, the manufacture of HBS bricks will be cheaper and may be cost competitive with clay bricks. The results of this analysis are

  13. 76 FR 31938 - Certain Hot-Rolled Carbon Steel Flat Products From India: Notice of Preliminary Results of 2009...

    Science.gov (United States)

    2011-06-02

    ... the File from Christopher Hargett, International Trade Compliance Analyst, through Melissa Skinner... Skinner, Office Director, concerning ``Certain Hot-Rolled Carbon Steel Flat Products from India: Customs...

  14. The Efficacy of Epidemic Algorithms on Detecting Node Replicas in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Narasimha Shashidhar

    2015-12-01

    Full Text Available A node replication attack against a wireless sensor network involves surreptitious efforts by an adversary to insert duplicate sensor nodes into the network while avoiding detection. Due to the lack of tamper-resistant hardware and the low cost of sensor nodes, launching replication attacks takes little effort to carry out. Naturally, detecting these replica nodes is a very important task and has been studied extensively. In this paper, we propose a novel distributed, randomized sensor duplicate detection algorithm called Discard to detect node replicas in group-deployed wireless sensor networks. Our protocol is an epidemic, self-organizing duplicate detection scheme, which exhibits emergent properties. Epidemic schemes have found diverse applications in distributed computing: load balancing, topology management, audio and video streaming, computing aggregate functions, failure detection, network and resource monitoring, to name a few. To the best of our knowledge, our algorithm is the first attempt at exploring the potential of this paradigm to detect replicas in a wireless sensor network. Through analysis and simulation, we show that our scheme achieves robust replica detection with substantially lower communication, computational and storage requirements than prior schemes in the literature.

  15. Replicas Strategy and Cache Optimization of Video Surveillance Systems Based on Cloud Storage

    Directory of Open Access Journals (Sweden)

    Rongheng Li

    2018-04-01

    Full Text Available With the rapid development of video surveillance technology, especially the popularity of cloud-based video surveillance applications, video data begins to grow explosively. However, in the cloud-based video surveillance system, replicas occupy an amount of storage space. Also, the slow response to video playback constrains the performance of the system. In this paper, considering the characteristics of video data comprehensively, we propose a dynamic redundant replicas mechanism based on security levels that can dynamically adjust the number of replicas. Based on the location correlation between cameras, this paper also proposes a data cache strategy to improve the response speed of data reading. Experiments illustrate that: (1 our dynamic redundant replicas mechanism can save storage space while ensuring data security; (2 the cache mechanism can predict the playback behaviors of the users in advance and improve the response speed of data reading according to the location and time correlation of the front-end cameras; and (3 in terms of cloud-based video surveillance, our proposed approaches significantly outperform existing methods.

  16. Three-Dimensional Interpretation of Sculptural Heritage with Digital and Tangible 3D Printed Replicas

    Science.gov (United States)

    Saorin, José Luis; Carbonell-Carrera, Carlos; Cantero, Jorge de la Torre; Meier, Cecile; Aleman, Drago Diaz

    2017-01-01

    Spatial interpretation features as a skill to acquire in the educational curricula. The visualization and interpretation of three-dimensional objects in tactile devices and the possibility of digital manufacturing with 3D printers, offers an opportunity to include replicas of sculptures in teaching and, thus, facilitate the 3D interpretation of…

  17. Evaluation of creep damage development by the replica method; Utvaerdering av krypskadeutveckling med replikmetoden

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan [Det Norske Veritas AB, Stockholm (Sweden); Roennholm, Markku [Fortum (Sweden)

    2002-04-01

    Creep damage development in high temperature components can be monitored by the replica method. Damage is classified and an experience based time period for safe operation is recommended where a re-inspection should be conducted. Original recommendations are still commonly used but there are also developed ones are mostly less conservative. A data base of more than 6000 replicas, collected from welded components in Swedish and Finnish power plants, has been evaluated with respect to damage development in the present project. The results are in general in good agreement to the existing developed recommendations for re-inspections. Important factors that should be considered for use of the recommendations are highlighted: Service history, Material, welding and heat treatment, Measure of pressure and temperature, System stresses, Geometrical stress concentrations, stress distributions, Design of components and welds, Creep crack growth, Starts and stops, Extent and performance of the replica method. These factors have been analysed with respect to the evaluated data resulting in comments to the existing recommendations. In addition, recommendations and conditions for a high reliability of the replica method are described. The comments and recommendations can be read in separate sections in the end of the report.

  18. Automated magnification calibration in transmission electron microscopy using Fourier analysis of replica images

    International Nuclear Information System (INIS)

    Laak, Jeroen A.W.M. van der; Dijkman, Henry B.P.M.; Pahlplatz, Martin M.M.

    2006-01-01

    The magnification factor in transmission electron microscopy is not very precise, hampering for instance quantitative analysis of specimens. Calibration of the magnification is usually performed interactively using replica specimens, containing line or grating patterns with known spacing. In the present study, a procedure is described for automated magnification calibration using digital images of a line replica. This procedure is based on analysis of the power spectrum of Fourier transformed replica images, and is compared to interactive measurement in the same images. Images were used with magnification ranging from 1,000x to 200,000x. The automated procedure deviated on average 0.10% from interactive measurements. Especially for catalase replicas, the coefficient of variation of automated measurement was considerably smaller (average 0.28%) compared to that of interactive measurement (average 3.5%). In conclusion, calibration of the magnification in digital images from transmission electron microscopy may be performed automatically, using the procedure presented here, with high precision and accuracy

  19. Systematic expansion in the order parameter for replica theory of the dynamical glass transition.

    Science.gov (United States)

    Jacquin, Hugo; Zamponi, Francesco

    2013-03-28

    It has been shown recently that predictions from mode-coupling theory for the glass transition of hard-spheres become increasingly bad when dimensionality increases, whereas replica theory predicts a correct scaling. Nevertheless if one focuses on the regime around the dynamical transition in three dimensions, mode-coupling results are far more convincing than replica theory predictions. It seems thus necessary to reconcile the two theoretic approaches in order to obtain a theory that interpolates between low-dimensional, mode-coupling results, and "mean-field" results from replica theory. Even though quantitative results for the dynamical transition issued from replica theory are not accurate in low dimensions, two different approximation schemes--small cage expansion and replicated hyper-netted-chain (RHNC)--provide the correct qualitative picture for the transition, namely, a discontinuous jump of a static order parameter from zero to a finite value. The purpose of this work is to develop a systematic expansion around the RHNC result in powers of the static order parameter, and to calculate the first correction in this expansion. Interestingly, this correction involves the static three-body correlations of the liquid. More importantly, we separately demonstrate that higher order terms in the expansion are quantitatively relevant at the transition, and that the usual mode-coupling kernel, involving two-body direct correlation functions of the liquid, cannot be recovered from static computations.

  20. Fast Optimal Replica Placement with Exhaustive Search Using Dynamically Reconfigurable Processor

    Directory of Open Access Journals (Sweden)

    Hidetoshi Takeshita

    2011-01-01

    Full Text Available This paper proposes a new replica placement algorithm that expands the exhaustive search limit with reasonable calculation time. It combines a new type of parallel data-flow processor with an architecture tuned for fast calculation. The replica placement problem is to find a replica-server set satisfying service constraints in a content delivery network (CDN. It is derived from the set cover problem which is known to be NP-hard. It is impractical to use exhaustive search to obtain optimal replica placement in large-scale networks, because calculation time increases with the number of combinations. To reduce calculation time, heuristic algorithms have been proposed, but it is known that no heuristic algorithm is assured of finding the optimal solution. The proposed algorithm suits parallel processing and pipeline execution and is implemented on DAPDNA-2, a dynamically reconfigurable processor. Experiments show that the proposed algorithm expands the exhaustive search limit by the factor of 18.8 compared to the conventional algorithm search limit running on a Neumann-type processor.

  1. Technical feasibility and carbon footprint of biochar co-production with tomato plant residue.

    Science.gov (United States)

    Llorach-Massana, Pere; Lopez-Capel, Elisa; Peña, Javier; Rieradevall, Joan; Montero, Juan Ignacio; Puy, Neus

    2017-09-01

    World tomato production is in the increase, generating large amounts of organic agricultural waste, which are currently incinerated or composted, releasing CO 2 into the atmosphere. Organic waste is not only produced from conventional but also urban agricultural practices due recently gained popularity. An alternative to current waste management practices and carbon sequestration opportunity is the production of biochar (thermally converted biomass) from tomato plant residues and use as a soil amendment. To address the real contribution of biochar for greenhouse gas mitigation, it is necessary to assess the whole life cycle from the production of the tomato biomass feedstock to the actual distribution and utilisation of the biochar produced in a regional context. This study is the first step to determine the technical and environmental potential of producing biochar from tomato plant (Solanum lycopersicum arawak variety) waste biomass and utilisation as a soil amendment. The study includes the characterisation of tomato plant residue as biochar feedstock (cellulose, hemicellulose, lignin and metal content); feedstock thermal stability; and the carbon footprint of biochar production under urban agriculture at pilot and small-scale plant, and conventional agriculture at large-scale plant. Tomato plant residue is a potentially suitable biochar feedstock under current European Certification based on its lignin content (19.7%) and low metal concentration. Biomass conversion yields of over 40%, 50% carbon stabilization and low pyrolysis temperature conditions (350-400°C) would be required for biochar production to sequester carbon under urban pilot scale conditions; while large-scale biochar production from conventional agricultural practices have not the potential to sequestrate carbon because its logistics, which could be improved. Therefore, the diversion of tomato biomass waste residue from incineration or composting to biochar production for use as a soil amendment

  2. Development of highly microporous activated carbon from the alcoholic beverage industry organic by-products

    International Nuclear Information System (INIS)

    Nieto-Delgado, C.; Terrones, M.; Rangel-Mendez, J.R.

    2011-01-01

    This work has the aim to employ the agave bagasse, a waste from Tequila and Mescal industries, to obtain a product of high commercial value such as activated carbon. The activated carbon production methodology was based on a chemical activation, by using ZnCl 2 and H 3 PO 4 as activating agent and agave bagasse as a natural source of carbon. The activation temperature (150-450 o C), activation time (0-60 min) and weight ratio of activating agent to precursor (0.2-4) were studied. The produced carbon materials were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and nitrogen physisorption at -196 o C. In addition, the activating agent recovery was evaluated. We were able to obtain highly microporous activated carbons with micropore volumes between 0.24 and 1.20 cm 3 /g and a surface area within 300 and 2139 m 2 /g. These results demonstrated the feasibility to treat the industrial wastes of the Tequila and Mescal industries, being this wastes an excellent precursor to produce highly microporous activated carbons that can be processed at low activation temperatures in short times, with the possibility of recycling the activating agent.

  3. Brazilian natural fiber (jute as raw material for activated carbon production

    Directory of Open Access Journals (Sweden)

    CARLA F.S. ROMBALDO

    2014-12-01

    Full Text Available Jute fiber is the second most common natural cellulose fiber worldwide, especially in recent years, due to its excellent physical, chemical and structural properties. The objective of this paper was to investigate: the thermal degradation of in natura jute fiber, and the production and characterization of the generated activated carbon. The production consisted of carbonization of the jute fiber and activation with steam. During the activation step the amorphous carbon produced in the initial carbonization step reacted with oxidizing gas, forming new pores and opening closed pores, which enhanced the adsorptive capacity of the activated carbon. N2 gas adsorption at 77K was used in order to evaluate the effect of the carbonization and activation steps. The results of the adsorption indicate the possibility of producing a porous material with a combination of microporous and mesoporous structure, depending on the parameters used in the processes, with resulting specific surface area around 470 m2.g–1. The thermal analysis indicates that above 600°C there is no significant mass loss.

  4. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    Directory of Open Access Journals (Sweden)

    Longfei He

    2014-01-01

    Full Text Available We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optimization algorithm to obtain joint optimal production quantities combination for maximizing overall profit under regulatory policies, respectively. Furthermore, numerical studies by featuring exponentially distributed demand compare systemwide performances in various scenarios. We build the “carbon emission elasticity of profit (CEEP” index as a metric to evaluate the impact of regulatory policies on both chainwide emissions and profit. Our results manifest that by facilitating the mandatory emission cap in proper installation within the network one can balance well effective emission reduction and associated acceptable profit loss. The outcome that CEEP index when implementing Carbon emission tax is elastic implies that the scale of profit loss is greater than that of emission reduction, which shows that this policy is less effective than mandatory cap from industry standpoint at least.

  5. A Greenhouse Gas and Soil Carbon Model for Estimating the Carbon Footprint of Livestock Production in Canada

    Directory of Open Access Journals (Sweden)

    Brian G. McConkey

    2012-09-01

    Full Text Available To assess tradeoffs between environmental sustainability and changes in food production on agricultural land in Canada the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES was developed. It incorporates four livestock specific GHG assessments in a single model. To demonstrate the application of ULICEES, 10% of beef cattle protein production was assumed to be displaced with an equivalent amount of pork protein. Without accounting for the loss of soil carbon, this 10% shift reduced GHG emissions by 2.5 TgCO2e y−1. The payback period was defined as the number of years required for a GHG reduction to equal soil carbon lost from the associated land use shift. A payback period that is shorter than 40 years represents a net long term decrease in GHG emissions. Displacing beef cattle with hogs resulted in a surplus area of forage. When this residual land was left in ungrazed perennial forage, the payback periods were less than 4 years and when it was reseeded to annual crops, they were equal to or less than 40 years. They were generally greater than 40 years when this land was used to raise cattle. Agricultural GHG mitigation policies will inevitably involve a trade-off between production, land use and GHG emission reduction. ULICEES is a model that can objectively assess these trade-offs for Canadian agriculture.

  6. Comparison of pulsed versus continuous oxygen delivery using realistic adult nasal airway replicas

    Directory of Open Access Journals (Sweden)

    Chen JZ

    2017-08-01

    Full Text Available John Z Chen,1 Ira M Katz,2 Marine Pichelin,2 Kaixian Zhu,3 Georges Caillibotte,2 Michelle L Noga,4 Warren H Finlay,1 Andrew R Martin1 1Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada; 2Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay, Les Loges-en-Josas, 3Centre Explor!, Air Liquide Healthcare, Gentilly, France; 4Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada Background: Portable oxygen concentrators (POCs typically include pulse flow (PF modes to conserve oxygen. The primary aims of this study were to develop a predictive in vitro model for inhaled oxygen delivery using a set of realistic airway replicas, and to compare PF for a commercial POC with steady flow (SF from a compressed oxygen cylinder. Methods: Experiments were carried out using a stationary compressed oxygen cylinder, a POC, and 15 adult nasal airway replicas based on airway geometries derived from medical images. Oxygen delivery via nasal cannula was tested at PF settings of 2.0 and 6.0, and SF rates of 2.0 and 6.0 L/min. A test lung simulated three breathing patterns representative of a chronic obstructive pulmonary disease patient at rest, during exercise, and while asleep. Volume-averaged fraction of inhaled oxygen (FiO2 was calculated by analyzing oxygen concentrations sampled at the exit of each replica and inhalation flow rates over time. POC pulse volumes were also measured using a commercial O2 conserver test system to attempt to predict FiO2 for PF. Results: Relative volume-averaged FiO2 using PF ranged from 68% to 94% of SF values, increasing with breathing frequency and tidal volume. Three of 15 replicas failed to trigger the POC when used with the sleep breathing pattern at the 2.0 setting, and four of 15 replicas failed to trigger at the 6.0 setting. FiO2 values estimated from POC pulse characteristics followed similar trends but were lower than those derived from

  7. Methane Production and Carbon Capture by Hydrate Swapping

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas

    2017-01-01

    There are essentially two different approaches to producing methane from natural gas hydrate reservoirs, either bring the hydrate out of its thermodynamic stability region or expose the hydrate to a substance that will form a more stable hydrate structure, forcing an in situ swapping of the trapped...... experimental runs were performed to examine the influence of operating conditions on methane production by CO2/(CO2 + N2) injection in the temperature range of 274.15–277.15 K and 7.039–10.107 MPa pressure. Our results show that the use of the (CO2 + N2) binary gas mixture is advantageous compared to the use...

  8. Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process.

    Science.gov (United States)

    Lehtinen, Tapio; Efimova, Elena; Tremblay, Pier-Luc; Santala, Suvi; Zhang, Tian; Santala, Ville

    2017-11-01

    Microbial electrosynthesis (MES) is a promising technology for the reduction of carbon dioxide into value-added multicarbon molecules. In order to broaden the product profile of MES processes, we developed a two-stage process for microbial conversion of carbon dioxide and electricity into long chain alkyl esters. In the first stage, the carbon dioxide is reduced to organic compounds, mainly acetate, in a MES process by Sporomusa ovata. In the second stage, the liquid end-products of the MES process are converted to the final product by a second microorganism, Acinetobacter baylyi in an aerobic bioprocess. In this proof-of-principle study, we demonstrate for the first time the bacterial production of long alkyl esters (wax esters) from carbon dioxide and electricity as the sole sources of carbon and energy. The process holds potential for the efficient production of carbon-neutral chemicals or biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Measurements of charged pion differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS

    CERN Document Server

    Abgrall, N.; Ajaz, M.; Ali, Y.; Andronov, E.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blümer, J.; Bogomilov, M.; Brandin, A.; Bravar, A.; Brzychczyk, J.; Bunyatov, S.A.; Busygina, O.; Christakoglou, P.; Cirkovic, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G.A.; Fodor, Z.; Garibov, A.; Gazdzicki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hervé, A.E.; Hierholzer, M.; Igolkin, S.; Ivashkin, A.; Johnson, S.R.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kisiel, J.; Kobayashi, T.; Kolesnikov, V.I.; Kolev, D.; Kondratiev, V.P.; Korzenev, A.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; László, A.; Lewicki, M.; Lyubushkin, V.V.; Mackowiak-Pawłowska, M.; Maksiak, B.; Malakhov, A.I.; Manic, D.; Marcinek, A.; Marino, A.D.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G.L.; Messerly, B.; Mills, G.B.; Morozov, S.; Mrówczynski, S.; Nagai, Y.; Nakadaira, T.; Naskret, M.; Nirkko, M.; Nishikawa, K.; Panagiotou, A.D.; Paolone, V.; Pavin, M.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Popov, B.A.; Posiadała-Zezula, M.; Puławski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rumberger, B.T.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Sarnecki, R.; Schmidt, K.; Sekiguchi, T.; Selyuzhenkov, I.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Taranenko, A.; Tefelska, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V.V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszynski, O.; Yarritu, K.; Zambelli, L.; Zimmerman, E.D.; Friend, M.; Galymov, V.; Hartz, M.; Hiraki, T.; Ichikawa, A.; Kubo, H.; Matsuoka, K.; Murakami, A.; Nakaya, T.; Suzuki, K.; Tzanov, M.; Yu, M.

    2016-01-01

    Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of charged pions from the surface of the T2K replica target for incoming 31 GeV/c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed

  10. Measurements of π{sup ±} differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Ajaz, M.; Blondel, A.; Bravar, A.; Debieux, S.; Haesler, A.; Korzenev, A.; Ravonel, M. [University of Geneva, Geneva (Switzerland); Aduszkiewicz, A.; Dominik, W.; Kuich, M.; Matulewicz, T.; Posiadala-Zezula, M. [University of Warsaw, Warsaw (Poland); Ali, Y. [Jagiellonian University, Cracow (Poland); COMSATS Institute of Information Technology, Department of Physics, Islamabad (Pakistan); Andronov, E.; Feofilov, G.A.; Igolkin, S.; Kondratiev, V.P.; Seryakov, A.; Vechernin, V.V.; Vinogradov, L. [St. Petersburg State University, Saint Petersburg (Russian Federation); Anticic, T.; Kadija, K.; Susa, T. [Ruder Boskovic Institute, Zagreb (Croatia); Antoniou, N.; Christakoglou, P.; Davis, N.; Diakonos, F.; Kapoyannis, A.; Panagiotou, A.D.; Vassiliou, M. [University of Athens, Athens (Greece); Baatar, B.; Bunyatov, S.A.; Kolesnikov, V.I.; Krasnoperov, A.; Lyubushkin, V.V.; Malakhov, A.I.; Matveev, V.; Melkumov, G.L.; Tereshchenko, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Bay, F.; Di Luise, S.; Rubbia, A.; Sgalaberna, D. [ETH Zuerich, Zuerich (Switzerland); Bluemer, J.; Dembinski, H.; Engel, R.; Herve, A.E.; Mathes, H.J.; Roth, M.; Szuba, M.; Ulrich, R.; Unger, M.; Veberic, D. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Bogomilov, M.; Kolev, D.; Tsenov, R. [University of Sofia, Faculty of Physics, Sofia (Bulgaria); Brandin, A.; Selyuzhenkov, I.; Taranenko, A. [National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Moscow (Russian Federation); Brzychczyk, J.; Larsen, D.; Planeta, R.; Richter-Was, E.; Staszel, P.; Wyszynski, O. [Jagiellonian University, Cracow (Poland); Busygina, O.; Golubeva, M.; Guber, F.; Ivashkin, A.; Kurepin, A.; Sadovsky, A. [Institute for Nuclear Research, Moscow (Russian Federation); Cirkovic, M.; Manic, D.; Puzovic, J. [University of Belgrade, Belgrade (Serbia); Czopowicz, T.; Dynowski, K.; Grebieszkow, K.; Mackowiak-Pawlowska, M.; Maksiak, B.; Sarnecki, R.; Slodkowski, M.; Tefelska, A.; Tefelski, D. [Warsaw University of Technology, Warsaw (Poland); Deveaux, M.; Koziel, M.; Renfordt, R.; Stroebele, H. [University of Frankfurt, Frankfurt (Germany); Dumarchez, J.; Robert, A. [LPNHE, University of Paris VI and VII, Paris (France); Ereditato, A.; Hierholzer, M.; Nirkko, M.; Pistillo, C.; Redij, A. [University of Bern, Bern (Switzerland); Fodor, Z. [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest (Hungary); University of Wroclaw, Wroclaw (Poland); Garibov, A. [National Nuclear Research Center, Baku (Azerbaijan); Gazdzicki, M. [University of Frankfurt, Frankfurt (Germany); Jan Kochanowski University in Kielce, Kielce (Poland); Grzeszczuk, A.; Kaptur, E.; Kisiel, J.; Kowalski, S.; Pulawski, S.; Schmidt, K.; Wilczek, A. [University of Silesia, Katowice (Poland); Hasegawa, T.; Kobayashi, T.; Nakadaira, T.; Nishikawa, K.; Sakashita, K.; Sekiguchi, T.; Shibata, M.; Tada, M.; Friend, M. [Institute for Particle and Nuclear Studies, Tsukuba (Japan); Johnson, S.R.; Marino, A.D.; Rumberger, B.T.; Zimmerman, E.D. [University of Colorado, Boulder (United States); Kowalik, K.; Rondio, E.; Stepaniak, J. [National Centre for Nuclear Research, Warsaw (Poland); Laszlo, A.; Marton, K.; Vesztergombi, G. [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest (Hungary); Lewicki, M.; Naskret, M.; Turko, L. [University of Wroclaw, Wroclaw (Poland); Marcinek, A. [Jagiellonian University, Cracow (Poland); University of Wroclaw, Wroclaw (PL); Messerly, B.; Nagai, Y.; Paolone, V. [University of Pittsburgh, Pittsburgh (US); Mills, G.B.; Yarritu, K. [Los Alamos National Laboratory, Los Alamos (US); Morozov, S.; Petukhov, O. [Institute for Nuclear Research, Moscow (RU); National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Moscow (RU); Mrowczynski, S.; Rybczynski, M.; Seyboth, P.; Stefanek, G.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A. [Jan Kochanowski University in Kielce, Kielce (PL); Pavin, M. [Ruder Boskovic Institute, Zagreb (HR); LPNHE, University of Paris VI and VII, Paris (FR); Popov, B.A. [LPNHE, University of Paris VI and VII, Paris (FR); Joint Institute for Nuclear Research, Dubna (RU); Rauch, W. [Fachhochschule Frankfurt, Frankfurt (DE); Roehrich, D. [University of Bergen, Bergen (NO); Rustamov, A. [National Nuclear Research Center, Baku (AZ); University of Frankfurt, Frankfurt (DE); Zambelli, L. [LPNHE, University of Paris VI and VII, Paris (FR); Institute for Particle and Nuclear Studies, Tsukuba (JP); Galymov, V. [IPNL, University of Lyon, Villeurbanne (FR); Hartz, M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba (JP); TRIUMF, Vancouver, BC (CA); Hiraki, T.; Ichikawa, A.; Kubo, H.; Matsuoka, K.; Murakami, A.; Nakaya, T.; Suzuki, K. [Kyoto University, Department of Physics, Kyoto (JP); Tzanov, M. [Louisiana State University, Department of Physics and Astronomy, Baton Rouge, LA (US); Yu, M. [York University, Department of Physics and Astronomy, Toronto, ON (CA); Collaboration: NA61/SHINE Collaboration

    2016-11-15

    Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of π{sup ±}-mesons from the surface of the T2K replica target for incoming 31 GeV/c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed. (orig.)

  11. Chemical and morphological changes during production of conducting carbons from ferrocene-poly (furfuryl alcohol)

    International Nuclear Information System (INIS)

    Ozaki, J.; Cashion, J.D.; Brown, L.J.

    1996-01-01

    Carbons are obtained by heating organic substances up to 1000 deg C under inert atmosphere. The electronic properties of carbons change dramatically during this carbonisation process. By controlled preparation, it is possible to obtain electronically functional materials. The addition of iron to the organic starting material has a strong modifying effect and, in particular, carbonising a ferrocene-poly(furfuryl alcohol) (PFA) mixture at 700 deg C produces a carbon with a comparable electron transfer rate to platinum. 57 Moessbauer spectra showed that the first transformation of the ferrocene is to magnetite, at 200-300 deg C. At 600 deg C, the magnetite is converted to wustite, while at 650 deg C α-iron starts to appear. The final products at 800 deg C were α-iron, γ-iron and cementite, Fe 3 C. Morphological changes were studied by SEM. The tentative explanation for these results is that the iron promotes the elimination of oxygen from the initial PFA structure to produce magnetite. At 600-650 deg C , the magnetite is carbothermically reduced to wustite and α-iron, forming glassy carbon. Above 700 deg C, the iron dissolves carbon atoms to make a solid solution. On cooling, some of this fractionates into graphitic carbon, cementite and γ-iron stabilised by the carbon atoms. We believe that the furry surface is produced in this cooling process

  12. Chemical and morphological changes during production of conducting carbons from ferrocene-poly (furfuryl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, J [Tohoku University, Sendai, Japan (Japan). Institute of Chemical Reaction Science; Cashion, J D; Brown, L J [Monash Univ., Clayton, VIC (Australia). Dept. of Physics

    1997-12-31

    Carbons are obtained by heating organic substances up to 1000 deg C under inert atmosphere. The electronic properties of carbons change dramatically during this carbonisation process. By controlled preparation, it is possible to obtain electronically functional materials. The addition of iron to the organic starting material has a strong modifying effect and, in particular, carbonising a ferrocene-poly(furfuryl alcohol) (PFA) mixture at 700 deg C produces a carbon with a comparable electron transfer rate to platinum. {sup 57} Moessbauer spectra showed that the first transformation of the ferrocene is to magnetite, at 200-300 deg C. At 600 deg C, the magnetite is converted to wustite, while at 650 deg C {alpha}-iron starts to appear. The final products at 800 deg C were {alpha}-iron, {gamma}-iron and cementite, Fe{sub 3}C. Morphological changes were studied by SEM. The tentative explanation for these results is that the iron promotes the elimination of oxygen from the initial PFA structure to produce magnetite. At 600-650 deg C , the magnetite is carbothermically reduced to wustite and {alpha}-iron, forming glassy carbon. Above 700 deg C, the iron dissolves carbon atoms to make a solid solution. On cooling, some of this fractionates into graphitic carbon, cementite and {gamma}-iron stabilised by the carbon atoms. We believe that the furry surface is produced in this cooling process

  13. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw.

    Science.gov (United States)

    Drake, Travis W; Wickland, Kimberly P; Spencer, Robert G M; McKnight, Diane M; Striegl, Robert G

    2015-11-10

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high-temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low-molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.

  14. Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw

    Science.gov (United States)

    Drake, Travis W.; Wickland, Kimberly P.; Spencer, Robert G. M.; McKnight, Diane M.; Striegl, Robert G.

    2015-01-01

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high–temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low–molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.

  15. Influence of activated carbon amended ASBR on anaerobic fermentative hydrogen production

    DEFF Research Database (Denmark)

    Xie, Li; Wang, Lei; Zhou, Qi

    2013-01-01

    The effect of activated carbon amended ASBR on fermentative bio-hydgrogen production from glucose was evaluated at hydraulic retention time (HRTs) ranging from 48 h to 12 h with initial pH of 6.0 at the system temperature of 60°C. Experimental results showed that the performance of activated carbon...... amended anazrobic seguencs batch reactor (ASBRs) was more stable than that of ASBRs without activated carbon addition regarding on hydrogen production and pH. Higher hydrogen yield(HY) and hydrogen producing rate(HPR) were observed in the activated carbon amended ASBRs, with 65%, 63%, 54%, 56% enhancement...... of hydrogen yield in smaller size activated carbon amended reactor under the tested HRT ranges, and the maximum HPR of (7.09±0.31)L·(L·d)-1 and HY of (1.42±0.03) mol·mol-1 was obtained at HRT of 12h. The major soluble products form hydrogen fermentation were n-butyric acid and acetic acid, accounting for 46...

  16. Regeneration of Ksub(S)sup(0) mesons on carbon in the coherent production model

    International Nuclear Information System (INIS)

    Novak, M.

    1977-01-01

    Elastic and coherent Ksub(S)sup(0) regeneration on carbon in the kaon momentum range 10 to 50 GeV/c is calculated using the coherent production model. The ratio of the moduli of forward Ksub(S)sup(0) regeneration amplitudes on carbon and on one of its nucleons equal to 7.8+-O.4 is obtained. The result together with the published data for the coherent Ksub(S)sup(0) regeneration on carbon and hydrogen gives the value of the forward regeneration amplitude on neutrons. The calculated shape of the differential cross section for elastic Ksub(S)sup(0) regeneration on carbon is compared with the corresponding measurements. (Z.J.)

  17. Experiment Plan of High Temperature Steam and Carbon dioxide Co-electrolysis for Synthetic Gas Production

    International Nuclear Information System (INIS)

    Yoon, Duk-Joo; Ko, Jae-Hwa

    2008-01-01

    Currently, Solid oxide fuel cells (SOFC) come into the spotlight in the middle of the energy technologies of the future for highly effective conversion of fossil fuels into electricity without carbon dioxide emission. The SOFC is a reversible cell. By applying electrical power to the cell, which is solid oxide electrolysis cell (SOEC), it is possible to produce synthetic gas (syngas) from high temperature steam and carbon dioxide. The produced syngas (hydrogen and carbon monoxide) can be used for synthetic fuels. This SOEC technology can use high temperature from VHTRs for high efficiency. This paper describes KEPRI's experiment plan of high temperature steam and carbon co-electrolysis for syngas production using SOEC technology

  18. Production of activated carbons from coffee endocarp by CO2 and steam activation

    International Nuclear Information System (INIS)

    Nabais, Joao M. Valente; Nunes, Pedro; Carrott, Peter J.M.; Ribeiro Carrott, M. Manuela L.; Garcia, A. Macias; Diaz-Diez, M.A.

    2008-01-01

    In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO 2 was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO 2 activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si-H bonds. (author)

  19. Estimating dust production rate of carbon-rich stars in the Small Magellanic Cloud

    Science.gov (United States)

    Nanni, A.; Marigo, P.; Groenewegen, M. A. T.; Aringer, B.; Pastorelli, G.; Rubele, S.; Girardi, L.; Bressan, A.; Bladh, S.

    We compute a grid of spectra describing dusty Circumstellar Envelopes of Thermally Pulsing Asymptotic Giant Branch carbon-rich stars by employing a physically grounded description for dust growth. The optical constants for carbon dust have been selected in order to reproduce simultaneously the most important color-color diagrams in the Near and Mid Infrared bands. We fit the Spectral Energy Distribution of ≈2000 carbon-rich in the Small Magellanic Cloud and we compute their total dust production rate. We compare our results with the ones in the literature. Different choices of the dust-to-gas ratio and outflow expansion velocity adopted in different works, yield, in some cases, a total dust budget about three times lower than the one derived from our scheme, with the same optical data set for carbon dust.

  20. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  1. Carbon Balance and Contribution of Harvested Wood Products in China Based on the Production Approach of the Intergovernmental Panel on Climate Change

    Directory of Open Access Journals (Sweden)

    Chunyi Ji

    2016-11-01

    Full Text Available The carbon sequestration of harvested wood products (HWP plays an important role in climate mitigation. Accounting the carbon contribution of national HWP carbon pools has been listed as one of the key topics for negotiation in the United Nations Framework Convention on Climate Change. On the basis of the revised Production Approach of the Intergovernmental Panel on Climate Change (2013 (IPCC, this study assessed the accounting of carbon stock and emissions from the HWP pool in China and then analyzed its balance and contribution to carbon mitigation from 1960 to 2014. Research results showed that the accumulated carbon stock in China’s HWP carbon pool increased from 130 Teragrams Carbon (TgC in 1960 to 705.6 TgC in 2014. The annual increment in the carbon stock rose from 3.2 TgC in 1960 to 45.2 TgC in 2014. The category of solid wood products accounted for approximately 95% of the annual amount. The reduction in carbon emissions was approximately twelve times that of the emissions from the HWP producing and processing stage during the last decade. Furthermore, the amount of carbon stock and emission reduction increased from 23 TgC in 1960 to 76.1 TgC in 2014. The annual contribution of HWP could compensate for approximately 2.9% of the national carbon dioxide emissions in China.

  2. Carbon Balance and Contribution of Harvested Wood Products in China Based on the Production Approach of the Intergovernmental Panel on Climate Change.

    Science.gov (United States)

    Ji, Chunyi; Cao, Wenbin; Chen, Yong; Yang, Hongqiang

    2016-11-12

    The carbon sequestration of harvested wood products (HWP) plays an important role in climate mitigation. Accounting the carbon contribution of national HWP carbon pools has been listed as one of the key topics for negotiation in the United Nations Framework Convention on Climate Change. On the basis of the revised Production Approach of the Intergovernmental Panel on Climate Change (2013) (IPCC), this study assessed the accounting of carbon stock and emissions from the HWP pool in China and then analyzed its balance and contribution to carbon mitigation from 1960 to 2014. Research results showed that the accumulated carbon stock in China's HWP carbon pool increased from 130 Teragrams Carbon (TgC) in 1960 to 705.6 TgC in 2014. The annual increment in the carbon stock rose from 3.2 TgC in 1960 to 45.2 TgC in 2014. The category of solid wood products accounted for approximately 95% of the annual amount. The reduction in carbon emissions was approximately twelve times that of the emissions from the HWP producing and processing stage during the last decade. Furthermore, the amount of carbon stock and emission reduction increased from 23 TgC in 1960 to 76.1 TgC in 2014. The annual contribution of HWP could compensate for approximately 2.9% of the national carbon dioxide emissions in China.

  3. Carbon Balance and Contribution of Harvested Wood Products in China Based on the Production Approach of the Intergovernmental Panel on Climate Change

    Science.gov (United States)

    Ji, Chunyi; Cao, Wenbin; Chen, Yong; Yang, Hongqiang

    2016-01-01

    The carbon sequestration of harvested wood products (HWP) plays an important role in climate mitigation. Accounting the carbon contribution of national HWP carbon pools has been listed as one of the key topics for negotiation in the United Nations Framework Convention on Climate Change. On the basis of the revised Production Approach of the Intergovernmental Panel on Climate Change (2013) (IPCC), this study assessed the accounting of carbon stock and emissions from the HWP pool in China and then analyzed its balance and contribution to carbon mitigation from 1960 to 2014. Research results showed that the accumulated carbon stock in China’s HWP carbon pool increased from 130 Teragrams Carbon (TgC) in 1960 to 705.6 TgC in 2014. The annual increment in the carbon stock rose from 3.2 TgC in 1960 to 45.2 TgC in 2014. The category of solid wood products accounted for approximately 95% of the annual amount. The reduction in carbon emissions was approximately twelve times that of the emissions from the HWP producing and processing stage during the last decade. Furthermore, the amount of carbon stock and emission reduction increased from 23 TgC in 1960 to 76.1 TgC in 2014. The annual contribution of HWP could compensate for approximately 2.9% of the national carbon dioxide emissions in China. PMID:27845760

  4. Coulomb replica-exchange method: handling electrostatic attractive and repulsive forces for biomolecules.

    Science.gov (United States)

    Itoh, Satoru G; Okumura, Hisashi

    2013-03-30

    We propose a new type of the Hamiltonian replica-exchange method (REM) for molecular dynamics (MD) and Monte Carlo simulations, which we refer to as the Coulomb REM (CREM). In this method, electrostatic charge parameters in the Coulomb interactions are exchanged among replicas while temperatures are exchanged in the usual REM. By varying the atom charges, the CREM overcomes free-energy barriers and realizes more efficient sampling in the conformational space than the REM. Furthermore, this method requires only a smaller number of replicas because only the atom charges of solute molecules are used as exchanged parameters. We performed Coulomb replica-exchange MD simulations of an alanine dipeptide in explicit water solvent and compared the results with those of the conventional canonical, replica exchange, and van der Waals REMs. Two force fields of AMBER parm99 and AMBER parm99SB were used. As a result, the CREM sampled all local-minimum free-energy states more frequently than the other methods for both force fields. Moreover, the Coulomb, van der Waals, and usual REMs were applied to a fragment of an amyloid-β peptide (Aβ) in explicit water solvent to compare the sampling efficiency of these methods for a larger system. The CREM sampled structures of the Aβ fragment more efficiently than the other methods. We obtained β-helix, α-helix, 3(10)-helix, β-hairpin, and β-sheet structures as stable structures and deduced pathways of conformational transitions among these structures from a free-energy landscape. Copyright © 2012 Wiley Periodicals, Inc.

  5. Efficient Round-Trip Time Optimization for Replica-Exchange Enveloping Distribution Sampling (RE-EDS).

    Science.gov (United States)

    Sidler, Dominik; Cristòfol-Clough, Michael; Riniker, Sereina

    2017-06-13

    Replica-exchange enveloping distribution sampling (RE-EDS) allows the efficient estimation of free-energy differences between multiple end-states from a single molecular dynamics (MD) simulation. In EDS, a reference state is sampled, which can be tuned by two types of parameters, i.e., smoothness parameters(s) and energy offsets, such that all end-states are sufficiently sampled. However, the choice of these parameters is not trivial. Replica exchange (RE) or parallel tempering is a widely applied technique to enhance sampling. By combining EDS with the RE technique, the parameter choice problem could be simplified and the challenge shifted toward an optimal distribution of the replicas in the smoothness-parameter space. The choice of a certain replica distribution can alter the sampling efficiency significantly. In this work, global round-trip time optimization (GRTO) algorithms are tested for the use in RE-EDS simulations. In addition, a local round-trip time optimization (LRTO) algorithm is proposed for systems with slowly adapting environments, where a reliable estimate for the round-trip time is challenging to obtain. The optimization algorithms were applied to RE-EDS simulations of a system of nine small-molecule inhibitors of phenylethanolamine N-methyltransferase (PNMT). The energy offsets were determined using our recently proposed parallel energy-offset (PEOE) estimation scheme. While the multistate GRTO algorithm yielded the best replica distribution for the ligands in water, the multistate LRTO algorithm was found to be the method of choice for the ligands in complex with PNMT. With this, the 36 alchemical free-energy differences between the nine ligands were calculated successfully from a single RE-EDS simulation 10 ns in length. Thus, RE-EDS presents an efficient method for the estimation of relative binding free energies.

  6. Evolution of Carbon Clusters in the Detonation Products of the Triaminotrinitrobenzene (TATB)-Based Explosive PBX 9502

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Erik B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States; Velizhanin, Kirill A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States; Dattelbaum, Dana M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States; Gustavsen, Richard L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States; Aslam, Tariq D. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States; Podlesak, David W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States; Huber, Rachel C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States; Firestone, Millicent A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States; Ringstrand, Bryan S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States; Willey, Trevor M. [Lawrence Livermore National Laboratory, Livermore, California 94550, United States; Bagge-Hansen, Michael [Lawrence Livermore National Laboratory, Livermore, California 94550, United States; Hodgin, Ralph [Lawrence Livermore National Laboratory, Livermore, California 94550, United States; Lauderbach, Lisa [Lawrence Livermore National Laboratory, Livermore, California 94550, United States; van Buuren, Tony [Lawrence Livermore National Laboratory, Livermore, California 94550, United States; Sinclair, Nicholas [Washington State University, Pullman, Washington 99164, United States; Rigg, Paulo A. [Washington State University, Pullman, Washington 99164, United States; Seifert, Soenke [Argonne National Laboratory, Lemont, Illinois 60439, United States; Gog, Thomas [Argonne National Laboratory, Lemont, Illinois 60439, United States

    2017-10-05

    The detonation of carbon-rich high explosives yields solid carbon as a major constituent of the product mixture and, depending on the thermodynamic conditions behind the shock front, a variety of carbon allotropes and morphologies may form and evolve. We applied time-resolved small angle x-ray scattering (TR-SAXS) to investigate the dynamics of carbon clustering during detonation of PBX 9502, an explosive composed of triaminotrinitrobenzene (TATB) and 5 wt% fluoropolymer binder. Solid carbon formation was probed from 0.1 to 2.0 μs behind the detonation front and revealed rapid carbon cluster growth which reached a maximum after ~200 ns. The late-time carbon clusters had a radius of gyration of 3.3 nm which is consistent with 8.4 nm diameter spherical particles and matched particle sizes of recovered products. Simulations using a clustering kinetics model were found to be in good agreement with the experimental measurements of cluster growth when invoking a freeze-out temperature, and temporal shift associated with the initial precipitation of solid carbon. Product densities from reactive flow models were compared to the electron density contrast obtained from TR-SAXS and used to approximate the carbon cluster composition as a mixture of 20% highly ordered (diamond-like) and 80% disordered carbon forms, which will inform future product equation of state models for solid carbon in PBX 9502 detonation product mixtures.

  7. Hydrogen and Carbon Black Production from Thermal Decomposition of Sub-Quality Natural Gas

    Directory of Open Access Journals (Sweden)

    M. Javadi

    2010-03-01

    Full Text Available The objective of this paper is computational investigation of the hydrogen and carbon black production through thermal decomposition of waste gases containing CH4 and H2S, without requiring a H2S separation process. The chemical reaction model, which involves solid carbon, sulfur compounds and precursor species for the formation of carbon black, is based on an assumed Probability Density Function (PDF parameterized by the mean and variance of mixture fraction and β-PDF shape. The effects of feedstock mass flow rate and reactor temperature on hydrogen, carbon black, S2, SO2, COS and CS2 formation are investigated. The results show that the major factor influencing CH4 and H2S conversions is reactor temperature. For temperatures higher than 1100° K, the reactor CH4 conversion reaches 100%, whilst H2S conversion increases in temperatures higher than 1300° K. The results reveal that at any temperature, H2S conversion is less than that of CH4. The results also show that in the production of carbon black from sub-quality natural gas, the formation of carbon monoxide, which is occurring in parallel, play a very significant role. For lower values of feedstock flow rate, CH4 mostly burns to CO and consequently, the production of carbon black is low. The results show that the yield of hydrogen increases with increasing feedstock mass flow rate until the yield reaches a maximum value, and then drops with further increase in the feedstock mass flow rate.

  8. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources

    DEFF Research Database (Denmark)

    Yin, Yanan; Zhang, Yifeng; Karakashev, Dimitar Borisov

    2017-01-01

    Caproate is a valuable industrial product and chemical precursor. In this study, batch tests were conducted to investigate the fermentative caproate production through chain elongation from acetate and ethanol. The effect of acetate/ethanol ratio and initial ethanol concentration on caproate...... production was examined. When substrate concentration was controlled at 100 mM total carbon, hydrogen was used as an additional electron donor. The highest caproate concentration of 3.11 g/L was obtained at an ethanol/acetate ratio of 7:3. No additional electron donor was needed upon an ethanol/acetate ratio...... ≥7:3. Caproate production increased with the increase of carbon source until ethanol concentration over 700 mM, which inhibited the fermentation process. The highest caproate concentration of 8.42 g/L was achieved from high ethanol strength wastewater with an ethanol/acetate ratio of 10:1 (550 m...

  9. Microbial electrosynthesis for acetate production from carbon dioxide: innovative biocatalysts leading to enhanced performance

    DEFF Research Database (Denmark)

    Aryal, Nabin

    Production of chemicals has significant influence on the emission of greenhouse gases (GHG) in particular carbon dioxide (CO2), thereby contributing to the climate changes of our planet. There is a general acceptance that we need to reduce the emission of GHG on a global level to cope with these ......Production of chemicals has significant influence on the emission of greenhouse gases (GHG) in particular carbon dioxide (CO2), thereby contributing to the climate changes of our planet. There is a general acceptance that we need to reduce the emission of GHG on a global level to cope...... with these changes. Production of chemicals utilization of CO2 as feedstock represents a sustainable alternative to many fossil derived products, which are non-renewable and have a strong negative impact on the environment. Microbial electrosynthesis (MES) is an emerging technique utilizing electrical energy...

  10. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization

    Directory of Open Access Journals (Sweden)

    Sergi Abad

    2015-12-01

    Full Text Available Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10–0.12 h−1, biomass (0.7–0.8 g cells/g Substrate and product (0.14–0.15 g DHA/g cells yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct.

  11. Production and beam annealing of damage in carbon implanted silicon

    International Nuclear Information System (INIS)

    Kool, W.H.; Roosendaal, H.E.; Wiggers, L.W.; Saris, F.W.

    1978-01-01

    The annealing of damage introduced by 70 keV C implantation of Si is studied for impact of H + and He + beams in the energy interval 30 to 200 keV. For a good description of the annealing behaviour it is necessary to account for the damage introduction which occurs simultaneously. It turns out that the initial damage annealing rate is proportional to the amount of damage. The proportionality constant is related to a quantity introduced in an earlier paper in order to describe saturation effects in the damage production after H + or He + impact in unimplanted Si. This indicates that the same mechanism governs both processes: beam induced damage annealing and saturation of the damage introduction. (author)

  12. Production of metal fullerene surface layer from various media in the process of steel carbonization

    Directory of Open Access Journals (Sweden)

    KUZEEV Iskander Rustemovich

    2018-04-01

    Full Text Available Studies devoted to production of metal fullerene layer in steels when introducing carbon from organic and inorganic media were performed. Barium carbonate was used as an inorganic medium and petroleum pitch was used as an organic medium. In order to generate the required amount of fullerenes in the process of steel samples carbonization, optimal temperature mode was found. The higher temperature, absorption and cohesive effects become less important and polymeric carbon structures destruction processes become more important. On the bottom the temperature is limited by petroleum pitch softening temperature and its transition to low-viscous state in order to enhance molecular mobility and improve the possibility of their diffusion to metal surface. Identification of fullerenes in the surface modified layer was carried out following the methods of IR-Fourier spectrometry and high-performance liquid chromatography. It was found out that nanocarbon structures, formed during carbonization in barium carbonate and petroleum pitch mediums, possess different morphology. In the process of metal carbonization from carbonates medium, the main role in fullerenes synthesis is belonged to catalytic effect of surface with generation of endohedral derivatives in the surface layer; but in the process of carbonization from pitch medium fullerenes are formed during crystallization of the latter and crystallization centers are of fullerene type. Based on theoretical data and dataof spectral and chromatographic analysis, optimal conditions of metal fullerene layer formation in barium carbonate and petroleum pitch mediums were determined. Low cohesion of layer, modified in barium carbonate medium, with metal basis was discovered. That was caused by limited carbon diffusion in the volume of α-Fe. According to the detected mechanism of fullerenes formation on steel surface in gaseous medium, fullerenes are formed on catalytic centers – ferrum atoms, forming thin metal

  13. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) Users’ Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Mueller, Steffen [Univ. of Illinois, Chicago, IL (United States). Energy Resources Center; Kwon, Ho-young [International Food Policy Research Institute (IFPRI), Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois at Urbana Champaign, Urbana, IL (United States). Dept. of Natural Resources; Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2016-09-01

    The $\\underline{C}$arbon $\\underline{C}$alculator for $\\underline{L}$and $\\underline{U}$se Change from $\\underline{B}$iofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.

  14. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation.

    Science.gov (United States)

    Daniell, James; Nagaraju, Shilpa; Burton, Freya; Köpke, Michael; Simpson, Séan Dennis

    World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.

  15. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization waste management

    Science.gov (United States)

    Hydrothermal carbonization (HTC) is a relatively low temperature thermal conversion process that is gaining significant attention as a sustainable and environmentally beneficial approach for the transformation of biomass and waste streams to value-added products. Although there are numerous studies ...

  16. Sludge disintegration techniques - assessment of their impacts on solubilization of organic carbon and methane production

    OpenAIRE

    Fatoorehchi, Elham

    2016-01-01

    In the present thesis, ozone, sodium hydroxide and ultrasound were conducted to disintegrate the excess sludge prior to anaerobic digestion with the aim of improving methane production. The impacts of different sludge disintegration methods on the molecular size distribution of DOC solubilized after disintegration were investigated using size exclusion chromatography with online organic carbon detection (SEC-OCD).

  17. Methane production by Methanothermobacter thermautotrophicus to recover energy from carbon dioxide sequestered in geological reservoirs.

    Science.gov (United States)

    Kawaguchi, Hideo; Sakuma, Takahiro; Nakata, Yuiko; Kobayashi, Hajime; Endo, Keita; Sato, Kozo

    2010-07-01

    To recover energy from carbon dioxide sequestered in geological reservoirs, the geochemical effects of acidic and substrate- and nutrient-limiting conditions on methane production by the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus were investigated in a simulated deep saline aquifer environment using formation water media retrieved from petroleum reservoirs. 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Effect of Green Technology Investment on a Production-Inventory System with Carbon Tax

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Datta

    2017-01-01

    Full Text Available Carbon emissions play the central role in global warming. Manufacturing firms are significant contributors to carbon emissions. In many countries, regulatory authorities are taking actions to reduce emissions. Carbon taxation and cap-and-trade schemes are two mechanisms implemented in many countries. In the present paper, the author analyzes a production-inventory model under a carbon tax system. The production rate is assumed to be a decision variable and can be set at any level within machine limits. A proportion of items produced are defective, and this proportion depends on the production rate. Demand depends on the selling price. Unit price is a decreasing function of the production rate. Emissions can be reduced to some extent by capital investment on green technology, and this capital investment amount is a decision variable. Customers are categorized as retail customers and wholesale customers. A discount is offered to the wholesale customers on the regular selling price. The results are illustrated by a numerical example and a sensitivity analysis is performed.

  19. Managing forests because carbon matters: integrating energy, products, and land management policy

    Science.gov (United States)

    Robert W. Malmsheimer; James L. Bowyer; Jeremy S. Fried; Edmund Gee; Robert Izlar; Reid A. Miner; Ian A. Munn; Elaine Oneil; William C. Stewart

    2011-01-01

    The United States needs many different types of forests: some managed for wood products plus other benefits, and some managed for nonconsumptive uses and benefits. The objective of reducing global greenhouse gases (GHG) requires increasing carbon storage in pools other than the atmosphere. Growing more forests and keeping forests as forests are only part of the...

  20. Regional impacts of climate change and elevated carbon dioxide on forest productivity

    Science.gov (United States)

    Jennifer C. Jenkins; David W. Kicklighter; John D. Aber

    2000-01-01

    Net primary production (NPP) is defined as the rate at which carbon (C) is accumulated by autotrophs and is expressed as the difference between gross photosynthesis and autotrophic respiration. NPP is the resource providing for the growth and reproduction of all heterotrophs on Earth; as a result, it determines the planet's carrying capacity (Vitousek et al., 1986...

  1. Process and reactor for the production of hydrogen and carbon dioxide and a fuel cell system

    NARCIS (Netherlands)

    2006-01-01

    The invention relates to a process for the production of hydrogen and carbon dioxide from a hydrocarbonaceous feedstock, comprising: a) supplying a gaseous hydrocarbonaceous feedstock and steam to a reaction zone comprising a steam reforming catalyst and catalytically reforming the hydrocarbonaceous

  2. Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions

    Science.gov (United States)

    Omae, Iwao

    2016-01-01

    In carbon dioxide utilization by cyclometalated five-membered ring products, the following compounds are used in four types of applications: 1. 2-Phenylpyrazole iridium compounds, pincer phosphine iridium compounds and 2-phenylimidazoline iridium compounds are used as catalysts for both formic acid production from CO2 and H2, and hydrogen production from the formic acid. This formic acid can be a useful agent for H2 production and storage for fuel cell electric vehicles. 2. Other chemicals, e.g., dimethyl carbonate, methane, methanol and CO, are produced with dimethylaminomethylphenyltin compounds, pincer phosphine iridium compounds, pincer phosphine nickel compound and ruthenium carbene compound or 2-phenylpyridine iridium compounds, and phenylbenzothiazole iridium compounds as the catalysts for the reactions with CO2. 3. The five-membered ring intermediates of cyclometalation reactions with the conventional substrates react with carbon dioxide to afford their many types of carboxylic acid derivatives. 4. Carbon dioxide is easily immobilized at room temperature with immobilizing agents such as pincer phosphine nickel compounds, pincer phosphine palladium compounds, pincer N,N-dimethylaminomethyltin compounds and tris(2-pyridylthio)methane zinc compounds. PMID:28503084

  3. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes.

    Science.gov (United States)

    Berge, Nicole D; Li, Liang; Flora, Joseph R V; Ro, Kyoung S

    2015-09-01

    Although there are numerous studies suggesting hydrothermal carbonization is an environmentally advantageous process for transformation of wastes to value-added products, a systems level evaluation of the environmental impacts associated with hydrothermal carbonization and subsequent hydrochar combustion has not been conducted. The specific objectives of this work are to use a life cycle assessment approach to evaluate the environmental impacts associated with the HTC of food wastes and the subsequent combustion of the generated solid product (hydrochar) for energy production, and to understand how parameters and/or components associated with food waste carbonization and subsequent hydrochar combustion influence system environmental impact. Results from this analysis indicate that HTC process water emissions and hydrochar combustion most significantly influence system environmental impact, with a net negative GWP impact resulting for all evaluated substituted energy-sources except biomass. These results illustrate the importance of electricity production from hydrochar particularly when it is used to offset coal-based energy sources. HTC process water emissions result in a net impact to the environment, indicating a need for developing appropriate management strategies. Results from this analysis also highlight a need for additional exploration of liquid and gas-phase composition, a better understanding of how changes in carbonization conditions (e.g., reaction time and temperature) influence metal and nutrient fate, and the exploration of liquid-phase treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Greenhouse gas and carbon profile of the U.S. forest products industry value chain

    Science.gov (United States)

    Linda S. Heath; Van Maltby; Reid Miner; Kenneth E. Skog; James E. Smith; Jay Unwin; Brad Upton

    2010-01-01

    A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004-2005 by examining net atmospheric fluxes of CO2 and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity...

  5. Prediction of supercritical carbon dioxide drying of food products in packed beds

    NARCIS (Netherlands)

    Almeida-Rivera, C.; Khalloufi, S.; Bongers, P.M.M.

    2010-01-01

    Drying assisted by supercritical carbon dioxide is foreseen to become a promising technology for sensitive food products. In this contribution, a mathematical model is derived to describe the changes in water concentration in both a solid food matrix and a fluid carrier during drying. Finite

  6. Residual monomer reduction in polymer latex products by extraction with supercritical carbon dioxide

    NARCIS (Netherlands)

    Aerts, M.; Meuldijk, J.; Kemmere, M.F.; Keurentjes, J.T.F.

    2011-01-01

    Extraction of residual monomer from a latex product with supercritical carbon dioxide ((sc)CO2) in a column was studied. Operating conditions were chosen at 35¿°C and 100 bar. For reducing the residual styrene level in a polystyrene latex from 104 ppm to 100¿ppm and from 104 ppm to 10¿ppm, a

  7. The influence of carbon source and calcium on the production of ...

    African Journals Online (AJOL)

    use

    2011-12-10

    Dec 10, 2011 ... The influence of carbon source and calcium on the production of ... Furthermore, since the middle lamella contains high levels of calcium, it was thought that it may play an important ..... Processing of the pectate lyase PelI by ...

  8. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    Energy Technology Data Exchange (ETDEWEB)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  9. Estimation of the Carbon Footprint and Global Warming Potential in Rice Production Systems

    International Nuclear Information System (INIS)

    Dastan, S.; Soltani, F.; Noormohamadi, G.; Madani, H.; Yadi, R.

    2016-01-01

    Optimal management approaches can be adopted in order to increase crop productivity and lower the carbon footprint of grain products. The objective of this study was to estimate the carbon (C) footprint and global warming potential of rice production systems. In this experiment, rice production systems (including SRI, improved and conventional) were studied. All activities, field operations and data in production methods and at different input rates were monitored and recorded during 2012. Results showed that average global warming potential across production systems was equal to 2803.25 kg CO 2 -eq ha-1. The highest and least global warming potential were observed in the SRI and conventional systems, respectively. global warming potential per unit energy input was the least and most in SRI and conventional systems, respectively. Also, the SRI and conventional systems had the maximum and minimum global warming potential per unit energy output, respectively. SRI and conventional system had the greatest and least global warming potential per unit energy output, respectively. Therefore, the optimal management approach found in SRI resulted in a reduction in GHGs, global warming potential and the carbon footprint.

  10. Carbon footprint of conventional and organic beef production systems: An Italian case study.

    Science.gov (United States)

    Buratti, C; Fantozzi, F; Barbanera, M; Lascaro, E; Chiorri, M; Cecchini, L

    2017-01-15

    Beef cattle production is a widespread activity in Italy in the agricultural field and determines an important impact on environment and resources consumption. Carbon footprint evaluation is thus necessary to evaluate the contributions of the different stages and the possible improvements of the production chain. In this study, two typical Italian beef production systems, a conventional and an organic one are investigated in order to evaluate the greenhouse gas emissions from "cradle to gate farm" by a Life Cycle Assessment (LCA) approach; the carbon footprint (CF) per 1kg of live weight meat is calculated. The contributions from feed production, enteric fermentation, and manure management are taken into account, in order to compare the life cycle of the two productions; also the carbon balance in soil is evaluated, in order to verify the impact in a life cycle perspective. The results of CF calculation of the two farms show that organic system (24.62kgCO 2eq /kg live weight) produce more GHG emissions than the conventional one (18.21kgCO 2eq /kg live weight) and that the enteric fermentation is the more heavy contribution, with a range of 50-54% of the global CF value. Improvements of the production chain could be realized by accurate feeding strategies, in order to obtain reduction of methane emissions from enteric digestion of cattles. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Replica-moulded polydimethylsiloxane culture vessel lids attenuate ...

    Indian Academy of Sciences (India)

    Prakash

    gases, which can be up to 100 times greater than natural or ... chemical technology (New York: John Wiley) pp 69–81 ... elastomer kit (product information) (www.dowcorning.com) ... expansion of transparent elastomeric media; Rev. Sci.

  12. Analysis of the production and transaction costs of forest carbon offset projects in the USA.

    Science.gov (United States)

    Galik, Christopher S; Cooley, David M; Baker, Justin S

    2012-12-15

    Forest carbon offset project implementation costs, comprised of both production and transaction costs, could present an important barrier to private landowner participation in carbon offset markets. These costs likewise represent a largely undocumented component of forest carbon offset potential. Using a custom spreadsheet model and accounting tool, this study examines the implementation costs of different forest offset project types operating in different forest types under different accounting and sampling methodologies. Sensitivity results are summarized concisely through response surface regression analysis to illustrate the relative effect of project-specific variables on total implementation costs. Results suggest that transaction costs may represent a relatively small percentage of total project implementation costs - generally less than 25% of the total. Results also show that carbon accounting methods, specifically the method used to establish project baseline, may be among the most important factors in driving implementation costs on a per-ton-of-carbon-sequestered basis, dramatically increasing variability in both transaction and production costs. This suggests that accounting could be a large driver in the financial viability of forest offset projects, with transaction costs likely being of largest concern to those projects at the margin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Synthesis and characterization of carbon cryogel microspheres from lignin-furfural mixtures for biodiesel production.

    Science.gov (United States)

    Zainol, Muzakkir Mohammad; Amin, Nor Aishah Saidina; Asmadi, Mohd

    2015-08-01

    The aim of this work was to study the potential of biofuel and biomass processing industry side-products as acid catalyst. The synthesis of carbon cryogel from lignin-furfural mixture, prepared via sol-gel polycondensation at 90°C for 0.5h, has been investigated for biodiesel production. The effect of lignin to furfural (L/F) ratios, lignin to water (L/W) ratios and acid concentration on carbon cryogel synthesis was studied. The carbon cryogels were characterized and tested for oleic acid conversion. The thermally stable amorphous spherical carbon cryogel has a large total surface area with high acidity. Experimental results revealed the optimum FAME yield and oleic acid conversion of 91.3wt.% and 98.1wt.%, respectively were attained at 65°C for 5h with 5wt.% catalyst loading and 20:1 methanol to oleic acid molar ratio. Therefore, carbon cryogel is highly potential for heterogeneous esterification of free fatty acid to biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Chemical production from waste carbon monoxide: its potential for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Rohrmann, C.A.; Schiefelbein, G.F.; Molton, P.M.; Li, C.T.; Elliott, D.C.; Baker, E.G.

    1977-11-01

    Results of a study of the potential for energy conservation by producing chemicals from by-product or waste carbon monoxide (CO) from industrial sources are summarized. Extensive compilations of both industrial sources and uses for carbon monoxide were developed and included. Reviews of carbon monoxide purification and concentration technology and preliminary economic evaluations of carbon monoxide concentration, pipeline transportation and utilization of CO in the synthesis of ammonia and methanol are included. Preliminary technical and economic feasibility studies were made of producing ammonia and methanol from the by-product CO produced by a typical elemental phosphorus plant. Methanol synthesis appears to be more attractive than ammonia synthesis when using CO feedstock because of reduced water gas shift and carbon dioxide removal requirements. The economic studies indicate that methanol synthesis from CO appears to be competitive with conventional technology when the price of natural gas exceeds $0.82/million Btu, while ammonia synthesis from CO is probably not competitive until the price of natural gas exceeds $1.90/million Btu. It is concluded that there appears to be considerable potential for energy conservation in the chemical industry, by collecting CO rather than flaring it, and using it to make major chemicals such as ammonia and methanol.

  15. Characterization of Lignocellulosic Biomass as Raw Material for the Production of Porous Carbon-based Materials

    Directory of Open Access Journals (Sweden)

    Saptadi Darmawan

    2016-02-01

    Full Text Available Lignocellulosic biomass is a potential raw material that can be used in the synthesis (manufacture of porous carbon stuffs. The properties of such porous carbon products are affected by the species of the raw material and the manufacturing process, among other things. This paper scrutinizes the related characteristics of lignocellulosic raw materials that indicate potential for the production of porous carbon. Three species were used: pine (Pinus merkusii wood, mangium (Acacia mangium wood, and candlenut (Aleurites moluccana shells, representing softwoods, hardwoods, and non-wood stuffs, respectively. Analyses of their chemical compounds and proximate contents were carried out. Additionally, nano scale scrutiny of the lignocellulosic biomass was also conducted using the nano capable instruments, which consisted of SEM, EDS, XRD, FTIR, and DSC. Results revealed that pine wood had the most potential to produce porous carbon. Morphologically, pine wood afforded the best permeability, whereby at the structure of monoclinic cellulose crystals, there were cellulose-I(alpha structures, which contained less cellulose-I(beta structures. Furthermore, pine wood exhibited greater volatile matter content, as confirmed through the FTIR, which greatly assisted the forming of porosity inside its corresponding carbon.

  16. 77 FR 31877 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five...

    Science.gov (United States)

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-350 and 731-TA-616 and 618 (Third Review)] Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five-Year Reviews... corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion...

  17. 75 FR 18153 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-04-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time Limit for Preliminary Results of... countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea. See Countervailing...

  18. 77 FR 16810 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-03-22

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for Preliminary Results of... Register the countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea...

  19. 76 FR 20954 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for Preliminary Results of... Register the countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea...

  20. Bioenergy production systems and biochar application in forests: potential for renewable energy, soil enhancement, and carbon sequestration

    Science.gov (United States)

    Kristin McElligott; Debbie Dumroese; Mark Coleman

    2011-01-01

    Bioenergy production from forest biomass offers a unique solution to reduce wildfire hazard fuel while producing a useful source of renewable energy. However, biomass removals raise concerns about reducing soil carbon and altering forest site productivity. Biochar additions have been suggested as a way to mitigate soil carbon loss and cycle nutrients back into forestry...

  1. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois at Chicago, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Institute (IFPRI), Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois, Urbana-Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.

  2. 77 FR 25405 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-04-30

    ... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for the Preliminary Results of...

  3. 76 FR 21332 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-15

    ... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limits for the Preliminary Results of...

  4. 75 FR 25841 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-05-10

    ... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limits for the Preliminary Results of...

  5. 77 FR 27438 - Certain Corrosion-Resistant Carbon Steel Flat Products From Korea: Final Results of Expedited...

    Science.gov (United States)

    2012-05-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Certain Corrosion-Resistant... order on certain corrosion-resistant carbon steel flat products (``CORE'') from the Republic of Korea.... Scope of the Order The merchandise covered by the order includes flat-rolled carbon steel products, of...

  6. 77 FR 25141 - Corrosion-Resistant Carbon Steel Flat Products From Germany and South Korea: Extension of Time...

    Science.gov (United States)

    2012-04-27

    ...-Resistant Carbon Steel Flat Products From Germany and South Korea: Extension of Time Limits for Preliminary...) orders on corrosion-resistant carbon steel flat products (CORE) from Germany and South Korea (Korea... from Germany and South Korea: Adequacy Redetermination Memorandum,'' (April 20, 2012). The preliminary...

  7. Measurements of hadron yields from the T2K replica target in the NA61/SHINE experiment for neutrino flux prediction in T2K

    CERN Document Server

    AUTHOR|(CDS)2086777

    T2K is an accelerator-based long-baseline neutrino experiment in Japan. The main goal of the T2K experiment is a search for CP violation in the lepton sector by measuring electron (anti)neutrino appearance in a muon (anti)neutrino beam. Initial (anti)neutrino flux is produced in decays of hadrons which originate from the interactions and the re-interactions of a $30\\:$GeV proton beam with a $90\\:$cm long graphite target. Knowledge of the T2K neutrino flux is limited due to large hadron production uncertainties. A series of hadron production measurements were done to solve this problem, in the NA61/SHINE experiment at CERN. Measurements were performed with a proton beam and two target types: a thin graphite target and a replica of the T2K target. Work presented in this thesis concentrates on the T2K replica target data taken in 2010 and the development of the analysis and calibration software. The aim of these measurements is to fully constrain production of $\\pi^+$, $\\pi^-$, $K^+$, $K^-$ and $p$ coming from t...

  8. Production of high quality adsorbent charcoal from Phil. Wood II. Granulated activated carbon

    International Nuclear Information System (INIS)

    Arida, V.P.; Atienza, O.G.; Quilao, T.A.; Caballero, A.R.; Laxamana, J.S.; Pugal, D.L.; Guce, C.P.

    1992-01-01

    Two Philippine wood species out of twelve earlier studied in part I namely ''ipil-ipil'' Leucaena leucocephala (Lann) de Wit and coconut coir dust were selected for the production of good quality granulated activated carbon. Fluidization method was used in the study. The conditions for the granulation of the carbonized chars using molasses were established. An optimum ratio of 1:0.5 and 1:0.8 (char:binder) was used in the granulation process for ''ipil-ipil'' and coir dust, respectively. Carbonization was done at gradually increasing temperature of 3 0 C/min at 600 0 C. Carbonized granules with particle sizes ranging from 0.5-2.0 mm were used for the activation study. The produced granules were activated in an external heat type stainless steel reactor as mentioned in Part I using steam as activating agent. The physical properties and adsorptive capacity of the activated granular products obtained at varying activation were determined and correlated. Methylene blue adsorption and internal surface area obtained at varying conditions were determined and correlated. Maximum values obtained for methylene blue adsorption and internal surface area are 290 mg/g AC and 1,200m 2 /g AC at 900 0 C, respectively for ''ipil-ipil'' and 390 mg/g AC and 1,000m 2 g AC at 850 0 C respectively for coir dust. Gas adsorption tests done using benzene acetone and carbon tetrachloride for both ''ipil-ipil'' and coir dust activated granular char products showed that both exhibited maximum absorbability at 900 0 C. Results of the study have shown that good quality granulated activated carbon can be produced from ''ipil-ipil'' and coir dust which find suitable applications in various adsorption processes such as organic solvent adsorption, gas adsorption, water purification, oil and sugar refining, among others. (auth.). 3 refs.; 4 tabs.; 14 figs

  9. Method to assess the carbon footprint at product level in the dairy industry

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria; Thrane, Mikkel; Hermansen, John Erik

    2014-01-01

    associated with raw milk are allocated based on a weighted fat and protein content (1:1.4). Data from the dairy company Arla Foods give 1.1, 8.1, 6.5, 7.4 and 1.2 kg carbon dioxide equivalents per kg of fresh dairy product, butter and butter blend, cheese, milk powder and whey based product, and other......A model to calculate the farm-to-customer carbon footprint (CF) for different dairy product groups is presented. As the largest share of the CF of dairy products occurs at farm level, it is decisive how the emissions from raw milk production are allocated between different products. Impacts......, respectively. One critical aspect is how the by-product ‘whey’ is dealt with. No emissions are allocated to the milk solid whey, which is why products containing whey have an apparent low impact. Underlying methodological assumptions are open to debate and further research is needed concerning the CF impact...

  10. Carbon footprint of the rice (Oryza sativa production system in the municipality of Campoalegre, Huila, Colombia

    Directory of Open Access Journals (Sweden)

    Hernán J. Andrade

    2014-01-01

    Full Text Available Carbon footprint is a useful tool to estimate the impact of any production system on climate change, specifically in the net emission or fixation of greenhouse gasses (GHG. The rice cropping system has a large food, social and economical importance in the world; however, it is a net GHG-emitting productive system. The objective of this study was estimating the carbon footprint of the rice production in Campoalegre, Huila, Colombia. A total of 21 rice productive units, located at less than 15 kmfrom the center of the municipality and with gravity irrigation, was selected. Through semi-structured interviews, all activities that emit GHGs, from land preparation to harvest grain, were investigated. It was consulted to producers and managers about the use of nitrogen fertilizers and fossil fuels and the yield of rice grain in each production unit. Factor of emission and warming-equivalence among GHG recommended by Intergovernmental Panel on Climate Change were employed. Carbon fixation rates estimated in Tolima were used to found alternative systems for mitigation of these emissions. It was found a total emission of 998.1 ± 365.3 kg CO2e/ha/cycle (163.3 ± 55.8 kg CO2e/t, having nitrogen fertilization being the greatest contribution (65%. Mitigation of this GHG emission would imply the establishment and management of 0.5 ha of cacao plantations without shade trees or coffee plantations with shade trees or 1.4 ha of monoculture coffee plantations.

  11. Livestock and human use of land: Productivity trends and dietary choices as drivers of future land and carbon dynamics

    Science.gov (United States)

    Weindl, Isabelle; Popp, Alexander; Bodirsky, Benjamin Leon; Rolinski, Susanne; Lotze-Campen, Hermann; Biewald, Anne; Humpenöder, Florian; Dietrich, Jan Philipp; Stevanović, Miodrag

    2017-12-01

    Land use change has been the primary driving force of human alteration of terrestrial ecosystems. With 80% of agricultural land dedicated to livestock production, the sector is an important lever to attenuate land requirements for food production and carbon emissions from land use change. In this study, we quantify impacts of changing human diets and livestock productivity on land dynamics and depletion of carbon stored in vegetation, litter and soils. Across all investigated productivity pathways, lower consumption of livestock products can substantially reduce deforestation (47-55%) and cumulative carbon losses (34-57%). On the supply side, already minor productivity growth in extensive livestock production systems leads to substantial CO2 emission abatement, but the emission saving potential of productivity gains in intensive systems is limited, also involving trade-offs with soil carbon stocks. If accounting for uncertainties related to future trade restrictions, crop yields and pasture productivity, the range of projected carbon savings from changing diets increases to 23-78%. Highest abatement of carbon emissions (63-78%) can be achieved if reduced consumption of animal-based products is combined with sustained investments into productivity increases in plant production. Our analysis emphasizes the importance to integrate demand- and supply-side oriented mitigation strategies and to combine efforts in the crop and livestock sector to enable synergies for climate protection.

  12. Removal of the Fermentation Inhibitor, Furfural, Using Activated Carbon in Cellulosic-Ethanol Production

    KAUST Repository

    Zhang, Kuang

    2011-12-21

    Ethanol can be produced from lignocellulosic biomass through fermentation; however, some byproducts from lignocellulosics, such as furfural compounds, are highly inhibitory to the fermentation and can substantially reduce the efficiency of ethanol production. In this study, commercial and polymer-derived activated carbons were utilized to selectively remove the model fermentation inhibitor, furfural, from water solution during bioethanol production. The oxygen functional groups on the carbon surface were found to influence the selectivity of sorbents between inhibitors and sugars during the separation. After inhibitors were selectively removed from the broth, the cell growth and ethanol production efficiency was recovered noticeably in the fermentation. A sorption/desorption cycle was designed, and the sorbents were regenerated in a fixed-bed column system using ethanol-containing standard solution. Dynamic mass balance was obtained after running four or five cycles, and regeneration results were stable even after twenty cycles. © 2011 American Chemical Society.

  13. Allochthonous Carbon--a Major Driver of Bacterioplankton Production in the Subarctic Northern Baltic Sea.

    Science.gov (United States)

    Figueroa, D; Rowe, O F; Paczkowska, J; Legrand, C; Andersson, A

    2016-05-01

    Heterotrophic bacteria are, in many aquatic systems, reliant on autochthonous organic carbon as their energy source. One exception is low-productive humic lakes, where allochthonous dissolved organic matter (ADOM) is the major driver. We hypothesized that bacterial production (BP) is similarly regulated in subarctic estuaries that receive large amounts of riverine material. BP and potential explanatory factors were measured during May-August 2011 in the subarctic Råne Estuary, northern Sweden. The highest BP was observed in spring, concomitant with the spring river-flush and the lowest rates occurred during summer when primary production (PP) peaked. PLS correlations showed that ∼60% of the BP variation was explained by different ADOM components, measured as humic substances, dissolved organic carbon (DOC) and coloured dissolved organic matter (CDOM). On average, BP was threefold higher than PP. The bioavailability of allochthonous dissolved organic carbon (ADOC) exhibited large spatial and temporal variation; however, the average value was low, ∼2%. Bioassay analysis showed that BP in the near-shore area was potentially carbon limited early in the season, while BP at seaward stations was more commonly limited by nitrogen-phosphorus. Nevertheless, the bioassay indicated that ADOC could contribute significantly to the in situ BP, ∼60%. We conclude that ADOM is a regulator of BP in the studied estuary. Thus, projected climate-induced increases in river discharge suggest that BP will increase in subarctic coastal areas during the coming century.

  14. Potential Effects of Organic Carbon Production on Ecosystems and Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands in the Sacramento-San Joaquin Delta (Delta is an important component of the Ecosystem Restoration Program of the CALFED Bay-Delta Program (CALFED. CALFED is a collaborative effort among state and federal agencies to restore the ecological health and improve water management of the Delta and San Francisco Bay (Bay. Tidal wetland restoration is intended to provide valuable habitat for organisms and to improve ecosystem productivity through export of various forms of organic carbon, including both algae and plant detritus. However, the Delta also provides all or part of the drinking water for over 22 million Californians. In this context, increasing sources of organic carbon may be a problem because of the potential increase in the production of trihalomethanes and other disinfection by-products created during the process of water disinfection. This paper reviews the existing information about the roles of organic carbon in ecosystem function and drinking water quality in the Bay-Delta system, evaluates the potential for interaction, and considers major uncertainties and potential actions to reduce uncertainty. In the last 10 years, substantial progress has been made on the role of various forms of organic carbon in both ecosystem function and drinking water quality; however, interactions between the two have not been directly addressed. Several ongoing studies are beginning to address these interactions, and the results from these studies should reduce uncertainty and provide focus for further research.

  15. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of carbon black were studied. The best results were obtained in the CH4 flow rate of 5 L min-1 the degradation percentage and the selectivity for H2 production reached 98.8 % and 48.4 %, respectively. At flow rates of less than 5 L min-1 the selectivity for H2 production increases and reaches 91.9 %. The carbon black has obtained amorphous with hydrophobic characteristics and can be marketed to be used in composite material, and can also be activated chemically and/or physically and used as adsorbent material.

  16. Production of biodiesel from microalgae through biological carbon capture: a review.

    Science.gov (United States)

    Mondal, Madhumanti; Goswami, Shrayanti; Ghosh, Ashmita; Oinam, Gunapati; Tiwari, O N; Das, Papita; Gayen, K; Mandal, M K; Halder, G N

    2017-06-01

    Gradual increase in concentration of carbon dioxide (CO 2 ) in the atmosphere due to the various anthropogenic interventions leading to significant alteration in the global carbon cycle has been a subject of worldwide attention and matter of potential research over the last few decades. In these alarming scenario microalgae seems to be an attractive medium for capturing the excess CO 2 present in the atmosphere generated from different sources such as power plants, automobiles, volcanic eruption, decomposition of organic matters and forest fires. This captured CO 2 through microalgae could be used as potential carbon source to produce lipids for the generation of biofuel for replacing petroleum-derived transport fuel without affecting the supply of food and crops. This comprehensive review strives to provide a systematic account of recent developments in the field of biological carbon capture through microalgae for its utilization towards the generation of biodiesel highlighting the significance of certain key parameters such as selection of efficient strain, microalgal metabolism, cultivation systems (open and closed) and biomass production along with the national and international biodiesel specifications and properties. The potential use of photobioreactors for biodiesel production under the influence of various factors viz., light intensity, pH, time, temperature, CO 2 concentration and flow rate has been discussed. The review also provides an economic overview and future outlook on biodiesel production from microalgae.

  17. Progresses in hydrogen production and application for establishment of low‐carbon society in Japan

    International Nuclear Information System (INIS)

    Kato, Yukitaka

    2014-01-01

    Conclusion: • H2 has high‐potential as an energy carrier for future energy system in Japan. • HTGR is reliable candidate as a primary energy source for H_2 production because of its stability and abundance of amount. • Nuclear heat usage for fuel reforming are efficient utilization way. • Fuel cell vehicle is developing as a H_2 usage market. • Hydrogen reduction of CO_2 has possibility for establishment of carbon recycling industrial systems in low‐carbon society. • Choice of rational H_2 pass is important.

  18. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    OpenAIRE

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Garland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng

    2015-01-01

    This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nature14677 Nearly three-quarters of the growth in global carbon emission from burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 varied by 0.3 GtC, or 15 per cent. The primary sources of this uncertainty are c...

  19. Study on the production of alternative fuels by carbon dioxide hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Kyu Sung; Han, Sang Do; Kim, Jong Won; Kim, Youn Soon; Seo, Ji Mi [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The technologies of the fuel production from carbon dioxide by catalytic hydrogenation were surveyed. For the catalytic hydrogenation we made the lab-scale reaction apparatus and carried out some experiments with various catalysts like CuO/ZnO/Al{sub 2}O{sub 3}, Raney nickel and other commercial catalysts. In this year, the third year of the project, the experiments to find optimum catalysts and obtain the good conditions of carbon dioxide were performed followed by second year. And also the processes of the methanol synthesis was investigated simultaneously. (author). 58 refs., 58 figs., 28 tabs.

  20. Continuous production of fullerenes and other carbon nanomaterials on a semi-industrial scale using plasma technology

    International Nuclear Information System (INIS)

    Gruenberger, T.M.; Gonzalez-Aguilar, J.; Fulcheri, L.; Fabry, F.; Grivei, E.; Probst, N.; Flamant, G.; Charlier, J.-C.

    2002-01-01

    A new production method is presented allowing the production of bulk quantities of fullerenes and other carbon nanomaterials using a 3-phase thermal plasma (260 kW). The main characteristics of this method lie in the independent control of the carbon throughput by injection of a solid carbon feedstock, and the immediate extraction of the synthesised product from the reactor, allowing production on a continuous basis. The currently investigated plasma facility is of an intermediate scale between lab-size and an industrial pilot plant, ready for further up scaling to an industrial size. The influence of a large number of different carbon precursors, plasma gases and operating conditions on the fullerene yield has been studied. At this state, quantities of up to 1 kg of carbon can be processed per hour with further scope for increase, leading to production rates for this type of materials not achievable with any other technology at present

  1. Production of extracellular proteases by Mucor circinelloides using D-glucose as carbon source / substrate

    Directory of Open Access Journals (Sweden)

    Andrade Vânia Sousa

    2002-01-01

    Full Text Available Recently, some Mucorales species have been reported as protease producers. The production of extracellular proteases by Mucor circinelloides using glucose as substrate was studied. Experiments were carried out with different D-glucose concentrations (40, 60 and 80 g/L. Biomass, pH and protease activity were determined. Although biomass production had reached best yields for the medium containing D-glucose in a concentration of 80 g/L, the enzymatic production was higher when the substrate concentration was reduced to 40 g/L. The yield factor for product on cell growth and the yield factor for product on carbon substrate were higher when the microorganism grew in medium containing 40 g/L glucose. The kinetics parameters suggest that this strain seems to be promising as an alternative microorganism for protease production.

  2. On the composition of volatiles evolved during the production of carbon adsorbents from vegetable wastes

    Energy Technology Data Exchange (ETDEWEB)

    Razvigorova, M; Goranova, M; Minkova, V; Cerny, J [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Organic Chemistry with Center of Phytochemistry

    1994-11-01

    Gas and liquid products evolved in the process of carbon adsorbent production by steam pyrolysis of apricot stones and coconut shells are investigated. The oils are separated by an extrographic procedure, and the obtained fractions are analysed by gas chromatography-mass spectrometry. The basic part of the identified compounds are derivatives of phenol, guaiacol, veratrol, syringol, resorcinol, free fatty acids and esters of fatty acids. The comparative study of the pyrolysis products of apricot stones and coconut shells reveals some differences, referring mainly to the lipid parts of the raw materials. 17 refs., 1 fig., 6 tabs.

  3. Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa.

    Science.gov (United States)

    Moore, Sam; Adu-Bredu, Stephen; Duah-Gyamfi, Akwasi; Addo-Danso, Shalom D; Ibrahim, Forzia; Mbou, Armel T; de Grandcourt, Agnès; Valentini, Riccardo; Nicolini, Giacomo; Djagbletey, Gloria; Owusu-Afriyie, Kennedy; Gvozdevaite, Agne; Oliveras, Imma; Ruiz-Jaen, Maria C; Malhi, Yadvinder

    2018-02-01

    Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi-deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%-50% to woody production. Furthermore, we find that (iv) compared with canopy and root growth rates the woody growth rate of these forests is a poor proxy for their overall productivity and that (v) residence time is the primary driver in the productivity-allocation-turnover chain for the observed spatial differences in woody, leaf and root biomass across the rainfall gradient. Through a systematic assessment of forest productivity we demonstrate the importance of directly measuring the main components of above and belowground NPP and encourage the establishment of more permanent carbon intensive monitoring plots across the tropics. © 2017 John Wiley & Sons Ltd.

  4. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region.

    Science.gov (United States)

    Kimball, John S.; Thornton, Peter E.; White, Mike A.; Running, Steven W.

    1997-01-01

    A process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce stands. Model simulations of daily net carbon exchange of the ecosystem (NEE) explained 51.7% (SE = 1.32 g C m(-2) day(-1)) of the variance in daily NEE derived from stand eddy flux measurements of CO(2) during 1994. Differences between measured and simulated results were attributed to several factors including difficulties associated with measuring nighttime CO(2) fluxes and model assumptions of site homogeneity. However, comparisons between simulations and field data improved markedly at coarser time-scales. Model simulations explained 66.1% (SE = 0.97 g C m(-2) day(-1)) of the variance in measured NEE when 5-day means of daily results were compared. Annual simulations of aboveground net primary production ranged from 0.6-2.4 Mg C ha(-1) year(-1) and were concurrent with results derived from tree increment core measurements and allometric equations. Model simulations showed that all of the sites were net sinks (0.1-4.1 Mg C ha(-1) year(-1)) of atmospheric carbon for 1994. Older conifer stands showed narrow margins between uptake of carbon by net photosynthesis and carbon release through respiration. Younger stands were more productive than older stands, primarily because of lower maintenance respiration costs. However, all sites appeared to be less productive than temperate forests. Productivity simulations were strongly linked to stand morphology and site conditions. Old jack pine and aspen stands showed decreased productivity in response to simulated low soil water contents near the end of the 1994 growing season. Compared with the aspen stand, the jack pine stand appeared better adapted to conserve soil water through lower daily evapotranspiration losses but also exhibited a narrower margin between daily net

  5. Large quantity production of carbon and boron nitride nanotubes by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Fitzgerald, J.D.; Chadderton, L.; Williams, J.S.; Campbell, S.J.

    2002-01-01

    Full text: Nanotube materials including carbon and boron nitride have excellent properties compared with bulk materials. The seamless graphene cylinders with a high length to diameter ratio make them as superstrong fibers. A high amount of hydrogen can be stored into nanotubes as future clean fuel source. Theses applications require large quantity of nanotubes materials. However, nanotube production in large quantity, fully controlled quality and low costs remains challenges for most popular synthesis methods such as arc discharge, laser heating and catalytic chemical decomposition. Discovery of new synthesis methods is still crucial for future industrial application. The new low-temperature mechano-thermal process discovered by the current author provides an opportunity to develop a commercial method for bulk production. This mechano-thermal process consists of a mechanical ball milling and a thermal annealing processes. Using this method, both carbon and boron nitride nanotubes were produced. I will present the mechano-thermal method as the new bulk production technique in the conference. The lecture will summarise main results obtained. In the case of carbon nanotubes, different nanosized structures including multi-walled nanotubes, nanocells, and nanoparticles have been produced in a graphite sample using a mechano-thermal process, consisting of I mechanical milling at room temperature for up to 150 hours and subsequent thermal annealing at 1400 deg C. Metal particles have played an important catalytic effect on the formation of different tubular structures. While defect structure of the milled graphite appears to be responsible for the formation of small tubes. It is found that the mechanical treatment of graphite powder produces a disordered and microporous structure, which provides nucleation sites for nanotubes as well as free carbon atoms. Multiwalled carbon nanotubes appear to grow via growth of the (002) layers during thermal annealing. In the case of BN

  6. Economic feasibility of no-tillage and manure for soil carbon sequestration in corn production in northeastern Kansas.

    Science.gov (United States)

    Pendell, Dustin L; Williams, Jeffery R; Rice, Charles W; Nelson, Richard G; Boyles, Scott B

    2006-01-01

    This study examined the economic potential of no-tillage versus conventional tillage to sequester soil carbon by using two rates of commercial N fertilizer or beef cattle manure for continuous corn (Zea mays L.) production. Yields, input rates, field operations, and prices from an experiment were used to simulate a distribution of net returns for eight production systems. Carbon release values from direct, embodied, and feedstock energies were estimated for each system, and were used with soil carbon sequestration rates from soil tests to determine the amount of net carbon sequestered by each system. The values of carbon credits that provide an incentive for managers to adopt production systems that sequester carbon at greater rates were derived. No-till systems had greater annual soil carbon gains, net carbon gains, and net returns than conventional tillage systems. Systems that used beef cattle manure had greater soil carbon gains and net carbon gains, but lower net returns, than systems that used commercial N fertilizer. Carbon credits would be needed to encourage the use of manure-fertilized cropping systems.

  7. Influence of chemisorption products of carbon dioxide and water vapour on radiolysis of tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Zarins, Arturs, E-mail: arturs.zarins@lu.lv [University of Latvia, Institute of Chemical Physics, Kronvalda Boulevard 4, LV-1010 Riga (Latvia); Kizane, Gunta; Supe, Arnis [University of Latvia, Institute of Chemical Physics, Kronvalda Boulevard 4, LV-1010 Riga (Latvia); Knitter, Regina; Kolb, Matthias H.H. [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-WPT), 76021 Karlsruhe (Germany); Tiliks, Juris; Baumane, Larisa [University of Latvia, Institute of Chemical Physics, Kronvalda Boulevard 4, LV-1010 Riga (Latvia)

    2014-10-15

    Highlights: • Chemisorption products affect formation proceses of radiation-induced defects. • Radiolysis of chemisorption products increase amount of radiation-induced defects. • Irradiation atmosphere influence radiolysis of lithium orthosilicate pebbles. - Abstract: Lithium orthosilicate pebbles with 2.5 wt% excess of silica are the reference tritium breeding material for the European solid breeder test blanket modules. On the surface of the pebbles chemisorption products of carbon dioxide and water vapour (lithium carbonate and hydroxide) may accumulate during the fabrication process. In this study the influence of the chemisorption products on radiolysis of the pebbles was investigated. Using nanosized lithium orthosilicate powders, factors, which can influence the formation and radiolysis of the chemisorption products, were determined and described as well. The formation of radiation-induced defects and radiolysis products was studied with electron spin resonance and the method of chemical scavengers. It was found that the radiolysis of the chemisorption products on the surface of the pebbles can increase the concentration of radiation-induced defects and so could affect the tritium diffusion, retention and the released species.

  8. Sustainability of meat production beyond carbon footprint: a synthesis of case studies from grazing systems in Uruguay.

    Science.gov (United States)

    Picasso, Valentín D; Modernel, Pablo D; Becoña, Gonzalo; Salvo, Lucía; Gutiérrez, Lucía; Astigarraga, Laura

    2014-11-01

    Livestock production has been challenged as a large contributor to climate change, and carbon footprint has become a widely used measure of cattle environmental impact. This analysis of fifteen beef grazing systems in Uruguay quantifies the range of variation of carbon footprint, and the trade-offs with other relevant environmental variables, using a partial life cycle assessment (LCA) methodology. Using carbon footprint as the primary environmental indicator has several limitations: different metrics (GWP vs. GTP) may lead to different conclusions, carbon sequestration from soils may drastically affect the results, and systems with lower carbon footprint may have higher energy use, soil erosion, nutrient imbalance, pesticide ecotoxicity, and impact on biodiversity. A multidimensional assessment of sustainability of meat production is therefore needed to inform decision makers. There is great potential to improve grazing livestock systems productivity while reducing carbon footprint and other environmental impacts, and conserving biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The production of activated carbon from nigerian mineral coal via steam activation

    International Nuclear Information System (INIS)

    Nwosu, F.O.; Owolabi, B.I.O.; Adebowale, O.

    2010-01-01

    Activated carbon was produced from Okpara sub-bituminous coal and Ogwashi brown lignite coal of Nigeria through steam activation at 900 degree C and 960 degree C each for 30 min and 60 min. Okpara and Ogwashi precursor coals had carbon content of 67.41 and 64.47%, respectively, whereas the bulk density and the ash content were 0.59 - 0.68 g/mL and 2.56-9.91%, respectively. The former exhibited up to 901.0 mg/g iodine number and Brunauer Emmett Teller (BET) surface area of 604 m/sup 2/g while the latter, iodine number of 998.0 mg/g and 669 m/sup 2/g BET surface area. Both showed adequate porosity indicative of their potential for utilization for commercial production of active carbons. (author)

  10. Monitoring changes in soil carbon resulting from intensive production, a non-traditional agricultural methodology.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P.

    2013-03-01

    New Mexico State University and a group of New Mexico farmers are evaluating an innovative agricultural technique they call Intensive Production (IP). In contrast to conventional agricultural practice, IP uses intercropping, green fallowing, application of soil amendments and soil microbial inocula to sequester carbon as plant biomass, resulting in improved soil quality. Sandia National Laboratories role was to identify a non-invasive, cost effective technology to monitor soil carbon changes. A technological review indicated that Laser Induced Breakdown Spectroscopy (LIBS) best met the farmers objectives. Sandia partnered with Los Alamos National Laboratory (LANL) to analyze farmers test plots using a portable LIBS developed at LANL. Real-time LIBS field sample analysis was conducted and grab samples were collected for laboratory comparison. The field and laboratory results correlated well implying the strong potential for LIBS as an economical field scale analytical tool for analysis of elements such as carbon, nitrogen, and phosphate.

  11. Evaluation of generalized degrees of freedom for sparse estimation by replica method

    Science.gov (United States)

    Sakata, A.

    2016-12-01

    We develop a method to evaluate the generalized degrees of freedom (GDF) for linear regression with sparse regularization. The GDF is a key factor in model selection, and thus its evaluation is useful in many modelling applications. An analytical expression for the GDF is derived using the replica method in the large-system-size limit with random Gaussian predictors. The resulting formula has a universal form that is independent of the type of regularization, providing us with a simple interpretation. Within the framework of replica symmetric (RS) analysis, GDF has a physical meaning as the effective fraction of non-zero components. The validity of our method in the RS phase is supported by the consistency of our results with previous mathematical results. The analytical results in the RS phase are calculated numerically using the belief propagation algorithm.

  12. Neutron and gamma dose and spectra measurements on the Little Boy replica

    International Nuclear Information System (INIS)

    Hoots, S.; Wadsworth, D.

    1984-01-01

    The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in the atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30 0 close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables

  13. Proactive replica checking to assure reliability of data in cloud storage with minimum replication

    Science.gov (United States)

    Murarka, Damini; Maheswari, G. Uma

    2017-11-01

    The two major issues for cloud storage systems are data reliability and storage costs. For data reliability protection, multi-replica replication strategy which is used mostly in current clouds acquires huge storage consumption, leading to a large storage cost for applications within the loud specifically. This paper presents a cost-efficient data reliability mechanism named PRCR to cut back the cloud storage consumption. PRCR ensures data reliability of large cloud information with the replication that might conjointly function as a price effective benchmark for replication. The duplication shows that when resembled to the standard three-replica approach, PRCR will scale back to consume only a simple fraction of the cloud storage from one-third of the storage, thence considerably minimizing the cloud storage price.

  14. Neutron and gamma-ray dose-rates from the Little Boy replica

    International Nuclear Information System (INIS)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We report dose-rate information obtained at many locations in the near vicinity of, and at distances out to 0.64 km from, the Little Boy replica while it was operated as a critical assembly. The measurements were made with modified conventional dosimetry instruments that used an Anderson-Braun detector for neutrons and a Geiger-Mueller tube for gamma rays with suitable electronic modules to count particle-induced pulses. Thermoluminescent dosimetry methods provide corroborative data. Our analysis gives estimates of both neutron and gamma-ray relaxation lengths in air for comparison with earlier calculations. We also show the neutron-to-gamma-ray dose ratio as a function of distance from the replica. Current experiments and further data analysis will refine these results. 7 references, 8 figures

  15. Effect of surface area of substrates aiming the optimization of carbon nanotube production from ferrocene

    International Nuclear Information System (INIS)

    Osorio, A.G.; Bergmann, C.P.

    2013-01-01

    Highlights: ► An optimized synthesis of CNTs by ferrocene is proposed. ► The surface area of substrates influences the nucleation of CNTs. ► The higher the surface area of substrates the lower the temperature of synthesis. ► Chemical composition of substrates has no influence on the growth of CNTs. - Abstract: Ferrocene is widely used for the synthesis of carbon nanotubes due to its ability to act as catalyst and precursor of the synthesis. This paper proposes an optimization of the synthesis of carbon nanotubes from ferrocene, using a substrate with high surface area for their nucleation. Four different surface areas of silica powder were tested: 0.5, 50, 200 and 300 m 2 /g. Raman spectroscopy and microscopy were used to characterize the product obtained and X-ray diffraction and thermal analysis were also performed to evaluate the phases of the material. It was observed that the silica powder with the highest surface area allowed the synthesis of carbon nanotubes to occur at a lower temperature (600 °C), whereas substrates with a surface area lower than 50 m 2 /g will only form carbon nanotubes at temperatures higher than 750 °C. In order to evaluate the influence of chemical composition of the substrate, three different ceramic powders were analyzed: alumina, silica and zirconia. carbon black and previously synthesized carbon nanotubes were also used as substrate for the synthesis and the results showed that the chemical composition of the substrate does not play a relevant role in the synthesis of carbon nanotubes, only the surface area showed an influence.

  16. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment

    International Nuclear Information System (INIS)

    Hansen, Veronika; Müller-Stöver, Dorette; Ahrenfeldt, Jesper; Holm, Jens Kai; Henriksen, Ulrik Birk; Hauggaard-Nielsen, Henrik

    2015-01-01

    Thermal gasification of various biomass residues is a promising technology for combining bioenergy production with soil fertility management through the application of the resulting biochar as soil amendment. In this study, we investigated gasification biochar (GB) materials originating from two major global biomass fuels: straw gasification biochar (SGB) and wood gasification biochar (WGB), produced by a Low Temperature Circulating Fluidized Bed gasifier (LT-CFB) and a TwoStage gasifier, respectively, optimized for energy conversion. Stability of carbon in GB against microbial degradation was assessed in a short-term soil incubation study and compared to the traditional practice of direct incorporation of cereal straw. The GBs were chemically and physically characterized to evaluate their potential to improve soil quality parameters. After 110 days of incubation, about 3% of the added GB carbon was respired as CO 2 , compared to 80% of the straw carbon added. The stability of GB was also confirmed by low H/C and O/C atomic ratios with lowest values for WGB (H/C 0.12 and O/C 0.10). The soil application of GBs exhibited a liming effect increasing the soil pH from ca 8 to 9. Results from scanning electron microscopy and BET analyses showed high porosity and specific surface area of both GBs, indicating a high potential to increase important soil quality parameters such as soil structure, nutrient and water retention, especially for WGB. These results seem promising regarding the possibility to combine an efficient bioenergy production with various soil aspects such as carbon sequestration and soil quality improvements. - Highlights: • Biomass gasification can combine efficient bioenergy production with valuable biochar residuals for soil improvements. • The two investigated gasification biochars are recalcitrant indicating soil carbon sequestration potential. • Gasification biochars are potential soil improvers due to high specific surface area, liming effect

  17. Impact of Channel Estimation Errors on Multiuser Detection via the Replica Method

    Directory of Open Access Journals (Sweden)

    Li Husheng

    2005-01-01

    Full Text Available For practical wireless DS-CDMA systems, channel estimation is imperfect due to noise and interference. In this paper, the impact of channel estimation errors on multiuser detection (MUD is analyzed under the framework of the replica method. System performance is obtained in the large system limit for optimal MUD, linear MUD, and turbo MUD, and is validated by numerical results for finite systems.

  18. Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process

    International Nuclear Information System (INIS)

    Sorgüven, Esra; Özilgen, Mustafa

    2012-01-01

    This paper investigates the impact of food production processes on the environment in terms of energy and exergy utilization and carbon dioxide emission. There are three different energy utilization mechanisms in food production: Utilization of solar energy by plants to produce agricultural goods; feed consumption by herbivores to produce meat and milk; fossil fuel consumption by industrial processes to perform mixing, cooling, heating, etc. Production of strawberry-flavored yogurt, which involves these three mechanisms, is investigated here thermodynamically. Analysis starts with the cultivation of the ingredients and ends with the transfer of the final product to the market. The results show that 53% of the total exergy loss occurs during the milk production and 80% of the total work input is consumed during the plain yogurt making. The cumulative degree of perfection is 3.6% for the strawberry-flavored yogurt. This value can rise up to 4.6%, if renewable energy resources like hydropower and algal biodiesel are employed instead of fossil fuels. This paper points the direction for the development of new technology in food processing to decrease waste of energy and carbon dioxide accumulation in the atmosphere. -- Highlights: ► Energy and exergy utilization and carbon dioxide emission during strawberry-flavored yogurt production. ► Cumulative degree of perfection of strawberry-flavored yogurt is 3.6%. ► 53% of the total exergy loss occurs during the milk production. ► 80% of the total work input is consumed during the plain yogurt making.

  19. Carbon and nitrogen - The key to biological activity, diversity and productivity in a Haplic Acrisol

    International Nuclear Information System (INIS)

    Okae-Anti, Daniel; Torkpo, Addison; Kankam-Boadu, Maryross; Agyei Frimpong, Kwame; Obuobi, Daniel

    2004-10-01

    Soil organic matter is important because it impacts all soil quality functions. Much less information is available on the dynamics of the residual carbon and nitrogen content and their distribution in continuously cropped arable fields. We described the values of the soil properties, pH, moisture content, organic carbon and total nitrogen considering them to be random variables. We treated their spatial variation as a function of the distance between observations within the study site, a continuously-cropped field dominated by Haplic Acrisols. We discussed the nature and structure of the modeled functions, the semivariograms, and interpreted these in the light of the potential of these soils to sustain agricultural productivity. At these sites there had been no conversion of natural forests to agriculture so the paper does not discuss soil carbon storage for either the regional or global storage. All the properties studied showed spatial non-stationarity for the distances covered, indicating that the variance between pairs of observations increased as separating distances also increased. pH, moisture content and total nitrogen were fitted with the power model whereas the linear model best fitted organic carbon. Total nitrogen had the least nugget variance and pH the highest estimated exponent, α, from the power equations. The soils are highly variable in terms of input or return of organic residue to provide a sink for carbon and nitrogen and the breakdown of these materials as affected by pH, moisture availability and microorganisms. (author)

  20. Sintering uranium oxide in the reaction product of hydrogen-carbon dioxide mixtures

    International Nuclear Information System (INIS)

    De Hollander, W.R.; Nivas, Y.

    1975-01-01

    Compacted pellets of uranium oxide alone or containing one or more additives such as plutonium dioxide, gadolinium oxide, titanium dioxide, silica, and alumina are heated to 900 to 1599 0 C in the presence of a mixture of hydrogen and carbon dioxide, either alone or with an inert carrier gas and held at the desired temperature in this atmosphere to sinter the pellets. The sintered pellets are then cooled in an atmosphere having an oxygen partial pressure of 10 -4 to 10 -18 atm of oxygen such as dry hydrogen, wet hydrogen, dry carbon monoxide, wet carbon monoxide, inert gases such as nitrogen, argon, helium, and neon and mixtures of ayny of the foregoing including a mixture of hydrogen and carbon dioxide. The ratio of hydrogen to carbon dioxide in the gas mixture fed to the furnace is controlled to give a ratio of oxygen to uranium atoms in the sintered particles within the range of 1.98:1 to about 2.10:1. The water vapor present in the reaction products in the furnace atmosphere acts as a hydrolysis agent to aid removal of fluoride should such impurity be present in the uranium oxide. (U.S.)