WorldWideScience

Sample records for replacement nuclear research

  1. Proposed replacement nuclear research reactor, Lucas Heights, NSW

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-12

    On 17 February 1999, the House of Representatives referred to the Parliamentary Standing Committee on Public Works for consideration and report the proposed replacement nuclear research reactor at Lucas Heights, New South Wales. The Committee received a written submission from ANSTO and took evidence from ANSTO officials at public hearings held at Parliament House. It has also received submissions and took evidence from a number of organisations and individuals. Prior to the first day of public hearings, the Committee undertook an extensive inspection of the facilities at Lucas Heights. The Committee's main conclusion and recommendations are as follows: (1) A need exists to replace HIFAR with a modern research reactor. The need for the replacement of HIFAR arises as a consequence of national interest considerations, research and development requirements and the need to sustain the local production of radiopharmaceuticals. The comparative costs of locating the replacement research reactor at Lucas Heights or a green fields site favour the former by a considerable margin. The refurbishing HIFAR of would not provide an enhancement of its research and operational capabilities which are considered by the scientific community to be limited. Such limitations have led to a reduction in national research and development opportunities. It is estimated that the new national research reactor must be operational some time before HIFAR is decommissioned. Provided all recommendations and commitments contained in the Environment Assessment Report are implemented during construction and commissioning and for the expected life of the research reactor, the Committee believes, based on the evidence, that all known risks have been identified and their impact on public safety will be as low as technically possible. It is recommended that during the licensing, construction and commissioning phases ANSTO should provide the Committee with six-monthly reports on progress and that removal of

  2. Proposed replacement nuclear research reactor, Lucas Heights, NSW

    International Nuclear Information System (INIS)

    1999-01-01

    On 17 February 1999, the House of Representatives referred to the Parliamentary Standing Committee on Public Works for consideration and report the proposed replacement nuclear research reactor at Lucas Heights, New South Wales. The Committee received a written submission from ANSTO and took evidence from ANSTO officials at public hearings held at Parliament House. It has also received submissions and took evidence from a number of organisations and individuals. Prior to the first day of public hearings, the Committee undertook an extensive inspection of the facilities at Lucas Heights. The Committee's main conclusion and recommendations are as follows: 1) A need exists to replace HIFAR with a modern research reactor. The need for the replacement of HIFAR arises as a consequence of national interest considerations, research and development requirements and the need to sustain the local production of radiopharmaceuticals.The comparative costs of locating the replacement research reactor at Lucas Heights or a green fields site favour the former by a considerable margin. The refurbishing HIFAR of would not provide an enhancement of its research and operational capabilities which are considered by the scientific community to be limited. Such limitations have led to a reduction in national research and development opportunities. It is estimated that the new national research reactor must be operational some time before HIFAR is decommissioned. Provided all recommendations and commitments contained in the Environment Assessment Report are implemented during construction and commissioning and for the expected life of the research reactor, the Committee believes, based on the evidence, that all known risks have been identified and their impact on public safety will be as low as technically possible. It is recommended that during the licensing, construction and commissioning phases ANSTO should provide the Committee with six-monthly reports on progress and that removal of

  3. The nuclear safety case for the replacement research reactor

    International Nuclear Information System (INIS)

    Willers, A.; Garea, V.

    2003-01-01

    This paper presents a broad overview of the safety case being used in the licensing of Australia's Replacement Research Reactor. The reactor is a 20 MW pool-type research reactor and is being constructed at the Lucas Heights Science and Technology Centre in Sydney's south. It will be owned and operated by the Australian Nuclear Science and Technology Organisation (ANSTO) and will take over the duties currently performed by HIFAR, a DIDO-type reactor currently operating at the site. The safety case for the RRR considers all aspects of normal operation and anticipated occurrences and will be subject to periodic review and updated in line with evolving methodologies and modifications to plant and procedures. Its scope and degree of detail ensure that the risk posed to members of the public, operators and environment are all adequately low and well in the regulatory limits

  4. Could wind replace nuclear?

    International Nuclear Information System (INIS)

    2017-01-01

    This article aims at assessing the situation produced by a total replacement of nuclear energy by wind energy, while facing consumption demand at any moment, notably in December. The authors indicate the evolution of the French energy mix during December 2016, and the evolution of the rate between wind energy production and the sum of nuclear and wind energy production during the same month, and then give briefly some elements regarding necessary investments in wind energy to wholly replace nuclear energy. According to them, such a replacement would be ruinous

  5. Can photovoltaic replace nuclear?

    International Nuclear Information System (INIS)

    2017-01-01

    As the French law on energy transition for a green growth predicts that one third of nuclear energy production is to be replaced by renewable energies (wind and solar) by 2025, and while the ADEME proposes a 100 per cent renewable scenario for 2050, this paper proposes a brief analysis of the replacement of nuclear energy by solar photovoltaic energy. It presents and discusses some characteristics of photovoltaic production: production level during a typical day for each month (a noticeable lower production in December), evolution of monthly production during a year, evolution of the rate between nuclear and photovoltaic production. A cost assessment is then proposed for energy storage and for energy production, and a minimum cost of replacement of nuclear by photovoltaic is assessed. The seasonal effect is outlined, as well as the latitude effect. Finally, the authors outline the huge cost of such a replacement, and consider that public support to new photovoltaic installations without an at least daily storage mean should be cancelled

  6. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Draft Environmental Impact Statement (EIS) for the replacement of the Australian Research reactor has been released. An important objective of the EIS process is to ensure that all relevant information has been collected and assessed so that the Commonwealth Government can make an informed decision on the proposal. The environmental assessment of the proposal to construct and operate a replacement reactor described in the Draft EIS has shown that the scale of environmental impacts that would occur would be acceptable, provided that the management measures and commitments made by ANSTO are adopted. Furthermore, construction and operation of the proposed replacement reactor would result in a range of benefits in health care, the national interest, scientific achievement and industrial capability. It would also result in a range of benefits derived from increased employment and economic activity. None of the alternatives to the replacement research reactor considered in the Draft EIS can meet all of the objectives of the proposal. The risk from normal operations or accidents has been shown to be well within national and internationally accepted risk parameters. The dose due to reactor operations would continue to be small and within regulatory limits. For the replacement reactor, the principle of `As Low As Reasonably Achievable` would form an integral part of the design and licensing process to ensure that doses to operators are minimized. Costs associated with the proposal are $286 million (in 1997 dollars) for design and construction. The annual operating and maintenance costs are estimated to be $12 million per year, of which a significant proportion will be covered by commercial activities. The costs include management of the spent fuel from the replacement reactor as well as the environmental management costs of waste management, safety and environmental monitoring. Decommissioning costs for the replacement reactor would arise at the end of its lifetime

  7. Review of non-nuclear density gauges as possible replacements for ITD's nuclear density gauges.

    Science.gov (United States)

    2015-01-01

    This report examines the possibility of replacing nuclear density gauges (NDGs) with non-nuclear density gauges (NNDGs) to : measure density of hot mix asphalt (HMA) and unbound pavement layers in the field. The research team evaluated the : effectiv...

  8. Replacing nuclear staff: The proactively work at IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Pupak, M.O.; Rogero, J.R.

    2004-01-01

    The purpose of this paper was to bring the actual situation of Nuclear Education and Training in Brazil. Accordingly, this paper overviewed the situation of the educational matter on Latin America, especially in Brazil, in terms of efficiency and effectiveness of its superior education system. Mainly this paper pointed out for the replacing of nuclear staff and the proactive work of the Energy and Nuclear Research Institute (IPEN) of the Brazilian Nuclear Energy Commission (CNEN). (author)

  9. Nuclear facilities: repair and replacement technologies

    International Nuclear Information System (INIS)

    2005-01-01

    The oldest operating reactors are more than 35 years old and are now facing major maintenance operations. The first replacement of a pressurizer took place in autumn 2005 at the St-Lucie plant (Usa) while steam generators have been currently replaced since 1983. Nuclear industry has to adapt to this new market by proposing innovative technological solutions in the reactor maintenance field. This document gathers the 9 papers presented at the conference. The main improvements concern repair works on internal components of PWR-type reactors, the replacement of major components of the primary coolant circuit and surface treatments to limit the propagation of damages. The first paper shows that adequate design and feedback experience are good assets to manage the ageing of a nuclear unit. Another paper shows that a new repair method of a relief valve can avoid its replacement. (A.C.)

  10. Replacing nuclear staff: The proactive work at IPEN/CNEN-SP-Brazil

    International Nuclear Information System (INIS)

    Pupak, M.O.; Rogero, J.R.

    2005-01-01

    The purpose of this paper was to bring out the actual situation of Nuclear Education and Training in Brazil. Accordingly, this paper overviews the situation of educational matters in Latin America, especially in Brazil, in terms of efficiency and effectiveness of its superior education system. Mainly, this paper points out the replacing of nuclear staff and the proactive work of the Energy and Nuclear Research Institute (IPEN) of the Brazilian Nuclear Energy Commission (CNEN). (author)

  11. Final guidelines for an Environmental Impact Statement on the proposed construction and operation of a replacement nuclear research reactor at the Lucas Heights Science and Technology Centre

    International Nuclear Information System (INIS)

    1998-01-01

    These guidelines are based on the requirements of paragraphs 4.1 and 4.3 of the Administrative Procedures under the Commonwealth Environment Protection (Impact of Proposals) Act 1974 (EPIP Act).The Australian Nuclear Science and Technology Organisation (ANSTO) has been designated as proponent under the EPIP Act in relation to the proposed replacement nuclear research reactor at the Lucas Heights Science and Technology Centre (LHSTC). The term 'environment' refers to all aspects of the surroundings of human beings, whether affecting human beings as individuals or in social groupings. It includes the natural environment, the built environment, and social aspects of our surroundings. The definition covers such factors as air, water, soils, flora,fauna, buildings, roads, employment, hazards and risks, and safety. As set out in the guidelines, the scope of this assessment shall encompass those issues and alternatives directly related to the construction and operation of a replacement nuclear research reactor at the LHSTC. The EIS will need to make clear the site selection criteria used, and the basis, in assessing Lucas Heights as being suitable for a new reactor. While the EIS will address all aspects of the construction and operation of a replacement nuclear research reactor, it will not address issues associated with the treatment of spent nuclear fuel rods from the existing High Flux Australian Reactor (HIFAR facility). The EIS will also address issues associated with the eventual decommissioning of the proposed replacement reactor, and eventual decommissioning of the existing HIFAR facility

  12. Replacement of major nuclear power plant components for service life extension

    International Nuclear Information System (INIS)

    Novak, S.

    1987-01-01

    Problems are discussed associated with replacement of nuclear power plant components with the aim to extend their original scheduled life. The existing foreign experience shows that it is technically feasible to replace practically all basic components for which the necessity of replacement is established. Data is summed up on the replacement of steam generators in US and West German nuclear power plants showing the duration of the job, the total consumption of manhours, the collective dose equivalent and the cost. Attention is also focused on implemented and projected replacements of circulation pipes in nuclear power plants abroad. Based on these figures, the cost is estimated of the replacement of the reactor vessel and the steam generators for WWER-440 nuclear power plants. The conclusion is arrived at that even based on a conservative estimate, the extension by 20 years of the service life of a nuclear power plant is economically more effective than the construction of a new plant. (Z.M.) 2 tabs., 15 refs., 3 figs

  13. Review of ASME nuclear codes and standards- subcommittee on repairs, replacements, and modifications

    International Nuclear Information System (INIS)

    Mawson, T.J.

    1990-01-01

    As requested by the ASME board on Nuclear Codes and Standards, the Pressure Vessel Research Committee initiated a project to review Sections III and XI of the ASME Boiler and Pressure Vessel Code for the purposes of improving, clarifying, providing transition, consistency, compatibility, and simplifying code requirements. The project was organized with six subcommittees to address various Code activities: design; tests and examinations; documentation; quality assurance; repair, replacement and modification; and general requirements. This paper discusses how the subcommittee on repair, replacement and modification was organized to review the repair, replacement and modification requirements of the ASME boiler and pressure vessel code, Section III and Section XI for Class 1, 2, and 3 and MC components and their supports, and other documents of the nuclear industry related to the repair, replacement and modification requirements of the ASME code

  14. Moderator inlet line hanger replacement for Pickering nuclear power station

    International Nuclear Information System (INIS)

    Kirkpatrick, R.A.; Bowman, J.M.; Symmons, W.R.; El-Nesr, S.

    1988-01-01

    Ontario Hydro's Pickering Nuclear Generating Station (PNGS), Units 1 and 2 were shutdown for large scale fuel channel replacement. Other nonroutine inspection and maintenance activities were performed to determine the overall condition of the units and it was seen that a moderator inlet line hanger (identified as HR-29) had failed in both units. Subsequent inspections during planned maintenance outages of Pickering NGS Units 3 and 4 revealed that hanger HR-29 had failed and required replacement. A research program was conducted to find a suitable technique. These problems included accessing tooling through small inspection ports, manipulating tooling from a significant distance and the high radiation fields within the vault. This paper describes the program undertaken to replace hanger HR-29. (author)

  15. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 1. Main report

    International Nuclear Information System (INIS)

    1998-07-01

    The Draft Environmental Impact Statement (EIS) for the replacement of the Australian Research reactor has been released. An important objective of the EIS process is to ensure that all relevant information has been collected and assessed so that the Commonwealth Government can make an informed decision on the proposal. The environmental assessment of the proposal to construct and operate a replacement reactor described in the Draft EIS has shown that the scale of environmental impacts that would occur would be acceptable, provided that the management measures and commitments made by ANSTO are adopted. Furthermore, construction and operation of the proposed replacement reactor would result in a range of benefits in health care, the national interest, scientific achievement and industrial capability. It would also result in a range of benefits derived from increased employment and economic activity. None of the alternatives to the replacement research reactor considered in the Draft EIS can meet all of the objectives of the proposal. The risk from normal operations or accidents has been shown to be well within national and internationally accepted risk parameters. The dose due to reactor operations would continue to be small and within regulatory limits. For the replacement reactor, the principle of 'As Low As Reasonably Achievable' would form an integral part of the design and licensing process to ensure that doses to operators are minimized. Costs associated with the proposal are $286 million (in 1997 dollars) for design and construction. The annual operating and maintenance costs are estimated to be $12 million per year, of which a significant proportion will be covered by commercial activities. The costs include management of the spent fuel from the replacement reactor as well as the environmental management costs of waste management, safety and environmental monitoring. Decommissioning costs for the replacement reactor would arise at the end of its lifetime

  16. Australia's replacement research reactor project

    International Nuclear Information System (INIS)

    Harris, K.J.

    1999-01-01

    HIFAR, a 10 MW tank type DIDO Class reactor has operated at the Lucas Heights Science and Technology Centre for 43 years. HIFAR and the 10 kW Argonaut reactor 'Moata' which is in the Care and Maintenance phase of decommissioning are Australia's only nuclear reactors. The initial purpose for HIFAR was for materials testing to support a nuclear power program. Changing community attitude through the 1970's and a Government decision not to proceed with a planned nuclear power reactor resulted in a reduction of materials testing activities and a greater emphasis being placed on neutron beam research and the production of radioisotopes, particularly for medical purposes. HIFAR is not fully capable of satisfying the expected increase in demand for medical radiopharmaceuticals beyond the next 5 years and the radial configuration of the beam tubes severely restricts the scope and efficiency of neutron beam research. In 1997 the Australian Government decided that a replacement research reactor should be built by the Australian Nuclear Science and Technology Organisation at Lucas Heights subject to favourable results of an Environmental Impact Study. The Ei identified no reasons on the grounds of safety, health, hazard or risk to prevent construction on the preferred site and it was decided in May 1999 that there were no environmental reasons why construction of the facility should not proceed. In recent years ANSTO has been reviewing the operation of HIFAR and observing international developments in reactor technology. Limitations in the flexibility and efficiency achievable in operation of a tank type reactor and the higher intrinsic safety sought in fundamental design resulted in an early decision that the replacement reactor must be a pool type having cleaner and higher intensity tangential neutron beams of wider energy range than those available from HIFAR. ANSTO has chosen to use it's own resources supported by specialised external knowledge and experience to identify

  17. Decommissioning and equipment replacement of nuclear power plants under uncertainty

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Naito, Yuta; Kimura, Hiroshi; Madarame, Haruki

    2007-01-01

    This study examines the optimal timing for the decommissioning and equipment replacement of nuclear power plants. We consider that the firm has two options of decommissioning and equipment replacement, and determines to exercise these options under electricity price uncertainty. This problem is formulated as two optimal stopping problems. The solution of this model provides the value of the nuclear power plant and the threshold values for decommissioning and replacement. The dependence of decommissioning and replacement strategies on uncertainty and each cost is shown. In order to investigate the probability of events for decommissioning and replacement, Monte Carlo calculations are performed. We also show the probability distribution and the conditional expected time for each event. (author)

  18. Replacement energy, capacity, and reliability costs for permanent nuclear reactor shutdowns

    International Nuclear Information System (INIS)

    VanKuiken, J.C., Buehring, W.A.; Hamilton, S.; Kavicky, J.A.; Cavallo, J.D.; Veselka, T.D.; Willing, D.L.

    1993-10-01

    Average replacement power costs are estimated for potential permanent shutdowns of nuclear electricity-generating units. Replacement power costs are considered to include replacement energy, capacity, and reliability cost components. These estimates were developed to assist the US Nuclear Regulatory Commission in evaluating regulatory issues that potentially affect changes in serious reactor accident frequencies. Cost estimates were derived from long-term production-cost and capacity expansion simulations of pooled utility-system operations. Factors that affect replacement power cost, such as load growth, replacement sources of generation, and capital costs for replacement capacity, were treated in the analysis. Costs are presented for a representative reactor and for selected subcategories of reactors, based on estimates for 112 individual reactors

  19. Evaluation of depreciation costs in replacement investments of nuclear power plants

    International Nuclear Information System (INIS)

    Nakada, Shoji; Takashima, Ryuta; Nagano, Koji; Kimura, Hiroshi; Madarame, Haruki

    2010-01-01

    Replacement of nuclear power plants has the possibility of affecting the management of electric power suppliers. Therefore, in the nuclear policy, a depreciation method as an equalization method, which means that part of the investment cost is accumulated as an allowance, and after the start of operation, the depreciation cost in the replacement project is equalized, has been introduced in Japan. In this paper, we evaluate the replacement of nuclear power plants by taking into account the uncertainty of operating costs and the depreciation cost in order to examine the effect of the depreciation method on the decision criteria of the replacement.We found that the equalization method is elective for inducing the acceleration of the replacement. Furthermore, we show the relationship between the uncertainty and the depreciation method. It turns out that as uncertainty increases, the difference in investment threshold between the equalization method and the existing depreciation method decreases, and that in option value increases. (author)

  20. The role of inertial containment fusion in replacing nuclear tests

    Energy Technology Data Exchange (ETDEWEB)

    Schaper, Annette [Hessische Stiftung Friedens- und Konfliktforschung, Frankfurt am Main (Germany)

    2008-07-01

    Nuclear weapon physicists need to understand the process of a nuclear explosion, and their major experimental tools had been nuclear tests. Since a couple of years, the established nuclear weapon states observe a testing moratorium. Nevertheless, they still want to keep their nuclear arsenals, and consequently to ensure the reliability, safety, and security of their nuclear warheads. For this purpose, they use experimental tools that replace nuclear tests, among them ICF. ICF plays a central role in the so-called ''stockpile stewardship program'' that the U.S. has implemented when it participated in the negotiations on a Comprehensive Test Ban Treaty. Several questions arise and are discussed in the presentation: Does ICF allow to simulate the extreme conditions of a nuclear explosion? Which are the functions of nuclear testing that ICF can replace and which are beyond its capabilities? Would ICF be a useful tool for the design of new nuclear warheads? Why are so huge sums spent on ICF in a military context although the usefulness for nuclear weapons seems rather limited?.

  1. Replacement research reactor for Australia

    International Nuclear Information System (INIS)

    Miller, Ross

    1998-01-01

    In 1992, the Australian Government commissioned a review into the need for a replacement research reactor. That review concluded that in about years, if certain conditions were met, the Government could make a decision in favour of a replacement reactor. A major milestone was achieved when, on 3 September 1997, the Australian Government announced the construction of a replacement research reactor at the site of Australia's existing research reactor HIFAR, subject to the satisfactory outcome of an environmental assessment process. The reactor will be have the dual purpose of providing a first class facility for neutron beam research as well as providing irradiation facilities for both medical isotope production and commercial irradiations. The project is scheduled for completion before the end of 2005. (author)

  2. Affective imagery and acceptance of replacing nuclear power plants.

    Science.gov (United States)

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed. © 2011 Society for Risk Analysis.

  3. Decommissioning Operations at the Cadarache Nuclear Research Center

    International Nuclear Information System (INIS)

    Gouhier, E.

    2008-01-01

    Among the different activities of the CEA research center of Cadarache, located in the south of France, one of the most important involves decommissioning. As old facilities close, decommissioning activity increases. This presentation will give an overview of the existing organization and the different ongoing decommissioning and cleanup operations on the site. We shall also present some of the new facilities under construction the purpose of which is to replace the decommissioned ones. Cadarache research center was created on October 14, 1959. Today, the activities of the research center are shared out among several technological R and D platforms, essentially devoted to nuclear energy (fission and fusion) Acting as a support to these R and D activities, the center of Cadarache has a platform of services which groups the auxiliary services required by the nuclear facilities and those necessary to the management of nuclear materials, waste, nuclear facility releases and decommissioning. Many old facilities have shut down in recent years (replaced by new facilities) and a whole decommissioning program is now underway involving the dismantling of nuclear reactors (Rapsodie, Harmonie), processing facilities (ATUE uranium treatment facility, LECA UO 2 facility) as well as waste treatment and storage facilities (INB37, INB 56. In conclusion: other dismantling and cleanup operations that are now underway in Cadarache include the following: - Waste treatment and storage facilities, - Historical VLLW and HLW storage facility, - Fissile material storage building, - Historical spent fuel storage facility. Thanks to the project organization: - Costs and risks on these projects can be reduced. - Engineers and technicians can easily move from one project to another. In some cases, when a new facility is under construction for the purpose of replacing a decommissioned one, some of the project team can integrate the new facility as members of the operation team. Today

  4. Guideline for the seismic technical evaluation of replacement items for nuclear power plants

    International Nuclear Information System (INIS)

    Harris, S.P.; Cushing, R.W.; Johnson, H.W.; Abeles, J.M.

    1993-02-01

    Seismic qualification for equipment originally installed in nuclear power plants was typically performed by the original equipment suppliers or manufactures (OES/OEM). Many of the OES/OEM no longer maintain quality assurance programs with adequate controls for supplying nuclear equipment. Utilities themselves must provide reasonable assurance in the continued seismic adequacy of such replacement items. This guideline provides practical, cost-effective techniques which can be used to provide reasonable assurance that replacement items will meet seismic performance requirements necessary to maintain the seismic design basis of commercial nuclear power plants. It also provides a method for determining when a seismic technical evaluation of replacement items (STERI) is required as part of the procurement process for spare and replacement items. Guidance on supplier program requirements necessary to maintain continued seismic adequacy and on documentation of maintaining required seismic adequacy is also included

  5. The replacement research reactor

    International Nuclear Information System (INIS)

    Cameron, R.

    1999-01-01

    As a consequences of the government decision in September 1997. ANSTO established a replacement research reactor project to manage the procurement of the replacement reactor through the necessary approval, tendering and contract management stages This paper provides an update of the status of the project including the completion of the Environmental Impact Statement. Prequalification and Public Works Committee processes. The aims of the project, management organisation, reactor type and expected capabilities are also described

  6. Nuclear power fleet replacement: an opportunity for the French energy mix? - 5044

    International Nuclear Information System (INIS)

    Cany, C.; Mansilla, C.; Mathonniere, G.; Duquesnoy, T.; Baschwitz, A.; Da Costa, P.

    2015-01-01

    In France, 27% of the electricity is to be produced by renewable resources by 2020. This share is intended to grow up to 2050. The recent European agreement and the French 'energy transition law' will promote such a development. The French power system is characterized by high nuclear penetration and nuclear power is meant to remain a significant contributor in the medium and long term, as a low-carbon power source. More than half the French nuclear power fleet was installed in the late seventies / early eighties. Thus, the issue of its replacement is at the core of the French power mix issue. The objective of this paper is to provide some insights about the opportunity it enables for the energy mix. Two plausible replacement scenarios are developed and analyzed as regards to the energy cost provided by nuclear power. For a given target level of nuclear installed capacities, the penetration of non-dispatchable renewable energies with dispatch priority will increase the need for nuclear power modulation at reduced average load factor. The impact of modulation on the nuclear levelized cost of electricity is assessed, according to the considered replacement scenario and for different renewable and nuclear energy penetration scenarios. Results show that, according to the selected assumptions, implementing a progressive shut-down (based on an increased operation lifetime of Nuclear Power Plants) appears a relevant choice since it both provides a lowest power production cost even at reduced average load factor to participate to load following and allows the possibility of 'waiting' for choosing most sustainable technologies. (authors)

  7. The importance of project networking for the replacement research reactor

    International Nuclear Information System (INIS)

    Whitbourn, G.

    2003-01-01

    When the HIFAR research reactor was commissioned in 1958 it was both constructed and regulated by the then Australian Atomic Energy Commission. The situation now is much more complicated, with an independent regulator, The Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) and oversight by national security agencies and the Australian Safeguards and Non proliferation Organisation (ASNO). In July 2000 ANSTO contracted INVAP SE a suitably qualified and experienced nuclear organisation based in Argentina to provide the Replacement Research Reactor (RRR). INVAP subcontracted an Australian entity, a joint venture between John Holland and Evans Deakin Industries (JHEDI) to provide resources in Australia. There is an international network of over 100 subcontractors providing services, products and materials to INVAP and JHEDI and a significant number of contractors providing project support services to ANSTO. The interaction of all these entities to provide the RRR is a significant networking challenge, involving a complex network of legal, contractual and functional relationships and communication processes

  8. Guide to optimized replacement of equipment seals

    International Nuclear Information System (INIS)

    Gleason, J.F.

    1990-03-01

    A reevaluation of current scheduled replacement intervals of polymeric seals in plant equipment can achieve significant benefits. Information is provided which has the potential for increasing replacement intervals based on better information on how seals have performed through unique nuclear industry tests to qualify equipment, improved elastomers and increased knowledge of the failure mechanisms and related performance. The research was performed by reviewing applications of elastomeric seals in nuclear plants and practice associated with defining seal replacement intervals in the nuclear power and other industries. Performance indicators and how they predict degradation of seals were evaluated. Guidelines and a flow chart for reevaluating seal replacement intervals are provided. 29 refs., 38 figs., 8 tabs

  9. Guidelines for the technical evaluation of replacement items in nuclear power plants (NCIG-11)

    International Nuclear Information System (INIS)

    Craig, W.E.; Fakhar, A.A.; Shulman, M.N.

    1989-12-01

    This document presents guidelines and supporting information for the technical evaluation of replacement items in nuclear power plants. These guidelines contain six major sections which provide the practical knowledge and a programmatic approach to determine the technical and quality requirements necessary to generate purchase documents to procure the proper replacement items. The technical evaluation methodology includes the following steps. (1) Identification of the need for a technical evaluation. (2) Component/part functional classification procedures. (3) Performance of a Failure Modes and Effects Analysis. (4) Selection of Critical Characteristics for Design Determination. (5) Performance of a ''Like-For-Like'' or ''Alternate'' item Evaluation. (6) Preparation of the Technical and Quality Requirements Specification. Work on this document was initiated in response to the increased emphasis by the utilities owning nuclear power plants and nuclear industry on procurement of replacement items for use in safety related applications at nuclear power plants. 20 refs., 9 figs., 14 tabs

  10. Current research and development at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Kuesters, H.

    1982-01-01

    The Nuclear Research Center Karlsruhe (KfK) is funded to 90% by the Federal Republic of Germany and to 10% by the State of Baden-Wuerttemberg. Since its foundation in 1956 the main objective of the Center is research and development (R and D) in the aera of the nuclear technology and about 2/3 of the research capacity is now devoted to this field. Since 1960 a major activity of KfK is R and D work for the design of fast breeder reactors, including material research, physics, and safety investigations; a prototype of 300 MWe is under construction now in the lower Rhine Valley. For enrichment of 235 U fissile material KfK developed the separation nozzle process; its technical application is realized within an international contract between the Federal Republic of Germany and Brazil. Within the frame of the European Programme on fusion technology KfK develops and tests superconducting magnets for toroidal fusion systems; a smaller activity deals with research on inertial confinement fusion. A broad research programme is carried through for safety investigations of nuclear installations, especially for PWRs; this activity is supplemented by research and development in the field of nuclear materials' safeguards. Development of fast reactors has to initiate research for the reprocessing of spent fuel and waste disposal. In the pilot plant WAK spent fuel from LKWs is reprocessed; research especially tries e.g. to improve the PUREX-process by electrochemical means, vitrification of high active waste is another main activity. First studies are being performed now to clarify the necessary development for reprocessing fast reactor fuel. About 1/3 of the research capacity of KfK deals with fundamental research in nuclear physics, solid state physics, biology and studies on the impact of technology on environment. Promising new technologies as e.g. the replacement of gasoline by hydrogen cells as vehicle propulsion are investigated. (orig.)

  11. Nuclear research reactors in the world. May 1987 ed.

    International Nuclear Information System (INIS)

    1987-01-01

    This is the second edition of Reference Data Series No.3, Nuclear Research Reactors in the World, which replaces the Agency's publications Power and Research Reactors in Member States and Research Reactors in Member States. This booklet contains general information, as of the end of May 1987, on research reactors in operation, under construction, planned, and shut down. The information is collected by the Agency through questionnaires sent to the Member States through the designated national correspondents. 11 figs, 19 tabs

  12. Civil nuclear activities in Switzerland: status, legal framework, researches and harmonization

    International Nuclear Information System (INIS)

    2010-01-01

    This report gives an overview of the present status of nuclear activities in Switzerland. It indicates and comments the shares of the different sources of production of electricity, the electricity consumption, and electricity imports. It describes the structure of the sector. It proposes a history of nuclear development (first reactors, accidents, abandoned projects), describes the present nuclear plant stock, and the fuel cycle management (supply, waste management and storage, reprocessing). It presents the IFSN (the Swiss nuclear safety authority), the nuclear industry organization, and the professional bodies. Then, it describes the legal framework. It discusses the issue of nuclear plant replacement, and that of waste storage in deep geological layers, and comments the posture of the political parties on these issues. It gives a rather detailed overview of researches in the nuclear field (general framework and institutions, research reactors, researches in security and radioprotection, in nuclear safety, in controlled thermonuclear fusion, in waste management). Finally, it describes the harmonization efforts in relationship with international organizations (safety authorities and nuclear industries)

  13. Steam generator replacement at the Obrigheim nuclear power station

    International Nuclear Information System (INIS)

    Pickel, E.; Schenk, H.; Huemmler, A.

    1984-01-01

    The Obrigheim Nuclear Power Station (KWO) is equipped with a dual-loop pressurized water reactor of 345 MW electric power; it was built by Siemens in the period 1965 to 1968. By the end of 1983, KWO had produced some 35 billion kWh in 109,000 hours of operation. Repeated leaks in the heater tubes of the two steam generators had occurred since 1971. Both steam generators were replaced in the course of the 1983 annual revision. Kraftwerk Union AG (KWU) was commissioned to plant and carry out the replacement work. Despite the leakages the steam generators had been run safely and reliably over a period of 14 years until their replacement. Replacing the steam generators was completed within twelve weeks. In addition to the KWO staff and the supervising crew of KWU, some 400 external fitters were employed on the job at peak work-load periods. For the revision of the whole plant, work on the emergency systems and replacement of the steam generators a maximum number of approx. 900 external fitters were employed in the plant in addition to some 250 members of the plant crew. The exposure dose of the personnel sustained in the course of the steam generator replacement was 690 man-rem, which was clearly below previous estimates. (orig.) [de

  14. A study on the optimal replacement periods of digital control computer's components of Wolsung nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Mok, Jin Il; Seong, Poong Hyun

    1993-01-01

    Due to the failure of the instrument and control devices of nuclear power plants caused by aging, nuclear power plants occasionally trip. Even a trip of a single nuclear power plant (NPP) causes an extravagant economical loss and deteriorates public acceptance of nuclear power plants. Therefore, the replacement of the instrument and control devices with proper consideration of the aging effect is necessary in order to prevent the inadvertent trip. In this paper we investigated the optimal replacement periods of the control computer's components of Wolsung nuclear power plant Unit 1. We first derived mathematical models of optimal replacement periods to the digital control computer's components of Wolsung NPP Unit 1 and calculated the optimal replacement periods analytically. We compared the periods with the replacement periods currently used at Wolsung NPP Unit 1. The periods used at Wolsung is not based on mathematical analysis, but on empirical knowledge. As a consequence, the optimal replacement periods analytically obtained and those used in the field show a little difference. (Author)

  15. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The appendices contains additional relevant information on: Environment Australia EIS Guidelines, composition of the Study Team, Consultation Activities and Resuits, Relevant Legislation and Regulatory Requirements, Exampies of Multi-Purpose Research Reactors, Impacts of Radioactive Emissions and Wastes Generated at Lucas Heights Science and Technology Centre, Technical Analysis of the Reference Accident, Flora and Fauna Species Lists, Summary of Environmental Commitments and an Outline of the Construction Environmental Management Plan Construction Environmental Management Plan figs., ills., refs. Prepared for Australian Nuclear Science and Technology Organisation (ANSTO)

  16. Nuclear facilities: repair and replacement technologies; Installations nucleaires: technologies de reparation et de remplacement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The oldest operating reactors are more than 35 years old and are now facing major maintenance operations. The first replacement of a pressurizer took place in autumn 2005 at the St-Lucie plant (Usa) while steam generators have been currently replaced since 1983. Nuclear industry has to adapt to this new market by proposing innovative technological solutions in the reactor maintenance field. This document gathers the 9 papers presented at the conference. The main improvements concern repair works on internal components of PWR-type reactors, the replacement of major components of the primary coolant circuit and surface treatments to limit the propagation of damages. The first paper shows that adequate design and feedback experience are good assets to manage the ageing of a nuclear unit. Another paper shows that a new repair method of a relief valve can avoid its replacement. (A.C.)

  17. Replacing nuclear staff: The proactive work at IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Pupak, M.O.; Rogero, J.R.

    2004-01-01

    high level of education provided. To give an idea of the importance and size of the Post Graduation Programme at IPEN, in 2003, the staff, students, disciplines and other numbers were officially registered as following: 498 students for the MSc and PhD degrees; 166 thesis advisor's; 44 disciplines offered; 65 thesis and dissertation concluded; 147 scholarship given by the Brazilian Federal and State Governments for undergraduate and post graduate students; 400 students took entrance selection exams (about 50% were approved); Approximately 500 internship were provided; and Approximately 150 thesis advisors were invited to participate in the examining boards. The Post Graduation Programme of IPEN in association with the University of Sao Paulo - USP (the largest institution of higher education and research in Brazil, and the third in size in Latin America) is organized in three areas of concentration: TNA- Nuclear Technology and its Applications; TNM- Nuclear Technology on Materials; TNR - Nuclear Technology for Reactors. The replacement of nuclear personnel is shrinking is a fact and the problem requires immediate attention of the entire nuclear community (academia, government and industry). Aware to find ways to solve this problem, IPEN started to work more proactively by dealing closely with universities, industries, government and other relevant organizations. As result of this work, on 2001, IPEN in accordance with USP, started to offer graduation optional disciplines to all students at USP interested on nuclear field. This initiative was very successful. On 2003, IPEN started the most important project in association with Physics Institute of USP, this project so called: Programme of Graduation Course on Nuclear Science is willing to graduate Human Resources for the Nuclear Sector. Our proposal with this Programme is that the IAEA and also Brazilian Government Agency could allocate money for Brazilian fellowship in order to capture human resources for nuclear

  18. The replacement research reactor

    International Nuclear Information System (INIS)

    Cameron, R.; Horlock, K.

    2001-01-01

    The contract for the design, construction and commissioning of the Replacement Research Reactor was signed in July 2000. This was followed by the completion of the detailed design and an application for a construction licence was made in May 2001. This paper will describe the main elements of the design and their relation to the proposed applications of the reactor. The future stages in the project leading to full operation are also described

  19. Mitochondrial replacement techniques: egg donation, genealogy and eugenics.

    Science.gov (United States)

    Palacios-González, César

    2016-03-01

    Several objections against the morality of researching or employing mitochondrial replacement techniques have been advanced recently. In this paper, I examine three of these objections and show that they are found wanting. First I examine whether mitochondrial replacement techniques, research and clinical practice, should not be carried out because of possible harms to egg donors. Next I assess whether mitochondrial replacement techniques should be banned because they could affect the study of genealogical ancestry. Finally, I examine the claim that mitochondrial replacement techniques are not transferring mitochondrial DNA but nuclear DNA, and that this should be prohibited on ethical grounds.

  20. 78 FR 58574 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-09-24

    ...-Acid Storage Batteries for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION... for Nuclear Power Plants.'' The guide describes methods that the NRC staff considers acceptable for... replacement of vented lead-acid storage batteries in nuclear power plants. ADDRESSES: Please refer to Docket...

  1. 78 FR 15753 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-03-12

    ...-Acid Storage Batteries for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Draft...-Acid Storage Batteries for Nuclear Power Plants.'' The draft guide describes methods that the NRC staff..., testing, and replacement of vented lead-acid storage batteries in nuclear power plants. DATES: Submit...

  2. Replacement of the glove box panel in nuclear fuel reprocessing facility

    International Nuclear Information System (INIS)

    Yamamoto, Masahiko; Shirouzu, Hidetomo; Mori, Eito; Surugaya, Naoki

    2016-05-01

    The panels for visual confirmation of glove box installed at Operation Testing Laboratory in Tokai Reprocessing Plant have been deteriorated and transparencies have been decreased due to the long-term use. Therefore, the glove box panels have been replaced from the view point of preventive maintenance. In the new regulation formulated since the accident at Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Station, it is demanded that the glove box consists of incombustible or noncombustible materials. In this replacement, the new panels have been manufactured with the polycarbonate which satisfied the UL94 V-0 incombustible class. The glove box has been in service for 40 years and its inside is contaminated with radioactive materials. Thus, the contaminations have been investigated and decontaminated before the replacement work. Then, operator's exposure and radiation protection equipment have been estimated. Also, it is necessary to replace the panels with maintaining the glove box's enclosure function. The replacement has been conducted in closed space covering the opening parts with vinyl sheets. The enclosure function has been verified by the inspection of the new panels and glove box. (author)

  3. Replacement Nuclear Research Reactor. Supplement to Draft Environmental Impact Statement. Volume 3

    International Nuclear Information System (INIS)

    1999-01-01

    The Draft Environmental Impact Statement for a replacement research reactor at Lucas Heights, was available for public examination and comment for some three months during 1998. A Supplement to the Draft Environmental Impact Statement (Draft EIS) has been completed and was lodged with Environment Australia on 18 January 1999. The Supplement is an important step in the overall environmental assessment process. It reviews submissions received and provides the proponent's response to issues raised in the public review period. General issues extracted from submissions and addressed in the Supplement include concern over liability issues, Chernobyl type accidents, the ozone layer and health issues. Further studies, relating to issues raised in the public submission process, were undertaken for the Supplementary EIS. These studies confirm, in ANSTO's view, the findings of the Draft EIS and hence the findings of the Final EIS are unchanged from the Draft EIS

  4. Replacement Nuclear Research Reactor. Supplement to Draft Environmental Impact Statement. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The Draft Environmental Impact Statement for a replacement research reactor at Lucas Heights, was available for public examination and comment for some three months during 1998. A Supplement to the Draft Environmental Impact Statement (Draft EIS) has been completed and was lodged with Environment Australia on 18 January 1999. The Supplement is an important step in the overall environmental assessment process. It reviews submissions received and provides the proponent`s response to issues raised in the public review period. General issues extracted from submissions and addressed in the Supplement include concern over liability issues, Chernobyl type accidents, the ozone layer and health issues. Further studies, relating to issues raised in the public submission process, were undertaken for the Supplementary EIS. These studies confirm, in ANSTO`s view, the findings of the Draft EIS and hence the findings of the Final EIS are unchanged from the Draft EIS

  5. Research nuclear reactor start-up simulator

    International Nuclear Information System (INIS)

    Sofo Haro, M.; Cantero, P.

    2009-01-01

    This work presents the design and FPGA implementation of a research nuclear reactor start-up simulator. Its aim is to generate a set of signals that allow replacing the neutron detector for stimulated signals, to feed the measurement electronic of the start-up channels, to check its operation, together with the start-up security logic. The simulator presented can be configured on three independent channels and adjust the shape of the output pulses. Furthermore, each channel can be configured in 'rate' mode, where you can specify the growth rate of the pulse frequency in %/s. Result and details of the implementation on FPGA of the different functional blocks are given. (author)

  6. Application of deterministic and probabilistic methods in replacement of nuclear systems

    International Nuclear Information System (INIS)

    Vianna Filho, Alfredo Marques

    2007-01-01

    The economic equipment replacement problem is one of the oldest questions in Production Engineering. On the one hand, new equipment are more attractive given their best performance, better reliability, lower maintenance cost, etc. New equipment, however, require a higher initial investment and thus a higher opportunity cost, and impose special training of the labor force. On the other hand, old equipment represent the other way around, with lower performance, lower reliability and specially higher maintenance costs but in contrast having lower financial, insurance, and opportunity costs. The weighting of all these costs can be made with the various methods presented. The aim of this paper is to discuss deterministic and probabilistic methods applied to the study of equipment replacement. Two types of distinct problems will be examined, substitution imposed by the wearing and substitution imposed by the failures. In order to solve the problem of nuclear system substitution imposed by wearing, deterministic methods are discussed. In order to solve the problem of nuclear system substitution imposed by failures, probabilistic methods are discussed. (author)

  7. AINSE's role in tertiary sector applied nuclear research

    International Nuclear Information System (INIS)

    Cooper, R.

    2001-01-01

    The Australian Institute of Nuclear Science and Engineering (AINSE) is a collaboration between the Universities and the Australian Nuclear Science and Technology Organisation (ANSTO). Its aim is to foster research and training in areas associated with the applications of Nuclear Science and allied techniques. AINSE is now into the fifth decade of this unique association and in 2001 can claim the active membership of thirty-six of the publicly funded Universities in Australia plus the University of Auckland and its NZ government partner the Institute for Geological and Nuclear Sciences (IGNS). The widespread membership has brought with it a breadth of research areas and the traditional domains of fundamental nuclear science and allied engineering have found that they are now the stable platforms from which are launched environmental, archaeological, biomedical and novel-materials science. ANSTO's fifth decade will see the replacement of HIFAR with a state of the art research reactor that will bring biological applications to a sharper focus. A new accelerator-mass spectrometer will be commissioned during 2002 and is funded, in part, by a $1 M RIEF grant which itself recognises the quality and track record of all AINSE members' research. It will significantly assist a wide range of dating applications and also provide support to ion beam analysis (IBA) experiments. AINSE will continue to aid community collaboration with its conferences, workshops and participation in national conferences such as the AIP Congress, Vacuum Society, etc. On the international scene it is actively participating in major conferences to be held in Australia. The winter school is a venture into the undergraduate sphere

  8. Controlling the quality of replacement parts in nuclear station, class 1E equipment

    International Nuclear Information System (INIS)

    Pierson, R.K.; Clemons, R.W.

    1984-01-01

    Nuclear station owners have traditionally purchased replacement parts for Class 1E equipment from the original supplier of the equipment. By this method, part and equipment quality could be maintained. In recent years, however, this traditional source of parts has continuously declined as an increasing number of original equipment suppliers stop producing Class 1E equipment or no longer stock parts for older equipment. When replacement parts for Class 1E equipment are not obtainable from the original suppliers, equipment owners have created a variety of methods for assuring the quality of parts obtained from other sources. A standard that provides direction and guidance for maintaining the quality of Class 1E equipment when repaired with parts from alternate sources is, therefore, needed to assure the methods in use are satisfactory and to alert the equipment owners to additional acceptable methods. The standard has now been proposed. IEEE Standard P934 (June, 1983 Draft): ''Requirements for Replacement Parts for Class 1E Equipment in Nuclear Power Generating Stations'' (Ref-3) consist of an introductory section followed by sections on part selection, procurement, replacement (including inspections and tests), non-conforming conditions and records. The proposed standard also includes a non-mandatory appendix on acceptable procurement methods and a summary intended to assist the user in selecting a proper procurement method

  9. Nuclear research reactors in the world. June 1988 ed.

    International Nuclear Information System (INIS)

    1988-01-01

    This is the third edition of Reference Data Series No. 3, Nuclear Research Reactors in the World, which replaces the Agency's publications Power and Research Reactors in Member States and Research Reactors in Member States. This booklet contains general information, as of the end of June 1988, on research reactors in operation, under construction, planned, and shut down. The information is collected by the Agency through questionnaires sent to the Member States through the designated national correspondents. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the IAEA Research Reactor Data Base (RRDB) system. This system contains all the information and data previously published in the Agency's publication Power and Research Reactors in Member States as well as additional information. 12 figs, 19 tabs

  10. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  11. Optimal replacement and inspection periods of safety and control boards in Wolsung nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Mok, Jin Il

    1993-02-01

    In nuclear power plants, the safety and control systems are important for operating and maintaining safety of nuclear power plants. Due to the failure of the instrument and control devices of nuclear power plants caused by aging, nuclear power plants occasionally trip. Since the start of first commercial operation of Kori nuclear power plant (NPP) unit 1, the trips caused by instrument and control systems account for 28% of total trips of NPPs in Korea. Even a single trip of a nuclear power plant causes an extravagant economical loss and deteriorates public acceptance of nuclear power plants. Therefore, the replacement of the instrument and control devices with proper consideration of the aging effect is necessary in order to prevent the inadvertent trip. In this work we investigated the optimal replacement periods of the digital control computer's (DCC) and the programmable digital comparator's (PDC) electronic circuit boards of Wolsung nuclear power plant Unit 1. We first derived mathematical models which calculate optimal replacement periods for electronic circuit boards of digital control computer (DCC) and for those of the programmable digital comparator (PDC) in Wolsung NPP unit 1. And we analytically obtained the optimal replacement periods of electronic circuit boards by using these models. We compared these periods with the replacement periods currently used at Wolsung NPP Unit. The periods used at Wolsung is not based on mathematical analysis, but on empirical knowledge. As a consequence, the optimal replacement periods analytically obtained for the electronic circuit boards of DCC and those used in the field shown small difference : the optimal replacement periods analytically obtained for the electronic circuit boards of PDC are shorter than those used in the field in general. The engineered safeguards of Wolsung nuclear power plant unit 1 contains redundant systems of 2-out-of-3 logic which are not operating under normal conditions but they are called

  12. Nuclear plant aging research - an overview (electrical and mechanical components)

    International Nuclear Information System (INIS)

    Vora, J.P.

    1985-01-01

    As the operating nuclear power plants advance in age there must be a conscious national and international effort to understand the influence and safety implications of aging and service wear of components and structures in nuclear power plants and develop measures which are practical and cost effective for timely mitigation of aging degradation that could significantly affect plant safety. The Office of Nuclear Regulatory Research has, therefore, initiated a multi-year, multi-disciplinary program on Nuclear Plant Aging Research (NPAR). The overall goals identified for the program are as follows: 1) to identify and characterize aging and service wear effects associated with electrical and mechanical components, interfaces, and systems whose failure could impair plant safety; 2) to identify and recommend methods of inspection, surveillance and condition monitoring of electrical and mechanical components and systems which will be effective in detecting significant aging effects prior to loss of safety function so that timely maintenance and repair or replacement can be implemented; and, 3) to identify and recommend acceptable maintenance practices which can be undertaken to mitigate the effects of aging and to diminish the rate and extent of degradation caused by aging and service wear. The specific research activities to be implemented to achieve these goals are described

  13. Nuclear reactor fuel replacement system

    International Nuclear Information System (INIS)

    Kayano, Hiroyuki; Joge, Toshio.

    1976-01-01

    Object: To permit the direction in which a fuel replacement unit is moving to be monitored by the operator. Structure: When a fuel replacement unit approaches an intermediate goal position preset in the path of movement, renewal of data display on a goal position indicator is made every time the goal position is changed. With this renewal, the prevailing direction of movement of the fuel replacement unit can be monitored by the operator. When the control of movement is initiated, the co-ordinates of the intermediate goal point A are displayed on a goal position indicator. When the replacement unit reaches point A, the co-ordinates of the next intermediate point B are displayed, and upon reaching point B the co-ordinates of the (last) goal point C are displayed. (Nakamura, S.)

  14. HVAC System Replacements for the Spanish Nuclear Fleet

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, J.; Gensollen, T.; Pérez, C.

    2015-07-01

    The European Union and its Member States have established regulations to phase out ozone-depleting chlorofluorocarbons (CFCs). The chiller systems installed at the Spanish nuclear fleet contained zone depleting refrigerants (such as R-11, R-12, and R-22), which are being phased out of service. Due to the different material and thermodynamic properties of the replacement refrigerant (e.g. R-134A), a complete chiller system replacement is needed to comply with the EU regulations for CFCs. Delivering state of the art HVAC and Chiller systems that comply with the Nuclear Plant design basis, licensing basis, system and component specifications as well as European Union (EU) and Spanish codes and standards can be challenging for products purchased from US based manufacturers. Procurement specifications and Request for Quotes (RFQs) issued today for the procurement of original Plant components and systems will contain references to numerous codes and standards that were not in effect at the time the original components were specified and procured. The reference to EU and Spanish codes and standards that are unfamiliar to the HVAC suppliers can lead to uncertainty and concern related to specification compliance. The unnecessary burden of ambiguous codes and standards complicates the proposal process and introduces pricing uncertainty and contract risk. A review of the EU and Spanish national codes and standards that are often referenced in HVAC system related RFQs need to be performed to determine what codes and standards are applicable to HVAC systems designed, manufactured and tested in the US for export to Spain for installation in Spanish NPPs. Lessons learned and best practices should be applied to help both the Supplier (HVAC OEM) and the Purchaser Plant Operator) to optimize the procurement process and improve the quality of offerings to comply with applicable codes and standards. (Author)

  15. Proposal of a synchro panel meter instrument to replace the obsolete Synchro/Resolver reading device used as position indicator of safety rods assembly of the Brazilian IEA-R1 Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Toledo, Fabio de; Brancaccio, Franco; Cardenas, Jose Patricio N.

    2015-01-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) was founded in 1956 (as Atomic Energy Institute - IEA) as a facility complex, for the research, development and application, in the nuclear technology field. The institute is recognized as a national leader in nuclear research and development (R and D), including the areas of reactor operation, radiopharmaceuticals, industrial and laboratory applications, materials science and laser technologies and applications. IPEN's main facility is the IEA-R1, nuclear research reactor (NRR), today, the only one in Brazil with a power level suitable for applications in physics, chemistry, biology and engineering. Some radioisotopes are also produced in IEA-R1, for medical and other applications. A common problem faced in the IEA-R1 maintenance is instrumentation obsolescence; spare parts are no more available, because of discontinued production, and an updating program is mandatory, aiming at modernization of old-aged I and C systems. In the presented context, an electronic system is here proposed, as a replacement for the reactor safety (shim) rods assembly position indicator, based on an open-source physical computing platform called Arduino, which includes a simple microcontroller board and a software-code development environment. A mathematical algorithm for the synchro-motor signal processing was developed, and the obtained resolution was better than 1.5%. (author)

  16. Proposal of a synchro panel meter instrument to replace the obsolete Synchro/Resolver reading device used as position indicator of safety rods assembly of the Brazilian IEA-R1 Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Fabio de; Brancaccio, Franco; Cardenas, Jose Patricio N., E-mail: fatoledo@ipen.br, E-mail: fbrancac@ipen.br, E-mail: ahiru@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) was founded in 1956 (as Atomic Energy Institute - IEA) as a facility complex, for the research, development and application, in the nuclear technology field. The institute is recognized as a national leader in nuclear research and development (R and D), including the areas of reactor operation, radiopharmaceuticals, industrial and laboratory applications, materials science and laser technologies and applications. IPEN's main facility is the IEA-R1, nuclear research reactor (NRR), today, the only one in Brazil with a power level suitable for applications in physics, chemistry, biology and engineering. Some radioisotopes are also produced in IEA-R1, for medical and other applications. A common problem faced in the IEA-R1 maintenance is instrumentation obsolescence; spare parts are no more available, because of discontinued production, and an updating program is mandatory, aiming at modernization of old-aged I and C systems. In the presented context, an electronic system is here proposed, as a replacement for the reactor safety (shim) rods assembly position indicator, based on an open-source physical computing platform called Arduino, which includes a simple microcontroller board and a software-code development environment. A mathematical algorithm for the synchro-motor signal processing was developed, and the obtained resolution was better than 1.5%. (author)

  17. Licensing of ANSTO's Replacement Research Reactor

    International Nuclear Information System (INIS)

    Summerfield, M.W.; Garea, V.

    2003-01-01

    This paper presents a general description of the licensing of the 20 MW Pool-type Replacement Research Reactor (RRR) currently being built by the Australian Nuclear Science and Technology Organisation (ANSTO) at their Lucas Heights site. The following aspects will be addressed: 1) The influence of ARPANSA's (the Australian regulator) Regulatory Assessment Principles and Design Criteria on the design of the RRR. 2) The Site Licence Application, including the EIS and the supporting siting documentation. 3) The Construction Licence Application, including the PSAR and associated documentation. 4) The review process, including the IAEA Peer Review and the Public Submissions as well as ARPANSA's own review. 5) The interface between ANSTO, INVAP and ARPANSA in relation to the ongoing compliance with ARPANS Regulation 51 and 54. 6) The future Operating Licence Application, including the draft FSAR and associated documentation. These aspects are all addressed from the point of view of the licensee ANSTO and the RRR Project. Particular emphasis will be given to the way in which the licensing process is integrated into the overall project program and how the licensing and regulatory regime within Australia influenced the design of the RRR. In particular, the safety design features that have been incorporated as a result of the specific requirements of ANSTO and the Australian regulator will be briefly described. The paper will close with a description of how the RRR meets, and in many aspects exceeds the requirements of ANSTO and the Australian regulator. (author)

  18. Earthquake prediction research with plastic nuclear track detectors

    International Nuclear Information System (INIS)

    Woith, H.; Enge, W.; Beaujean, R.; Oschlies, K.

    1988-01-01

    Since 1984 a German-Turkish project on earthquake prediction research has been operating at the North Anatolian fault zone in Turkey. Among many other parameters changes in Radon emission have also been investigated. Plastic nuclear track detectors (Kodak cellulose nitrate LR 115) are used to record alpha-particles emitted from Radon and Thoron atoms and their daughter isotopes. The detectors are replaced and analyzed every 3 weeks. Thus a quasi-continuous time sequence of the Radon soil gas emission is recorded. We present a comparison between measurements made with electronic counters and plastic track detectors. (author)

  19. Replacement of steam generators at arkansas nuclear one, unit-2 (ano-2)

    International Nuclear Information System (INIS)

    Wilson, R.M.; Buford, A.

    2001-01-01

    The Arkansas Nuclear One, Unit-2 steam generators, originally supplied by Combustion Engineering, began commercial operation in 1980 producing a gross electrical output of 958 MW. After several years of successful operation, the owner decided that the tube degradation rates of the original steam generators were too high for the plant to meet the performance requirements for the full 40-year license period. The contract to supply replacement steam generators (RSGs) was awarded to Westinghouse Electric Company in 1996. Installation of these RSGs took place in the last months of 2000. This paper compares the design features of the original and re-placement steam generators with emphasis on design and reliability enhancements achieved. (author)

  20. A methodological framework applied to the choice of the best method in replacement of nuclear systems

    International Nuclear Information System (INIS)

    Vianna Filho, Alfredo Marques

    2009-01-01

    The economic equipment replacement problem is a central question in Nuclear Engineering. On the one hand, new equipment are more attractive given their best performance, better reliability, lower maintenance cost etc. New equipment, however, require a higher initial investment. On the other hand, old equipment represent the other way around, with lower performance, lower reliability and specially higher maintenance costs, but in contrast having lower financial and insurance costs. The weighting of all these costs can be made with deterministic and probabilistic methods applied to the study of equipment replacement. Two types of distinct problems will be examined, substitution imposed by the wearing and substitution imposed by the failures. In order to solve the problem of nuclear system substitution imposed by wearing, deterministic methods are discussed. In order to solve the problem of nuclear system substitution imposed by failures, probabilistic methods are discussed. The aim of this paper is to present a methodological framework to the choice of the most useful method applied in the problem of nuclear system substitution.(author)

  1. Nuclear safety research

    International Nuclear Information System (INIS)

    1999-01-01

    The NNSA checked and coordinated in 1999 the research project of the Surveillance Technology on Nuclear Installations under the National 9th-Five-Year Program to promote the organizations that undertake the research work on schedule and lay a foundation of obtaining achievements and effectiveness for the 9th-five-year plan on nuclear safety research

  2. Nuclear science research report

    International Nuclear Information System (INIS)

    1977-01-01

    Research activities in nuclear science carried out during 1976 are summarized. Research centers around nuclear structure and the application of nuclear techniques to solid state science, materials, engineering, chemistry, biology, and medicine. Reactor and accelerator operations are reported. (E.C.B.)

  3. Nuclear Research and Compliance

    International Nuclear Information System (INIS)

    Noramly Muslim

    2012-01-01

    In his speech, Professor Noramly stressed on any research conducted in Malaysian Nuclear Agency must be comply with the national and international regulations. This to avoid any problems in the future. Moreover, research conducted in Malaysian Nuclear Agency are based on nuclear matters that seems sensitive to the public communities. In order to attract the publics on the benefit of nuclear technologies in many applications, researcher also must aware about the regulations and must take care on their safety during their experiment and working. This to make the public feels that nuclear are not the bad things and erased the worseness of nuclear technology into public minds. This strategies can be used for Malaysia in embarking for their first nuclear power program and the public feels that nuclear power are not threatened to them and consequently, they will accept that program without any issues. (author)

  4. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  5. Engineering development of a digital replacement protection system at an operating US PWR nuclear power plant: Installation and operational experiences

    International Nuclear Information System (INIS)

    Miller, M.H.

    1995-01-01

    The existing Reactor Protection Systems (RPSs) at most US PWRs are systems which reflect 25 to 30 year-old designs, components and manufacturing techniques. Technological improvements, especially in relation to modern digital systems, offer improvements in functionality, performance, and reliability, as well as reductions in maintenance and operational burden. The Nuclear power industry and the US nuclear regulators are poised to move forward with the issues that have slowed the transition to modern digital replacements for nuclear power plant safety systems. The electric utility industry is now more than ever being driven by cost versus benefit decisions. Properly designed, engineered, and installed digital systems can provide adequate cost-benefit and allow continued nuclear generated electricity. This paper describes various issues and areas related to an ongoing RPS replacement demonstration project which are pertinant for a typical US nuclear plant to consider cost-effective replacement of an aging analog RPS with a modern digital RPS. The following subject areas relative to the Oconee Nuclear Station ISAT trademark Demonstrator project are discussed: Operator Interface Development; Equipment Qualification; Validation and Verification of Software; Factory Testing; Field Changes and Verification Testing; Utility Operational, Engineering and Maintenance; Experiences with Demonstration System; and Ability to operate in parallel with the existing Analog RPS

  6. Engineering development of a digital replacement protection system at an operating US PWR nuclear power plant: Installation and operational experiences

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.H. [Duke Power Co., Seneca, SC (United States)

    1995-04-01

    The existing Reactor Protection Systems (RPSs) at most US PWRs are systems which reflect 25 to 30 year-old designs, components and manufacturing techniques. Technological improvements, especially in relation to modern digital systems, offer improvements in functionality, performance, and reliability, as well as reductions in maintenance and operational burden. The Nuclear power industry and the US nuclear regulators are poised to move forward with the issues that have slowed the transition to modern digital replacements for nuclear power plant safety systems. The electric utility industry is now more than ever being driven by cost versus benefit decisions. Properly designed, engineered, and installed digital systems can provide adequate cost-benefit and allow continued nuclear generated electricity. This paper describes various issues and areas related to an ongoing RPS replacement demonstration project which are pertinant for a typical US nuclear plant to consider cost-effective replacement of an aging analog RPS with a modern digital RPS. The following subject areas relative to the Oconee Nuclear Station ISAT{trademark} Demonstrator project are discussed: Operator Interface Development; Equipment Qualification; Validation and Verification of Software; Factory Testing; Field Changes and Verification Testing; Utility Operational, Engineering and Maintenance; Experiences with Demonstration System; and Ability to operate in parallel with the existing Analog RPS.

  7. Replacement energy costs for nuclear electricity-generating units in the United States: 1997--2001. Volume 4

    International Nuclear Information System (INIS)

    VanKuiken, J.C.; Guziel, K.A.; Tompkins, M.M.; Buehring, W.A.

    1997-09-01

    This report updates previous estimates of replacement energy costs for potential short-term shutdowns of 109 US nuclear electricity-generating units. This information was developed to assist the US Nuclear Regulatory Commission (NRC) in its regulatory impact analyses, specifically those that examine the impacts of proposed regulations requiring retrofitting of or safety modifications to nuclear reactors. Such actions might necessitate shutdowns of nuclear power plants while these changes are being implemented. The change in energy cost represents one factor that the NRC must consider when deciding to require a particular modification. Cost estimates were derived from probabilistic production cost simulations of pooled utility system operations. Factors affecting replacement energy costs, such as random unit failures, maintenance and refueling requirements, and load variations, are treated in the analysis. This report describes an abbreviated analytical approach as it was adopted to update the cost estimates published in NUREG/CR-4012, Vol. 3. The updates were made to extend the time frame of cost estimates and to account for recent changes in utility system conditions, such as change in fuel prices, construction and retirement schedules, and system demand projects

  8. Researches on nuclear criticality safety evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Suyama, Kenya; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-10-01

    For criticality safety evaluation of burnup fuel, the general-purpose burnup calculation code, SWAT, was revised, and its precision was confirmed through comparison with other results from OECD/NEA's burnup credit benchmarks. Effect by replacing the evaluated nuclear data from JENDL-3.2 to ENDF/B-VI and JEF-2.2 was also studied. Correction factors were derived for conservative evaluation of nuclide concentrations obtained with the simplified burnup code ORIGEN2.1. The critical masses of curium were calculated and evaluated for nuclear criticality safety management of minor actinides. (author)

  9. Researches on nuclear criticality safety evaluation

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Suyama, Kenya; Nomura, Yasushi

    2003-01-01

    For criticality safety evaluation of burnup fuel, the general-purpose burnup calculation code, SWAT, was revised, and its precision was confirmed through comparison with other results from OECD/NEA's burnup credit benchmarks. Effect by replacing the evaluated nuclear data from JENDL-3.2 to ENDF/B-VI and JEF-2.2 was also studied. Correction factors were derived for conservative evaluation of nuclide concentrations obtained with the simplified burnup code ORIGEN2.1. The critical masses of curium were calculated and evaluated for nuclear criticality safety management of minor actinides. (author)

  10. Research on application of knowledge engineering to nuclear power stations

    International Nuclear Information System (INIS)

    Umeda, Takeo; Kiyohashi, Satoshi

    1990-01-01

    Recently, the research on the software and hardware regarding knowledge engineering has been advanced eagerly. Especially the applicability of expert systems is high. When expert systems are introduced into nuclear power stations, it is necessary to make the plan for introduction based on the detailed knowledge on the works in nuclear power stations, and to improve the system repeatedly by adopting the opinion and request of those in charge upon the trial use. Tohoku Electric Power Co. was able to develop the expert system of practically usable scale 'Supporting system for deciding fuel movement procedure'. The survey and analysis of the works in nuclear power stations, the selection of the system to be developed and so on are reported. In No. 1 plant of Onagawa Nuclear Power Station of BWR type, up to 1/3 of the fuel is replaced at the time of the regular inspection. Some fuel must be taken to outside for ensuring the working space. The works of deciding fuel movement procedure, the development of the system and its evaluation are described. (K.I.)

  11. Neutron beam facilities at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane; Robinson, Robert; Hunter, Brett

    2001-01-01

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 10 14 n/cm 2 /sec and a liquid D 2 cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  12. ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Corpion, Juan; Nelson, Timothy O.

    2003-01-01

    The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly since it was constructed. In 1998, a seismic fault was found to the west of the CMR Facility and projected to extend beneath two wings of the building. As part of the overall Risk Management Strategy for the CMR Facility, the Department of Energy (DOE) proposed to replace it by 2010 with what is called the CMR Facility Replacement (CMRR). In an effort to make this proposed new nuclear research facility environmentally sustainable, several pollution prevention/waste minimization initiatives are being reviewed for potential incorporation during the design phase. A two-phase approach is being adopted; the facility is being designed in a manner that integrates pollution prevention efforts, and programmatic activities are being tailored to minimize waste. Processes and procedures that reduce waste generation compared to current, prevalent processes and procedures are identified. Some of these ''best practices'' include the following: (1) recycling opportunities for spent materials; (2) replacing lithium batteries with alternate current adaptors; (3) using launderable contamination barriers in Radiological Control Areas (RCAs); (4) substituting mercury thermometers and manometers in RCAs with mercury-free devices; (5) puncturing and recycling aerosol cans; (6) using non-hazardous low-mercury fluorescent bulbs where available; (7) characterizing low-level waste as it is being generated; and (8) utilizing lead alternatives for radiological shielding. Each of these pollution prevention initiatives are being assessed for their technical validity, relevancy

  13. Reactor training simulator for the Replacement Research Reactor (RRR)

    International Nuclear Information System (INIS)

    Etchepareborda, A; Flury, C.A; Lema, F; Maciel, F; Alegrechi, D; Damico, M; Ibarra, G; Muguiro, M; Gimenez, M; Schlamp, M; Vertullo, A

    2004-01-01

    The main features of the ANSTO Replacement Research Reactor (RRR) Reactor Training Simulator (RTS) are presented.The RTS is a full-scope and partial replica simulator.Its scope includes a complete set of plant normal evolutions and malfunctions obtained from the plant design basis accidents list.All the systems necessary to implement the operating procedures associated to these transients are included.Within these systems both the variables connected to the plant SCADA and the local variables are modelled, leading to several thousands input-output variables in the plant mathematical model (PMM).The trainee interacts with the same plant SCADA, a Foxboro I/A Series system.Control room hardware is emulated through graphical displays with touch-screen.The main system models were tested against RELAP outputs.The RTS includes several modules: a model manager (MM) that encapsulates the plant mathematical model; a simulator human machine interface, where the trainee interacts with the plant SCADA; and an instructor console (IC), where the instructor commands the simulation.The PMM is built using Matlab-Simulink with specific libraries of components designed to facilitate the development of the nuclear, hydraulic, ventilation and electrical plant systems models [es

  14. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  15. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  16. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  17. Pressure tube replacement in Pickering NGS A units 1 and 2

    International Nuclear Information System (INIS)

    Irvine, H.S.; Bennett, E.J.; Talbot, K.H.

    1986-10-01

    Being able to technically and economically replace the most radioactive components (excluding the nuclear fuel) in operating reactors will help to ensure the ongoing acceptance of nuclear power as a viable energy source for the future. Ontario Hydro is well along the path to meeting the above objective for its CANDU-PHW reactors. Following the failure of a Zircaloy-II pressure tube in unit 2 of Pickering NGS A in August, 1983, Ontario Hydro has embarked on a program to replace all Zircaloy-II pressure tubes in units 1 and 2 at Pickering. This program integrates the in-house research, design, construction, and operating skills of a large utility (Ontario Hydro) with the skills of a national nuclear organization (Atomic Energy of Canada Limited) and the private engineering sector of the Canadian nuclear industry. The paper describes the background to the pressure tube failure in Pickering unit 2 and to the efforts incurred in understanding the failure mechanism and how similar failures are not expected for the zirconium-niobium pressure tube material used in all other large CANDU-PHW units after units 1 and 2 of Pickering NGS A. The tooling developed for the pressure tube replacement program is described as well as the organization to undertake the program in an operating nuclear station. The retubing of units 1 and 2 at Pickering NGS A is nearing a successful completion and shows the benefits of being able to integrate the various skills required for this success. Pressure tube replacement in a CANDU-PHW reactor is equivalent to replacement of the reactor vessel in a LWR. The fact that this replacement can be done economically and with acceptable radiation dose to workers augurs well for the continued viability of the use of nuclear energy for the benefit of mankind. (author)

  18. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  19. Neutron beam facilities at the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Kim, S.

    2003-01-01

    The exciting development for Australia is the construction of a modern state-of-the-art 20-MW Replacement Research Reactor which is currently under construction to replace the aging reactor (HIFAR) at ANSTO in 2006. To cater for advanced scientific applications, the replacement reactor will provide not only thermal neutron beams but also a modern cold-neutron source moderated by liquid deuterium at approximately -250 deg C, complete with provision for installation of a hot-neutron source at a later stage. The latest 'supermirror' guides will be used to transport the neutrons to the Reactor Hall and its adjoining Neutron Guide Hall where a suite of neutron beam instruments will be installed. These new facilities will expand and enhance ANSTO's capabilities and performance in neutron beam science compared with what is possible with the existing HIFAR facilities, and will make ANSTO/Australia competitive with the best neutron facilities in the world. Eight 'leading-edge' neutron beam instruments are planned for the Replacement Research Reactor when it goes critical in 2006, followed by more instruments by 2010 and beyond. Up to 18 neutron beam instruments can be accommodated at the Replacement Research Reactor, however, it has the capacity for further expansion, including potential for a second Neutron Guide Hall. The first batch of eight instruments has been carefully selected in conjunction with a user group representing various scientific interests in Australia. A team of scientists, engineers, drafting officers and technicians has been assembled to carry out the Neutron Beam Instrument Project to successful completion. Today, most of the planned instruments have conceptual designs and are now being engineered in detail prior to construction and procurement. A suite of ancillary equipment will also be provided to enable scientific experiments at different temperatures, pressures and magnetic fields. This paper describes the Neutron Beam Instrument Project and gives

  20. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  1. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  2. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the

  3. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  4. HSE Nuclear Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, M.J. [Health and Safety Executive, Sheffield (United Kingdom)

    1995-12-31

    HSE funds two programmes of nuclear safety research: a programme of {approx} 2.2M of extramural research to support the Nuclear Safety Division`s regulatory activities and a programme of {approx} 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author).

  5. HSE Nuclear Safety Research Program

    International Nuclear Information System (INIS)

    Bagley, M.J.

    1995-01-01

    HSE funds two programmes of nuclear safety research: a programme of ∼ 2.2M of extramural research to support the Nuclear Safety Division's regulatory activities and a programme of ∼ 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author)

  6. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  7. Progress of nuclear safety research. 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Sasajima, Hideo; Nishiyama, Yutaka (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-10-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy or the Safety Research Annual Plan issued by the Japanese government. The safety research at JAERI concerns the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety. This report summarizes the nuclear safety research activities of JAERI from April 1999 through March 2001. (author)

  8. Status of nuclear safety research - 2000

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Sasajima, Hideo; Umemoto, Michitaka; Yamamoto, Toshihiro; Tanaka, Tadao; Togashi, Yoshihiro; Nakata, Masahito

    2000-11-01

    The nuclear safety research at JAERI is performed in accordance with the long term plan on nuclear research, development and use and the safety research yearly plan determined by the government and under close relationship to the related departments in and around the Nuclear Safety Research Center. The criticality accident having occurred in Tokai-mura in 1999 has been the highest level nuclear accident in Japan and ensuring safety in whole nuclear cycle is severely questioned. The causes of such an accident have to be clarified not only technical points but also organizational points, and it is extremely important to make efforts in preventing recurrence, to fulfill emergency plan and to improve the safety of whole nuclear fuel cycle for restoring the reliability by the people to nuclear energy system. The fields of conducting safety research are engineering safety research on reactor facilities and nuclear fuel cycle facilities including research on radioactive waste processing and disposal and research and development on future technology for safety improvement. Also, multinational cooperation and bilateral cooperation are promoted in international research organizations in the center to internationally share the recognition of world-common issues of nuclear safety and to attain efficient promotion of research and effective utilization of research resources. (author)

  9. From nuclear research to multidisciplinary research

    International Nuclear Information System (INIS)

    Theenhaus, R.; Baurmann, K.W.

    1996-01-01

    Forty years ago, the North Rhine-Westphalian State Government founded the then Juelich Nuclear Research Center. After a growth period of the reactor engineering program until 1980, claiming a share of 42% of R and D resources, that share declined continuously to a present level of 8%. This development is an expression of the activities successfully completed in the past, of progress achieved in industrial reactor development, but also of the fact that the high temperature reactor, which had been run successfully for twenty years, failed as a technical scale THTR-300 version. The Center has reorientated its line of research in a process of structural reshuffle beginning some fifteen years ago and still going on. Information technology, materials research, life sciences, environmental research, and energy technology have become main activities of equal weight. Activities specific to nuclear reactors have been incorporated in this new line of work as nuclear safety research and work on safe repository storage. (orig.) [de

  10. Overview of research potential of Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Ciocanescu, Marin

    2007-01-01

    The main organizations involved in nuclear power production in Romania, under supervision of Presidency, Prime Minister and Parliament are: CNCAN (National Commission for Nuclear Activities Control), Nuclear Agency, Ministry of Economy and Commerce, ANDRAD (Waste Management Agency), SNN (Nuclearelectrica National Society), RAAN (Romanian Authority for Nuclear Activities), ICN (Institute for Nuclear Research - Pitesti), SITON (Center of Design and Engineering for Nuclear Projects- Bucharest); ROMAG-PROD (Heavy Water Plant), CNE-PROD (Cernavoda Nuclear Power Plant - Production Unit), CNE-INVEST (Cernavoda Nuclear Power Plant -Investments Unit), FCN (Nuclear Fuel Factory). The Institute for Nuclear Research, Pitesti INR, Institute for Nuclear Research, Pitesti is endowed with a TRIGA Reactor, Hot Cells, Materials Laboratories, Nuclear Fuel, Nuclear Safety Laboratories, Nuclear Fuel, Nuclear Safety. Waste management. Other research centers and laboratories implied in nuclear activities are: ICIT, National Institute for cryogenics and isotope technologies at Rm Valcea Valcea. with R and D activity devoted to heavy water technologies, IFIN, Institute for nuclear physics and engineering, Bucharest, as well as the educational institutions involved in atomic energy applications and University research, Politechnical University Bucharest, University of Bucharest, University of Pitesti, etc. The INR activity outlined, i.e. the nuclear power research as a scientific and technical support for the Romanian nuclear power programme, mainly dedicated to the existing NPP in the country (CANDU). Focused with priority are: - Nuclear Safety (behavior of plant materials, components, installations during accident conditions and integrity investigations); - Radioactive Waste Management Radioactive; - Radioprotection; Product and services supply for NPP. INR Staff numbers 320 R and D qualified and experienced staff, 240 personnel in devices and prototype workshops and site support

  11. Nuclear research in the tertiary sector: the role of AINSE

    Energy Technology Data Exchange (ETDEWEB)

    Coster, H [University of New South Wales, Kensington, NSW (Australia). Australian Institute of Nuclear Science and Engineering

    2003-07-01

    The Australian Institute of Nuclear Science and Engineering is a national organisation with a 45 year track record of collaboration and facilitation of the interaction of universities and one of the major Publicly Funded Research Agencies, ANSTO. AINSE supports research and training in fields that utilise the techniques and instrumentation of nuclear physics. AINSE currently has 37 Australian university members as well as the University of Auckland and the New Zealand Institute for Geological and Nuclear Sciences. Income is primarily obtained from members in the form of membership fees, ANSTO and a Commonwealth government contribution (also paid through ANSTO). Each university pays in proportion to the benefit received and the aggregate university augmented by equal contributions from ANSTO and the Federal Government (through ANSTO). This is seen as an essential element of this model which allows individual researchers to access the facilities irrespective of any funding from other major funding bodies. The replacement reactor for HIFAR will bring further impetus to AINSE collaborations with ANSTO. The new Tandetron accelerator that will come on-line this year is another collaborative AINSE initiative with ANSTO. Its use as an accelerator mass-spectrometer will provide a state-of-the art facility for dating and general ion-beam analysis experiments. AINSE supports research projects over a very wide range of disciplines, ranging from biomedical science/biotechnology, environmental science, material properties and engineering, archaeology and geosciences to material structure and dynamics. AINSE currently supports over 200 active projects.

  12. Nuclear research in the tertiary sector: the role of AINSE

    International Nuclear Information System (INIS)

    Coster, H.

    2003-01-01

    The Australian Institute of Nuclear Science and Engineering is a national organisation with a 45 year track record of collaboration and facilitation of the interaction of universities and one of the major Publicly Funded Research Agencies, ANSTO. AINSE supports research and training in fields that utilise the techniques and instrumentation of nuclear physics. AINSE currently has 37 Australian university members as well as the University of Auckland and the New Zealand Institute for Geological and Nuclear Sciences. Income is primarily obtained from members in the form of membership fees, ANSTO and a Commonwealth government contribution (also paid through ANSTO). Each university pays in proportion to the benefit received and the aggregate university augmented by equal contributions from ANSTO and the Federal Government (through ANSTO). This is seen as an essential element of this model which allows individual researchers to access the facilities irrespective of any funding from other major funding bodies. The replacement reactor for HIFAR will bring further impetus to AINSE collaborations with ANSTO. The new Tandetron accelerator that will come on-line this year is another collaborative AINSE initiative with ANSTO. Its use as an accelerator mass-spectrometer will provide a state-of-the art facility for dating and general ion-beam analysis experiments. AINSE supports research projects over a very wide range of disciplines, ranging from biomedical science/biotechnology, environmental science, material properties and engineering, archaeology and geosciences to material structure and dynamics. AINSE currently supports over 200 active projects

  13. Tehran Nuclear Research Center

    International Nuclear Information System (INIS)

    Taherzadeh, M.

    1977-01-01

    The Tehran Nuclear Research Center was formerly managed by the University of Tehran. This Center, after its transformation to the AEOI, has now become a focal point for basic research in the area of Nuclear Energy in Iran

  14. Temelin NPP - IandC replacement

    International Nuclear Information System (INIS)

    Spalenka, I.

    1997-01-01

    The original instrumentation and control system of the Temelin nuclear power plant is being upgraded and replaced by a modern Westinghouse-supplied system which meets the requirements imposed on current nuclear power plant designs. The history and purpose of the IandC system replacement is given, and the design of the new system is described in some detail. (A.K.)

  15. Nuclear energy research in Indonesia

    International Nuclear Information System (INIS)

    Supadi, S.; Soentono, S.; Djokolelono, M.

    1988-01-01

    Indonesia's National Atomic Energy Authority, BATAN (Badan Tenaga Atom Nasional), was founded to implement, regulate and monitor the development and launching of programs for the peaceful uses of nuclear power. These programs constitute part of the efforts made to change to a more industrialized level the largely agricultural society of Indonesia. BATAN elaborated extensive nuclear research and development programs in a variety of fields, such as medicine, the industrial uses of isotopes and radiation, the nuclear fuel cycle, nuclear technology and power generation, and in fundamental research. The Puspiptek Nuclear Research Center has been equipped with a multi-purpose research reactor and will also have a fuel element fabrication plant, a facility for treating radioactive waste, a radiometallurgical laboratory, and laboratories for working with radioisotopes and for radiopharmaceutical research. (orig.) [de

  16. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  17. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  18. Progress of nuclear safety research-2004

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Ebine, Noriya; Chuto, Toshinori; Sato, Satoshi; Ishikawa, Jun; Yamamoto, Toshihiro; Munakata, Masahiro; Asakura, Toshihide; Yamaguchi, Tetsuji; Kida, Takashi; Matsui, Hiroki; Haneishi, Akihiro; Araya, Fumimasa

    2005-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2002 through March 2004 and utilized facilities. (author)

  19. Nuclear energy research until 2000

    International Nuclear Information System (INIS)

    Reiman, L.; Rintamaa, R.; Vanttola, T.

    1994-03-01

    The working group was to assess the need and orientation of nuclear energy research (apart from research on nuclear waste management and fusion technology) up until the year 2000 in Finland and to propose framework schemes and organization guidelines for any forthcoming publicly financed research programmes from 1995 onwards. The main purpose of nuclear energy research is to ensure the safety and continued development of Finland's existing nuclear power plants. Factors necessarily influencing the orientation of research are Parliaments decision of late 1993 against further nuclear capacity in the country, the need to assess reactor safety in the eastern neighbour regions, and Finland's potential membership in the European Union. The working group proposes two new research programmes similar to the current ones but with slightly modified emphasis. Dedicated to reactor safety and structural safety respectively, they would both cover the four years from 1995 to 1998. A separate research project is proposed for automation technology. In addition, environmental research projects should have a joint coordination unit. (9 figs., 4 tabs.)

  20. The Ongkharak Nuclear Research Center (ONRC) research reactor project: a status review

    International Nuclear Information System (INIS)

    Rusch, R.; Jacobi, A. Jr.; Yamkate, P.

    2001-01-01

    The new Ongkharak Nuclear Research Center in the vicinity of Bangkok, Thailand is planned to replace the more than 30 years old facilities located in the Chatuchak district, Bangkok. An international team led by general atomics (GA) is designing and constructing the new research complex. It comprises a 10 MW TRIGA type reactor, an isotope production and a centralized waste processing and storage facility. Electrowatt-Ekono Ltd. was hired by the Thai Government Agency, the Office of Atomic Energy for Peace (OAEP), as a consultant to the project. As the project is now approaching the end of its 4 th year, it now stands at a decisive turning point. Basic design is nearly completed and detailed design is well advanced. The turnkey part of the contract including the reactor island, the isotope and waste facilities are still awaiting the issuance of the Construction Permit. Significant progress has been made on the other part of the project, which includes all the supporting infrastructure facilities. The Preliminary Safety Analysis Report (PSAR), prepared by GA, has been reviewed by various parties, including by nuclear safety experts from the IAEA, which has provided continuous support to the OAEP. Experts from the Argonne National Laboratory have been involved in the reviews as well. The PSAR is now under consideration at the Nuclear Facility Safety Sub-Committee (NFSS) of the Thai Atomic Energy for Peace Commission for issuing the Construction Permit of the ONRC Research Reactor. The following paper gives an overview of the project and its present status, outlining the features of the planned facilities and the issues the project is presently struggling with. Major lessons of the past 4 years are highlighted and an outlook into the future is attempted. (orig.)

  1. Nuclear energy research in Germany 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Research and development (R and D) in the fields of nuclear reactor safety and safety of nuclear waste and spent fuel management in Germany are carried out at research centers and, in addition, some 32 universities. In addition, industrial research is conducted by plant vendors, and research in plant and operational safety of power plants in operation is organized by operators and by organizations of technical and scientific research and expert consultant organizations. This summary report presents nuclear energy research conducted at research centers and universities in Germany in 2009, including examples of research projects and descriptions of the situation of research and teaching. These are the organizations covered: - Hermann von Helmholtz Association of German Research Centers, - Karlsruhe Institute of Technology (KIT, responsibility of the former Karlsruhe Research Center), - Juelich Research Center (FZJ), - Nuclear Technology Competence Center East, - Dresden-Rossendorf Research Center (FZD), - Rossendorf Nuclear Process Technology and Analysis Association (VKTA), - Dresden Technical University, - Zittau/Goerlitz University of Applied Science, - Institute of Nuclear Energy and Energy Systems (IKE) of the University of Stuttgart. (orig.)

  2. Progress of nuclear safety research. 2002

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Kudo, Tamotsu; Tobita, Tohru (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2002-11-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2000 through April 2002 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001. (author)

  3. Nuclear physics research report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the 1988 Nuclear Physics Research Report for the University of Surrey, United Kingdom. The report includes both experimental nuclear structure physics and theoretical nuclear physics research work. The experimental work has been carried out predominantly with the Nuclear Structure Facility at the SERC Daresbury Laboratory, and has concerned nuclear shapes, shape coexistence, shape oscillations, single-particle structures and neutron-proton interaction. The theoretical work has involved nuclear reactions with a variety of projectiles below 1 GeV per nucleon incident energy, and aspects of hadronic interactions at intermediate energies. (U.K.)

  4. Opportunities for physics research at Australia's replacement research reactor

    International Nuclear Information System (INIS)

    Robinson, R.A.

    2003-01-01

    Full text: The 20-MW Australian Replacement Research Reactor represents possibly the greatest single research infrastructure investment in Australia's history. Construction of the facility has commenced, following award of the construction contract in July 2000, and the construction licence in April 2002. The project includes a large state-of-the-art liquid deuterium cold-neutron source and supermirror guides feeding a large modern guide hall, in which most of the instruments are placed. Alongside the guide hall, there is good provision of laboratory, office and space for support activities. While the facility has 'space' for up to 18 instruments, the project has funding for an initial set of 8 instruments, which will be ready when the reactor is fully operational in January 2006. Instrument performance will be competitive with the best research-reactor facilities anywhere, and our goal is to be in the top 3 such facilities worldwide. Staff to lead the design effort and man these instruments have been hired on the international market from leading overseas facilities, and from within Australia, and 6 out of 8 instruments have been specified and costed. At present the instrumentation project carries ∼15% contingency. An extensive dialogue has taken place with the domestic user community and our international peers, via various means including a series of workshops over the last 2 years covering all 8 instruments, emerging areas of application like biology and the earth sciences, and computing infrastructure for the instruments. In December 2002, ANSTO formed the Bragg Institute, with the intent of nurturing strong external partnerships, and covering all aspects of neutron and X-ray scattering, including research using synchrotron radiation. I will discuss the present status and predicted performance of the neutron-beam facilities at the Replacement Reactor, synergies with the synchrotron in Victoria, in-house x-ray facilities that we intend to install in the Bragg

  5. Research plan on programmable automation systems in nuclear power plants (OHA) in 1995-1998

    International Nuclear Information System (INIS)

    Haapanen, P.; Pulkkinen, U.; Korhonen, J.

    1995-05-01

    The main purpose of nuclear energy research is to ensure the safety and continued development of Finnish nuclear power plants - a task which places high demands on expertise needed to support the work of public authorities and power companies. A factor necessarily influencing the orientation of the research is the Parliament's decision of late 1993 against further nuclear capacity in the country. Therefore the main emphasis of research shall be directed towards the ensuring the safety of existing plants and the continuous development of their safety along the progress of the science and technology. Anyhow, the preparedness for constructing new plants shall also be preserved. The utilization of programmable digital automation technology for the safety critical functions is the most significant change in the new plants, but also in existing plants this technology will be used for replacing and complementing the ageing automation systems. The safety evaluation of programmable digital systems can not be based on methods applied to conventional analog systems but new evaluation methods and tools must be developed for the assessing of their acceptability. (5 refs., 1 fig., 2 tabs.)

  6. Nuclear safety research in HGF 2012

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German Federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out safe is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the partners in the

  7. Thailand's nuclear research centre

    International Nuclear Information System (INIS)

    Yamkate, P.

    2001-01-01

    The Office of Atomic Energy for Peace, Thailand, is charged with three main tasks, namely, Nuclear Energy development Plan, Utilization of Nuclear Based technology Plan and Science and Technology Plan. Its activities are centred around the research reactor TRR-1/M1. The main areas of contribution include improvement in agricultural production, nuclear medicine and nuclear oncology, health care and nutrition, increasing industrial productivity and efficiency and, development of cadre competent in nuclear science and technology. The office also has the responsibility of ensuring nuclear safety, radiation safety and nuclear waste management. The office has started a new project in 1997 under which a 10 MWt research reactor, an isotope production facility and a waste processing and storage facility would be set up by General Atomic of USA. OAEP has a strong linkage with the IAEA and has been an active participant in RCA programmes. In the future OAEP will enhance its present capabilities in the use of radioisotopes and radiation and look into the possibility of using nuclear energy as an alternative energy resource. (author)

  8. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  9. Removal and replacement of fuel rods in nuclear fuel assembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Ferlan, S.J.

    1983-01-01

    Apparatus for replacing components of a nuclear fuel assembly stored in a pit under about 10 m. of water. The fuel assembly is secured in a container which is rotatable from the upright position to an inverted position in which the bottom nozzle is upward. The bottom nozzle plate is disconnected from the control-rod thimbles by means of a cutter for severing the welds. To guide and provide lateral support for the cutter a fixture including bushings is provided, each encircling a screw fastener and sealing the region around a screw fastener to trap the chips from the severed weld. Chips adhering to the cutter are removed by a suction tube of an eductor. (author)

  10. Opportunities for research using neutron beams at Australia's replacement research reactor

    International Nuclear Information System (INIS)

    Robinson, R.A.

    2000-01-01

    Full text: On July 13th 2000, a contract was signed for construction of Australia's Replacement Research Reactor at Lucas Heights just outside Sydney. This may represent Australia's largest single investment in scientific infrastructure, and it provides researchers in condensed matter physics, chemistry, materials science, and some aspects of engineering, the earth sciences and biology with the 'opportunity of a generation' The replacement reactor, which will commence operation in 2005, will be comparable with the national neutron sources of Japan, France and the U.S.A. Cold and thermal neutron sources are to be installed and supermirror guides will transport cold and thermal neutron beams into a large modern guide hall. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by the Argentinian company INVAP S.E., in collaboration with two Australian firms, in a turnkey contract. The instruments will be developed by ANSTO and other contracted organisations, in consultation with the Australian user community and interested overseas parties. This presentation reviews the planned scientific capabilities and opportunities, gives a description of the facility and a status report on the activities so far

  11. Progress of nuclear safety research. 2003

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amagai, Masaki; Tobita, Tohru

    2004-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2001 through March 2003 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001, and the integrity evaluation of cracked core shroud of BWRs of the Tokyo Electric Power Company performed for assistance to the Nuclear Safety Commission in reviewing the evaluation reports by the licensees. (author)

  12. Experimental nuclear physics research in Hungary

    International Nuclear Information System (INIS)

    Koltay, Ede.

    1984-01-01

    The status and recent results of experimental nuclear physics in Hungary is reviewed. The basic nuclear sciences, instrumental background and international cooperation are discussed. Personal problems and the effects of the international scientific deconjuncture are described. The applied nuclear and interdisciplinary researches play an important role in Hungarian nuclear physics. Some problems of cooperation of Hungarian nuclear and other research institutes applying or producing nuclear analytical technology are reviewed. The new instrument, the Debrecen cyclotron under construction gives new possibilities to basic and applied researches. A new field of Hungarian nuclear physics is the fusion and plasma research using tokamak equipment, the main topics of which are plasma diagnostics and fusion control systems. Some practical applications of Hungarian nuclear physical results, e.g. establishment of new analytical techniques like PIXE, RBS, PIGE, ESCA, etc. are summarized. (D.Gy.)

  13. Karlsruhe Nuclear Research Center. Research and development program 1991

    International Nuclear Information System (INIS)

    1990-01-01

    The R and D activities of the KfK are classified in 8 main research activities: 1) project nuclear fusion; 2) project pollutant mitigation in the environment; 3) solid state and materials research; 4) nuclear and elementary particle physics; 5) microtechnics e.g. X-ray lithography; 6) materials handling; 7) project nuclear safety research; 8) radioactive waste management. (orig.) [de

  14. Status of decommissioning and waste management in the Nuclear Science Research Institute of JAEA

    International Nuclear Information System (INIS)

    Okoshi, Minoru; Yamashita, Toshiyuki

    2007-01-01

    The Nuclear Science Research Institute (NSRI) of JAEA has some experiences of the decommissioning of research reactors and research laboratories including a reprocessing test facility. In order to dismantle those facilities safely, we paid much attention for the radiological protection of radiation workers taking into consideration of characteristics of each facility, especially to protect internal exposures. As the results of decommissioning activities, several thousands tons of solid radioactive wastes were generated. In the near future, we will start the treatment of these stored wastes by a super compactor, metal melting furnace and non-metal waste melting furnace to gain high volume reduction and to prepare stable waste forms for final disposal. In Japan, the clearance system was established in 2005 by amending the Nuclear Regulatory Law. The NSRI plans to release very slightly contaminated concrete debris for recycling, which was generated from the replacement of reactor core of research reactor (JRR-3), according to the clearance system. (author)

  15. Can renewable energy replace nuclear power in Korea? An economic valuation analysis

    International Nuclear Information System (INIS)

    Park, Soo Ho; Jung, Woo Jin; Kim, Tae Hwan; Lee, Sang Yong Tom

    2016-01-01

    This paper studies the feasibility of renewable energy as a substitute for nuclear and energy by considering Korean customers' willingness to pay (WTP). For this analysis, we use the contingent valuation method to estimate the WTP of renewable energy, and then estimate its value using ordered logistic regression. To replace nuclear power and fossil energy with renewable energy in Korea, an average household is willing to pay an additional 102,388 Korean Won (KRW) per month (approx. US $85). Therefore, the yearly economic value of renewable energy in Korea is about 19.3 trillion KRW (approx. US $16.1 billion). Considering that power generation with only renewable energy would cost an additional 35 trillion KRW per year, it is economically infeasible for renewable energy to be the sole method of low-carbon energy generation in Korea

  16. Can Renewable Energy Replace Nuclear Power in Korea? An Economic Valuation Analysis

    Directory of Open Access Journals (Sweden)

    Soo-Ho Park

    2016-04-01

    Full Text Available This paper studies the feasibility of renewable energy as a substitute for nuclear and energy by considering Korean customers' willingness to pay (WTP. For this analysis, we use the contingent valuation method to estimate the WTP of renewable energy, and then estimate its value using ordered logistic regression. To replace nuclear power and fossil energy with renewable energy in Korea, an average household is willing to pay an additional 102,388 Korean Won (KRW per month (approx. US $85. Therefore, the yearly economic value of renewable energy in Korea is about 19.3 trillion KRW (approx. US $16.1 billion. Considering that power generation with only renewable energy would cost an additional 35 trillion KRW per year, it is economically infeasible for renewable energy to be the sole method of low-carbon energy generation in Korea.

  17. Can renewable energy replace nuclear power in Korea? An economic valuation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Ho [Korea Institute for Advancement of Technology, Korea Technology Center, Seoul (Korea, Republic of); Jung, Woo Jin [Graduate School of Information, Yonsei University, Seoul (Korea, Republic of); Kim, Tae Hwan; Lee, Sang Yong Tom [School of Business, Hanyang University, Seoul (Korea, Republic of)

    2016-04-15

    This paper studies the feasibility of renewable energy as a substitute for nuclear and energy by considering Korean customers' willingness to pay (WTP). For this analysis, we use the contingent valuation method to estimate the WTP of renewable energy, and then estimate its value using ordered logistic regression. To replace nuclear power and fossil energy with renewable energy in Korea, an average household is willing to pay an additional 102,388 Korean Won (KRW) per month (approx. US $85). Therefore, the yearly economic value of renewable energy in Korea is about 19.3 trillion KRW (approx. US $16.1 billion). Considering that power generation with only renewable energy would cost an additional 35 trillion KRW per year, it is economically infeasible for renewable energy to be the sole method of low-carbon energy generation in Korea.

  18. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J. R. [ed.

    1977-01-01

    The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

  19. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1977-04-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in various institutions. The major experimental facilities consist of: A 5 Megawatt swimming pool enriched uranium reactor at the Soreq Nuclear Research Centre; A 26 Megawatt heavy water tank-type natural uranium reactor at the Negev Research Centre; A 6-million volt EN tandem accelerator at the Weizmann Institute of Science, Rehovot; The new most modern high energy 14 UD pelletron accelerator manufactured by the National Electrostatic Corporation of Middleton, Wisconsin, installed inside the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot. Brief abstracts of the research work, both published and unpublished, listed according to the various laboratories, are reported in the following pages. (author)

  20. Proposed replacement nuclear research reactor at Lucas Heights Science and Technology Centre, NSW. Statement of evidence to the Parliamentary Standing Committee on Public Works

    International Nuclear Information System (INIS)

    1999-02-01

    This submission demonstrates the manner in which the replacement research reactor project is to be undertaken in accordance with all relevant Commonwealth requirements and standards. Successive submissions to Government have shown that the construction and operation of the replacement reactor will result in a range of significant benefits to Australia in the areas of health care, the national interest, scientific achievement and in industrial applications. ANSTO is confident that the construction and operation of the replacement research reactor will: meet the identified needs for an ongoing neutron source for Australia into the next century in a cost-effective manner; be effectively managed to ensure that the project is delivered to the agreed schedule and budget; involve an effective community consultation process with ongoing community consultation a feature of ANSTO's approach; will have negligible environmental and public health implications taking account of the environmental management measures and commitments made by ANSTO in the Environmental Impact Statement and the stringent licensing arrangement by ARPANSA

  1. Nuclear research center transformation experience

    International Nuclear Information System (INIS)

    Diaz, J. L.; Jimenez, J. M.

    2001-01-01

    As consequence of the changes in the energy polities of each countries in the 80th. many of the Nuclear Research Centres suffered a transformation (more of less deep) in other Research and Development Centres with a wider spectrum that the exclusively nuclear one. This year is the 50 anniversary of the Spanish Centre of Nuclear Research-Junta de Energia Nuclear.The JEN the same as other suffered a deep renovation to become the CIEMAT Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (Research Centre for Energy, Environment and Technology). This paper is focussed on the evolution of JEN to CIEMAT besides analysing the reach of this re-foundation considering the political reasons and technical aspect that justified it and the laws in those it is based on. (Author)

  2. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  3. An accountancy system for nuclear materials control in research centres

    International Nuclear Information System (INIS)

    Buttler, R.; Bueker, H.; Vallee, J.

    1979-01-01

    The Nuclear Accountancy and Control System (NACS) was developed at KFA Juelich in accordance with the requirements of the Non-Proliferation Treaty. The main features are (1) recording of nuclear material in inventory items. These are combined to form batches wherever suitable; (2) extrapolation of accounting data as a replacement for detailed measurement of inventory items data. Recording and control of nuclear material are carried out on two levels with access to a common data bank. The lower level deals with nuclear materials handling plus internal management while on the upper level there is a central control point which is responsible for nuclear safeguarding within the entire research centre. By keeping the organizational and technical infrastructure it was possible to develop a system which is both economical and operator-oriented. In this system the emphasis of nuclear safeguarding is placed on the acquisition of the nuclear material inventory. As much consideration has been given to the interests of the various operational levels and organizational units as to internal and national regulations. Since it is part of the safeguarding and control system, access to the NACS must be restricted to a limited number of users only. Furthermore, it must include facilities for manual control in the form of records. Authorization for access must correspond with the various tasks of different user groups. All necessary data are acquired decentrally in the organizational units and entered via a terminal. It is available to the user groups on both levels through a central data bank. To meet all requirements, the NACS has been designed as an integrated, computer-assisted information system for the automated processing of extensive and multi-level nuclear materials data. As part of the preventive measures entailed with nuclear safeguarding, the accountancy system enables the operator of a nuclear plant to furnish proof of non-diversion of nuclear material. (author)

  4. The Russian nuclear data research programme

    International Nuclear Information System (INIS)

    1995-11-01

    The report contains the Russian programme of nuclear data research, approved by the Russian Nuclear Data Committee on 16 December 1994. It gives surveys on nuclear data needs, on the structure of nuclear data activities, on experimental facilities for nuclear data measurements at five Russian institutes, on theoretical model work, nuclear data evaluation, and nuclear data testing. It describes four Russian nuclear data centers and their relations to the International Nuclear Data Centres Network, and their holdings of nuclear data libraries of Russian and international origin. A summary of nuclear data applications in energy and non-energy fields is given. An appendix contains a detail nuclear data research programme for the years 1995 - 2005. (author). 16 refs, 1 fig., 6 tabs

  5. Nuclear generation cost and nuclear research development fund

    International Nuclear Information System (INIS)

    Kim, S. S.; Song, G. D.

    2000-01-01

    The main objective of this study is to analyze the effects of nuclear R and D fund to nuclear generation cost and to assess the adaptability of fund size through the comparison with the nuclear research fund in Japan. It was estimated that nuclear R and D fund increased the average annual unit cost of nuclear power generation by 1.14 won/kWh. When the size of nuclear R and D fund is compared with that in Japan, this study suggests that the current nuclear R and D fund should be largely increased taking into consideration the ratio of R and D fund to nuclear generation

  6. Integration technique of digital I and C replacement and its Critical Digital Review procedure

    International Nuclear Information System (INIS)

    Huang, Hui-Wen; Yang, Wen-Long

    2013-01-01

    Highlights: ► A digital I and C replacement integration technique have been developed. ► Establishment of Nuclear Power Plant Digital Replacement Integration Guideline. ► Preliminary Investigation on I and C System Digitalization. ► Evaluation on I and C System Digitalization. ► Establishment of I and C System Digitalization Architectures. -- Abstract: Institute of Nuclear Energy Research (INER) developed a digital Instrumentation and Control (I and C) replacement integration technique on the basis of requirement of the three existing nuclear power plants (NPPs), which are Chin–Shan (CS) NPP, Kuo–Sheng (KS) NPP, and Maanshan (MS) NPP, in Taiwan, and also developed the related Critical Digital Review (CDR) procedure. The digital I and C replacement integration technique includes: (1) Establishment of Nuclear Power Plant Digital Replacement Integration Guideline, (2) Preliminary Investigation on I and C System Digitalization, (3) Evaluation on I and C System Digitalization, and (4) Establishment of I and C System Digitalization Architectures. These works can be a reference for performing I and C system digital replacement integration of the three existing NPPs of Taiwan Power Company (TPC). A CDR is the review for a critical system digital I and C replacement. The major reference of this procedure is EPRI TR-1011710 (2005) “Handbook for Evaluating Critical Digital Equipment and Systems” which was published by the Electric Power Research Institute (EPRI). With this document, INER developed a TPC-specific CDR procedure. Currently, CDR becomes one of the policies for digital I and C replacement in TPC. The contents of this CDR procedure include: Scope, Responsibility, Operation Procedure, Operation Flow Chart, CDR review items. The CDR review items include the comparison of the design change, Software Verification and Validation (SV and V), Failure Mode and Effects Analysis (FMEA), Evaluation of Diversity and Defense-in-depth (D3), Evaluation of

  7. Research for nuclear power. A Swiss perspective

    International Nuclear Information System (INIS)

    Foskolos, K.; Yadigaroglu, G.; Chawla, R.; Paul Scherrer Inst., Villigen

    1996-01-01

    Nuclear energy research in Switzerland is concentrated in the Department for Nuclear Energy and Safety Research of the Paul Scherrer Institute (PSI). Nuclear research at PSI is structured around three main poles: safety and related operational issues for existing NPPs, nuclear waste management, and safety characteristics of future reactor concepts. Further, global aspects of energy systems are examined with regard to safety, economics and environmental impact. Presently, a total effort of about 200 py/a is invested in the nuclear research. Government funding of nuclear research was relatively stable during recent years, reaching about 35 MCHF/a. External funding of about 15 MCHF/a is expected to remain stable. (R.P.)

  8. An overview of nuclear physics research

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    2010-01-01

    This overview is aimed to give a general picture of the global developments in nuclear physics research over the years since the beginning. It is based on the inaugural talk given at the 54th annual nuclear physics symposium organized by the Department of Atomic Energy, which was held as an International Symposium at BARC, Mumbai during Dec 8-12, 2009. The topics of nuclear fission, nuclear shell effects, super-heavy nuclei, and expanding frontiers of nuclear physics research with the medium to ultra-relativistic energy heavy-ion reactions are in particular highlighted. Accelerator driven sub-critical reactor system (ADS) is briefly described in the end as an example of spin-off of nuclear physics research. (author)

  9. NuclearFACTS: public engagement about the impacts of nuclear research

    Energy Technology Data Exchange (ETDEWEB)

    Dalzell, M.T.J.; Alexander, R.N.; Main, M.G., E-mail: matthew.dalzell@fedorukcentre.ca [Sylvia Fedoruk Canadian Centre for Nuclear Innovation, Saskatoon, SK, (Canada)

    2015-07-01

    The Forum for Accountability and Communities Talking nuclear Science - nuclearFACTS - is a cornerstone of the Sylvia Fedoruk Canadian Centre for Nuclear Innovation's efforts to engage the people of Saskatchewan in evidence-based conversations about the impacts of the nuclear research, development and training activities supported by the Fedoruk Centre. The second annual nuclearFACTS public colloquium was held 20 November 2014, and featured the participation of 16 research projects. This paper discusses the continued development of the nuclearFACTS concept and its role in the Fedoruk Centre's upstream engagement efforts. (author)

  10. The neutron beam facility at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Hunter, B.; Kennedy, S.

    1999-01-01

    Full text: The Australian federal government gave ANSTO final approval to build a research reactor to replace HIFAR on August 25th 1999. The replacement reactor is to be a multipurpose reactor with a thermal neutron flux of 3 x 10 14 n.cm -2 .s -1 and having improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The replacement reactor will commence operation in 2005 and will cater for Australian scientific, industrial and medical needs well into the 21st century. The scientific capabilities of the neutron beams at the replacement reactor are being developed in consultation with representatives from academia, industry and government research laboratories to provide a facility for condensed matter research in physics, chemistry, materials science, life sciences, engineering and earth sciences. Cold, thermal and hot neutron sources are to be installed, and neutron guides will be used to position most of the neutron beam instruments in a neutron guide hall outside the reactor confinement building. Eight instruments are planned for 2005, with a further three to be developed by 2010. A conceptual layout for the neutron beam facility is presented including the location of the planned suite of neutron beam instruments. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by an accredited reactor builder in a turnkey contract. Tenders have been called for December 1999, with selection of contractor planned by June 2000. The neutron beam instruments will be developed by ANSTO and other contracted organisations in consultation with the user community and interested overseas scientists. The facility will be based, as far as possible, around a neutron guide hall that is be served by three thermal and three cold neutron guides. Efficient transportation of thermal and cold neutrons to the guide hall requires the use of modern super

  11. Proposed replacement nuclear research reactor at Lucas Heights Science and Technology Centre, NSW. Statement of evidence to the Parliamentary Standing Committee on Public Works

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    This submission demonstrates the manner in which the replacement research reactor project is to be undertaken in accordance with all relevant Commonwealth requirements and standards. Successive submissions to Government have shown that the construction and operation of the replacement reactor will result in a range of significant benefits to Australia in the areas of health care, the national interest, scientific achievement and in industrial applications. ANSTO is confident that the construction and operation of the replacement research reactor will: meet the identified needs for an ongoing neutron source for Australia into the next century in a cost-effective manner; be effectively managed to ensure that the project is delivered to the agreed schedule and budget; involve an effective community consultation process with ongoing community consultation a feature of ANSTO`s approach; will have negligible environmental and public health implications taking account of the environmental management measures and commitments made by ANSTO in the Environmental Impact Statement and the stringent licensing arrangement by ARPANSA 24 refs., 8 tabs., 5 figs.

  12. Media and Australia's replacement reactor project

    International Nuclear Information System (INIS)

    Keenan, Pamela

    2001-01-01

    In September 1997, the Commonwealth Government of Australia announced a proposal to build a replacement nuclear research reactor at Lucas Heights in Sydney. Extensive public consultation, parliamentary debate and independent reports were prepared to ensure that the new facility would meet strict international requirements, national safety and environmental standards, and performance specifications servicing the needs of Australia - for decades to come. On 6 June 2000, Argentine company INVAP SE was announced as the preferred tenderer. In July 2000 contracts were signed between INVAP and the Australian Nuclear Science and Technology Organisation for the construction the replacement reactor, due to be completed in 2005. In order to retain a strong local presence, INVAP undertook a joint venture with two of Australia's foremost heavy construction businesses. Briefly the new research reactor will be a replacement for the ageing Australian Reactor (HIFAR). Nuclear science and technology, in Australia, is no stranger to media controversy and misinformation. Understandably the announcement of a preferred tenderer followed by the signing of contracts, attracted significant national and international media attention. However in the minds of the media, the issue is far from resolved and is now a constant 'news story' in the Australian media. Baseless media stories have made claims that the project will cost double the original estimates; question the credibility of the contractors; and raise issues of international security. The project is currently linked with Australia's requirements for long term nuclear waste management and there has been an attempt to bring national Indigenous People's issues into play. Some of these issues have been profiled in the press internationally. So, just to set the record straight and give you an appropriate impression of what's 'really happening' I would like to highlight a few issues, how ANSTO dealt with these, and what was finally reported

  13. Coordinating Space Nuclear Research Advancement and Education

    International Nuclear Information System (INIS)

    Bess, John D.; Webb, Jonathon A.; Gross, Brian J.; Craft, Aaron E.

    2009-01-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  14. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  15. Research on using depleted uranium as nuclear fuel for HWR

    International Nuclear Information System (INIS)

    Zhang Jiahua; Chen Zhicheng; Bao Borong

    1999-01-01

    The purpose of our work is to find a way for application of depleted uranium in CANDU reactor by using MOX nuclear fuel of depleted U and Pu instead of natural uranium. From preliminary evaluation and calculation, it was shown that MOX nuclear fuel consisting of depleted uranium enrichment tailings (0.25% 235 U) and plutonium (their ratio 99.5%:0.5%) could replace natural uranium in CANDU reactor to sustain chain reaction. The prospects of application of depleted uranium in nuclear energy field are also discussed

  16. Future plant of basic research for nuclear energy by university researchers

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    National Committee for Nuclear Energy Research, Japan Science Council has completed a future plan for basic nuclear energy research by university researchers. The JSC has recommended the promotion of basic research for nuclear energy based on the plan in 1983. The future plan consists of four main research fields, namely, (1) improvements of reactor safety, (2) down stream, (3) thorium fuel reactors, and (4) applications of research reactor and radioisotopes. (author)

  17. CANDU-PHW fuel channel replacement experience

    International Nuclear Information System (INIS)

    Dunn, J.T.; Kakaria, B.K.

    1982-09-01

    One of the main characteristics of the CANDU pressurized heavy water reactor is the use of pressure tubes rather than one large pressure vessel to contain the fuel and coolant. This provides an inherent design capability to permit their replacement in an expeditious manner, without seriously affecting the high capacity factors of the reactor units. Of th eight Ontario Hydro commercial nuclear generating units, the lifetime performance places seven of them (including two that have had some of their fuel channels replaced), in the top ten positions in the world's large nuclear-electric unit performance ranking. Pressure tube cracks in the rolled joint region have resulted in 70 fuel channels being replaced in three reactor units, the latest being at the Bruce Nuclear Generating Station 'A', Unit 2 in February 1982. The rolled joint design and rolling procedures have been modified to eliminate this problem on CANDU units subsequent to Bruce 'A'. This paper describes the CANDU pressure tube performance history and expectations, and the tooling and procedures used to carry out the fuel channel replacement

  18. National Nuclear Research Institute Annual Report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    The report highlights the activities of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission for the year 2013, grouped under the following headings: Centres under the institute namely Nuclear Reactors Research Centre (NRRC); Accelerator Research Centre (ARC); Engineering Services Centre (ESC); National Radioactive Waste Management Centre (NRWMC); Nuclear Chemistry and Environmental Research Centre (NCERC); Nuclear Applications Centre (NAC) and National Data Centre (NDC). (A. B.)

  19. Nuclear safety research

    International Nuclear Information System (INIS)

    1996-01-01

    The topics 'Large-sized PWR-NPP Safety Techniques Research',and 'The Key Techniques Research on the Safety Supervision and Control for Operation of Nuclear Installations' have been adopted as an apart of 'the National 9th five Year Programs for Tacking the Key Scientific and Technical Topics' which are organized by the State Planning Commission (SPC) and State Science and Technology Commission (SSTC) respectively, and have obtained a financial support from them. To play a better role with the limited fund, the NNSA laid special stress on selecting key sub-topics on nuclear safety, and carefully choosing units which would undertake sub-topics and signing technical contracts with them

  20. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J R [ed.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  1. Nuclear methods in environmental and energy research

    International Nuclear Information System (INIS)

    Vogt, J.R.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research

  2. Termination of past nuclear activities at the nuclear research institute

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2006-01-01

    Many countries, particularly in Europe, started with nuclear programs in the fifties of the last century. As a consequence nuclear research institutes were established, among them also the Institute Jozef Stefan (IJS) in Slovenia. The nuclear activities at the IJS were related to the development of uranium ore processing technology and technologies comprising uranium oxide and hexafluoride. After very intensive period of nuclear activities the decline began step by step due to different reasons. Various approaches of the termination and decommissioning of facilities were used. The inspectors of the Slovenian Nuclear Safety Administration (SNSA), the responsible authority, started intensive activities at the IJS at the end of 2004. All together 22 research laboratories or research units were included in the inspection program and around 50 researchers of the IJS were involved into the inspection procedures. The inspection was very intensive in the laboratories and storages where past nuclear activities took place and were later on abandoned. As a result several contaminated equipments and sites in addition to around 200 unregistered sources were found. The majority of these sources is related to past nuclear activities. The inspection program related to the terminated research activities is still in progress. The IJS immediately started with the remediation activities including the development of methodology related to decontamination of radioactive liquids. The decontamination of two nuclear laboratories and three different storages of radioactive waste at its sites is in progress. Sixty of the above mentioned sources have been already stored in the Central Interim Storage for Radioactive Waste. (author)

  3. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    International Nuclear Information System (INIS)

    Ritterbusch, S.E.

    2000-01-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants

  4. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ritterbusch, S.E.

    2000-08-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  5. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  6. Nuclear Plant Aging Research (NPAR) program plan

    International Nuclear Information System (INIS)

    1985-07-01

    The nuclear plant aging research described in this plan is intended to resolve issues related to the aging and service wear of equipment and systems at commercial reactor facilities and their possible impact on plant safety. Emphasis has been placed on identification and characterization of the mechansims of material and component degradation during service and evaluation of methods of inspection, surveillance, condition monitoring and maintenance as means of mitigating such effects. Specifically the goals of the program are as follows: (1) to identify and characterize aging and service wear effects which, if unchecked, could cause degradation of structures, components, and systems and thereby impair plant safety; (2) to identify methods of inspection, surveillance and monitoring, or of evaluating residual life of structures, components, and systems, which will assure timely detection of significant aging effects prior to loss of safety function; and (3) to evaluate the effectiveness of storage, maintenance, repair and replacement practices in mitigating the rate and extent of degradation caused by aging and service wear

  7. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  8. Karlsruhe nuclear research center. Main activities

    International Nuclear Information System (INIS)

    The article reports on problems of securing the fuel supply for nuclear power generation, on reprocessing and ultimate storage of radioactive material, on the safety of nuclear facilities, on new technologies and basic research, and on the infrastructure of the Karlsruhe nuclear research center, as well as finance and administration. (HK) [de

  9. Green light for MYRRHA, high technology in nuclear research

    International Nuclear Information System (INIS)

    Abderrahim, H.A.; Baeten, P.

    2010-01-01

    During the past years, SCK-CEN has invested in the development, in a European context, of a revolutionary material test reactor. This ground-breaking irradiation facility, called MYRRHA, will be the world's first nuclear reactor driven by a particle accelerator, and in time will replace the BR2 reactor. The aim of MYRRHA is to contribute to the sustainable implementation of nuclear energy and to help develop solutions for important social concerns, such as the management of radioactive waste and the safety of nuclear energy. Following the expert opinion of the international MIRT team in 2009, in early 2010 the federal government gave its blessing to this ambitious project.

  10. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  11. Nuclear plant aging research program

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, has established the Nuclear Plant Aging Research (NPAR) program in its Division of Engineering Technology. Principal contractors for this program include Oak Ridge National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, and Pacific Northwest Laboratory. The program goals are: to identify and characterize time-dependent degradation (aging) of nuclear plant safety-related electrical and mechanical components which could lead to loss of safety function; to identify and recommend methods for detecting and trending aging effects prior to loss of safety function so that timely maintenance can be implemented; and to recommend maintenance practices for mitigating the effects of aging. Research activities include prioritization of system and component aging in nuclear plants, characterization of aging degradation of specific components including identification of functional indicators useful for trending degradation, and testing of practical methods and devices for measuring the functional indicators. Aging assessments have been completed on electric motors, snubbers, motor-operated valves, and check valves. Testing of trending methods and devices for motor-operated valves and check valves is in progress

  12. Supercomputer applications in nuclear research

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    1992-01-01

    The utilization of supercomputers in Japan Atomic Energy Research Institute is mainly reported. The fields of atomic energy research which use supercomputers frequently and the contents of their computation are outlined. What is vectorizing is simply explained, and nuclear fusion, nuclear reactor physics, the hydrothermal safety of nuclear reactors, the parallel property that the atomic energy computations of fluids and others have, the algorithm for vector treatment and the effect of speed increase by vectorizing are discussed. At present Japan Atomic Energy Research Institute uses two systems of FACOM VP 2600/10 and three systems of M-780. The contents of computation changed from criticality computation around 1970, through the analysis of LOCA after the TMI accident, to nuclear fusion research, the design of new type reactors and reactor safety assessment at present. Also the method of using computers advanced from batch processing to time sharing processing, from one-dimensional to three dimensional computation, from steady, linear to unsteady nonlinear computation, from experimental analysis to numerical simulation and so on. (K.I.)

  13. Replacement of the Pumps for Fuel Channel Cooling Circuit of the Maria Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krzysztoszek, G.; Mieleszczenko, W.; Moldysz, A. [National Centre for Nuclear Research, Otwock–Świerk (Poland)

    2014-08-15

    The high flux Maria research reactor is operated by the National Centre for Nuclear Research in Świerk. It is a pool type reactor with pressurized fuel channels located in the beryllium matrix. According to the Global Threat Reduction Initiative programme our goal is to convert the Maria reactor from HEU to LEU fuel. Hydraulic losses in the new LEU fuel produced by CERCA are about 30% higher than the existing HEU fuel of type MR-6. For the MR-6 fuel were installed four two speed pumps. These pumps performed the function of the main circulations pumps during reactor operation with residual pumping power provided by emergency pumps. In the new system four main pumps will be used for circulating coolant while the reactor is operation with three auxiliary pumps for decay heat removal after reactor shutdown, meaning that the conversion of Maria research reactor will be possible after increasing flow in the primary cooling circuit of the fuel channels. The technical design of replacement of the pumps in the primary fuel channel cooling circuit was finished in April 2011 and accepted by the Safety Committee. After delivery of the new pumps we are planning to upgrade the primary fuel channel cooling circuit during October–November 2012. (author)

  14. Nuclear materials management procedures

    International Nuclear Information System (INIS)

    Veevers, K.; Silver, J.M.; Quealy, K.J.; Steege, E. van der.

    1987-10-01

    This manual describes the procedures for the management of nuclear materials and associated materials at the Lucas Heights Research Laboratories. The procedures are designed to comply with Australia's nuclear non-proliferation obligations to the International Atomic Energy Agency (IAEA), bilateral agreements with other countries and ANSTO's responsibilities under the Nuclear Non-Proliferation (Safeguards) Act, 1987. The manual replaces those issued by the Australian Atomic Energy Commission in 1959, 1960 and 1969

  15. The nuclear research centre at Bariloche, Argentina

    International Nuclear Information System (INIS)

    Abriata, J.P.

    2001-01-01

    The nuclear research centre at Bariloche (CAB) is one of the four centres under the Atomic Energy Commission of Argentina (CNEA). The research programme of CAB addresses various issues like nuclear reactor development, nuclear fuel and fuel cycle, applications of radioisotopes and radiation, and waste management. There is also a basic nuclear science component. The human resource development in the areas of physics and nuclear engineering is done in an associated Balseiro Institute which has undergraduate and graduate programmes as well as doctoral and postdoctoral research. The Centre interacts well with the society and provides services in the nuclear area. It has a close interaction with the nuclear sector of Argentina as also with many international organisations. Regulatory control over the Centre is carried out by the Nuclear Regulatory Authority of Argentina. (author)

  16. Research program on nuclear technology and nuclear safety

    International Nuclear Information System (INIS)

    Dreier, J.

    2010-04-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning nuclear technology and nuclear safety. Work carried out, knowledge gained and results obtained in the various areas are reported on. These include projects carried out in the Laboratory for Reactor Physics and System Behaviour LRS, the LTH Thermohydraulics Laboratory, the Laboratory for Nuclear Materials LNM, the Laboratory for Final Storage Safety LES and the Laboratory for Energy Systems Analysis LEA of the Paul Scherrer Institute PSI. Work done in 2009 and results obtained are reported on, including research on transients in Swiss reactors, risk and human reliability. Work on the 'Proteus' research reactor is reported on, as is work done on component safety. International co-operation in the area of serious accidents and the disposal of nuclear wastes is reported on. Future concepts for reactors and plant life management are discussed. The energy business in general is also discussed. Finally, national and international co-operation is noted and work to be done in 2010 is reviewed

  17. Basis for snubber aging research: Nuclear Plant Aging Research Program

    International Nuclear Information System (INIS)

    Brown, D.P.; Palmer, G.R.; Werry, E.V.; Blahnik, D.E.

    1990-01-01

    This report describes a research plan to address the safety concerns of aging in snubbers used on piping and equipment in commercial nuclear power plants. The work is to be performed under Phase 2 of the Snubber Aging Study of the Nuclear Plant Aging Research Program of the US Nuclear Regulatory Commission with the Pacific Northwest Laboratory (PNL) as the prime contractor. Research conducted by PNL under Phase 1 provided an initial assessment of snubber operating experience and was primarily based on a review of licensee event reports. The work proposed is an extension of Phase 1 and includes research at nuclear power plants and in test laboratories. Included is technical background on the design and use of snubbers in commercial nuclear power applications; the primary failure modes of both hydraulic and mechanical snubbers are discussed. The anticipated safety, technical, and regulatory benefits of the work, along with concerns of the NRC and the utilities, are also described. 21 refs., 7 figs., 1 tab

  18. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  19. Nuclear Capacity Building through Research Reactors

    International Nuclear Information System (INIS)

    2017-01-01

    Four Instruments: •The IAEA has recently developed a specific scheme of services for Nuclear Capacity Building in support of the Member States cooperating research reactors (RR) willing to use RRs as a primary facility to develop nuclear competences as a supporting step to embark into a national nuclear programme. •The scheme is composed of four complementary instruments, each of them being targeted to specific objective and audience: Distance Training: Internet Reactor Laboratory (IRL); Basic Training: Regional Research Reactor Schools; Intermediate Training: East European Research Reactor Initiative (EERRI); Group Fellowship Course Advanced Training: International Centres based on Research Reactors (ICERR)

  20. Prerequisites for a nuclear weapons convention

    International Nuclear Information System (INIS)

    Liebert, W.

    1999-01-01

    A Nuclear Weapons Convention (NWC) would prohibit the research, development, production, testing, stockpiling, transfer, use and threat of use of nuclear weapons and would serve their total elimination.' In this fashion it follows the model laid out by the biological and chemical weapons conventions. The NWC would encompass a few other treaties and while replacing them should learn from their experiences. The Nuclear Weapons Convention should at some given point in the future replace the Non-Proliferation Treaty (NPT) and so resolve its contradictions and shortcomings. The main objectives of an NWC Would be: reduction of the nuclear arsenals of the 'five' nuclear weapons powers down to zero within a set of fixed periods of time; elimination of stockpiles of weapons-usable materials and, where existent, nuclear warheads in de-facto nuclear weapon and threshold states; providing assurance that all states will retain their non-nuclear status forever

  1. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 5 tabs., 21 ills

  2. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L. [eds.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department`s research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 5 tabs., 21 ills.

  3. Medical applications in a nuclear research centre

    International Nuclear Information System (INIS)

    Vanhavere, F.; Eggermont, G.

    2001-01-01

    In these days of public aversion to nuclear power, it can be important to point at the medical applications of ionising radiation. Not only the general public, but also the authorities and research centres have to be aware of these medical applications, which are not without risk for public health. Now that funding for nuclear research is declining, an opening to the medical world can give new opportunities to a nuclear research centre. A lot of research could be done where the tools developed for the nuclear power world are very useful. Even new applications for the research reactors like BNCT (boron neutron capture therapy) can be envisaged for the near future. In this contribution an overview will be given of the different techniques used in the medical world with ionising radiation. The specific example of the Belgian Nuclear Research Centre will be given where the mission statement was changed to include a certain number of medical research topics. (authors)

  4. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1987-02-01

    This annual Research Programme Plan covers the nuclear related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1987 and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT itself

  5. Nuclear Physics Research at ELI-NP

    Science.gov (United States)

    Zamfir, N. V.

    2018-05-01

    The new research facility Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.

  6. Nuclear Research and Society: Introduction

    International Nuclear Information System (INIS)

    Meskens, G.

    2007-01-01

    Throughout the last decades, the ever growing use of technology in our society has brought along the need to reflect on the related impact on the ecosystem and on society as such. There is growing evidence that the complexity of issues of risk governance and ethics coming with applications of nuclear technology, fossil fuels, human cloning and genetically modified crops cannot be tackled by pure rational technological and economical reasoning alone. In order to provide an answer to the concerns of civil society, this complexity needs a transdisciplinary approach, taking into account social and ethical aspects. Starting from the insight that a full understanding of the benefits and risks of applications of radioactivity and nuclear technology requires also an understanding of the context of application and a sense for the social and ethical aspects of the situation, SCK-CEN started in 1999 with its PISA research programme (Programme of Integration of Social Aspects into nuclear research). The aim of the research was (and still is) to give the nuclear researchers more insight into the complex social and ethical aspects of nuclear applications and to shed at the same time new lights on how to organise in a more effective way the dialogue and interaction with civil society. Originally, the programme was set up along thematic research tracks, involving nuclear scientists, engineers, philosophers and social scientists, and focussing on specific projects carried out by way of PhD- or post-doc research in cooperation with universities. The research tracks focussed on themes such as Sustainability and nuclear development, Transgenerational ethics of radioactive waste management, Legal aspects and liability, Risk governance and Expert culture. In addition to this thematic research, PISA organised reflection groups in interaction with universities, authorities and private actors. These interdisciplinary discussion sessions aimed to exchange knowledge and views on typical

  7. Essential Specification Elements for Heat Exchanger Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Bower, L.

    2015-07-01

    Performance upgrade and equipment degradation are the primary impetuses for a nuclear power plant to engage in the large capital cost project of heat exchanger replacement. Along with attention to these issues, consideration of heat exchanger Codes and Standards, material improvements, thermal redesign, and configuration are essential for developing User’s Design Specifications for successful replacement projects. The User’s Design Specification is the central document in procuring ASME heat exchangers. Properly stated objectives for the heat exchanger replacement are essential for obtaining the materials, configurations and thermal designs best suited for the nuclear power plant. Additionally, the code of construction required and the applied manufacturing standard (TEMA or HEI) affects how the heat exchanger may be designed or configured to meet the replacement goals. Knowledge of how Codes and Standards affect design and configuration details will aid in writing the User’s Design Specification. Joseph Oat Corporation has designed and fabricated many replacement heat exchangers for the nuclear power industry. These heat exchangers have been constructed per ASME Section III to various Code-Years or ASME Section VIII-1 to the current Code-Year also in accordance with TEMA and HEI. These heat exchangers have been a range of like-for-like replacement to complete thermal, material and configuration redesigns. Several examples of these heat exchangers with their Code, Standard and specification implications are presented. (Author.

  8. The Belgian nuclear research centre

    International Nuclear Information System (INIS)

    Moons, F.

    2001-01-01

    The Belgian Nuclear Research Centre is almost exclusively devoted to nuclear R and D and services and is able to generate 50% of its resources (out of 75 million Euro) by contract work and services. The main areas of research include nuclear reactor safety, radioactive waste management, radiation protection and safeguards. The high flux reactor BR2 is extensively used to test fuel and structural materials. PWR-plant BR3 is devoted to the scientific analysis of decommissioning problems. The Centre has a strong programme on the applications of radioisotopes and radiation in medicine and industry. The centre has plans to develop an accelerator driven spallation neutron source for various applications. It has initiated programmes to disseminate correct information on issues of nuclear energy production and non-energy nuclear applications to different target groups. It has strong linkages with the IAEA, OECD-NEA and the Euratom. (author)

  9. Nuclear physics and heavy element research at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

    2009-05-11

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  10. Summaries of FY 1986 research in nuclear physics

    International Nuclear Information System (INIS)

    1987-03-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics

  11. Current status of nuclear safety research

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Efforts at nuclear safety research have expanded year by year in Japan, in term of money and technical achievement. The Atomic Energy Commission set last year the five year nuclear safety research program, a guideline by which various research institutes will be able to develop their own efforts in a concerted manner. From the results of the nuclear safety research which cover very wide areas ranging from reactor engineering safety, safety of nuclear fuel cycle facilities, prevention of radiation hazards to the adequate treatment and disposal of radioactive wastes, AIJ hereafter focuses of LWR engineering safety and prevents two articles, one introducing the current results of the NSSR program developed by JAERI and the other reporting the LWR reliability demonstration testing projects being promoted by MITI. The outline of these demonstration tests was reported in this report. The tests consist of earthquake resistance reliability test of nuclear power plants, steam generator reliability tests, valve integrity tests, fuel assembly reliability tests, reliability tests of heat affected zones and reliability tests of pumps. (Kobatake, H.)

  12. Nuclear wastes: research programs

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The management of long-living and high level radioactive wastes in France belongs to the framework of the December 30, 1991 law which defines three ways of research: the separation and transmutation of radionuclides, their reversible storage or disposal in deep geologic formations, and their processing and surface storage during long duration. Research works are done in partnership between public research and industrial organizations in many French and foreign laboratories. Twelve years after its enforcement, the impact of this law has overstepped the simple research framework and has led to a deep reflection of the society about the use of nuclear energy. This short paper presents the main results obtained so far in the three research ways, the general energy policy of the French government, the industrial progresses made in the framework of the 1991 law and the international context of the management of nuclear wastes. (J.S.)

  13. Karlsruhe Nuclear Research Center. Research and development program 1992

    International Nuclear Information System (INIS)

    1991-01-01

    The KfK R and D activities are classified by ten point-of-main-effort projects: 1) low-pollution/low-waste methods, 2) environmental energy and mass transfers, 3) nuclear fusion, 4) nuclear saftey research, 5) radioactive waste management, 6) superconduction, 7) microtechnics, 8) materials handling, 9) materials and interfaces, 10) basic physical research. (orig.) [de

  14. Replacement of sub-systems

    International Nuclear Information System (INIS)

    Rosen, S.E.

    1992-01-01

    This paper describes a number of quality aspects related to replacement of important systems or components in a nuclear power station. Reference is given to the steam generator replacement and power uprating performed at Ringhals 2 in Sweden in 1989. Since quality is a wide concept there has been put special emphasis in this paper to the important aspects that traditionally are not connected to quality. (author) 1 fig

  15. Research method of nuclear patent information

    International Nuclear Information System (INIS)

    Mo Dan; Gao An'na; Sun Chenglin; Wang Lei; You Xinfeng

    2010-01-01

    When faced with a huge amount of nuclear patent information, the key to effective research include: (1) Choose convenient way to search, quick access to nuclear technology related patents; (2) To overcome the language barrier, analysis the technical content of patent information; (3) Organize the publication date of retrieved patent documents, analysis the status and trends of nuclear technology development; (4) Research the patented technology of main applicants; (5) Always pay attention to the legal status of patent information, free use the invalid patents, at the same time avoid the patent infringement. Summary, patent information is important to obtain the latest technical information source, and the research work of patent information is a comprehensive understanding and mastery way for advanced nuclear technology. (authors)

  16. Strategic Nuclear Research Collaboration - FY99 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Leahy

    1999-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

  17. ENSAR, a Nuclear Science Project for European Research Area

    NARCIS (Netherlands)

    Turzó, Ketel; Lewitowicz, Marek; Harakeh, Muhsin N.

    2015-01-01

    During the period from September 2010 to December 2014, the European project European Nuclear Science and Applications Research (ENSAR) coordinated research activities of the Nuclear Physics community performing research in three major subfields: Nuclear Structure, Nuclear Astrophysics, and Nuclear

  18. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1978-07-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in the various institutions listed in previous Progress Reports (LS-270 for 1976). The latest major experimental facility, the 14 UD pelletron, was installed in the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot, and accepted on April 1st 1977. A report in Revue de Physique Appliquee of October 1977 including a description of the facility, acceptance performance, as well as some supplementary devices, is reproduced in the beginning of this report. Brief abstracts of the research work, both published and unpublished, are presented. (author)

  19. Comments on future tasks for Romanian research related to nuclear power

    International Nuclear Information System (INIS)

    Dumitrache, I.

    2000-01-01

    Four main research areas are identified: - nuclear safety, - waste management, - fuel cycles and - plant life management. A significant number of tasks are related to each of these areas. Unfortunately, the cost of the needed research is much too high for the current electricity planning of Romania. Up to now, the international co-operation in CANDU field was not very efficient. Canada, India, Korea and Argentina have distinct intentions related to the use of nuclear power potential. Romania is the only European country interested to investigate CANDU reactor problems. Consequently, the author believes that the future Romanian nuclear power research effort must be clearly divided in two main classes: a. CR = 'Concentrated Research' on specific subjects, aimed to a better understanding, and to a complete solving of the associated problems, when possible, and b. CAR = 'Covering Areas Research' to maintain and update the know-how needed in the nuclear power activities. A given research subject may successively pass from one class to another, if needed; however, for a given period of one-to-five years, the class must be stated for each project, from the beginning. No research effort must be planned in the first class, CR, if the needed resources (human, technical and financial) are not ensured. Usually, the power plant leaders and the Institute researchers wish to dedicate their efforts to investigation of the 'hot problems'. Apparently, they are always right. In fact, the allocation of human and financial resources must be based on a very careful evaluation of the 'conditions required for success'. Otherwise, instead of the needed solution, the research will probably offer' a significant number of original methods, successfully applied', 'a more detailed knowledge of phenomena', 'several patents', a few papers 'published or accepted for publication in world over recognized scientific journals' etc. Although valuable, such results are not accepted instead of the needed

  20. Summaries of FY 1988 research in nuclear physics

    International Nuclear Information System (INIS)

    1989-02-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. The nuclear physics research summaries in this document were initially prepared by the investigators, then reviewed and edited by DOE staff. They describe the general character and goals of the research programs, current research efforts, especially significant recent results, and plans for the near future. The research summaries are organized into two groups: research programs at national laboratories and those at universities, with the material arranged alphabetically by institution. The names of all Ph.D.-level personnel who are primarily associated with the work are included. The FY 1988 funding levels are also provided. Included for the first time are activities of the nuclear data program, which was incorporated within nuclear physics in FY 1987. We remind the readers that this compilation is just an overview of the Nuclear Physics program. Primary publications should be used for reference to the work and for a more complete and accurate understanding

  1. Software and man-machine interface considerations for a nuclear plant computer replacement and upgrade project

    International Nuclear Information System (INIS)

    Diamond, G.; Robinson, E.

    1984-01-01

    Some of the key software functions and Man-Machine Interface considerations in a computer replacement and upgrade project for a nuclear power plant are described. The project involves the installation of two separate computer systems: an Emergency Response Facilities Computer System (ERFCS) and a Plant Process Computer System (PPCS). These systems employ state-of-the-art computer hardware and software. The ERFCS is a new system intended to provide enhanced functions to meet NRC post-TMI guidelines. The PPCS is intended to replace and upgrade an existing obsolete plant computer system. A general overview of the hardware and software aspects of the replacement and upgrade is presented. The work done to develop the upgraded Man-Machine Interface is described. For the ERFCS, a detailed discussion is presented of the work done to develop logic to evaluate the readiness and performance of safety systems and their supporting functions. The Man-Machine Interface considerations of reporting readiness and performance to the operator are discussed. Finally, the considerations involved in the implementation of this logic in real-time software are discussed.. For the PPCS, a detailed discussion is presented of some new features

  2. The fourth conference on nuclear science and engineering in Australia, 2001. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This conference, with the theme 'New Nuclear Century' consists of invited papers supported by contributed posters on the following topics: nuclear research and ANSTO's Replacement Research Reactor; Australian uranium resources; radioactive waste management; low-level radiation, radiation protection, nuclear safety, the environment and sustainable development; application of nuclear energy in Nuclear Medicine, non-destructive testing; nuclear science and technology for the future and nuclear education.

  3. The fourth conference on nuclear science and engineering in Australia, 2001. Conference handbook

    International Nuclear Information System (INIS)

    2001-01-01

    This conference, with the theme 'New Nuclear Century' consists of invited papers supported by contributed posters on the following topics: nuclear research and ANSTO's Replacement Research Reactor; Australian uranium resources; radioactive waste management; low-level radiation, radiation protection, nuclear safety, the environment and sustainable development; application of nuclear energy in Nuclear Medicine, non-destructive testing; nuclear science and technology for the future and nuclear education

  4. PSI nuclear energy research progress report 1988

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-07-01

    The progress report at hand deals with nuclear energy research at PSI. The collection of articles covers a large number of topics: different reactor systems, part of the fuel cycle, the behaviour of structural materials. Examples of the state of knowledege in different disciplines are given: reactor physics, thermal-hydraulics, heat transfer, fracture mechanics, instrumental analysis, mathematical modelling. The purpose of this collection is to give a fair account of nuclear energy research at PSI. It should demonstrate that nuclear energy research is a central activity also in the new institute, the scientific basis for the continuing exploitation of nuclear power in Switzerland is preserved, work has continued not only along established lines but also new research topics were tackled, the quality of work corresponds to international standards and in selected areas is in the forefront, the expertise acquired also finds applications in non-nuclear research tasks. (author) 92 figs., 18 tabs., 316 refs

  5. A Study on Research Trend in Nuclear Forensics

    International Nuclear Information System (INIS)

    Kim, Kyungmin; Yim, Hobin; Lee, Seungmin; Hong, Yunjeong; Kim, Jae Kwang

    2014-01-01

    The international community has recognized the serious threat posed by nuclear and other radioactive material out of regulatory control. To address these concerns, the Office of Nuclear Security of the international Atomic Energy Agency (IAEA) is developing, inter alia, guidance for nuclear forensics to assist Member States. According to the IAEA Incident and Trafficking Database (ITDB) of the IAEA to record the illegal trade and trafficking incidents of nuclear material or other radioactive material, incidents of 2331 have been reported in 1993 to 2012. These incidents mean that we are not safe for nuclear material. In order to solve the case generated by the illicit trafficking of nuclear material and the efficient management of nuclear material, the study of nuclear forensics is very important. In this study, we investigated the analytical techniques and the current status of nuclear forensics research. In this study, we investigated the current status of research of nuclear forensics, procedures for analysis and nuclear forensics analysis technique. A result of the study, we have been found that the major institutes and laboratory actively research on analysis technique and nuclear forensics. However, research on nuclear forensics is still in early stage, ROK is necessary preliminary survey of analysis technique and foundation of physical, chemical, and morphology characteristics of nuclear materials

  6. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-06-01

    The introductory section describes the goals, main thrusts, and interrelationships between the various activities in the program and principal achievements of the Stony Brook Nuclear Theory Group during 1992--93. Details and specific accomplishments are related in abstract form. Current research is taking place in the following areas: strong interaction physics (the physics of hadrons, QCD and the nucleus, QCD at finite temperature and high density), relativistic heavy-ion physics, nuclear structure and nuclear many- body theory, and nuclear astrophysics

  7. Repair or replacement of defective restorations by dentists in The Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Gordan, Valeria V; Riley, Joseph L; Geraldeli, Saulo

    2012-01-01

    The authors aimed to determine whether dentists in practices belonging to The Dental Practice-Based Research Network (DPBRN) were more likely to repair or to replace a restoration that they diagnosed as defective; to quantify dentists' specific reasons for repairing or replacing restorations......; and to test the hypothesis that certain dentist-, patient- and restoration-related variables are associated with the decision between repairing and replacing restorations....

  8. The third conference on nuclear science and engineering in Australia, 1999. Conference handbook

    International Nuclear Information System (INIS)

    1999-01-01

    The Australian Nuclear Association has organised this third Conference in a biennial series with the theme: 'A Nuclear Renaissance'. The theme is based on our perception that nuclear science and technology is on the threshold of a major expansion after a period which many thought was the onset of the Dark Ages after the old Australian Atomic Energy Commission was abolished in 1987. Fortunately, nuclear science and technology was not abolished and the AAEC was replaced by the government with ANSTO, which the government has continued to support strongly. The most recent expression of this support has been the approval of nearly $300 millions in investment in a major Replacement Research Reactor to be operational in about 2005, and the establishment of the new regulatory body ARPANSA. The conference aims to review all of the major nuclear issues of importance to Australia as we enter the 21st Century. These include: uranium mining and upgrading; the management of nuclear waste; the plans for the future by the government's major nuclear research laboratory, operated by ANSTO, including plans for constructing a major Replacement Research Reactor at Lucas Heights, the status of safeguards and nuclear regulation in Australia now that the government has set up the Australian Radiation Protection and Nuclear Safety Agency, and the many and varied applications of nuclear science in Australia. The conference also presents the plans for nuclear research by the universities through the Australian Institute of Nuclear Science and Engineering, and features in particular the work at the Australian National University in Canberra

  9. The third conference on nuclear science and engineering in Australia, 1999. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Australian Nuclear Association has organised this third Conference in a biennial series with the theme: 'A Nuclear Renaissance'. The theme is based on our perception that nuclear science and technology is on the threshold of a major expansion after a period which many thought was the onset of the Dark Ages after the old Australian Atomic Energy Commission was abolished in 1987. Fortunately, nuclear science and technology was not abolished and the AAEC was replaced by the government with ANSTO, which the government has continued to support strongly. The most recent expression of this support has been the approval of nearly $300 millions in investment in a major Replacement Research Reactor to be operational in about 2005, and the establishment of the new regulatory body ARPANSA. The conference aims to review all of the major nuclear issues of importance to Australia as we enter the 21st Century. These include: uranium mining and upgrading; the management of nuclear waste; the plans for the future by the government's major nuclear research laboratory, operated by ANSTO, including plans for constructing a major Replacement Research Reactor at Lucas Heights, the status of safeguards and nuclear regulation in Australia now that the government has set up the Australian Radiation Protection and Nuclear Safety Agency, and the many and varied applications of nuclear science in Australia. The conference also presents the plans for nuclear research by the universities through the Australian Institute of Nuclear Science and Engineering, and features in particular the work at the Australian National University in Canberra.

  10. Karlsruhe Nuclear Research Center. Research and development programme 1989

    International Nuclear Information System (INIS)

    1988-01-01

    The R and D activities of the KfK are classified in 10 main research activities: 1) Project fast breeder; 2) separation nozzle method; 3) project nuclear fusion; 4) project reprocessing and waste processing; 5) ultimate storage; 6) environment and safety; 7) solid-state and materials research; 8) nuclear and elementary particle physics; 9) microtechnics e.g. X-ray lithography; 10) materials handling. (HP) [de

  11. Role and position of Nuclear Power Plants Research Institute in nuclear power industry

    International Nuclear Information System (INIS)

    Metke, E.

    1984-01-01

    The Nuclear Power Plants Research Institute carries out applied and experimental research of the operating states of nuclear power plants, of new methods of surveillance and diagnosis of technical equipment, it prepares training of personnel, carries out tests, engineering and technical consultancy and the research of automated control systems. The main research programme of the Institute is the rationalization of raising the safety and operating reliability of WWER nuclear power plants. The Institute is also concerned with quality assurance of selected equipment of nuclear power plants and assembly works, with radioactive waste disposal and the decommissioning of nuclear power plants as well as with the preparation and implementation of the nuclear power plant start-up. The Research Institute is developing various types of equipment, such as equipment for the decontamination of the primary part of the steam generator, a continuous analyzer of chloride levels in water, a gas monitoring instrument, etc. The prospects are listed of the Research Institute and its cooperation with other CMEA member countries. (M.D.)

  12. Summaries of FY 1992 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed.

  13. Summaries of FY 1992 research in nuclear physics

    International Nuclear Information System (INIS)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed

  14. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  15. Replacement power costs due to nuclear-plant outages: a higher standard of care

    International Nuclear Information System (INIS)

    Gransee, M.F.

    1982-01-01

    This article examines recent state public utility commission cases that deal with the high costs of replacement power that utilities must purchase after a nuclear power plant outage. Although most commissions have approved such expenses, it may be that there is a trend toward splitting the costs of such expenses between ratepayer and stockholder. Commissions are demanding a management prudence test to determine the cause of the outage and whether it meets the reasonable man standard before allowing these costs to be passed along to ratepayers. Unless the standard is applied with flexibility, however, utility companies could invoke the defenses covering traditional common law negligence

  16. EXPERIMENTAL RESEARCH OF REGENERATIVE FEATURES IN BONE TISSUES AROUND IMPLANTS AFTER ONE-STAGE BILATERAL TOTAL HIP REPLACEMENT

    Directory of Open Access Journals (Sweden)

    V. M. Mashkov

    2012-01-01

    Full Text Available Objective: to research the specific features of regenerative processes of bone tissue around implants after one-stage bilateral total hip replacement in experiment. Material and methods: 27 total hip replacement operations have been performed in 18 rabbits of breed "chinchilla" to which bipolar femoral endoprosthesis made of titanic alloy PT-38, one type-size, with friction pair metal-on-metal and neck-shaft angle 165 degrees have been implanted: total unilateral hip replacement operations have been performed in 9 animals (control group, one-stage bilateral total hip replacement operations have been performed in 9 animals (experimental group. During research they have been on radiological and clinical checking-up. After the experiment the animals had histological tests of the tissues around endoprosthesis components. Results and conclusions: After one-stage bilateral total hip replacement in early terms of research more expressed changes of bone tissue in the form of its thinning and decompaction were found around implants. One-stage bilateral total hip replacement did not essentially influence on the speed of osteogenesis around endoprothesis components in comparison with unilateral total hip replacement, so in late terms of observation in both groups the fixing of endoprothesis components did not differ.

  17. Maintaining knowledge, training and infrastructure for research and development in nuclear safety - INSAG-16. A report by the International Nuclear Safety Advisory Group

    International Nuclear Information System (INIS)

    2003-01-01

    The purpose of this report is to emphasize the importance of maintaining capabilities for nuclear research and education, especially with regard to safety aspects, so that nuclear safety may be maintained in IAEA Member States, and to alert Member States to the potential for significant harm if the infrastructure for research, development and education is not maintained. If the infrastructure for nuclear safety is not maintained, there will be a steady decrease in expertise, and thus in capability to respond to new challenges. The lead time in developing replacement educational opportunities is very long, because most institutions will require an indication of the number of enthusiastic potential students before investing in new infrastructure, and potential students may look elsewhere in the absence of an exciting analytical and experimental programme and a growing career field. Once lost, it would require massive inputs of resources from many IAEA Member States to attempt to re-establish the infrastructure, as was done to establish it when nuclear technology was new. The result could be a downward spiral in which expertise is lost, influence of the technical community on the decision making process is diminished, and complacency, fed by diminished technical capability, begins to exert a strong effect. In view of the above, INSAG has the following recommendations: In order to maintain and further enhance the safety of nuclear facilities and to protect workers and the public and the environment from radiological consequences, the infrastructure for safety research (experimental facilities, highly competent staff and modern analytical tools) must be maintained and supported by the responsible governmental organizations as well as by the operating organizations and manufacturers. This support should include international networking and co-operation, including joint funding of centres of excellence that have facilities and equipment for use in nuclear research

  18. Replacement Models Revisited | Alabi | Journal of Research in ...

    African Journals Online (AJOL)

    The objective is to review the annual total cost and the cumulative annual total cost average hitherto used as replacement methods. The study showed some disparity in the optimal age of single replacement as used by some authors. Hence, an arithmetic mean method of finding the optimal single- replacement- age of an ...

  19. Materials research in the Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Kleykamp, H.

    1990-03-01

    This report gives a survey of the research work done at the Institute for Material and Solids Research at Karlsruhe. The following subjects are dealt with: Instrumental analysis; producing thin films; corrosion; failure mechanism and damage analysis; fuel elements, ceramic nuclear fuels and can and structure materials for fast breeder reactors; material problems and ceramic breeding materials for nuclear fusion plants; glass materials for the treatment of radioactive waste; super-conducting materials; amorphous metals, new high alloyed steels; ceramic high performance materials; hard materials; compound materials and polymers. (MM) [de

  20. Safety research in nuclear fuel cycle at PNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF{sub 6}, uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  1. Safety research in nuclear fuel cycle at PNC

    International Nuclear Information System (INIS)

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF 6 , uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  2. Some economic aspects of steam generator replacements in nuclear power plants

    International Nuclear Information System (INIS)

    Lebegner, J.

    1995-01-01

    The steam generator replacements performed over last decade (about 25 replacements until now), indicate trends towards improved techniques, shorter schedules and reduced total exposure and total costs. The goal of this paper is to give a worldwide review of SG replacement experience with accent on the economic aspect of the SG replacement. The main information about carried out replacements will be presented: cost, schedules, exposures, SG supplier and type, date of replacement, etc. Furthermore, the paper will contain the list of planned steam generator replacements in Europe, Japan and US future replacement plans. Finally, some of NPPs will be described whose initial nominal power has been increased along with SG replacement. (author)

  3. 5/8'' baffle bolt replacement

    International Nuclear Information System (INIS)

    Pinaud, T.; Grypczynski, D.

    1999-01-01

    Both Framatome Nuclear Services in France and its U.S. arm, FT1, are now equipped with baffle bolt inspection and replacement packages. These packages allow them to tackle baffle bold degradation on both two- and three-loop nuclear power plants. Framatome and FT1 together are world leaders in addressing reactor vessel internal bolting concerns

  4. Report from the research committee of digital imaging standardization in nuclear medicine

    International Nuclear Information System (INIS)

    Nakamura, Yutaka; Ise, Toshihide; Isetani, Osamu; Ichihara, Takashi; Ohya, Nobuyoshi; Kanaya, Shinichi; Fukuda, Toshio; Horii, Hitoshi.

    1994-01-01

    Since digital scintillation camera systems were developed in 1982, digital imaging is rapidly replacing analog imaging. During the first year, the research committee of digital imaging standardization has collected and analyzed basic data concerning digital examination equipment systems, display equipments, films, and hardware and software techniques to determine items required for the standardization of digital imaging. During the second year, it has done basic phantom studies to assess digital images and analyzed the results from both physical and visual viewpoints. On the basis of the outcome of the research committee's activities and the nationwide survey, the draft of digital imaging standardization in nuclear medicine has been presented. In this paper. the analytical data of the two-year survey, made by the research committee of digital imaging standardization, are presented. The descriptions are given under the following four items: (1) standardization digital examination techniques, (2) standardization of display techniques, (3) the count and pixel of digital images, and (4) standardization of digital imaging techniques. (N.K.)

  5. Research in nuclear chemistry: current status and future perspectives

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    2007-01-01

    Research in nuclear chemistry has seen a huge growth over the last few decades. The large umbrella of nuclear chemistry includes several research areas such as nuclear fission, reactions, spectroscopy, nuclear probes and nuclear analytical techniques. Currently, nuclear chemistry research has extended its horizon into various applications like nuclear medicine, isotopes for understanding physico chemical processes, and addressing environmental and biomedical problems. Tremendous efforts are going on for synthesizing new elements (isotopes), isolating physically or chemically wherever possible and investigating their properties. Theses studies are useful to understand nuclear and chemical properties at extreme ends of instability. In addition, nuclear chemists are making substantial contribution to astrophysics and other related areas. During this talk, a few of the contributions made by nuclear chemistry group of BARC will be discussed and possible future areas of research will be enumerated. (author)

  6. Outline of research proposals selected in the Nuclear Energy Research Initiative (NERI) program

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Usui, Shuji

    1999-08-01

    The U.S. Department of Energy (DOE) created a new R and D program called Nuclear Energy Research Initiative (NERI)' in FY 1999 with the appropriation of $19 million. The major objectives of the NERI program is to preserve the nuclear science and engineering infrastructure in the U.S. and to maintain a competitive position in the global nuclear market in the 21st century. In may, 1999, the DOE selected 45 research proposals for the first year of the NERI program. The proposals are classified into the following five R and D areas: Proliferation Resistant Reactors and/or Fuel Cycles, New Reactor Designs, Advanced Nuclear Fuel, New Technology for Management of Nuclear Waste, Fundamental Nuclear Science. Since the NERI is a very epoch-making and strategic nuclear research program sponsored by the U.S. government, the trend of the NERI is considered to affect the future R and D programs in Japanese nuclear industries and research institutes including JAERI. The present report summarizes the analyzed results of the selected 45 research proposals. Staffs comments are made on each proposal in connection with the R and D activities in JAERI. (author)

  7. Carbon Emission Impact for Energy Strategy in which All Non-CSS Coal Power Plants Are Replaced by Nuclear Power Plants

    International Nuclear Information System (INIS)

    Knapp, V.; Matijevic, M.; Pevec, D.; Lale, D.

    2016-01-01

    The Paris climate conference recognized the urgency of measures to mitigate climate changes and achieved an agreement on the targets for future decades. We wish to show that advanced LWR initiated nuclear strategy can offer us long term carbon free energy future. Human action is putting carbon dioxide into atmosphere where it resides effectively for hundreds of years. We are forced to look ahead on the same time scale but we have much shorter time to act as we almost used up the quota of emission of carbon before disaster would be unavoidable, as shown in paper by Meinshausen et al. and IPCC report. We have to change our ways of relying on fossil fuel dramatically in the next few decades. It would be a change in use of fossil fuel which cannot be achieved with usual business practices. Arising awareness of reality and threat of global warming in parallel with fading promise of nuclear fusion and Carbon Capture and Storage (CCS) technology, should convince the public to accept nuclear fission contribution to climate change mitigation, at least for the climate critical years up to 2065. Nuclear fission has the additional value of supporting intermittent sources by covering the base load consumption. It can be available now, with proven reactors, such as advanced LWR reactors. Nuclear strategy in this paper outlines a proposal to replace all non-CCS coal power plants with nuclear power plants in the period 2025-2065. Assuming once through advanced LWR technology, one would need nuclear capacity of 1600 GW to replace coal power plants in the period 2025-2065. Corresponding reduction of emission would amount to 11.8 Gt of CO2. This energy strategy would reduce carbon emission by approximately 22 percent in the year 2065. The annual uranium requirements and the cumulative uranium requirements, as well as the annual plutonium production and cumulative plutonium production for the proposed nuclear strategy are determined. A possibility of larger reduction of carbon

  8. Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Eggermont, G.

    2001-01-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised

  9. Research Facilities for the Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    1996-01-01

    The proceedings of the ENS Class 1 Topical Meeting on Research facilities for the Future of Nuclear Energy include contributions on large research facilities, designed for tests in the field of nuclear energy production. In particular, issues related to facilities supporting research and development programmes in connection to the operation of nuclear power plants as well as the development of new concepts in material testing, nuclear data measurement, code validation, fuel cycle, reprocessing, and waste disposal are discussed. The proceedings contain 63 papers

  10. Reactor protection systems for the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Morris, C.R.

    2003-01-01

    The 20-MW Replacement Research Reactor Project which is currently under construction at ANSTO will have a combination of a state of the art triplicated computer based reactor protection system, and a fully independent, and diverse, triplicated analogue reactor protection system, that has been in use in the nuclear industry, for many decades. The First Reactor Protection System (FRPS) consists of a Triconex triplicated modular redundant system that has recently been approved by the USNRC for use in the USA?s power reactor program. The Second Reactor Protection System is a hardwired analogue system supplied by Foxboro, the Spec 200 system, which is also Class1E qualified. The FRPS is used to drop the control rods when its safety parameter setpoints have been reached. The SRPS is used to drain the reflector tank and since this operation would result in a reactor poison out due to the time it would take to refill the tank the FRPS trip setpoints are more limiting. The FRPS and SRPS have limited hardwired indications on the control panels in the main control room (MCR) and emergency control centre (ECC), however all FRPS and SRPS parameters are capable of being displayed on the reactor control and monitoring system (RCMS) video display units. The RCMS is a Foxboro Series I/A control system which is used for plant control and monitoring and as a protection system for the cold neutron source. This paper will provide technical information on both systems, their trip logics, their interconnections with each other, and their integration into the reactor control and monitoring system and control panels. (author)

  11. Nuclear safety research at the European Commission's Joint Research Centre

    International Nuclear Information System (INIS)

    Toerroenen, K.

    2003-01-01

    Nuclear power plants currently generate some 35 % of electricity used in the European Union and applicant countries. Nuclear safety will therefore remain a priority for the EU, particularly in view of enlargement, the need to monitor ageing nuclear installations and the licencing of advanced new reactor systems. The European Commission's Joint Research Centre (JRC), with its long involvement and recognised competence in nuclear safety related activities, provides direct support to the European Commission services responsible for nuclear safety and civil protection. (author)

  12. Present status of nuclear fusion research and development

    International Nuclear Information System (INIS)

    Discussions are included on the following topics: (1) plasma confinement theoretical research, (2) torus plasma research, (3) plasma measurement research, (4) technical development of equipment, (5) plasma heating, (6) vacuum wall surface phenomena, (7) critical plasma test equipment design, (8) noncircular cross-sectional torus test equipment design, (9) nuclear fusion reactor design, (10) nuclear fusion reactor engineering, (11) summary of nuclear fusion research in foreign countries, and (12) long range plan in Japan

  13. Perspectives of experimental nuclear physics research at RBI Croatia

    International Nuclear Information System (INIS)

    Soic, N.

    2009-01-01

    Experimental nuclear physics has been one of the top research activities at the Rudjer Boskovic Institute, the largest and leading Croatian research center in science and applications. The RBI nuclear physics group has strong link with the researchers at the University of Zagreb. RBI scientists perform experiments at the RBI Tandem accelerator facility and at the top European experimental facilities in collaboration with the prominent research groups in the field. Current status of the RBI experimental nuclear physics research and our recent activities aimed to strengthen our position at the RBI and to increase our international reputation and impact in collaborative projects will be presented. Part of these activities is focused on local accelerator facilities, at present mainly used for application research, and their increased usage for nuclear physics research and for development and testing of novel research equipment for large international facilities. Upgrade of the local research equipment is on the way through FP7 REGPOT project 'CLUNA: Clustering phenomena in nuclear physics: strengthening of the Zagreb-Catania-Birmingham partnership'. Recently, steps to exploit potential of the facility for nuclear astrophysics research have been initiated. Possible future actions for further strengthening of the RBI experimental nuclear physics research will be discussed.(author)

  14. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-01-01

    Research in progress and plans for future investigations are briefly summarized for the following areas: light-ion structure and reactions; nuclear structure; peripheral heavy-ion reactions at medium and high energy; medium-energy heavy-ion collisions and properties of highly excited nuclear matter; and high-energy heavy-ion collisions and QCD plasma

  15. Research in nuclear astrophysics

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1989-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and the supernova phenomenon; in fact, nuclear matter properties, especially at supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered in the one and one half years prior to its explosion in February 1987. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We propose to modify it to use implicit differencing and to include multi-group neutrino diffusion and General Relativity. In parallel, we are extending calculations of the birth of a neutron star to include convection and mass accretion, by incorporating a hydrodynamic envelope onto a hydrostatic core. In view of the possible recent discovery of a pulsar in SN1987A, we are including the effects of rotation. We are undertaking a detailed comparison of current equations of state, focusing on disagreements regarding the nuclear incompressibly, symmetry energy and specific heat. Especially important is the symmetry energy, which below nuclear density controls free proton fractions and weak interaction rates and above this density critically influences the neutron star maximum mass and binding energy. 60 refs

  16. Directory of Nuclear Research Reactors 1994

    International Nuclear Information System (INIS)

    1995-08-01

    The Directory of Nuclear Research Reactors is an output of the Agency's computerized Research Reactor Data Base (RRDB). It contains administrative, technical and utilization information on research reactors known to the Agency at the end of December 1994. The data base converted from mainframe to PC is written in Clipper 5.0 and the publication generation system uses Excel 4. The information was collected by the Agency through questionnaires sent to research reactor owners. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the RRDB. This system contains all the information and data previously published in the Agency's publication, Directory of Nuclear Research Reactor, as well as updated information

  17. Safety research programs sponsored by Office of Nuclear Regulatory Research

    International Nuclear Information System (INIS)

    Weiss, A.J.; Azarm, A.; Baum, J.W.

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988

  18. Japan's contribution to nuclear medical research

    International Nuclear Information System (INIS)

    Rahman, M.; Sakamoto, Junichi; Fukui, Tsuguya

    2002-01-01

    We investigated the degree of Japan's contribution to the nuclear medical research in the last decade. Articles published in 1991-2000 in highly reputed nuclear medical journals were accessed through the MEDLINE database. The number of articles having affiliation with a Japanese institution was counted along with publication year. In addition, shares of top-ranking countries were determined along with their trends over time. Of the total number of articles (7,788), Japan's share of articles in selected nuclear medical journals was 11.4% (889 articles) and ranked 2nd in the world after the USA (2,645 articles). The recent increase in the share was statistically significant for Japan (p=0.02, test for trend). Japan's share in nuclear medical research output is much higher than that in other biomedical fields. (author)

  19. Nuclear Explosion Monitoring History and Research and Development

    Science.gov (United States)

    Hawkins, W. L.; Zucca, J. J.

    2008-12-01

    Within a year after the nuclear detonations over Hiroshima and Nagasaki the Baruch Plan was presented to the newly formed United Nations Atomic Energy Commission (June 14, 1946) to establish nuclear disarmament and international control over all nuclear activities. These controls would allow only the peaceful use of atomic energy. The plan was rejected through a Security Council veto primarily because of the resistance to unlimited inspections. Since that time there have been many multilateral, and bilateral agreements, and unilateral declarations to limit or eliminate nuclear detonations. Almost all of theses agreements (i.e. treaties) call for some type of monitoring. We will review a timeline showing the history of nuclear testing and the more important treaties. We will also describe testing operations, containment, phenomenology, and observations. The Comprehensive Nuclear Test Ban Treaty (CTBT) which has been signed by 179 countries (ratified by 144) established the International Monitoring System global verification regime which employs seismic, infrasound, hydroacoustic and radionuclide monitoring techniques. The CTBT also includes on-site inspection to clarify whether a nuclear explosion has been carried out in violation of the Treaty. The US Department of Energy (DOE) through its National Nuclear Security Agency's Ground-Based Nuclear Explosion Monitoring R&D Program supports research by US National Laboratories, and universities and industry internationally to detect, locate, and identify nuclear detonations. This research program builds on the broad base of monitoring expertise developed over several decades. Annually the DOE and the US Department of Defense jointly solicit monitoring research proposals. Areas of research include: seismic regional characterization and wave propagation, seismic event detection and location, seismic identification and source characterization, hydroacoustic monitoring, radionuclide monitoring, infrasound monitoring, and

  20. Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2001-04-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised.

  1. Spanish Nuclear Safety Research under International Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Reventos, F.; Ahnert, C.; Jimenez, G.; Queral, C.; Verdu, G.; Miro, R.; Gallardo, S.

    2013-10-01

    The Nuclear Safety research requires a wide international collaboration of several involved groups. In this sense this paper pretends to show several examples of the Nuclear Safety research under international frameworks that is being performed in different Universities and Research Institutions like CIEMAT, Universitat Politecnica de Catalunya (UPC), Universidad Politecnica de Madrid (UPM) and Universitat Politenica de Valencia (UPV). (Author)

  2. Role of nuclear safety research and future plan

    International Nuclear Information System (INIS)

    Kim, W. S.; Lee, J. I.; Kang, S. C.; Park, Y. W.; Lee, J. H.; Kim, M. W.; Lee, C. J.; Park, Y. I.

    2000-01-01

    For promoting and improving nuclear safety research activities, this report gives an insight on the scope of safety research and its role in the safety management of nuclear installations, and suggests measures to adequately utilize the research results through taking an optimized role share among research organizations. Several measures such as cooperative planning of common research areas and proper role assignment, improvement of the interfaces among researchers, and reflection of end-users' opinion in the course of planning and conducting research to promote application of research results are identified. It is expected that the identified measures will contribute to enhancing the efficiency and effectiveness of nuclear safety research, if they are implemented after deliberating with the government and safety research organizations

  3. A world class nuclear research reactor complex for South Africa's nuclear future

    International Nuclear Information System (INIS)

    Keshaw, Jeetesh

    2008-01-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  4. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  5. Maintaining knowledge, training and infrastructure for research and development in nuclear safety. INSAG-16. A report by the International Nuclear Safety Advisory Group (Russian Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    The purpose of this report is to emphasize the importance of maintaining capabilities for nuclear research and education, especially with regard to safety aspects, so that nuclear safety may be maintained in IAEA Member States, and to alert Member States to the potential for significant harm if the infrastructure for research, development and education is not maintained. If the infrastructure for nuclear safety is not maintained, there will be a steady decrease in expertise, and thus in capability to respond to new challenges. The lead time in developing replacement educational opportunities is very long, because most institutions will require an indication of the number of enthusiastic potential students before investing in new infrastructure, and potential students may look elsewhere in the absence of an exciting analytical and experimental programme and a growing career field. Once lost, it would require massive inputs of resources from many IAEA Member States to attempt to re-establish the infrastructure, as was done to establish it when nuclear technology was new. The result could be a downward spiral in which expertise is lost, influence of the technical community on the decision making process is diminished, and complacency, fed by diminished technical capability, begins to exert a strong effect. In view of the above, INSAG has the following recommendations: In order to maintain and further enhance the safety of nuclear facilities and to protect workers and the public and the environment from radiological consequences, the infrastructure for safety research (experimental facilities, highly competent staff and modern analytical tools) must be maintained and supported by the responsible governmental organizations as well as by the operating organizations and manufacturers. This support should include international networking and co-operation, including joint funding of centres of excellence that have facilities and equipment for use in nuclear research

  6. Blown by the wind. Replacing nuclear power in German electricity generation

    International Nuclear Information System (INIS)

    Lechtenböhmer, Stefan; Samadi, Sascha

    2013-01-01

    Only three days after the beginning of the nuclear catastrophe in Fukushima, Japan, on 11 March 2011, the German government ordered 8 of the country's 17 existing nuclear power plants (NPPs) to stop operating within a few days. In summer 2011 the government put forward a law – passed in parliament by a large majority – that calls for a complete nuclear phase-out by the end of 2022. These government actions were in contrast to its initial plans, laid out in fall 2010, to expand the lifetimes of the country's NPPs. The immediate closure of 8 NPPs and the plans for a complete nuclear phase-out within little more than a decade, raised concerns about Germany's ability to secure a stable supply of electricity. Some observers feared power supply shortages, increasing CO 2 -emissions and a need for Germany to become a net importer of electricity. Now – a little more than a year after the phase-out law entered into force – this paper examines these concerns using (a) recent statistical data on electricity production and demand in the first 15 months after the German government's immediate reaction to the Fukushima accident and (b) reviews the most recent projections and scenarios by different stakeholders on how the German electricity system may develop until 2025, when NPPs will no longer be in operation. The paper finds that Germany has a realistic chance of fully replacing nuclear power with additional renewable electricity generation on an annual basis by 2025 or earlier, provided that several related challenges, e.g. expansion of the grids and provision of balancing power, can be solved successfully. Already in 2012 additional electricity generation from renewable energy sources in combination with a reduced domestic demand for electricity will likely fully compensate for the reduced power generation from the NPPs shut down in March 2011. If current political targets will be realised, Germany neither has to become a net electricity importer, nor will be unable

  7. Program nuclear safety research: report 2000

    International Nuclear Information System (INIS)

    Muehl, B.

    2001-09-01

    The reactor safety R and D work of forschungszentrum karlsruhe (FZK) had been part of the nuclear safety research project (PSF) since 1990. In 2000, a new organisational structure was introduced and the Nuclear Safety Research Project was transferred into the nuclear safety research programme (NUKLEAR). In addition to the three traditional main topics - Light Water Reactor safety, Innovative systems, Studies related to the transmutation of actinides -, the new Programme NUKLEAR also covers Safety research related to final waste storage and Immobilisation of HAW. These new topics, however, will only be dealt with in the next annual report. Some tasks related to the traditional topics have been concluded and do no longer appear in the annual report; other tasks are new and are described for the first time. Numerous institutes of the research centre contribute to the work programme, as well as several external partners. The tasks are coordinated in agreement with internal and external working groups. The contributions to this report, which are either written in German or in English, correspond to the status of early/mid 2001. (orig.)

  8. Preparation fo nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  9. Preparation of nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN, are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  10. β-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells.

    Science.gov (United States)

    Sui, Lina; Danzl, Nichole; Campbell, Sean R; Viola, Ryan; Williams, Damian; Xing, Yuan; Wang, Yong; Phillips, Neil; Poffenberger, Greg; Johannesson, Bjarki; Oberholzer, Jose; Powers, Alvin C; Leibel, Rudolph L; Chen, Xiaojuan; Sykes, Megan; Egli, Dieter

    2018-01-01

    β-Cells derived from stem cells hold great promise for cell replacement therapy for diabetes. Here we examine the ability of nuclear transfer embryonic stem cells (NT-ESs) derived from a patient with type 1 diabetes to differentiate into β-cells and provide a source of autologous islets for cell replacement. NT-ESs differentiate in vitro with an average efficiency of 55% into C-peptide-positive cells, expressing markers of mature β-cells, including MAFA and NKX6.1. Upon transplantation in immunodeficient mice, grafted cells form vascularized islet-like structures containing MAFA/C-peptide-positive cells. These β-cells adapt insulin secretion to ambient metabolite status and show normal insulin processing. Importantly, NT-ES-β-cells maintain normal blood glucose levels after ablation of the mouse endogenous β-cells. Cystic structures, but no teratomas, were observed in NT-ES-β-cell grafts. Isogenic induced pluripotent stem cell lines showed greater variability in β-cell differentiation. Even though different methods of somatic cell reprogramming result in stem cell lines that are molecularly indistinguishable, full differentiation competence is more common in ES cell lines than in induced pluripotent stem cell lines. These results demonstrate the suitability of NT-ES-β-cells for cell replacement for type 1 diabetes and provide proof of principle for therapeutic cloning combined with cell therapy. © 2017 by the American Diabetes Association.

  11. Nuclear power reactor safety research activities in CIAE

    International Nuclear Information System (INIS)

    Pu Shendi; Huang Yucai; Xu Hanming; Zhang Zhongyue

    1994-01-01

    The power reactor safety research activities in CIAE are briefly reviewed. The research work performed in 1980's and 1990's is mainly emphasised, which is closely related to the design, construction and licensing review of Qinshan Nuclear Power Plant and the safety review of Guangdong Nuclear Power Station. Major achievements in the area of thermohydraulics, nuclear fuel, probabilistic safety assessment and severe accident researches are summarized. The foreseeable research plan for the near future, relating to the design and construction of 600 MWe PWR NPP at Qinshan Site (phase II development) is outlined

  12. Karlsruhe Nuclear Research Centre. Report on the results of research and development 1985

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains a description of the research projects, a list of the institutes and departments of the scientific-technical range with short articles concerning the results of the institutional work, and a bibliography of all publications of 1985. The main aspects of the projects and research programs are fast breeder, separation nozzle process, nuclear fusion, waste recycling and reprocessing, final storage, nuclear safety, the range of technique-man-environment, solid state and materials research, nuclear and elementary particle physics, and research programs of different institutes. (HK)

  13. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  14. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  15. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1993-11-01

    This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of November 1, 1992 to October 31, 1993. The work done covers three separate areas, low-energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the subjects are thus spread among different areas, they are based on two techniques developed in previous years. These techniques are a powerful method for continuum-random-phase-approximation (CRPA) calculations of nuclear response and the breakup-fusion (BF) approach to incomplete fusion reactions, which calculation on a single footing of various incomplete fusion reaction cross sections within the framework of direct reaction theories. The approach was developed as a part of a more general program for establishing an approach to describing all different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on single theoretical framework

  16. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix B, foreign research reactor spent nuclear fuel characteristics and transportation casks. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix B of a draft Environmental Impact Statement (EIS) on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. It discusses relevant characterization and other information of foreign research reactor spent nuclear fuel that could be managed under the proposed action. It also discusses regulations for the transport of radioactive materials and the design of spent fuel casks

  17. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    Ritz, W.C.; Robey, R.M.; Wett, J.F.

    1984-01-01

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  18. Challenges faced by nuclear research centres in Indonesia

    International Nuclear Information System (INIS)

    Subki, I.R.; Soentono, S.

    2001-01-01

    Nuclear research centres in Indonesia are mainly owned and operated by the National Nuclear Energy Agency, covering basically various research and development facilities for non-energy and energy related activities. The research and development activities cover a broad spectrum of basic, applied, and developmental research involving nuclear science and technology in supporting various fields ranging from basic human needs, e.g. food and health; natural resources and nuclear and environmental safety; as well as industry. Recent economic crisis, triggered by monetary turmoil, has dictated the IAEA to face new challenges and to give more efforts on the application of the so called 'instant technology' i.e. the technology which has been developed and is ready for implementation, especially on food and health, to be better utilized to overcome various problems in the society. Various short and medium term programmes on the application of isotopes, radiation, and nuclear techniques for non-energy related activities have emerged in accord with these efforts. In this regard, besides the intensification of the instant technology implementation on food and health, the nuclear research and development on food plant mutation, fertilizers, radio-vaccines, production of meat and milk, production processes of various radiopharmaceuticals, and radioisotopes as well as radiation processing related to agro-industry have to be intensified using the available laboratories processing facilities. The possibility of the construction of irradiators for post harvesting processes in some provinces is being studied, while the designing and manufacturing of various prototypes of devices, equipment, and instruments for nuclear techniques in health and industry are continued. Considering the wide applications of accelerators for non-energy and energy related research and development, construction of accelerator-based laboratories is being studied. In energy related research the feasibility of

  19. Programme of basic nuclear research and associated fields 1977-1981

    International Nuclear Information System (INIS)

    1978-01-01

    Nuclear research and development have been intensively pursued in West Germany by the Government and the Laender since 1955. In this period, the aims and official measures for fostering the research and use of nuclear power for peaceful purposes were laid down in four nuclear programmes. The 4th Nuclear Programme covers the period 1973 to 1976. From 1977, nuclear development became part of the energy research programme which was published by the West German Government in the spring of 1977. The basic nuclear research, however, was regarded as part of a total concept for fostering basic research (to be developed). While all the activities of research in the natural sciences and arts fostered by the West German Ministry of Research and Technology were to be co-ordinated in a more schematic form in the plan for 'Basic Research', it is the aim of the present statement to take stock of the present situation in 'Basic Nuclear Research' including the associated fields of 'Nuclear Solid Research' and 'Synchrotron Radiation', to analyse their structure, to describe the scientific aims for the next five years and to determine the total financial requirements. The basis for determining the financial programme worked out by the expert committee on 'Physical Research in the Nuclear Field' and the other committees in this field. The plans are in agreement with the medium term plan of the West German Ministry of Research and Technology (at 27.10.1977) and their contents correspond to the state of affairs at the end of 1977. (orig./UA) [de

  20. Central Institute for Nuclear Research (1956 - 1979)

    International Nuclear Information System (INIS)

    Flach, G.; Bonitz, M.

    1979-12-01

    The Central Institute for Nuclear Research (ZfK) of the Academy of Sciences of the GDR is presented. This first overall survey covers the development of the ZfK since 1956, the main research activities and results, a description of the departments responsible for the complex implementation of nuclear research, the social services for staff and the activities of different organizations in the largest central institute of the Academy of Sciences of the GDR. (author)

  1. Introduction of nuclear medicine research in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inubushi, Masayuki [Kawasaki Medical School, Division of Nuclear Medicine, Department of Radiology, Kurashiki, Okayama (Japan); Higashi, Tatsuya [National Institutes of Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Chiba (Japan); Kuji, Ichiei [Saitama Medical University International Medical Center, Department of Nuclear Medicine, Hidaka-shi, Saitama (Japan); Sakamoto, Setsu [Dokkyo University School of Medicine, PET Center, Mibu, Tochigi (Japan); Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Diagnostic Imaging and Nuclear Medicine, Tokyo (Japan)

    2016-12-15

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan. (orig.)

  2. Nuclear Energy Research in Europe

    International Nuclear Information System (INIS)

    Schenkel, Roland; Haas, Didier

    2008-01-01

    The energy situation in Europe is mainly characterized by a growth in consumption, together with increasing import dependence in all energy resources. Assuring security of energy supply is a major goal at European Union level, and this can best be achieved by an adequate energy mix, including nuclear energy, producing now 32 % of our electricity. An increase of this proportion would not only improve our independence, but also reduce greenhouse gases emissions in Europe. Another major incentive in favor of nuclear is its competitiveness, as compared to other energy sources, and above all the low dependence of the electricity price on variation of the price of the raw material. The European Commission has launched a series of initiatives aiming at better coordinating energy policies and research. Particular emphasis in future European research will be given on the long-term sustainability of nuclear energy through the development of fast reactors, and to potential industrial heat applications. (authors)

  3. Progress report on research of nuclear data and applied nuclear physics at nuclear research institute Viet Nam. For the period January 1 - December 31 1996

    International Nuclear Information System (INIS)

    Vuong Huu Tan

    1997-03-01

    This report contains information on activities of nuclear data and applied physics at the Nuclear Research Institute, Dalat, Vietnam for the period January 1st-December 31st 1996. The specific topics covered are the following: Development of filtered neutron beams. Investigation of average characteristics of nuclei in the unresolved enrgy region, Nuclear structure, Nuclear data for applications, Neutron beam utilization for applications, Nuclear analytical techniques and sedimentology

  4. Radiant research prospects? A review of nuclear waste issues in social science research

    International Nuclear Information System (INIS)

    Bergquist, Ann-Kristin

    2007-05-01

    The present report has been put together on behalf of KASAM and constitutes a review of social science research and literature that been produced on the nuclear waste issue in Sweden, with focus on recent research. The aim with the investigation has been to map the scope of and the direction of the independent research about nuclear waste in Sweden, in relation to the research that has been initiated and financed by the stakeholders that are participating in the decision-making process in the nuclear waste issue. Another aim has been to point out areas that have not been taken into consideration

  5. Nuclear data usage for research reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Soyama, Kazuhiko; Amano, Toshio

    1996-01-01

    In the department of research reactor, many neutronics calculations have been performed to construct, to operate and to modify research reactors of JAERI with several kinds of nuclear data libraries. This paper presents latest two neutronic analyses on research reactors. First one is design work of a low enriched uranium (LEU) fuel for JRR-4 (Japan Research Reactor No.4). The other is design of a uranium silicon dispersion type (silicide) fuel of JRR-3M (Japan Research Reactor No.3 Modified). Before starting the design work, to estimate the accuracy of computer code and calculation method, experimental data are calculated with several nuclear data libraries. From both cases of calculations, it is confirmed that JENDL-3.2 gives about 1 %Δk/k higher excess reactivity than JENDL-3.1. (author)

  6. General problems specific to hot nuclear materials research facilities

    International Nuclear Information System (INIS)

    Bart, G.

    1996-01-01

    During the sixties, governments have installed hot nuclear materials research facilities to characterize highly radioactive materials, to describe their in-pile behaviour, to develop and test new reactor core components, and to provide the industry with radioisotopes. Since then, the attitude towards the nuclear option has drastically changed and resources have become very tight. Within the changed political environment, the national research centres have defined new objectives. Given budgetary constraints, nuclear facilities have to co-operate internationally and to look for third party research assignments. The paper discusses the problems and needs within experimental nuclear research facilities as well as industrial requirements. Special emphasis is on cultural topics (definition of the scope of nuclear research facilities, the search for competitive advantages, and operational requirements), social aspects (overageing of personnel, recruitment, and training of new staff), safety related administrative and technical issues, and research needs for expertise and state of the art analytical infrastructure

  7. Research activities of the nuclear graphite research group at the University of Manchester, UK

    International Nuclear Information System (INIS)

    Marsden, B.J.; Fok, A.S.L.; Marrow, J.; Mummery, P.

    2004-01-01

    In 2001 the Nuclear Safety Division (NSD) of the UK Health and Safety Executive (HSE) decided to underwrite the Nuclear Graphite Research Group (NGRG) at the University of Manchester, UK with the aim of providing a source of independent research and advice to the HSE (NSD). Since then the group has rapidly expanded to 16 members and attracted considerable funding from the nuclear power industry and the regulator for a wide range of research and consultancy work. It is now also part of the Material Performance Centre within the BNFL Universities Research Alliance. Extensive collaboration exists between the group and other nuclear research institutes, both in the UK and overseas. This paper briefly describes some of the research programmes being carried out by the NGRG at Manchester. (author)

  8. Impact of nuclear research on the future technology of nuclear power

    International Nuclear Information System (INIS)

    Iyengar, P.K.

    1979-01-01

    Policy makers in the developing countries tend to assess the value of any research project by its end-results. As research projects in the field of applied science or technology promise immediate and tangible benefits to the society, high priority is given to such projects in fund allocation by policy makers. On the other hand, basic or ''pure'' science is usually viewed as pursuit of knowledge for its own sake. It has been pointed out that such a view is a mistaken one and there is no real demarcation between basic science and applied science. More often than not, results of research in basic science form the basis of transforming old technologies into better ones and giving rise to new ones. On this background, a case has been emphatically put forward: (1) to identify areas of science, particularly in nuclear science, which may not appear relevant to the immediate problems but look promising in their application and (2) to make investments, even though heavy, for research in such areas. In case of nuclear science, research areas of potential application are high energy accelerators, implosion, fusion reactions, laser fusion, tokamak devices, fusion-fission hybrid reactor systems, breeding of fissile materials from fertile ones by accelerator based neutron sources. Impact of research in these areas on and its relevance to nuclear power generation is indicated and the-state-of-art in these areas in India is described. An appendix lucidly explains generation of nuclear energy from fission and discusses thermal and fast breeder reactors. (M.G.B.)

  9. Inr training programme in nuclear research

    International Nuclear Information System (INIS)

    Cretu, I.; Ionila, M.; Gyongyosi, E.; Dragan, E.; Petra, M.

    2013-01-01

    The field of scientific research goes through rapid changes to which organizations must dinamically and efficiently adapt, which leads to the need to develop a continuous learning process that should be the basis for a long-term operational performance. Thus, human resource management systems and continuous learning should be perfectly correlated/alligned with the organizational strategy and knowledge. The research institutes through the nature of their activity are constantly undergoing a transformation process by exploring new research areas which presumes ensuring competent human resources who have to continuously learn and improve. The «learning organization » concept represents a metaphor rooted in the search of a strategy for promoting the personal development of the individual within an organization through a continuous transformation. Learning is associated with the idea of continuous transformation based on the individual and organizational development. Within « learning organizations » the human development strategy occupies a central role in management strategies. It was learned that organizations which perform excellently depend on the employees committment, especially in the budget constraints environment. For this, the human resources have to be used at maximum capacity but this is possible only with an increased committment of the employee towards the organization. The purpose of this paper is to present the basic training programme for the new employees which is part of the training strategy which carry out activities in the nuclear field of SCN Pitesti. With the majority of the research personnel aged between 45 and 60 years old there is the risk of loosing the knowledge gained in this domain. The expertise gained by experienced experts in the institute nationally and internationally can be exploited through the knowledge transfer to the new employees by organizing training programmes. The knowledge transfer between generations is one of the

  10. Creation of a new-generation research nuclear facility

    International Nuclear Information System (INIS)

    Girchenko, A.A.; Matyushin, A.P.; Kudryavtsev, E.M.; Skopin, V.P.; Shchepelev, R.M.

    2013-01-01

    The SO-2M research nuclear facility operated on the industrial area of the institute. The facility is now removed from service. In view of this circumstance, it is proposed to restore the facility at the new qualitative level, i.e., to create a new-generation research nuclear facility with a very high safety level consisting of a subcritical bench and a proton accelerator (electronuclear facility). Competitive advantages and design features have been discussed and the productive capacity of the research nuclear facility under development has been evaluated [ru

  11. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1992-07-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  12. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1993-06-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  13. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1991-07-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  14. Nuclear safety research collaborations between the US and Russian Federation international nuclear safety centers

    International Nuclear Information System (INIS)

    Hill, D.J; Braun, J.C; Klickman, A.E.; Bugaenko, S.E; Kabanov, L.P; Kraev, A.G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the U.S. Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the U. S. Center at Argonne National Laboratory in October 1995. MINATOM established the Russian Center at the Research and Development Institute of Power Engineering in Moscow in July 1996. In April 1998 the Russian center became an independent, autonomous organization under MINATOM. The goals of the centers are to: cooperate in the development of technologies associated with nuclear safety in nuclear power engineering. be international centers for the collection of information important for safety and technical improvements in nuclear power engineering. maintain a base for fundamental knowledge needed to design nuclear reactors.The strategic approach that is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors

  15. Nuclear instrumentation for research reactors; Instrumentacion nuclear para reactores nucleares de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Unidad de Actividades de Reactores y Centrales Nucleares. Sector Instrumentacion y Control

    1997-10-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70`. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs.

  16. Preservation of the first research nuclear reactor in Korea

    International Nuclear Information System (INIS)

    2008-06-01

    This book describes preservation of the first research nuclear reactor in Korea and necessity of building memorial hall, sale of the Institute of Atomic Energy Research in Seoul and dismantlement of the first and the second nuclear reactor, preservation of the first research nuclear reactor and activity about memorial hall of the atomic energy reactor, assignment and leaving the report, and the list of related data.

  17. Application of Shuttle Remote Manipulator System technology to the replacement of fuel channels in the Pickering CANDU reactor

    International Nuclear Information System (INIS)

    Stratton, D.; Butt, C.

    1982-04-01

    Spar Aerospace Limited of Toronto was the prime contractor to the National Research Council of Canada for the design and development of the Shuttle Remote Manipulator (SRMS). Spar is presently under contract to Ontario Hydro to design and build a Remote Manipulation Control System to replace the fuel channels in the Pickering A Nuclear Generating Station. The equipment may be used to replace the fuel channels in six other early generation CANDU reactors

  18. Feasibility study for the Nuclear Research Centre of the Nuclear Energy Commission

    International Nuclear Information System (INIS)

    1985-01-01

    The feasibility study was carried out in order to evaluate the possibility of building a Nuclear Research Centre in Uruguay, which would support a wide range of nuclear related technological activities. A market research was carried out, of the products to be manufactured at the Nuclear Centre, regarding the size of production. A detailed list of the main products considered is enclosed. The siting study was performed through the analysis of the incidental factors, such as environment, technical scope and socio-ecomonic factors. An engineering study for the main installations was done. The investment and financial sources were also studied

  19. International examples of steam generator replacement

    International Nuclear Information System (INIS)

    Wiechmann, K.

    1993-01-01

    Since 1979-1980 a total of twelve nuclear power plants world-wide have had their steam generators replaced. The replacement of the Combustion steam generators in the Millstone-2 plant in the United States was completed very recently. Steam generator replacement activities are going on at present in four plants. In North Anna, the steam generators have been under replacement since January 1990. In Japan, preparations have been started for Genkai-1. Since January 1992, the two projects in Beznau-1, Switzerland, and Doel-3, Belgium, have bee planned and executed in parallel. Why steam generator replacement? There are a number of defect mechanisms which give rise to the need for early steam generator replacement. One of the main reasons is the use of Inconel-600 as material for the heating tubes. Steam generator heating tubes made of Inconel-600 have been known to exhibit their first defects due to stress corrosion cracking after less than one year of operation. (orig.) [de

  20. System and Field Devices (non Nuclear) in Agriculture Research in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Shyful Azizi Abdul Rahman; Abdul Rahim Harun

    2015-01-01

    Research to improve productivity on an ongoing basis in the agricultural sector is essential to ensure and guarantee the country's food security. Malaysian Nuclear Agency, agricultural research had begun in 1981 in which the focus of research is related to mutation breeding, irradiation and the use of isotopes in the study of plant nutrition. Although projects agricultural research carried out based on nuclear technology, other information relating to agricultural research such as agronomy, plant physiology, meteorology and ecology, soil characteristics and water is essential to obtain the understanding and research results that are relevant and significant. Data acquisition for other aspects also need a system and a modern and efficient equipment, in accordance with current technological developments. This paper describes the use, function and capabilities of the existing field equipment available in Agrotechnology and Biosciences Division, Malaysian Nuclear Agency in acquiring data related to weather, measurement and control of ground water, soil nutrients assessment and monitoring of plant physiology. The latest technological developments in sensor technology, computer technology and communication is very helpful in getting data more easily, quickly and accurately. Equipment and the data obtained is also likely to be used by researchers in other fields in Nuclear Malaysia. (author)

  1. The state of the art of nuclear medicine in 1980

    International Nuclear Information System (INIS)

    Tamat, S.R.

    1982-01-01

    The second congress of World Federation of Nuclear Medicine and Biology proved that nuclear medicine is returning to physiology. Around 1951, when motorized detector was introduced and when GM tube was replaced by scintillation crystal detector, physiologic nuclear medicine moved to anatomic nuclear medicine. Since 1970, when research on cardiology developed, nuclear medicine has been returning to physiology. Since 1963 Kuhl has been doing research on quantitative tomography which develops to emission computerized tomography emphasizing the physiological aspects of medicine. The recent contribution of nuclear medicine to medical science is the concept that human body is a unity of dynamic structure consisting of millions of cubes moving physio-chemically. (RUW)

  2. Improving nuclear safety at international research reactors: The Integrated Research Reactor Safety Enhancement Program (IRRSEP)

    International Nuclear Information System (INIS)

    Huizenga, David; Newton, Douglas; Connery, Joyce

    2002-01-01

    Nuclear energy continues to play a major role in the world's energy economy. Research and test reactors are an important component of a nation's nuclear power infrastructure as they provide training, experiments and operating experience vital to developing and sustaining the industry. Indeed, nations with aspirations for nuclear power development usually begin their programs with a research reactor program. Research reactors also are vital to international science and technology development. It is important to keep them safe from both accident and sabotage, not only because of our obligation to prevent human and environmental consequence but also to prevent corresponding damage to science and industry. For example, an incident at a research reactor could cause a political and public backlash that would do irreparable harm to national nuclear programs. Following the accidents at Three Mile Island and Chernobyl, considerable efforts and resources were committed to improving the safety posture of the world's nuclear power plants. Unsafe operation of research reactors will have an amplifying effect throughout a country or region's entire nuclear programs due to political, economic and nuclear infrastructure consequences. (author)

  3. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  4. Experiment research on cognition reliability model of nuclear power plant

    International Nuclear Information System (INIS)

    Zhao Bingquan; Fang Xiang

    1999-01-01

    The objective of the paper is to improve the reliability of operation on real nuclear power plant of operators through the simulation research to the cognition reliability of nuclear power plant operators. The research method of the paper is to make use of simulator of nuclear power plant as research platform, to take present international research model of reliability of human cognition based on three-parameter Weibull distribution for reference, to develop and get the research model of Chinese nuclear power plant operators based on two-parameter Weibull distribution. By making use of two-parameter Weibull distribution research model of cognition reliability, the experiments about the cognition reliability of nuclear power plant operators have been done. Compared with the results of other countries such USA and Hungary, the same results can be obtained, which can do good to the safety operation of nuclear power plant

  5. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  6. LAMPF: a nuclear research facility

    International Nuclear Information System (INIS)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies

  7. The role of nuclear research centres in the introduction of a nuclear power programme

    International Nuclear Information System (INIS)

    Afgan, N.; Anastasijevic, P.; Kolar, D.; Strohal, P.

    1977-01-01

    Full development of nuclear energy has imposed a new role on nuclear energy centres. Nuclear technology for different reactor concepts is also now in a phase of high development. Several reactor concepts have been developed for industrial use and electric power production. Development of fast reactors is still under way and needs further research efforts. Having in mind these two main guidelines, research programmes in nuclear energy centres should be geared to the development of the activities vital to the implementation of national nuclear energy programmes. In this respect, national nuclear centres should devote their attention to three major tasks. First, to establish a background for the introduction of nuclear energy into the national energy system and to support a national safety system. Secondly, to support the national programme by skilled manpower, to provide the basic training in nuclear technology for future staff of nuclear power stations and to assist the universities in establishing the necessary educational programme in nuclear energy. Thirdly, to follow the development of nuclear energy technology for fast breeder reactor concepts. (author)

  8. Research on nuclear energy within the European Commission Research Framework Programme

    International Nuclear Information System (INIS)

    Forsstroem, H.

    2000-01-01

    The strategic goal of the 5 th EURATOM RTD Framework Programme (FP5) is to help exploit the full potential of nuclear energy in a sustainable manner, by making current technologies even safer and more economical and by exploring promising new concepts. The programme covers nuclear fusion, nuclear fission and radiation protection. Part of the programme on nuclear fission and radiation protection is being implemented through ''indirect actions'', i.e. research co-sponsored (up to 50% of total costs) and co-ordinated by DG RESEARCH of the European Commission (EC) but carried out by external public and private organisations as multi-partner projects. The budget available for these indirect actions during FP5 (1998-2002) is 191 MEuro. The programme covers four different areas: safety of existing reactors, including plant life management, severe accident management and development of evolutionary systems; safety of the fuel cycle, including radioactive waste management and disposal, partitioning and transmutation and decommissioning of nuclear installation; safety of future systems, including new or revisited reactor or fuel cycle concepts; radiation protection and radiological sciences, including both basic radiobiology and radiophysics and issues connected to the application of radiation protection. After the first calls for proposals of FP5, which were evaluated in 1999 about 140 research projects have been selected for funding and is now in the process of starting. In parallel the research projects that were supported in the 4th Framework Programme (1994 - 1998) are coming to an end, and being reported, at the same time as the first thoughts on the 6 t h FP are discussed.An important new component for the future research in Europe is the concept of a European Research Area (ERA). The purpose of ERA is to create better overall framework conditions for research in Europe. Some of the concepts being discussed in this context are networking of centres of excellence, a

  9. Nuclear medicine research: an evaluation of the ERDA program

    International Nuclear Information System (INIS)

    1976-08-01

    Legislation which established the Energy Research and Development Administration (ERDA) January 19, 1975, stipulated that this new agency should be responsible for all activities previously assigned to the Atomic Energy Commission (AEC) and not specifically assigned to other agencies. Such activities included the nuclear medicine research program of the AEC Division of Biomedical and Environmental Research (DBER). To determine whether continuation of this program under the broader ERDA mission of energy-related research was in fact appropriate, a special task force was appointed in January 1975 by Dr. James L. Liverman, the director of DBER. This task force, comprised of established scientists knowledgeable about issues related to nuclear medicine either currently or in the past, was charged specifically to assess the historical impact of the AEC/ERDA nuclear medicine program on the development of nuclear medicine, the current status of this program, and its future role within the structure of ERDA. The specific recommendations, in brief form, are as follows: the federal government should continue to support the medical application of nuclear technology; ERDA should retain primary responsibility for support and management of federal nuclear medicine research programs; and management and emphasis of the ERDA nuclear medicine program require modification in certain areas, which are set forth

  10. The replacement of technically obsolete equipments

    International Nuclear Information System (INIS)

    Anglaret, Ph.; Patouillaud, M.

    1987-01-01

    The paper covers the analysis of procedures for replacement of technically obsolete but still operational equipments in use in a nuclear power plant. The Three Mile Island accident showed that operators in the control room reqire additional information at their disposal. In 1986 CGEE Alsthom received two orders for improvements to control systems, for the South African nuclear power plant Koeberg and the Dutch nuclear power plant Borssele. The new systems will provide support to normal operation and offer additional help in accident situations. 4 figs

  11. Cyberattack analysis through Malaysian Nuclear Agency experience as nuclear research center

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohd Fauzi Haris; Saaidi Ismail; Nurbahyah Hamdan

    2011-01-01

    As a nuclear research center, Nuclear Malaysia is one of the Critical National Information Infrastructure (CNII) in the country. One of the easiest way to launch a malicious attack is through the online system, whether main web site or online services. Recently, we also under port scanning and hack attempts from various sources. This paper will discuss on analysis based on Nuclear Malaysia experience regarding these attempts which keep arising nowadays. (author)

  12. Activation Analysis and Nuclear Research in Burma

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, R. W.

    1971-07-01

    Research endeavours in the field of Nuclear Sciences in Burma appear to be concentrated in three main Institutions. These are the Chemistry and Physics Departments of the Rangoon Arts & Science University and the Union of Burma Applied Research Institute (UBARI). In view of possible forthcoming developments an expanded research programme, which is to be implemented on the basis of a five year plan, has been drawn up. Research topics included in this programme are predominantly of practical interest and aimed at a contribution by nuclear methods, in particular activation analysis, to the technological and industrial needs of the country.

  13. Fourth session: perspectives and internationalization of nuclear research

    International Nuclear Information System (INIS)

    Bugat, S.; Girardin, G.; Vitanza, C.

    2005-01-01

    The purpose of the atomic simulation is to deduce the behaviour of irradiated materials from the effects of irradiation at the atomic scale that are well understood. The main difficulties and recent breakthroughs concerning the simulation of the primary damage and the microstructure due to irradiation and of the hardening effect of irradiation are reviewed. It is shown that simulation tools are far to be able to replace real irradiation experiments but their maturity is so high that they will allow us to optimize the design and operations of irradiation experiments in a near future. The second article is dedicated to the Norwegian Halden research reactor that was at the very beginning of its operating life (1958) an irradiation facility broadly open to the international nuclear community. The Halden reactor is a boiling reactor, cooled and moderated with heavy water (14 m 3 ) and whose thermal power output is 20 MW. The steam generated (30 tons/h) is used to operate a paper mill. 12 experimental loops with in-core test rigs are available. In 1999 about 68% of the studies performed at Halden was dedicated to high burnup fuels and 32% to materials. (A.C.)

  14. Nuclear Research Centre of Maamora Morocco

    International Nuclear Information System (INIS)

    Marfak, T.; Boufraqech, A.

    2010-01-01

    Morocco has a long and rich history in nuclear technology which began in the 1950s with the development of nuclear techniques in several important socio-economic fields such as medicine, agriculture and industrial applications. The development of nuclear technology evolved over various organizations, primarily within the Ministry of Education. However, with the formation of the National Centre for Nuclear Energy and Technology (CNESTEN) the development of nuclear technology in Morocco has been reinforced. Morocco is looking forward and actively pursuing alternative sources of energy and has a very strong interest in nuclear power generation and associated technologies such as nuclear desalination. Entry into these new technologies is required since there are no natural sources of energy, Morocco currently imports most of its energy needs from abroad and has a rapidly expanding energy need. In this paper, we present CNESTEN and its main facilities, missions, research programmes, human resources, training, education, national and international cooperation, etc

  15. National cyclotron centre at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Tonev, D.; Goutev, N.; Asova, G.; Artinyan, A.; Demerdjiev, A.; Georgiev, L. S.; Yavahchova, M.; Bashev, V.; Genchev, S. G.; Geleva, E.; Mincheva, M.; Nikolov, A.; Dimitrov, D. T.

    2018-05-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that can be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99mTc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, materials sciences, applied research, new materials and for education in all these fields including nuclear energy. Presently we perform investigations in the fields of target design for production of radioisotopes, shielding and radioprotection, new ion sources etc.

  16. Reliability research to nuclear power plant operators based on several methods

    International Nuclear Information System (INIS)

    Fang Xiang; Li Fu; Zhao Bingquan

    2009-01-01

    The paper utilizes many kinds of international reliability research methods, and summarizes the review of reliability research of Chinese nuclear power plant operators in past over ten years based on the simulator platform of nuclear power plant. The paper shows the necessity and feasibility of the research to nuclear power plant operators from many angles including human cognition reliability, fuzzy mathematics model and psychological research model, etc. It will be good to the safe operation of nuclear power plant based on many kinds of research methods to the reliability research of nuclear power plant operators. (authors)

  17. Nuclear platform research and development - 2008-09 highlights

    International Nuclear Information System (INIS)

    Sadhankar, R.R.

    2009-08-01

    The Nuclear Platform R and D Program has lead responsibility for the maintenance and further development of the CANDU intellectual property covering the safety, licensing and design basis for nuclear facilities. The Nuclear Platform R and D Program is part of the Research and Technology Operation (RTO) unit of AECL and is managed through the Research and Development division, which has responsibility for maintaining and enhancing the knowledge and technology base. The RTO is also responsible for managing AECL's nuclear facilities and infrastructure (including laboratories and R and D facilities), the nuclear waste management program and other legacy liabilities (e.g., decommissioning) to demonstrate and grow shareholder value. The Nuclear Platform also provides the technology base from which new products and services can be developed to meet customer needs (including ACR and commercial products and services). (author)

  18. Optimal inspection and replacement periods of the safety system in Wolsung Nuclear Power Plant Unit 1 with an optimized cost perspective

    International Nuclear Information System (INIS)

    Jinil Mok; Poong Hyun Seong

    1996-01-01

    In this work, a model for determining the optimal inspection and replacement periods of the safety system in Wolsung Nuclear Power Plant Unit 1 is developed, which is to minimize economic loss caused by inadvertent trip and the system failure. This model uses cost benefit analysis method and the part for optimal inspection period considers the human error. The model is based on three factors as follows: (i) The cumulative failure distribution function of the safety system, (ii) The probability that the safety system does not operate due to failure of the system or human error when the safety system is needed at an emergency condition and (iii) The average probability that the reactor is tripped due to the failure of system components or human error. The model then is applied to evaluate the safety system in Wolsung Nuclear Power Plant Unit 1. The optimal replacement periods which are calculated with proposed model differ from those used in Wolsung NPP Unit 1 by about a few days or months, whereas the optimal inspection periods are in about the same range. (author)

  19. Nuclear Plant Aging Research (NPAR) program plan

    International Nuclear Information System (INIS)

    1991-06-01

    A comprehensive Nuclear Plant Aging Research (NPAR) Program was implemented by the US NRC office of Nuclear Regulatory Research in 1985 to identify and resolve technical safety issues related to the aging of systems, structures, and components in operating nuclear power plants. This is Revision 2 to the Nuclear Plant Aging Research Program Plant. This planes defines the goals of the program the current status of research, and summarizes utilization of the research results in the regulatory process. The plan also describes major milestones and schedules for coordinating research within the agency and with organizations and institutions outside the agency, both domestic and foreign. Currently the NPAR Program comprises seven major areas: (1) hardware-oriented engineering research involving components and structures; (2) system-oriented aging interaction studies; (3) development of technical bases for license renewal rulemaking; (4) determining risk significance of aging phenomena; (5) development of technical bases for resolving generic safety issues; (6) recommendations for field inspection and maintenance addressing aging concerns; (7) and residual lifetime evaluations of major LWR components and structures. The NPAR technical database comprises approximately 100 NUREG/CR reports by June 1991, plus numerous published papers and proceedings that offer regulators and industry important insights to aging characteristics and aging management of safety-related equipment. Regulatory applications include revisions to and development of regulatory guides and technical specifications; support to resolve generic safety issues; development of codes and standards; evaluation of diagnostic techniques; (e.g., for cables and valves); and technical support for development of the license renewal rule. 80 refs., 25 figs., 10 tabs

  20. EARTHQUAKE RESEARCH PROBLEMS OF NUCLEAR POWER GENERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Housner, G. W.; Hudson, D. E.

    1963-10-15

    Earthquake problems associated with the construction of nuclear power generators require a more extensive and a more precise knowledge of earthquake characteristics and the dynamic behavior of structures than was considered necessary for ordinary buildings. Economic considerations indicate the desirability of additional research on the problems of earthquakes and nuclear reactors. The nature of these earthquake-resistant design problems is discussed and programs of research are recommended. (auth)

  1. Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these

  2. Procurement of replacement pressure vessels for MURR

    International Nuclear Information System (INIS)

    Meyer, W.A. Jr.; Edwards, C.B. Jr.; McKibben, J.C.; Schoone, A.R.

    1989-01-01

    The University of Missouri Research Reactor Facility (MURR) located in Columbia, Missouri, is the highest powered, highest steady-state flux university research reactor in the United States. The reactor is a 10-MW pressurized loop, in-pool-type, light-water-moderated, beryllium-reflected, flux trap reactor. MURR has a compact core (0.033 m 3 ) composed of eight fuel elements of the materials test reactor type arranged as an annular right circular cylinder between the inner and outer aluminum pressure vessels. Conservative engineering judgment resulted in the decision in 1988 to purchase new inner and outer pressure vessels. This paper details the difficulties encountered in procuring replacements for aluminum pressure vessels built to standards that are no longer applicable in attempting to meet nuclear standards that are not applicable to nonferrous material

  3. Past and present situation of nuclear research at Forschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    Scholtyssek, W.

    2001-01-01

    The case of Forschungszentrum Karlsruhe is presented which had to transform from a centre devoted to nuclear power R and D to one in which this activity is allocated only 20% of the resources. A large number of operating nuclear power reactors coupled with the Government decision to phase out nuclear power is causing serious concerns regarding the availability of human resources for meeting the long term needs of nuclear facilities. The Energy Division of the research centre currently focuses mainly on safety research and on nuclear fusion. Another Division of the centre has nuclear facility decommissioning as one of the programmes. Independent research in areas of essential need for nuclear facilities must be carried out to maintain know how. (author)

  4. The replacement research reactor description and progress report

    International Nuclear Information System (INIS)

    Abbate, P.; Ordonez, J.P.

    2003-01-01

    A contract for the design, construction and commissioning of the Replacement Research Reactor was signed in July 2000 between Australia authorities and INVAP from Argentina. Since then the detailed design has been completed, an application for a construction license was made in May 2001 and granted in April 2002. The construction and manufacturing phase is presently underway, with full operation of the facility being scheduled for 2006. This paper explains the safety philosophy embedded into the design together with the approach taken for main elements of the design and their relation to the proposed applications of the reactor. Also information is provided on the suit of neutron beam facilities and irradiation facilities being constructed. Finally it is presented an outline of the project management organisation, project planing, schedule, licensing and general project progress

  5. Nuclear physics and heavy element research at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Mark A; Ahle, L E; Becker, J A; Bernshein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, Jacqueline M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J [Lawrence Livermore National Laboratory, University of California, Livermore (United States)

    2009-12-31

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  6. Nuclear Physics Research Activity In Vietnam During Period From 2005 To 2007

    International Nuclear Information System (INIS)

    Tran Duc Thiep

    2008-01-01

    During the recent years though the difficult conditions as the limit in research budget, the lack in experimental facilities and in manpower, the Nuclear Physics Research in Vietnam still continues to develop and has achieved promising results. This expresses the efforts from the Government as well as from the nuclear physics scientists. In this report we would like to present the Nuclear Physics Research Activity and the achieved results in Vietnam during period from 2005 to 2007 in following directions: Nuclear Reaction and Structure, Nuclear Matter and Nuclear Data, Nuclear Reactor Physics, Nuclear Physics Research based on Accelerators, Physics of Cosmic Rays, Nuclear Physics Related Researches. The report also concerns the problems of manpower, the joining of research institutes in the Country and the expansion of international collaborations in the coming period of the Nuclear Physics Research Activity. The Report was prepared mainly on the basis of the reports that will be presented at the 7th National Conference on Nuclear Science and Technology, held from 30-31 August 2007 in Danang city. (author)

  7. Nuclear research and development in the European community

    International Nuclear Information System (INIS)

    1979-01-01

    Research programmes undertaken by the European Atomic Energy Community and the European Economic Community are discussed. These programmes are carried out both at the Communities own Joint Research Centres (at Ispra, Karlsruhe, Geel and Petten) and also, although centrally managed by the Commission, at research organizations in the Member States. Such research projects include radioactive waste management and storage, decommissioning of nuclear power stations and nuclear fusion. Culham Laboratory is not only the centre for the UKAEA's research into controlled thermonuclear fusion but is also host to the Joint European Torus Joint Undertaking. (U.K.)

  8. Proceedings of national symposium on advanced instrumentation for nuclear research

    International Nuclear Information System (INIS)

    1993-01-01

    The National Symposium on Advanced Instrumentation for Nuclear Research was held in Bombay during January 27-29, 1993 at BARC. Progress of modern nuclear research is closely related to the availability of state of the art instruments and systems. With the advancements in experimental techniques and sophisticated detector developments, the performance specifications have become more stringent. State of the art techniques and diverse applications of sophisticated nuclear instrumentation systems are discussed along with indigenous efforts to meet the specific instrumentation needs of research programs in nuclear sciences. Papers of relevance to nuclear science and technology are indexed separately. (original)

  9. A world class nuclear research reactor complex for South Africa's nuclear future

    Energy Technology Data Exchange (ETDEWEB)

    Keshaw, Jeetesh [South African Young Nuclear Professional Society, PO Box 9396, Centurion, 0157 (South Africa)

    2008-07-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  10. The Karlsruhe Nuclear Research Centre is being re-equipped

    International Nuclear Information System (INIS)

    Boehm, H.; Koerting, K.; Huncke, W.; Knapp, W.

    1986-01-01

    The Nuclear Research Centre in Karlsruhe was established over 25 years ago for the express purpose of studying nuclear engineering and its peaceful use. This goal has been achieved - what now. For some time a change has been taking place at the Research Centre: in the direction of man and environmental engineering. 'Bild der Wwissenschaft' has talked to Professor Horst Boehm, the chairman of the Nuclear Centre, about this change and the new areas of research to be concentrated on. (orig.) [de

  11. Neutron beam facilities at the replacement research reactor

    International Nuclear Information System (INIS)

    Kennedy, S.

    1999-01-01

    Full text: On September 3rd 1997 the Australian Federal Government announced their decision to replace the HIFAR research reactor by 2005. The proposed reactor will be a multipurpose reactor with improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The neutron beam facilities are intended to cater for Australian scientific needs well into the 21st century. In the first stage of planning the neutron Beam Facilities at the replacement reactor, a Consultative Group was formed (BFCG) to determine the scientific capabilities of the new facility. Members of the group were drawn from academia, industry and government research laboratories. The BFCG submitted their report in April 1998, outlining the scientific priorities to be addressed. Cold and hot neutron sources are to be included, and cold and thermal neutron guides will be used to position most of the instruments in a neutron guide hall outside the reactor confinement building. In 2005 it is planned to have eight instruments installed with a further three to be developed by 2010, and seven spare instrument positions for development of new instruments over the life of the reactor. A beam facilities technical group (BFTG) was then formed to prepare the engineering specifications for the tendering process. The group consisted of some members of the BFCG, several scientists and engineers from ANSTO, and scientists from leading neutron scattering centres in Europe, USA and Japan. The BFTG looked in detail at the key components of the facility such as the thermal, cold and hot neutron sources, neutron collimators, neutron beam guides and overall requirements for the neutron guide hall. The report of the BFTG, completed in August 1998, was incorporated into the draft specifications for the reactor project, which were distributed to potential reactor vendors. An assessment of the first stage of reactor vendor submissions was completed in

  12. Nuclear safety research in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1976-01-01

    As a consequence of the decision of choosing light water reactors (PWR) for the French nuclear plants of the next ten years, a large safety program has been launched referring to three physical barriers against fission product release: the fuel element cladding, main primary system boundary and the containment. The parallel development of French-designed fast breeder reactors involved safety studies on: sodium boiling, accidental fuel behavior, molten fuel-sodium interaction, core accident and protection, and external containment. The rapid development of nuclear energy resulted in a corresponding development of safety studies relating to nuclear fuel facilities. French regulations also required a special program to be developed for the realistic evaluation of the consequences of external agressions, the French cooperation to multinational safety research being also intensive

  13. Nuclear technology in research and everyday life

    International Nuclear Information System (INIS)

    2015-12-01

    The paper.. discusses the impact of nuclear technology in research and everyday life covering the following issues: miniaturization of memory devices, neutron radiography in material science, nuclear reactions in the universe, sterilization of food, medical applies, cosmetics and packaging materials using beta and gamma radiation, neutron imaging for radioactive waste analysis, microbial transformation of uranium (geobacter uraniireducens), nuclear technology knowledge preservation, spacecrafts voyager 1 and 2, future fusion power plants, prompt gamma activation analysis in archeology, radiation protection and radioecology and nuclear medicine (radiotherapy).

  14. Nuclear I and C research and education under UNENE program

    International Nuclear Information System (INIS)

    Jiang, J.

    2006-01-01

    Univ. Network of Excellence in Nuclear Engineering (UNENE) is a not-for-profit organization. It is a unique industry - Univ. alliance in carrying out research to support Canadian nuclear industries. At this time, there are six major research areas in this network. One of them is Control, Instrumentation, and Electrical Systems for Nuclear Power plants. In this paper, a brief description of the structure and research activities of nuclear I and C at the Univ. of Western Ontario is provided. (authors)

  15. Information for nuclear medicine researchers and practitioners

    International Nuclear Information System (INIS)

    Bartlett, W.

    1987-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has a major research program in nuclear medicine; this article describes the information support given to the program by the Lucas Heights Research Laboratories (LHRL) Library. The INIS database is a prime indicator of the information held at LHRL Library, however, other databases also cover nuclear medicine. As part of the Australian library system the ANSTO Library's resources are accessed by subscription. The ANSTO Library staff can also search INIS for a fee for external enquiries but the other databases can presently only be searched for LHRL staff and affiliates. Even so, most major library and information services can provide access to these databases

  16. Graduate nuclear engineering programmes motivate educational and research activities

    International Nuclear Information System (INIS)

    Mavko, B.

    2000-01-01

    Some fifteen years ago the University of Ljubljana, Faculty for Mathematics and Physics together with the national research organisation the J. Stefan jointly established a Graduate programme of Nuclear Engineering. From the onset, the programme focused on nuclear technology, nuclear safety, and reactor physics and environment protection. Over the years this graduate programme has became the focal point of nuclear related, research and educational activities in Slovenia. It has grown into a meeting ground for recognised national and distinguished foreign educators and experienced professionals from the industry. In conjunction with an important national project, supported by the Slovenian government, entitled 'Jung Researcher' it also enhances the knowledge transfer to the next generation. Since the programme was introduced, the interest for this programme has been steadily growing. Accordingly, a number of PhD and MS degrees in NE have been awarded. The graduates of this programme have encountered very good job opportunities in nuclear as well as in non-nuclear sector. (author)

  17. The role of nuclear research centers for the introduction of a nuclear power programme

    International Nuclear Information System (INIS)

    Perovic, B.; Frlec, B.; Kundic, V.

    1977-01-01

    Full development of nuclear energy has imposed a new role on nuclear energy centers. Nuclear technology for different reactor concepts is also now in a phase of high development. Several reactor concepts have been developed for industrial use and electric power production. Development of fast reactors is still under way and needs further research efforts. Having in mind these two main guidelines, research programmes in nuclear energy centers should be geared to the development of the activities vital to the implementation of national nuclear energy programmes. In this respect, national nuclear centers should devote their attention to three major tasks. First, to establish a background for the introduction of nuclear energy into the national energy system and to support a national safety system. Second, to support the national programme by skilled manpower, to provide the basic training in nuclear technology for future staff of nuclear power stations and to assist the universities in establishing the necessary educational programme in nuclear energy. Third, to follow the development of nuclear energy technology for the fast breeder reactor concepts. This paper describes some experience in introducing a new programme to the national nuclear energy centers in Yugoslavia. Recently, Yugoslavia has started building its first nuclear power station. Further introduction of nuclear power stations in the national electric energy system is also planned. This implies the need to reconsider the current nuclear energy programme in the nuclear energy centers. It has been decided to evaluate past experience and further needs for research activities regarding the nuclear power programme. Yugoslavia has three main nuclear energy centers whose activities are devoted to the development of national manpower in the field of nuclear sciences. Besides these three organizations, there are several others whose activities are concentrated on specific tasks in nuclear technology. In the

  18. The Nordic Nuclear Safety Research (NKS) programme. Nordic cooperation on nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kasper G. [Technical Univ. of Denmark, Roskilde (Denmark). National Lab. for Sustainable Energy; Ekstroem, Karoliina [Fortum Power and Heat, Fortum (Finland); Gwynn, Justin P. [Norwegian Radiation Protection Authority, Tromsoe (Norway). Fram Centre; Magnusson, Sigurdur M. [Icelandic Radiation Safety Authority, Reykjavik (Iceland); Physant, Finn C. [NKS-Sekretariatet, Roskilde (Denmark)

    2012-07-01

    The roots of the current Nordic Nuclear Safety Research (NKS) programme can be traced back to the recommendation by the Nordic Council in the late 1950s for the establishment of joint Nordic committees on the issues of nuclear research and radiation protection. One of these joint Nordic committees, the 'Kontaktorgan', paved the way over its 33 years of existence for the future of Nordic cooperation in the field of nuclear safety, through the formation of Nordic groups on reactor safety, nuclear waste and environmental effects of nuclear power in the late 1960s and early 1970s. With an increased focus on developing nuclear power in the wake of the energy crisis on the 1970s, the NKS was established by the Nordic Council to further develop the previous strands of Nordic cooperation in nuclear safety. NKS started its first programme in 1977, funding a series of four year programmes over the next 24 years covering the areas of reactor safety, waste management, emergency preparedness and radioecology. Initially funded directly from the Nordic Council, ownership of NKS was transferred from the political level to the national competent authorities at the beginning of the 1990s. This organizational and funding model has continued to the present day with additional financial support from a number of co-sponsors in Finland, Norway and Sweden. (orig.)

  19. Research and development for the future nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Hideo [Japan International Cooperation Agency, Tokyo (Japan)

    2002-11-01

    This paper consists of nuclear power technologies in Japan, its states of other countries, the today's objects, investment, change of the research and development paradigm, new type of reactor, public research and target research and resource. The new types of reactor investigated in Japan are FBR, 4S, aqueous homogenous reactor, gas reactor and molten-salt reactor. On the basis of correspondence to environment of market and materialization of business model, nuclear power has to cooperate with electric power side. The international joint research should be investigated, because the investment is limited. There are three references such as Report of nuclear power section in the total source energy investigation (2001): http://www.meti.go.jp/report/data/g10627aj.html, OECD/NEA (2002): http://www.neafr/html/ndd/reports/2002/nea3969.html and public research: http://www.iae.or.jp/koubo/koubo.html. (S.Y.)

  20. Research and development for the future nuclear power

    International Nuclear Information System (INIS)

    Morimoto, Hideo

    2002-01-01

    This paper consists of nuclear power technologies in Japan, its states of other countries, the today's objects, investment, change of the research and development paradigm, new type of reactor, public research and target research and resource. The new types of reactor investigated in Japan are FBR, 4S, aqueous homogenous reactor, gas reactor and molten-salt reactor. On the basis of correspondence to environment of market and materialization of business model, nuclear power has to cooperate with electric power side. The international joint research should be investigated, because the investment is limited. There are three references such as Report of nuclear power section in the total source energy investigation (2001): http://www.meti.go.jp/report/data/g10627aj.html, OECD/NEA (2002): http://www.neafr/html/ndd/reports/2002/nea3969.html and public research: http://www.iae.or.jp/koubo/koubo.html. (S.Y.)

  1. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  2. Disposition of recommendations of the National Research Council in the report ''Revitalizing Nuclear Safety Research''

    International Nuclear Information System (INIS)

    1988-06-01

    On December 8, 1986, the Committee on Nuclear Safety Research of the National Research Council submitted its report, ''Revitalizing Nuclear Safety Research,'' to the US Nuclear Regulatory Commission (NRC). The Commission and its staff have carefully reviewed the Committee's report and have extensively examined the planning, implementation, and management of NRC research programs in order to respond most effectively to the Committee's recommendations. This report presents the Commission's view of the Committee's report and describes the actions that are under way in response to its recommendations

  3. Progress of laser nuclear fusion research

    International Nuclear Information System (INIS)

    Shiraga, Hiroyuki

    2017-01-01

    This paper describes the principle and features of nuclear fusion using laser, as well as its basic concepts such as high-temperature / high-density implosion system and fast ignition of fuel. At present, researches aiming at nuclear fusion ignition have been developing. As the current state of researches, this paper reviews the situations of FIREX (Fast Ignition Realization Experiment) project of Japan focusing on direct irradiation implosion and fast ignition system, as well as NIF (National Ignition Facility) project of the U.S. aiming at ignition combustion based on indirect irradiation implosion and central ignition system. In collaboration with the National Institute for Fusion Science, Osaka University started FIREX-1 project in 2003. It built a heating laser LFEX of 10 kJ/1 to 10ps, and started an implosion/heating integration experiment in 2009. Currently, it is developing experiment to achieve heating to 5 keV. At NIF, the self-heating of central sparks via energy of α particles generated in the nuclear fusion reaction has been realized. This paper also overviews R and D issues surrounding the lasers for reactors for use in laser nuclear fusion power generators. (A.O.)

  4. Fourth Regional Meeting: Nuclear Energy in Central Europe, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Mavko, B; Cizelj, L [eds.; Nuclear Society of Slovenia (Slovenia)

    1997-07-01

    Fourth Regional Meeting for Nuclear Energy in Central Europe is an annual meeting of the Nuclear Society of Slovenia. The proceedings contain 89 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region. Topics are: Research Reactors, Reactor Physics, Probabilistic Safety Assessment, Severe Accidents, Ageing and Integrity, Thermal Hydraulics, NPP Operation Experiance, Radioactive Waste Management, Environment and Other Aspects, Public and Nuclear Energy, SG Replacement and Plant Uprating.

  5. Final report of a quantitative survey on the public perception of nuclear energy. Study on the social support among citizens

    International Nuclear Information System (INIS)

    Wolters, M.; Haufe, M.; Wendte, R.; De Jonge, J.; Merkx, P.

    2009-11-01

    The aim of the title study is to obtain a representative and independent image of the conceptions and opinions among the Dutch population with regard to nuclear energy in 2009 in general and with regard to four nuclear energy scenarios from the Energy report in particular: (1a) No new nuclear power plants; (1b) no new nuclear power plants unless inherently safe; (2) Replace the Borssele plant in 2033; (3) new nuclear power plants after 2020 (in addition to replacing Borssele). The study consisted of a qualitative and a quantitative component. In this report the quantitative study is reported. Moreover, part of the PQR (Partners in Quality Research) study of 2006 was replicated and the desk research with regard to the public perception of nuclear energy in other countries. The results of the qualitative study are included in the Report on Qualitative Research of the Public Perception of Nuclear Energy. [nl

  6. Research reactors spent fuel management in the Nuclear Research Institute Rez

    International Nuclear Information System (INIS)

    Rychecky, J.

    2001-01-01

    In Czech Republic 3 research and testing nuclear reactors are operated at present time, with the biggest one being the Nuclear Research Institute (NRI) reactor LVR-15, operated with maximum power 10 MW. This reactor serves as a radiation source for material testing, producing of ionizing radiation sources, theoretical studies, and, most recently, for boron neutron capture therapy. Another NRI reactor LR-0 is a reactor of zero power used mainly for the studies of WWER 1000 spent fuel criticality. For training of students the reactor called VRABEC (VR-1), operated also with very low power, serves since 1990 at the Faculty of Nuclear Engineering, of Czech Technical University. The similar testing type reactor (SR-0), already decommissioned, was also used since 1974 to 1989 in Skoda, Nuclear Machinery, Plzen. This contribution summarizes the present state of the spent fuel (SF) management of these nuclear reactors. As the SF management is different for very low or zero power reactors and power reactors, the first type will be only briefly discussed, and then the main attention will be devoted to SF management of the NRI experimental reactor LVR-15

  7. Research reactors spent fuel management in the Nuclear Research Institute Rez

    Energy Technology Data Exchange (ETDEWEB)

    Rychecky, J. [Nuclear Research Institute, 25068 Rez (Czech Republic)

    2001-07-01

    In Czech Republic 3 research and testing nuclear reactors are operated at present time, with the biggest one being the Nuclear Research Institute (NRI) reactor LVR-15, operated with maximum power 10 MW. This reactor serves as a radiation source for material testing, producing of ionizing radiation sources, theoretical studies, and, most recently, for boron neutron capture therapy. Another NRI reactor LR-0 is a reactor of zero power used mainly for the studies of WWER 1000 spent fuel criticality. For training of students the reactor called VRABEC (VR-1), operated also with very low power, serves since 1990 at the Faculty of Nuclear Engineering, of Czech Technical University. The similar testing type reactor (SR-0), already decommissioned, was also used since 1974 to 1989 in Skoda, Nuclear Machinery, Plzen. This contribution summarizes the present state of the spent fuel (SF) management of these nuclear reactors. As the SF management is different for very low or zero power reactors and power reactors, the first type will be only briefly discussed, and then the main attention will be devoted to SF management of the NRI experimental reactor LVR-15.

  8. Collective statement on the role of research in a nuclear regulatory context

    International Nuclear Information System (INIS)

    2001-01-01

    In the present context of deregulation and privatisation of the nuclear industry, maintaining an adequate level of nuclear safety research is a primary concern for nuclear regulators, researchers and nuclear power plant licensees, as well as for government officials and the public. While these different stakeholders may have common concerns and interests, there may also be differences. At the international level, it is important to understand that divisions exist both within and among countries, not only in national cultures but also in the way regulators, researchers and licensees view the rote of research. An international gathering under the auspices of the OECD Nuclear Energy Agency (NEA) took place in June 2001, bringing together heads of nuclear regulatory bodies of NEA Member countries, senior regulators, senior executives of research organisations and leaders from the nuclear industry to discuss their perceptions of the rote of research in a nuclear regulatory context. This collective statement represents an international consensus on a rationale for regulatory research for currently operating nuclear reactors and for future reactors, and sets forth specific recommendations to NEA standing technical committees and Member countries. The intended audience is primarily nuclear safety regulators, senior researchers and industry leaders. Government authorities, nuclear power plant operators and the general public may also be interested. (author)

  9. Activities report 1991-1992: Nuclear Research Center of Strasbourg

    International Nuclear Information System (INIS)

    1993-01-01

    This activities report of the Nuclear Research Centre of Strasbourg for the years 1991 and 1992, presents nine research axis: theoretical physics, mechanisms of reactions and nuclear structure, extreme forms of nuclei, exotic nuclei, hot and dense nuclear matter, ultra-relativistic heavy ions, physics of LEP (European Large Electron-Positron storage ring) at 'DELPHI', chemistry and physics of radiations, physics and applications of semi-conductors

  10. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Kapusta, J.I.

    1990-01-01

    Research programs in nuclear theory are discussed in this paper. The topics discussed are: neutron stars and pulsars; transverse momentum distribution; intermittency and other correlations; photon and delepton production; electroweak theory at high temperature; and fractional statistics

  11. Proceedings of second JAERI-JNC joint conference on nuclear safety research

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Anoda, Yoshinari; Araya, Fumimasa; Yamaguchi, Toshio

    2004-08-01

    The second JAERI-JNC Joint Conference on Nuclear Safety Research was held on February 6, 2004 in Tokyo for those who are relevant to nuclear industries and regulatory organizations, and general public. The nuclear safety research has been conducted in both institutes according to the Five-Year Program for Nuclear Safety Research established periodically by the Nuclear Safety Commission (NSC) and needs from the regulatory organizations. The objectives of the conference are to present its recent results and to collect views and opinions from the participants for its future program through the discussion after each presentation and panel discussion on how to conduct efficiently the nuclear safety in the New Organization. A total of 259 people participated in the conference mainly from the nuclear industries and regulatory organizations and the number was much larger than that in the last conference of 188. The conference consisted of presentations on the safety research results, a special lecture and a panel discussion. First, the overview of safety research results was presented from each institute. Then, the results in the field of nuclear installations, environmental radioactivity and radioactive waste were presented from each institute. Then, Dr. Higashi, the Nuclear Safety Commissioner, made a special lecture on the radiation protection from the high-level radioactive waste disposal. Finally, a panel discussion was conducted with the title of ''how to conduct efficiently the nuclear safety research in the New Organization'' chaired by Prof. Kimura, the chairperson of Standing Committee on Nuclear Safety Research under the NSC. The panelists from the regulatory organizations, nuclear industry, JAERI and JNC discussed the subject together with the participants on the floor. The panelists not from JAERI and JNC expressed their views and opinions on how to conduct efficiently the nuclear safety research in the New Organization that were valuable inputs for developing

  12. In-depth research of domestic nuclear patent information

    International Nuclear Information System (INIS)

    Mo Dan; Gao Anna; Li Dongbin; Lu Yanjia; Ren Chao

    2014-01-01

    Based on the domestic patent information, combined with examples, this article makes an in-depth discussion on the domestic nuclear patent information. The author puts forward for the patent information research, the appropriate retrieval of patent documents is the basis,and the correct quantitative statistical analysis of patent documents is the key, and in-depth qualitative analysis of patent documents is the core. It is expected to provide information support and guarantee for the technical innovation and scientific research personnel in the nuclear field through in-depth study of domestic nuclear information. (authors)

  13. Twenty-fifth anniversary of the Juelich Nuclear Research Center

    International Nuclear Information System (INIS)

    Haefele, W.

    1982-01-01

    On December 10, 1981, KFA Juelich celebrated its 25th year of existence; on December 11, 1956, the land parliament of North Rhine Westphalia had decided in favour of the erection of a joint nuclear research facility of the land of North Rhine Westphalia. In contrast to other nuclear research centers, the Juelich centre was to develop and operate large-scale research equipment and infrastructure for joint use by the universities of the land. This cooperation has remained an important characteristic in spite of the independent scientific work of KFA institutes, Federal government majorities, and changes in research fields and tasks. KFA does fundamental research in nuclear and plasma physics, solid state research, medicine, life sciences, and environmental research; other activities are R + D tasks for the HTR reactor and its specific applications as well as energy research in general. (orig.) [de

  14. Nuclear research centres in Pakistan: Status and prospects

    International Nuclear Information System (INIS)

    Akhtar, K.M.; Khan, H.A.

    2001-01-01

    Nuclear research centres (NRCs) played an important role in the introduction of nuclear techniques in their respective countries. These centres are now faced with changes in public and government attitudes, pressures from anti-nuclear groups, competition from non-nuclear technologies, budget cuts and privatization, etc. These NRCs are still making useful contribution in the field of science and technology but need to change their strategy to operate under these pressures. The Pakistan Institute of Nuclear Science and Technology (PINSTECH) has a record of 34 years of successful operation. Salient features and achievements of this Institute are presented as a model for a research centre in a developing country. The elements that are contributed for the success are described. The IAEA and other cooperative agencies can help to overcome the negative factors posed to these NRCs. (author)

  15. Knowledge Management for Nuclear Research and Development Organizations

    International Nuclear Information System (INIS)

    2012-05-01

    This publication elaborates on the role of nuclear knowledge management in a research and development (R and D) context, and on the importance of facilitating innovation and future development of nuclear technologies for nuclear power, its associated fuel cycles and nuclear applications in medicine, industry and agriculture. It highlights aspects including transferring and preserving knowledge, exchanging information, establishing and supporting cooperative networks, and training the next generation of nuclear experts. It concludes with basic concepts, trends and key drivers for nuclear knowledge management to R and D project managers and other workers from nuclear R and D organizations.

  16. Steam generator replacement at Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Kimura, S.; Dodo, Takashi; Negishi, Kazuo

    1995-01-01

    Eleven nuclear units are in operation at the Kansai Electric Power Co., Inc.. In seven of them, Mihama-1·2·3, Takahama-1·2, and Ohi-1·2, comparatively long duration for tube inspection and repair have been required during late annual outages. KEPCO decided to replace all steam generators in these 7 units with the latest model which was improved upon the past degradation experiences, as a result of comprehensive considerations including public confidence in nuclear power generation, maintenability, and economic efficiency. This report presents the design improvements in new steam generators, replacement techniques, and so on. (author)

  17. Nuclear medicine and the failed joint replacement: Past, present, and future.

    Science.gov (United States)

    Palestro, Christopher J

    2014-07-28

    (SPECT)/electronic computer X-ray tomography technique (CT) and the availability of fluorine-18 fluoride PET suggests that the diagnostic paradigm may be shifting again. By providing the anatomic information lacking in conventional radionuclide studies, there is renewed interest in bone scintigraphy, performed as a SPECT/CT procedure, for detecting joint instability, mechanical loosening and component malpositioning. Fluoride-PET may provide new insights into periprosthetic bone metabolism. The objective of this manuscript is to provide a comprehensive review of the evolution of nuclear medicine imaging of joint replacements.

  18. Research and exploration on nuclear safety culture construction

    International Nuclear Information System (INIS)

    Zhang Lifang; Zhao Hongtao; Wang Hongwei

    2012-01-01

    This thesis mainly researched the definition, characteristics, development stage and setup procedure concerning nuclear safety culture, based on practice and experiences in Technical Physics Institute of Heilongjian. Academy of Science. The author discussed the importance of nuclear safety culture construction for an enterprise of nuclear technology utilization, and emphasized all the enterprise and individual who engaged in nuclear and radiation safety should acquire good nuclear safety culture quality, and ensure the application and development of the nuclear safety cult.ure construction in the enterprises of nu- clear technological utilization. (authors)

  19. Feeder replacement tooling and processes

    International Nuclear Information System (INIS)

    Mallozzi, R.; Goslin, R.; Pink, D.; Askari, A.

    2008-01-01

    Primary heat transport system feeder integrity has become a concern at some CANDU nuclear plants as a result of thinning caused by flow accelerated corrosion (FAC). Feeder inspections are indicating that life-limiting wall thinning can occur in the region between the Grayloc hub weld and second elbow of some outlet feeders. In some cases it has become necessary to replace thinned sections of affected feeders to restore feeder integrity to planned end of life. Atomic Energy of Canada Limited (AECL) and Babcock and Wilcox Canada Ltd. (B and W) have developed a new capability for replacement of single feeders at any location on the reactor face without impacting or interrupting operation of neighbouring feeders. This new capability consists of deploying trained crews with specialized tools and procedures for feeder replacements during planned outages. As may be expected, performing single feeder replacement in the congested working environment of an operational CANDU reactor face involves overcoming many challenges with respect to access to feeders, available clearances for tooling, and tooling operation and performance. This paper describes some of the challenges encountered during single feeder replacements and actions being taken by AECL and B and W to promote continuous improvement of feeder replacement tooling and processes and ensure well-executed outages. (author)

  20. The United Nuclear Research Institute

    International Nuclear Information System (INIS)

    Kiss, D.

    1978-01-01

    The UNRI, the only common institute of the socialist countries was founded in 1956 in Dubna. The scientists of small countries have the opportunity to take part in fundamental research with very expensive devices which are usually not available for them. There are six research laboratories and one department in the UNRI namely: the theoretical physical laboratory; the laboratory of high energies - there is a synchrophasotron of 1a GeV there; the laboratory of nuclear problems - there is a synchrocyclotron of 680 MeV there; the laboratory of nuclear reactions with the cyclotron U-300 which can accelerate heavy ions; the neutronphysical laboratory with the impulse reactor IBM-30; the laboratory of computation and automatization with two big computers; the department of new acceleration methods. The main results obtained by Hungarian scientist in Dubna are described. (V.N.)

  1. A Strategy for Nuclear Energy Research and Development

    International Nuclear Information System (INIS)

    Bennett, Ralph G.

    2008-01-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: (1) Increase the electricity generated by non-emitting sources to mitigate climate change, (2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, (3) Reduce the transportation sector's dependence on imported fossil fuels, and (4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy's share will require a coordinated research effort-combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R and D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R and D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally

  2. Processing of LLRW arising from AECL nuclear research centres

    International Nuclear Information System (INIS)

    Buckley, L.P.; Le, V.T.; Beamer, N.V.; Brown, W.P.; Helbrecht, R.A.

    1988-11-01

    Operation of nuclear research reactors and laboratories results in the generation of a wide variety of solid and liquid radioactive wastes. This paper describes practical experience with processing of low-level radioactive wastes at two major nuclear research centres in Canada

  3. Optimization of steam generator replacement with virtual reality modeling

    International Nuclear Information System (INIS)

    Kim, Jeong H.; Suh, Kune Y.

    2008-01-01

    Nuclear power plants (NPPs) have to be carefully examined and maintained up to the point of replacing major components during the overhaul period for continued operation. Most understandably the cost of maintenance and upgrading will tend to increase with the NPP power. There is thus an escalating need for developing an optimized process management method to reduce the cost involved. Albeit the steam generators (SGs) may not directly affect the expected lifespan of NPP, thousands of tubes with diameter on the order of 3 cm in the SG operating at 320degC and 16 MPa may well tend to be called Achilles' heel of the pressurized water reactors (PWRs). For instance, the SGs of Kori Nuclear Unit 1 (KNU 1) were replaced in October 1998 after 20 years of service on account of aging and potential threat to operational safety. In the same year the SG tubes of Ulchin Nuclear Units 1 and 2 were ruptured to result in leakage of the primary coolant to the secondary side. As a result their SGs are planned to be replaced in a few years. There is, however, a limit to improving the replacement process by trial and error in practice on account of the size of NPP with the ensuing complexity in process management. This paper proposes an optimization method for the SG replacement process based on the KNU 1 experience in 1998. The whole process was simulated accounting for interactions of each part in virtual reality utilizing the computer aided design solution CATIA, and the digital process management solution DELMIA. (author)

  4. Neutrons in basic and applied nuclear research - a review

    International Nuclear Information System (INIS)

    Bhattacharya, Sailajananda

    2013-01-01

    Energetic neutron sources, both white and mono-energetic, are widely used In basic nuclear physics as well as various multidisciplinary research. Precise measurement of various neutron induced reaction cross-sections are crucial for the design and development of new generation of reactors, like accelerator driven subcritical systems, nuclear incinerators, etc. A review of some recent trends in neutron induced basic and applied nuclear research will be presented in this talk. (author)

  5. National Nuclear Research Institute (NNRI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The 2015 report of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission (GAEC) lists various programmes undertaken by the Institute under the following headings: Water resources programme, Energy Research programme, Environmental and Health Safety Programme, Digital Instrumentation programme, Nuclear Applications and Materals programme and Radiation Occupational safety programme. Also, included are abstracts of publications and technical reports.

  6. Proceedings of the specialist research meeting on nuclear science information, (5)

    International Nuclear Information System (INIS)

    Kimura, Itsuro; Takeuchi, Takayuki; Mizuma, Mitsuo

    1985-02-01

    The Research Reactor Institute of Kyoto University held two meetings on nuclear science information in the academic year of 1984. The titles of the presented papers are: (1) Information retieval in nuclear safety; (2) Information retrieval in high-pressure gas safety; (3) Construction of nuclear science information data base at the Research Reactor Institute of Kyoto University (II); (4) Nuclear science information data base at the Research Reactor Institute of Kyoto University (KURRIP)*; (5) Nuclear structure and disintegration data base; (6) Evaluated nuclear structure data file and (7) World climate data file. This report contains the full text of these papers. (author)

  7. Optimization of station battery replacement

    International Nuclear Information System (INIS)

    Jancauskas, J.R.; Shook, D.A.

    1994-01-01

    During a loss of ac power at a nuclear generating station (including diesel generators), batteries provide the source of power which is required to operate safety-related components. Because traditional lead-acid batteries have a qualified life of 20 years, the batteries must be replaced a minimum of once during a station's lifetime, twice if license extension is pursued, and more often depending on actual in-service dates and the results of surveillance tests. Replacement of batteries often occurs prior to 20 years as a result of systems changes caused by factors such as Station Blackout Regulations, control system upgrades, incremental load growth, and changes in the operating times of existing equipment. Many of these replacement decisions are based on the predictive capabilities of manual design basis calculations. The inherent conservatism of manual calculations may result in battery replacements occurring before actually required. Computerized analysis of batteries can aid in optimizing the timing of replacements as well as in interpreting service test data. Computerized analysis also provides large benefits in maintaining the as-configured load profile and corresponding design margins, while also providing the capability of quickly analyze proposed modifications and response to internal and external audits

  8. Research achievements in Bangladesh agriculture using nuclear techniques

    International Nuclear Information System (INIS)

    Sattar, M.A.

    1997-01-01

    Application of isotope and radiation techniques in Bangladesh agriculture has been initiated in 1961 with the establishment of Atomic Energy Agricultural Research Centre, Dhaka under the then Pakistan Atomic Energy Commission. The activity of the centre was strengthened and upgraded to the level of an institute as a constituent organization of Bangladesh Atomic Energy Commission in 1972. It was further reorganized, made an autonomous research organization under the Ministry of Agriculture in 1982 and renamed as Bangladesh Institute of Nuclear Agriculture. The other organizations involved in nuclear agricultural research are Institute of Food and Radiation Biology and Bangladesh Agricultural University. A number of technologies have been developed using nuclear techniques that imparted on agricultural development. Sixteen new crops were developed using physical (200-700 Gy gamma rays) and chemical mutagen (NaN 3 ). Soil fertility and plant nutrition technologies were developed using both stable and radio isotopes. The improved feeding strategies and utilization of locally available low quality feed material (rice straw) were determined using 51 Cr-EDTA and 125 I in order to have better livestock growth and reproduction ability. Several constraints related to nuclear research were identified. Increased government commitment and international cooperation are of the utmost importance for effective utilization of the benefits of nuclear technology and to face the increasing demand for food for the ever increasing population in years to come

  9. Status of nuclear regulatory research and its future perspectives

    International Nuclear Information System (INIS)

    Lee, J. I.; Kim, W. S.; Kim, M. W.

    1999-01-01

    A comprehensive investigation of the regulatory research comprising an examination of the research system, its areas and contents, and the goals and financial resources is undertaken. As a result of this study, the future direction of regulatory research and its implementation strategies are suggested to resolve the current issues emerging from this examination. The major issues identified in the study are; (a) an insufficient investment in nuclear regulatory and safety research, (b) an interfacial discrepancy between similar research areas, and (c) a limitation of utilizing research results. To resolve these issues, several measures are proposed : (1) developing a lead project to establish a comprehensive infrastructure for enhancing research cooperation between nuclear organizations including institutes, industry, and universities, with an aim to improve cooperation between projects and to strengthen overall coordination functions among research projects, (2) introducing a certification system on research outcome to promote the proliferation of both research results themselves and their application with a view to enhancing the research quality, (3) strengthening the cooperative system to promote the international cooperative research, and (4) digitalizing all documents and materials relevant to safety and regulatory research to establish KIMS (knowledge and information based management system). It is expected that the aforementioned measures suggested in this study will enhance the efficiency and effectiveness of both nuclear regulatory and safety research, if they are implemented after deliberating with the government and related nuclear industries in the near future

  10. Applications of nuclear techniques and research 1990

    International Nuclear Information System (INIS)

    1990-01-01

    The application of nuclear techniques, i.e. those techniques where use is made of isotopes and radiation, continues to contribute to progress in science, technology, agriculture, industry and medicine. Nuclear applications found their way into the IAEA's activities from the very beginning, and their promotion constitutes today a substantial fraction of the IAEA's Technical Co-operation and Research Contract Programmes. The 1990 selection is opened by a review of the role and function of the IAEA's Research Contract Programme, which is one of the Agency's most effective tools for promoting and developing nuclear applications. Applications in agriculture are covered in two articles dealing respectively with issues affecting the acceptance of food irradiation by governments, the food industry and consumers and with the use of radiation to induce plant mutation, a practical tool available to plant breeders in their effort to develop better quality crops. The following article deals with a typical nuclear application in medicine, i.e. the use of radionuclides in the diagnosis of lung diseases and in investigations related to the respiratory function. The use of environmental isotopes to assess the energy potential of geothermal fields is the next subject, a good example of nuclear methods applied to the evaluation of natural resources. The 1990 review concludes with a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme

  11. Revisiting the nuclear age : state of the art research in nuclear history

    NARCIS (Netherlands)

    Kalmbach, K.

    This article provides an overview of recent research developments in the field of nuclear history, focusing on Western European and Northern American research perspectives and topics. The analysis of these developments reveals under-researched areas which merit more focus from humanities and social

  12. Equipment and performance upgrade of compact nuclear simulator

    International Nuclear Information System (INIS)

    Park, J. C.; Kwon, K. C.; Lee, D. Y.; Hwang, I. K.; Park, W. M.; Cha, K. H.; Song, S. J.; Lee, J. W.; Kim, B. G.; Kim, H. J.

    1999-01-01

    The simulator at Nuclear Training Center in KAERI became old and has not been used effectively for nuclear-related training and researches due to the problems such as aging of the equipment, difficulties in obtaining consumables and their high cost, and less personnel available who can handle the old equipment. To solve the problems, this study was performed for recovering the functions of the simulator through the technical design and replacement of components with new ones. As results of this study, our test after the replacement showed the same simulation status as the previous one, and new graphic displays added to the simulator was effective for the training and easy for maintenance. This study is meaningful as demonstrating the way of upgrading nuclear training simulators that lost their functioning due to the obsolescence of simulators and the unavailability of components

  13. Da Lat Nuclear Research Reactor. Role and perspective in the development of radioisotope and nuclear technique application in Vietnam

    International Nuclear Information System (INIS)

    Tran Ha Anh; Tran Khac An; Ngo Phu Khang; Nguyen Mong Sinh

    1995-01-01

    The Da Lat Nuclear Research Reactor is playing a central role in the development of both the Nuclear Research Institute and nuclear application in our country. Thanks to this main scientific tool, the Nuclear Research Institute nearly 10 years after the completion of its renovation from the previous American-made TRIGA MARK 2 reactor is being able to implement numerous scientific and technological research projects and to develop significant applications of radioisotopes and various nuclear techniques. A general overview of the research and development activities of the Institute based on the Da Lat Nuclear Research Reactor is given as well as those aiming at ensuring its safe, reliable and efficient operation and at enlarging the perspectives of its utilisation in the future. (authors). 5 refs., 1 fig., 1 tab

  14. Nuclear Safety Research Department annual report 2000

    DEFF Research Database (Denmark)

    Majborn, B.; Nielsen, Sven Poul; Damkjær, A.

    2001-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addtion the department...

  15. Nuclear Safety Research Department annual report 2001

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Nielsen, Sven Poul

    2002-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2001. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addition the department...

  16. International guidelines for fire protection at nuclear installations including nuclear fuel plants, nuclear fuel stores, teaching reactors, research establishments

    International Nuclear Information System (INIS)

    The guidelines are recommended to designers, constructors, operators and insurers of nuclear fuel plants and other facilities using significant quantities of radioactive materials including research and teaching reactor installations where the reactors generally operate at less than approximately 10 MW(th). Recommendations for elementary precautions against fire risk at nuclear installations are followed by appendices on more specific topics. These cover: fire protection management and organization; precautions against loss during construction alterations and maintenance; basic fire protection for nuclear fuel plants; storage and nuclear fuel; and basic fire protection for research and training establishments. There are numerous illustrations of facilities referred to in the text. (U.K.)

  17. On-going research projects at Ankara Nuclear research center in agriculture and animal science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text:The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  18. On-going research projects at Ankara Nuclear Research Center in Agriculture and Animal Science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  19. Proceedings of third JAERI-JNC joint conference on nuclear safety research

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Oikawa, Tetsukuni; Araya, Fumimasa; Suzuki, Tsugio

    2006-03-01

    The present report is the proceedings of the third JAERI-JNC joint conference on nuclear safety research held on July 29, 2005 in Tokyo before integration of JAERI and JNC to JAEA. The conference was held for those who are relevant to nuclear industries and regulatory organizations, and general public. The nuclear safety research has been conducted in both institutes according to the Five-Year Program for Nuclear Safety Research established periodically by the Nuclear Safety Commission (NSC) and needs from the regulatory organizations. The objectives of the conference are to present its recent results and to collect views and opinions from the participants for its future program through the discussion after each presentation and panel discussion on how to conduct efficiently the nuclear safety research in the new organization. A total of 234 people participated in the conference mainly from the nuclear industries and regulatory organizations. The conference consisted of presentations on the safety research results, a special lecture and a panel discussion. First, the overview of safety research results was presented from each institute. Then, the results in the field of nuclear installations, environmental radioactivity and radioactive waste were presented from each institute. Then, Dr. Suzuki, deputy chairperson of NSC, made a special lecture on recent trends in nuclear safety regulation and expectation for the new organization. Finally, a panel discussion was conducted with the title of 'how to conduct efficiently the nuclear safety research in the new organization' chaired by Prof. Kimura, the chairperson of Standing Committee on Nuclear Safety Research under the NSC. The panelists from JAERI and JNC presented and discussed the subject together with the participants on the floor. Through vigorous exchange of views in the panel discussion and descriptions on the questionnaires, it was obviously expressed that expectation to the safety research of the new

  20. Bolivia. The new nuclear research center in El Alto

    International Nuclear Information System (INIS)

    Nogarin, Mauro

    2016-01-01

    Research reactors in Latin America have become a priority in public policy in the last decade. Bolivia wants to become the 8th country to implement peaceful nuclear technology in this area with the new Center for Research and Development in the Nuclear Technology. The Center will be the most advanced in Latin America. It will provide for a wide use of radiation technologies in agriculture, medicine, and industry. After several negotiations Bolivia and the Russian Federation signed the Intergovernmental Agreement on cooperation in the peaceful use of atomic energy and the construction of the Nuclear Research and Technology Center.

  1. Bolivia. The new nuclear research center in El Alto

    Energy Technology Data Exchange (ETDEWEB)

    Nogarin, Mauro

    2016-05-15

    Research reactors in Latin America have become a priority in public policy in the last decade. Bolivia wants to become the 8th country to implement peaceful nuclear technology in this area with the new Center for Research and Development in the Nuclear Technology. The Center will be the most advanced in Latin America. It will provide for a wide use of radiation technologies in agriculture, medicine, and industry. After several negotiations Bolivia and the Russian Federation signed the Intergovernmental Agreement on cooperation in the peaceful use of atomic energy and the construction of the Nuclear Research and Technology Center.

  2. Operation and utilizations of Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Hien, P.Z.

    1988-01-01

    The reconstructed Dalat nuclear research reactor was commissioned in March 1984 and up to September 1988 more than 6200 hours of operation at nominal power have been recorded. The major utilizations of the reactor include radioisotope production, activation analysis, nuclear data research and training. A brief review of the utilizations of the reactor is presented. Some aspects of reactor safety are also discussed. (author)

  3. Research and test facilities required in nuclear science and technology

    International Nuclear Information System (INIS)

    2009-01-01

    Experimental facilities are essential research tools both for the development of nuclear science and technology and for testing systems and materials which are currently being used or will be used in the future. As a result of economic pressures and the closure of older facilities, there are concerns that the ability to undertake the research necessary to maintain and to develop nuclear science and technology may be in jeopardy. An NEA expert group with representation from ten member countries, the International Atomic Energy Agency and the European Commission has reviewed the status of those research and test facilities of interest to the NEA Nuclear Science Committee. They include facilities relating to nuclear data measurement, reactor development, neutron scattering, neutron radiography, accelerator-driven systems, transmutation, nuclear fuel, materials, safety, radiochemistry, partitioning and nuclear process heat for hydrogen production. This report contains the expert group's detailed assessment of the current status of these nuclear research facilities and makes recommendations on how future developments in the field can be secured through the provision of high-quality, modern facilities. It also describes the online database which has been established by the expert group which includes more than 700 facilities. (authors)

  4. Quality assurance activities in nuclear research and development

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mitsutoshi; Ishikawa, Hirohisa [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-03-01

    A case study into the quality management system of the Associated Nuclear Research Association has been performed with reference to the fast breeder reactor (FBR) cycle and high-level waste management (HLWM) research fields. The Japan Nuclear Cycle Development Institute's major research and development projects are in these fields. Progress in the quality management system for research subjects has been compared and analyzed by comparing with both the development level of individual projects and the external environment. Computer-assisted performance assessment systems analysis (CAPASA) in high-level waste management is described as a practical example. (author)

  5. CESAR robotics and intelligent systems research for nuclear environments

    International Nuclear Information System (INIS)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developing highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs

  6. Brief overview of American Nuclear Society's research reactor standards

    International Nuclear Information System (INIS)

    Richards, Wade J.

    1984-01-01

    The American Nuclear Society (ANS) established the research reactor standards group in 1968. The standards group, known as ANS-15, was established for the purpose of developing, preparing, and maintaining standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training

  7. Nuclear research in Strasbourg. The first ten years 1941-1951

    International Nuclear Information System (INIS)

    Casel, R.

    1993-01-01

    The story of the first decade of the nuclear research in Strasbourg includes three different periods. During the war there is the installation as part of the Reichsuniversitaet Strassburg (november 1941-november 1944) of one 'Medical Research Institute' the physics department of which is equipped with a very important equipment for the period, particularly a connection generator of 1.5 MeV. For the Liberation, the civil hospices and the Strasbourg Medicine Faculty decide to create from the old german installations an artificial radioisotope production laboratory: the 'Strasbourg Nuclear Research Institute' (N.R.I) which was born in 1947 as interfaculty Institute (Medicine, Science, Pharmacy). But the N.R.I doesn't make for the applied research but for the fundamental research. To the nuclear research institute will be added in 1950 the corpuscular physics and the nuclear chemistry laboratories. 163 refs., 20 figs

  8. Voluntary research results for five years along the master plan on nuclear safety research. FY 2001 - 2005

    International Nuclear Information System (INIS)

    Sato, Yoshinori

    2006-05-01

    Safety Research has been conducted from FY 2001 to FY 2005 according to the Master Plan on Nuclear Safety Research (FY 2001-2005) in Japan Atomic Energy Agency which took over former Japan Nuclear Cycle Development Institute. This report shows the voluntary research results for five years conducted from FY 2001 to FY 2005 according to the Master Plan on Nuclear Safety Research (FY 2001-2005). (author)

  9. Euratom research and training in nuclear reactor safety: Towards European research and the higher education area

    International Nuclear Information System (INIS)

    Goethem, G. van

    2004-01-01

    In this invited lecture, research and training in nuclear fission are looked at from a European perspective with emphasis on the three success factors of any European policy, namely: common needs, vision and instruments, that ought to be strongly shared amongst the stakeholders across the Member States concerned. As a result, the following questions are addressed: What is driving the current EU trend towards more research, more education and more training, in general? Regarding nuclear fission, in particular, who are the end-users of Euratom 'research and training' and what are their expectations from EU programmes? Do all stakeholders share the same vision about European research and training in nuclear fission? What are the instruments proposed by the European Commission (EC) to conduct joint research programmes of common interest for the nuclear fission community? In conclusion, amongst the stakeholders in Europe, there seems to be a wide consensus about common needs and instruments, but not about a common vision regarding nuclear. (author)

  10. Trends of plasma physics and nuclear fusion research life cycle and research effort curve

    International Nuclear Information System (INIS)

    Ohe, Takeru; Kanada, Yasumasa; Momota, Hiromu; Ichikawa, Y.H.

    1979-05-01

    This paper presents a quantitative analysis of research trends in the fields of plasma physics and nuclear fusion. This analysis is based on information retrieval from available data bases such as INSPEC tapes. The results indicate that plasma physics research is now in the maturation phase of its life cycle, and that nuclear fusion research is in its growth phase. This paper indicates that there is a correlation between the number of accumulated papers in the fields of plasma physics and nuclear fusion and the experimentally attained values of the plasma ignition parameter ntT. Using this correlation ''research effort curve'', we forecast that the scientific feasibility of controlled fusion using magnetic confinement systems will be proved around 1983. (author)

  11. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Bougaenko, S.E.; Kraev, A.E.; Hill, D.L.; Braun, J.C.; Klickman, A.E.

    1998-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project

  12. Plant process computer replacements - techniques to limit installation schedules and costs

    International Nuclear Information System (INIS)

    Baker, M.D.; Olson, J.L.

    1992-01-01

    Plant process computer systems, a standard fixture in all nuclear power plants, are used to monitor and display important plant process parameters. Scanning thousands of field sensors and alarming out-of-limit values, these computer systems are heavily relied on by control room operators. The original nuclear steam supply system (NSSS) vendor for the power plant often supplied the plant process computer. Designed using sixties and seventies technology, a plant's original process computer has been obsolete for some time. Driven by increased maintenance costs and new US Nuclear Regulatory Commission regulations such as NUREG-0737, Suppl. 1, many utilities have replaced their process computers with more modern computer systems. Given that computer systems are by their nature prone to rapid obsolescence, this replacement cycle will likely repeat. A process computer replacement project can be a significant capital expenditure and must be performed during a scheduled refueling outage. The object of the installation process is to install a working system on schedule. Experience gained by supervising several computer replacement installations has taught lessons that, if applied, will shorten the schedule and limit the risk of costly delays. Examples illustrating this technique are given. This paper and these examples deal only with the installation process and assume that the replacement computer system has been adequately designed, and development and factory tested

  13. Willingness to pay for replacing traditional energies with renewable energy in South Korea

    International Nuclear Information System (INIS)

    Lee, Chul-Yong; Lee, Min-Kyu; Yoo, Seung-Hoon

    2017-01-01

    This study aims to estimate consumers' willingness to pay (WTP) for replacing traditional energy generated from nuclear and coal sources with renewable energy, using a contingent valuation (CV) model. To this end, it reports the results from a CV survey of 1000 respondents and a spike model. The estimate obtained shows that consumers are willing to pay an additional USD 3.3 per month to replace nuclear power and USD 3.0 per month to replace coal energy. The total WTPs for the substitution of nuclear power and coal-fired power with renewable energy sources are calculated as USD 722 million and USD 659 million, respectively. When such a WTP is provided for installing photovoltaic equipment, the photovoltaic capacity of 372 MW for nuclear power substitution and 339 MW for coal-fired power substitution can be built every year, taking into consideration the backup cost and opportunity cost. Given that the WTP means the level of public acceptability of a rising energy bill, Korean consumers would accept an increase in their electricity bills caused by solar photovoltaic energy equivalent to 31–32 GW in the medium and long term. - Highlights: • There is a growing need to replace traditional energies with renewable energy. • We estimate consumers' willingness to pay (WTP) for the replacement. • To this end, a contingent valuation survey of 1000 households was conducted. • Monthly WTPs are USD 3.3 and 3.0 for nuclear power and coal, respectively. • These values amount to solar photovoltaic energy equivalent to 31–32 GW.

  14. The fifth conference on nuclear science and engineering in Australia, 2003. Conference handbook

    International Nuclear Information System (INIS)

    2003-01-01

    The theme of the fifth Nuclear Science and Engineering in Australia conference was 'Building on 100 years of Nuclear Science and Technology'. During the six main sessions the following topics were presented: Nuclear research and progress on major nuclear facilities, including the ANSTO Research Replacement Reactor, the Australian synchrotron and irradiation facilities; Uranium and waste management; Radiation Protection and Nuclear safety; Safeguards and Security; Nuclear Power in the Asia/Pacific region and prospects for Australia. The opening address, given by Mr Peter McGauran, Minister for Science was followed by Dr Robin Batterham, Australian Chief Scientist's introductory address. Papers included in the handbook were separately indexed

  15. The fifth conference on nuclear science and engineering in Australia, 2003. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The theme of the fifth Nuclear Science and Engineering in Australia conference was 'Building on 100 years of Nuclear Science and Technology'. During the six main sessions the following topics were presented: Nuclear research and progress on major nuclear facilities, including the ANSTO Research Replacement Reactor, the Australian synchrotron and irradiation facilities; Uranium and waste management; Radiation Protection and Nuclear safety; Safeguards and Security; Nuclear Power in the Asia/Pacific region and prospects for Australia. The opening address, given by Mr Peter McGauran, Minister for Science was followed by Dr Robin Batterham, Australian Chief Scientist's introductory address. Papers included in the handbook were separately indexed.

  16. The Institute for Nuclear Research and Nuclear Energy - present state and future prospects

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy is the biggest one within Bulgarian Academy of Sciences and it is a leading complex center for research and application of the nuclear physics in Bulgaria. The year 2003 was the first for the functioning of the new organization structure of INRNE consisting of 26 laboratories and 4 scientific experimental bases joined according their thematic in 7 scientific directions governed by the correspondent Expert Councils and Specialised Seminars. The scientific staff of the Institute has been worked on about 104 problems during the 2003 mainly on our traditional scientific areas, in particular, in the field of: theory of the elementary particles, field theory, atomic nuclei and quantum phenomena; experimental physics of the elementary particles, nuclear reactions, structure of atomic nuclei, cosmic rays and gamma-astrophysics at ultra high energies; neutron interactions and cross sections, physics of the fission; reactor physics, nuclear energy and nuclear safety and security ect. Now the results are already present and, as can been seen, almost half of the developments are connected with the problems of scientific support of the national nuclear energy production, radioactive waste, monitoring and management of the environment. With few exceptions, all these tasks are financially supported by national, foreign and international organizations. The fundamental end applied research results for 2003 have been accepted for publication or published in more than 300 articles in journals and proceeding of many international conferences. Large amount of these results has been obtained in close collaboration with international and foreign research centers, universities and institutions. Essential progress was obtained by the modernization of the scientific experimental bases of INRNE. The technical design project for the reconstruction of the old research reactor IRT 2000 in the new IRT 200 was successfully finished. The

  17. Nuclear safeguards research and development

    Science.gov (United States)

    Henry, C. N.

    1981-11-01

    The status of a nuclear safeguard research and development program is presented. Topics include nondestructive assay technology development and applications, international safeguards, training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  18. Public sector's research programme on nuclear waste management

    International Nuclear Information System (INIS)

    Vuori, S.

    2000-06-01

    According to the Finnish nuclear energy legislation, each producer of nuclear waste is responsible for the safe handling, management and disposal of the waste as well as for the arising costs. Authorities supervise and control the implementation of the national waste management programme and set the necessary safety and other requirements. In these tasks the authorities are supported by a research programme on nuclear waste management that is independent of the implementing organisations and power companies. The main objective of the research programme has been to provide the authorities with information and research results relevant for the safety of nuclear waste management. The main emphasis in this research programme has been devoted to the final disposal of spent fuel. The whole area of the research programme has been subdivided into the following main topic areas: (1) Behaviour of bedrock (2) Geohydrology and geochemistry, (3) Release of radionuclides from repository and subsequent transport in bedrock, (4) Engineered safety barriers of the repository, system, (5) Performance and safety assessment of spent fuel disposal facilities, (6) Waste management technology and costs (7) Evaluation of the contents and scope of and observation of the realisation of the environmental impact assessment procedure for the siting of spent nuclear fuel disposal facility, and research on other societal and sociopolitical issues, and (8) Public information, attitude, and image issues for waste management facilities. The research programme has generated considerably increased information on the behaviour of the natural and technical release barriers of the disposal system and thereby contributed to building of confidence on the long-term safety of geological disposal of spent fuel. Furthermore, increased confidence among the public in the affected candidate municipalities has probably been achieved by the complementary studies conducted within the research programme on topics

  19. Australian Nuclear Science and Technology Organisation (ANSTO). Annual Report 1998-1999

    International Nuclear Information System (INIS)

    1999-09-01

    The 1998/1999 Annual Report summarises ANSTO's performance and progress made on several major infrastructure projects and its research and development program. On 3 May 1999, the Government announced its support for a Replacement Research Reactor at Lucas Heights; the site licence has been granted by ARPANSA and the request for tender distributed to four pre qualified vendors. A significant effort during the year under review was directed towards the Replacement Research Reactor Project. Main objectives and achievements are also reported against established performance indicators within the the five core scientific business areas: International strategic relevance of Nuclear Science; Core nuclear facilities operation and development; Applications of Nuclear Science and Technology to the understanding of natural processes; Treatment and management of man-made and naturally occurring radioactive substances; and Competitiveness and ecological sustainability of industry. Also presented are the objectives and activities which supports the core scientific areas by providing best practice corporate support, safety management, information and human resource management for ANSTO staff. The organization has developed its 1999/2000 Operational Plan predominantly on a project-based approach

  20. Australian Nuclear Science and Technology Organisation (ANSTO). Annual Report 1998-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The 1998/1999 Annual Report summarises ANSTO's performance and progress made on several major infrastructure projects and its research and development program. On 3 May 1999, the Government announced its support for a Replacement Research Reactor at Lucas Heights; the site licence has been granted by ARPANSA and the request for tender distributed to four pre qualified vendors. A significant effort during the year under review was directed towards the Replacement Research Reactor Project. Main objectives and achievements are also reported against established performance indicators within the the five core scientific business areas: International strategic relevance of Nuclear Science; Core nuclear facilities operation and development; Applications of Nuclear Science and Technology to the understanding of natural processes; Treatment and management of man-made and naturally occurring radioactive substances; and Competitiveness and ecological sustainability of industry. Also presented are the objectives and activities which supports the core scientific areas by providing best practice corporate support, safety management, information and human resource management for ANSTO staff. The organization has developed its 1999/2000 Operational Plan predominantly on a project-based approach.

  1. An outcome of nuclear safety research in JAERI. Predominance of research

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Kawashima, Kei; Ito, Keishiro; Katsuki, Chisato

    2010-02-01

    Bibliometric study by means of research papers revealed the followings; (1) Nuclear Safety Research (NSR) performed in Japan is the 2nd highest in the world followed by USA. The share of JAERI for safety paper publication is about 25% in Japan (2) During past 25 years, JAERI is predominant at 39 safety fields out of 97, that is, 40% to the total. This is the fact revealed from comparison of published number of research papers with those of other organizations. (3) JAERI is recently changing its stress point from reactor-oriented accidents to the down stream of nuclear fuel cycling. There existed impact of TMI-2 accident on NSR-JAERI, especially in the field of thermal hydraulics, LOCA, severe accident and risk analysis. (author)

  2. Overview of the Nuclear Regulatory Commission's safety research program

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1989-01-01

    Accomplishments during 1988 of the Office of Nuclear Regulatory Research and the program of safety research are highlighted, and plans, expections, and needs of the next year and beyond are discussed. Topics discussed include: ECCS Appendix K Revision; pressurized thermal shock; NUREG-1150, or the PRA method performance document; resolution of station blackout; severe accident integration plan; nuclear safety research review committee; and program management

  3. Bordeaux Gradignan Nuclear Research Centre - CENBG - 2003-2004 Activity report

    International Nuclear Information System (INIS)

    2005-01-01

    The Bordeaux Gradignan Nuclear Research Centre (CENBG) is a joint research unit of the CNRS/IN2P3 and the University Bordeaux 1 'Science and Technology'. The laboratory is composed of permanent researchers, permanent engineers and technicians and PhD students, post-docs and visitors. The scientific program covers a broad range of topics in nuclear physics, particle physics, Astro-particle physics as well as applications of subatomic physics to different multidisciplinary fields. The main research subjects are: exotic nuclei far from the valley of beta stability and rare radioactive decays; neutrino physics (type and mass of the neutrino) and double beta decay; high energy gamma ray astronomy; innovative approaches to nuclear power generation and transmutation of nuclear waste; laser induced nuclear excitations; the effects of various environmental exposures studied via macro, micro or nano-ion beams using the new platform AIFIRA; and finally theoretical studies of nuclear and hadronic matter. All these activities take place within strong national and international collaborations involving the academic world and enabling the selection and training of high-quality students and post-doctoral researchers. To promote dissemination in the regional and national network, within the technologies developed at the laboratory in the domain of characterization with beams of ions or neutrons, there exists a transfer unit ARCANE which works through contracts. This document is the 2003-2004 Activity report of CNBG, content: 1 - Foreword; 2 - Research activities (Astro-particle, downstream of the fuel cycle and nuclear energy; laser nuclear excitations; physics-biology interface; neutrino and low radioactivities; exotic nuclei; theoretical physics); 3 - Services; 4 - Platform and cell facilities; 5 - other actions; 6 - scientific production; 7 - personnel

  4. Research achievements in Bangladesh agriculture using nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sattar, M.A. [Bangladesh Institute of Nuclear Agriculture, Mymensingh, (Bangladesh)

    1997-10-01

    Application of isotope and radiation techniques in Bangladesh agriculture has been initiated in 1961 with the establishment of Atomic Energy Agricultural Research Centre, Dhaka under the then Pakistan Atomic Energy Commission. The activity of the centre was strengthened and upgraded to the level of an institute as a constituent organization of Bangladesh Atomic Energy Commission in 1972. It was further reorganized, made an autonomous research organization under the Ministry of Agriculture in 1982 and renamed as Bangladesh Institute of Nuclear Agriculture. The other organizations involved in nuclear agricultural research are Institute of Food and Radiation Biology and Bangladesh Agricultural University. A number of technologies have been developed using nuclear techniques that imparted on agricultural development. Sixteen new crops were developed using physical (200-700 Gy gamma rays) and chemical mutagen (NaN{sub 3}). Soil fertility and plant nutrition technologies were developed using both stable and radio isotopes. The improved feeding strategies and utilization of locally available low quality feed material (rice straw) were determined using {sup 51}Cr-EDTA and {sup 125}I in order to have better livestock growth and reproduction ability. Several constraints related to nuclear research were identified. Increased government commitment and international cooperation are of the utmost importance for effective utilization of the benefits of nuclear technology and to face the increasing demand for food for the ever increasing population in years to come 32 refs., 1 tab.

  5. Trawsfynydd NPS: the economic and social impact of closure without replacement

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The paper concerns a study of the economic and social effects of the closure of Trawsfynydd Nuclear Power Station without replacement, carried out by the University College of North Wales. Performance of Trawsfynydd, unemployment and demand for replacement, are all discussed. (UK)

  6. Karlsruhe Nuclear Research Center. Research and development programme 1988

    International Nuclear Information System (INIS)

    1987-01-01

    A general survey of planned activities and developmental trends of the nuclear research centre is followed by a more detailed account of projects and goals. The various institutes and laboratories are presented together with their specific task schedules. (UA) [de

  7. Managing nuclear safety research facilities and capabilities in a changing nuclear industry: the contribution of the OECD/NEA

    International Nuclear Information System (INIS)

    Royen, J.

    2000-01-01

    Although the safety level of nuclear power plants in OECD countries is very satisfactory and the technologies basic to the resolution of safety issues have advanced considerably, continued nuclear safety research work is necessary to address many of the residual concerns, and it remains an important element in ensuring the safe operation of nuclear power plants. However, the funding levels of national Government safety research programmes have been reduced over recent years. There is concern about the ability of OECD Member countries to sustain an adequate level of nuclear safety research capability. The OECD/NEA has a key role to play in organizing reflection and exchange of information on the most efficient use of available technical resources, and in the international management of nuclear safety research facilities and capabilities in a changing nuclear industry. Possible initiatives are mentioned in the paper. (author)

  8. Nuclear safety research in HGF 2011; Nukleare Energieforschung 2011. Forschungszentren. Status und Entwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Tromm, Walter [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Programm NUKLEAR

    2012-06-15

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities

  9. Progress report of Cekmece Nuclear Research and Training Center for 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Presented are the research works carried out in 1981 in Energy, Radiological Safety, Radioisotope, Application of Nuclear Techniques and Basic Research of Cekmece Nuclear Research and Training Center. (author)

  10. A plan for research by the atmospheric research section in support of Ontario Hydro's nuclear activities

    International Nuclear Information System (INIS)

    Ogram, G.L.; Melo, O.T.

    1984-01-01

    A plan for nuclear studies by the Atmospheric Research Section is presented. The need for research is discussed and research objectives are established. Recommended research activities include the study of fundamental processes governing the fate of emissions released to the atmosphere by Hydro's nuclear facilities and the development of improved transport models describing the fate of these emissions. A Sectional goal of providing technical expertise in the atmospheric sciences in support of Ontario Hydro's present and future nuclear activities is proposed. The plan covers a five-year time frame (1984-1988)

  11. Nuclear Structure Research at TRIUMF

    Science.gov (United States)

    Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Chakrawarthy, R. S.; Cline, D.; Cooper, R. J.; Churchman, R.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gagon-Miosan, F.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Savajols, H.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Scraggs, H. C.; Strange, M. D.; Svensson, C. E.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wood, J. L.; Wu, C. Y.; Zganjar, E. F.

    2007-04-01

    The radioactive beam laboratory at TRIUMF is currently the highest power ISOL facility in the world. Taking advantage of the high-intensity beams, major programs in nuclear astrophysics, nuclear structure, and weak interaction studies have begun. The low-energy area, ISAC-I, is capable of delivering beams up to mass 30 at approx 1.7 MeV/u or 60 keV up to the mass of the primary target, whereas ISAC-II will ultimately provide beams up to mass 150 and approx 6.5 MeV/u. Major gamma -ray spectrometers for nuclear structure research consist of the 8pi spectrometer at ISAC-I, and the TIGRESS spectrometer now being constructed for ISAC-II. Results from recent experiments investigating the beta -decay of nuclei near N=90 and Coulomb excitation of 20,21Na are presented that highlight the capabilities of the spectrometers.

  12. Re-Placing the Arts in Elementary School Curricula: An Interdisciplinary, Collaborative Action Research Project

    Science.gov (United States)

    Trent, Allen; Riley, Jorge-Ayn

    2009-01-01

    This article describes a collaborative action research project aimed at deliberately "re-placing" art in the elementary curriculum through targeted planning, implementation, and assessment of an art integrated unit in an urban 4th grade classroom. Findings and implications should be relevant to elementary teachers, administrators, art specialists,…

  13. PSI nuclear energy research progress report 1989

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-01-01

    This report gives on overview on the PSI's nuclear energy research in the field of reactor physics and systems, thermal-hydraulics, materials technology and nuclear processes, waste management program and LWR safety program. It contains also papers dealing with reactor safety, high temperature materials, decontamination, radioactive waste management and materials testing. 74 figs., 20 tabs., 256 refs

  14. Electronics in nuclear science and technology

    International Nuclear Information System (INIS)

    Dastidar, P.R.

    1979-01-01

    Electronics plays a vital role in the field of nuclear research and industry. Nuclear instrumentation and control systems rely heavily on electronics for reliable plant operation and to ensure personnel safety from harmful radiations. Rapid developments in electronics have resulted in the gradual phasing out of pneumatic instruments and replacement by solid-state electronic systems. On-line computers are now being used extensively for centralised monitoring and control of large nuclear plants. The paper covers the following main topics: (i) radiation detection and measurement, (ii) systems for nuclear research and design, (iii) nuclear reactor control and safety systems and (iv) modern trends in reactor control and nuclear instrumentation systems. The methods for radiation detection, ionization chambers, self-powdered detectors and semiconductor detectors are discussed in brief, followed by the description of the electronic systems commonly used in nuclear research, namely the pulse height, multichannel, correlation and fourier analysers. NIM and CAMAC, the electronic system standards used in nuclear laboratories/industries are also outlined. Electronic systems used for nuclear reactor control, safety, reactor core monitoring, failed fuel detection and process control instrumentation, have been described. The application of computers to reactor control, plant data processing, better man-machine interface and the use of multiple computer systems for achieving better reliability have also been discussed. Micro-computer based instrumentation systems, computers in reactor safety and advanced nuclear instrumentation techniques are briefly illustrated. (auth.)

  15. Replacement of radiography with ultrasonic phased array for feeder tubes in CANDU reactors using ASME code case N-659-2

    International Nuclear Information System (INIS)

    Simmons, R.; Bower, Q.; Arseneau, S.

    2013-01-01

    In this paper we will discuss phased array technology for the replacement of radiography on new construction projects in the nuclear industry. Specifically, through the implementation of A.S.M.E. code N-659-2 and MetaPhase phased array services. Phased Array is not considered a new technique on in service welds in the nuclear industry; however it was unprecedented on new construction welds and required significant investment in regulatory approval (C.N.S.C.), technology research and development, regulatory, client and technician training for successful service implementation. This paper will illustrate the abilities and limitations associated in replacing radiography with MetaPhase, as well as the substantial benefits relative to increased production, improved weld quality, enhanced safety and overall project cost savings. (author)

  16. Thermal-hydraulics associated with nuclear education and research

    International Nuclear Information System (INIS)

    Yokobori, Seiichi

    2011-01-01

    This article was the rerecording of the author's lecture at the fourth 'Future Energy Forum' (aiming at improving nuclear safety and economics) held in December 2010. The lecture focused on (1) importance of thermal hydraulics associated with nuclear education and research (critical heat flux, two-phase flow and multiphase flow), (2) emerging trend of maintenance engineering (fluid induced vibration, flow accelerated corrosion and stress corrosion cracks), (3) fostering sensible nuclear engineer with common engineering sense, (4) balanced curriculum of basics and advanced research, (5) computerized simulation and fluid mechanics, (6) crucial point of thermo hydraulics education (viscosity, flux, steam and power generation), (7) safety education and human resources development (indispensable technologies such as defence in depth) and (8) topics of thermo hydraulics research (vortices of curbed pipes and visualization of two-phase flow). (T. Tanaka)

  17. Annual report of Nuclear Science Research Institute, JFY2006

    International Nuclear Information System (INIS)

    2008-03-01

    Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and seven departments such as Department of Operational Safety Administration, Department of Radiation Protection, Department of Research Reactor and Tandem Accelerator, Department of Hot Laboratories and Facilities, Department of Criticality and Fuel Cycle Research Facilities, Department of Decommissioning and Waste Management, and Engineering Services Department. This annual report of JFY2006 summarizes the activities of NSRI, the R and D activities of the Research and Development Directorates and human resources development at site, and is expected to be referred to and utilized by R and D departments and project promotion sectors at NSRI site for the enhancement of their own research and management activities to attain their goals according to 'Middle-term Plan' successfully and effectively. In chapter 1, outline of JFY2006 activities of NSRI is described. In chapter 2, the following activities made by the departments in NSRI are summarized, i.e., (1) operation and maintenance of research reactors (JRR-3, JRR-4, NSRR), criticality assemblies (STACY, TRACY, FCA, TCA), hot laboratories (BECKY, Reactor Fuel Examination Facility, WASTEF, Research Laboratory 4, Plutonium Research Laboratory 1, Tokai Hot Laboratory, etc), and large-scale facilities (Tandem accelerator, LSTF, THYNC, TPTF, etc), and (2) safety management, radiation protection, management of radioactive wastes, decommissioning of nuclear facilities, engineering services, utilities and maintenance, etc, all of which are indispensable for the stable and safe operation and utilization of the research facilities. The technical developments for the advancement of the related technologies are also summarized. In chapter 3, the R and D and human resources development activities are described including the topics of the research works and projects performed by the Research and Development Directorates at site, such as

  18. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  19. Progress of research and development of nuclear fusion and development of large nuclear fusion device technology

    International Nuclear Information System (INIS)

    1994-01-01

    In the last several years, the results of tokamak experiments were conspicuous, and the progress of plasma confinement performance, transport mechanism, divertors and impurities, helium transport and exhaust, electric current drive, magnetic field ripple effect and high speed particle transport and DT experiment are reported. The other confinement methods than tokamak, the related theories and reactor technology are described. The conceptual design of ITER was carried out by the cooperation of Japan, USA, EC and the former USSR. The projects of developing nuclear fusion in various countries, the design and the required research and development of ITER, the reconstruction and the required research and development of JT-60, JET and TFTR, the design and the required research and development of large helical device, the state of research and development of laser nuclear fusion and inversion magnetic field pinch nuclear fusion, the activities and roles of industrial circles in large nuclear fusion device technology, and the long term perspective of the technical development of nuclear fusion are described. (K.I.)

  20. Steam-generator replacement sets new marks

    International Nuclear Information System (INIS)

    Beck, R.L.

    1995-01-01

    This article describes how, in one of the most successful steam-generator replacement experiences at PWRs worldwide, the V C Summer retrofit exceeded plant goals for critical-path duration, radiation, exposure, and radwaste generation. Intensive planning and teamwork, combined with the firm support of station management and the use of mockups to prepare the work crews for activity in a radiological environment, were key factors in the record performance achieved by South Carolina Electric and Gas Co (SCE and G) in replacing three steam generators at V C Summer nuclear station. The 97-day, two-hour breaker-to-breaker replacement outage -- including an eight-day delay for repair of leak in a small-bore seal-injection line of a reactor coolant pump (unrelated to the replacement activities) -- surpassed the project goal by over one day. Moreover, the outage was only 13 hours shy of the world record held by Virginia Power Co's North Anna Unit 1

  1. Improving practical training ability at Nuclear Research Institute oriented to nuclear human resource development within First Phase

    International Nuclear Information System (INIS)

    Nguyen Xuan Hai; Nguyen Nhi Dien; Pham Dinh Khang; Pham Ngoc Tuan; Tuong Thi Thu Huong

    2016-01-01

    This report presents results of a research project “Improving practical training ability at Nuclear Research Institute oriented to nuclear human resource development within first phase”. In the frameworks of the project, a guiding document on 27 Ortec’s experiments was translated into Vietnamese. Several equipment are used in the experiments such as neutron howitzer, gamma counter, multi-channel analyzer and alpha-gamma coincidence spectroscopy were designed and fabricated. These products contributed to improving the ability of research and training of Training and Education Center, Nuclear Research Institute (NRI). (author)

  2. Nuclear Research and Development in the AEC Era

    International Nuclear Information System (INIS)

    Mongkolnavin, R.

    2014-01-01

    In 2015, South East Asian Countris are entering into the social, economic and security partnership. Nuclear Research and Development undoubtedly has important roles in all three pillars. Nuclear applications that are being realised in the region ranges from energy, mrdical to agricultural application.In this new era of cooperation, we are seeking for technologies that lead to solution to improve our ways of living. As all other research and development nuclear research has been carried out in all countries in the region. However, it does have its critiques on safety issues based on people capability in the region. In order to make progress in research and development, human resource development is the key fundamental to its sucess. An experience of regional collaboration in developing pulsed neutron souurce is presented as an example. The research had been revived though collaoration of different research laboratories within ASEAN countries with support of Asian African Assosiation for Plasma Training (AAAPT). The 'low cost research theme' has fundamentally set up a platform for more future advanced research for fusion and for local industrial applications. It also increases experimental and theoretical research awareness among new generations that could be carried out in local laboratories. A device such as UNU-ICPT Plasma Focus has been explored, and it has been built, studied; both theoretical and experimental; and used for many different kind of applications.

  3. AEC sets five year nuclear safety research program

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research by the government for the establishment of means of judging the adequacy of safety measures incorporated in nuclear facilities, including setting safety standards and collecting documents of general criteria, and the research by the industry on safety measures and the promotion of safety-related technique are stated in the five year program for 1976-80 reported by subcommittees, Atomic Energy Commission (AEC). Four considerations on the research items incorporated in the program are 1) technical programs relating to the safety of nuclear facilities and the necessary criteria, 2) priority of the relevant items decided according to their impact on circumstances, urgency, the defence-indepth concept and so on, 3) consideration of all relevant data and documents collected, and research subjects necessary to quantify safety measurement, and 4) consideration of technological actualization, the capability of each research body, the budget and the time schedule. In addition, seven major themes decided on the basis of these points are 1) reactivity-initiated accident, 2) LOCA, 3) fuel behavior, 4) structural safety, 5) radioactive release, 6) statistical method of safety evaluation, and 7) seismic characteristics. The committee has deliberated the appropriate division of researches between the government and the industry. A set of tables showing the nuclear safety research plan for 1976-80 are attached. (Iwakiri, K.)

  4. Nuclear material control at IEA-R1 nuclear research reactor

    International Nuclear Information System (INIS)

    1988-01-01

    The control measurements system and verification of physical inventory for fuel elements used in the operation of IEA-R1 nuclear research reactor are described. The computer code used for burn-up calculation are shown. (E.G.) [pt

  5. US Department of Energy nuclear energy research initiative

    International Nuclear Information System (INIS)

    Ross, F.

    2001-01-01

    This paper describes the Department of Energy's (DOE's) Nuclear Energy Research Initiative (NERI) that has been established to address and help overcome the principal technical and scientific issues affecting the future use of nuclear energy in the United States. (author)

  6. Bordeaux Gradignan Nuclear Research Centre - CENBG - 2009-2012 Activity report

    International Nuclear Information System (INIS)

    2013-01-01

    The Bordeaux Gradignan Nuclear Research Centre (CENBG) is a joint research unit of the CNRS/IN2P3 and the University Bordeaux 1 'Science and Technology'. The laboratory is composed of permanent researchers, permanent engineers and technicians and PhD students, post-docs and visitors. The scientific program covers a broad range of topics in nuclear physics, particle physics, Astro-particle physics as well as applications of subatomic physics to different multidisciplinary fields. The main research subjects are: exotic nuclei far from the valley of beta stability and rare radioactive decays; neutrino physics (type and mass of the neutrino) and double beta decay; high energy gamma ray astronomy; innovative approaches to nuclear power generation and transmutation of nuclear waste; laser induced nuclear excitations; the effects of various environmental exposures studied via macro, micro or nano-ion beams using the new platform AIFIRA; and finally theoretical studies of nuclear and hadronic matter. All these activities take place within strong national and international collaborations involving the academic world and enabling the selection and training of high-quality students and post-doctoral researchers. To promote dissemination in the regional and national network, within the technologies developed at the laboratory in the domain of characterization with beams of ions or neutrons, there exists a transfer unit ARCANE which works through contracts. This document is the 2009-2012 Activity report of CNBG, content: 1 - Research activities (Exotic nuclei; theoretical physics; laser nuclear excitations; Astro-particles; neutrino and low radioactivities; downstream of the fuel cycle and nuclear energy; radioactivity and environment; physics-biology interface; publications (journals, conferences and workshops); 2 - Skills and technical realisations (Electronics dept.; Instrumentation/detectors dept.; administration; Information and technology Dept.; Mechanics Dept.; Platform

  7. Bordeaux Gradignan Nuclear Research Centre - CENBG - 2013-2014 Activity report

    International Nuclear Information System (INIS)

    2015-01-01

    The Bordeaux Gradignan Nuclear Research Centre (CENBG) is a joint research unit of the CNRS/IN2P3 and the University Bordeaux 1 'Science and Technology'. The laboratory is composed of permanent researchers, permanent engineers and technicians and PhD students, post-docs and visitors. The scientific program covers a broad range of topics in nuclear physics, particle physics, Astro-particle physics as well as applications of subatomic physics to different multidisciplinary fields. The main research subjects are: exotic nuclei far from the valley of beta stability and rare radioactive decays; neutrino physics (type and mass of the neutrino) and double beta decay; high energy gamma ray astronomy; innovative approaches to nuclear power generation and transmutation of nuclear waste; laser induced nuclear excitations; the effects of various environmental exposures studied via macro, micro or nano-ion beams using the new platform AIFIRA; and finally theoretical studies of nuclear and hadronic matter. All these activities take place within strong national and international collaborations involving the academic world and enabling the selection and training of high-quality students and post-doctoral researchers. To promote dissemination in the regional and national network, within the technologies developed at the laboratory in the domain of characterization with beams of ions or neutrons, there exists a transfer unit ARCANE which works through contracts. This document is the 2013-2014 Activity report of CNBG, content: 1 - Research activities (Exotic nuclei; theoretical physics; laser nuclear excitations; Astro-particles; neutrino and low radioactivities; downstream of the fuel cycle and nuclear energy; radioactivity and environment; physics-biology interface; chemical imaging and speciation; publications (journals, conferences and workshops); 2 - Skills and technical realisations (Electronics dept.; Instrumentation/detectors dept.; administration; Information and technology

  8. Dossier: management of nuclear wastes. Research, results

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The researches carried out since many years on nuclear wastes have led to two main ways of management: the long-term conditioning of radio-elements and their advanced separation. The French atomic energy commission (CEA) has chosen to take up also the transmutation challenge, a way to transform long-living radioactive wastes into short-living radioactive wastes or stable compounds. The transmutation programs are based both on simulation and experiments with a huge international collaboration. This dossier presents in a digest way the research activity carried out on nuclear wastes processing and management at the CEA. (J.S.)

  9. How to replace a reactor pressure vessel

    International Nuclear Information System (INIS)

    Huber, R.

    1996-01-01

    A potential life extending procedure for a nuclear reactor after, say, 40 years of service life, might in some circumstances be the replacement of the reactor pressure vessel. Neutron induced degradation of the vessel might make replacement by one of a different material composition desirable, for example. Although the replacement of heavy components, such as steam generators, has been possible for many years, the pressure vessel presents a much more demanding task if only because it is highly irradiated. Some preliminary feasibility studies by Siemens are reported for the two removal strategies that might be considered. These are removal of the entire pressure vessel in one piece and dismantling it into sections. (UK)

  10. Radiation Source Replacement Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  11. The situation of nuclear research in Brazil

    International Nuclear Information System (INIS)

    Alves, R.N.

    1989-04-01

    In order to understand the nuclear research situation in Brazil, one must examine the historical facts and their political, economical and social dimensions. In the first part of this work, the international aspects of the nuclear area and the corresponding measures adopted in Brazil are examined. The reasons that caused the country to adopt the current development model are presented. A proposal that will permit Brazil to develop and use nuclear energy in the way it wants and not as it might be imposed is presented. 4 tabs

  12. Proceedings of the seminar on nuclear safety research and the workshop on reactor safety research

    International Nuclear Information System (INIS)

    2001-07-01

    The seminar on the nuclear safety research was held on November 20, 2000 according to the start of new five year safety research plan (FY2001-2005: established by Nuclear Safety Commission) with 79 participants. In the seminar, Commissioner Dr. Kanagawa gave the outline of the next five year safety research plan. Following this presentation, progresses and future scopes of safety researches in the fields of reactor facility, fuel cycle facility, radioactive waste and environmental impact on radiation at Japan Atomic Energy Research Institute (JAERI) were reported. After the seminar, the workshop on reactor safety research was held on November 21-22, 2000 with 141 participants. In the workshop, four sessions titled safety of efficient and economic utilization of nuclear fuel, safety related to long-term utilization of power reactors, research on common safety-related issues and toward further improvement of nuclear safety were organized and, outcomes and future perspectives in these wide research R and D in the related area at other organizations including NUPEC, JAPEIC and Kansai Electric Power Co. was presented in each session. This report compiles outlines of the presentations and used materials in the seminar and the workshop to form the proceedings for the both meetings. (author)

  13. Funding nuclear power research 1956 to 2015. Update

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    In the debates about the use and the benefits of nuclear power plants the allegation is being made that nuclear power to this day had received public subsidies. That was the only reason why electricity from nuclear power plants was economically viable. That statement is wrong. A brief overview is given about the public funds for nuclear energy research and development. In relation to the electricity production less than 0.16 Euro Cents per kilowatt-hour have been spend by public funds for R and D.

  14. Significance and impact of nuclear research in developing countries

    International Nuclear Information System (INIS)

    1987-01-01

    The main purpose of this conference was to gather representatives of universities, research institutes, governmental agencies and industry, as well as IAEA staff, to report on and to assess the significance and impact of nuclear science and technology in developing countries. Thirty-four papers from 17 countries were presented, which are included in the proceedings, as well as reports of three workshops on ''Basic and applied research'', on ''The IAEA's involvement in the implementation of national nuclear programmes'', and on ''Policy and management issues''. The presentation of these reports clearly reflects the fact that all the nuclear activities involved in the programmes of industrialized countries are in progress in developing countries, i.e. most of the aspects of applications in the field of nuclear power, research reactors, food and agriculture, industry and earth sciences, and life sciences. A separate abstract was prepared for each of these papers

  15. Identification of High Confidence Nuclear Forensics Signatures. Results of a Coordinated Research Project and Related Research

    International Nuclear Information System (INIS)

    2017-08-01

    The results of a Coordinated Research Project and related research on the identification of high confidence nuclear forensic isotopic, chemical and physical data characteristics, or signatures, provides information on signatures that can help identify the origin and history of nuclear and other radioactive material encountered out of regulatory control. This research report compiles findings from investigations of materials obtained from throughout the nuclear fuel cycle to include radioactive sources. The report further provides recent results used to identify, analyse in the laboratory, predict and interpret these signatures relative to the requirements of a nuclear forensics examination. The report describes some of the controls on the incorporation and persistence of these signatures in these materials as well as their potential use in a national system of identification to include a national nuclear forensics library.

  16. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    International Nuclear Information System (INIS)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.; Montgomery, V. Trent; James, Ralph B.; Blackburn, Noel D.; Glenn, Chance M.

    2015-01-01

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrative curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and

  17. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    Energy Technology Data Exchange (ETDEWEB)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.; Montgomery, V. Trent [Nuclear Engineering and Radiological Science Center, Alabama A and M University, Huntsville, AL (United States); James, Ralph B.; Blackburn, Noel D. [Nonproliferation and National Security Department, Brookhaven National Laboratory, Upton, NY (United States); Glenn, Chance M. [College of Engineering, Technology and Physical Sciences, Alabama A and M University, Huntsville, AL (United States)

    2015-07-01

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrative curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and

  18. Nuclear Safety Research and Facilities Department. Annual report 1999

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  19. Nuclear Safety Research and Facilities Department annual report 1997

    International Nuclear Information System (INIS)

    Majborn, B.; Aarkrog, A.; Brodersen, K.

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department's research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  20. Nuclear Safety Research and Facilities Department annual report 1998

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  1. Operational and research activities of Tsing Hua open pool reactor

    International Nuclear Information System (INIS)

    Wang, T.-K.; Tseng, D.-L.; Chou, H.-P.; Onyang Minsun

    1988-01-01

    Tsing Hua Open Pool Reaction (THOR) is the first nuclear reactor to become operational in Taiwan. It reached its first critical on April 13, 1961. Until now, THOR has been operated successfully for 27 years. The major missions of THOR include radioisotope production, neutron activation analysis, nuclear science and engineering researches, education, and personnel training. The THOR was originally loaded with HEU MTR-type fuels. A gradual fuel replacing program using LEU TRIGA fuel to replace MTR started in 1977. By 1987, THOR was loaded with all TRIGA fuels. This paper gives a brief history of THOR, its current status, the core conversion work, some selected research topics, and its improvement plan. (author)

  2. A safety decision analysis for Saudi Arabian nuclear research facility

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Abdul-Fattah, A.F.

    1985-01-01

    Establishment of a nuclear research facility should be the first step in planning for introducing the nuclear energy to Saudi Arabia. The fuzzy set decision theory is selected among different decision theories to be applied for this analysis. Four research reactors from USA are selected for the present study. The IFDA computer code, based on the fuzzy set theory is applied. Results reveal that the FNR reactor is the best alternative for the case of Saudi Arabian nuclear research facility, and MITR is the second best. 17 refs

  3. Anticipation of maintenance of EDF nuclear power plants: the studying of the feasibility of big components repair or replacement

    International Nuclear Information System (INIS)

    Dubreuil Chambardel, A.

    2001-01-01

    Maintaining the technical-economic performance of nuclear power stations is in the first place provided by standard preventive maintenance. These are operations of test, monitoring or maintenance performed periodically on the components, providing the guarantee of a level of safety and availability of the NPPs at the lowest possible cost. To this standard maintenance is added exceptional maintenance which covers important operations of maintenance to be performed (generally only once) on a large number of units, the achievement of which may have a strong impact in terms of resources and availability. As an example can be quoted replacement of steam generators. The second level of anticipation of maintenance consists of having a prospective vision of major degradations which could affect components, of identifying exceptional operations of maintenance which should ''probably'' be performed some day, and of making certain that measures are taken in order that, if needed, their implementation affects as little as possible the performance of the EDF nuclear power stations. EDF has developed these two levels of anticipation since the onset of running its NPPs. However it has turned out to be necessary to intensify the preceding actions in particular with regard to the possibilities to repair or replace components, by identifying as completely as possible the equipment which could create problems and by assessing the interest to implement solutions with a view of making the best use of allocated resources. (author)

  4. Anticipation of maintenance of EDF nuclear power plants: the studying of the feasibility of big components repair or replacement

    Energy Technology Data Exchange (ETDEWEB)

    Dubreuil Chambardel, A. [Electricite de France (EDF), Div. Production Nucleaire, 93 - Saint-Denis (France)

    2001-07-01

    Maintaining the technical-economic performance of nuclear power stations is in the first place provided by standard preventive maintenance. These are operations of test, monitoring or maintenance performed periodically on the components, providing the guarantee of a level of safety and availability of the NPPs at the lowest possible cost. To this standard maintenance is added exceptional maintenance which covers important operations of maintenance to be performed (generally only once) on a large number of units, the achievement of which may have a strong impact in terms of resources and availability. As an example can be quoted replacement of steam generators. The second level of anticipation of maintenance consists of having a prospective vision of major degradations which could affect components, of identifying exceptional operations of maintenance which should ''probably'' be performed some day, and of making certain that measures are taken in order that, if needed, their implementation affects as little as possible the performance of the EDF nuclear power stations. EDF has developed these two levels of anticipation since the onset of running its NPPs. However it has turned out to be necessary to intensify the preceding actions in particular with regard to the possibilities to repair or replace components, by identifying as completely as possible the equipment which could create problems and by assessing the interest to implement solutions with a view of making the best use of allocated resources. (author)

  5. Report on the meeting for examining replacing core

    International Nuclear Information System (INIS)

    1977-01-01

    At the time of examining the application for approval of reactor installation, it must be confirmed that the safety of the concerned reactor is secured with not only the initially loaded core but also the replacing core. Besides, it must be confirmed again that the various criteria concerning the safety are satisfied after the start of operation, because a part of the parameters of the replacing core is dependent on the operational history. On the above described viewpoints, the main parameters affecting the safety and the nuclear and thermal limits of replacing core were reviewed. Moreover, the contents of description concerning replacing core in the application form were examined. As the general matters concerning the safety of replacing core, the scram reactivity curves for BWRs and PWRs, the method of description in the application form concerning the fuel containing gadolinia, and the use of burnable poison in replacing core were examined. The meeting for examining replacing core was organized on September 20, 1976, at the Committee for Examining Reactor Safety, and this report was compiled as the results of 10 meetings. (Kako, I.)

  6. Data base on nuclear power plant dose reduction research projects

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Baum, J.W.

    1986-10-01

    Staff at the ALARA Center of Brookhaven National Laboratory have established a data base of information about current research that is likely to result in lower radiation doses to workers. The data base, concerned primarily with nuclear power generation, is part of a project that the ALARA Center is carrying out for the Nuclear Regulatory Commission. This report describes its current status. A substantial amount of research on reducing occupational exposure is being done in the US and abroad. This research is beginning to have an impact on the collective dose expenditures at nuclear power plants. The collective radiation doses in Europe, Japan, and North America all show downward trends. A large part of the research in the US is either sponsored by the nuclear industry through joint industry organizations such as EPRI and ESEERCO or is done by individual corporations. There is also significant participation by smaller companies. The main emphasis of the research on dose reduction is on engineering approaches aimed at reducing radiation fields or keeping people out of high-exposure areas by using robotics. Effective ALARA programs are also underway at a large number of nuclear plants. Additional attention should be given to non-engineering approaches to dose reduction, which are potentially very useful and cost effective but require quantitative study and analysis based on data from nuclear power plants. 9 refs., 1 fig.

  7. The research strategy of the Swedish Nuclear Power Inspectorate

    International Nuclear Information System (INIS)

    2002-06-01

    In its directive to the Swedish Nuclear Power Inspectorate for 2001 and 2002, the Government asked for a report on SKI's future research strategy. This report is meant to describe future needs for SKI's regulatory and supervisory work, the need for expertise in Sweden and the possibility of international co-operation. SKI's research currently focuses on a number of strategically important areas such as reactor technology, materials and fuel issues, human factors, nuclear waste and nuclear safeguards. Over the past decade, the nuclear infrastructure has changed considerably. The nuclear power companies' previous organisations with specialist expertise and resources have been successively closed down or converted into consulting companies. Furthermore, education and research in the nuclear area at universities have been considerably reduced and expertise, resources and interest in the area have thereby decreased. A review of the availability of expertise in Sweden shows that, in many areas, resources are adequate, but that SKI, in certain cases, needs to provide focused support in order to maintain the expertise that SKI needs for its regulatory and supervisory activities. The analysis highlights two areas without any real education and research: 'Materials testing and control' and 'Management, control and organisation'. Education and research in the latter area lacks a safety perspective. SKI intends to take the initiative to conduct work within both of these areas. Since national research resources are limited, SKI has, for a long time, actively participated in international research. SKI is prioritising co-operation on research conducted in the OECD/NEA and is participating in a large number of projects organised within this framework. Since Sweden joined the EU, the importance of joint European work has increased. SKI is itself also actively participating and supporting Swedish organisations participating in European Commission projects and intends to support

  8. Central Institute of Nuclear Research Rossendorf 25 years old

    International Nuclear Information System (INIS)

    Hohmuth, K.; Kaun, K.H.; Schmidt, A.; Hennig, K.; Brinckmann, H.F.; Lehmann, E.; Rossbander, W.; Bitterlich, H.; Weibrecht, R.; Fuelle, R.; Nebel, D.; Reetz, T.; Beyer, G.J.; Muenze, R.

    1981-12-01

    A colloquium dedicated the 25th anniversary of the foundation of the Central Institute for Nuclear Research of the GDR Academy of Sciences was held on January, 21st, '81. 13 papers were given which dealt with aspects of the institute's history as well as with modern trends in nuclear and solid state physics, nuclear energy and chemistry, radioisotope production, radiation protection and nuclear information. (author)

  9. Long-life slab replacement concrete.

    Science.gov (United States)

    2015-03-01

    This research was initiated following reports of high incidence of cracking on FDOT concrete pavement replacement : slab projects. Field slabs were instrumented for data acquisition from high-early-strength concrete pavement : replacement slabs place...

  10. Turbine steam path replacement at the Grafenrheinfeld Nuclear Power Station

    International Nuclear Information System (INIS)

    Weschenfelder, K.D.; Oeynhausen, H.; Bergmann, D.; Hosbein, P.; Termuehlen, H.

    1994-01-01

    In the last few years, replacement of old vintage steam turbine flow path components has been well established as a valid approach to improve thermal performance of aged turbines. In nuclear power plants, performance improvement is generally achieved only by design improvements since performance deterioration of old units is minor or nonexistent. With fossil units operating over decades loss in performance is an additional factor which can be taken into account. Such loss of performance can be caused by deposits, solid particle erosion, loss of shaft and inter-stage seal strips, etc. Improvement of performance is typically guaranteed as output increases for operation at full load. This value can be evaluated as a direct gain in unit capacity without fuel or steam supply increase. Since fuel intake does not change, the relative improvement of the net plant heat rate or efficiency is equal to the relative increase in output. The heat rate improvement is achieved not only at full load but for the entire load range. Such heat rate improvement not only moves a plant up on the load dispatch list increasing its capacity factor, but also extensive fuel savings can pay off for the investment cost of new steam path components. Another important factor is that quite often older turbine designs show a deterioration of their reliability and need costly repairs. With new flow path components an aged steam turbine starts a new useful life

  11. Japanese Strategy for Nuclear Energy Research and Development For the Future

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, Yoshinori [Japan Atomic Energy Research Institute, Tokyo (Japan)

    1988-04-15

    As for the research and development of nuclear energy, the future is, I believe, very broad, deep and promising and there are still unnoticed frontiers whose development will give rise to the evolution of human society. In order to cultivate the frontiers we should have insight to distinguish what is fundamental and essential from what in not. We should also have a fighting spirit to challenge our dream. The Japan Atomic Energy Research Institute really wishes to become the place where many scientists and engineers from abroad meet and work with US with insight and a pioneering spirit. About thirty years ago, the first version of the Japanese 'Long-Term Program for Development and Utilization of Nuclear Energy' was drawn up by the Atomic Energy Commission for the first time. Since then, the Long-Term Program has been revised once every five years. The research, development and utilization of nuclear energy in Japan have been guided by the Long-Term Program, and it has clearly shown the Japanese strategy for Nuclear Energy R and D for the future at each stage of the for Nuclear Energy R and D for the future at each stage of the history. The latest version of the Long-Term Program was published in June 1987. It defines the outline of the philosophy and the scheme for promoting the basic measures related to the research, development and utilization of nuclear energy up to the year 2000 based on the long-range nuclear energy policy towards the 21st century. This Long-Term Program was drawn up by taking into consideration the essential changes of the by taking into consideration the essential changes of the environment surrounding nuclear energy during recent years from the viewpoints of the supply and demand for energy, the rise of public concern for nuclear safety, the role of nuclear research and development for the advancement of science and technology, and the international nuclear energy issues. In this article, the author would like to describe the basic

  12. Japanese Strategy for Nuclear Energy Research and Development For the Future

    International Nuclear Information System (INIS)

    Ihara, Yoshinori

    1988-01-01

    As for the research and development of nuclear energy, the future is, I believe, very broad, deep and promising and there are still unnoticed frontiers whose development will give rise to the evolution of human society. In order to cultivate the frontiers we should have insight to distinguish what is fundamental and essential from what in not. We should also have a fighting spirit to challenge our dream. The Japan Atomic Energy Research Institute really wishes to become the place where many scientists and engineers from abroad meet and work with US with insight and a pioneering spirit. About thirty years ago, the first version of the Japanese 'Long-Term Program for Development and Utilization of Nuclear Energy' was drawn up by the Atomic Energy Commission for the first time. Since then, the Long-Term Program has been revised once every five years. The research, development and utilization of nuclear energy in Japan have been guided by the Long-Term Program, and it has clearly shown the Japanese strategy for Nuclear Energy R and D for the future at each stage of the for Nuclear Energy R and D for the future at each stage of the history. The latest version of the Long-Term Program was published in June 1987. It defines the outline of the philosophy and the scheme for promoting the basic measures related to the research, development and utilization of nuclear energy up to the year 2000 based on the long-range nuclear energy policy towards the 21st century. This Long-Term Program was drawn up by taking into consideration the essential changes of the by taking into consideration the essential changes of the environment surrounding nuclear energy during recent years from the viewpoints of the supply and demand for energy, the rise of public concern for nuclear safety, the role of nuclear research and development for the advancement of science and technology, and the international nuclear energy issues. In this article, the author would like to describe the basic

  13. Progress report of Cekmece Nuclear Research and Training Center for 1980

    International Nuclear Information System (INIS)

    1982-01-01

    Presented are the research works carried out in 1980 in Physics, Chemistry, Nuclear engineering, Radiobiology, Reactor operation and reactor enlargement, Health physics, Radioisotope production, Electronic, Industrial application of radioisotopes, Nuclear fuel technology, Technical services, Construction control, Publication and documentation, Training division of Cekmece Nuclear Research and Training Center

  14. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  15. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  16. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann

    2000-01-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...... facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees....

  17. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  18. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  19. Nuclear Safety Research and Facilities department annual report 1996

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Heydorn, K.; Oelgaard, P.L.

    1997-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1996. The Department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 2 tabs., 28 ills

  20. Outline of research project on nuclear fusion, 1985

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1985-08-01

    When the advance of nuclear fusion research during 10 years hereafter is predicted, the next project should start the research toward nuclear burning, adopt the diversified ways, and develop the research in wide related fields. The central subject such as the containment of plasma is studies with large experimental facilities, but in the related fields, the research subsidies must be utilized positively. The organization to perform the research compries 6 groups, 1) reactor materials and plasma-wall interactions 2) science and engineering of tritium, and influence on living things, 4) development of superconducting magnets, 5) fusion blanket engineering, and 6) design and assessment of thermonuclear reactors. The distribution and management of the scientific research subsidy are explained. All of the subjects of planned and publicly invited research a listed, and the researchers concerned, the amount of subsidy, the objective and the plan of execution in fiscal year 1984 of each research are outlined. (J.P.N.)

  1. Outline of research project on nuclear fusion, 1984

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1984-08-01

    When the advance of nuclear fusion research during 10 years hereafter is predicted, the next project should start the research toward nuclear burning, adopt the diversified ways, a nd develop the research in wide related fields. The central subject such as the containment of plasma is studies with large experimental facilities, but in the related fields, the research subsidies must be utilized positively. The organization to perform the research compries 6 groups, 1) reactor materials and plasma-wall interaction, 2) science and engineering of tritium and influence on living things, 3) fundamentals of core control, 4) development of superconducting magnets, 5) fusion blanket engineering, and 6) design and assessment of thermonuclear reactors. The distribution and management of the scientific research subsidy are explained. All of the subjects of planned and publicly invited research a listed, and the researchers concerned, the amount of subsidy, the objective and the plan of execution in fiscal 1983 of each research are outlined. (J.P.N.)

  2. Research and service capabilities of the National Nuclear Forensic Research Laboratory

    International Nuclear Information System (INIS)

    Romero G, E. T.; Hernandez M, H.; Flores C, J.; Paredes G, L. C.

    2016-09-01

    According to the recommendations of the International Atomic Energy Agency, Mexico is taking steps to combat illicit trafficking in nuclear material. The creation of a National Nuclear Forensic Research Laboratory (Lanafonu, acronym in Spanish) has been assigned to the Instituto Nacional de Investigaciones Nucleares (ININ, Mexico) in 2014. The objectives of this Laboratory are: to combat illicit trafficking in nuclear materials, to optimize scientific processes and techniques used to analyze nuclear materials (orphans or radioactive sources), environmental and potential biological sources as a result of the handling, transport and final storage. At present, the Lanafonu facilities are focused on the optimization of emergency and routine protocols for measuring radioisotopes in environmental and biological samples using inductive coupling mass spectrometer with magnetic sector. The main activities are: i) optimization of the methods for measuring the isotopes of Pu by alpha-spectrometry, Icp-SFMS and AMS (accelerator mass spectrometry), ii) development or radiochemical methods for routine situations and nuclear emergencies, iii) participation in the scientific technical commission on nuclear forensic science, iv) participation in international intercomparison exercises to optimize and validate methods, and v) consolidation of Lanafonu in Mexico and the IAEA. (Author)

  3. Maintaining competence in nuclear safety and waste management research by BMBF

    International Nuclear Information System (INIS)

    Ehrlich, Alexander

    2012-01-01

    Germany is to undertake a structured phasing-out of power generation from nuclear energy. Until the last nuclear power plant is shut down, safety must be guaranteed in line with the very latest developments in science and technology. The R and D work performed is in accord with the resolution for the structured phasing-out of the use of nuclear power. The Federal Ministry of Education and Research (BMBF) with its 'Basic Energy Research 2020+' funding concept supplements institutionally funded work of Helmholtz Institutes in a few core areas to further extend co-operation with universities. Close coordination between institutional and project funding will be ensured via the Alliance for Competence in Nuclear Technology in Germany ('Kompetenzverbund Kerntechnik'). In the area of nuclear safety and disposal research, R and D is carried out on the scientific and technological aspects of safety in existing nuclear reactors, the safety of nuclear disposal, the minimisation of highly radioactive substances ultimately requiring disposal and radiation research. Special attention is to be paid within this concept to the funding of young scientists. In addition to doctorate posts in research projects, special funding instruments are to be offered to promote the next generation of scientists. (orig.)

  4. Risley and its nuclear business

    International Nuclear Information System (INIS)

    Fleetwood, Christopher

    1992-01-01

    The formation of AEA Technology in April 1990 has led to the most fundamental restructuring exercise in the history of the United Kingdom Atomic Energy Authority (UKAEA). In the course of this, the activities at Risley, have undergone considerable rationalization, along with other AEA sites. The site-oriented structure has been replaced by the new AEA Technology business structure which reflects the transition from a Government research and development organization to a commercial enterprise designed to meet the needs of customers in nuclear and non-nuclear markets worldwide. AEA Reactor Services is the main nuclear business now operating at Risley, providing technical services to nuclear utilities, conducting nuclear safety research for regulators and working with designers in developing advanced reactor systems. Some of the older, out-dated facilities have been closed down, but much of the Risley site continues to make a substantial contribution to nuclear plant operation worldwide. Services for utilities now undertaken by Risley include plant inspection and repair; structural integrity assessment and materials performance assessment; plant life extension and inspection validation. In this article the Public Relations Manager at Risley describes in detail some of the current activities. (author)

  5. Losing nuclear expertise - A safety concern

    International Nuclear Information System (INIS)

    Ziakova, M.

    2002-01-01

    Full text: Since the mid of eighties several important changes in human beings behaviour, which influence nuclear field, can be observed - the loss of interest in studying technical disciplines (namely nuclear), strong pressure of environmental movements, stagnation of electricity consumption and deregulation of electric markets. All these factors create conditions which are leading to the decrease of job positions related to the nuclear field connected particularly with research, design and engineering. Loss of interest in studying nuclear disciplines together with the decrease of number of job positions has led to the declining of university enrolments, closing of university departments and research reactors. In this manner just a very small number of appropriately educated new experts are brought In the same moment the additional internal factor - the relative ageing of the human workforce on both sites operators of nuclear facilities and research and engineering organisations can be observed. All these factors, if not addressed properly, could lead to the loss of nuclear expertise and the loss of nuclear expertise represents the direct thread to the nuclear safety. The latest studies have shown that at present NPPs cannot be replaced by other kinds of electric sources and in no case by renewable ones in an efficient manner. Therefore it is necessary to carefully manage knowledge gathered in the nuclear field during the years and to keep on the nuclear safety research, education and training to ensure and upgrade safe and reliable operation of existing and future nuclear facilities. This is responsibility of both the governments of the states using nuclear applications and owners of nuclear facilities. (author)

  6. Achievements obtained in agricultural research by using nuclear techniques in Turkey

    International Nuclear Information System (INIS)

    Halitligil, M. B.

    2002-01-01

    Ankara Nuclear Research Center in Agriculture and Animal Sciences (ANRCAAS) is one of the four unique research centers belonging to Turkish Atomic Energy Authority. ANRCAAS is unique because it is the only center in Turkey which uses nuclear techniques as a tool to solve problems for agriculture or animal sciences which cannot be solved using conventional techniques. Training and Research in the areas of agriculture, animal science, food preservation and sterilization via nuclear techniques are among the objectives of the Center. In this paper, the research activities carried out and the achievements so far obtained in the agricultural specialties of Plant Breeding, Soil Fertility and Plant Nutrition, Plant Protection and Pesticide Residues -all by using nuclear techniques- are provided

  7. Reliability tests for reactor internals replacement technology

    International Nuclear Information System (INIS)

    Fujimaki, K.; Uchiyama, J.; Ohtsubo, T.

    2000-01-01

    Structural damage due to aging degradation of LWR reactor internals has been reported in several nuclear plants. NUPEC has started a project to test the reliability of the technology for replacing reactor internals, which was directed at preventive maintenance before damage and repair after damage for the aging degradation. The project has been funded by the Ministry of International Trade and Industry (MITI) of Japan since 1995, and it follows the policy of a report that the MITI has formally issued in April 1996 summarizing the countermeasures to be considered for aging nuclear plants and equipment. This paper gives an outline of the whole test plans and the test results for the BWR reactor internals replacement methods; core shroud, ICM housing, and CRD Housing and stub tube. The test results have shown that the methods were reliable and the structural integrity was appropriate based on the evaluation. (author)

  8. Nuclear Plant Aging Research (NPAR) program plan: Components, systems, and structures

    International Nuclear Information System (INIS)

    1987-09-01

    The nuclear plant aging research described in this plan is intended to resolve issues related to the aging and service wear of equipment and systems and major components at commercial reactor facilities and their possible impact on plant safety. Emphasis has been placed on identification and characterization of the mechanisms of material and component degradation during service and evaluation of methods of inspection, surveillance, condition monitoring, and maintenance as means of mitigating such effects. Specifically, the goals of the program are as follows: (1) to identify and characterize aging and service wear effects which, if unchecked, could cause degradation of equipment, a systems, and major components and thereby impair plant safety; (2) to identify methods of inspection, surveillance, and monitoring, or of evaluating residual life of equipment, systems, and major components, which will ensure timely detection of significant aging effects prior to loss of safety function; and (3) to evaluate the effectiveness of storage, maintenance, repair, and replacement practices in mitigating the rate and extent of degradation caused by aging and service wear

  9. A Hybrid Integrated Laboratory and Inquiry-Based Research Experience: Replacing Traditional Laboratory Instruction with a Sustainable Student-Led Research Project

    Science.gov (United States)

    Hartings, Matthew R.; Fox, Douglas M.; Miller, Abigail E.; Muratore, Kathryn E.

    2015-01-01

    The Department of Chemistry at American University has replaced its junior- and senior-level laboratory curriculum with two, two-semester long, student-led research projects as part of the department's American Chemical Society-accredited program. In the first semester of each sequence, a faculty instructor leads the students through a set of…

  10. Nuclear Safety Research Review Committee

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1990-01-01

    The Nuclear Safety Research Review Committee has had a fundamental difficulty because of the atmosphere that has existed since it was created. It came into existence at a time of decreasing budgets. For any Committee the easiest thing is to tell the Director what additional to do. That does not really help him a lot in this atmosphere of reduced budgets which he reviewed for you on Monday. Concurrently the research arm of Nuclear Regulatory Commission has recognized that the scope of its activity needed to be increased rather than decreased. In the last two-and-a-half-year period, human factors work was reinstated, radiation and health effects investigations were reinvigorated, research in the waste area was given significant acceleration. Further, accident management came into being, and the NRC finally got back into the TMI-2 area. So with all of those activities being added to the program at the same time that the research budget was going down, the situation has become very strained. What that leads to regarding Committee membership is a need for technically competent generalists who will be able to sit as the Division Directors come in, as the contractors come in, and sort the wheat from the chaff. The Committee needs people who are interested in and have a broad perspective on what regulatory needs are and specifically how safety research activities can contribute to them. The author summarizes the history of the Committee, the current status, and plans for the future

  11. Technical development and its application on steam generator replacement

    International Nuclear Information System (INIS)

    Morita, Sadahiko; Hanzawa, Katsumi; Sato, Hajime; Kannoto, Yasuo.

    1995-01-01

    Twenty-two PWR nuclear power plants are now under commercial operation in Japan. Eight of these plants are scheduled to have their steam generators replaced by up-graded units as a social responsibility for improved reliability, economy and easier maintenance. To carry out steam generator replacement, main coolant pipe cutting and restoration techniques, remote controlled welding machines and other remote controlled equipment, templating techniques with which the new steam generator primary nozzles will fit the existing primary pipes correctly were developed. An adequate training program was carried out to establish these techniques and they were then applied in replacement work on site. The steam generators of the three plants were replaced completely in 1994. These newly developed techniques are to be applied in upcoming plants and replaced plants will be much reliable. (author)

  12. 30th anniversary of Karlsruhe Nuclear Research Centre

    International Nuclear Information System (INIS)

    Koerting, K.

    1986-01-01

    One of the main goals in mind in 1956 when the Karlsruhe Nuclear Research Centre was founded, was to promote the peaceful uses of nuclear energy in the Federal Republic of Germany. The work accomplished since then by the various institutes of the Centre was particularly successful in the following: Development and construction of the first research reactor as an entirely national achievement; installation and operation of the MZFR reactor, as well as the compact sodium-cooled KNK reactor; the Nuclear Safety Project; the development of the separation nozzle method for uranium enrichment; and specific methods and equipment developed for safeguards systems to prevent nuclear materials diversion. Looking into the future, the tasks ahead will concentrate on the technology of energy generation by thermonuclear fusion, and on environmental pollution control and related methods, as well as industrial processes such as materials handling and process control by PDV and CAD. (orig./PW) [de

  13. Advanced research workshop: nuclear materials safety

    International Nuclear Information System (INIS)

    Jardine, L J; Moshkov, M M.

    1999-01-01

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  14. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 2. Appendices

    International Nuclear Information System (INIS)

    1998-07-01

    The appendices contains additional relevant information on: Environment Australia EIS Guidelines, composition of the Study Team, Consultation Activities and Resuits, Relevant Legislation and Regulatory Requirements, Exampies of Multi-Purpose Research Reactors, Impacts of Radioactive Emissions and Wastes Generated at Lucas Heights Science and Technology Centre, Technical Analysis of the Reference Accident, Flora and Fauna Species Lists, Summary of Environmental Commitments and an Outline of the Construction Environmental Management Plan Construction Environmental Management Plan

  15. Progress and development trends of the research on public acceptance for nuclear power

    International Nuclear Information System (INIS)

    Li Jinbin; Fang Chao; Cao Jianzhu

    2014-01-01

    Scientists keep doing the research on public acceptance for nuclear power during tbe period of 30 years from TMI to Fukushima nuclear accidents. In this paper, the research methods on public acceptance for nuclear power are reviewed. The theoretical basis of the research methods (including social investigation and structural equation model), their essence of social psychology as well as the research methods for public nuclear power at different phases are respectively introduced. The current methods are divided into three stages according to the starting time and depth of the research, and their significance for the current research is discussed. Finally, it takes a close look at the trends of the research methods on public acceptance for nuclear power. (authors)

  16. The role of universities in the US nuclear research enterprise

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1991-01-01

    The vitally important role of the universities in nuclear research is embodied in the three functions of education, research, and policymaking. These three functions are discussed from the perspective of nuclear power's unique demands for quality and its pioneering interface with societal and environmental aspirations

  17. Plasma Physics and Controlled Nuclear Fusion Research 1971. Vol. III. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    1971-01-01

    The ultimate goal of controlled nuclear fusion research is to make a new energy source available to mankind, a source that will be virtually unlimited and that gives promise of being environmentally cleaner than the sources currently exploited. This goal has stimulated research in plasma physics over the past two decades, leading to significant advances in the understanding of matter in its most common state as well as to progress in the confinement and heating of plasma. An indication of this progress is that in several countries considerable effort is being devoted to design studies of fusion reactors and to the technological problems that will be encountered in realizing these reactors. This range of research, from plasma physics to fusion reactor engineering, is shown in the present three-volume publication of the Proceedings of the Fourth Conference on Plasma Physics and Controlled Nuclear Fusion Research. The Conference was sponsored by the International Atomic Energy Agency and was held in Madison, Wisconsin, USA from 17 to 23 June 1971. The enthusiastic co-operation of the University of Wisconsin and of the United States Atomic Energy Commission in the organization of the Conference is gratefully acknowledged. The Conference was attended by over 500 scientists from 24 countries and 3 international organizations, and 143 papers were presented. These papers are published here in the original language; English translations of the Russian papers will be published in a Special Supplement to the journal Nuclear Fusion. The series of conferences on Plasma Physics and Controlled Nuclear Fusion Research has become a major international forum for the presentation and discussion of results in this important and challenging field. In addition to sponsoring these conferences, the International Atomic Energy Agency supports controlled nuclear fusion research by publishing the journal Nuclear Fusion, and has recently established an International Fusion Research Council

  18. The Reliable Replacement Warhead Program: Background and Current Developments

    National Research Council Canada - National Science Library

    Medalia, Jonathan

    2008-01-01

    ...), part of a larger Stockpile Stewardship Program (SSP), replaces components. Modifying some components would require a nuclear test, but the United States has observed a test moratorium since 1992...

  19. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    1980-01-01

    The brochure contains the abstracts of the papers presented at the 7th EPS meeting 1980 in Darmstadt. The main subjects were: a) Neutron scattering and Moessbauer effect in materials research, b) ion implantation in micrometallurgy, c) applications of nuclear reactions and radioisotopes in research on solids, d) recent developments in activation analysis and e) pions, positrons, and heavy ions applied in solid state physics. (RW) [de

  20. Researches in nuclear safety

    International Nuclear Information System (INIS)

    Souchet, Y.

    2009-01-01

    This article comprises three parts: 1 - some general considerations aiming at explaining the main motivations of safety researches, and at briefly presenting the important role of some organisations in the international conciliation, and the most common approach used in safety researches (analytical experiments, calculation codes, global experiments); 2 - an overview of some of the main safety problems that are the object of worldwide research programs (natural disasters, industrial disasters, criticality, human and organisational factors, fuel behaviour in accidental situation, serious accidents: core meltdown, corium spreading, failure of the confinement building, radioactive releases). Considering the huge number of research topics, this part cannot be exhaustive and many topics are not approached; 3 - the presentation of two research programs addressing very different problems: the evaluation of accidental releases in the case of a serious accident (behaviour of iodine and B 4 C, air infiltration, fission products release) and the propagation of a fire in a facility (PRISME program). These two programs belong to an international framework involving several partners from countries involved in nuclear energy usage. (J.S.)

  1. The development of the nuclear physics in Latvia II. The building of the Research Nuclear Reactor IRT

    International Nuclear Information System (INIS)

    Ulmanis, U.

    2004-01-01

    Nuclear research reactor IRT of the Academy of Sciences was built near Riga in Salaspils. IRT is pool aqueous - aqueous reactor with nuclear fuel U-235 contained elements, located in the core at a depth of ∼ 7 m under distilled water. Ten horizontal and 10-15 vertical experimental channels are employed in experimental research with the use of neutron fluxes. For the research with gamma rays is constructed radiation loop facility with liquid In-Ga-SN solid solution as intensive gamma-ray sources. Main activities of IRT are to conduct research in nuclear spectroscopy, neutron activation analysis, neutron diffraction and radiation physics, chemistry and biology. (authors)

  2. Research at the Section of Experimental Nuclear Physics of ATOMKI

    International Nuclear Information System (INIS)

    Krasznahorkay, A.; Fenyes, T.; Dombradi, Zs.; Nyako, B.M.; Timar, J.; Algora, A.; Csatlos, M.; Csige, L.; Gacsi, Z.; Gulyas, J.

    2011-01-01

    Introduction. Nuclear physics research was started in Debrecen by Alexander Szalay (1909-1987) back in the 30's. He had been a postdoc of the Nobel-laureate biologist Albert Szent-Gyorgyi in Szeged and of Lord Rutherford in Cambridge. ATOMKI was founded in Debrecen later, in 1954. The Institute was meant to pursue scientific research in certain areas of experimental nuclear physics and to develop research instruments In the early years the country was pretty isolated, but the institute's state of isolation was gradually easing up from the mid-sixties. During the period 1962-1975 the research work was performed in collaboration with Joint Institute for Nuclear Research (Dubna), where up-to-date high-energy accelerators were available for the production of desired isotopes. After finishing the construction of a home-made 5 MV Van de Graaff accelerator (1972) and later on the installation of a K=20 light ion cyclotron (1985) the Institute has become the main centre of accelerator-based nuclear physics in Hungary. In the period 1975-1995 our group performed extensive nuclear structure studies in Debrecen by using γ and conversion electron spectroscopy. At the same time fruitful collaborations were initiated with Jyvaskyla (Finland), with University of Kentucky and University of Zagreb. In 1993 the former Nuclear Reaction Group (NRG) merged with our group. Parallel with this structural change, the main topics of our γ-spectroscopic work has also changed, which resulted that the location of our experiments were shifted from the home institute to foreign large-scale facilities. New topics were brought partly by the emerging NRG, partly by group members returning from postdoctoral fellowships. They also brought important non γ-spectroscopic topics, which enriched our research palette. These new topics have by now become joint endeavours involving more and more group members. The Nuclear Physics European Coordination Committee (NuPECC) has recently stated that the aim of

  3. Breeding nuclear fuels with accelerators: replacement for breeder reactors

    International Nuclear Information System (INIS)

    Grand, P.; Takahashi, H.

    1984-01-01

    One application of high energy particle accelerators has been, and still is, the production of nuclear fuel for the nuclear energy industry; tantalizing because it would create a whole new industry. This approach to producing fissile from fertile material was first considered in the early 1950's in the context of the nuclear weapons program. A considerable development effort was expended before discovery of uranium ore in New Mexico put an end to the project. Later, US commitment to the Liquid Metal Fast Breeder Reactors (LMFBR) killed any further interest in pursuing accelerator breeder technology. Interest in the application of accelerators to breed nuclear fuels, and possibly burn nuclear wastes, revived in the late 1970's, when the LMFBR came under attack during the Carter administration. This period gave the opportunity to revisit the concept in view of the present state of the technology. This evaluation and the extensive calculational modeling of target designs that have been carried out are promising. In fact, a nuclear fuel cycle of Light Water Reactors and Accelerator Breeders is competitive to that of the LMFBR. At this time, however, the relative abundance of uranium reserves vs electricity demand and projected growth rate render this study purely academic. It will be for the next generation of accelerator builders to demonstate the competitiveness of this technology versus that of other nuclear fuel cycles, such as LMFBR's or Fusion Hybrid systems. 22 references, 1 figure, 5 tables

  4. Finnish research programmes on nuclear power plant safety

    International Nuclear Information System (INIS)

    Puska, E. K.

    2010-01-01

    The current Finnish national research programme on nuclear power plant safety SAFIR2010 for the years 2007-2010 as well as the coming SAFIR2014 programme for the years 2011-2014 are based on the chapter 7a, 'Ensuring expertise', of the Finnish Nuclear Energy Act. The objective of this chapter is realised in the research work and education of experts in the projects of these research programmes. SAFIR2010 research programme is divided in eight research areas that are Organisation and human, Automation and control room, Fuel and reactor physics, Thermal hydraulics, Severe accidents, Structural safety of reactor circuit, Construction safety, and Probabilistic Safety Analysis (PSA). All the research areas include both projects in their own area and interdisciplinary co-operational projects. Research projects of the programme are chosen on the basis of annual call for proposals. In 2010 research is carried out in 33 projects in SAFIR2010. VTT is the responsible research organisation in 26 of these projects and VTT is also the coordination unit of SAFIR2010 and SAFIR2014. In 2007-2009 SAFIR2010 produced 497 Specified research results (Deliverables), 618 Publications, and 33 Academic degrees. SAFIR2010 programme covers approximately half of the reactor safety research volume in Finland currently. In 2010 the programme volume is EUR 7.1 million and 47 person years. The major funding partners are VYR with EUR 2.96 million, VTT with EUR 2.66 million, Fortum with EUR 0.28 million, TVO with EUR 0.19 million, NKS with EUR 0.15 million, EU with only EUR 0.03 million and other partners with EUR 0.85 million. The new decisions-in-principle on Olkiluoto unit 4 for Teollisuuden Voima and new nuclear power plant for Fennovoima ratified by the Finnish Parliament on 1 July 2010 increase the annual funding collected according to the Finnish Nuclear Energy Act from Fennovoima, Fortum and Teollisuuden Voima for the SAFIR2014 programme to EUR 5.2 million from the current level of EUR 3

  5. System of institutional radioactive waste management in the Nuclear Research Institute Rez plc

    International Nuclear Information System (INIS)

    Podlaha, J.; Burian, P.

    2005-01-01

    The Nuclear Research Institute Rez plc (NRI) is a leading institution in the area of nuclear Research and Development in the Czech Republic. The NRI has had a dominant position in the nuclear programme since it was established in 1955 as a state-owned research organization and it has developed to its current status. In December 1992 the NRI has been transformed into a joint-stock company. The NRI's activity encompasses nuclear physics, chemistry, nuclear power, experiments at the research reactor and many other topics. Main issues addressed in the NRI in the past decades were concentrated on research, development and services provided to the nuclear power plants operating WWER reactors, development of chemical technologies for fuel cycle and irradiation services to research and development in the industrial sector, agriculture, food processing and medicine. At present the research activities are mainly targeted to assist the State Office for Nuclear Safety -the nuclear safety regulating body, power plant operator and nuclear facilities contractors. Significant attention is also paid to the use of nuclear technology outside the nuclear power sector, providing a wide range of services to industry , medicine and the preparation of radiopharmaceuticals. NRI operates two research nuclear reactors and another facilities such as a hot cell facility , research laboratories, technology for radioactive waste (RAW) management, 60 Co irradiators, an electron accelerator, etc. In this paper the Centre of RAW management, system of RAW management, facilities for RAW management as well as decontamination and decommissioning activities of the NRI are presented. The NRI provides complex services in the area of RAW management and has gained many experience and full qualification not only in this area but also in the area of decontamination and decommissioning and spent fuel management. The NRI guarantees safe RAW and spent fuel management. (authors)

  6. Optimum body size of Holstein replacement heifers.

    Science.gov (United States)

    Hoffman, P C

    1997-03-01

    Criteria that define optimum body size of replacement heifers are required by commercial dairy producers to evaluate replacement heifer management programs. Historically recommended body size criteria have been based on live BW measurements. Numerous research studies have observed a positive relationship between BW at first calving and first lactation milk yield, which has served as the impetus for using live BW to define body size of replacement heifers. Live BW is, however, not the only available measurement to define body size. Skeletal measurements such as wither height, length, and pelvic area have been demonstrated to be related to first lactation performance and (or) dystocia. Live BW measurements also do not define differences in body composition. Differences in body composition of replacement heifers at first calving are also related to key performance variables. An updated research data base is available for the modern Holstein genotype to incorporate measures of skeletal growth and body composition with BW when defining body size. These research projects also lend insight into the relative importance of measurements that define body size of replacement heifers. Incorporation of these measurements from current research into present BW recommendations should aid commercial dairy producers to better define replacement heifer growth and management practices. This article proposes enhancements in defining optimum body size and growth characteristics of Holstein replacement heifers.

  7. Sustainability indicators to nuclear research centers in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A., E-mail: symonfonseca@yahoo.com.br, E-mail: vmfj@cdtn.br, E-mail: aab@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  8. Sustainability indicators to nuclear research centers in Brazil

    International Nuclear Information System (INIS)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A.

    2015-01-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  9. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  10. Psychometric model for safety culture assessment in nuclear research facilities

    International Nuclear Information System (INIS)

    Nascimento, C.S. do; Andrade, D.A.; Mesquita, R.N. de

    2017-01-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  11. Karlsruhe Nuclear Research Center, Institute of Materials Research. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The Institute consists of three parts IMF I, IMF II and IMF III. The tasks are divided into applied material physics (IMF I), material and structural mechanics (IMF II) and material process technology (IMF III). IMF I works preferably on the development of metallic, non-metallic and compound materials and on questions of the structure and properties of boundary surfaces and surface protection coatings. The main work of IMF II is the reliability of components, failure mechanics and the science of damage. IMF III examines process technology questions in the context of the manufacture of ceramic materials and fusion materials and the design of nuclear components. The Institute works on various main points of the Kernforschungszentrum in its research work, particularly in nuclear fusion, micro-system technique, nuclear safety research, superconductivity and in processes with little harmful substances and waste. Material and strength problems for future fusion reactors and fission reactors, in powerful micro systems and safety-related questions of nuclear technology are examined. Also, research not bound to projects in the field of metallic, ceramic and polymer materials for high stresses is carried out. (orig.) [de

  12. University Research Collaborations on Nuclear Technology: A Legal Framework

    International Nuclear Information System (INIS)

    Nagakoshi, Y.

    2016-01-01

    Full text: International nuclear research collaborations are becoming increasingly important as the need for environmentally sound and safe energy technology grows. Despite having its risk, the benefits of using nuclear energy cannot be overlooked considering the energy crisis the world is facing. In order to maximize the safety of existing technology and promoting safe ways of taking advantage of nuclear energy, collaborative efforts of all who are involved in nuclear technology is necessary, regardless of national borders or affiliation. Non-conventional use of nuclear energy shall also be sought after in order to reduce greenhouse gas emission and to overcome the energy crisis the world is facing. It is therefore important that international collaborations among research institutes are promoted. Collaboration amongst universities poses a series of legal questions on how to form the framework, how to protect individual and communal inventions and how to share the fruits of the invention. This paper proposes a possible framework of collaboration and elaborates on possible legal issues and solutions. (author

  13. Scientific and technological activity in the National Institute of Nuclear Research

    International Nuclear Information System (INIS)

    Escobar A, L.; Monroy G, F.; Morales R, P.; Romero H, S.

    2008-01-01

    The present book was published on the occasion of the 50 years of the existence of the Institute, from its creation in 1956 like National Commission of Nuclear Energy to 1979 that arises like National Institute of Nuclear Research. The objective of this publication is the one to leave a writing testimony of all the activities that are realized in the National Institute of Nuclear Research and an accessible language within the diverse subjects boarded. Referring subjects to the activities of nuclear physics, radiochemistry, research and development of materials, dosimetry, plasma physics, production of radiopharmaceuticals, tissue sterilization by radiation, food irradiation and other included. (Author)

  14. A proposal for cooperative activities between Japan and Indonesia in the field of nuclear research and nuclear education

    International Nuclear Information System (INIS)

    Subki, Iyos

    2008-01-01

    Development and realization of cooperative activities between Japan and Indonesia in nuclear research and education is indeed very important for scientists and engineers of both countries. This bilateral cooperation can easily be expanded into a regional cooperation benefiting the scholars from Asian region which is expecting a New Nuclear Age in the 21st Century. To develop and realize this cooperative activities, in the first step, we invite the ideas of our partners in the Nuclear Institution and in Universities. They are eager to have and undertake this cooperation effort. For nuclear research activities, they have proposed several topics which include: advanced radioactive waste technology and management in a nuclear power plant, innovative fuel development for LWR's, gas cooled reactor for electricity and hydrogen production and a topic on design and construction of high energy accelerator. Institute of Technology - Bandung (ITB), University of Gajah Mada (UGM) and School of Nuclear Technology (STTN/BATAN) are interested in cooperative works which include: joint development of standard curriculum for M.Sc. level in response to increased activities in nuclear research and nuclear power development, exchange of guest lecturers, and exchange of M.Sc. level students. With this cooperation, we want to put very special emphasis on nuclear human resources development (nuclear - HRD) in anticipation of the upcoming nuclear era. (author)

  15. Status of Simulations for the Cyclotron Laboratory at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Asova, G.; Goutev, N.; Tonev, D.; Artinyan, A.

    2018-05-01

    The Institute for Nuclear Research and Nuclear Energy is preparing to operate a high-power cyclotron for production of radioisotopes for nuclear medicine, research in radiochemistry, radiobiology, nuclear physics, solid state physics. The cyclotron is a TR24 produced by ASCI, Canada, capable to deliver proton beams in the energy range of 15 to 24 MeV with current as high as 400 µA. Multiple extraction lines can be fed. The primary goal of the project is the production of PET and SPECT isotopes as 18F, 67,68Ga, 99mTc, etc. This contribution reports the status of the project. Design considerations for the cyclotron vault will be discussed for some of the target radioisotopes.

  16. Nuclear Research and Society

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2000-07-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised.

  17. Nuclear Research and Society

    International Nuclear Information System (INIS)

    Eggermont, G.

    2000-01-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised

  18. DOE, IAEA collaborate to put decades of nuclear research online

    International Nuclear Information System (INIS)

    2009-01-01

    Full text: Decades of nuclear research supported by the United States Department of Energy (DOE) and its predecessor agencies are being made searchable on the World Wide Web, as part of a collaborative effort between the DOE and the International Atomic Energy Agency (IAEA). The project aims to give researchers, academics, and the general public access to vast volumes of valuable nuclear-related research over the internet. As part of its knowledge preservation mandate, the IAEA' s International Nuclear Information System(INIS) works to preserve nuclear knowledge by digitizing historic nuclear energy research documents dating from 1970 through the early 1990s. Collections from over 29 countries are now digitally available and several additional digital preservation projects are ongoing or are being established, particularly in the Latin America and Caribbean regions. ''Thanks to the collaborative work of the IAEA and its Member States, scientists and students in the nuclear field now have instant access to important research and technical information over the internet,'' said IAEA Deputy Director General for Nuclear Energy Yury Sokolov. ''Our INIS programme continues to work to preserve and provide access to publications and documents on the peaceful applications of nuclear technology.'' The DOE project is one of the larger programmes in the INIS project, and includes more than 180,000 documents from the DOE Office of Scientific and Technical Information (OSTI). OSTI is the U.S. representative to INIS and has had its own digitization focus in recent years. The novel partnership highlights the longstanding mutual benefits of DOE participation in INIS. In essence, it opens up previous research on the safe and peaceful uses of nuclear energy by making it freely and quickly available to scientists and engineers. By making scientific data electronically available, the INIS database helps scientists and students to attain volumes of data that are otherwise inaccessible

  19. Institute of Nuclear Physics, mission and scientific research activities

    International Nuclear Information System (INIS)

    Zoto, J.; Zaganjori, S.

    2004-01-01

    The Institute of Nuclear Physics (INP) was established in 1971 as a scientific research institution with main goal basic scientific knowledge transmission and transfer the new methods and technologies of nuclear physics to the different economy fields. The organizational structure and main research areas of the Institute are described. The effects of the long transition period of the Albanian society and economy on the Institution activity are also presented

  20. Summary of a survey on the public perception of nuclear energy. Study on the social support among citizens

    International Nuclear Information System (INIS)

    Wolters, M.; Haufe, M.; Wendte, R.; De Jonge, J.; Merkx, P.

    2009-11-01

    The aim of the title study is to obtain a representative and independent image of the conceptions and opinions among the Dutch population with regard to nuclear energy in 2009 in general and with regard to four nuclear energy scenarios from the Energy report in particular: (1a) No new nuclear power plants; (1b) no new nuclear power plants unless inherently safe; (2) Replace the Borssele plant in 2033; (3) new nuclear power plants after 2020 (in addition to replacing Borssele). The study consisted of a qualitative and a quantitative component. Moreover, part of the PQR (Partners in Quality Research) study of 2006 was replicated and supporting literature study was conducted on the state of affairs with regard to the public perception of nuclear energy and plants in other countries. [nl

  1. NUCLEAR 2010 international conference on sustainable development through nuclear research and education.Part 2/2

    International Nuclear Information System (INIS)

    Turcu, Ilie

    2010-01-01

    The Proceedings of the 'NUCLEAR 2010 international conference on sustainable development through nuclear research and education' held at INR-Pitesti on May, 26 - 28 2010 contain communications published in two parts. The second part contains 34 talks adressing themes of nuclear energy, in the following three sections: Section 2.1 - Radioactive waste management (13 papers); Section 2.2 and 3 - Radioprotection and air, water and soil protection (12 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation, and knowledge transfer (1 paper); Section 3. - International Partnership for a sustainable development (2 papers); Section 3.4 - Research infrastructure (3 papers)

  2. Proceedings of the National Seminar on Research and Nuclear Devices Management

    International Nuclear Information System (INIS)

    Prayitno; Slamet Santosa; Darsono; Syarip; Agus Taftazani; Samin; Tri Mardji Atmono; Dwi Biyantoro; Herry Poernomo; Prajitno; Tjipto Sujitno; Gede Sutresna W; Djoko Slamet Pujorahardjo; Budi Setiawan; Bambang Siswanto; Endro Kismolo; Jumari

    2016-08-01

    The Proceedings of the National Seminar on Research and Nuclear Devices Management by Center for Accelerator Science and Technology in Yogyakarta with the theme of Universities and research and development institutions synergy in the development of basic science and nuclear technology held on Surakarta 9 August 2016. This seminar is an annual routine activities of Center for Accelerator Science and Technology for exchange research result among University and BATAN researcher for using nuclear technology. The proceeding consist of 3 article from keynotes’ speaker and 23 articles from BATAN participant as well as outside which have been indexed separately. (MPN)

  3. Yearly program of safety research in nuclear power facilities from fiscal 1981 to 1985

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Nuclear safety research plans for nuclear power facilities and others from fiscal 1981 to 1985 are presented for the following areas: the safety of LWR fuel, loss-of-coolant accidents, the structural safety of LWR installations, the reduction of radioactive material release from nuclear power facilities, the stochastic safety evaluation of nuclear power facilities, the aseismicity of nuclear power facilities, the safety of nuclear fuel facilities, and the safety of nuclear fuel transport vessels. In the respective areas, the needs for research and the outline of research works are summarized. Then, about the major research works in each area, the purpose, contents, term and responsible institution of the research are given. (Mori, K.)

  4. Optimization on replacement and inspection period of plant equipment

    International Nuclear Information System (INIS)

    Takase, Kentaro; Kasai, Masao

    2004-01-01

    Rationalization of the plant maintenance is one of the main topics being investigated in Japanese nuclear power industries. Optimization of the inspection and replacement period of equipments is effective for the maintenance cost reduction. The more realistic model of the replacement policy is proposed in this study. It is based on the classical replacement policy model and its cost is estimated. Then, to consider the inspection for the maintenance, the formulation that includes the risk concept is discussed. Based on it, two variations of the combination of the inspection and the replacement are discussed and the costs are estimated. In this study the effect of the degradation of the equipment is important. The optimized maintenance policy depends on the existence of significant degradation. (author)

  5. ANSTO's future plans for nuclear science and technology

    International Nuclear Information System (INIS)

    Blackburne, I.

    2003-01-01

    There are four key themes in ANSTO's future plans for nuclear science and technology: 1) ANSTO plans for the future - within its established 'core business areas', following a rigorous process, and incorporating extensive interaction with organisations around Australia and overseas. 2) The replacement research reactor (RRR) - a Major National Research Facility and the cornerstone of ANSTO's future activities. 3) A number of business development initiatives that have been launched by ANSTO over the past year, under the banner of Good science is good business at ANSTO. 4) ANSTO involvement in the national research priorities that the Prime Minister announced last December, in particular, by pursuing new research in the security and forensics area; its contribution to the 'Safeguarding Australia' national research priority. The Replacement Research Reactor now under construction will make an enormous difference to the work that ANSTO can undertake, and that others can perform using ANSTO's facilities

  6. Nuclear materials teaching and research at the University of California, Berkeley

    International Nuclear Information System (INIS)

    Olander, D.R.; Roberts, J.T.A.

    1985-01-01

    In academic nuclear engineering departments, research and teaching in the specialized subdiscipline of nuclear materials is usually a one-person or at best a two-person operation. These subcritical sizes invariably result in inadequate overall representation of the many topics in nuclear materials in the research program of the department, although broader coverage of the field is possible in course offerings. Even in course-work, the full range of materials problems important in nuclear technology cannot be dealt with in detail because the small number of faculty involved restricts staffing to as little as a single summary course and generally no more than three courses in this specialty. The contents of the two nuclear materials courses taught at the University of California at Berkeley are listed. Materials research in most US nuclear engineering departments focuses on irradiation effects on metals, but at UC Berkeley, the principal interest is in the high-temperature materials chemistry of UO 2 fuel and Zircaloy cladding

  7. Research-based approaches to nuclear education

    Energy Technology Data Exchange (ETDEWEB)

    Donev, J.M.K.C., E-mail: jason.donev@ucalgary.ca [Univ. of Calgary, Calgary, AB (Canada); Carpenter, Y., E-mail: ycarpenter@gmail.com [Univ.ty of Colorado at Boulder, Boulder, CO (United States)

    2014-07-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  8. Research-based approaches to nuclear education

    International Nuclear Information System (INIS)

    Donev, J.M.K.C.; Carpenter, Y.

    2014-01-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  9. The House of Commons of Canada, Bill C-23 : An act to establish the Canadian Nuclear Safety Commission and to make consequential amendments to other acts

    International Nuclear Information System (INIS)

    1996-01-01

    This enactment replaces the Atomic Energy Control Act with a modern statute to provide for more explicit and effective regulation of nuclear energy. While the existing Act encompasses both the regulatory and developmental aspects of nuclear activities, this enactment disconnects the two functions and provides a distinct identity to the regulatory agency. It replaces the Atomic Energy Control Board with the Canadian Nuclear Safety Commission, underlining its separate role from that of Atomic Energy of Canada Ltd., the federal research, development and marketing organization for nuclear energy

  10. Repair and replacement of reactor internals for plant life extension

    International Nuclear Information System (INIS)

    Graae, T.

    1998-01-01

    Recent experience from early Swedish BWRs corroborate that all components in a nuclear power plant can be repaired or replaced with new ones. Oskarshamn 1 has gone through a thorough refurbishment project. A number of internals were repaired or replaced including the core shroud support which was welded to the bottom of the reactor pressure vessel. The project verifies that it is fully possible to carry out complicated inspection and repair work inside a nuclear pressure vessel which has been in operation for more than 20 years. Along with increased capacity factor, operating nuclear power plants get the financial conditions needed for extensive repair and modernization projects. Large power output leads to short pay-back times for the investments. The FENIX project at Oskarshamn 1 is such a project. There are utilities whose policy is to keep their plants in as-new condition for an unlimited length of time. (orig.)

  11. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    International Nuclear Information System (INIS)

    Bonin, H.W.; Hilborn, J.W.; Carlin, G.E.; Gagnon, R.; Busatta, P.

    2014-01-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as 99 Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as 99 Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO 2 SO 4 ) with 994.2 g of 235 U (enrichment at 20%) providing an excess reactivity at operating temperature (40 o C) of 3.8 mk for a molality determined as 1.46 mol kg -1 for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 o C. Peak temperature and power were determined as 83 o C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the temperature and void coefficients are

  12. Homogeneous SLOWPOKE reactors for replacing SLOWPOKE-2 research reactors and the production of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W., E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Kingston, Ontario (Canada); Hilborn, J.W. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carlin, G.E. [Ontario Power Generation, Toronto, Ontario (Canada); Gagnon, R.; Busatta, P. [Canadian Forces (Canada)

    2014-07-01

    Inspired from the inherently safe SLOWPOKE-2 research reactor, the Homogeneous SLOWPOKE reactor was conceived with a double goal: replacing the heterogeneous SLOWPOKE-2 reactors when they reach end-of-core life to continue their missions of neutron activation analysis and neutron radiography at universities, and to produce radioisotopes such as {sup 99}Mo for medical applications. A homogeneous reactor core allows a much simpler extraction of radioisotopes (such as {sup 99}Mo) for applications in industry and nuclear medicine. The 20 kW Homogeneous SLOWPOKE reactor was modelled using both the deterministic WIMS-AECL and the probabilistic MCNP 5 reactor simulation codes. The homogeneous fuel mixture was a dilute aqueous solution of Uranyl Sulfate (UO{sub 2}SO{sub 4}) with 994.2 g of {sup 235}U (enrichment at 20%) providing an excess reactivity at operating temperature (40 {sup o}C) of 3.8 mk for a molality determined as 1.46 mol kg{sup -1} for a Zircaloy-2 reactor vessel. Because this reactor is intended to replace the core of SLOWPOKE-2 reactors, the Homogeneous SLOWPOKE reactor core had a height about twice its diameter. The reactor could be controlled by mechanical absorber rods in the beryllium reflector, chemical control in the core, or a combination of both. The safety of the Homogeneous SLOWPOKE reactor was analysed for both normal operation and transient conditions. Thermal-hydraulics calculations used COMSOL Multiphysics and the results showed that natural convection was sufficient to ensure adequate reactor cooling in all situations. The most severe transient simulated resulted from a 5.87 mk step positive reactivity insertion to the reactor in operation at critical and at steady state at 20 {sup o}C. Peak temperature and power were determined as 83 {sup o}C and 546 kW, respectively, reached 5.1 s after the reactivity insertion. However, the power fell rapidly to values below 20 kW some 35 s after the peak and remained below that value thereafter. Both the

  13. The current status of nuclear research reactor in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sittichai, C; Kanyukt, R; Pongpat, P [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1998-10-01

    Since 1962, the Thai Research Reactor has been serving for various kinds of activities i.e. the production of radioisotopes for medical uses and research and development on nuclear science and technology, for more than three decades. The existing reactor site should be abandoned and relocated to the new suitable site, according to Thai cabinet`s resolution on the 27 December 1989. The decommissioning project for the present reactor as well as the establishment of new nuclear research center were planned. This paper discussed the OAEP concept for the decommissioning programme and the general description of the new research reactor and some related information were also reported. (author)

  14. Conceptual Nuclear Design of a 20 MW Multipurpose Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, Hak Sung; Park, Cheol [KAERI, Daejeon (Korea, Republic of); Nghiem, Huynh Ton; Vinh, Le Vinh; Dang, Vo Doan Hai [Dalat Nuclear Research Reactor, Hanoi (Viet Nam)

    2007-08-15

    A conceptual nuclear design of a 20 MW multi-purpose research reactor for Vietnam has been jointly done by the KAERI and the DNRI (VAEC). The AHR reference core in this report is a right water cooled and a heavy water reflected open-tank-in-pool type multipurpose research reactor with 20 MW. The rod type fuel of a dispersed U{sub 3}Si{sub 2}-Al with a density of 4.0 gU/cc is used as a fuel. The core consists of fourteen 36-element assemblies, four 18-element assemblies and has three in-core irradiation sites. The reflector tank filled with heavy water surrounds the core and provides rooms for various irradiation holes. Major analyses have been done for the relevant nuclear design parameters such as the neutron flux and power distributions, reactivity coefficients, control rod worths, etc. For the analysis, the MCNP, MVP, and HELIOS codes were used by KAERI and DNRI (VAEC). The results by MCNP (KAERI) and MVP (DNRI) showed good agreements and can be summarized as followings. For a clean, unperturbed core condition such that the fuels are all fresh and there are no irradiation holes in the reflector region, the fast neutron flux (E{sub n}{>=}1.0 MeV) reaches 1.47x10{sup 14} n/cm{sup 2}s and the maximum thermal neutron flux (E{sub n}{<=}0.625 eV) reaches 4.43x10{sup 14} n/cm{sup 2}s in the core region. In the reflector region, the thermal neutron peak occurs about 28 cm far from the core center and the maximum thermal neutron flux is estimated to be 4.09x10{sup 14} n/cm{sup 2}s. For the analysis of the equilibrium cycle core, the irradiation facilities in the reflector region were considered. The cycle length was estimated as 38 days long with a refueling scheme of replacing three 36-element fuel assemblies or replacing two 36-element and one 18-element fuel assemblies. The excess reactivity at a BOC was 103.4 mk, and 24.6 mk at a minimum was reserved at an EOC. The assembly average discharge burnup was 54.6% of initial U-235 loading. For the proposed fuel management

  15. NRC [Nuclear Regulatory Commission] safety research in support of regulation, 1987

    International Nuclear Information System (INIS)

    1988-05-01

    This report, the third in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during 1987. The goal of this office is to ensure that research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  16. Nuclear waste repository research at the micro- to nanoscale

    Science.gov (United States)

    Schäfer, T.; Denecke, M. A.

    2010-04-01

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  17. Nuclear research with the electromagnetic probe. Final progress report

    Energy Technology Data Exchange (ETDEWEB)

    Meziani, Z.E.

    1994-10-01

    This is the final report on the research carried at Stanford University under contract DE-FG03-88ER40439. All the work accomplished under this grant is reported in the publications listed as part of the Principal Investigator bibliography at the end of this report. In the last few years our research was directed at some of the forefront questions in nuclear physics. We investigated the nuclear medium effects on the intrinsic properties of bound nucleons, specifically the ectromagnetic form factors. For these studies we performed a number of specialized electron scattering experiments with specific sensitivity to nuclear medium effects. At the next level of structure, elementary constituents of matter are quarks and gluons. Defining the energy regime where the quark-gluon description of nuclear systems becomes more relevant than the nucleon-meson description is of great importance in thoroughly understanding the nuclear structure. To explore this transition region, we studied the scaling region in the disintegration of the deuteron, the simplest nuclear system with high energy photons. Finally we focused on the investigation of the nucleon internal spin structure along with the test of the Bjoerken sum rule a fundamental sum rule of QCD.

  18. Nuclear research with the electromagnetic probe. Final progress report

    International Nuclear Information System (INIS)

    Meziani, Z.E.

    1994-10-01

    This is the final report on the research carried at Stanford University under contract DE-FG03-88ER40439. All the work accomplished under this grant is reported in the publications listed as part of the Principal Investigator bibliography at the end of this report. In the last few years our research was directed at some of the forefront questions in nuclear physics. We investigated the nuclear medium effects on the intrinsic properties of bound nucleons, specifically the ectromagnetic form factors. For these studies we performed a number of specialized electron scattering experiments with specific sensitivity to nuclear medium effects. At the next level of structure, elementary constituents of matter are quarks and gluons. Defining the energy regime where the quark-gluon description of nuclear systems becomes more relevant than the nucleon-meson description is of great importance in thoroughly understanding the nuclear structure. To explore this transition region, we studied the scaling region in the disintegration of the deuteron, the simplest nuclear system with high energy photons. Finally we focused on the investigation of the nucleon internal spin structure along with the test of the Bjoerken sum rule a fundamental sum rule of QCD

  19. 30 years of Central Institute for Nuclear Research at Rossendorf

    International Nuclear Information System (INIS)

    Scheler, W.; Flach, G.; Hennig, K.; Collatz, S.; Muenze, R.; Baldeweg, F.

    1986-10-01

    A celebration and a scientific colloquium dedicated the 30th anniversary of the foundation of the Central Institute for Nuclear Research (CINR) of the GDR Academy of Sciences were held on January, 23rd and 24th, '86 at Rossendorf. The speaches and lectures given by the president of the GDR Academy of Sciences and by scientists of the CINR dealt with problems of policy of science, history of the CINR, nuclear methods, microelectronics, nuclear energy research, development and production of radioisotopes and scientific instruments. (author)

  20. Russian Minatom nuclear safety research strategic plan. An international review

    International Nuclear Information System (INIS)

    Royen, J.

    1999-01-01

    An NEA study on safety research needs of Russian-designed reactors, carried out in 1996, strongly recommended that a strategic plan for safety research be developed with respect to Russian nuclear power plants. Such a plan was developed at the Russian International Nuclear Safety Centre (RINSC) of the Russian Ministry of Atomic Energy (Minatom). The Strategic Plan is designed to address high-priority safety-research needs, through a combination of domestic research, the application of appropriate foreign knowledge, and collaboration. It represents major progress toward developing a comprehensive and coherent safety-research programme for Russian nuclear power plants (NPPs). The NEA undertook its review of the Strategic Plan with the objective of providing independent verification on the scope, priority, and content of the research described in the Plan based upon the experience of the international group of experts. The principal conclusions of the review and the general comments of the NEA group are presented. (K.A.)

  1. Prospect and current situation survey of nuclear agricultural research in china

    International Nuclear Information System (INIS)

    Chai Lihong; Ye Qingfu; Hua Yuejin

    2008-01-01

    Based on the survey result, which investigated 22 related institutes and universities in the field of nuclear agricultural sciences in China in Sep. 2007, this paper introduces the current status of research conditions, existing facilities and research progress on isotope tracing technology, new biological resources creation, research of nuclear irradiation and irradiation processing technology form 1996 to 2006. Due to not enough financial supports on this field, the development of nuclear agricultural sciences was slow down. However, the solid basis set up during last several decades, and the great efforts made by all the researchers, significant social and economic achievements were gained. Some of the researches have already taken the leading position in the world. (authors)

  2. Research activities at nuclear research institute in water chemistry and corrosion

    International Nuclear Information System (INIS)

    Kysela, Jan

    2000-01-01

    Research activities at Nuclear Research Institute Rez (NRI) are presented. They are based on former heavy water reactor program and now on pressurized reactors VVER types which are operated on Czech republic. There is LVR-15 research reactor operated in NRI. The reactor and its experimental facilities is utilized for water chemistry and corrosion studies. NRI services for power plants involve water chemistry optimalization, radioactivity build-up, fuel corrosion and structural materials corrosion tests. (author)

  3. Research in theoretical nuclear physics. Progress report and research proposal, 1980-1981

    International Nuclear Information System (INIS)

    Bayman, B.F.; Ellis, P.J.; Tang, Y.C.

    1980-01-01

    Research performed during 1980 (and proposed for 1981) is summarized briefly in this administrative report. The main theme of the research is the mechanisms of light- and heavy-ion nuclear reactions and the relation between microscopic theories and phenomenological models. A publication list and budget are included

  4. Nuclear research centres in the 21st century: An AECL perspective

    International Nuclear Information System (INIS)

    Fehrenbach, P.J.

    2001-01-01

    The nuclear energy programme of Canada started at Chalk River Laboratories with the setting up of Zero Energy Experimental Site in 1945. One of the early research reactors of Canada, the National Research Universal (NRU) continues to provide 70% of the world requirement of isotopes for medical and industrial applications. A CANDU prototype (208 MW(e)) came on line in 1967 and based on this concept, Canada has a large nuclear power programme. The role of nuclear research centres has evolved with time starting with strategic research in the initial phases through to implementation of technology, building and supporting industry, and carrying out advanced technology development. Most of these centres have important assets in terms of licensed sites, trained personnel, research reactors, shielded facilities and expertise for handling large quantities of radioactivity and high tech laboratories for advanced R and D. These centres would, therefore, continue to play an important role in emission free and economic energy generation, nuclear medicine, food irradiation and industrial applications. Nuclear research centres in different countries are at various stages of development and have many unique features. However, there are generic issues and much will be gained by developing a shared vision for the future and implementing programmes in a collaborative manner. (author)

  5. Position paper on main areas of nuclear chemistry research and application

    International Nuclear Information System (INIS)

    2001-01-01

    Nuclear chemistry, with its specialized areas of nuclear chemistry, radiochemistry, and radiation chemistry, mainly covers these fields: basic research in nuclear chemistry; actinide chemistry; radioanalysis; nuclear chemistry in the life sciences, geosciences, and cosmic chemistry; radiotracers in technology; nuclear power technology; nuclear waste management; tritium chemistry in fusion technology, and radiation protection and radioecology. In the more than one hundred years of history of this branch of science and technology, which was opened up by the discovery of radioactivity and of the radioelements, pioneering discoveries and developments have been made in many sectors. Far beyond the confines of this area of work, they have achieved overriding importance in applications in many fields of technology and industry and in the life sciences. Research and application in nuclear chemistry continue to be highly relevant to society, ecology, and the economy, and the potential of science and technology in this field in Germany is acknowledged internationally. In the light of this vast area of activity, and against the need to maintain competence in nuclear chemistry for the use of nuclear power, irrespective of the status of this continued use in Germany, nuclear chemistry is indispensable to the solution of future problems. The Nuclear Chemistry Group of the Gesellschaft Deutscher Chemiker therefore uses this position paper to draw attention to the urgent need to keep up and further advance nuclear chemistry applications in a variety of areas of science and technology, also as a public duty of thorough education and research. (orig.) [de

  6. Nuclear valves latest development

    International Nuclear Information System (INIS)

    Isaac, F.; Monier, M.

    1993-01-01

    In the frame of Nuclear Power Plant upgrade (Emergency Power Supply and Emergency Core Cooling), Westinghouse had to face a new valve design philosophy specially for motor operated valves. The valves have to been designed to resist any operating conditions, postulated accident or loss of control. The requirements for motor operated valves are listed and the selected model and related upgrading explained. As part of plant upgrade and valves replacement, Westinghouse has sponsored alternative hardfacing research programme. Two types of materials have been investigated: nickel base alloys and iron base alloys. Programme requirements and test results are given. A new globe valve model (On-Off or regulating) is described developed by Alsthom Velan permitting the seat replacement in less than 10 min. (Z.S.) 2 figs

  7. Theory model and experiment research about the cognition reliability of nuclear power plant operators

    International Nuclear Information System (INIS)

    Fang Xiang; Zhao Bingquan

    2000-01-01

    In order to improve the reliability of NPP operation, the simulation research on the reliability of nuclear power plant operators is needed. Making use of simulator of nuclear power plant as research platform, and taking the present international reliability research model-human cognition reliability for reference, the part of the model is modified according to the actual status of Chinese nuclear power plant operators and the research model of Chinese nuclear power plant operators obtained based on two-parameter Weibull distribution. Experiments about the reliability of nuclear power plant operators are carried out using the two-parameter Weibull distribution research model. Compared with those in the world, the same results are achieved. The research would be beneficial to the operation safety of nuclear power plant

  8. Nuclear weapons research in Sweden. The co-operation between civilian and military research, 1947 - 1972

    International Nuclear Information System (INIS)

    Jonter, Thomas

    2002-05-01

    The Swedish nuclear weapons research began as early as 1945, shortly after the first atomic bombs fell over Japan. The assignment to look into the new weapon of mass destruction went to the Swedish National Defence Research Establishment (FOA). Admittedly, the main aim of the research initiated at that time was to find out how Sweden could best protect itself against a nuclear weapon attack. However, from the outset FOA was interested in investigating the possibilities of manufacturing what was then called an atomic bomb. A co-operation between FOA and AB Atomenergi (AE), which was created in 1947 in order to be responsible for the industrial development of civilian nuclear energy, was initiated. AE made several technical investigations within this co-operation regarding choice of reactors and preconditions for a production of weapons-grade plutonium. The first purpose of this report is therefore to investigate how this co-operation emerged and what consequences it had for the project to produce basic information for the Swedish manufacture of nuclear weapons. In general terms, the finding of this report is that FOA was responsible for the overall nuclear weapons research. For this reason, FOA was in charge of the construction of the nuclear device and the studies of its effects. Additionally, AE should deliver basic information of a possible production of weapons-grade plutonium and investigate the possibilities of a production or a procurement of inspection-free heavy water (i.e. without inspections by the supplying country). AE should also build a reprocessing plant and manufacture fuel elements to be used in the reactors for a production of weapons-grade plutonium. Furthermore, it is important to emphasise that both FOA and AE conducted plutonium research. The reason why FOA conducted this research was that the plutonium had to be in metallic form in order to be used in a nuclear weapons device. Therefore, FOA carried out research with the purpose of producing

  9. Nuclear research and nuclear technology in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The atomwirtschaft-atomtechnik has reflected the development of this quarter century. In this jubilee edition it describes the future lines of development. It has invited the Federal German companies and institutions of the branch to present their performance potential in the form of monography - more detailed than usually. This invitation was accepted by 81 of the most important enterprises. The figure also includes a number of important service companies, the research centres of the country, and last not least, a number of energy supply enterprises. Part 2 of this jubilee edition as a whole offers a crossection of the present performances offered in the German nuclear research, nuclear techniques, and the planning and service belonging to nuclear power operation. For the English-speaking readers, a digest part was set up in part 3 of the present edition. In part 4, the reader will find a product index in German and English. Each key-word indicates an offering firm by the page number allocated. Access to the monographies (part 2) and the digest (part 3) can be found in the listing of the monography-advertisers from page 102 on. The atw-jubilee edition closes with part 5, with product advertisements of companies from home and abroad. (orig./UA) [de

  10. Knowledge Management for Nuclear Research and Development Organizations (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication elaborates on the role of nuclear knowledge management in a research and development (R&D) context, and on the importance of facilitating innovation and future development of nuclear technologies for nuclear power, its associated fuel cycles, and nuclear applications in medicine, industry and agriculture. It highlights aspects such as transferring and preserving knowledge, exchanging information, establishing and supporting cooperative networks, and training the next generation of nuclear experts. It concludes with basic concepts, trends and key drivers for nuclear knowledge management for R&D project managers and other workers from nuclear R&D organizations.

  11. Software-based annunciator replacement: a tale of two projects

    International Nuclear Information System (INIS)

    Simmons, G.T.

    2015-01-01

    Annunciator upgrade projects are often included as parts of operating plant life extension projects as the systems are old and replacement parts are difficult to source. This paper contains case studies of the software-based annunciator replacement projects at the Westinghouse SNUPPS training simulator in Pennsylvania and the Axpo Beznau nuclear power plant in Switzerland. Software-based annunciator systems can offer a number of feature enhancements including improved readability and operator awareness, easy configuration, alarm suppression features, and alarm management at operator workstations. This paper provides an overview of each project and discusses advantages, challenges, and lessons learned from both annunciator-replacement projects. (author)

  12. Software-based annunciator replacement: a tale of two projects

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, G.T., E-mail: simmongt@westinghouse.com [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2015-07-01

    Annunciator upgrade projects are often included as parts of operating plant life extension projects as the systems are old and replacement parts are difficult to source. This paper contains case studies of the software-based annunciator replacement projects at the Westinghouse SNUPPS training simulator in Pennsylvania and the Axpo Beznau nuclear power plant in Switzerland. Software-based annunciator systems can offer a number of feature enhancements including improved readability and operator awareness, easy configuration, alarm suppression features, and alarm management at operator workstations. This paper provides an overview of each project and discusses advantages, challenges, and lessons learned from both annunciator-replacement projects. (author)

  13. Karlsruhe Research Center, Nuclear Safety Research Project (PSF). Annual report 1994

    International Nuclear Information System (INIS)

    Hueper, R.

    1995-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZKA) has been part of the Nuclear Safety Research Projet (PSF) since 1990. The present annual report 1994 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1995. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [de

  14. Results of Operation and Utilization of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Luong Ba Vien; Le Vinh Vinh; Duong Van Dong; Nguyen Xuan Hai; Pham Ngoc Son; Cao Dong Vu

    2014-01-01

    The Dalat Nuclear Research Reactor (DNRR) with the nominal power of 500 kW was reconstructed and upgraded from the USA 250-kW TRIGA Mark-II reactor built in early 1960s. The renovated reactor was put into operation on 20 March 1984. It was designed for the purposes of radioisotope production (RI), neutron activation analysis (NAA), basic and applied researches, and nuclear education and training. During the last 30 years of operation, the DNRR was efficiently utilized for producing many kinds of radioisotopes and radiopharmaceuticals used in nuclear medicine centers and other users in industry, agriculture, hydrology and scientific research; developing a combination of nuclear analysis techniques (INAA, RNAA, PGNAA) and physic-chemical methods for quantitative analysis of about 70 elements and constituents in various samples; carrying out experiments on the reactor horizontal beam tubes for nuclear data measurement, neutron radiography and nuclear structure study; and establishing nuclear training and education programs for human resource development. This paper presents the results of operation and utilization of the DNRR. In addition, some main reactor renovation projects carried out during the last 10 years are also mentioned in the paper. (author)

  15. Proceedings of NUCLEAR 2009 international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2009-01-01

    The proceedings of the NUCLEAR 2009 international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 27 - 29 2009 contain 92 communications presented in two plenary sessions (6 and 4 talks, respectively) and three sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (8 papers); Section 1.2 - Nuclear reactors (15 papers); Section 1.3 - Nuclear technologies and materials (32 papers); Section 2.1 - Radioactive waste management (18 papers; Section 2.2 and Section 2.3 - Radioprotection and air, water and soil protection (12 papers); Section 3.1 - Education, continuous formation and knowledge transfer (9 papers); Section 3.2 -Strategies in energy (Round table) (5 papers). A number of 17 papers although programmed have not actually been presented within these proceedings. These papers are presented as abstracts in 'Nuclear 2009 - BOOK of ABSTRACTS', separately processed

  16. Nuclear power and the public: an update of collected survey research on nuclear power

    International Nuclear Information System (INIS)

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues

  17. Nuclear power and the public: an update of collected survey research on nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

  18. Nanotechnology and nuclear medicine; research and preclinical applications.

    Science.gov (United States)

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  19. The U.S. Nuclear Regulatory Commission seismic safety research program

    International Nuclear Information System (INIS)

    Kenneally, R.M.; Guzy, D.J.; Murphy, A.J.

    1988-01-01

    The seismic safety research program sponsored by the U.S. Nuclear Regulatory Commission is directed toward improving the evaluation of potential earthquake effects on nuclear power plant operations. The research has been divided into three major program areas: earth sciences, seismic design margins, and fragilities and response. A major thrust of this research is to assess plant behavior for seismic events more severe and less probable than those considered in design. However, there is also research aimed at improving the evaluation of earthquake input and plant response at plant design levels

  20. Summary results of an assessment of research projects in the Nuclear Medicine Research program

    International Nuclear Information System (INIS)

    1988-01-01

    In May 1987, OHER management requested the Office of Program Analysis (OPA) to conduct a peer review of the projects of the DOE Nuclear Medicine Research program. This was done using procedures and a quantitative methodology OPA developed for assessing DOE research programs. Sixty-three individual nuclear medicine projects were reviewed by seven panels; one panel on isotopes and radioisotopes, three on radiopharmacology, two on clinical feasibility, and one on instrumentation. Each panel consisted of five to ten knowledgeable reviewers. 5 figs