WorldWideScience

Sample records for replacement energy costs

  1. Minimum Cost Design of Distributed Energy Resources with Studying the Effect of Capital Cost and Replacement Cost

    Directory of Open Access Journals (Sweden)

    Mehdi Nafar

    2012-02-01

    Full Text Available This study presents an optimized design of HPS in a distribution system including sources like, photovoltaic array, Diesel generator and battery bank.In this research, an algorithm has been developed for evaluation and cost optimization HPS. The costs include capital cost, replacement cost, operation and maintenance cost, fuel cost and production cost for HPS and DG power during different load profile. Then an objective function with aim to minimizing of total costs has been considered. A genetic algorithm approach is employed to obtain the best cost value of HPS construction. This study tested on case study network on Mardasht city in Iran.

  2. Optimal replacement of residential air conditioning equipment to minimize energy, greenhouse gas emissions, and consumer cost in the US

    Energy Technology Data Exchange (ETDEWEB)

    De Kleine, Robert D. [Center for Sustainable Systems, School of Natural Resources and Environment, University of Michigan, 440 Church St., Dana Bldg., Ann Arbor, MI 48109-1041 (United States); Keoleian, Gregory A., E-mail: gregak@umich.edu [Center for Sustainable Systems, School of Natural Resources and Environment, University of Michigan, 440 Church St., Dana Bldg., Ann Arbor, MI 48109-1041 (United States); Kelly, Jarod C. [Center for Sustainable Systems, School of Natural Resources and Environment, University of Michigan, 440 Church St., Dana Bldg., Ann Arbor, MI 48109-1041 (United States)

    2011-06-15

    A life cycle optimization of the replacement of residential central air conditioners (CACs) was conducted in order to identify replacement schedules that minimized three separate objectives: life cycle energy consumption, greenhouse gas (GHG) emissions, and consumer cost. The analysis was conducted for the time period of 1985-2025 for Ann Arbor, MI and San Antonio, TX. Using annual sales-weighted efficiencies of residential CAC equipment, the tradeoff between potential operational savings and the burdens of producing new, more efficient equipment was evaluated. The optimal replacement schedule for each objective was identified for each location and service scenario. In general, minimizing energy consumption required frequent replacement (4-12 replacements), minimizing GHG required fewer replacements (2-5 replacements), and minimizing cost required the fewest replacements (1-3 replacements) over the time horizon. Scenario analysis of different federal efficiency standards, regional standards, and Energy Star purchases were conducted to quantify each policy's impact. For example, a 16 SEER regional standard in Texas was shown to either reduce primary energy consumption 13%, GHGs emissions by 11%, or cost by 6-7% when performing optimal replacement of CACs from 2005 or before. The results also indicate that proper servicing should be a higher priority than optimal replacement to minimize environmental burdens. - Highlights: > Optimal replacement schedules for residential central air conditioners were found. > Minimizing energy required more frequent replacement than minimizing consumer cost. > Significant variation in optimal replacement was observed for Michigan and Texas. > Rebates for altering replacement patterns are not cost effective for GHG abatement. > Maintenance levels were significant in determining the energy and GHG impacts.

  3. Fleet Replacement Squadron consolidation : a cost model applied.

    OpenAIRE

    Maholchic, Robert M.

    1991-01-01

    The consolidation of Fleet Replacement Squadrons (FRS) represents one method of achieving planned force reductions. This thesis utilizes the Cost of Base Realignment Actions (COBRA) cost model to develop cost estimates for determination of the cost effective site location. The A-6 FRS consolidation is used as a case study. Data were compiled using completed Functional Wing studies as well as local information sources. A comparison between the cost estimates provided by the COBRA cost model fo...

  4. A general approach to total repair cost limit replacement policies

    Directory of Open Access Journals (Sweden)

    F. Beichelt

    2014-01-01

    Full Text Available A common replacement policy for technical systems consists in replacing a system by a new one after its economic lifetime, i.e. at that moment when its long-run maintenance cost rate is minimal. However, the strict application of the economic lifetime does not take into account the individual deviations of maintenance cost rates of single systems from the average cost development. Hence, Beichet proposed the total repair cost limit replacement policy: the system is replaced by a new one as soon as its total repair cost reaches or exceeds a given level. He modelled the repair cost development by functions of the Wiener process with drift. Here the same policy is considered under the assumption that the one-dimensional probability distribution of the process describing the repair cost development is given. In the examples analysed, applying the total repair cost limit replacement policy instead of the economic life-time leads to cost savings of between 4% and 30%. Finally, it is illustrated how to include the reliability aspect into the policy.

  5. The cost of standing strong for replacement.

    Science.gov (United States)

    Brown, Katy

    2015-03-01

    The testimonies of these individuals largely speak for themselves. The responses point to the importance of specific institutions or research groups that focus on the development and use of alternatives, and these should, of course, be better supported. Those who find themselves outside such institutions or teams, are more likely to feel stranded and isolated. Then again, Liz did have the support of a research group dedicated to replacement, but she has still had a significant struggle to find funding. The interviews with some of these particular young researchers indeed pointed toward a tangible ‘cost’ in terms of having to steer their career on the often difficult path toward the use of non-animal based methods.

  6. Replacement of chemical rocket launchers by beamed energy propulsion.

    Science.gov (United States)

    Fukunari, Masafumi; Arnault, Anthony; Yamaguchi, Toshikazu; Komurasaki, Kimiya

    2014-11-01

    Microwave Rocket is a beamed energy propulsion system that is expected to reach space at drastically lower cost. This cost reduction is estimated by replacing the first-stage engine and solid rocket boosters of the Japanese H-IIB rocket with Microwave Rocket, using a recently developed thrust model in which thrust is generated through repetitively pulsed microwave detonation with a reed-valve air-breathing system. Results show that Microwave Rocket trajectory, in terms of velocity versus altitude, can be designed similarly to the current H-IIB first stage trajectory. Moreover, the payload ratio can be increased by 450%, resulting in launch-cost reduction of 74%.

  7. Replacing coal power in Canada with renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Hadlock, C.; Kansal, V.; Kegel, M. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2005-07-01

    At present, coal represents 19 per cent of Canada's energy production and is responsible for 80 per cent of the energy industry's greenhouse gases (GHG). It has been estimated that GHG emission levels can be reduced by 14 per cent if coal power is replaced with a cleaner energy source. This paper suggested that, due to dwindling natural gas reserves, renewable energy sources should be considered as an economically viable substitute for coal. A breakdown of energy production in Canada in 2002 was presented, along with details of Canadian emissions. The total capacity and annual generation of emissions from coal were presented, as well as additional sources of pollution, such as transboundary pollution. Various government incentives for renewable energy source development were discussed. Wind energy costs were examined along with geothermal energy, tidal energy, biomass energy, and solar energy. Rebate programs were reviewed. The gradual elimination of coal as an energy source was examined by region. Details of alternative energy methods were presented, along with their associated costs. Costs were compared to coal production and did not include any government subsidies. It was concluded that the majority of renewable resources in Canada are competitive with coal prices and in some cases cheaper. However, the resources cannot meet the electricity demands of all regions. It was suggested that wind energy is often an excellent alternative to meeting demand, but that wind power is the only natural resource that actually costs more than coal. An incentive program similar to that of Denmark was proposed, whereby the subsidy decreases every 2 years to keep in line with projected technological improvements and rising energy rates. 37 refs., 9 tabs., 3 figs.

  8. Replacement-cost depreciation: monopoly versus competitive business

    Energy Technology Data Exchange (ETDEWEB)

    Matulich, S.; Hensley, S.

    1982-06-24

    The purpose of this article is to clarify some of the arguments for and against the use of replacement-cost depreciation in setting rates for public-utility companies. It does so by examining some simplified examples, which enable the reader to focus upon the logic and basic merits of each argument, pro or con.

  9. Cost-benefit analysis of replacing maize with rice husk ...

    African Journals Online (AJOL)

    Cost-benefit analysis of replacing maize with rice husk supplemented with grindazyme, nutrsea ... Log in or Register to get access to full text downloads. ... Rice husk was added at the expense of maize in the control diet and each experimental ...

  10. A Cost Analysis of Kidney Replacement Therapy Options in Palestine

    Directory of Open Access Journals (Sweden)

    Mustafa Younis Ph.D.

    2015-03-01

    Full Text Available This study provides a cost analysis of kidney replacement therapy options in Palestine. It informs evidence-based resource allocation decisions for government-funded kidney disease services where transplant donors are limited, and some of the common modalities, i.e., peritoneal dialysis (PD and home hemodialysis (HD, are not widely available due to shortages of qualified staff, specialists, and centers to follow the patient cases, provide training, make home visits, or provide educational programs for patients. The average cost of kidney transplant was US$16 277 for the first year; the estimated cost of HD per patient averaged US$16 085 per year—nearly as much as a transplant. Consistent with prior literature and experience, while live, related kidney donors are scarce, we found that kidney transplant was more adequate and less expensive than HD. These results have direct resource allocation implications for government-funded kidney disease services under Palestinian Ministry of Health. Our findings strongly suggest that investing in sufficient qualified staff, equipment, and clinical infrastructure to replace HD services with transplantation whenever medically indicated and suitable kidney donors are available, as well as deploying PD programs and Home HD programs, will result in major overall cost savings. Our results provide a better understanding of the costs of kidney disease and will help to inform Ministry of Health and related policy makers as they develop short- and long-term strategies for the population, in terms of both cost savings and enhanced quality of life.

  11. Energy cost of measles infection.

    OpenAIRE

    Duggan, M B; Milner, R D

    1986-01-01

    A model predicting the nutritional cost of measles has been based on data from a study of energy balance in Kenyan children during and after measles. The energy shortfall, consequent upon a reduction in energy intake and a sustained level of energy expenditure, is met by tissue catabolism. The magnitude of resulting weight loss will be greater in lean than in plump children. During recovery, the intake of gross dietary energy to regain lost weight must take account of obligatory energy losses...

  12. Valuing insect pollination services with cost of replacement.

    Science.gov (United States)

    Allsopp, Mike H; de Lange, Willem J; Veldtman, Ruan

    2008-09-10

    Value estimates of ecosystem goods and services are useful to justify the allocation of resources towards conservation, but inconclusive estimates risk unsustainable resource allocations. Here we present replacement costs as a more accurate value estimate of insect pollination as an ecosystem service, although this method could also be applied to other services. The importance of insect pollination to agriculture is unequivocal. However, whether this service is largely provided by wild pollinators (genuine ecosystem service) or managed pollinators (commercial service), and which of these requires immediate action amidst reports of pollinator decline, remains contested. If crop pollination is used to argue for biodiversity conservation, clear distinction should be made between values of managed- and wild pollination services. Current methods either under-estimate or over-estimate the pollination service value, and make use of criticised general insect and managed pollinator dependence factors. We apply the theoretical concept of ascribing a value to a service by calculating the cost to replace it, as a novel way of valuing wild and managed pollination services. Adjusted insect and managed pollinator dependence factors were used to estimate the cost of replacing insect- and managed pollination services for the Western Cape deciduous fruit industry of South Africa. Using pollen dusting and hand pollination as suitable replacements, we value pollination services significantly higher than current market prices for commercial pollination, although lower than traditional proportional estimates. The complexity associated with inclusive value estimation of pollination services required several defendable assumptions, but made estimates more inclusive than previous attempts. Consequently this study provides the basis for continued improvement in context specific pollination service value estimates.

  13. Valuing insect pollination services with cost of replacement.

    Directory of Open Access Journals (Sweden)

    Mike H Allsopp

    Full Text Available Value estimates of ecosystem goods and services are useful to justify the allocation of resources towards conservation, but inconclusive estimates risk unsustainable resource allocations. Here we present replacement costs as a more accurate value estimate of insect pollination as an ecosystem service, although this method could also be applied to other services. The importance of insect pollination to agriculture is unequivocal. However, whether this service is largely provided by wild pollinators (genuine ecosystem service or managed pollinators (commercial service, and which of these requires immediate action amidst reports of pollinator decline, remains contested. If crop pollination is used to argue for biodiversity conservation, clear distinction should be made between values of managed- and wild pollination services. Current methods either under-estimate or over-estimate the pollination service value, and make use of criticised general insect and managed pollinator dependence factors. We apply the theoretical concept of ascribing a value to a service by calculating the cost to replace it, as a novel way of valuing wild and managed pollination services. Adjusted insect and managed pollinator dependence factors were used to estimate the cost of replacing insect- and managed pollination services for the Western Cape deciduous fruit industry of South Africa. Using pollen dusting and hand pollination as suitable replacements, we value pollination services significantly higher than current market prices for commercial pollination, although lower than traditional proportional estimates. The complexity associated with inclusive value estimation of pollination services required several defendable assumptions, but made estimates more inclusive than previous attempts. Consequently this study provides the basis for continued improvement in context specific pollination service value estimates.

  14. Cost analysis of the Spanish renal replacement therapy programme.

    Science.gov (United States)

    Villa, Guillermo; Rodríguez-Carmona, Ana; Fernández-Ortiz, Lucía; Cuervo, Jesús; Rebollo, Pablo; Otero, Alfonso; Arrieta, Javier

    2011-11-01

    A cost analysis of the Spanish Renal Replacement Therapy (RRT) programme in the year 2010, for end-stage renal disease (ESRD) patients, was performed from the perspective of the Public Administration. The costs associated with each RRT modality [hemodialysis (HD), peritoneal dialysis (PD) and kidney transplantation (Tx)] were analysed. The Spanish ESRD incidence and prevalence figures in the year 2010 were forecasted in order to enable the calculation of an aggregate cost for each modality. Costs were mainly computed based on a review of the existing literature and of the Official Bulletins of the Spanish Autonomous Communities. Data from Oblikue Consulting eSalud health care costs database and from several Spanish public sources were also employed. In the year 2010, the forecasted incidence figures for HD, PD and Tx were 5409, 822 and 2317 patients, respectively. The forecasted prevalence figures were 22,582, 2420 and 24,761 patients, respectively. The average annual per-patient costs (incidence and prevalence) were €2651 and €37,968 (HD), €1808 and €25,826 (PD) and €38,313 and €6283 (Tx). Indirect costs amounted to €8929 (HD), €7429 (PD) and €5483 (Tx). The economic impact of the Spanish RRT programme on the Public Administration budget was estimated at ~€1829 million (indirect costs included): €1327 (HD), €109 (PD) and €393 (Tx) million. HD accounted for >70% of the aggregate costs of the Spanish RRT programme in 2010. From a costs minimization perspective, it would be preferable if the number of incident and prevalent patients in PD were increased.

  15. Contemporary Costs Associated With Transcatheter Aortic Valve Replacement: A Propensity-Matched Cost Analysis.

    Science.gov (United States)

    Ailawadi, Gorav; LaPar, Damien J; Speir, Alan M; Ghanta, Ravi K; Yarboro, Leora T; Crosby, Ivan K; Lim, D Scott; Quader, Mohammed A; Rich, Jeffrey B

    2016-01-01

    The Placement of Aortic Transcatheter Valve (PARTNER) trial suggested an economic advantage for transcatheter aortic valve replacement (TAVR) for high-risk patients. The purpose of this study was to evaluate the cost effectiveness of TAVR in the "real world" by comparing TAVR with surgical aortic valve replacement (SAVR) in intermediate-risk and high-risk patients. A multiinstitutional database of The Society of Thoracic Surgeons (STS) (2011 to 2013) linked with estimated cost data was evaluated for isolated TAVR and SAVR operations (n = 5,578). TAVR-treated patients (n = 340) were 1:1 propensity matched with SAVR-treated patients (n = 340). Patients undergoing SAVR were further stratified into intermediate-risk (SAVR-IR: predicted risk of mortality [PROM] 4% to 8%) and high-risk (SAVR-HR: PROM >8%) cohorts. Median STS PROM for TAVR was 6.32% compared with 6.30% for SAVR (SAVR-IR 4.6% and SAVR-HR 12.4%). A transfemoral TAVR approach was most common (61%). Mortality was higher for TAVR (10%) compared with SAVR (6%, p costs compared with SAVR ($69,921 vs $33,598, p cost of TAVR was largely driven by the cost of the valve (all p cost savings versus TAVR. TAVR was associated with greater total costs and mortality compared with SAVR in intermediate-risk and high-risk patients while conferring lower major morbidity and improved resource use. Increased cost of TAVR appears largely related to the cost of the valve. Until the price of TAVR valves decreases, these data suggest that TAVR may not provide the most cost-effective strategy, particularly for intermediate-risk patients. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Effects of replacing lactose from milk replacer by glucose, fructose, or glycerol on energy partitioning in veal calves

    NARCIS (Netherlands)

    Gilbert, M. S.; Pantophlet, A. J.; van den Borne, J. J. G. C.; Hendriks, W. H.; Schols, H. A.; Gerrits, W. J. J.

    2016-01-01

    Calf milk replacers contain 40 to 50% lactose. Fluctuating dairy prices are a major economic incentive to replace lactose from milk replacers by alternative energy sources. Our objective was, therefore, to determine the effects of replacement of lactose with glucose, fructose, or glycerol on energy

  17. Effects of replacing lactose from milk replacer by glucose, fructose, or glycerol on energy partitioning in veal calves

    NARCIS (Netherlands)

    Gilbert, M. S.; Pantophlet, A. J.; van den Borne, J. J. G. C.; Hendriks, W. H.; Schols, H. A.; Gerrits, W. J. J.

    Calf milk replacers contain 40 to 50% lactose. Fluctuating dairy prices are a major economic incentive to replace lactose from milk replacers by alternative energy sources. Our objective was, therefore, to determine the effects of replacement of lactose with glucose, fructose, or glycerol on energy

  18. Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. [Building Media and the Building America Retrofit Alliance (BARA), Wilmington, DE (United States); Easley, S. [Building Media and the Building America Retrofit Alliance (BARA), Wilmington, DE (United States)

    2012-05-01

    This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  19. Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.; Easley, S.

    2012-05-01

    The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  20. Effects of replacing lactose from milk replacer by glucose, fructose, or glycerol on energy partitioning in veal calves

    NARCIS (Netherlands)

    Gilbert, M.S.; Pantophlet, A.J.; Borne, van den J.J.G.C.; Hendriks, W.H.; Schols, H.A.; Gerrits, W.J.J.

    2016-01-01

    Calf milk replacers contain 40 to 50% lactose. Fluctuating dairy prices are a major economic incentive to replace lactose from milk replacers by alternative energy sources. Our objective was, therefore, to determine the effects of replacement of lactose with glucose, fructose, or glycerol on

  1. Energy economics can be costly

    Energy Technology Data Exchange (ETDEWEB)

    Cluer, A. (Inst. Pet.); Solbett, J.

    1980-07-05

    According to A. Cluer (Inst. Pet.) at the Eurochem 80 conference (Birm. June 1980), the available reserves of conventional crude oil are, or will soon be, at their peak. The Middle East has 57% of the 88,000 Mtons of crude oil known to exist, about a 30 yr supply at current production rates. Uncertain supplies and an OPEC market price of about $35/bbl can only stimulate the development of synthetic oil production from coal and other hydrocarbon sources, although this will be hindered by environmental problems, large investments, and the long lead times needed, a view shared by J. Solbett (Humphreys and Glasgow Ltd.) at the conference. Both speakers agreed that the use of oil for transport and chemical feeds, for which oil is ideally suited, is the least amenable area for substitution by synthetic fuels; and that it is therefore important that general energy requirements be satisfied by alternatives such as coal and nuclear power. Cluer cited OECD statistics which show that implementing minimum energy efficiency standards could cut by 35% transport energy consumption, by 1985. Comments by T. Kantyka (ICI) on the cost effectiveness of energy conservation are also discussed.

  2. Construction Cost Growth for New Department of Energy Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kubic, Jr., William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-25

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  3. An analysis of the cost effectiveness of replacing maize with wheat ...

    African Journals Online (AJOL)

    An analysis of the cost effectiveness of replacing maize with wheat offal in ... Open Access DOWNLOAD FULL TEXT ... At this level of wheat offal inclusion, feed cost per ton would be reduced by about 13.2% of the cost of the control diet.

  4. Costs and CO{sub 2} benefits of recovering, refining and transporting logging residues for fossil fuel replacement

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, 83125 Oestersund (Sweden); Linnaeus University, 35195 Vaexjoe (Sweden); Eriksson, Lisa; Sathre, Roger [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, 83125 Oestersund (Sweden)

    2011-01-15

    There are many possible systems for recovering, refining, and transporting logging residues for use as fuel. Here we analyse costs, primary energy and CO{sub 2} benefits of various systems for using logging residues locally, nationally or internationally. The recovery systems we consider are a bundle system and a traditional chip system in a Nordic context. We also consider various transport modes and distances, refining the residues into pellets, and replacing different fossil fuels. Compressing of bundles entails costs, but the cost of chipping is greatly reduced if chipping is done on a large scale, providing an overall cost-effective system. The bundle system entails greater primary energy use, but its lower dry-matter losses mean that more biomass per hectare can be extracted from the harvest site. Thus, the potential replacement of fossil fuels per hectare of harvest area is greater with the bundle system than with the chip system. The fuel-cycle reduction of CO{sub 2} emissions per harvest area when logging residues replace fossil fuels depends more on the type of fossil fuel replaced, the logging residues recovery system used and the refining of the residues, than on whether the residues are transported to local, national or international end-users. The mode and distance of the transport system has a minor impact on the CO{sub 2} emission balance. (author)

  5. Can renewable energy replace nuclear power in Korea? An economic valuation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Ho [Korea Institute for Advancement of Technology, Korea Technology Center, Seoul (Korea, Republic of); Jung, Woo Jin [Graduate School of Information, Yonsei University, Seoul (Korea, Republic of); Kim, Tae Hwan; Lee, Sang Yong Tom [School of Business, Hanyang University, Seoul (Korea, Republic of)

    2016-04-15

    This paper studies the feasibility of renewable energy as a substitute for nuclear and energy by considering Korean customers' willingness to pay (WTP). For this analysis, we use the contingent valuation method to estimate the WTP of renewable energy, and then estimate its value using ordered logistic regression. To replace nuclear power and fossil energy with renewable energy in Korea, an average household is willing to pay an additional 102,388 Korean Won (KRW) per month (approx. US $85). Therefore, the yearly economic value of renewable energy in Korea is about 19.3 trillion KRW (approx. US $16.1 billion). Considering that power generation with only renewable energy would cost an additional 35 trillion KRW per year, it is economically infeasible for renewable energy to be the sole method of low-carbon energy generation in Korea.

  6. 2010 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwabe, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions, and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  7. 2010 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

    2012-04-01

    This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

  8. Energy costs form European wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Milborrow, D. [Windpower Monthly, Knebel (Denmark)

    1995-12-31

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  9. A Phenomenological Cost Model for High Energy Particle Accelerators

    CERN Document Server

    Shiltsev, Vladimir

    2014-01-01

    Accelerator-based high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.

  10. The relative cost of biomass energy transport.

    Science.gov (United States)

    Searcy, Erin; Flynn, Peter; Ghafoori, Emad; Kumar, Amit

    2007-04-01

    Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for small- and large-project sizes, the relative cost of transportation by truck, rail, ship, and pipeline for three biomass feedstocks, by truck and pipeline for ethanol, and by transmission line for electrical power. Distance fixed costs (loading and unloading) and distance variable costs (transport, including power losses during transmission), are calculated for each biomass type and mode of transportation. Costs are normalized to a common basis of a giga Joules of biomass. The relative cost of moving products vs feedstock is an approximate measure of the incentive for location of biomass processing at the source of biomass, rather than at the point of ultimate consumption of produced energy. In general, the cost of transporting biomass is more than the cost of transporting its energy products. The gap in cost for transporting biomass vs power is significantly higher than the incremental cost of building and operating a power plant remote from a transmission grid. The cost of power transmission and ethanol transport by pipeline is highly dependent on scale of project. Transport of ethanol by truck has a lower cost than by pipeline up to capacities of 1800 t/d. The high cost of transshipment to a ship precludes shipping from being an economical mode of transport for distances less than 800 km (woodchips) and 1500 km (baled agricultural residues).

  11. The environmental sustainability. The physical cost of replacement of mineral reserves; La sostenibilidad ambiental a escala planetaria. El coste fisico de reposicion del Capital Mineral de la Tierra

    Energy Technology Data Exchange (ETDEWEB)

    Valero, A.; Martinez, A.; Botero, E.

    2003-07-01

    In order to evaluate the physical value of mineral and water reserves, the concept of Exergy Replacement Cost has been defined as the energy required by the best available technologies to return a resource to the same conditions as it was delivered by the ecosystem. In the case of fossil fuel reserves, a new concept called exergy abatement cost has been proposed as a physical way of measuring the exergy cost of the best available technology for avoiding the environmental externalities associated with the use of fossil fuels. According to the results obtained, the physical value of mineral reserves is 15.4% of oil reserves. In the case of water reserves, 0,4 to 6,4 times the fossil energy consumed would be needed each year to supply only a part of the functions of the hydrological cycle. The global exegetic abatement costs would be 11,3% of the proven world exegetic reserves in fossil fuels. (Author)

  12. Modelling total energy costs of sports centres

    Energy Technology Data Exchange (ETDEWEB)

    Boussabaine, A.H.; Kirkham, R.J.; Grew, R.J. [Liverpool Univ., School of Architecture and Building Engineering, Liverpool (United Kingdom)

    1999-12-07

    Providing and maintaining safe and comfortable conditions in sport centres raises many issues, particularly cost. The paper gives an overview of the factors associated with sport centre servicing and attempts to highlight the governing factors associated with this, particularly energy costs. A total of 19 sport centres in the City of Liverpool in the UK are investigated, using data elicited from the Liverpool Leisure Services Directorate. The energy operating costs were analysed using statistical methods. Six models were developed to predict total energy costs. Testing and validation results showed a high level of model accuracy. The models would be of use to professionals involved in feasibility studies at the design stage. (Author)

  13. Energy cost reduction in the baking industry

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Information is presented on methods for saving fuel and electric power in the baking industry; the cost of specific retrofits to bakery equipment and of modifications to processes; ways to reduce transportation costs and energy; and reducing energy demand for lighting, cooling, and heating bakeries. (LCL)

  14. Renewable energy costs, potentials, barriers: Conceptual issues

    Energy Technology Data Exchange (ETDEWEB)

    Verbruggen, Aviel, E-mail: aviel.verbruggen@ua.ac.b [University of Antwerp (Belgium); Fischedick, Manfred [Wuppertal Institute for Climate, Environment, Energy (Germany); Moomaw, William [Tufts University, Center for International Environment and Resource Policy (United States); Weir, Tony [University of the South Pacific, Fiji Islands (Fiji); Nadai, Alain [Centre International de Recherche sur nvironnement et le Developpement CIRED (France); Nilsson, Lars J. [University of Lund (Sweden); Nyboer, John [Simon Fraser University, School of Resource and Environmental Management (Canada); Sathaye, Jayant [Lawrence Berkeley Laboratory (United States)

    2010-02-15

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies.

  15. Cost-effectiveness analysis of clinically indicated versus routine replacement of peripheral intravenous catheters.

    Science.gov (United States)

    Tuffaha, Haitham W; Rickard, Claire M; Webster, Joan; Marsh, Nicole; Gordon, Louisa; Wallis, Marianne; Scuffham, Paul A

    2014-02-01

    Millions of peripheral intravenous catheters are used worldwide. The current guidelines recommend routine catheter replacement every 72-96 h. This practice requires increasing healthcare resource use. The clinically indicated catheter replacement strategy is proposed as an alternative. To assess the cost effectiveness of clinically indicated versus routine replacement of peripheral intravenous catheters. A cost-effectiveness analysis from the perspective of Queensland Health, Australia, was conducted alongside a randomized controlled trial. Adult patients with an intravenous catheter of expected use for longer than 4 days were randomly assigned to receive either clinically indicated replacement or third-day routine replacement. The primary outcome was phlebitis during catheterization or within 48 h after catheter removal. Resource use data were prospectively collected and valued (2010 prices). The incremental net monetary benefit was calculated with uncertainty characterized using bootstrap simulations. Additionally, value of information (VOI) and value of implementation analyses were performed. The clinically indicated replacement strategy was associated with a cost saving per patient of AU$7.60 (95% confidence interval [CI] 4.96-10.62) and a non-significant difference in the phlebitis rate of 0.41% (95% CI -1.33 to 2.15). The incremental net monetary benefit was AU$7.60 (95% CI 4.96-10.62). The expected VOI was zero, whereas the expected value of perfect implementation of the clinically indicated replacement strategy was approximately AU$5 million over 5 years. The clinically indicated catheter replacement strategy is cost saving compared with routine replacement. It is recommended that healthcare organizations consider changing to a policy whereby catheters are changed only if clinically indicated.

  16. Information erasure without an energy cost

    CERN Document Server

    Vaccaro, Joan A

    2010-01-01

    Landauer argued that the process of erasing the information stored in a memory device incurs an energy cost in the form of a minimum amount of mechanical work. We find, however, that this energy cost can be reduced to zero by paying a cost in angular momentum or any other conserved quantity. Erasing the memory of Maxwell's demon in this way implies that work can be extracted from a single thermal reservoir at a cost of angular momentum and an increase in total entropy. The implications of this for the second law of thermodynamics are assessed.

  17. 2015 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Mone, Christopher; Hand, Maureen; Bolinger, Mark; Rand, Joseph; Heimiller, Donna; Ho, Jonathan

    2017-04-05

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2015. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections, goals, and improvement opportunities.

  18. 2014 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Mone, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States); Settle, Edward [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    This report uses representative commercial projects to estimate the levelized cost of energy (LCOE) for both land-based and offshore wind plants in the United States for 2014. Scheduled to be published on an annual basis, the analysis relies on both market and modeled data to maintain an up-to-date understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed by the National Renewable Energy Laboratory (NREL) are used in this analysis to inform wind technology cost projections, goals, and improvement opportunities.

  19. Impact of total knee replacement practice: cost effectiveness analysis of data from the Osteoarthritis Initiative.

    Science.gov (United States)

    Ferket, Bart S; Feldman, Zachary; Zhou, Jing; Oei, Edwin H; Bierma-Zeinstra, Sita M A; Mazumdar, Madhu

    2017-03-28

    Objectives To evaluate the impact of total knee replacement on quality of life in people with knee osteoarthritis and to estimate associated differences in lifetime costs and quality adjusted life years (QALYs) according to use by level of symptoms.Design Marginal structural modeling and cost effectiveness analysis based on lifetime predictions for total knee replacement and death from population based cohort data.Setting Data from two studies-Osteoarthritis Initiative (OAI) and the Multicenter Osteoarthritis Study (MOST)-within the US health system.Participants 4498 participants with or at high risk for knee osteoarthritis aged 45-79 from the OAI with no previous knee replacement (confirmed by baseline radiography) followed up for nine years. Validation cohort comprised 2907 patients from MOST with two year follow-up.Intervention Scenarios ranging from current practice, defined as total knee replacement practice as performed in the OAI (with procedural rates estimated by a prediction model), to practice limited to patients with severe symptoms to no surgery.Main outcome measures Generic (SF-12) and osteoarthritis specific quality of life measured over 96 months, model based QALYs, costs, and incremental cost effectiveness ratios over a lifetime horizon.Results In the OAI, total knee replacement showed improvements in quality of life with small absolute changes when averaged across levels of confounding variables: 1.70 (95% uncertainty interval 0.26 to 3.57) for SF-12 physical component summary (PCS); -10.69 (-13.39 to -8.01) for Western Ontario and McMaster Universities arthritis index (WOMAC); and 9.16 (6.35 to 12.49) for knee injury and osteoarthritis outcome score (KOOS) quality of life subscale. These improvements became larger with decreasing functional status at baseline. Provision of total knee replacement to patients with SF-12 PCS scores osteoarthritis from the MOST cohort and were robust against various scenarios including increased rates of total

  20. Reducing energy costs in nursing homes

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The handbook presents ideas and techniques for energy conservation in nursing homes. Case studies were developed of nursing homes located in different parts of the US. The typical nursing home assessed was proprietary, of intermediate-care level, medicaid-certified, and had less than 200 beds. Specific energy conservation measures were analyzed to determine the energy and dollar savings that could be realized. These include reducing heat loss through the building shell; reducing hot water costs; recovering the heat generated by dryers; reducing lighting costs; reducing heating and cooling costs, and analyzing fuels and fuel rates. A case for converting electric clothes dryers to gas was analyzed. (MCW)

  1. 2013 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Mone, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    This report uses representative project types to estimate the levelized cost of wind energy (LCOE) in the United States for 2013. Scheduled to be published on an annual basis, it relies on both market and modeled data to maintain a current understanding of wind generation cost trends and drivers. It is intended to provide insight into current component-level costs and a basis for understanding current component-level costs and a basis for understanding variability in the LCOE across the industry. Data and tools developed from this analysis are used to inform wind technology cost projections, goals, and improvement opportunities.

  2. The Study of Cost Rate for Multiple Cold Standby System Replacement Policies

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We consider a replacement policy for a multiple-component cold-standby system, and after we analyze this policy, we want to get the mean total cost rate and the preventive policy to make it the lowest. In this system, the failure rate of the component in operation is constant, and the inspection will control all the processes of the operation. The system is inspected at random points over time to determine whether it is to be replaced. During the process, the replacement decision is based on the number of failed components at the time of inspection.

  3. Replacement

    Directory of Open Access Journals (Sweden)

    S. Radhakrishnan

    2014-03-01

    Full Text Available The fishmeal replaced with Spirulina platensis, Chlorella vulgaris and Azolla pinnata and the formulated diet fed to Macrobrachium rosenbergii postlarvae to assess the enhancement ability of non-enzymatic antioxidants (vitamin C and E, enzymatic antioxidants (superoxide dismutase (SOD and catalase (CAT and lipid peroxidation (LPx were analysed. In the present study, the S. platensis, C. vulgaris and A. pinnata inclusion diet fed groups had significant (P < 0.05 improvement in the levels of vitamins C and E in the hepatopancreas and muscle tissue. Among all the diets, the replacement materials in 50% incorporated feed fed groups showed better performance when compared with the control group in non-enzymatic antioxidant activity. The 50% fishmeal replacement (best performance diet fed groups taken for enzymatic antioxidant study, in SOD, CAT and LPx showed no significant increases when compared with the control group. Hence, the present results revealed that the formulated feed enhanced the vitamins C and E, the result of decreased level of enzymatic antioxidants (SOD, CAT and LPx revealed that these feeds are non-toxic and do not produce any stress to postlarvae. These ingredients can be used as an alternative protein source for sustainable Macrobrachium culture.

  4. Capturing Waste Gas: Saves Energy, Lower Costs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-12

    In June 2009, ArcelorMittal learned about the potential to receive a 50% cost-matching grant from the American Recovery and Reinvestment Act (ARRA) administered by the U.S. Department of Energy (DOE). ArcelorMittal applied for the competitive grant and, in November, received $31.6 million as a DOE cost-sharing award. By matching the federal funding, ArcelorMittal was able to construct a new, high efficiency Energy Recovery & Reuse 504 Boiler and supporting infrastructure.

  5. Transaction costs of raising energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, K.

    2003-07-01

    Part of the debate evolves around the existence and importance of energy saving potentials to reduce CO{sub 2} emissions that may be available at negative net costs, implying that the energy cost savings of one specific technology can actually more than offset the costs of investing into this technology and of using it. This so called ''no-regret'' potential would comprise measures that from a pure economic efficiency point of view would be ''worth undertaking whether or not there are climate-related reasons for doing so''. The existence of the no-regret potential is often denied by arguing, that the economic evaluation of the energy saving potentials did not take into account transaction costs. This paper will re-examine in more detail the concept of transaction costs as it is used in the current debate on no-regret potentials (section 1). Four practical examples are presented to illustrate how transaction costs and their determinants can be identified, measured and possibly influenced (section 2). In order to link the presented cases to modelling based evaluation approaches the implications for cost evaluations of energy saving measures, especially in the context of energy system modelling, will be shown (section 3). (author)

  6. What will abandonment of nuclear energy cost

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, H.K.

    1988-01-01

    The Federal Republic of Germany holds position five on the list of the world's biggest energy consumers. This alone is a fact that puts special emphasis on the public discussion about the peaceful use of nuclear energy, in addition to the current events such as incidents and accidents in nuclear installations. A sober review of the pros and cons of nuclear energy for power generation has to take into account the economic effects and the costs to be borne by the national economy as a result of immediate abandonment of nuclear energy. The article in hand discusses chances, problems, and alternatives to nuclear energy (solar energy and wind power).

  7. Energy cost reduction in oil pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Limeira, Fabio Machado; Correa, Joao Luiz Lavoura; Costa, Luciano Macedo Josino da; Silva, Jose Luiz da; Henriques, Fausto Metzger Pessanha [Petrobras Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    One of the key questions of modern society consists on the rational use of the planet's natural resources and energy. Due to the lack of energy, many companies are forced to reduce their workload, especially during peak hours, because residential demand reaches its top and there is not enough energy to fulfill the needs of all users, which affects major industries. Therefore, using energy more wisely has become a strategic issue for any company, due to the limited supply and also for the excessive cost it represents. With the objective of saving energy and reducing costs for oil pipelines, it has been identified that the increase in energy consumption is primordially related to pumping stations and also by the way many facilities are operated, that is, differently from what was originally designed. Realizing this opportunity, in order to optimize the process, this article intends to examine the possibility of gains evaluating alternatives regarding changes in the pump scheme configuration and non-use of pump stations at peak hours. Initially, an oil pipeline with potential to reduce energy costs was chosen being followed by a history analysis, in order to confirm if there was sufficient room to change the operation mode. After confirming the pipeline choice, the system is briefly described and the literature is reviewed, explaining how the energy cost is calculated and also the main characteristics of a pumping system in series and in parallel. In that sequence, technically feasible alternatives are studied in order to operate and also to negotiate the energy demand contract. Finally, costs are calculated to identify the most economical alternative, that is, for a scenario with no increase in the actual transported volume of the pipeline and for another scenario that considers an increase of about 20%. The conclusion of this study indicates that the chosen pipeline can achieve a reduction on energy costs of up to 25% without the need for investments in new

  8. 2015 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Moné, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hand, Maureen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rand, Joseph [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-27

    This report uses representative utility-scale projects to estimate the levelized cost of energy (LCOE) for land-based and offshore wind plants in the United States. Data and results detailed here are derived from 2015 commissioned plants. More specifically, analysis detailed here relies on recent market data and state-of-the-art modeling capabilities to maintain an up-to-date understanding of wind energy cost trends and drivers. It is intended to provide insight into current component-level costs as well as a basis for understanding variability in LCOE across the industry. This publication reflects the fifth installment of this annual report.

  9. Environmental impacts and costs of energy.

    Science.gov (United States)

    Rabl, Ari; Spadaro, Joseph V

    2006-09-01

    Environmental damage is one of the main justifications for continued efforts to reduce energy consumption and to shift to cleaner sources such as solar energy. In recent years there has been much progress in the analysis of environmental damages, in particular thanks to the ExternE (External Costs of Energy) Project of the European Commission. This article presents a summary of the methodology and key results for the external costs of the major energy technologies. Even though the uncertainties are large, the results provide substantial evidence that the classical air pollutants (particles, No(x), and SO(2)) from fossil fuels impose significant public health costs, comparable to the cost of global warming from CO(2) emissions. The total external costs are relatively low for natural gas (in the range of about 0.5-1 eurocents/kWh for most EU countries), but much higher for coal and lignite (in the range of about 2-6 eurocents/kWh for most EU countries). By contrast, the external costs of nuclear, wind, and photovoltaics are very low. The external costs of hydro are extremely variable from site to site, and the ones of biomass depend strongly on the specific technologies used and can be quite large for combustion.

  10. Cost projections for Redox Energy storage systems

    Science.gov (United States)

    Michaels, K.; Hall, G.

    1980-01-01

    A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost.

  11. Assessing the Cost of Energy Independence

    NARCIS (Netherlands)

    Jongerden, Marijn R.; Hüls, Jannik; Haverkort, Boudewijn R.; Remke, Anne

    2016-01-01

    Battery management strategies that reserve a certain capacity for power outages are able to increase the energy independence of a smart home. However, such strategies come at a certain cost, since these storage strategies are less flexible and energy from the grid may have to be bought at a high pri

  12. Levelized Cost of Energy of the Weptos wave energy converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the cost of energy calculations of a wave energy array of 90 MW, consisting of 25 x 3.6 MW Weptos wave energy converters. The calculation has been made in analogy with a publically available document presented by the UK government, covering the case of a similar size wind...

  13. Optimal replacement time estimation for machines and equipment based on cost function

    Directory of Open Access Journals (Sweden)

    J. Šebo

    2013-01-01

    Full Text Available The article deals with a multidisciplinary issue of estimating the optimal replacement time for the machines. Considered categories of machines, for which the optimization method is usable, are of the metallurgical and engineering production. Different models of cost function are considered (both with one and two variables. Parameters of the models were calculated through the least squares method. Models testing show that all are good enough, so for estimation of optimal replacement time is sufficient to use simpler models. In addition to the testing of models we developed the method (tested on selected simple model which enable us in actual real time (with limited data set to indicate the optimal replacement time. The indicated time moment is close enough to the optimal replacement time t*.

  14. 2011 Cost of Wind Energy Review

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

    2013-03-01

    This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

  15. Cost-benefit analysis: introducing energy efficient and renewable energy appliances in Lebanese households

    Energy Technology Data Exchange (ETDEWEB)

    Ruble, Isabella [American University of Beirut, Department of Economics (Lebanon)], E-mail: economics.ir@gmail.com

    2011-07-01

    In Lebanon, neglect of the electricity sector has led to a serious shortage in installed capacity. Recently, the government of Lebanon declared its intention to raise the share of renewable energy (RE) year by year in order to reduce energy consumption. This paper gave a cost-benefit analysis and reviewed the replacement of five major traditional household appliances with their energy efficient (EE) or renewable energy counterparts. This initiative would mostly be felt in three main areas: electricity consumption, consumer costs, and government expenditure. There is a strong possibility that the electricity demand of the 1.2 million Lebanese households can be reduced by introduction of these EE household appliances. Benefits would also accrue to the government in the form of avoided subsidies and reduced need for installed capacity. This paper finds that the benefits to be expected from these policy recommendations largely outweigh the costs.

  16. Survey costs associated with the replacement of electric showers for solar heaters; Levantamento de custos associados a substituicao de chuveiros eletricos por aquecedores solares

    Energy Technology Data Exchange (ETDEWEB)

    Belchior, Fernando Nunes [Universidade Federal de Itajuba (UFEI), MG (Brazil); Araujo, Jose Euripedes de

    2010-07-01

    This paper aims to explain the benefits of replacing electric shower for solar water heaters, and a consequent drop in peak demand for electric power generation and residential consumption in the economy. For this, will be shown the lifting of solar radiation per square meter in Brazil, studied in 250 locations, the most representative in terms of solar energy in this country. The costs presented are associated with replacement of 5 million, 10 million and 20 million electric showers. (author)

  17. A bivariate optimal replacement policy with cumulative repair cost limit under cumulative damage model

    Indian Academy of Sciences (India)

    MIN-T SAI LAI; SHIH-CHIH CHEN

    2016-05-01

    In this paper, a bivariate replacement policy (n, T) for a cumulative shock damage process is presented that included the concept of cumulative repair cost limit. The arrival shocks can be divided into two kinds of shocks. Each type-I shock causes a random amount of damage and these damages are additive. When the total damage exceeds a failure level, the system goes into serious failure. Type-II shock causes the system into minor failure and such a failure can be corrected by minimal repair. When a minor failure occurs, the repaircost will be evaluated and minimal repair is executed if the accumulated repair cost is less than a predetermined limit L. The system is replaced at scheduled time T, at n-th minor failure, or at serious failure. The long-term expected cost per unit time is derived using the expected costs as the optimality criterion. The minimum-cost policy is derived, and existence and uniqueness of the optimal n* and T* are proved. This bivariate optimal replacement policy (n, T) is showed to be better than the optimal T* and the optimal n* policy.

  18. Renewable energy costs, potentials, barriers. Conceptual issues

    Energy Technology Data Exchange (ETDEWEB)

    Verbruggen, Aviel [University of Antwerp (Belgium); Fischedick, Manfred [Wuppertal Institute for Climate, Environment, Energy (Germany); Moomaw, William [Tufts University, Center for International Environment and Resource Policy (United States); Weir, Tony [University of the South Pacific, Fiji Islands (Fiji); Nadai, Alain [Centre International de Recherche sur Environnement et le Developpement CIRED (France); Nilsson, Lars J. [University of Lund (Sweden); Nyboer, John [Simon Fraser University, School of Resource and Environmental Management (Canada); Sathaye, Jayant [Lawrence Berkeley Laboratory (United States)

    2010-02-15

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies. (author)

  19. THE COSTS OF ENERGY SUPPLY SECURITY

    Energy Technology Data Exchange (ETDEWEB)

    Rogner, H.H.; Langlois, L.M.; McDonald, A.; Weisser, D.; Howells, M.

    2007-07-01

    In general, increasing a country's energy supply security does not come for free. It costs money to build up a strategic reserve, to increase supply diversity or even to accelerate energy efficiency improvements. Nor are all investments in increasing energy supply security cost effective, even if the shocks they are designed to insure against can be predicted with 100% accuracy. The first half of the paper surveys different definitions and strategies associated with the concept of energy supply security, and compares current initiatives to establish an 'assured supply of nuclear fuel' to the International Energy Agency's (IEA's) system of strategic national oil reserves. The second half of the paper presents results from several case studies of the costs and effectiveness of selected energy supply security policies. One case study examines alternative strategies for Lithuania following the scheduled closure of the Ignalina-2 nuclear reactor in 2009. The second case study examines, for countries with different energy resources and demand structures, the effectiveness of a policy to increase supply diversity by expanding renewable energy supplies. (auth)

  20. Software Cuts Homebuilding Costs, Increases Energy Efficiency

    Science.gov (United States)

    2015-01-01

    To sort out the best combinations of technologies for a crewed mission to Mars, NASA Headquarters awarded grants to MIT's Department of Aeronautics and Astronautics to develop an algorithm-based software tool that highlights the most reliable and cost-effective options. Utilizing the software, Professor Edward Crawley founded Cambridge, Massachussetts-based Ekotrope, which helps homebuilders choose cost- and energy-efficient floor plans and materials.

  1. Consistent cost curves for identification of optimal energy savings across industry and residential sectors

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik; Baldini, Mattia

    Energy savings are a key element in reaching ambitious climate targets and may contribute to increased productivity as well. For identification of the most attractive saving options cost curves for savings are constructed illustrating potentials of savings with associated costs. In optimisation...... with constructing and applying the cost curves in modelling: • Cost curves do not have the same cost interpretation across economic subsectors and end-use technologies (investment cost for equipment varies – including/excluding installation – adaptation costs – indirect production costs) • The time issue of when...... the costs are incurred and savings (difference in discount rates both private and social) • The issue of marginal investment in a case of replacement anyway or a full investment in the energy saving technology • Implementation costs (and probability of investment) differs across sectors • Cost saving...

  2. Optimizing Data Centre Energy and Environmental Costs

    Science.gov (United States)

    Aikema, David Hendrik

    Data centres use an estimated 2% of US electrical power which accounts for much of their total cost of ownership. This consumption continues to grow, further straining power grids attempting to integrate more renewable energy. This dissertation focuses on assessing and reducing data centre environmental and financial costs. Emissions of projects undertaken to lower the data centre environmental footprints can be assessed and the emission reduction projects compared using an ISO-14064-2-compliant greenhouse gas reduction protocol outlined herein. I was closely involved with the development of the protocol. Full lifecycle analysis and verifying that projects exceed business-as-usual expectations are addressed, and a test project is described. Consuming power when it is low cost or when renewable energy is available can be used to reduce the financial and environmental costs of computing. Adaptation based on the power price showed 10--50% potential savings in typical cases, and local renewable energy use could be increased by 10--80%. Allowing a fraction of high-priority tasks to proceed unimpeded still allows significant savings. Power grid operators use mechanisms called ancillary services to address variation and system failures, paying organizations to alter power consumption on request. By bidding to offer these services, data centres may be able to lower their energy costs while reducing their environmental impact. If providing contingency reserves which require only infrequent action, savings of up to 12% were seen in simulations. Greater power cost savings are possible for those ceding more control to the power grid operator. Coordinating multiple data centres adds overhead, and altering at which data centre requests are processed based on changes in the financial or environmental costs of power is likely to increase this overhead. Tests of virtual machine migrations showed that in some cases there was no visible increase in power use while in others power use

  3. Energy Cost Impact of Non-Residential Energy Code Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Hart, Philip R.; Rosenberg, Michael I.

    2016-08-22

    The 2012 International Energy Conservation Code contains 396 separate requirements applicable to non-residential buildings; however, there is no systematic analysis of the energy cost impact of each requirement. Consequently, limited code department budgets for plan review, inspection, and training cannot be focused on the most impactful items. An inventory and ranking of code requirements based on their potential energy cost impact is under development. The initial phase focuses on office buildings with simple HVAC systems in climate zone 4C. Prototype building simulations were used to estimate the energy cost impact of varying levels of non-compliance. A preliminary estimate of the probability of occurrence of each level of non-compliance was combined with the estimated lost savings for each level to rank the requirements according to expected savings impact. The methodology to develop and refine further energy cost impacts, specific to building type, system type, and climate location is demonstrated. As results are developed, an innovative alternative method for compliance verification can focus efforts so only the most impactful requirements from an energy cost perspective are verified for every building and a subset of the less impactful requirements are verified on a random basis across a building population. The results can be further applied in prioritizing training material development and specific areas of building official training.

  4. Methodology for Evaluating Cost-effectiveness of Commercial Energy Code Changes

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-31

    This document lays out the U.S. Department of Energy’s (DOE’s) method for evaluating the cost-effectiveness of energy code proposals and editions. The evaluation is applied to provisions or editions of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1 and the International Energy Conservation Code (IECC). The method follows standard life-cycle cost (LCC) economic analysis procedures. Cost-effectiveness evaluation requires three steps: 1) evaluating the energy and energy cost savings of code changes, 2) evaluating the incremental and replacement costs related to the changes, and 3) determining the cost-effectiveness of energy code changes based on those costs and savings over time.

  5. Cost optimal levels for energy performance requirements

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike;

    This report summarises the work done within the Concerted Action EPBD from December 2010 to April 2011 in order to feed into the European Commission's proposal for a common European procedure for a Cost-Optimal methodology under the Directive on the Energy Performance of Buildings (recast) 2010/3...

  6. The High Cost of Saving Energy Dollars.

    Science.gov (United States)

    Rose, Patricia

    1985-01-01

    In alternative financing a private company provides the capital and expertise for improving school energy efficiency. Savings are split between the school system and the company. Options for municipal leasing, cost sharing, and shared savings are explained along with financial, procedural, and legal considerations. (MLF)

  7. Cost Optimal Reliability Based Inspection and Replacement Planning of Piping Subjected to CO2 Corrosion

    DEFF Research Database (Denmark)

    Hellevik, S. G.; Langen, I.; Sørensen, John Dalsgaard

    1999-01-01

    A methodology for cost optimal reliability based inspection and replacement planning of piping subjected to CO2 corrosion is described. Both initial (design phase) and in-service planning are dealt with. The methodology is based on the application of methods for structural reliability analysis...... within the framework of Bayesian decision theory. The planning problem is formulated as an optimization problem where the expected lifetime costs are minimized with a constraint on the minimum acceptable reliability level. The optimization parameters are the number of inspections in the expected lifetime......, the inspection times and methods. In the design phase the nominal design wall thickness is also treated as an optimization parameter. The most important benefits gained through the application of the methodology are consistent evaluation of the consequences of different inspection and replacement plans...

  8. Potential Energy Cost Savings from Increased Commercial Energy Code Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.; Zhang, Jian; Cohan, David F.

    2016-08-22

    An important question for commercial energy code compliance is: “How much energy cost savings can better compliance achieve?” This question is in sharp contrast to prior efforts that used a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. A field investigation method is being developed that goes beyond the binary approach to determine how much energy cost savings is not realized. Prototype building simulations were used to estimate the energy cost impact of varying levels of non-compliance for newly constructed office buildings in climate zone 4C. Field data collected from actual buildings on specific conditions relative to code requirements was then applied to the simulation results to find the potential lost energy savings for a single building or for a sample of buildings. This new methodology was tested on nine office buildings in climate zone 4C. The amount of additional energy cost savings they could have achieved had they complied fully with the 2012 International Energy Conservation Code is determined. This paper will present the results of the test, lessons learned, describe follow-on research that is needed to verify that the methodology is both accurate and practical, and discuss the benefits that might accrue if the method were widely adopted.

  9. Hospital costs and clinical characteristics of continuous renal replacement therapy patients: a continuous ethical dilemma.

    Science.gov (United States)

    Coustasse, Alberto

    2008-01-01

    This study describes the clinical characteristics and examines hospital costs involved in the care of 117 patients undergoing Continuous Renal Replacement Therapy (CRRT) between January 1999 and August 2002. The majority (70.9%) of the patients undergoing CRRT expired in the hospital. Statistically significant differences were found with respect to the length of stay for discharge status and gender; and with respect to costs for surgery versus no surgery and gender. Significant differences were also found between discharge status and gender, age, and cardiovascular surgery. The results of this study raise economic and ethical questions related to the cost/benefit of CRRT and the futility of the treatment. Hospitals should ensure that they have utilization protocols in place for CRRT, promote cooperation between intensive care unit (ICU) physicians and nephrologists, and create multi-disciplinary CRRT teams in an effort to maximize the effectiveness of therapy and minimize costs.

  10. Time-driven activity based costing of total knee replacement surgery at a London teaching hospital.

    Science.gov (United States)

    Chen, Alvin; Sabharwal, Sanjeeve; Akhtar, Kashif; Makaram, Navnit; Gupte, Chinmay M

    2015-12-01

    The aim of this study was to conduct a time-driven activity based costing (TDABC) analysis of the clinical pathway for total knee replacement (TKR) and to determine where the major cost drivers lay. The in-patient pathway was prospectively mapped utilising a TDABC model, following 20 TKRs. The mean age for these patients was 73.4 years. All patients were ASA grade I or II and their mean BMI was 30.4. The 14 varus knees had a mean deformity of 5.32° and the six valgus knee had a mean deformity of 10.83°. Timings were prospectively collected as each patient was followed through the TKR pathway. Pre-operative costs including pre-assessment and joint school were £ 163. Total staff costs for admission and the operating theatre were £ 658. Consumables cost for the operating theatre were £ 1862. The average length of stay was 5.25 days at a total cost of £ 910. Trust overheads contributed £ 1651. The overall institutional cost of a 'noncomplex' TKR in patients without substantial medical co-morbidities was estimated to be £ 5422, representing a profit of £ 1065 based on a best practice tariff of £ 6487. The major cost drivers in the TKR pathway were determined to be theatre consumables, corporate overheads, overall ward cost and operating theatre staffing costs. Appropriate discounting of implant costs, reduction in length of stay by adopting an enhanced recovery programme and control of corporate overheads through the use of elective orthopaedic treatment centres are proposed approaches for reducing the overall cost of treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Energy cost of creating quantum coherence

    Science.gov (United States)

    Misra, Avijit; Singh, Uttam; Bhattacharya, Samyadeb; Pati, Arun Kumar

    2016-05-01

    We consider physical situations where the resource theories of coherence and thermodynamics play competing roles. In particular, we study the creation of quantum coherence using unitary operations with limited thermodynamic resources. We find the maximal coherence that can be created under unitary operations starting from a thermal state and find explicitly the unitary transformation that creates the maximal coherence. Since coherence is created by unitary operations starting from a thermal state, it requires some amount of energy. This motivates us to explore the trade-off between the amount of coherence that can be created and the energy cost of the unitary process. We also find the maximal achievable coherence under the constraint on the available energy. Additionally, we compare the maximal coherence and the maximal total correlation that can be created under unitary transformations with the same available energy at our disposal. We find that when maximal coherence is created with limited energy, the total correlation created in the process is upper bounded by the maximal coherence, and vice versa. For two-qubit systems we show that no unitary transformation exists that creates the maximal coherence and maximal total correlation simultaneously with a limited energy cost.

  12. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, William L

    2012-10-31

    glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.

  13. Operative costs, reasons for operative waste, and vendor credit replacement in spinal surgery.

    Science.gov (United States)

    Epstein, Nancy E; Roberts, Rita; Collins, John

    2015-01-01

    In 2012, Epstein et al. documented that educating spinal surgeons reduced the cost of operative waste (explanted devices: placed but removed prior to closure) occurring during anterior cervical diskectomy/fusion from 20% to 5.8%.[5] This prompted the development of a two-pronged spine surgeon-education program (2012-2014) aimed at decreasing operative costs for waste, and reducing the nine reasons for operative waste. The spine surgeon-education program involved posting the data for operative costs of waste and the nine reasons for operative waste over the neurosurgery/orthopedic scrub sinks every quarter. These data were compared for 2012 (latter 10 months), 2013 (12 months), and 2014 (first 9 months) (e.g. data were normalized). Savings from a 2013 Vendor Credit Replacement program were also calculated. From 2012 to 2013 and 2014, spinal operative costs for waste were, respectively reduced by 64.7% and 61% for orthopedics, and 49.4% and 45.2% for neurosurgery. Although reduced by the program, the major reason for operative waste for all 3 years remained surgeon-related factors (e.g. 159.6, to 67, and 96, respectively). Alternatively, the eight other reasons for operative waste were reduced from 68.4 (2012) to 12 (2013) and finally to zero by 2014. Additionally, the Vendor Replacement program for 2013 netted $78,564. The spine surgeon-education program reduced the costs/reasons for operative waste for 2012 to lower levels by 2013 and 2014. Although the major cost/reasons for operative waste were attributed to surgeon-related factors, these declined while the other eight reasons for operative waste were reduced to zero by 2014.

  14. Operative costs, reasons for operative waste, and vendor credit replacement in spinal surgery

    Directory of Open Access Journals (Sweden)

    Nancy E Epstein

    2015-01-01

    Full Text Available Background: In 2012, Epstein et al. documented that educating spinal surgeons reduced the cost of operative waste (explanted devices: placed but removed prior to closure occurring during anterior cervical diskectomy/fusion from 20% to 5.8%. [5] This prompted the development of a two-pronged spine surgeon-education program (2012-2014 aimed at decreasing operative costs for waste, and reducing the nine reasons for operative waste. Methods: The spine surgeon-education program involved posting the data for operative costs of waste and the nine reasons for operative waste over the neurosurgery/orthopedic scrub sinks every quarter. These data were compared for 2012 (latter 10 months, 2013 (12 months, and 2014 (first 9 months (e.g. data were normalized. Savings from a 2013 Vendor Credit Replacement program were also calculated. Results: From 2012 to 2013 and 2014, spinal operative costs for waste were, respectively reduced by 64.7% and 61% for orthopedics, and 49.4% and 45.2% for neurosurgery. Although reduced by the program, the major reason for operative waste for all 3 years remained surgeon-related factors (e.g. 159.6, to 67, and 96, respectively. Alternatively, the eight other reasons for operative waste were reduced from 68.4 (2012 to 12 (2013 and finally to zero by 2014. Additionally, the Vendor Replacement program for 2013 netted $78,564. Conclusions: The spine surgeon-education program reduced the costs/reasons for operative waste for 2012 to lower levels by 2013 and 2014. Although the major cost/reasons for operative waste were attributed to surgeon-related factors, these declined while the other eight reasons for operative waste were reduced to zero by 2014.

  15. The energy costs of wading in water

    Directory of Open Access Journals (Sweden)

    Lewis G. Halsey

    2014-06-01

    Full Text Available Studies measuring the energy costs of wading in water have been limited to higher walking speeds in straight lines, in deep water. However, much foraging in water, by both humans and other primates, is conducted in the shallows and at low speeds of locomotion that include elements of turning, as befits searching for cryptic or hidden foods within a patch. The present study brings together data on the rate of oxygen consumption during wading by humans from previous studies, and augments these with new data for wading in shallower depths, with slower and more tortuous walking, to obtain a better understanding both of the absolute costs of wading in typical scenarios of aquatic foraging and of how the cost of wading varies as a function of water depth and speed of locomotion. Previous and present data indicate that, at low speeds, wading has a similar energetic cost to walking on land, particularly at lower water depths, and only at higher speeds is the cost of wading noticeably more expensive than when water is absent. This is probably explained by the relatively small volume of water that must be displaced during locomotion in shallow waters coupled with the compensating support to the limbs that the water affords. The support to the limbs/body provided by water is discussed further, in the context of bipedal locomotion by non-human primates during wading.

  16. Social Cost of Biomass Energy from Switchgrass in Western Massachusetts

    OpenAIRE

    Timmons, David

    2013-01-01

    Producing biomass energy requires much land, and effects of biomass production on ecosystem services could greatly affect total biomass energy cost. This study estimates switchgrass production cost in western Massachusetts at three levels: private production cost, private cost plus social cost of nitrogen fertilizer externalities, and those costs plus the social opportunity cost of foregone forest ecosystem services. Values for nitrogen externalities and forest ecosystem services estimated wi...

  17. Cost analysis of integrated renal replacement therapy program in the province of Toledo (2012-2013).

    Science.gov (United States)

    Conde Olasagasti, José L; Garcia Diaz, José Eugenio; Carrasco Benitez, Pilar; Mareque Ruiz, Miguel Ángel; Parras Partido, María Pilar; Moreno Alia, Inmaculada; Jimenez Lopez, Laura; Cia Lecumberri, Juan José; Araque, Pilar; Fernandez, María Luisa

    Renal replacement therapy (RRT) is the object of constant analysis in the search for efficiency and sustainability. To calculate the direct cost of healthcare for the prevalent RRT population in the province of Toledo (2012/2013). a) Population: All prevalent patients at some point in RRT in 2012 (669) and in 2013 (682). b) Costs included (€): 1) dialysis procedure; 2) inpatient, outpatient and emergency care, dialysis and non-dialysis related; 3) drug consumption; 4) medical transport. c) Calculation and analysis: The aggregate localized or reconstructed cost of each item was calculated from the individual cost of each patient. Annual cost and cost per patient/year was calculated for the whole RRT and for its subprograms (€). a) Aggregate costs: The total cost of RRT amounted to 15.84 and 15.77 million euros (2012/2013). Dialysis procedures account for 40.2% of the total while the sum of hospital care and drug consumption represents 41.5%. Healthcare for patients on hospital haemodialysis (HHD) and combined haemodialysis (CHD), peritoneal dialysis (PD) and transplant (Tx) accounts for 70.0, 5.0 and 25.0% of the total respectively. b) Patient/year cost: From the number of patients/year provided by each subprogramme, the following values were obtained in 2012/2013: All RRT 26,130/25,379; HHD 49,167/53,289; CHD 44,657/44,971; PD 45,538/51,869 and Tx 10,909/10,984. Our results are consistent with others published, although our patient/year values are slightly higher, probably because they include elements such as outpatient pharmacy, hospital and medical transport cargo. The growing contribution of Tx to the survival of the whole RRT population contains the overall costs and reduces the patient/year cost, making RRT sustainable. Copyright © 2017 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  18. Effects of replacing lactose from milk replacer by glucose, fructose, or glycerol on energy partitioning in veal calves.

    Science.gov (United States)

    Gilbert, M S; Pantophlet, A J; van den Borne, J J G C; Hendriks, W H; Schols, H A; Gerrits, W J J

    2016-02-01

    Calf milk replacers contain 40 to 50% lactose. Fluctuating dairy prices are a major economic incentive to replace lactose from milk replacers by alternative energy sources. Our objective was, therefore, to determine the effects of replacement of lactose with glucose, fructose, or glycerol on energy and protein metabolism in veal calves. Forty male Holstein-Friesian calves (114±2.4 kg) were fed milk replacer containing 46% lactose (CON) or 31% lactose and 15% of glucose (GLUC), fructose (FRUC), or glycerol (GLYC). Solid feed was provided at 10 g of dry matter (DM)/kg of metabolic body weight (BW(0.75)) per day. After an adaptation of 48 d, individual calves were harnessed, placed in metabolic cages, and housed in pairs in respiration chambers. Apparent total-tract disappearance of DM, energy, and N and complete energy and N balances were measured. The GLUC, FRUC, and GLYC calves received a single dose of 1.5 g of [U-(13)C]glucose, [U-(13)C]fructose, or [U-(13)C]glycerol, respectively, with their milk replacer at 0630 h and exhaled (13)CO2 and (13)C excretion with feces was measured. Apparent total-tract disappearance was decreased by 2.2% for DM, 3.2% for energy, and 4.2% for N in FRUC compared with CON calves. Energy and N retention did not differ between treatments, and averaged 299±16 kJ/kg of BW(0.75) per day and 0.79±0.04 g/kg of BW(0.75) per day, respectively, although FRUC calves retained numerically less N (13%) than other calves. Recovery of (13)C isotopes as (13)CO2 did not differ between treatments and averaged 72±1.6%. The time at which the maximum rate of (13)CO2 production was reached was more than 3 h delayed for FRUC calves, which may be explained by a conversion of fructose into other substrates before being oxidized. Recovery of (13)C in feces was greater for FRUC calves (7.7±0.59%) than for GLUC (1.0±0.27%) and GLYC calves (0.5±0.04%), indicating incomplete absorption of fructose from the small intestine resulting in fructose excretion or

  19. Killing and replacing queen-laid eggs: low cost of worker policing in the honeybee.

    Science.gov (United States)

    Kärcher, Martin H; Ratnieks, Francis L W

    2014-07-01

    Worker honeybees, Apis mellifera, police each other's reproduction by killing worker-laid eggs. Previous experiments demonstrated that worker policing is effective, killing most (∼98%) worker-laid eggs. However, many queen-laid eggs were also killed (∼50%) suggesting that effective policing may have high costs. In these previous experiments, eggs were transferred using forceps into test cells, mostly into unrelated discriminator colonies. We measured both the survival of unmanipulated queen-laid eggs and the proportion of removal errors that were rectified by the queen laying a new egg. Across 2 days of the 3-day egg stage, only 9.6% of the queen-laid eggs in drone cells and 4.1% in worker cells were removed in error. When queen-laid eggs were removed from cells, 85% from drone cells and 61% from worker cells were replaced within 3 days. Worker policing in the honeybee has a high benefit to policing workers because workers are more related to the queen's sons (brothers, r = 0.25) than sister workers' sons (0.15). This study shows that worker policing also has a low cost in terms of the killing of queen-laid eggs, as only a small proportion of queen-laid eggs are killed, most of which are rapidly replaced.

  20. CEO- CNE Relationships: Building an Evidence-Base of Chief Nursing Executive Replacement Costs

    Directory of Open Access Journals (Sweden)

    Darlene Sredl, Niang-Huei Peng

    2010-01-01

    Full Text Available OBJECTIVE: Explore professional relationships between Chief Nurse Executives (CNEs and Chief Executive Officers (CEOs; CNE ethnic diversity; and CNE replacement costs. BACKGROUND: Theoretical frameworks - Marilyn Ray's Theory of Bureaucratic Caring, and Turkel's Theory of Relational Complexity espousing economic as well as caring variables. METHODS: Exploratory mixed-method descriptive design using CNE mailed survey. RESULTS: CNE- cited opportunities for maintaining a positive relationship with the CEO: respect for CEO; goal- sharing (r=.782, p<0.01; having a strong relationship (r= .718, p<0.01; co-problem-solving (r=.437, p<0.01; having an interesting job (r=.406, p<0.01; having similar interests with CEO (r= .346, p<0.01; CEO and CNE maintaining specific roles (r= .261, p<0.05; satisfaction with CNE income (r=.251, p<0.05; willingness to improve relationship with CEO (r=.254, p<0.05. CNE positions demonstrated an ethnic diversity factor of 0.03%. CNE replacement costs to healthcare facilities were over 1.5 million dollars. CONCLUSION: CNE/CEO relationships have identified cohesive factors that may contribute to CNE longevity in position; an ethically diverse CNE deficit exists; and, CNE turnover and vacancy rates impact an organization's financial health and quality of care.

  1. Energy Cost Accounting: Conventional and Flow-oriented Approaches

    Directory of Open Access Journals (Sweden)

    Bierer Annett

    2012-06-01

    Full Text Available In more and more companies, energy efficiency and energy cost come to the fore. The scope ranges from energy consumption and energy delivery cost to energy losses and the infrastruc-ture facilitating the use of energy. Their increasing importance asks for more trans¬parency of the cost of energy consumption, losses, and conservation potentials. However, despite of the identified relevance, no mature concepts exist to record energy-related cost in a way that con-sumption and losses become transparent. Consequently, based on the charac¬teris¬tics of the production factor energy, the paper presents options for a sophisticated energy cost accu¬mu¬la-tion and assignment in conventional cost accounting and flow cost accounting methodology.

  2. 77 FR 24940 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2012-04-26

    ...: Representative Average Unit Costs of Energy'', dated March 10, 2011, 76 FR 13168. May 29, 2012, the cost figures...: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency and Renewable Energy, Department... forecasting the representative average unit costs of five residential energy sources for the year...

  3. Cost-effectiveness of total hip and knee replacements for the Australian population with osteoarthritis: discrete-event simulation model.

    Directory of Open Access Journals (Sweden)

    Hideki Higashi

    Full Text Available BACKGROUND: Osteoarthritis constitutes a major musculoskeletal burden for the aged Australians. Hip and knee replacement surgeries are effective interventions once all conservative therapies to manage the symptoms have been exhausted. This study aims to evaluate the cost-effectiveness of hip and knee replacements in Australia. To our best knowledge, the study is the first attempt to account for the dual nature of hip and knee osteoarthritis in modelling the severities of right and left joints separately. METHODOLOGY/PRINCIPAL FINDINGS: We developed a discrete-event simulation model that follows up the individuals with osteoarthritis over their lifetimes. The model defines separate attributes for right and left joints and accounts for several repeat replacements. The Australian population with osteoarthritis who were 40 years of age or older in 2003 were followed up until extinct. Intervention effects were modelled by means of disability-adjusted life-years (DALYs averted. Both hip and knee replacements are highly cost effective (AUD 5,000 per DALY and AUD 12,000 per DALY respectively under an AUD 50,000/DALY threshold level. The exclusion of cost offsets, and inclusion of future unrelated health care costs in extended years of life, did not change the findings that the interventions are cost-effective (AUD 17,000 per DALY and AUD 26,000 per DALY respectively. However, there was a substantial difference between hip and knee replacements where surgeries administered for hips were more cost-effective than for knees. CONCLUSIONS/SIGNIFICANCE: Both hip and knee replacements are cost-effective interventions to improve the quality of life of people with osteoarthritis. It was also shown that the dual nature of hip and knee OA should be taken into account to provide more accurate estimation on the cost-effectiveness of hip and knee replacements.

  4. 7 CFR 1709.5 - Determination of energy cost benchmarks.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Determination of energy cost benchmarks. 1709.5... SERVICE, DEPARTMENT OF AGRICULTURE ASSISTANCE TO HIGH ENERGY COST COMMUNITIES General Requirements § 1709.5 Determination of energy cost benchmarks. (a) The Administrator shall establish, using the...

  5. Is testosterone replacement therapy in males with hypogonadism cost-effective? An analysis in Sweden.

    Science.gov (United States)

    Arver, Stefan; Luong, Ba; Fraschke, Anina; Ghatnekar, Ola; Stanisic, Sanja; Gultyev, Dmitry; Müller, Elvira

    2014-01-01

    Testosterone replacement therapy (TRT) has been recommended for the treatment of primary and secondary hypogonadism. However, long-term implications of TRT have not been investigated extensively. The aim of this analysis was to evaluate health outcomes and costs associated with life-long TRT in patients suffering from Klinefelter syndrome and late-onset hypogonadism (LOH). A Markov model was developed to assess cost-effectiveness of testosterone undecanoate (TU) depot injection treatment compared with no treatment. Health outcomes and associated costs were modeled in monthly cycles per patient individually along a lifetime horizon. Modeled health outcomes included development of type 2 diabetes, depression, cardiovascular and cerebrovascular complications, and fractures. Analysis was performed for the Swedish health-care setting from health-care payer's and societal perspective. One-way sensitivity analyses evaluated the robustness of results. The main outcome measures were quality-adjusted life-years (QALYs) and total cost in TU depot injection treatment and no treatment cohorts. In addition, outcomes were also expressed as incremental cost per QALY gained for TU depot injection therapy compared with no treatment (incremental cost-effectiveness ratio [ICER]). TU depot injection compared to no-treatment yielded a gain of 1.67 QALYs at an incremental cost of 28,176 EUR (37,192 USD) in the Klinefelter population. The ICER was 16,884 EUR (22,287 USD) per QALY gained. Outcomes in LOH population estimated benefits of TRT at 19,719 EUR (26,029 USD) per QALY gained. Results showed to be considerably robust when tested in sensitivity analyses. Variation of relative risk to develop type 2 diabetes had the highest impact on long-term outcomes in both patient groups. This analysis suggests that lifelong TU depot injection therapy of patients with hypogonadism is a cost-effective treatment in Sweden. Hence, it can support clinicians in decision making when considering

  6. Costs and benefits of relaunching nuclear energy in Italy

    OpenAIRE

    2012-01-01

    This paper supplies elements for assessing the costs and benefits of electronuclear energy in order to pursue three objectives: security of supply, cost reduction, and environmental sustainability. The study reached the following conclusions: 1) the use of nuclear energy increases the diversification of the energy mix and of energy suppliers, raising energy security levels, but it does not reduce Italy�s dependence on foreign energy; 2) the use of nuclear energy would not imply a reduction ...

  7. Impending sources of energy to replace fire wood in semi arid climatic zones: A case study in Ethiopia

    Directory of Open Access Journals (Sweden)

    Mihret Dananto Ulsido

    2013-06-01

    Full Text Available The present study paper shows an alternative source of energy that can decrease the extensive use of fire wood in Ethiopia. The country’s entire rural area and significant part of urban population is completely dependent on fire wood as a source of energy. This practice takes its own toll, the forest is on the verge of being wiped out and as a result a clear change of climate and loss of natural biodiversity resources is visible. Fire wood is not the only source of energy available in the country. In this paper, based on their low cost, construction material availability and the required unskilled labor it is shown that biogas and solar energy are potentially feasible source of energy to replace firewood for cooking.

  8. Strategy on energy saving reconstruction of distribution networks based on life cycle cost

    Science.gov (United States)

    Chen, Xiaofei; Qiu, Zejing; Xu, Zhaoyang; Xiao, Chupeng

    2017-08-01

    Because the actual distribution network reconstruction project funds are often limited, the cost-benefit model and the decision-making method are crucial for distribution network energy saving reconstruction project. From the perspective of life cycle cost (LCC), firstly the research life cycle is determined for the energy saving reconstruction of distribution networks with multi-devices. Then, a new life cycle cost-benefit model for energy-saving reconstruction of distribution network is developed, in which the modification schemes include distribution transformers replacement, lines replacement and reactive power compensation. In the operation loss cost and maintenance cost area, the operation cost model considering the influence of load season characteristics and the maintenance cost segmental model of transformers are proposed. Finally, aiming at the highest energy saving profit per LCC, a decision-making method is developed while considering financial and technical constraints as well. The model and method are applied to a real distribution network reconstruction, and the results prove that the model and method are effective.

  9. Reducing Operating Costs and Energy Consumption at Water Utilities

    Science.gov (United States)

    Due to their unique combination of high energy usage and potential for significant savings, utilities are turning to energy-efficient technologies to help save money. Learn about cost and energy saving technologies from this brochure.

  10. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Laura [Lockheed Martin, Manassas, VA (United States); Smith, Paul [John Halkyard and Associates: Glosten Associates, Houston, TX (United States); Rizea, Steven [Makai Ocean Engineering, Waimanalo, HI (United States); Van Ryzin, Joe [Makai Ocean Engineering, Waimanalo, HI (United States); Morgan, Charles [Planning Solutions, Inc., Vancouver, WA (United States); Noland, Gary [G. Noland and Associates, Inc., Pleasanton, CA (United States); Pavlosky, Rick [Lockheed Martin, Manassas, VA (United States); Thomas, Michael [Lockheed Martin, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates: Glosten Associates, Houston, TX (United States)

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  11. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  12. Investigations of a Cost-Optimal Zero Energy Balance

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Nørgaard, Jesper; Heiselberg, Per

    2012-01-01

    have indicated that with current energy prices and technology, a cost-optimal Net ZEB zero energy balance accounts for only the building related energy use. Moreover, with high user related energy use is even more in favour of excluding appliances from the zero energy balance......., in particular the types of energy use that should be included in it. Since the user perspective and the cost of energy-efficiency technologies is so crucial for the successful adaptation of energy-conservation solutions, such like the Net ZEB concept, this paper has deployed the Life Cycle Cost (LCC) analysis...... and taken a view point of private building owner to investigate what types of energy uses should be included in the cost-optimal zero energy balance. The analysis is conducted for five renewable energy supply systems and five user profiles with a study case of a multi-storey residential Net ZEB. The results...

  13. Replacement of Old Wind Turbines Assessed from Energy, Environmental and Economic Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Rydh, Carl Johan (e-mail: carl.johan.rydh@hik.se); Jonsson, Maria; Lindahl, Pia

    2004-06-01

    Different operating conditions and alternatives for treatment and replacement of old 225 kW wind turbines (WTs) were evaluated from a life cycle perspective from cradle to grave. Indicators were calculated for primary fossil energy requirements (MJ{sub pf}/kWh{sub el}), CO{sub 2} emission (CO{sub 2}/kWh{sub el}) and economy (Euro/kWh{sub el}). Extending the service life ten years by renovation results in 32% lower primary energy requirements than if the WT is recycled after 20 years at the end of the technical service life. The primary fossil energy requirement for electricity production is 2.5 - 4.6 times higher for fossil based electricity production than for WTs. The energy payback time was calculated to 3.9 months for 225 kW WTs and to 2.7 months for 2 MW WTs. This means that after 3.9 months electricity production, the WT starts to generate net electricity. The CO{sub 2} emission for WTs was calculated to 7.2-11 g CO{sub 2}/kWh, which is 4.6 lower than the average Swedish electricity mix and 122 times lower than for a coal condensing plant. The highest CO{sub 2} emission for electricity generation from WTs was found in the phase of materials production (60-64% of the total emission) followed by production of WTs (32%). The phases of transportation/disassembly and renovation/maintenance have relatively low influence, contributing 2-3% and 2-6%. The monetary costs for electricity production were calculated to be in the range 0.029-0.054 Euro/kWh (excluding VAT and subsidies). The lowest cost was found for 2 MW WTs and the highest cost for renovation of 225 kW WTs. The relative importance of different parameters influence on energy requirements and CO{sub 2} emissions were found to be as follows: (1) service life, wind conditions/conversion efficiency and material requirement, (2) recycling rate and, (3) transportation distance. To utilise areas suitable for wind turbines efficiently, it is important to use the most efficient technologies with highest possible

  14. Offshore Wind Energy Cost Modeling Installation and Decommissioning

    CERN Document Server

    Kaiser, Mark J

    2012-01-01

    Offshore wind energy is one of the most promising and fastest growing alternative energy sources in the world. Offshore Wind Energy Cost Modeling provides a methodological framework to assess installation and decommissioning costs, and using examples from the European experience, provides a broad review of existing processes and systems used in the offshore wind industry. Offshore Wind Energy Cost Modeling provides a step-by-step guide to modeling costs over four sections. These sections cover: ·Background and introductory material, ·Installation processes and vessel requirements, ·Installation cost estimation, and ·Decommissioning methods and cost estimation.  This self-contained and detailed treatment of the key principles in offshore wind development is supported throughout by visual aids and data tables. Offshore Wind Energy Cost Modeling is a key resource for anyone interested in the offshore wind industry, particularly those interested in the technical and economic aspects of installation and decom...

  15. Green Energy in New Construction: Maximize Energy Savings and Minimize Cost

    Science.gov (United States)

    Ventresca, Joseph

    2010-01-01

    People often use the term "green energy" to refer to alternative energy technologies. But green energy doesn't guarantee maximum energy savings at a minimum cost--a common misconception. For school business officials, green energy means getting the lowest energy bills for the lowest construction cost, which translates into maximizing green energy…

  16. Introducing cost-optimal levels for energy requirements

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    2012-01-01

    The recast of the Directive on the Energy Performance of Buildings (EPBD) states that Member States (MS) must ensure that minimum energy performance requirements for buildings are set “with a view to achieve cost-optimal levels”, and that the cost-optimal level must be calculated in accordance...... with a comparative methodology. The ultimate goal of this is to achieve a cost-optimal improvement of buildings’ energy performance (new and existing) in reality....

  17. Outcomes and Cost-Effectiveness of Two Nicotine Replacement Treatment Delivery Models for a Tobacco Quitline

    Directory of Open Access Journals (Sweden)

    Lija Greenseid

    2011-05-01

    Full Text Available Many tobacco cessation quitlines provide nicotine replacement therapy (NRT in the U.S. but consensus is lacking regarding the best shipping protocol or NRT amounts. We evaluated the impact of the Minnesota QUITPLAN® Helpline’s shift from distributing NRT using a single eight-week shipment to a two-shipment protocol. For this observational study, the eight week single-shipment cohort (n = 247 received eight weeks of NRT (patches or gum at once, while the split-shipment cohort (n = 160 received five weeks of NRT (n = 94, followed by an additional three weeks of NRT if callers continued with counseling (n = 66. Patient satisfaction, retention, quit rates, and cost associated with the three groups were compared. A higher proportion of those receiving eight weeks of NRT, whether in one or two shipments, reported that the helpline was “very helpful” (77.2% of the single-shipment group; 81.1% of the two-shipment group than those receiving five weeks of NRT (57.8% of the one-shipment group (p = 0.004. Callers in the eight week two-shipment group completed significantly more calls (3.0 than callers in the five week one-shipment group (2.4 or eight week single-shipment group (1.7 (p < 0.001. Using both responder and intent-to-treat calculations, there were no significant differences in 30-day point prevalence abstinence at seven months among the three protocol groups even when controlling for demographic and tobacco use characteristics, and treatment group protocol. The mean cost per caller was greater for the single-shipment phase than the split-shipment phase ($350 vs. $326 due to the savings associated with not sending a second shipment to some participants. Assuming no difference in abstinence rates resulting from the protocol change, cost-per-quit was lowest for the five week one-shipment group ($1,155, and lower for the combined split-shipment cohort ($1,242 than for the single-shipment cohort ($1,350. Results of this evaluation indicate that

  18. Draft Submission; Social Cost of Energy Generation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-05

    This report is intended to provide a general understanding of the social costs associated with electric power generation. Based on a thorough review of recent literature on the subject, the report describes how these social costs can be most fully and accurately evaluated, and discusses important considerations in applying this information within the competitive bidding process. [DJE 2005

  19. Social cost benefit analysis and energy policy

    NARCIS (Netherlands)

    De Nooij, M.

    2012-01-01

    Most research into the reliability of electricity supply focuses on the suppliers. Reductions in the number of power interruptions will often be possible, but also very costly. These costs will eventually be borne by the electricity users. This paper studies the value of supply security in order to

  20. Patient Use of Cost and Quality Data When Choosing a Joint Replacement Provider in the Context of Reference Pricing

    Directory of Open Access Journals (Sweden)

    Ryan Kandrack

    2015-07-01

    Full Text Available Health plans are encouraging consumerism among joint replacement patients by reporting information on hospital costs and quality. Little is known about how the proliferation of such initiatives impacts patients’ selection of a surgeon and hospital. We performed a qualitative analysis of semistructured interviews with 13 patients who recently received a hip or knee replacement surgery. Patients focused on the choice of a surgeon as opposed to a hospital, and the surgeon choice was primarily made based on reputation. Most patients had long-standing relationships with an orthopedic surgeon and tended to stay with that surgeon for their replacement. Despite growing availability of cost and quality information, patients almost never used such information to make a decision.

  1. Cost-effectiveness of enzyme replacement therapy with alglucosidase alfa in classic-infantile patients with Pompe disease

    NARCIS (Netherlands)

    T.A. Kanters (Tim A.); I Hoogenboom-Plug (Iris); M.P.M.H. Rutten-van Mölken (Maureen); W.K. Redekop (Ken); A.T. van der Ploeg (Ans); L. van Hakkaart-van Roijen (Leona)

    2014-01-01

    textabstractBackground: Infantile Pompe disease is a rare metabolic disease. Patients generally do not survive the first year of life. Enzyme replacement therapy (ERT) has proven to have substantial effects on survival in infantile Pompe disease. However, the costs of therapy are very high. In this

  2. Cost-effectiveness of enzyme replacement therapy with alglucosidase alfa in classic-infantile patients with Pompe disease

    NARCIS (Netherlands)

    T.A. Kanters (Tim A.); I Hoogenboom-Plug (Iris); M.P.M.H. Rutten-van Mölken (Maureen); W.K. Redekop (Ken); A.T. van der Ploeg (Ans); L. van Hakkaart-van Roijen (Leona)

    2014-01-01

    markdownabstract__Abstract__ Background: Infantile Pompe disease is a rare metabolic disease. Patients generally do not survive the first year of life. Enzyme replacement therapy (ERT) has proven to have substantial effects on survival in infantile Pompe disease. However, the costs of therapy

  3. 10 CFR 434.508 - Determination of the design energy consumption and design energy cost.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Determination of the design energy consumption and design... FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.508 Determination of the design energy consumption and design energy cost. 508.1The...

  4. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    Energy Technology Data Exchange (ETDEWEB)

    Custer, W.R. Jr.; Messick, C.D.

    1996-03-31

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies.

  5. Cost of photovoltaic energy systems as determined by balance-of-system costs

    Science.gov (United States)

    Rosenblum, L.

    1978-01-01

    The effect of the balance-of-system (BOS), i.e., the total system less the modules, on photo-voltaic energy system costs is discussed for multikilowatt, flat-plate systems. Present BOS costs are in the range of 10 to 16 dollars per peak watt (1978 dollars). BOS costs represent approximately 50% of total system cost. The possibility of future BOS cost reduction is examined. It is concluded that, given the nature of BOS costs and the lack of comprehensive national effort focussed on cost reduction, it is unlikely that BOS costs will decline greatly in the next several years. This prognosis is contrasted with the expectations of the Department of Energy National Photovoltaic Program goals and pending legislation in the Congress which require a BOS cost reduction of an order of magnitude or more by the mid-1980s.

  6. Introducing cost-optimal levels for energy requirements

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    2012-01-01

    The recast of the Directive on the Energy Performance of Buildings (EPBD) states that Member States (MS) must ensure that minimum energy performance requirements for buildings are set “with a view to achieve cost-optimal levels”, and that the cost-optimal level must be calculated in accordance wi...

  7. Optimizing Ice Thermal Storage to Reduce Energy Cost

    Science.gov (United States)

    Hall, Christopher L.

    Energy cost for buildings is an issue of concern for owners across the U.S. The bigger the building, the greater the concern. A part of this is due to the energy required to cool the building and the way in which charges are set when paying for energy consumed during different times of the day. This study will prove that designing ice thermal storage properly will minimize energy cost in buildings. The effectiveness of ice thermal storage as a means to reduce energy costs lies within transferring the time of most energy consumption from on-peak to off-peak periods. Multiple variables go into the equation of finding the optimal use of ice thermal storage and they are all judged with the final objective of minimizing monthly energy costs. This research discusses the optimal design of ice thermal storage and its impact on energy consumption, energy demand, and the total energy cost. A tool for optimal design of ice thermal storage is developed, considering variables such as chiller and ice storage sizes and charging and discharge times. The simulations take place in a four-story building and investigate the potential of Ice Thermal Storage as a resource in reducing and minimizing energy cost for cooling. The simulations test the effectiveness of Ice Thermal Storage implemented into the four-story building in ten locations across the United States.

  8. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    NARCIS (Netherlands)

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    2013-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity see

  9. The Cost of Enforcing Building Energy Codes: Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vine, Ed [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sturges, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosenquist, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    The purpose of this literature review is to summarize key findings regarding the costs associated with enforcing building energy code compliance—primarily focusing on costs borne by local government. The review takes into consideration over 150 documents that discuss, to some extent, code enforcement. This review emphasizes those documents that specifically focus on costs associated with energy code enforcement. Given the low rates of building energy code compliance that have been reported in existing studies, as well as the many barriers to both energy code compliance and enforcement, this study seeks to identify the costs of initiatives to improve compliance and enforcement. Costs are reported primarily as presented in the original source. Some costs are given on a per home or per building basis, and others are provided for jurisdictions of a certain size. This literature review gives an overview of state-based compliance rates, barriers to code enforcement, and U.S. Department of Energy (DOE) and key stakeholder involvement in improving compliance with building energy codes. In addition, the processes and costs associated with compliance and enforcement of building energy codes are presented. The second phase of this study, which will be presented in a different report, will consist of surveying 34 experts in the building industry at the national and state or local levels in order to obtain additional cost information, building on the findings from the first phase, as well as recommendations for where to most effectively spend money on compliance and enforcement.

  10. 40 CFR 74.47 - Transfer of allowances from the replacement of thermal energy-combustion sources.

    Science.gov (United States)

    2010-07-01

    ... and End of Year Compliance § 74.47 Transfer of allowances from the replacement of thermal energy... seeking to transfer allowances based on the replacement of thermal energy. (3) Contents. Each thermal... energy plan, the Administrator will annually transfer allowances to the compliance account of each...

  11. Nanopositioner actuator energy cost and performance

    NARCIS (Netherlands)

    Engelen, J.B.C.; Khatib, M.G.; Abelmann, L.; Elwenspoek, M.C.

    2013-01-01

    We investigate the energy consumption and seek-time performance of different actuator types for nanopositioners, with emphasis on their use in a parallel-probe-based data-storage system. Analytical models are derived to calculate the energy consumption and performance of electrodynamic (coil and per

  12. Renewable Energy Cost Modeling. A Toolkit for Establishing Cost-Based Incentives in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, Jason S. [Sustainable Energy Advantage, LLC, Framington, MA (United States); Grace, Robert C. [Sustainable Energy Advantage, LLC, Framington, MA (United States); Rickerson, Wilson H. [Meister Consultants Group, Inc., Boston, MA (United States)

    2011-05-01

    This report serves as a resource for policymakers who wish to learn more about levelized cost of energy (LCOE) calculations, including cost-based incentives. The report identifies key renewable energy cost modeling options, highlights the policy implications of choosing one approach over the other, and presents recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, FITs, or similar policies. These recommendations shaped the design of NREL's Cost of Renewable Energy Spreadsheet Tool (CREST), which is used by state policymakers, regulators, utilities, developers, and other stakeholders to assist with analyses of policy and renewable energy incentive payment structures. Authored by Jason S. Gifford and Robert C. Grace of Sustainable Energy Advantage LLC and Wilson H. Rickerson of Meister Consultants Group, Inc.

  13. Life Cycle Cost Optimization of a Bolig+ Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna

    included in the current building code, and ten renewable energy supply systems including both on-site and off-site options. Theresults indicated that although the off-site options have lower life cycle costs than the on-site alternatives, their application would promote renewable technologies overenergy......, cost-optimal “zero” energybalance accounts only for the building related energy use....... owners’ approach to it. For thisparticular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took theperspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable...

  14. 41 CFR 102-74.570 - Are State and local governments required to fund the cost of installing, repairing, and replacing...

    Science.gov (United States)

    2010-07-01

    ... Replacing Sidewalks § 102-74.570 Are State and local governments required to fund the cost of installing... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Are State and local governments required to fund the cost of installing, repairing, and replacing sidewalks? 102-74.570...

  15. The avoided external costs of using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, A. [Harvard Inst. for International Development, Cambridge, MA (United States)

    1995-12-31

    This article discusses the external costs of electricity generated by conventional fossil fuel sources, such as coal and nuclear power. It compares the costs of electricity generated with coal with that generated with wind. A measure of the benefits of wind energy is the difference between these two external costs. The methodology used for the estimation of the external costs, as well as the estimates of these costs, are taken from the EC ExternE study, financed by DGXII of the European Commission. The present author was a lead economist for that study. (author)

  16. DEPENDENCE OF ENERGY EFFICIENCY AND COST OF PRODUCTION

    Directory of Open Access Journals (Sweden)

    D. Sklyarov

    2016-01-01

    Full Text Available Economic systems exist on condition of receipt and spending of energy. Energy consumption is a necessary condition for the existence and functioning of the economic systems of any scale: macroeconomics, microeconomics, regional economy or the world economy.The economic system operates on the scale at which it is able to produce energy and get access to energy. Moreover, receipt and consumption of energy in the operation of the economic system is mainly determined by, the level of energy production from energy sources, since this level is determined by the level of energy consumption by industries and enterprises of the economy.Currently, the economic system does not produce energy in reserve. Thus, the question of energy effi ciency and energy saving was always acute.The article describes the energy efficiency and energy saving effect on the cost of production. Were used two methods: “costs and release” matrix and “price - value added” matrix. The result is the equation of dependence of energy efficiency and costs.

  17. Early discharge and home intervention reduces unit costs after total hip replacement: results of a cost analysis in a randomized study.

    Science.gov (United States)

    Sigurdsson, Eyjolfur; Siggeirsdottir, Kristin; Jonsson, Halldor; Gudnason, Vilmundur; Matthiasson, Thorolfur; Jonsson, Brynjolfur Y

    2008-09-01

    Total hip replacement (THR) is a common and costly procedure. The number of THR is expected to increase over the coming years. Two pathways of postoperative treatment were compared in a randomized study. Fifty patients from two hospitals were randomized into a study group (SG) of 27 patients receiving preoperative and postoperative education programs, as well as home visits from an outpatient team. A control group (CG) of 23 patients received "conventional" rehabilitation augmented by a stay at a rehabilitation center if needed. All costs for the two groups both in hospitals and after discharge were collected and analyzed. On average total costs for the SG were $8,550 and $11,952 for the CG, a 28% cost reduction. Total inpatient costs were $5,225 for the SG and $6,515 for the CG. In a regression analysis the group difference is statistically significant. Adjusting for changes in the Oxford Hip Score gives effective costs (C/E). The ratio of the SGs C/E to the CGs is 0.60. That is a cost-effectiveness gain of 40%. A shorter hospital stay augmented with better preoperative education and home treatment appears to be more effective and costs less than the traditional in hospital pathway of treatment.

  18. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  19. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  20. Life Cycle Cost Optimization of a BOLIG+ Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna

    included in the current building code, and ten renewable energy supply systems including both on-site and off-site options. The results indicated that although the off-site options have lower life cycle costs than the on-site alternatives, their application would promote renewable technologies over energy......, cost-optimal “zero” energy balance accounts only for the building related energy use....... building owners’ approach to it. For this particular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took the perspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable...

  1. Long- vs. short-term energy storage technologies analysis : a life-cycle cost study : a study for the DOE energy storage systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M.; Hassenzahl, William V. (, - Advanced Energy Analysis, Piedmont, CA)

    2003-08-01

    This report extends an earlier characterization of long-duration and short-duration energy storage technologies to include life-cycle cost analysis. Energy storage technologies were examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. More than 20 different technologies were considered and figures of merit were investigated including capital cost, operation and maintenance, efficiency, parasitic losses, and replacement costs. Results are presented in terms of levelized annual cost, $/kW-yr. The cost of delivered energy, cents/kWh, is also presented for some cases. The major study variable was the duration of storage available for discharge.

  2. Strategic cost-benefit analysis of energy policies: overview

    Energy Technology Data Exchange (ETDEWEB)

    Davitian, H; Groncki, P J; Kleeman, P; Lukachinski, J; Goettle, IV, R J; Hudson, E A

    1979-10-01

    This study describes three possible energy strategies and analyzes each in terms of its economic, environmental, and national security benefits and costs. Each strategy is represented by a specific policy. In the first, no additional programs or policies are initiated beyond those currently in effect or announced. The second is directed toward reducing the growth in energy demand, i.e., energy conservation. The third promotes increased domestic supply through accelerated development of synthetic and unconventional fuels. The analysis focuses on the evaluation and comparison of these strategy alternatives with respect to their energy, economic, and environmental consequences. The results indicate that conservation can substantially reduce import dependence and slow the growth of energy demand, with only a small macroeconomic cost and with substantial environmental benefits; the synfuels policy reduces imports by a smaller amount, does not reduce the growth in energy demand, involves substantial environmental costs and slows the rate of economic growth. These relationships could be different if the energy savings per unit cost for conservation are less than anticipated, or if the costs of synthetic fuels can be significantly lowered. Given these uncertainties, both conservation and RD and D support for synfuels should be included in future energy policy. However, between these policy alternatives, conservation appears to be the preferred strategy. The results of this study are presented in three reports (see also BNL--51127 and BNL--51128).

  3. Cost-optimal levels for energy performance requirements

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike

    2011-01-01

    The CA conducted a study on experiences and challenges for setting cost optimal levels for energy performance requirements. The results were used as input by the EU Commission in their work of establishing the Regulation on a comparative methodology framework for calculating cost optimal levels o...

  4. 40 CFR 74.48 - Transfer of allowances from the replacement of thermal energy-process sources. [Reserved

    Science.gov (United States)

    2010-07-01

    ... and End of Year Compliance § 74.48 Transfer of allowances from the replacement of thermal energy... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Transfer of allowances from the replacement of thermal energy-process sources. 74.48 Section 74.48 Protection of Environment...

  5. The impact of rising energy costs on representative farms

    OpenAIRE

    Raulston, J. Marc; Knapek, George M.; Richardson, James W.; Outlaw, Joe L.; Bryant, Henry L.

    2005-01-01

    Recent increases in natural gas and fossil fuel based energy sources have had a negative impact on the financial condition of agricultural producers across the nation. • In addition to higher fuel costs for trucks, equipment, and irrigation motors, the cost of nitrogen fertilizer is closely linked to energy prices and has also increased significantly. • This study quantifies the impacts of these increases on the economic viability of representative farms located throughout the United States f...

  6. Life Cycle Cost Optimization of a Bolig+ Zero Energy Building

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna

    in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that isbalanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition...... should further specify: (1) the connection orthe lack of it to the energy infrastructure, (2) the unit of the balance, (3) the period of the balance, (4) the types of energy use included in the balance, (5) the minimumenergy performance requirements (6) the renewable energy supply options...... case of a multi-storey residential Net ZEB aimed to determine the cost-optimal “zero” energy balance,minimum energy performance requirements and options of supplying renewable energy. The calculation encompassed three levels of energy frames, which mirrored theDanish low-energy building classes...

  7. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  8. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  9. Strategic cost-benefit analysis of energy policies: detailed projections

    Energy Technology Data Exchange (ETDEWEB)

    Davitian, H.; Groncki, P.J.; Kleeman, P.; Lukachinski, J.

    1979-10-01

    Current US energy policy includes many programs directed toward restructuring the energy system in order to decrease US dependence on foreign supplies and to increase our reliance on plentiful and environmentally benign energy forms. However, recent events have led to renewed concern over the direction of current energy policy. This study describes three possible energy strategies and analyzes each in terms of its economic, environmental, and national security benefits and costs. Each strategy is represented by a specific policy. In the first, no additional programs or policies are initiated beyond those currently in effect or announced. The second is directed toward reducing the growth in energy demand, i.e., energy conservation. The third promotes increased domestic supply through accelerated development of synthetic and unconventional fuels. The analysis focuses on the evaluation and comparison of these strategy alternatives with respect to their energy, economic, and environmental consequences. Results indicate that conservation can substantially reduce import dependence and slow the growth of energy demand, with only a small macroeconomic cost and with substantial environmental benefits; the synfuels policy reduces imports by a smaller amount, does not reduce the growth in energy demand, involves substantial environmental costs and slows the rate of economic growth. These relationships could be different if the energy savings per unit cost for conservation are less than anticipated, or if the costs of synthetic fuels can be significantly lowered. Given these uncertainties, both conservation and RD and D support for synfuels should be included in future energy policy. However, between these policy alternatives, conservation appears to be the preferred strategy. The results of this study are presented in three reports (see also BNL--51105 and BNL--51128). 11 references, 3 figures, 61 tables.

  10. Energy Costs of Energy Savings in Buildings: A Review

    Directory of Open Access Journals (Sweden)

    Daniel Rousse

    2012-08-01

    Full Text Available It is often claimed that the cheapest energy is the one you do not need to produce. Nevertheless, this claim could somehow be unsubstantiated. In this article, the authors try to shed some light on this issue by using the concept of energy return on investment (EROI as a yardstick. This choice brings semantic issues because in this paper the EROI is used in a different context than that of energy production. Indeed, while watts and negawatts share the same physical unit, they are not the same object, which brings some ambiguities in the interpretation of EROI. These are cleared by a refined definition of EROI and an adapted nomenclature. This review studies the research in the energy efficiency of building operation, which is one of the most investigated topics in energy efficiency. This study focuses on the impact of insulation and high efficiency windows as means to exemplify the concepts that are introduced. These results were normalized for climate, life time of the building, and construction material. In many cases, energy efficiency measures imply a very high EROI. Nevertheless, in some circumstances, this is not the case and it might be more profitable to produce the required energy than to try to save it.

  11. The rising cost of low-energy-density foods.

    Science.gov (United States)

    Monsivais, Pablo; Drewnowski, Adam

    2007-12-01

    Consuming lower-energy-density foods is one recommended strategy for management of body weight. This cross-sectional study used retail food prices to test the hypothesis that low-energy-density foods are not only more costly per kilocalorie, but have increased disproportionately in price as compared to high-energy-density foods. For a list of 372 foods and beverages belonging to a food frequency questionnaire database, retail prices were obtained from major supermarket chains in the Seattle, WA, metropolitan area in 2004 and 2006. Energy density of all items was calculated and prices were expressed as $/100 g edible portion and as $/1,000 kcal. Foods were stratified by quintiles of energy density and the differences in energy cost and in percent price change were tested using analyses of variance. High-energy-density foods provided the most dietary energy at least cost. Energy cost of foods in the bottom quintile of energy density, beverages excluded, was $18.16/1,000 kcal as compared to only $1.76/1,000 kcal for foods in the top quintile. The 2-year price change for the least energy-dense foods was +19.5%, whereas the price change for the most energy-dense foods was -1.8%. The finding that energy-dense foods are not only the least expensive, but also most resistant to inflation, may help explain why the highest rates of obesity continue to be observed among groups of limited economic means. The sharp price increase for the low-energy-density foods suggests that economic factors may pose a barrier to the adoption of more healthful diets and so limit the impact of dietary guidance.

  12. Life Cycle Cost optimization of a BOLIG+ Zero Energy Building

    Energy Technology Data Exchange (ETDEWEB)

    Marszal, A.J.

    2011-12-15

    Buildings consume approximately 40% of the world's primary energy use. Considering the total energy consumption throughout the whole life cycle of a building, the energy performance and supply is an important issue in the context of climate change, scarcity of energy resources and reduction of global energy consumption. An energy consuming as well as producing building, labelled as the Zero Energy Building (ZEB) concept, is seen as one of the solutions that could change the picture of energy consumption in the building sector, and thus contribute to the reduction of the global energy use. However, before being fully implemented in the national building codes and international standards, the ZEB concept requires a clear understanding and a uniform definition. The ZEB concept is an energy-conservation solution, whose successful adaptation in real life depends significantly on private building owners' approach to it. For this particular target group, the cost is often an obstacle when investing money in environmental or climate friendly products. Therefore, this PhD project took the perspective of a future private ZEB owner to investigate the cost-optimal Net ZEB definition applicable in the Danish context. The review of the various ZEB approaches indicated a general concept of a Zero Energy Building as a building with significantly reduced energy demand that is balanced by an equivalent energy generation from renewable sources. And, with this as a general framework, each ZEB definition should further specify: (1) the connection or the lack of it to the energy infrastructure, (2) the unit of the balance, (3) the period of the balance, (4) the types of energy use included in the balance, (5) the minimum energy performance requirements (6) the renewable energy supply options, and if applicable (7) the requirements of the building-grid interaction. Moreover, the study revealed that the future ZEB definitions applied in Denmark should mostly be focused on grid

  13. Determining the Cost-Savings Threshold and Alignment Accuracy of Patient-Specific Instrumentation in Total Ankle Replacements.

    Science.gov (United States)

    Hamid, Kamran S; Matson, Andrew P; Nwachukwu, Benedict U; Scott, Daniel J; Mather, Richard C; DeOrio, James K

    2017-01-01

    Traditional intraoperative referencing for total ankle replacements (TARs) involves multiple steps and fluoroscopic guidance to determine mechanical alignment. Recent adoption of patient-specific instrumentation (PSI) allows for referencing to be determined preoperatively, resulting in less steps and potentially decreased operative time. We hypothesized that usage of PSI would result in decreased operating room time that would offset the additional cost of PSI compared with standard referencing (SR). In addition, we aimed to compare postoperative radiographic alignment between PSI and SR. Between August 2014 and September 2015, 87 patients undergoing TAR were enrolled in a prospectively collected TAR database. Patients were divided into cohorts based on PSI vs SR, and operative times were reviewed. Radiographic alignment parameters were retrospectively measured at 6 weeks postoperatively. Time-driven activity-based costing (TDABC) was used to derive direct costs. Cost vs operative time-savings were examined via 2-way sensitivity analysis to determine cost-saving thresholds for PSI applicable to a range of institution types. Cost-saving thresholds defined the price of PSI below which PSI would be cost-saving. A total of 35 PSI and 52 SR cases were evaluated with no significant differences identified in patient characteristics. Operative time from incision to completion of casting in cases without adjunct procedures was 127 minutes with PSI and 161 minutes with SR ( P cost-savings threshold range at our institution of $863 below which PSI pricing would provide net cost-savings. Two-way sensitivity analysis generated a globally applicable cost-savings threshold model based on institution-specific costs and surgeon-specific time-savings. This study demonstrated equivalent postoperative TAR alignment with PSI and SR referencing systems but with a significant decrease in operative time with PSI. Based on TDABC and associated sensitivity analysis, a cost-savings threshold

  14. Energy cost of activities in preschool-aged children

    Science.gov (United States)

    The absolute energy cost of activities in children increase with age due to greater muscle mass and physical capability associated with growth and developmental maturation; however, there is a paucity of data in preschool-aged children. Study aims were 1) to describe absolute and relative energy cos...

  15. Reducing Building HVAC Costs with Site-Recovery Energy

    Science.gov (United States)

    Pargeter, Stephen J.

    2012-01-01

    Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…

  16. Replacement of chemical intensive water treatment processes with energy saving membrane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mickley, M.C.; Goering, S.W.

    1983-11-01

    The project investigated the use of charged ultrafiltration membranes to treat hard water. More specifically, the work was undertaken to (1) make charged ultrafiltration membranes to demonstrate the technical feasibility of the chemical grafting approach; (2) evaluate the market potential for charged ultrafiltration membranes; and (3) evaluate the cost and energy savings for using charged ultrafiltration as compared to lime-based clarification and other treatment methods. The results suggest that chemical grafting is a relatively simple, reproducible and low-cost way to modify existing substrate materials to give them enhanced transport performance. Process studies lead to the identification of good market potential for membrane processes using charged ultrafiltration membranes. Capital and operating costs relative to lime-based clarification are favorable for low- and medium-sized treatment plants. Finally, substantial energy savings are apparent as compared to lime-based precipitation systems which incur substantial energy consumption in the lime production and transportation steps.

  17. Starship Sails Propelled by Cost-Optimized Directed Energy

    Science.gov (United States)

    Benford, J.

    Microwave and laser-propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability (`beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, beryllium, graphene, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail diameter and frequency. So optimal sails will be larger, lower in mass and driven by higher frequency beams. Estimated costs include economies of scale. We present several starship point concepts. Systems based on microwave, millimeter wave and laser technologies are of equal cost at today's costs. The frequency advantage of lasers is cancelled by the high cost of both the laser and the radiating optic. Cost of interstellar sailships is very high, driven by current costs for radiation source, antennas and especially electrical power. The high speeds necessary for fast interstellar missions make the operating cost exceed the capital cost. Such sailcraft will not be flown until the cost of electrical power in space is reduced orders of magnitude below current levels.

  18. Mate replacement entails a fitness cost for a socially monogamous seabird

    Science.gov (United States)

    Ismar, Stefanie M. H.; Daniel, Claire; Stephenson, Brent M.; Hauber, Mark E.

    2010-01-01

    Studies of the selective advantages of divorce in socially monogamous bird species have unravelled extensive variation among different lineages with diverse ecologies. We quantified the reproductive correlates of mate retention, mate loss and divorce in a highly philopatric, colonially breeding biparental seabird, the Australasian gannet Morus serrator. Estimates of annual divorce rates varied between 40-43% for M. serrator and were high in comparison with both the closely related Morus bassanus and the range of divorce rates reported across monogamous avian breeding systems. Mate retention across seasons was related to consistently higher reproductive success compared with mate replacement, while divorce per se contributed significantly to lower reproductive output only in one of two breeding seasons. Prior reproductive success was not predictive of mate replacement overall or divorce in particular. These patterns are in accordance with the musical chairs hypothesis of adaptive divorce theory, which operates in systems characterised by asynchronous territorial establishment.

  19. Telerehabilitation after total knee replacement in Italy: cost-effectiveness and cost-utility analysis of a mixed telerehabilitation-standard rehabilitation programme compared with usual care

    Science.gov (United States)

    Fusco, Francesco; Turchetti, Giuseppe

    2016-01-01

    Objectives To assess cost-effectiveness and cost utility of telerehabilitation (TR) versus standard rehabilitation (SR) after total knee replacement (TKR). Design Markov decision modelling of cost-effectiveness and cost-utility analysis based on patient-level and secondary data sources employing Italian National Health Service (NHS; Ita-NHS) and Society perspectives. Setting Primary care units (PCUs) in Italy. Participants Patients discharged after TKR. Interventions Mixed SR-TR service (10 face-to-face sessions and 10 telesessions) versus SR (20 face-to-face sessions) Primary and secondary outcome measures The incremental cost per additional knee flexion range of motion (ROM) and per QALY gained by SR-TR compared with SR. Second, we considered the probability of being cost-effective and the probability of being more effective and less expensive. Results TR appears to be the cost-effective in the base case and in all of the considered scenarios, but is no longer more effective and less expensive if transportation costs are excluded. Comparing SR-TR with SR, the incremental cost-effectiveness ratio (ICER) adopting the Ita-NHS perspective for the base case was −€117/ROM gained. The cost-effectiveness probability for SR-TR was 0.98 (ceiling ratio: €50/ROM), while the joint probability of being more effective and less expensive was 0.87. Assuming that TR would increase health-related quality of life (HRQOL) utilities by 2.5%, the ICER adopting Ita-NHS perspective is −€960/QALY (cost-effectiveness probability: 1; ceiling ratio: €30 000/QALY). All the performed sensitivity analyses did not change the conclusions, but if transportation costs were excluded, the probability for SR-TR of being more clinically effective and less expensive reduced to 0.56. Conclusions The analysis suggested SR-TR to be cost-effective, even less expensive and more effective if the PCUs provide ambulance transportations. However, the uncertainty related to TR costs, HRQOL and long

  20. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    OpenAIRE

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    2013-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. A variety of waste fuels, including tires,...

  1. Study on energy demand function of korea considering replacement among energy sources and the structural changes of demand behavior

    Energy Technology Data Exchange (ETDEWEB)

    Moon, C.K. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-08-01

    If the necessity of careful study on energy function is mentioned, it should be stressed that energy investment not only needs a long gestation period but also, acts as the bottleneck in the production capacity of an economy when investment is not enough. Thereby, the adverse effect of an energy supply shortage is very big. Especially, the replacement/supplemental relationship between energy and capital which corresponds to the movement on the iso-quanta curve is believed to have a direct relation with the answer as to whether long-term economic development would be possible under an energy crisis and its influence on technology selection. Furthermore, the advantages of technological advances which correspond to the movement on the iso-quanta curve has a direct relation with the question whether long-term economic development would be possible under an energy crisis depending on whether its direction is toward energy-saving or energy-consuming. This study tackles the main issues and outlines of the quantitative approach method based on the accounting approach method for modeling energy demand, quantitative economics approach method, and production model. In order to model energy demand of the Korean manufacturing industry, related data was established and a positive analytical model is completed and presented based on these. 122 refs., 10 tabs.

  2. Is Two-Level Cervical Disc Replacement More Cost-Effective than Anterior Cervical Discectomy and Fusion at 7 Years?

    Science.gov (United States)

    Merrill, Robert K; McAnany, Steven J; Albert, Todd J; Qureshi, Sheeraz A

    2017-08-14

    Cost-effectiveness analysis. Investigate the 7-year cost-effectiveness of two-level cervical disc replacement (CDR) and anterior cervical discectomy and fusion (ACDF). CDR and ACDF are both effective treatment strategies for managing degenerative conditions of the cervical spine. CDR has been shown to be a more-cost effective intervention in the short term, but the long-term cost-effectiveness has not been established. We analyzed 7-year follow-up data from the two-level Medtronic Prestige LP investigational device exemption study. Short-form 36 (SF-36) data were converted into health utility scores using the SF-6D algorithm. Costs were based on direct costs from the payer perspective, and effectiveness was measured as quality adjusted life years (QALYs). The willingness to pay (WTP) threshold was set to $50,000/QALY. A probabilistic sensitivity analysis was conducted via Monte Carlo simulation. Two-level CDR had a 7-year cost of $176,654.19, generated 4.65 QALYs, and had a cost-effectiveness ratio of $37,993.53/QALY. Two-level ACDF had a 7-year cost of $158,373.48, generated 4.44 QALYs, and had a cost-effectiveness ratio of $35,635.72. CDR was associated with an incremental cost of $18,280.71 and an incremental effectiveness of 0.21 QALYs, resulting in an incremental cost-effectiveness ratio (ICER) of $89,021.04, above the WTP threshold. Our Monte Carlo simulation demonstrated CDR would be chosen 46% of the time based on 10,000 simulations. Two-level CDR and ACDF are both cost-effective procedures at 7-year follow-up for treating degenerative conditions of the cervical spine. Based on an ICER of $89,021.04/QALY, we cannot conclude which treatment is the more cost-effective option at 7-years. CDR would be chosen 46% of the time based on 10,000 iterations of our Monte Carlo probabilistic sensitivity analysis. 3.

  3. Data Collection for Current U.S. Wind Energy Projects: Component Costs, Financing, Operations, and Maintenance; January 2011 - September 2011

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Tretton, M.; Reha, M.; Drunsic, M.; Keim, M.

    2012-01-01

    DNV Renewables (USA) Inc. (DNV) used an Operations and Maintenance (O&M) Cost Model to evaluate ten distinct cost scenarios encountered under variations in wind turbine component failure rates. The analysis considers: (1) a Reference Scenario using the default part failure rates within the O&M Cost Model, (2) High Failure Rate Scenarios that increase the failure rates of three major components (blades, gearboxes, and generators) individually, (3) 100% Replacement Scenarios that model full replacement of these components over a 20 year operating life, and (4) Serial Failure Scenarios that model full replacement of blades, gearboxes, and generators in years 4 to 6 of the wind project. DNV selected these scenarios to represent a broad range of possible operational experiences. Also in this report, DNV summarizes the predominant financing arrangements used to develop wind energy projects over the past several years and provides summary data on various financial metrics describing those arrangements.

  4. Starship Sails Propelled by Cost-Optimized Directed Energy

    CERN Document Server

    Benford, James

    2011-01-01

    Microwave propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability ('beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, graphene, beryllium, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail di...

  5. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Menlo Park, CA)

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  6. Electricity from geothermal energy: Costs and cost reduction potentials; Strom aus Geothermie. Kosten und Kostensenkungspotenziale

    Energy Technology Data Exchange (ETDEWEB)

    Koelbel, Thomas; Eggeling, Lena [EnBW Energie Baden-Wuerttemberg AG, Karlsruhe (Germany). Forschung und Innovation; Kruck, Christoph [Stuttgart Univ. (DE). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER); Weimann, Thorsten [gec-co Global Engineering and Consulting-Company GmbH, Augsburg (Germany)

    2012-07-01

    The use of geothermal energy for power generation in low-enthalpy devices is a young technology. The first German plant was taken in operation in 2004 at Neustadt-Glewe (Federal Republic of Germany). Three more plants came up by the end of 2009. Although the demonstration stage just was left, investigations provided prime costs similar to those of other renewable energies.

  7. Energy Cost Minimization in Heterogeneous Cellular Networks with Hybrid Energy Supplies

    Directory of Open Access Journals (Sweden)

    Bang Wang

    2016-01-01

    Full Text Available The ever increasing data demand has led to the significant increase of energy consumption in cellular mobile networks. Recent advancements in heterogeneous cellular networks and green energy supplied base stations provide promising solutions for cellular communications industry. In this article, we first review the motivations and challenges as well as approaches to address the energy cost minimization problem for such green heterogeneous networks. Owing to the diversities of mobile traffic and renewable energy, the energy cost minimization problem involves both temporal and spatial optimization of resource allocation. We next present a new solution to illustrate how to combine the optimization of the temporal green energy allocation and spatial mobile traffic distribution. The whole optimization problem is decomposed into four subproblems, and correspondingly our proposed solution is divided into four parts: energy consumption estimation, green energy allocation, user association, and green energy reallocation. Simulation results demonstrate that our proposed algorithm can significantly reduce the total energy cost.

  8. Discrete Fluctuations in Memory Erasure without Energy Cost

    Science.gov (United States)

    Croucher, Toshio; Bedkihal, Salil; Vaccaro, Joan A.

    2017-02-01

    According to Landauer's principle, erasing one bit of information incurs a minimum energy cost. Recently, Vaccaro and Barnett (VB) explored information erasure within the context of generalized Gibbs ensembles and demonstrated that for energy-degenerate spin reservoirs the cost of erasure can be solely in terms of a minimum amount of spin angular momentum and no energy. As opposed to the Landauer case, the cost of erasure in this case is associated with an intrinsically discrete degree of freedom. Here we study the discrete fluctuations in this cost and the probability of violation of the VB bound. We also obtain a Jarzynski-like equality for the VB erasure protocol. We find that the fluctuations below the VB bound are exponentially suppressed at a far greater rate and more tightly than for an equivalent Jarzynski expression for VB erasure. We expose a trade-off between the size of the fluctuations and the cost of erasure. We find that the discrete nature of the fluctuations is pronounced in the regime where reservoir spins are maximally polarized. We also state the first laws of thermodynamics corresponding to the conservation of spin angular momentum for this particular erasure protocol. Our work will be important for novel heat engines based on information erasure schemes that do not incur an energy cost.

  9. Energy cost and optimisation in breath-hold diving.

    Science.gov (United States)

    Trassinelli, M

    2016-05-07

    We present a new model for calculating locomotion costs in breath-hold divers. Starting from basic mechanics principles, we calculate the work that the diver must provide through propulsion to counterbalance the action of drag, the buoyant force and weight during immersion. Compared to those in previous studies, the model presented here accurately analyses breath-hold divers which alternate active swimming with prolonged glides during the dive (as is the case in mammals). The energy cost of the dive is strongly dependent on these prolonged gliding phases. Here we investigate the length and impacts on energy cost of these glides with respect to the diver characteristics, and compare them with those observed in different breath-hold diving species. Taking into account the basal metabolic rate and chemical energy to propulsion transformation efficiency, we calculate optimal swim velocity and the corresponding total energy cost (including metabolic rate) and compare them with observations. Energy cost is minimised when the diver passes through neutral buoyancy conditions during the dive. This generally implies the presence of prolonged gliding phases in both ascent and descent, where the buoyancy (varying with depth) is best used against the drag, reducing energy cost. This is in agreement with past results (Miller et al., 2012; Sato et al., 2013) where, when the buoyant force is considered constant during the dive, the energy cost was minimised for neutral buoyancy. In particular, our model confirms the good physical adaption of dolphins for diving, compared to other breath-hold diving species which are mostly positively buoyant (penguins for example). The presence of prolonged glides implies a non-trivial dependency of optimal speed on maximal depth of the dive. This extends previous findings (Sato et al., 2010; Watanabe et al., 2011) which found no dependency of optimal speed on dive depth for particular conditions. The energy cost of the dive can be further

  10. Effects of acute sprint interval cycling and energy replacement on postprandial lipemia.

    Science.gov (United States)

    Freese, Eric C; Levine, Ari S; Chapman, Donald P; Hausman, Dorothy B; Cureton, Kirk J

    2011-12-01

    High postprandial blood triglyceride (TG) levels increase cardiovascular disease risk. Exercise interventions may be effective in reducing postprandial blood TG. The purpose of this study was to determine the effects of sprint interval cycling (SIC), with and without replacement of the energy deficit, on postprandial lipemia. In a repeated-measures crossover design, six men and six women participated in three trials, each taking place over 2 days. On the evening of the first day of each trial, the participants either did SIC without replacing the energy deficit (Ex-Def), did SIC and replaced the energy deficit (Ex-Bal), or did not exercise (control). SIC was performed on a cycle ergometer and involved four 30-s all-out sprints with 4-min active recovery. In the morning of day 2, responses to a high-fat meal were measured. Venous blood samples were collected in the fasted state and at 0, 30, 60, 120, and 180 min postprandial. There was a trend toward a reduction with treatment in fasting TG (P = 0.068), but no significant treatment effect for fasting insulin, glucose, nonesterified fatty acids, or betahydroxybutryrate (P > 0.05). The postprandial area under the curve (mmol·l(-1)·3 h(-1)) TG response was significantly lower in Ex-Def (21%, P = 0.006) and Ex-Bal (10%, P = 0.044) than in control, and significantly lower in Ex-Def (12%, P = 0.032) than in Ex-Bal. There was no treatment effect (P > 0.05) observed for area under the curve responses of insulin, glucose, nonesterified fatty acids, or betahydroxybutryrate. SIC reduces postprandial lipemia, but the energy deficit alone does not fully explain the decrease observed.

  11. U.S. Department of Energy Hydrogen Storage Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a bottom-up costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with ® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target

  12. Variations in costs and use of provincially-funded testosterone replacement therapy across Canada: a population-based study.

    Science.gov (United States)

    Tadrous, Mina; Martins, Diana; Lee, Kathy; Knowles, Sandra; Mamdani, Muhammad M; Juurlink, David N; Gomes, Tara

    2016-12-01

    Provincial drug-program policies for the reimbursement of testosterone replacement therapy (TRT) vary across Canada, which may result in marked regional variability in use. We conducted a population-based cross-sectional analysis of provincially funded TRT spending and utilization in eight provinces across Canada in 2012. We reported the annual cost per user, total cost, and rate of use of TRT overall and by formulation. We identified 23,544 provincially-funded recipients of TRT in 2012 in the eight provinces studied. Average annual cost per person varied by 3-fold, ranging from $173 (Prince Edward Island) to $485 (Ontario). Ontario also had the highest rate of use (1,105 users per 100,000 eligible) and the most liberal listing. Provinces with more restricted access (Alberta, British Columbia, and PEI) had lower annual costs per user ($293, $206, $173, respectively). Differing reimbursement policies for TRT products across Canada are likely contributing to variation in the rate of use and cost per recipient.

  13. Encouraging energy conservation in multifamily housing: RUBS and other methods of allocating energy costs to residents

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, L

    1980-10-01

    Methods of encouraging energy conservation in multifamily housing by allocating energy costs to residents are discussed; specifically, methods appropriate for use in master metered buildings without equipment to monitor energy consumption in individual apartments are examined. Several devices available for monitoring individual energy consumption are also discussed plus methods of comparing the energy savings and cost effectiveness of monitoring devices with those of other means of promoting conservation. Specific information in Volume I includes a comparison study on energy use in master and individually metered buildings; types of appropriate conservation programs for master metered buildings; a description of the Resident Utility Billing System (RUBS); energy savings associated with RUBS; Resident reactions to RUBS; cost effectiveness of RUBS for property owners; potential abuses, factors limiting widespread use, and legal status of RUBS. Part I of Volume II contains a cost allocation decision guide and Part II in Volume II presents the RUBS Operations Manual. Pertinent appendices to some chapters are attached. (MCW)

  14. The Cost of Enforcing Building Energy Codes: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vine, Ed [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-15

    The purpose of this study is to present key findings regarding costs associated with enforcing building energy code compliance–primarily focusing on costs borne by local government. Building codes, if complied with, have the ability to save a significant amount of energy. However, energy code compliance rates have been significantly lower than 100%. Renewed interest in building energy codes has focused efforts on increasing compliance, particularly as a result of the 2009 American Recovery and Reinvestment Act (ARRA) requirement that in order for states to receive additional energy grants, they must have “a plan for the jurisdiction achieving compliance with the building energy code…in at least 90 percent of new and renovated residential and commercial building space” by 2017 (Public Law 111-5, Section 410(2)(C)). One study by the Institute for Market Transformation (IMT) estimated the costs associated with reaching 90% compliance to be $810 million, or $610 million in additional funding over existing expenditures, a non-trivial value. [Majersik & Stellberg 2010] In this context, Lawrence Berkeley National Laboratory (LBNL) conducted a study to better pinpoint the costs of enforcement through a two-phase process.

  15. Geothermal Energy Development in the Eastern United States, Sensitivity analysis-cost of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S.M.; Kroll, P.; Nilo, B.

    1982-12-01

    The Geothermal Resources Interactive Temporal Simulation (GRITS) model is a computer code designed to estimate the costs of geothermal energy systems. The interactive program allows the user to vary resource, demand, and financial parameters to observe their effects on delivered costs of direct-use geothermal energy. Due to the large number and interdependent nature of the variables that influence these costs, the variables can be handled practically only through computer modeling. This report documents a sensitivity analysis of the cost of direct-use geothermal energy where each major element is varied to measure the responsiveness of cost to changes in that element. It is hoped that this analysis will assist those persons interested in geothermal energy to understand the most significant cost element as well as those individuals interested in using the GRITS program in the future.

  16. Hydrogen Production Costs of Various Primary Energy Sources

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-15

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH{sub 2} and 1.36 $/kgH{sub 2}, respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH{sub 2} to 6.03 $/kgH{sub 2}. On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future.

  17. Economic and cost engineering aspects of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    MacRae, A.N.

    1990-08-01

    A comprehensive analysis of the economic feasibility of current wind energy conversion systems (WECS) from a cost engineering basis is presented. The initial stage covers a subjective review of the cost implications of various design aspects of current medium sized Horizontal Axis Wind Turbines (HAWTs), based around a 330 kW wind turbine (WT). The second stage is focused on the collection and initial analysis of a comprehensive database of WT technical, cost and performance information from over 100 WT models ranging in size from 8 metre to 55 metre rotor diameter. The formulation of a life cycle cost estimation model for HAWTs, based on semi-empirical relationships between sub-system cost, mass and design parameters is described. The economic feasibility of WECS private generating operation under the tariff structures available in the UK, under the auspices of the Energy Act of 1983, is examined, and broad results are given in terms of feasible tariff scenarios for topographical and regional locations throughout the UK. The prospects for reducing the cost of energy from WECS are explored, and the macro-economic and socio-environmental aspects of WECS are examined. (author).

  18. A unified theory for the energy cost of legged locomotion.

    Science.gov (United States)

    Pontzer, Herman

    2016-02-01

    Small animals are remarkably efficient climbers but comparatively poor runners, a well-established phenomenon in locomotor energetics that drives size-related differences in locomotor ecology yet remains poorly understood. Here, I derive the energy cost of legged locomotion from two complementary components of muscle metabolism, Activation-Relaxation and Cross-bridge cycling. A mathematical model incorporating these costs explains observed patterns of locomotor cost both within and between species, across a broad range of animals (insects to ungulates), for a wide range of substrate slopes including level running and vertical climbing. This ARC model unifies work- and force-based models for locomotor cost and integrates whole-organism locomotor cost with cellular muscle physiology, creating a predictive framework for investigating evolutionary and ecological pressures shaping limb design and ranging behaviour.

  19. The environmental costs of wind energy in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Linares Llamas, P. [CIEMAT-IEE, Madrid (Spain)

    1995-12-31

    This article summarizes the assessment of the environmental costs of the wind fuel cycle in Spain. It has been carried out within the ExternE project of the European Commission, and so it has been done following a site-, technology-specific methodology. The main impacts identified have been noise, and the loss of visual amenity. As a result some values for the external costs of wind energy have been obtained, which have shown to be much lower than those of conventional fuel cycles. It is also important to note that careful planning would avoid most of these costs. (author)

  20. Fair division of costs in green energy markets

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Kronborg, Dorte; Smilgins, Aleksandrs

    2017-01-01

    This paper considers cost allocation in networks where agents are characterized by stochastic demand and supply of a non-storable good, e.g. green energy. The grid itself creates possibilities of exchanging energy between agents and we propose to allocate common costs in proportion to the economic...... gain of being part of the grid. Our model includes a set of fundamental requirements for the associated trading platform. In particular, it is argued that a suitable mechanism deviates from a traditional market. The approach is illustrated by simulations....

  1. Gelatin/graphene systems for low cost energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Landi, Giovanni [Faculty of Mathematics and Computer Science, FernUniversität Hagen, 58084 Hagen (Germany); Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore [Institute for Composite and Biomedical Materials (IMCB-CNR), Piazzale Enrico Fermi 1, 80055 Portici (Italy); Neitzert, Heinz C. [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2014-05-15

    In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

  2. DETERMINING ENERGY SAVINGS IN BUILDINGS USING THE REDUCING COSTS METHOD

    Directory of Open Access Journals (Sweden)

    STAN IVAN F.E.

    2015-03-01

    Full Text Available The paper is structured in four parts. The first part presents the importance of thermal insulation for buildings energy economy and some insulation properties. In the second part of the paper it is described the reducing cost method to determine the energy savings. The third part of the paper includes an analysis and a comparison for an exterior wall provided with different thicknesses of insulation layer in order to determine the average savings cost. The last part presents conclusions and discussion.

  3. 10 CFR 436.17 - Establishing energy or water cost data.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Establishing energy or water cost data. 436.17 Section 436.17 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.17 Establishing energy or water cost data....

  4. Energy cost saving strategies in distributed power networks

    Directory of Open Access Journals (Sweden)

    Tcheukam Alain

    2016-01-01

    Full Text Available In this paper we study energy cost saving strategies in power networks in presence of prosumers. Three tips are considered: (i distributed power network architecture, (ii peak energy shaving with the integration of prosumers’ contribution, (iii Electric vehicles self-charging by means of prosumers’ production. The proposed distributed power network architecture reduces significantly the transmission costs and can reduce significantly the global energy cost up to 42 percent. Different types of prosumer who use self-charging photovoltaic systems, are able to intelligently buy energy from, or sell it, to the power grid. Therein, prosumers interact in a distributed environment during the purchase or sale of electric power using a double auction with negotiation mechanism. Using a two-step combined learning and optimization scheme, each prosumer can learn its optimal bidding strategy and forecast its energy production, consumption and storage. Our simulation results, conducted for the region of Sicily in Italy, show that the integration of prosumers can reduce peak hour costs up to 19 percent and 6 percent for eligible prosumers with electric vehicles.

  5. In Brief: Hidden environment and health costs of energy

    Science.gov (United States)

    Showstack, Randy

    2009-10-01

    The hidden costs of energy production and use in the United States amounted to an estimated $120 billion in 2005, according to a 19 October report by the U.S. National Research Council. The report, “Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use,” examines hidden costs, including the cost of air pollution damage to human health, which are not reflected in market prices of energy sources, electricity, or gasoline. The report found that in 2005, the total annual external damages from sulfur dioxide, nitrogen oxides, and particulate matter created by coal-burning power plants that produced 95% of the nation's coal-generated electricity were about $62 billion, with nonclimate damages averaging about 3.2 cents for every kilowatt-hour of energy produced. It is estimated that by 2030, nonclimate damages will fall to 1.7 cents per kilowatt-hour. The 2030 figure assumes that new policies already slated for implementation are put in place.

  6. Annual Energy Usage Reduction and Cost Savings of a School: End-Use Energy Analysis

    Directory of Open Access Journals (Sweden)

    Aiman Roslizar

    2014-01-01

    Full Text Available Buildings are among the largest consumers of energy. Part of the energy is wasted due to the habits of users and equipment conditions. A solution to this problem is efficient energy usage. To this end, an energy audit can be conducted to assess the energy efficiency. This study aims to analyze the energy usage of a primary school and identify the potential energy reductions and cost savings. A preliminary audit was conducted, and several energy conservation measures were proposed. The energy conservation measures, with reference to the MS1525:2007 standard, were modelled to identify the potential energy reduction and cost savings. It was found that the school’s usage of electricity exceeded its need, incurring an excess expenditure of RM 2947.42. From the lighting system alone, it was found that there is a potential energy reduction of 5489.06 kWh, which gives a cost saving of RM 2282.52 via the improvement of lighting system design and its operating hours. Overall, it was found that there is a potential energy reduction and cost saving of 20.7% when the energy conservation measures are earnestly implemented. The previous energy intensity of the school was found to be 50.6 kWh/m2/year, but can theoretically be reduced to 40.19 kWh/mm2/year.

  7. Examining the energy cost and intensity level of prenatal yoga.

    Science.gov (United States)

    Peters, Nathan Anthony; Schlaff, Rebecca A

    2016-01-01

    A popular form of pregnancy physical activity (PA) is prenatal yoga. However, little is known about the intensity and energy cost of this practice. To examine the energy cost and intensity level of prenatal yoga. Pregnant women in a prenatal yoga class (n = 19) wore a Sense Wear Armband during eleven 60 min classes each, and self-reported demographic variables, height and weight, prepregnancy weight, and PA behaviors and beliefs. Sense Wear Armband data included kilocalories, metabolic equivalent (MET) values, and time spent in various intensities. Descriptive statistics and frequencies were utilized to describe energy expenditure and intensity. Energy expenditure averaged 109 ± 8 kcals, and the average MET value was 1.5 ± 0.02. On average, 93% and 7% of classes were sedentary and moderate intensity PA, respectively. Time spent in a prenatal yoga class was considered to be primarily a sedentary activity. Future research should utilize larger samples, practice type, and skill level to increase generalizability.

  8. Nutrient-dense food groups have high energy costs: an econometric approach to nutrient profiling.

    Science.gov (United States)

    Maillot, Matthieu; Darmon, Nicole; Darmon, Michel; Lafay, Lionel; Drewnowski, Adam

    2007-07-01

    Consumers wishing to replace some of the foods in their diets with more nutrient-dense options need to be able to identify such foods on the basis of nutrient profiling. The present study used nutrient profiling to rank 7 major food groups and 25 subgroups in terms of their contribution to dietary energy, diet quality, and diet cost for 1332 adult participants in the French National INCA1 Study. Nutrient profiles were based on the presence of 23 qualifying nutrients, expressed as the percentage of nutrient adequacy per 8 MJ, and 3 negative or disqualifying nutrients, expressed as the percentage of the maximal recommended values for saturated fatty acids, added sugar, and sodium per 1.4 kg. Calculated cost of energy (euro/8 MJ) was based on the mean retail price of 619 foods in the nutrient composition database. The meat and the fruit and vegetables food groups had the highest nutritional quality but were associated with highest energy costs. Sweets and salted snacks had the lowest nutritional quality but were also one of the least expensive sources of dietary energy. Starches and grains were unique because they were low in disqualifying nutrients yet provided low-cost dietary energy. Within each major food group, some subgroups had a higher nutritient-to-price ratio than others. However, the fact that food groups with the more favorable nutrient profiles were also associated with higher energy costs suggests that the present structure of food prices may be a barrier to the adoption of food-based dietary guidelines, at least by low-income households.

  9. The Cost Implications of Replacing Soda Lime with Amsorb Plus in Clinical Practice

    OpenAIRE

    Osman Ahmed; Stephen Mannion

    2011-01-01

    Background and Goal of the Study. Desiccated soda lime is known to produce toxic compounds when interacting with volatile anesthetic agents. Amsorb Plus does not produce these but is more expensive per unit weight. Materials and Methods. In a prospective cross-over study, we evaluated the cost of using soda lime (Spherasorb, Intersurgical, UK) and Amsorb Plus. In four operating theatres over two 4-week periods, one for each product, we measured sevoflurane consumption, amount of absorbent use...

  10. Energy conversion/power plant cost-cutting

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, K.

    1996-12-31

    This presentation by Kenneth Nichols, Barber-Nichols, Inc., is about cost-cutting in the energy conversion phase and power plant phase of geothermal energy production. Mr. Nichols discusses several ways in which improvements could be made, including: use of more efficient compressors and other equipment as they become available, anticipating reservoir resource decline and planning for it, running smaller binary systems independent of human operators, and designing plants so that they are relatively maintenance-free.

  11. Densified biomass can cost-effectively mitigate greenhouse gas emissions and address energy security in thermal applications.

    Science.gov (United States)

    Wilson, Thomas O; McNeal, Frederick M; Spatari, Sabrina; G Abler, David; Adler, Paul R

    2012-01-17

    Regional supplies of biomass are currently being evaluated as feedstocks in energy applications to meet renewable portfolio (RPS) and low carbon fuel standards. We investigate the life cycle greenhouse gas (GHG) emissions and associated abatement costs resulting from using densified switchgrass for thermal and electrical energy. In contrast to the large and positive abatement costs for using biomass in electricity generation ($149/Mg CO(2)e) due to the low cost of coal and high feedstock and power plant operation costs, abatement costs for replacing fuel oil with biomass in thermal applications are large and negative (-$52 to -$92/Mg CO(2)e), resulting in cost savings. Replacing fuel oil with biomass in thermal applications results in least cost reductions compared to replacing coal in electricity generation, an alternative that has gained attention due to RPS legislation and the centralized production model most often considered in U.S. policy. Our estimates indicate a more than doubling of liquid fuel displacement when switchgrass is substituted for fuel oil as opposed to gasoline, suggesting that, in certain U.S. locations, such as the northeast, densified biomass would help to significantly decarbonize energy supply with regionally sourced feedstock, while also reducing imported oil. On the basis of supply projections from the recently released Billion Ton Report, there will be enough sustainably harvested biomass available in the northeast by 2022 to offset the entirety of heating oil demand in the same region. This will save NE consumers between $2.3 and $3.9 billion annually. Diverting the same resource to electricity generation would cost the region $7.7 billion per year. While there is great need for finding low carbon substitutes for coal power and liquid transportation fuels in the U.S., we argue that in certain regions it makes cost- (and GHG mitigation-) effective sense to phase out liquid heating fuels with locally produced biomass first.

  12. Energy conservation and cost benefits in the dairy processing industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  13. Energy Cost Optimization in a Water Supply System Case Study

    Directory of Open Access Journals (Sweden)

    Daniel F. Moreira

    2013-01-01

    Full Text Available The majority of the life cycle costs (LCC of a pump are related to the energy spent in pumping, with the rest being related to the purchase and maintenance of the equipment. Any optimizations in the energy efficiency of the pumps result in a considerable reduction of the total operational cost. The Fátima water supply system in Portugal was analyzed in order to minimize its operational energy costs. Different pump characteristic curves were analyzed and modeled in order to achieve the most efficient operation point. To determine the best daily pumping operational scheduling pattern, genetic algorithm (GA optimization embedded in the modeling software was considered in contrast with a manual override (MO approach. The main goal was to determine which pumps and what daily scheduling allowed the best economical solution. At the end of the analysis it was possible to reduce the original daily energy costs by 43.7%. This was achieved by introducing more appropriate pumps and by intelligent programming of their operation. Given the heuristic nature of GAs, different approaches were employed and the most common errors were pinpointed, whereby this investigation can be used as a reference for similar future developments.

  14. Cost and benefit of renewable energy in the European Union

    NARCIS (Netherlands)

    Krozer, Yoram

    2013-01-01

    An assessment is made as to whether renewable energy use for electricity generation in the EU was beneficial throughout the cycle of high and low oil prices. Costs and benefits are calculated with the EU statistics for the period of low oil prices 1998–2002 and high oil prices 2003–2009. The share o

  15. Unravelling historical cost developments of offshore wind energy in Europe

    NARCIS (Netherlands)

    Voormolen, J. A.; Junginger, H. M.; van Sark, W. G J H M

    2016-01-01

    This paper aims to provide insights in the cost developments of offshore wind energy in Europe. This is done by analysing 46 operational offshore wind farms commissioned after 2000. An increase of the Capital Expenditures (CAPEX) is found that is linked to the distance to shore and depth of more rec

  16. Human Resource Accounting: Operationalization and Effects of Human Resource Replacement Cost System in Naval Operations.

    Science.gov (United States)

    1985-12-20

    the project, and also in providing Insights about naval .’. . --°. . . . . iv operations which are relevant to the personnel implications of the study...returned to the main menu. 5. Examples of the output from this operation are given on the next page. [- IV IvC ’.. ClQ DEVELOPMENT COSTS RELATED TO: GS-T...of time that each of * the principal actors spends on each activity. separati on Costo lor Volvm sty swelvw s7 Salary Averag ~ t use bteivieSSS~ to

  17. Optimal Power Cost Management Using Stored Energy in Data Centers

    CERN Document Server

    Urgaonkar, Rahul; Neely, Michael J; Sivasubramaniam, Anand

    2011-01-01

    Since the electricity bill of a data center constitutes a significant portion of its overall operational costs, reducing this has become important. We investigate cost reduction opportunities that arise by the use of uninterrupted power supply (UPS) units as energy storage devices. This represents a deviation from the usual use of these devices as mere transitional fail-over mechanisms between utility and captive sources such as diesel generators. We consider the problem of opportunistically using these devices to reduce the time average electric utility bill in a data center. Using the technique of Lyapunov optimization, we develop an online control algorithm that can optimally exploit these devices to minimize the time average cost. This algorithm operates without any knowledge of the statistics of the workload or electricity cost processes, making it attractive in the presence of workload and pricing uncertainties. An interesting feature of our algorithm is that its deviation from optimality reduces as the...

  18. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  19. Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G.

    2011-12-01

    This report provides an update on the previous cost model for thermal energy storage (TES) systems. The update allows NREL to estimate the costs of such systems that are compatible with the higher operating temperatures associated with advanced power cycles. The goal of the Department of Energy (DOE) Solar Energy Technology Program is to develop solar technologies that can make a significant contribution to the United States domestic energy supply. The recent DOE SunShot Initiative sets a very aggressive cost goal to reach a Levelized Cost of Energy (LCOE) of 6 cents/kWh by 2020 with no incentives or credits for all solar-to-electricity technologies.1 As this goal is reached, the share of utility power generation that is provided by renewable energy sources is expected to increase dramatically. Because Concentrating Solar Power (CSP) is currently the only renewable technology that is capable of integrating cost-effective energy storage, it is positioned to play a key role in providing renewable, dispatchable power to utilities as the share of power generation from renewable sources increases. Because of this role, future CSP plants will likely have as much as 15 hours of Thermal Energy Storage (TES) included in their design and operation. As such, the cost and performance of the TES system is critical to meeting the SunShot goal for solar technologies. The cost of electricity from a CSP plant depends strongly on its overall efficiency, which is a product of two components - the collection and conversion efficiencies. The collection efficiency determines the portion of incident solar energy that is captured as high-temperature thermal energy. The conversion efficiency determines the portion of thermal energy that is converted to electricity. The operating temperature at which the overall efficiency reaches its maximum depends on many factors, including material properties of the CSP plant components. Increasing the operating temperature of the power generation

  20. Hybrid energy system cost analysis: San Nicolas Island, California

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, T.L.; McKenna, E.

    1996-07-01

    This report analyzes the local wind resource and evaluates the costs and benefits of supplementing the current diesel-powered energy system on San Nicolas Island, California (SNI), with wind turbines. In Section 2.0 the SNI site, naval operations, and current energy system are described, as are the data collection and analysis procedures. Section 3.0 summarizes the wind resource data and analyses that were presented in NREL/TP 442-20231. Sections 4.0 and 5.0 present the conceptual design and cost analysis of a hybrid wind and diesel energy system on SNI, with conclusions following in Section 6. Appendix A presents summary pages of the hybrid system spreadsheet model, and Appendix B contains input and output files for the HYBRID2 program.

  1. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.

    Science.gov (United States)

    Aymerich, I; Rieger, L; Sobhani, R; Rosso, D; Corominas, Ll

    2015-09-15

    The objective of this paper is to demonstrate the importance of incorporating more realistic energy cost models (based on current energy tariff structures) into existing water resource recovery facilities (WRRFs) process models when evaluating technologies and cost-saving control strategies. In this paper, we first introduce a systematic framework to model energy usage at WRRFs and a generalized structure to describe energy tariffs including the most common billing terms. Secondly, this paper introduces a detailed energy cost model based on a Spanish energy tariff structure coupled with a WRRF process model to evaluate several control strategies and provide insights into the selection of the contracted power structure. The results for a 1-year evaluation on a 115,000 population-equivalent WRRF showed monthly cost differences ranging from 7 to 30% when comparing the detailed energy cost model to an average energy price. The evaluation of different aeration control strategies also showed that using average energy prices and neglecting energy tariff structures may lead to biased conclusions when selecting operating strategies or comparing technologies or equipment. The proposed framework demonstrated that for cost minimization, control strategies should be paired with a specific optimal contracted power. Hence, the design of operational and control strategies must take into account the local energy tariff.

  2. Expert elicitation survey on future wind energy costs

    Science.gov (United States)

    Wiser, Ryan; Jenni, Karen; Seel, Joachim; Baker, Erin; Hand, Maureen; Lantz, Eric; Smith, Aaron

    2016-10-01

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends—in part—on the future costs of both onshore and offshore wind. Here, we summarize the results of an expert elicitation survey of 163 of the world’s foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions by 2030 and 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R&D and industry strategy.

  3. Expert elicitation survey on future wind energy costs

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Jenni, Karen; Seel, Joachim; Baker, Erin; Hand, Maureen; Lantz, Eric; Smith, Aaron

    2016-09-12

    Wind energy supply has grown rapidly over the last decade. However, the long-term contribution of wind to future energy supply, and the degree to which policy support is necessary to motivate higher levels of deployment, depends -- in part -- on the future costs of both onshore and offshore wind. Here, we summarize the results of an expert elicitation survey of 163 of the world's foremost wind experts, aimed at better understanding future costs and technology advancement possibilities. Results suggest significant opportunities for cost reductions, but also underlying uncertainties. Under the median scenario, experts anticipate 24-30% reductions by 2030 and 35-41% reductions by 2050 across the three wind applications studied. Costs could be even lower: experts predict a 10% chance that reductions will be more than 40% by 2030 and more than 50% by 2050. Insights gained through expert elicitation complement other tools for evaluating cost-reduction potential, and help inform policy and planning, R&D and industry strategy.

  4. The energy cost of water independence: the case of Singapore.

    Science.gov (United States)

    Vincent, Lenouvel; Michel, Lafforgue; Catherine, Chevauché; Pauline, Rhétoré

    2014-01-01

    Finding alternative resources to secure or increase water availability is a key issue in most urban areas. This makes the research of alternative and local water resources of increasing importance. In the context of political tension with its main water provider (Malaysia), Singapore has been implementing a comprehensive water policy for some decades, which relies on water demand management and local water resource mobilisation in order to reach water self-sufficiency by 2060. The production of water from alternative resources through seawater desalination or water reclamation implies energy consumptive technologies such as reverse osmosis. In the context of increasing energy costs and high primary energy dependency, this water self-sufficiency objective is likely to be an important challenge for Singapore. The aim of this paper is to quantify the long-term impact of Singapore's water policy on the national electricity bill and to investigate the impact of Singapore's projects to reduce its water energy footprint. We estimate that 2.0% of the Singaporean electricity demand is already dedicated to water and wastewater treatment processes. If its water-energy footprint dramatically increases in the coming decades, ambitious research projects may buffer the energy cost of water self-sufficiency.

  5. Energy cost and motivation in a population of young swimmers

    Directory of Open Access Journals (Sweden)

    José Maria Cancela Carral

    2014-12-01

    Full Text Available Objective: To examine the relationship between the energy cost implied in competition in different swimming events and its relationship with motivation to practice this sport. Methods: A total of 389 swimmers (192 boys and 197 girls, aged 8-22 years, who competed in events with different energy demands responded to the Spanish versions of the Participation Motivation Inventory. Results: A multivariate analysis showed that the energy cost of the preferential event had a significant influence on the swimmer motivation (Wilk's λ=0.96, F7,388=6.29, P<0.005. A later univariate analysis showed that the motivation of swimmers in predominantly aerobic modalities, as compared to those in anaerobic ones, was significantly influenced by four motivational components: "Health/Fitness", "Fun/Friendship", "Competition/Skills" and "Significant Others". The motivational factors also varied according to gender and stage of sport development of the swimmers. Conclusion: The results of this study show signs that the motivational factors related to the practice of competitive swimming in young athletes behaves differently depending on the energy cost of the test carried out.

  6. Predicting the Incremental Hospital Cost of Adverse Events Among Medicare Beneficiaries in the Comprehensive Joint Replacement Program During Fiscal Year 2014.

    Science.gov (United States)

    Culler, Steven D; Jevsevar, David S; McGuire, Kevin J; Shea, Kevin G; Little, Kenneth M; Schlosser, Michael J

    2017-06-01

    The Medicare program's Comprehensive Care for Joint Replacement (CJR) payment model places hospitals at financial risk for the treatment cost of Medicare beneficiaries (MBs) undergoing lower extremity joint replacement (LEJR). This study uses Medicare Provider Analysis and Review File and identified 674,777 MBs with LEJR procedure during fiscal year 2014. Adverse events (death, acute myocardial infarction, pneumonia, sepsis or shock, surgical site bleeding, pulmonary embolism, mechanical complications, and periprosthetic joint infection) were studied. Multivariable regressions were modeled to estimate the incremental hospital cost of treating each adverse event. The risk-adjusted estimated hospital cost of treating adverse events varied from a high of $29,061 (MBs experiencing hip fracture and joint infection) to a low of $6308 (MBs without hip fracture that experienced pulmonary embolism). Avoidance of adverse events in the LEJR hospitalization will play an important role in managing episode hospital costs in the Comprehensive Care for Joint Replacement program. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Optimal insemination and replacement decisions to minimize the cost of pathogen-specific clinical mastitis in dairy cows.

    Science.gov (United States)

    Cha, E; Kristensen, A R; Hertl, J A; Schukken, Y H; Tauer, L W; Welcome, F L; Gröhn, Y T

    2014-01-01

    Mastitis is a serious production-limiting disease, with effects on milk yield, milk quality, and conception rate, and an increase in the risk of mortality and culling. The objective of this study was 2-fold: (1) to develop an economic optimization model that incorporates all the different types of pathogens that cause clinical mastitis (CM) categorized into 8 classes of culture results, and account for whether the CM was a first, second, or third case in the current lactation and whether the cow had a previous case or cases of CM in the preceding lactation; and (2) to develop this decision model to be versatile enough to add additional pathogens, diseases, or other cow characteristics as more information becomes available without significant alterations to the basic structure of the model. The model provides economically optimal decisions depending on the individual characteristics of the cow and the specific pathogen causing CM. The net returns for the basic herd scenario (with all CM included) were $507/cow per year, where the incidence of CM (cases per 100 cow-years) was 35.6, of which 91.8% of cases were recommended for treatment under an optimal replacement policy. The cost per case of CM was $216.11. The CM cases comprised (incidences, %) Staphylococcus spp. (1.6), Staphylococcus aureus (1.8), Streptococcus spp. (6.9), Escherichia coli (8.1), Klebsiella spp. (2.2), other treated cases (e.g., Pseudomonas; 1.1), other not treated cases (e.g., Trueperella pyogenes; 1.2), and negative culture cases (12.7). The average cost per case, even under optimal decisions, was greatest for Klebsiella spp. ($477), followed by E. coli ($361), other treated cases ($297), and other not treated cases ($280). This was followed by the gram-positive pathogens; among these, the greatest cost per case was due to Staph. aureus ($266), followed by Streptococcus spp. ($174) and Staphylococcus spp. ($135); negative culture had the lowest cost ($115). The model recommended treatment for

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  9. Nucleation theory - Is replacement free energy needed?. [error analysis of capillary approximation

    Science.gov (United States)

    Doremus, R. H.

    1982-01-01

    It has been suggested that the classical theory of nucleation of liquid from its vapor as developed by Volmer and Weber (1926) needs modification with a factor referred to as the replacement free energy and that the capillary approximation underlying the classical theory is in error. Here, the classical nucleation equation is derived from fluctuation theory, Gibb's result for the reversible work to form a critical nucleus, and the rate of collision of gas molecules with a surface. The capillary approximation is not used in the derivation. The chemical potential of small drops is then considered, and it is shown that the capillary approximation can be derived from thermodynamic equations. The results show that no corrections to Volmer's equation are needed.

  10. Cost analysis of DAWT innovative wind energy systems

    Science.gov (United States)

    Foreman, K. M.

    The results of a diffuser augmented wind turbine (DAWT) preliminary design study of three constructional material approaches and cost analysis of DAWT electrical energy generation are presented. Costs are estimated assuming a limited production run (100 to 500 units) of factory-built subassemblies and on-site final assembly and erection within 200 miles of regional production centers. It is concluded that with the DAWT the (busbar) cost of electricity (COE) can range between 2.0 and 3.5 cents/kW-hr for farm and REA cooperative end users, for sites with annual average wind speeds of 16 and 12 mph respectively, and 150 kW rated units. No tax credit incentives are included in these figures. For commercial end users of the same units and site characteristics, the COE ranges between 4.0 and 6.5 cents/kW-hr.

  11. Energy-dense fast food products cost less: an observational study of the energy density and energy cost of Australian fast foods.

    Science.gov (United States)

    Wellard, Lyndal; Havill, Michelle; Hughes, Clare; Watson, Wendy L; Chapman, Kathy

    2015-12-01

    To examine the association between energy cost and energy density of fast food products. Twenty Sydney outlets of the five largest fast food chains were surveyed four times. Price and kilojoule data were collected for all limited-time-only menu items (n=54) and a sample of standard items (n=67). Energy cost ($/kilojoule) and energy density (kilojoules/gram) of menu items were calculated. There was a significant inverse relationship between menu item energy density and energy cost (ppricing of larger serve sizes, or change defaults in meals to healthier options. More research is required to determine the most effective strategy to reduce the negative impact of fast food on the population's diet. Current pricing in the fast food environment may encourage unhealthier purchases. © 2015 Public Health Association of Australia.

  12. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  13. Levelized Cost of Energy for a Backward Bent Duct Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; Copping, Andrea E.; Copeland, Guild

    2016-12-01

    The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publically available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied within the Reference Model Project. Comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.

  14. Energy costs of catfish space use as determined by biotelemetry.

    Directory of Open Access Journals (Sweden)

    Ondřej Slavík

    Full Text Available Animals use dispersed resources within their home range (HR during regular day-to-day activities. The high-quality area intensively used by an individual, where critical resources are concentrated, has been designated as the core area (CA. This study aimed to describe how animals utilize energy in the HR and CA assuming that changes would occur according to the size of the used areas. We observed energetic costs of space use in the largest European freshwater predator catfish, Silurus glanis, using physiological sensors. Catfish consumed significantly more energy within the CA compared to the rest of the HR area. In addition, energetic costs of space use within a large area were lower. These results generally indicate that utilization of larger areas is related to less demanding activities, such as patrolling and searching for new resources and mates. In contrast, fish occurrence in small areas appears to be related to energetically demanding use of spatially limited resources.

  15. Energy costs of catfish space use as determined by biotelemetry.

    Science.gov (United States)

    Slavík, Ondřej; Horký, Pavel; Závorka, Libor

    2014-01-01

    Animals use dispersed resources within their home range (HR) during regular day-to-day activities. The high-quality area intensively used by an individual, where critical resources are concentrated, has been designated as the core area (CA). This study aimed to describe how animals utilize energy in the HR and CA assuming that changes would occur according to the size of the used areas. We observed energetic costs of space use in the largest European freshwater predator catfish, Silurus glanis, using physiological sensors. Catfish consumed significantly more energy within the CA compared to the rest of the HR area. In addition, energetic costs of space use within a large area were lower. These results generally indicate that utilization of larger areas is related to less demanding activities, such as patrolling and searching for new resources and mates. In contrast, fish occurrence in small areas appears to be related to energetically demanding use of spatially limited resources.

  16. Compressed air systems. A guidebook on energy and cost savings

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-30

    This guidebook shows how energy can be saved in compressed air systems. It discusses basic compressed air systems which are typical of those found in industry and describes them and the engineering practices behind them. Energy conservation recommendations follow. These recommendations cover equipment selection, design, maintenance, and operation. Included is information which will help the reader to make economic evaluations of various engineering and equipment alternatives as they affect operations and costs. The appendices include some modern computer based approaches to predicting pressure drop for designing compressed air distribution systems. Also included is a bibliography providing leads for further and more detailed technical information on these and related subjects.

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  18. 10 CFR 434.502 - Determination of the annual energy cost budget.

    Science.gov (United States)

    2010-01-01

    ... Budgets. Each monthly Energy Cost Budget is the product of the monthly Building Energy Consumption of each... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.502... Cost Budget BECONmi = The monthly Budget Energy Consumption of the ith type of energy ECOSmi =...

  19. Energy Storage Options for Low-Cost Spacecraft Applications

    OpenAIRE

    Pennington, D.F.; Wecker, S.E.; Wright, R. D.; Coates, D.K.

    1995-01-01

    Several energy storage options currently exist for small satellite power systems. These include nickel-hydrogen, nickel-cadmium and nickel-metal hydride batteries. Nickel-hydrogen is available only as a spaceflight qualified system and is therefore relatively high in cost. Nickel-metal hydride batteries are available only in a small capacity, commercial cylindrical version which limits usefulness in aerospace applications. Both aerospace and commercial nickel-cadmium batteries are available, ...

  20. Cost optimal levels for energy performance requirements:Executive summary

    OpenAIRE

    Thomsen, Kirsten Engelund; Aggerholm, Søren; Kluttig-Erhorn, Heike; Erhorn, Hans; Poel, Bart; Hitchin, Roger

    2011-01-01

    This report summarises the work done within the Concerted Action EPBD from December 2010 to April 2011 in order to feed into the European Commission's proposal for a common European procedure for a Cost-Optimal methodology under the Directive on the Energy Performance of Buildings (recast) 2010/31/EU. This report summarises the work done within the Concerted Action EPBD from December 2010 to April 2011 in order to feed into the European Commission's proposal for a common European procedure...

  1. 组合盘节能缓存替换机制%Energy-Efficient Replacement Schemes for Heterogeneous Drive

    Institute of Scientific and Technical Information of China (English)

    杨良怀; 周健; 龚卫华; 陈立军

    2013-01-01

    Much attention has recently been put on the energy-saving scheme for heterogeneous drive (H-Drive) which combines SSD and HDD. This paper focuses on the energy-efficient file buffering schemes for H-Drive while ensuring disk's lifespan. We propose a frequency-energy based replacement scheme (FEBR for short) by adapting previous replacement algorithm FBR with the help of an energy-cost model. And based on the sliding-window scheme, we also present a self-adaptive disk power management scheme by taking the disk lifespan into account, which adjusts timeout threshold according to the statistical behavior of user accesses. To explore the applicability of the existing replacement schemes ranging from page-based to file-based buffering scheme, we evaluate their effectiveness on energy-efficiency, performance, and HDD lifetime and compare them with our proposed scheme. With extensive experiments on four real-world file usage traces collected in our office, some useful conclusions are drawn: energy-saving in H-Drive is feasible, it can reach as high as 70%~80%; FBR and its variant FEBR, and GDS are the best ones among all those online buffering schemes evaluated while FEBR has some advantages over FBR and GDS; the proposed self-adaptive disk power management scheme can effectively control the disk's lifetime and it is inappropriate to power disk on or off by using those fixed-timeout threshold scheme prevailed previously.%利用组合盘(由固态盘和硬盘构成)进行节能是近年来的一个研究热点.对基于文件粒度的组合盘节能缓存机制开展了研究,利用能量代价模型改编FBR,提出了基于频率和能量的替换算法FEBR;同时,基于滑动窗口机制提出了考虑硬盘寿命的自适应磁盘电源管理机制;为探索现有缓存算法在新硬件结构上的适用性,对过去提出的一系列缓存替换算法在能效、性能、硬盘寿命影响等方面进行了较为全面的比较和评价.通过对收集的4个真

  2. Investigation of Energy Consumption in Agriculture Sector of Iran and their Effect on Air Pollution and Social Cost

    Directory of Open Access Journals (Sweden)

    Abbas Asakereh

    2010-08-01

    Full Text Available The aims of this study are investigation of consumption, intensity and efficiency of fossil fuels and electricity energy in Iran's agriculture sector and emission of GHG and air pollutants and their social (damage costs. D ata used in this study were obtained from ministry of energy and central bank of Iron in 1997- 2007. Input energy of fossil fuel and electricity in agriculture increased from 265.1 to 411.2 PJ in this period. Results show that the efficiency of using of fuels and electricity has not increased and increasing of social costs of GHG and air pollutants emission has been more than added value of agriculture sector. So, it is necessary that by increasing of technology level and replacement of age-old and depreciated machineries and equipments, appropriate management and increasing efficiency of fuel and electricity energy in macro level will cause decreasing negative effects of energy consumption.

  3. Coordination pattern adaptability: energy cost of degenerate behaviors.

    Directory of Open Access Journals (Sweden)

    Ludovic Seifert

    Full Text Available This study investigated behavioral adaptability, which could be defined as a blend between stability and flexibility of the limbs movement and their inter-limb coordination, when individuals received informational constraints. Seven expert breaststroke swimmers performed three 200-m in breaststroke at constant submaximal intensity. Each trial was performed randomly in a different coordination pattern: 'freely-chosen', 'maximal glide' and 'minimal glide'. Two underwater and four aerial cameras enabled 3D movement analysis in order to assess elbow and knee angles, elbow-knee pair coordination, intra-cyclic velocity variations of the center of mass, stroke rate and stroke length and inter-limb coordination. The energy cost of locomotion was calculated from gas exchanges and blood lactate concentration. The results showed significantly higher glide, intra-cyclic velocity variations and energy cost under 'maximal glide' compared to 'freely-chosen' instructional conditions, as well as higher reorganization of limb movement and inter-limb coordination (p<0.05. In the 'minimal glide' condition, the swimmers did not show significantly shorter glide and lower energy cost, but they exhibited significantly lower deceleration of the center of mass, as well as modified limb movement and inter-limb coordination (p<0.05. These results highlight that a variety of structural adaptations can functionally satisfy the task-goal.

  4. Effects of partly replacing dietary starch with fiber and fat on milk production and energy partitioning.

    Science.gov (United States)

    Boerman, J P; Potts, S B; VandeHaar, M J; Lock, A L

    2015-10-01

    The effects of partly replacing dietary starch with fiber and fat to provide a diet with similar net energy for lactation (NEL) density on yields of milk and milk components and on energy partitioning were evaluated in a crossover design experiment. Holstein cows (n = 32; 109 ± 22 d in milk, mean ± standard deviation) were randomly assigned to treatment sequence. Treatments were a high-starch diet containing 33% corn grain (mixture of dry ground and high-moisture corn; HS) or a high-fiber, high-fat diet containing 2.5% palmitic acid-enriched fatty acid (FA) supplement (HFF). Diets contained corn silage, alfalfa silage, and wheat straw as forage sources; HS contained 32% starch, 3.2% FA, and 25% neutral detergent fiber, whereas HFF contained 16% starch, 5.4% FA, and 33% neutral detergent fiber. Compared with HS, the HFF treatment reduced milk yield, milk protein concentration, and milk protein yield, but increased milk fat concentration, milk fat yield, milk energy output, and milk to feed ratio (energy-corrected milk/dry matter intake). The HFF treatment reduced the yield of de novo synthesized ( 16-carbon) milk FA was not different. The HFF treatment increased plasma concentrations of triglycerides and nonesterified fatty acids, but decreased plasma concentration of insulin. Compared with HS, the HFF treatment reduced body weight gain, change in body condition score, and fat thickness over the rump and rib. Calculated body energy gain, as a fraction of NEL use, was less for HFF than HS, whereas milk energy as a fraction of NEL use was increased for HFF. We concluded that the 2 treatments resulted in similar apparent NEL densities and intakes, but the HS treatment partitioned more energy toward body gain whereas the HFF treatment partitioned more energy toward milk. A high-fiber, high-fat diet might diminish the incidence of over conditioning in mid-lactation cows while maintaining high milk production. Copyright © 2015 American Dairy Science Association

  5. Growth indices and cost implications of hybro broiler chicks fed with graded levels of fermented wild cocoyam Colocasia esculenta (L.) Schott corm meal as a replacement for maize.

    Science.gov (United States)

    Olajide, R

    2014-05-01

    Corms such as wild cocoyam [Colocasia esculenta] have potential to replace maize as a cheaper energy source in poultry rations. A feeding trial was conducted to evaluate the effects of graded levels of fermented wild cocoyam [Colocasia esculenta (L.) Schott] corm (FWCC), as substitutes for maize in the diets of broilers at the starter phase. One hundred and twenty unsexed day-old Hybro broiler chicks were randomly distributed to four dietary treatments in a Completely Randomized Design (CRD). There were 3 replicates per dietary treatment with 10 birds per replicate. Diet 1 without FWCC served as the control. Diets 2, 3 and 4 contained 10, 20 and 30% FWCC. Each of the diets represented a treatment. The experimental diets and clean drinking water were supplied ad libitum for 4 weeks (28 days) representing the starter phase of the broiler production. Result of the performance revealed significant (p<0.05) differences in feed intake, weight gain and feed conversion ratio. The economic analysis also showed that cost (Naira58.52) of a kilogram feed was highest (p<0.05) for the control and least (Naira53.10) for 30% FWCC. The least cost (Naira101.24) of feed per kilogram weight gain (p<0.05) was obtained for birds fed 30% FWCC compared to (Naira105.53) for the control. It was concluded that maize can economically be substituted with 30% FWCC in broiler starter diets.

  6. Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.

    Science.gov (United States)

    Lee, Dong-Yeon; Thomas, Valerie M; Brown, Marilyn A

    2013-07-16

    We compare electric and diesel urban delivery trucks in terms of life-cycle energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership (TCO). The relative benefits of electric trucks depend heavily on vehicle efficiency associated with drive cycle, diesel fuel price, travel demand, electric drive battery replacement and price, electricity generation and transmission efficiency, electric truck recharging infrastructure, and purchase price. For a drive cycle with frequent stops and low average speed such as the New York City Cycle (NYCC), electric trucks emit 42-61% less GHGs and consume 32-54% less energy than diesel trucks, depending upon vehicle efficiency cases. Over an array of possible conditions, the median TCO of electric trucks is 22% less than that of diesel trucks on the NYCC. For a drive cycle with less frequent stops and high average speed such as the City-Suburban Heavy Vehicle Cycle (CSHVC), electric trucks emit 19-43% less GHGs and consume 5-34% less energy, but cost 1% more than diesel counterparts. Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively.

  7. Energy cost reduction in the pulp and paper industry - an energy benchmarking perspective

    Energy Technology Data Exchange (ETDEWEB)

    Francis, D.W.; Towers, M.T.; Browne, T.C. [Pulp and Paper Research Institute of Canada (Canada)

    2002-07-01

    With the increasing cost of energy and the rising concerns over the environment, interest in energy saving methods is growing in the industry sector. In the pulp and paper sector, energy represents a significant part of costs and the aims of this paper are first, to demonstrate that there is a potential for energy use reduction in the pulp and paper industry and secondly, to show how it can be achieved. Benchmarking studies have been carried out for both the kraft market pulp and newsprint sectors; in both cases the energy consumption of existing Canadian mills was compared to that of a modern mill using the best current technologies. Results showed that in both sectors, the application of best practices could result in significant savings. This study demonstrated that the application of current technologies in existing mills would yield significant energy use reductions.

  8. Associations between preoperative physical therapy and post-acute care utilization patterns and cost in total joint replacement.

    Science.gov (United States)

    Snow, Richard; Granata, Jaymes; Ruhil, Anirudh V S; Vogel, Karen; McShane, Michael; Wasielewski, Ray

    2014-10-01

    Health-care costs following acute hospital care have been identified as a major contributor to regional variation in Medicare spending. This study investigated the associations of preoperative physical therapy and post-acute care resource use and its effect on the total cost of care during primary hip or knee arthroplasty. Historical claims data were analyzed using the Centers for Medicare & Medicaid Services Limited Data Set files for Diagnosis Related Group 470. Analysis included descriptive statistics of patient demographic characteristics, comorbidities, procedures, and post-acute care utilization patterns, which included skilled nursing facility, home health agency, or inpatient rehabilitation facility, during the ninety-day period after a surgical hospitalization. To evaluate the associations, we used bivariate and multivariate techniques focused on post-acute care use and total episode-of-care costs. The Limited Data Set provided 4733 index hip or knee replacement cases for analysis within the thirty-nine-county Medicare hospital referral cluster. Post-acute care utilization was a significant variable in the total cost of care for the ninety-day episode. Overall, 77.0% of patients used post-acute care services after surgery. Post-acute care utilization decreased if preoperative physical therapy was used, with only 54.2% of the preoperative physical therapy cohort using post-acute care services. However, 79.7% of the non-preoperative physical therapy cohort used post-acute care services. After adjusting for demographic characteristics and comorbidities, the use of preoperative physical therapy was associated with a significant 29% reduction in post-acute care use, including an $871 reduction of episode payment driven largely by a reduction in payments for skilled nursing facility ($1093), home health agency ($527), and inpatient rehabilitation ($172). The use of preoperative physical therapy was associated with a 29% decrease in the use of any post-acute care

  9. 5 CFR 591.220 - How does OPM calculate energy utility cost indexes?

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false How does OPM calculate energy utility... Areas Cost-Of-Living Allowances § 591.220 How does OPM calculate energy utility cost indexes? (a) OPM calculates energy utility cost indexes based on the relative cost of maintaining a standard size dwelling...

  10. The free energy cost of accurate biochemical oscillations

    CERN Document Server

    Cao, Yuansheng; Ouyang, Qi; Tu, Yuhai

    2015-01-01

    Oscillation is an important cellular process that regulates timing of different vital life cycles. However, in the noisy cellular environment, oscillations can be highly inaccurate due to phase fluctuations. It remains poorly understood how biochemical circuits suppress phase fluctuations and what is the incurred thermodynamic cost. Here, we study four different types of biochemical oscillations representing three basic oscillation motifs shared by all known oscillatory systems. We find that the phase diffusion constant follows the same inverse dependence on the free energy dissipation per period for all systems studied. This relationship between the phase diffusion and energy dissipation is shown analytically in a model of noisy oscillation. Microscopically, we find that the oscillation is driven by multiple irreversible cycles that hydrolyze the fuel molecules such as ATP; the number of phase coherent periods is proportional to the free energy consumed per period. Experimental evidence in support of this un...

  11. Impact of Financial Structure on the Cost of Solar Energy

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.; Kreycik, C.; Bird, L.; Schwabe, P.; Cory, K.

    2012-03-01

    To stimulate investment in renewable energy generation projects, the federal government developed a series of support structures that reduce taxes for eligible investors--the investment tax credit, the production tax credit, and accelerated depreciation. The nature of these tax incentives often requires an outside investor and a complex financial arrangement to allocate risk and reward among the parties. These financial arrangements are generally categorized as 'advanced financial structures.' Among renewable energy technologies, advanced financial structures were first widely deployed by the wind industry and are now being explored by the solar industry to support significant scale-up in project development. This report describes four of the most prevalent financial structures used by the renewable sector and evaluates the impact of financial structure on energy costs for utility-scale solar projects that use photovoltaic and concentrating solar power technologies.

  12. Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Margaret [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fujita, K. Sydny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-09-17

    In 2011, energy used by federal buildings cost approximately $7 billion. Reducing federal energy use could help address several important national policy goals, including: (1) increased energy security; (2) lowered emissions of greenhouse gases and other air pollutants; (3) increased return on taxpayer dollars; and (4) increased private sector innovation in energy efficient technologies. This report estimates the impact of efficient product procurement on reducing the amount of wasted energy (and, therefore, wasted money) associated with federal buildings, as well as on reducing the needless greenhouse gas emissions associated with these buildings.

  13. Design Data Sheet: Calculation of Surface Ship Annual Energy Usage, Annual Energy Cost, and Fully Burdened Cost of Energy

    Science.gov (United States)

    2012-08-07

    F76 for ship propulsion and power generation and JP5 for aircraft. JP5 is also used occasionally for ship propulsion and power generation. While...applications, the FBCE includes the acquisition cost of a barrel of ship propulsion fuel burdened with the additional indirect costs associated with...fuel used for Navy ship propulsion and electrical power generation. JP5 is primarily used for powering aircraft. The FY 2011 DoD composite standard

  14. Evaluation of global onshore wind energy potential and generation costs.

    Science.gov (United States)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  15. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  16. Advanced vehicles: Costs, energy use, and macroeconomic impacts

    Science.gov (United States)

    Wang, Guihua

    Advanced vehicles and alternative fuels could play an important role in reducing oil use and changing the economy structure. We developed the Costs for Advanced Vehicles and Energy (CAVE) model to investigate a vehicle portfolio scenario in California during 2010-2030. Then we employed a computable general equilibrium model to estimate macroeconomic impacts of the advanced vehicle scenario on the economy of California. Results indicate that, due to slow fleet turnover, conventional vehicles are expected to continue to dominate the on-road fleet and gasoline is the major transportation fuel over the next two decades. However, alternative fuels could play an increasingly important role in gasoline displacement. Advanced vehicle costs are expected to decrease dramatically with production volume and technological progress; e.g., incremental costs for fuel cell vehicles and hydrogen could break even with gasoline savings in 2028. Overall, the vehicle portfolio scenario is estimated to have a slightly negative influence on California's economy, because advanced vehicles are very costly and, therefore, the resulting gasoline savings generally cannot offset the high incremental expenditure on vehicles and alternative fuels. Sensitivity analysis shows that an increase in gasoline price or a drop in alternative fuel prices could offset a portion of the negative impact.

  17. Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

    2013-08-30

    The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

  18. Life cycle costs of electric industrial drives. Reliability and energy consumption are decisive cost factors. Life-Cycle Costs elektrischer Industrieantriebe. Zuverlaessigkeit und Energieverbrauch als entscheidende Kostenfaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Bieniek, K. (BASF AG, Ludwigshafen (Germany))

    1999-06-01

    In the case of electric drives for the chemical industry, the purchase cost is only a fraction of the life cycle cost. The main criteria for engine assessment are reliability and energy consumption resp. performance. After the issuing of the US Energy Policy Act, the EC is discussion energy savings with the aid of high-performance electric motors.

  19. Low cost composite structures for superconducting magnetic energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Rix, C. (General Dynamics Space Magnetics, San Diego, CA (United States)); McColskey, D. (National Inst. of Standards and Technology, Boulder, CO (United States)); Acree, R. (Phillips Lab., Edwards Air Force Base, CA (United States))

    1994-07-01

    As part of the Superconducting Magnetic Energy Storage/Engineering Test Model (SMES-ETM) programs, design, analysis, fabrication and test programs were conducted to evaluate the low cost manufacturing of Fiberglass Reinforced Plastic (FRP) beams for usage as major components of the structural and electrical insulation systems. These studies utilized pultrusion process technologies and vinylester resins to produce large net sections at costs significantly below that of conventional materials. Demonstration articles incorporating laminate architectures and design details representative of SMES-ETM components were fabricated using the pultrusion process and epoxy, vinylester, and polyester resin systems. The mechanical and thermal properties of these articles were measured over the temperature range from 4 K to 300 K. The results of these tests showed that the pultruded, vinylester components have properties comparable to those of currently used materials, such as G-10, and are capable of meeting the design requirements for the SMES-ETM system.

  20. Home Energy Management System Using NILM, Low-Cost HAN

    Institute of Scientific and Technical Information of China (English)

    Qasim Khalid; Naveed Arshad; Nasir Khan; Taha Hassan; Fahad Javed; Jahangir Ikram

    2014-01-01

    Home energy management systems (HEMs) are used to provide comfortable life for consumers as well as to save energy. An essential component of HEMs is a home area network (HAN) that is used to remotely control the electric devices at homes and buildings. Although HAN prices have dropped in recent years but they are still expensive enough to prohibit a mass scale deployments. In this paper, a very low cost alternative to the expensive HANs is presented. We have applied a combination of non-intrusive load monitoring (NILM) and very low cost one-way HAN to develop a HEM. By using NILM and machine learning algorithms we find the status of devices and their energy consumption from a central meter and communicate with devices through the one-way HAN. The evaluations show that the proposed machine learning algorithm for NILM achieves up to 99%accuracy in certain cases. On the other hand our radio frequency (RF)-based one-way HAN achieves a range of 80 feet in all settings.

  1. Cost-based response to low-income energy problems

    Energy Technology Data Exchange (ETDEWEB)

    Colton, R. (National Consumer Law Center, Boston, MA (United States))

    1991-03-01

    The goal of a public utility commission concerning low-income energy rates is to have a utility collect the greatest proportion of a current bill that it can from low-income households while minimizing the costs of collection. Stating the issue in this fashion recognizes the warning of the Vermont Department of Public Service, which said last year that there are two harsh realities for the utility industry. First, charging a rate and collecting a rate are two separate actions. Simply because a utility charges a particular rate does not mean that it will ever collect that money from a low-income household. Second, even when a utility does collect the total bill from a low-income household, the utility often spends considerable sums in the very act of collection. The National Consumer Law Center has developed the energy assurance program (EAP) to address these dual problems. The EAP recognizes that some households simply do not have sufficient income to pay for the basic necessities of life, including energy. The EAP is offered to utilities as a mechanism to maximize the collection of revenue while minimizing collection expenses. Through an EAP, utilities will pursue the least-cost provision of service in the credit and collection arena. The EAP addresses a utility's business problem posed by low-income and inability to pay, in a manner that no other program can. The EAP represents good regulation, good business, and good social policy.

  2. Modeling the Effect of Replacing Sugar-Sweetened Beverage Consumption with Water on Energy Intake, HBI Score, and Obesity Prevalence

    Directory of Open Access Journals (Sweden)

    Kiyah J. Duffey

    2016-06-01

    Full Text Available Sugar-sweetened beverages (SSB contribute to excessive weight gain through added energy intake. Replacing SSB with water is one strategy that has shown promise in helping lower excessive energy intake. Using nationally representative data from US adults (n = 19,718 from NHANES 2007–2012 we examine the impact of replacing SSB with water on Healthy Beverage Index (HBI scores and obesity prevalence. Replacing an 8-ounce serving of SSB with water lowered the percent of energy from beverages from 17% to 11% (among those consuming 1 serving SSB/day. Reductions in the percent energy from beverages were observed across all SSB consumption groups (1–2 servings/day and >2 servings/day. Among adults there was a 9% to 21% improvement in HBI score when one serving of water replaced one serving of SSB. Using previously published randomized controlled trials (RCT and meta-analyses of measured weight loss we also predicted a reduction in the prevalence of obesity (observed: 35.2%; predicted 33.5%–34.9%, p < 0.05 and increase in the prevalence of normal weight (observed: 29.7%; high weight loss: 31.3%, p < 0.05. Our findings provide further epidemiologic evidence that water in the place of SSB can be used as a strategy to limit energy intake and help individuals meet beverage intake recommendations.

  3. Evaluation of energy and cost savings in mobile Cloud RAN

    DEFF Research Database (Denmark)

    Checko, Aleksandra; Christiansen, Henrik Lehrmann; Berger, Michael Stübert

    2013-01-01

    The load in mobile networks is subject to variations during the day, due to user mobility and varying network average usage. Therefore, the traditional or Distributed Radio Access Network (D-RAN) architecture, where the BaseBand processing Units (BBUs) are assigned statically to a number of cells......, is sub optimal, comparing to a novel, cloud based architecture called Cloud Radio Access Network (C-RAN). In C-RAN a group of cells shares processing resources, and hence benefit from statistical multiplexing gain is expected. In this paper, the energy and cost savings in C-RAN are evaluated numerically...

  4. Investment costs incurring with the application of alternative energies

    Energy Technology Data Exchange (ETDEWEB)

    Mengeringhausen, M.

    1982-09-01

    The application of alternative methods of energy utilization must lead to significant savings in comparison to the conventional methods if it is to be done in a degree which can affect the national economy. Especially in systems with integrated heat pumps, the amount of the investment costs plays an important role. Starting from these statements the author emphasizes the necessity of seeing the possibilities of electronic data processing as a ''complementary technology'' to the alternative energies. The author shows the usefulness of the procedure referring to a calculation method. At the example of the new building of the MERO-factory the applicability of the method is demonstrated.

  5. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new

  6. Cost analysis in support of minimum energy standards for clothes washers and dryers

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-02

    The results of the cost analysis of energy conservation design options for laundry products are presented. The analysis was conducted using two approaches. The first, is directed toward the development of industrial engineering cost estimates of each energy conservation option. This approach results in the estimation of manufacturers costs. The second approach is directed toward determining the market price differential of energy conservation features. The results of this approach are shown. The market cost represents the cost to the consumer. It is the final cost, and therefore includes distribution costs as well as manufacturing costs.

  7. Assessing Potential Energy Cost Savings from Increased Energy Code Compliance in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The US Department of Energy’s most recent commercial energy code compliance evaluation efforts focused on determining a percent compliance rating for states to help them meet requirements under the American Recovery and Reinvestment Act (ARRA) of 2009. That approach included a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. With its binary approach to compliance determination, the previous methodology failed to answer some important questions. In particular, how much energy cost could be saved by better compliance with the commercial energy code and what are the relative priorities of code requirements from an energy cost savings perspective? This paper explores an analytical approach and pilot study using a single building type and climate zone to answer those questions.

  8. Cost, resources, and energy efficiency of additive manufacturing

    Directory of Open Access Journals (Sweden)

    Dudek Piotr

    2017-01-01

    Full Text Available Additive manufacturing (AM is the process of joining materials to make objects from Computer Aided Design (CAD model data, usually layer upon layer, as opposed to using subtractive manufacturing methods. The use of rapid prototyping technologies has increased significantly in recent years. These new techniques, while still evolving, are projected to exert a profound impact on manufacturing. They can reduce energy use and time to market and offer industry new design flexibility. We include a brief study on the cost and energy efficiency of selected methods of additive manufacturing compared to traditional methods of manufacturing parts. One common claim is that 3D printers are more energy-efficient than other manufacturing technologies. We present energy efficiency and time requirements for producing a typical mechanical part and a very complicated element, using both traditional manufacturing and rapid prototyping methods. This paper represents an attempt to answer the questions of when 3D printing can be used efficiently and of choosing the appropriate technology on the basis of batch size, element size, complexity, and material requirements.

  9. Costs evaluation methodic of energy efficient computer network reengineering

    Directory of Open Access Journals (Sweden)

    S.A. Nesterenko

    2016-09-01

    Full Text Available A key direction of modern computer networks reengineering is their transfer to a new energy-saving technology IEEE 802.3az. To make a reasoned decision about the transition to the new technology is needed a technique that allows network engineers to answer the question about the economic feasibility of a network upgrade. Aim: The aim of this research is development of methodic for calculating the cost-effectiveness of energy-efficient computer network reengineering. Materials and Methods: The methodic uses analytical models for calculating power consumption of a computer network port operating in IEEE 802.3 standard and energy-efficient mode of IEEE 802.3az standard. For frame transmission time calculation in the communication channel used the queuing model. To determine the values of the network operation parameters proposed to use multiagent network monitoring method. Results: The methodic allows calculating the economic impact of a computer network transfer to energy-saving technology IEEE 802.3az. To determine the network performance parameters proposed to use network SNMP monitoring systems based on RMON MIB agents.

  10. Minimization of the energy costs for operating magnetic tunnel junctions

    Science.gov (United States)

    Farhat, Ilyas A. H.; Gale, E.; Isakovic, A. F.

    2015-03-01

    Increasing prospects of utilizing the STT-MRAM calls for the re-assessment of the overall energy (power) cost of operating magnetic tunnel junctions and related elements. This motivates our design, nanofabrication and characterization of simple tri-layer magnetic tunnel junctions which show measurable decrease in the operating energy cost. The MTJs we report about rely on nanoengineering interfaces between the insulating and magnetic layers in such a way that the area of the hysteresis loops can be controlled in one or both magnetic layers. Our TMR coefficient ranges from 45% to 130%, depending on the MTJ layer materials, and can be anticipated to be further increased. We also report the study of the TMR dependence on the RA product, as an important interface parameter. Lastly, we present an analysis of MTJ parameters affected by our approach and a perspective on further improvements, focusing on the device design parameters relevant for the integration of this type of MTJs. This work is supported by the SRC-ATIC Grant 2012-VJ-2335. A part of this work is being performed at Cornell University CNF, a member of NNIN. We thank CNF staff for the support.

  11. The energy cost of cycling in young obese women.

    Science.gov (United States)

    Lafortuna, Claudio L; Proietti, Marco; Agosti, Fiorenza; Sartorio, Alessandro

    2006-05-01

    In order to evaluate the difference in the energy cost of submaximal cycling between normal weight (NW) and obese (OB) females, nine OB (age 23.2 years+/-1.6 SE, BMI 40.4+/-1.2 kg/m2) and nine NW (age 25.6 years+/-1.8, BMI 21.7+/-0.6 kg/m2) healthy young women were studied during a graded bicycle ergometer test at 40, 60, 80, 100 and 120 W. At rest and at all workloads, oxygen uptake VO2 was higher in OB than in NW women (Student's t test, Pobesity, but suggesting that the increased mass of body segments involved in cycling movements may be chiefly responsible for the higher energy cost of this type of exercise. Comparison of the actual VO2 presently measured with that predicted by available cycle ergometry equations at the different workloads indicated inaccuracy of various degrees ranging from 8.4 to -31.9%. It is concluded that the lower mechanical efficiency displayed by obese women in cycling has to be taken into account when prescribing exercise through methods predicting the metabolic load.

  12. Risk of low-energy hip, wrist, and upper arm fractures among current and previous users of hormone replacement therapy

    DEFF Research Database (Denmark)

    Hundrup, Yrsa Andersen; Høidrup, Susanne; Ekholm, Ola

    2004-01-01

    To examine the effect of oestrogen alone and in combination with progestin on the risk of low-energy, hip, wrist, and upper arm fractures. Additionally, to examine to what extent previous use, duration of use as well as recency of discontinuation of hormone replacement therapy (HRT) influences th...

  13. Using of solar energy in replacing of electric shower; Utilizacao da energia solar em substituicao a chuveiros eletricos

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Samuel Luna de [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Energia Solar (LABSOLAR)]. E-mail: samuel@labsolar.ufsc.br

    2000-07-01

    This chapter studies the utilization of solar energy heating as replacing electric showers, and presents proposals for solar heating to be used by low income residences, obtained results from different alternatives of solar heating and the economic feasibility of the propose systems.

  14. Predicting the metabolic energy costs of bipedalism using evolutionary robotics.

    Science.gov (United States)

    Sellers, W I; Dennis, L A; Crompton, R H

    2003-04-01

    To understand the evolution of bipedalism among the hominoids in an ecological context we need to be able to estimate the energetic cost of locomotion in fossil forms. Ideally such an estimate would be based entirely on morphology since, except for the rare instances where footprints are preserved, this is the only primary source of evidence available. In this paper we use evolutionary robotics techniques (genetic algorithms, pattern generators and mechanical modeling) to produce a biomimetic simulation of bipedalism based on human body dimensions. The mechanical simulation is a seven-segment, two-dimensional model with motive force provided by tension generators representing the major muscle groups acting around the lower-limb joints. Metabolic energy costs are calculated from the muscle model, and bipedal gait is generated using a finite-state pattern generator whose parameters are produced using a genetic algorithm with locomotor economy (maximum distance for a fixed energy cost) as the fitness criterion. The model is validated by comparing the values it generates with those for modern humans. The result (maximum efficiency of 200 J m(-1)) is within 15% of the experimentally derived value, which is very encouraging and suggests that this is a useful analytic technique for investigating the locomotor behaviour of fossil forms. Initial work suggests that in the future this technique could be used to estimate other locomotor parameters such as top speed. In addition, the animations produced by this technique are qualitatively very convincing, which suggests that this may also be a useful technique for visualizing bipedal locomotion.

  15. The development of empirical models to evaluate energy use and energy cost in wastewater collection

    Science.gov (United States)

    Young, David Morgan

    This research introduces a unique data analysis method and develops empirical models to evaluate energy use and energy cost in wastewater collection systems using operational variables. From these models, several Best Management Processes (BMPs) are identified that should benefit utilities and positively impact the operation of existing infrastructure as well as the design of new infrastructure. Further, the conclusions generated herein display high transferability to certain manufacturing processes. Therefore, it is anticipated that these findings will also benefit pumping applications outside of the water sector. Wastewater treatment is often the single largest expense at the local government level. Not surprisingly, significant research effort has been expended on examining the energy used in wastewater treatment. However, the energy used in wastewater collection systems remains underexplored despite significant potential for energy savings. Estimates place potential energy savings as high as 60% within wastewater collection; which, if applied across the United States equates to the energy used by nearly 125,000 American homes. Employing three years of data from Renewable Water Resources (ReWa), the largest wastewater utility in the Upstate of South Carolina, this study aims to develop useful empirical equations that will allow utilities to efficiently evaluate the energy use and energy cost of its wastewater collection system. ReWa's participation was motivated, in part, by their recent adoption of the United States Environmental Protection Agency "Effective Utility Strategies" within which exists a focus on energy management. The study presented herein identifies two primary variables related to the energy use and cost associated with wastewater collection: Specific Energy (Es) and Specific Cost (Cs). These two variables were found to rely primarily on the volume pumped by the individual pump stations and exhibited similar power functions for the three year

  16. Evaluation of electricity generation and energy cost of wind energy conversion systems (WECSs) in Central Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Goekcek, Murat [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Nigde University Campus, 51100 Nigde (Turkey); Genc, Mustafa Serdar [Department of Airframe and Powerplant, School of Civil Aviation, Erciyes University, 38039 Kayseri (Turkey)

    2009-12-15

    The negative effects of non-renewable fossil fuels have forced scientists to draw attention to clean energy sources which are both environmentally more suitable and renewable. Although Turkey enjoys fairly high wind energy potential, an investigation and exploitation of this source is still below the desired level. In this study which is a preliminary study on wind energy cost in Central Anatolian-Turkey, the wind energy production using time-series approach and the economic evaluation of various wind energy conversion systems (WECSs) enjoying the 2.5, 5, 10, 20, 30, 50, 100 and 150 kW rated power size using the levelised cost of electricity (LCOE) method for the seven different locations in Central Turkey were estimated. In addition, effects of escalation ratio of operation and maintenance cost and annual mean speed on LCOE are taken into account. The wind speed data for a period between 2000 and 2006 years were taken from Turkish State Meteorological Service (TSMS). According to the result of the calculations, it is shown that the WECS of capacity 150 kW produce the energy output 120,978 kWh per year in the Case-A (Pinarbasi) for hub height 30 m and also the LCOE varies in the range of 0.29-30.0$/kWh for all WECS considered. (author)

  17. Cost-efficient emission abatement of energy and transportation technologies: mitigation costs and policy impacts for Belgium

    OpenAIRE

    De Schepper, Ellen; Van Passel, Steven; Lizin, Sebastien; Wouter M. J. Achten; Van Acker, Karel

    2014-01-01

    In the light of global warming, this paper develops a framework to compare energy and transportation technologies in terms of cost-efficient GHG emission reduction. We conduct a simultaneous assessment of economic and environmental performances through life cycle costing and life cycle assessment. To calculate the GHG mitigation cost, we create reference systems within the base scenario. Further, we extend the concept of the mitigation cost, allowing (i) comparision of technologies given a li...

  18. Cost-efficient emission abatement of energy and transportation technologies: Mitigation costs and policy impacts for Belgium

    OpenAIRE

    Ellen De Schepper; Steven Van Passel; Sebastien Lizin; Wouter Achten; Karel Van Acker

    2014-01-01

    In the light of global warming, this paper develops a framework to compare energy and transportation technologies in terms of cost-efficient GHG emission reduction. We conduct a simultaneous assessment of economic and environmental performances through life cycle costing and life cycle assessment. To calculate the GHG mitigation cost, we create reference systems within the base scenario. Further, we extend the concept of the mitigation cost, allowing (i) comparision of technologies given a li...

  19. Costs, CO{sub 2}- and primary energy balances of forest-fuel recovery systems at different forest productivity

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Lisa; Gustavsson, Leif [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-05-15

    Here we examine the cost, primary energy use, and net carbon emissions associated with removal and use of forest residues for energy, considering different recovery systems, terrain, forwarding distance and forest productivity. We show the potential recovery of forest fuel for Sweden, its costs and net carbon emissions from primary energy use and avoided fossil carbon emissions. The potential annual net recovery of forest fuel is about 66 TWh, which would cost one billion EUR{sub 2005} to recover and would reduce fossil emissions by 6.9 Mt carbon if coal were replaced. Of the forest fuel, 56% is situated in normal terrain with productivity of >30 t dry-matter ha{sup -1} and of this, 65% has a forwarding distance of <400 m. In normal terrain with >30 t dry-matter ha{sup -1} the cost increase for the recovery of forest fuel, excluding stumps, is around 4-6% and 8-11% for medium and longer forwarding distances, respectively. The stump and small roundwood systems are less cost-effective at lower forest fuel intensity per area. For systems where loose material is forwarded, less dry-matter per hectare increases costs by 6-7%, while a difficult terrain increases costs by 3-4%. Still, these systems are quite cost-effective. The cost of spreading ash is around 40 EUR{sub 2005} ha{sup -1}, while primary energy use for spreading ash in areas where logging residues, stumps, and small roundwood are recovered is about 0.025% of the recovered bioenergy. (author)

  20. THE DEPRECIATED REPLACEMENT COST - REPRESENTATION OF FAIR VALUE IN ACCOUNTING. TENDENCIES AND PERSPECTIVES IN THE ROMANIAN ACCOUNTING PRACTICE

    Directory of Open Access Journals (Sweden)

    Manea Marinela-Daniela

    2011-12-01

    Full Text Available The Romanian accounting system has gone through a radical reform in the last years, but the preoccupations for improving and developing Romanian accounting still continue. In order to preserve the general objective of rendering available to financial managers and analysts a common internationally agreed framework for drawing up and presenting financial statements, accounting professionals have the duty to contribute to the elaboration of accounting policies capable to transform accounting in an essential leadership instrument. Under these circumstances, there is the attempt to identify a dialogue form between accounting norms and policies, between the freedom to choose accounting procedures and the obligation to provide users with credible relevant information. The present work aims to make a thorough analysis of fair value adjustment - version of the depreciated replacement cost - which is specific to specialized corporal immobilized assets seldom commercialized on the market, by starting from the approaches and concepts existing in specialized literature, while afterwards it will carry out a comparative study between normative provisions and the concrete reality of Romanian accounting practice. Aware that fair value adjustment represents the profession of assessment experts, the presents work aims to present the potential models for quantifying fair value, which is an useful information basis for accounting professionals who have one more instrument at their disposal, for effectively and practically applying IRFS norms. Acknowledgement: This work was cofinanced from the European Social Fund through Sectorial Operational Programme Human Resources Development 2007-2013, project number POSDRU/1.5/S/59184 Performance and excellence in postdoctoral research in Romanian economics science domain.,institution:Alexandru Ioan Cuza - University of Iasi, period: 01.11.2010 - 30.04.2013, tutor: Ph.D. Professor Vasile Cocris

  1. Past and Future Cost of Wind Energy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Hand, M.; Wiser, R.

    2012-08-01

    The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions.

  2. Renewable Energy Cost Modeling: A Toolkit for Establishing Cost-Based Incentives in the United States; March 2010 -- March 2011

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, J. S.; Grace, R. C.; Rickerson, W. H.

    2011-05-01

    This report is intended to serve as a resource for policymakers who wish to learn more about establishing cost-based incentives. The report will identify key renewable energy cost modeling options, highlight the policy implications of choosing one approach over the other, and present recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, feed-in tariffs (FITs), or similar policies. These recommendations will be utilized in designing the Cost of Renewable Energy Spreadsheet Tool (CREST). Three CREST models will be publicly available and capable of analyzing the cost of energy associated with solar, wind, and geothermal electricity generators. The CREST models will be developed for use by state policymakers, regulators, utilities, developers, and other stakeholders to assist them in current and future rate-setting processes for both FIT and other renewable energy incentive payment structures and policy analyses.

  3. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  4. Wafer Replacement Cluster Tool (Presentation);

    Energy Technology Data Exchange (ETDEWEB)

    Branz, H. M.

    2008-04-01

    This presentation on wafer replacement cluster tool discusses: (1) Platform for advanced R and D toward SAI 2015 cost goal--crystal silicon PV at area costs closer to amorphous Si PV, it's 15% efficiency, inexpensive substrate, and moderate temperature processing (<800 C); (2) Why silicon?--industrial and knowledge base, abundant and environmentally benign, market acceptance, and good efficiency; and (3) Why replace wafers?--expensive, high embedded energy content, and uses 50-100 times more silicon than needed.

  5. Life cycle cost optimization of buildings with regard to energy use, thermal indoor environment and daylight

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Svendsen, Svend

    2002-01-01

    Buildings represent a large economical investment and have long service lives through which expenses for heating, cooling, maintenance and replacement depends on the chosen building design. Therefore, the building cost should not only be evaluated by the initial investment cost but rather by the ...

  6. Replacing Burning of Fossil Fuels with Solar Cell and Wind Energy: How Important and How Soon?

    Science.gov (United States)

    Partain, L., II; Hansen, R. T.; Hansen, S. F.; Bennett, D.; Newlands, A.

    2016-12-01

    The IPCC indicated that atmospheric CO2 rise should stop to control global climate change. CO2 is the longest lived, most problematic anthropogenic greenhouse emission from burning fossil fuel. For 2000 years atmospheric CO2 concentration remained 280 ppm until 1870, when it rose sharply and nonlinearly to 400 ppm, correlated with a 1oC global mean temperature rise. Antarctic ice core data for the past 400,000 years indicate, 80 ppm shifts in atmospheric CO2 concentrations with 10,000-30,000 year interglacial periods at 280 ppm, were between ice-age glacial periods of 75,000-100,000 years at 200 ppm. The last 12,000-year interglacial "Goldilocks" period so far spans 4 civilizations: 6000 years of Western, 4000-5000 years of Inca and Aztec and 7000-8000 years of Chinese civilizations. The UN-led 2015 Paris Agreement set a goal limiting temperature rise to 2oC to prevent devastating climate change. Unfortunately IPCC modeling found a substantial probability of a rise by 4oC or more should all current fossil fuels be burned by 2100. This would result in weather extremes, rising oceans, storm surges and temperatures where low-lying coastal regions, Pacific Islands and large equatorial regions of the world could become uninhabitable. By Swanson's Law, an empirical learning curve observation, solar cell production costs drop 50% for every 10X increase in their cumulative production. After 40 years and over 5 orders-of-magnitude cumulative production increase, solar cells currently provide over 1% of the world's electricity generating capacity at a cost competitive with electricity generated from burning fossil fuels. If their cumulative generating capacity keeps doubling every 2 years (similar to Moore's Law), energy equivalent to all the world's electricity generating capacity could be provided by solar cells by 2028. The variability of solar cell energy can be mitigated by combining it with wind power, storage, super grids, space mirrors, and demand response.

  7. Prices and costs of energy sources; Les prix et les couts des sources d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Amouroux, J.M. [Institut d' Economie et de Politique de l' Energie (CNRS- UPMF), 38 - Grenoble (France)

    2005-07-01

    An evaluation of the complete social energy cost should result from the sum of the production marginal cost, of the external marginal cost and of the marginal cost of substitution of non-renewable energy sources. This last parameter is difficult to estimate because of theoretical and methodological obstacles. The two others are evaluated for different energy sources, in the present day situation, and in the perspective of a probable evolution. Today, fossil fuels have the lowest internal costs whatever their use. Thus, in 'business as usual' energy scenarios, fossil fuels represent more than 80% of the energy supply at the 2050 prospects. However, several uncertainties can affect the future evolution of these costs, some are of geopolitical origin (political fragility of some exporting countries), and some are of environmental origin (internalized costs of CO{sub 2} emissions). Finally, the depletion of some resources should be anticipated. (J.S.)

  8. Corrigendum to "A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system" [Energy 73, (2014), 110-125], doi

    DEFF Research Database (Denmark)

    Connolly, D.; Mathiesen, B. V.; Ridjan, I.

    2015-01-01

    In this communication, we give the following corrigendum to the original paper, “A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system” [1], to correct some typos and a figure which could mislead the readers: • Firstly, the incorr...

  9. Least-cost model predictive control of residential energy resources when applying μmCHP

    NARCIS (Netherlands)

    Houwing, M.; Negenborn, R.R.; Heijnen, P.W.; De Schutter, B.; Hellendoorn, H.

    2007-01-01

    With an increasing use of distributed energy resources and intelligence in the electricity infrastructure, the possibilities for minimizing costs of household energy consumption increase. Technology is moving toward a situation in which households manage their own energy generation and consumption,

  10. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-09-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  11. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  12. Grid connected integrated community energy system. Phase II: final state 2 report. Cost benefit analysis, operating costs and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    A grid-connected Integrated Community Energy System (ICES) with a coal-burning power plant located on the University of Minnesota campus is planned. The cost benefit analysis performed for this ICES, the cost accounting methods used, and a computer simulation of the operation of the power plant are described. (LCL)

  13. Cost Effectiveness of Home Energy Retrofits in Pre-Code Vintage Homes in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Fairey, Philip [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States); Parker, Danny [BA-PIRC/Florida Solar Energy Center, Cocoa, FL (United States)

    2012-11-01

    This analytical study examines the opportunities for cost-effective energy efficiency and renewable energy retrofits in residential archetypes constructed prior to 1980 (Pre-Code) in fourteen U.S. cities. These fourteen cities are representative of each of the International Energy Conservation Code (IECC) climate zones in the contiguous United States. The analysis is conducted using an in-house version of EnergyGauge USA v.2.8.05 named CostOpt that has been programmed to perform iterative, incremental economic optimization on a large list of residential energy efficiency and renewable energy retrofit measures. The principle objectives of the study are to determine the opportunities for cost effective source energy reductions in this large cohort of existing residential building stock as a function of local climate and energy costs; and to examine how retrofit financing alternatives impact the source energy reductions that are cost effectively achievable.

  14. Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    CERN Document Server

    Benussi, L; Piccolo, D; Saviano, G; Colafranceschi, S; Kjølbro, J; Sharma, A; Yang, D; Chen, G; Ban, Y; Li, Q

    2015-01-01

    Modern gas detectors for detection of particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements.

  15. Esophageal replacement.

    Science.gov (United States)

    Kunisaki, Shaun M; Coran, Arnold G

    2017-04-01

    This article focuses on esophageal replacement as a surgical option for pediatric patients with end-stage esophageal disease. While it is obvious that the patient׳s own esophagus is the best esophagus, persisting with attempts to retain a native esophagus with no function and at all costs are futile and usually detrimental to the overall well-being of the child. In such cases, the esophagus should be abandoned, and the appropriate esophageal replacement is chosen for definitive reconstruction. We review the various types of conduits used for esophageal replacement and discuss the unique advantages and disadvantages that are relevant for clinical decision-making. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Implant Optimisation for Primary Hip Replacement in Patients over 60 Years with Osteoarthritis: A Cohort Study of Clinical Outcomes and Implant Costs Using Data from England and Wales.

    Directory of Open Access Journals (Sweden)

    Simon S Jameson

    Full Text Available Hip replacement is one of the most commonly performed surgical procedures worldwide; hundreds of implant configurations provide options for femoral head size, joint surface material and fixation method with dramatically varying costs. Robust comparative evidence to inform the choice of implant is needed. This retrospective cohort study uses linked national databases from England and Wales to determine the optimal type of replacement for patients over 60 years undergoing hip replacement for osteoarthritis.Implants included were the commonest brand from each of the four types of replacement (cemented, cementless, hybrid and resurfacing; the reference prosthesis was the cemented hip procedure. Patient reported outcome scores (PROMs, costs and risk of repeat (revision surgery were examined. Multivariable analyses included analysis of covariance to assess improvement in PROMs (Oxford hip score, OHS, and EQ5D index (9159 linked episodes and competing risks modelling of implant survival (79,775 procedures. Cost of implants and ancillary equipment were obtained from National Health Service procurement data.EQ5D score improvements (at 6 months were similar for all hip replacement types. In females, revision risk was significantly higher in cementless hip prostheses (hazard ratio, HR = 2.22, p<0.001, when compared to the reference hip. Although improvement in OHS was statistically higher (22.1 versus 20.5, p<0.001 for cementless implants, this small difference is unlikely to be clinically important. In males, revision risk was significantly higher in cementless (HR = 1.95, p = 0.003 and resurfacing implants, HR = 3.46, p<0.001, with no differences in OHS. Material costs were lowest with the reference implant (cemented, range £1103 to £1524 and highest with cementless implants (£1928 to £4285. Limitations include the design of the study, which is intrinsically vulnerable to omitted variables, a paucity of long-term implant survival data (reflecting the

  17. Production performance of finisher broiler fed with cocoyam-corm meal as partial energy replacement for maize

    Directory of Open Access Journals (Sweden)

    Christian Paul P. de la Cruz

    2016-10-01

    Full Text Available Aim: The objective of this study was to evaluate the potential of Gabing San Fernando (Xanthosoma spp. corms as partial carbohydrate replacement for maize in finisher broiler production. Materials and Methods: The completely randomized design was utilized to investigate the effects of three finisher poultry diets prepared in varying amounts of cocoyam-corm meal set at 0% (control, 25%, and 50% (experimental replacement levels. Results: There were no significant differences (p≥0.05 as to mortality and body weight measurements between control and experimental groups. Similarly, the mean weights of selected internal organs and condemnable carcasses among treatment groups did not show any significant differences (p≥0.05. In terms of the average feed intakes, birds from 50%-cocoyam group had the highest mean value and were found to be statistically different (p≥0.01 from both control and 25%-cocoyam groups. However, feed conversion ratio did not significantly differ (p≥0.05 among three groups. Higher feed costs were associated with the 50%-cocoyam treatment diet, which was only consistent with higher feed inputs. Thus, the group fed with 50%-cocoyam meal had significantly higher total mean production costs (p<0.005 per bird, when other expenses were taken into account. The production costs for the group given 25%-cocoyam meal did not significantly differ (p≥0.05 from the control group. Conclusion: Partial replacement of maize with cocoyam-corm meal at 25% level was acceptable since inclusion at this level did not adversely affect the production performance of finisher broilers in terms of growth rate, mortality rate, and feeding efficiency. The use of cocoyam meal as nonconventional and alternative carbohydrate source in poultry diet presents positive economic implications, especially to smallhold farmers from the developing countries, like the Philippines.

  18. Partial or total replacement of commercial concentrate with on-farm-grown mulberry forage: effects on lamb growth and feeding costs.

    Science.gov (United States)

    Alpízar-Naranjo, A; Arece-García, J; Esperance, M; López, Y; Molina, M; González-García, E

    2017-03-01

    Replacing commercial concentrate with mulberry foliage was evaluated in a feeding trial lasting 126 days. Forty-eight weaned male Pelibuey lambs (20.6 ± 0.80 kg of BW) were randomly allocated to four groups: (1) supplementing the basal diet with mulberry at 1% (DM basis; M-1), (2) mulberry at 0.75% plus 0.1 kg concentrate fresh matter basis (M-0.75), (3) mulberry at 0.50% plus 0.2 kg concentrate (M-0.50) and (4) basal diet plus 0.3 kg concentrate (control; M-0). During the first 90 days, the basal diet was Pennisetum purpureum forage which was substituted by a mixture of guinea grass and sugarcane from 90 days. Average daily gain (ADG, g/day), dry matter intake (DMI) and feed conversion rate (FCR; DMI/ADG) were determined. The ADG was affected (P < 0.01) by the diet, with the lowest obtained in M-1 lambs (71 ± 6.4 g/day), whereas no differences among the other groups were observed (94 ± 6.4 g DM/lamb). The DMI was higher (P < 0.01) in M-0 (937 g DM/lamb) which concomitantly affected differences in FCR (11.9, 9.9, 10.5 and 9.7 kg DMI/kg BW gain for M-1, M-0.75, M-0.50 and M-0 lambs, respectively). Final BW at slaughtering and hot or cold carcass yields were coherent with growth rate findings. Biological yield (cold carcass weight/empty BW) was higher (P < 0.01) in M-0.75. Without compromising animal productivity, replacing imported concentrate with mulberry reduced the feeding cost. Optimum results were obtained with M-75 diet. Further studies must be conducted for optimizing energy/protein ratios with different ingredients while increasing DMI and lamb growth rates in this tropical genotype.

  19. A Development Path to the Efficient and Cost-Effective Bulk Storage of Electrical Energy

    Energy Technology Data Exchange (ETDEWEB)

    Post, R F

    2009-09-24

    Efficient and cost-effective means for storing electrical energy is becoming an increasing need in our electricity-oriented society. For example, for electric utilities an emerging need is for distributed storage systems, that is, energy storage at substations, at solar or wind-power sites, or for load-leveling at the site of major consumers of their electricity. One of the important consequences of distributed storage for the utilities would be the reduction in transmission losses that would result from having a local source of load-leveling power. For applications such as these there are three criteria that must be satisfied by any new system that is developed to meet such needs. These criteria are: (1) high 'turn-around' efficiency, that is, high efficiency of both storing and recovering the stored energy in electrical form, (2) long service life (tens of years), with low maintenance requirements, and, (3) acceptably low capital cost. An additional requirement for these particular applications is that the system should have low enough standby losses to permit operation on a diurnal cycle, that is, storing the energy during a portion of a given day (say during sunlight hours) followed several hours later by its use during night-time hours. One answer to the spectrum of energy storage needs just outlined is the 'electromechanical battery'. The E-M battery, under development for several years at the Laboratory and elsewhere in the world, has the potential to solve the above energy storage problems in a manner superior to the electro-chemical battery in the important attributes of energy recovery efficiency, cycle lifetime, and amortized capital cost. An electromechanical battery is an energy storage module consisting of a high-speed rotor, fabricated from fiber composite, and having an integrally mounted generator/motor. The rotor operates at high speed, in vacuo, inside of a hermetically sealed enclosure, supported by a 'magnetic bearing

  20. Reducing the energy cost of human walking using an unpowered exoskeleton.

    Science.gov (United States)

    Collins, Steven H; Wiggin, M Bruce; Sawicki, Gregory S

    2015-06-11

    With efficiencies derived from evolution, growth and learning, humans are very well-tuned for locomotion. Metabolic energy used during walking can be partly replaced by power input from an exoskeleton, but is it possible to reduce metabolic rate without providing an additional energy source? This would require an improvement in the efficiency of the human-machine system as a whole, and would be remarkable given the apparent optimality of human gait. Here we show that the metabolic rate of human walking can be reduced by an unpowered ankle exoskeleton. We built a lightweight elastic device that acts in parallel with the user's calf muscles, off-loading muscle force and thereby reducing the metabolic energy consumed in contractions. The device uses a mechanical clutch to hold a spring as it is stretched and relaxed by ankle movements when the foot is on the ground, helping to fulfil one function of the calf muscles and Achilles tendon. Unlike muscles, however, the clutch sustains force passively. The exoskeleton consumes no chemical or electrical energy and delivers no net positive mechanical work, yet reduces the metabolic cost of walking by 7.2 ± 2.6% for healthy human users under natural conditions, comparable to savings with powered devices. Improving upon walking economy in this way is analogous to altering the structure of the body such that it is more energy-effective at walking. While strong natural pressures have already shaped human locomotion, improvements in efficiency are still possible. Much remains to be learned about this seemingly simple behaviour.

  1. Automated Demand Response for Energy Sustainability Cost and Performance Report

    Science.gov (United States)

    2015-07-23

    limitations are foreseen in the use of OpenADR, and no potential cost disadvantages (such as increased first cost, installation cost, and/or...commercial firms. The temperature data was measured at the KBYS Fort Irwin / Barstow station, which is located on the Bicycle Lake Army Airfield about

  2. EFFECT OF DIETARY CORN SILAGE REPLACEMENT WITH SORGHUM SILAGE ON PERFORMANCE AND FEED COST OF GROWING STEERS

    Directory of Open Access Journals (Sweden)

    H. JABBARI

    2011-01-01

    Full Text Available This experiment conducted to assess effects of dietary corn silage (CS replacement with sorghum silage (SS on performance of growing Steers. 32 steers (182.3 ± 5 kg BW randomly, in a CRD, allocated to 4 treatments of eight replicates. A diet of 60% hay (experimental part plus 40% concentrate including barley, wheat bran, and soybean meal were fed for a period of 120 day. Hay included 40% of the same grass silage + 60% of different levels of SS and or CS, alone or in combination. SS was replaced with CS in steer rations with ratios of 0% (T1, 33% (T2, 66% (T3 and 100% (T4. Animals were weighed every week and information such as food intake (FI, daily weight gain (DWG and food conversion ratio (FCR were recorded in each replicate group and the body weight (BW presented as a average of growth performance at the end of trial. Dietary CS replacement with SS significantly improved performance traits (P > 0.05, when SS was solely replaced in hay part of diet. The higher FI and lower FCR were observed in fattening bulls fed dietary group 4 (100% SS replaced in diet. Groups fed 33% SS (T2 did showed the higher DWG in compared to other groups. It is concluded that, the diet supplemented with 66 and or 100 % sorghum silage in 60% of hay portion, seem to be capable of improve performance accompanying with economic advantage in product prices.

  3. Critical review of the levelised cost of energy metric

    Directory of Open Access Journals (Sweden)

    Sklar-Chik, M. D.

    2016-12-01

    Full Text Available The purpose of this paper is to critically review the ‘levelised cost of energy’ metric used in electricity project development. This metric is widely used, because it is a simple metric to calculate the cost per unit of electricity for a given technology connected to the electricity network. However, it neglects certain key terms such as inflation, integration costs, and system costs. The implications of incorporating these additional costs would provide a more comprehensive metric for evaluating electricity generation projects, and for the system as a whole. It is therefore recommended to refine the metric for the South African context.

  4. Investigation of Cost and Energy Optimization of Drinking Water Distribution Systems.

    Science.gov (United States)

    Cherchi, Carla; Badruzzaman, Mohammad; Gordon, Matthew; Bunn, Simon; Jacangelo, Joseph G

    2015-11-17

    Holistic management of water and energy resources through energy and water quality management systems (EWQMSs) have traditionally aimed at energy cost reduction with limited or no emphasis on energy efficiency or greenhouse gas minimization. This study expanded the existing EWQMS framework and determined the impact of different management strategies for energy cost and energy consumption (e.g., carbon footprint) reduction on system performance at two drinking water utilities in California (United States). The results showed that optimizing for cost led to cost reductions of 4% (Utility B, summer) to 48% (Utility A, winter). The energy optimization strategy was successfully able to find the lowest energy use operation and achieved energy usage reductions of 3% (Utility B, summer) to 10% (Utility A, winter). The findings of this study revealed that there may be a trade-off between cost optimization (dollars) and energy use (kilowatt-hours), particularly in the summer, when optimizing the system for the reduction of energy use to a minimum incurred cost increases of 64% and 184% compared with the cost optimization scenario. Water age simulations through hydraulic modeling did not reveal any adverse effects on the water quality in the distribution system or in tanks from pump schedule optimization targeting either cost or energy minimization.

  5. 16 CFR 305.5 - Determinations of estimated annual energy consumption, estimated annual operating cost, and...

    Science.gov (United States)

    2010-01-01

    ... consumption, estimated annual operating cost, and energy efficiency rating, and of water use rate. 305.5... RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND... § 305.5 Determinations of estimated annual energy consumption, estimated annual operating cost, and...

  6. A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Ridjan, Iva

    2014-01-01

    Identifying renewable energy alternatives in transport is particularly complicated, since the end-user can vary from a single-person car to a cargo ship. The aim of this paper is to aid this process by comparing 7 different methods for producing transport fuels in terms of the resources required...... for these fuels. Based on the assumptions in this study, some of the renewable fuels proposed here would be cheaper than oil in the year 2050. However, this is based on fuel production costs only and does do not consider other key costs, such as the infrastructure costs, which will be considered in the future...

  7. Increase the Performance of Companies in the Energy Sector by Implementing the Activity-Based Costing

    OpenAIRE

    Letitia-Maria Rof; Sorinel Capusneanu

    2015-01-01

    This article highlights the increasing performances as result of implementation stages of the ActivityBased Costing in the companies operating in the energy sector in Romania. There are presented some aspects of the usefulness of applying the Activity-Based Costing in the energy sector and the advantages it offers compared to traditional costing. There are also outlined the steps for applying the Activity-Based Costing and its implementation in the largest hydropower producer in Romania. The ...

  8. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  9. Caveat Emptor: Calculating All the Costs of Energy.

    Science.gov (United States)

    Zinberg, Dorothy S.

    This paper examines the energy problem. Specific topics discussed include the recent history of oil and gas consumption in the United States, conservation, coal, solar energy, and nuclear energy. While solutions to the energy problem differ, there is an urgent need for broad, public debate. Ultimately, the decisions made regarding energy will be…

  10. Comparative Cost-Benefit Analysis of Renewable Energy Resource Trade Offs for Military Installations

    Science.gov (United States)

    2012-12-01

    Palms Fully Operational Energy Products Minus Outlier ........81  Figure 18.  MCAS Beaufort Fully Operational Energy Projects...vast forests , agricultural waste in the large agricultural areas, and manure and other animal by-products. According to the Energy Information...total costs for wind turbines captured in an NREL report (NREL/TP- 500-40566) minus the utilities and insurance costs, which are assumed costs for our

  11. Role of energy cost in the yield of cold ternary fission of 252Cf

    Indian Academy of Sciences (India)

    P V Kunhikrishnan; K P Santhosh

    2013-01-01

    The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by includingWong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield in all the light charged particle emissions. The higher ground state deformation of the fragments, the odd–even effect and the enhanced yield in the octupole region observed in cold fission are found to be consistent with the concept of energy cost.

  12. Harvesting energy an sustainable power source, replace batteries for powering WSN and devices on the IoT

    Science.gov (United States)

    Pop-Vadean, A.; Pop, P. P.; Latinovic, T.; Barz, C.; Lung, C.

    2017-05-01

    Harvesting energy from nonconventional sources in the environment has received increased attention over the past decade from researchers who study these alternative energy sources for low power applications. Although that energy harvested is small and in the order of milliwatt, it can provide enough power for wireless sensors and other low-power applications. In the environment there is a lot of wasted energy that can be converted into electricity to power the various circuits and represents a potentially cheap source of power. Energy harvesting is important because it offers an alternative power supply for electronic devices where is does not exist conventional energy sources. This technology applied in a wireless sensor network (WSN) and devices on the IoT, will eliminate the need for network-based energy and conventional batteries, will minimize maintenance costs, eliminate cables and batteries and is ecological. It has the same advantage in applications from remote locations, underwater, and other hard to reach places where conventional batteries and energy are not suitable. Energy harvesting will promote environmentally friendly technologies that will save energy, will reduce CO2 emissions, which makes this technology indispensable for achieving next-generation smart cities and sustainable society. In response to the challenges of energy, in this article we remind the basics of harvesting energy and we discuss the various applications of this technology where traditional batteries cannot be used.

  13. Solar thermal technology development: Estimated market size and energy cost savings. Volume 1: Executive summary

    Science.gov (United States)

    Gates, W. R.

    1983-01-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.

  14. Solar thermal technology development: Estimated market size and energy cost savings. Volume 1: Executive summary

    Science.gov (United States)

    Gates, W. R.

    1983-02-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.

  15. Building Energy and Cost Performance: An Analysis of Thirty Melbourne Case Studies

    Directory of Open Access Journals (Sweden)

    Yu Lay Langston

    2012-11-01

    Full Text Available This study investigates the energy and cost performance of thirty recent buildings in Melbourne, Australia. Commonly, building design decisions are based on issues pertaining to construction cost, and consideration of energy performance is made only within the context of the initial project budget. Even where energy is elevated to more importance, operating energy is seen as the focus and embodied energy is nearly always ignored. For the first time, a large sample of buildings has been assembled and analyzed to improve the understanding of both energy and cost performance over their full life cycle, which formed the basis of a wider doctoral study into the inherent relationship between energy and cost. The aim of this paper is to report on typical values for embodied energy, operating energy, capital cost and operating cost per square metre for a range of building functional types investigated in this research. The conclusion is that energy and cost have quite different profiles across projects, and yet the mean GJ/m2 or cost/m2 have relatively low coefficients of variation and therefore may be useful as benchmarks of typical building performance.  

  16. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  17. Methodology to Calculate the Costs of a Floating Offshore Renewable Energy Farm

    Directory of Open Access Journals (Sweden)

    Laura Castro-Santos

    2016-04-01

    Full Text Available This paper establishes a general methodology to calculate the life-cycle cost of floating offshore renewable energy devices, applying it to wave energy and wind energy devices. It is accounts for the contributions of the six main phases of their life-cycle: concept definition, design and development, manufacturing, installation, exploitation and dismantling, the costs of which have been defined. Moreover, the energy produced is also taken into account to calculate the Levelized Cost of Energy of a floating offshore renewable energy farm. The methodology proposed has been applied to two renewable energy devices: a floating offshore wave energy device and a floating offshore wind energy device. Two locations have been considered: Aguçadoura and São Pedro de Moel, both in Portugal. Results indicate that the most important cost in terms of the life-cycle of a floating offshore renewable energy farm is the exploitation cost, followed by the manufacturing and the installation cost. In addition, the best area in terms of costs is the same independently of the type of floating offshore renewable energy considered: Aguçadoura. However, the results in terms of Levelized Cost of Energy are different: Aguçadoura is better when considering wave energy technology and the São Pedro de Moel region is the best option when considering floating wind energy technology. The method proposed aims to give a direct approach to calculate the main life-cycle cost of a floating offshore renewable energy farm. It helps to assess its feasibility and evaluating the relevant characteristics that influence it the most.

  18. Energy, economic and environmental benefits of using high-efficiency motors to replace standard motors for the Malaysian industries

    Energy Technology Data Exchange (ETDEWEB)

    Saidur, R.; Mahlia, T.M.I. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-08-15

    Electric motors use major share (i.e. about 30-80% of total industrial energy consumption) of total industrial energy use around the world. Experiences from other countries show that government intervention in the form of regulations such as mandatory and voluntary approaches can save sizeable amount of energy along with the reduction in emissions associated with energy savings. This paper presents potential energy savings by introducing high-efficiency motors as a case study in Malaysian industrial sector. Emission reductions associated with the energy savings has been estimated and presented as well. It was also estimated that a cumulative amount of 1940 and 892 GWh of energy can be saved for 20 and 120 kW motors, respectively, in Malaysia relative to BAU over the next 10 years. Similarly, a cumulative amount of USD 100 million and USD 60 million can be saved as utility bills for the same motor categories. It has been found that the payback period of different capacities of motors are less than a year. Based on results, it was found that 1789 million kg of CO{sub 2} emission can be avoided by replacing standard motors with high-efficiency motors. (author)

  19. The Inherent Building Energy-Cost Relationship: An Analysis of Thirty Melbourne Case Studies

    Directory of Open Access Journals (Sweden)

    Yu Lay Langston

    2012-11-01

    Full Text Available This study investigates the energy and cost performance of thirtyrecent buildings in Melbourne, Australia. Commonly, buildingdesign decisions are based on issues pertaining to constructioncost, and consideration of energy performance is made onlywithin the context of the initial project budget. Even where energyis elevated to more importance, operating energy is seen asthe focus and embodied energy is nearly always ignored. Forthe fi rst time, a large sample of buildings has been assembledand analysed to improve the understanding of both energy andcost performance over their full life cycle. The aim of this paperis to determine the relationship between energy and cost usingregression analysis for a range of building functional types.The conclusion is that energy and cost are strongly correlated,independent of building area, and equations are presented forfuture modelling of energy using cost as the independent variable.

  20. Lipid Replacement Therapy Drink Containing a Glycophospholipid Formulation Rapidly and Significantly Reduces Fatigue While Improving Energy and Mental Clarity

    Directory of Open Access Journals (Sweden)

    Robert Settineri

    2011-08-01

    Full Text Available Background: Fatigue is the most common complaint of patients seeking general medical care and is often treated with stimulants. It is also important in various physical activities of relatively healthy men and women, such as sports performance. Recent clinical trials using patients with chronic fatigue have shown the benefit of Lipid Replacement Therapy in restoring mitochondrial electron transport function and reducing moderate to severe chronic fatigue. Methods: Lipid Replacement Therapy was administered for the first time as an all-natural functional food drink (60 ml containing polyunsaturated glycophospholipids but devoid of stimulants or herbs to reduce fatigue. This preliminary study used the Piper Fatigue Survey instrument as well as a supplemental questionnaire to assess the effects of the glycophospholipid drink on fatigue and the acceptability of the test drink in adult men and women. A volunteer group of 29 subjects of mean age 56.2±4.5 years with various fatigue levels were randomly recruited in a clinical health fair setting to participate in an afternoon open label trial on the effects of the test drink. Results: Using the Piper Fatigue instrument overall fatigue among participants was reduced within the 3-hour seminar by a mean of 39.6% (p<0.0001. All of the subcategories of fatigue showed significant reductions. Some subjects responded within 15 minutes, and the majority responded within one hour with increased energy and activity and perceived improvements in cognitive function, mental clarity and focus. The test drink was determined to be quite acceptable in terms of taste and appearance. There were no adverse events from the energy drink during the study.Functional Foods in Health and Disease 2011; 8:245-254Conclusions: The Lipid Replacement Therapy functional food drink appeared to be a safe, acceptable and potentially useful new method to reduce fatigue, sustain energy and improve perceptions of mental function.

  1. Optimization of energy consumption and cost effectiveness of modular buildings by using renewable energy sources

    Directory of Open Access Journals (Sweden)

    Peter Tauš

    2015-10-01

    Full Text Available Problems of the temporary structures are generally dealt with by the use of modular buildings. These actually meet the terms of low costs, as appose to the terms of convenience of use, or energy efficiency in operation. Using the latest technologies in the production of the modular buildings has improved the operation sufficiently; it is now possible to use them entirely for purposes associated with the use of the buildings. Office buildings, warehouses, and conference rooms have become common standard. In Slovakia, we can already see it as a normal part of cities and municipalities: social housing, schools, and kindergartens, which were all built using this technology. During the assessment phase of these buildings, energy efficiency is always the priority. This article is aimed at establishing the economic potential of modular buildings in the field of use of renewable energy sources. For the formulation of the problem and the definition of borders of studied parameters, we proposed a four-dimensional competency decision-making space. This determines the examination process that should identify areas in which it is appropriate to consider and assess the use of renewable energy sources.

  2. The role of biomass to replace fossil fuels in a regional energy system: The case of west Sweden

    Directory of Open Access Journals (Sweden)

    Kjärstad Jan

    2016-01-01

    Full Text Available This paper analyses the potential role of biomass to meet regional CO2 emission reduction targets up to year 2050 in two counties in the west of Sweden. It is concluded that the region could double its production capacity of solid biomass to 2030, from 6 to 12 TWh. Modelling of the electricity sector in the region indicates that bio-based electricity generation in combined heat and power plants could almost triple by 2050 while at the same time replace fossil based generation in district heating. Biomass can also contribute to fuel shift in the transport sector. Yet, the transport sector requires a series of actions to significantly reduce demand in combination with use of electricity and biofuels and its transformation is obviously strongly linked to an overall transformation of the European transport sector. The total need for biomass could potentially increase from 14 TWh in 2010 to 48 TWh already from 2040, considering the electricity and transport sectors and under the assumption that large energy savings can be achieved in the building sector and that all fossil based heat generation can be replaced by biomass heating. Assuming that biomass also replace the fossil based raw materials used by the industry, including three refineries, requires 170 TWh biomass to be compared to the 130 TWh currently used for the entire Sweden.

  3. Facilitating Sound, Cost-Effective Federal Energy Management

    Energy Technology Data Exchange (ETDEWEB)

    FEMP

    2016-07-01

    Fact sheet offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  4. Energy drinks: Getting wings but at what health cost?

    OpenAIRE

    Ibrahim, Nahla Khamis; Iftikhar, Rahila

    2014-01-01

    Energy drink consumption represents a global public health problem, especially among adolescents and young adults. The consumption of energy drinks has seen a substantial increase during the past few decades, especially in the Western and Asian countries. Although manufacturers of energy drinks claim that these beverages are beneficial in that they can boost energy, physical performance, and improve cognitive performance, there is insufficient scientific evidence to support these claims. The ...

  5. Energy Cost during Prolonged Walking vs Jogging Exercise.

    Science.gov (United States)

    Thomas, Tom R.; Londeree, Ben R.

    1989-01-01

    This study of nine young men compared the energy expended, substrates used, and perception of effort from brisk walking and jogging at the same target heart rates. Jogging utilized more total energy and fat energy than walking and was perceived as less strenuous. Oxygen pulse was higher during jogging. (Author/SM)

  6. Omitted Costs, Inflated Benefits: Renewable Energy Policy in Ontario

    Science.gov (United States)

    Gallant, Parker; Fox, Glenn

    2011-01-01

    The government of Ontario has adopted wind energy development as an alternative energy source. It enacted the Green Energy and Economy Act, May 2009, with the intention to fast track the approval process regarding industrial wind turbines. The Act legislated a centralized decision making process while removing local jurisdictional authority.…

  7. Omitted Costs, Inflated Benefits: Renewable Energy Policy in Ontario

    Science.gov (United States)

    Gallant, Parker; Fox, Glenn

    2011-01-01

    The government of Ontario has adopted wind energy development as an alternative energy source. It enacted the Green Energy and Economy Act, May 2009, with the intention to fast track the approval process regarding industrial wind turbines. The Act legislated a centralized decision making process while removing local jurisdictional authority.…

  8. A Low-Cost Electronic Solar Energy Control

    Science.gov (United States)

    Blade, Richard A.; Small, Charles T.

    1978-01-01

    Describes the design of a low-cost electronic circuit to serve as a differential thermostat, to control the operation of a solar heating system. It uses inexpensive diodes for sensoring temperature, and a mechanical relay for a switch. (GA)

  9. Metabolic costs of capital energy storage in a small-bodied ectotherm.

    Science.gov (United States)

    Griffen, Blaine D

    2017-04-01

    Reproduction is energetically financed using strategies that fall along a continuum from animals that rely on stored energy acquired prior to reproduction (i.e., capital breeders) to those that rely on energy acquired during reproduction (i.e., income breeders). Energy storage incurs a metabolic cost. However, previous studies suggest that this cost may be minimal for small-bodied ectotherms. Here I test this assumption. I use a laboratory feeding experiment with the European green crab Carcinus maenas to establish individuals with different amounts of energy storage. I then demonstrate that differences in energy storage account for 26% of the variation in basal metabolic costs. The magnitudes of these costs for any individual crab vary through time depending on the amount of energy it has stored, as well as on temperature-dependent metabolism. I use previously established relationships between temperature- and mass-dependent metabolic rates, combined with a feasible annual pattern of energy storage in the Gulf of Maine and annual sea surface temperature patterns in this region, to estimate potential annual metabolic costs expected for mature female green crabs. Results indicate that energy storage should incur an ~8% increase in metabolic costs for female crabs, relative to a hypothetical crab that did not store any energy. Translated into feeding, for a medium-sized mature female (45 mm carapace width), this requires the consumption of an additional ~156 mussels annually to support the metabolic cost of energy storage. These results indicate, contrary to previous assumptions, that the cost of energy storage for small-bodied ectotherms may represent a considerable portion of their basic operating energy budget. An inability to meet these additional costs of energy storage may help explain the recent decline of green crabs in the Gulf of Maine where reduced prey availability and increased consumer competition have combined to hamper green crab foraging success in

  10. Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible

    DEFF Research Database (Denmark)

    Connolly, D.; Lund, Henrik; Mathiesen, Brian Vad;

    2010-01-01

    energy- system to future energy costs by considering future fuel prices, CO2 prices, and different interest rates. The final investigation identifies the maximum wind penetration feasible on the 2007 Irish energy- system from a technical and economic perspective, as wind is the most promising fluctuating...

  11. Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels?

    Science.gov (United States)

    Arutyunov, V. S.; Lisichkin, G. V.

    2017-08-01

    The state of the art and the major trends of development of world energy engineering are analyzed. It is concluded that throughout the 21st century the role of alternative sources will remain rather modest. Fossil fuel will still be the major source of energy until the end of the century. Because of depletion of accessible oil resources, the proportion of crude oil in the world energy balance will constantly decline, while the proportion of natural gas will grow. It is shown that energy production from any source, including alternative sources, cannot be environmentally benign if the scale of production is large. In the long term, humanity has no sources other than fusion energy, but transition to this source would not solve the problem of the planet's heat balance. The bibliography includes 70 references.

  12. HIGH ENERGY REPLACEMENT FOR TEFLON PROPELLANT IN PULSED PLASMA THRUSTERS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will utilize a well-characterized Pulsed Plasma Thruster (PPT) to test experimental high-energy extinguishable solid propellants (HE), instead of...

  13. Monitor energy consumption - Reduce costs; Energieverbrauch ueberwachen - Kosten senken

    Energy Technology Data Exchange (ETDEWEB)

    Bolliger, R.

    2008-07-01

    This article takes a look at energy consumption in residential, industrial and commercial buildings and how energy consumption metering can help reduce energy consumption. The proprietary system briefly described uses the KNX bus system to transfer data. Visualisation of the data collected is briefly described. Peak-load management and ways of adapting user behaviour are discussed. Trends towards higher levels of consumption - particularly in emerging markets - are discussed. Energy needs, carbon dioxide emissions, investments and potentials for making savings are discussed. Possibilities of increasing energy efficiency in the residential, industrial and commercial sectors are examined.

  14. Proposed Methodology for Assessing Cost of Synergies between Offshore Renewable Energy and Other Sea Uses

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Hanssen, Jan Erik; O´Sullivan, Keith;

    2015-01-01

    platforms are examined into details with the cost model realized within the MARINA FP7 project and with market projections for non-energy activities (fish farming, algae farming and desalination). The results are presented in terms of costs per unit, expected energy production and expected revenue from...

  15. Geographical analyses of wood chips potentials, cost and supply for sustainable energy production in Denmark

    DEFF Research Database (Denmark)

    Möller, Bernd

    2004-01-01

    The paper presents a study which uses a practical application of rasterbased geographical information system to perform cost-supply analysis of wood chips resources for energy production.......The paper presents a study which uses a practical application of rasterbased geographical information system to perform cost-supply analysis of wood chips resources for energy production....

  16. Geographical analyses of wood chips potentials, cost and supply for sustainable energy production in Denmark

    DEFF Research Database (Denmark)

    Möller, Bernd

    2004-01-01

    The paper presents a study which uses a practical application of rasterbased geographical information system to perform cost-supply analysis of wood chips resources for energy production.......The paper presents a study which uses a practical application of rasterbased geographical information system to perform cost-supply analysis of wood chips resources for energy production....

  17. Exergy costing for energy saving in combined heating and cooling applications

    DEFF Research Database (Denmark)

    Nguyen, Chan; Veje, Christian T.; Willatzen, Morten

    2014-01-01

    The aim of this study is to provide a price model that motivates energy saving for a combined district heating and cooling system. A novel analysis using two thermoeconomic methods for apportioning the costs to heating and cooling provided simultaneously by an ammonia heat pump is demonstrated....... In the first method, referred to as energy costing, a conventional thermoeconomic analysis is used. Here the ammonia heat pump is subject to a thermodynamic analysis with mass and energy balance equations. In the second method referred to as exergy costing, an exergy based economic analysis is used, where....... The analysis shows that the two methods yield significantly different results. Rather surprisingly, it is demonstrated that the exergy costing method results in about three times higher unit cost for heating than for cooling as opposed to equal unit costs when using the energy method. Further the exergy-based...

  18. Energy drinks: Getting wings but at what health cost?

    Science.gov (United States)

    Ibrahim, Nahla Khamis; Iftikhar, Rahila

    2014-01-01

    Energy drink consumption represents a global public health problem, especially among adolescents and young adults. The consumption of energy drinks has seen a substantial increase during the past few decades, especially in the Western and Asian countries. Although manufacturers of energy drinks claim that these beverages are beneficial in that they can boost energy, physical performance, and improve cognitive performance, there is insufficient scientific evidence to support these claims. The known and unknown pharmacology of the constituents of energy drinks, supplemented with reports of toxicity, raise concern for the potentially severe adverse events linked with energy drink use. Limited numbers of reviews have been published on this important subject..The aim of this review was to identify the major ingredients in energy drinks and to delineate the adverse effects related to their consumption. Electronic databases of PubMed, Clinical Key, and Google and Cochrane library were extensively searched for energy drink articles. More than hundred articles were reviewed, scrutinized and critically appraised and the most relevant forty articles were used Conclusion: Energy drinks & its ingredients are potentially dangerous to many aspects of health. Measures should be taken to improve awareness among adolescents and their parents regarding the potential hazards of energy drinks. Furthermore, the sale of energy drinks on college and university campuses and to adolescents below 16 years should be prohibited.

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  20. Short communication: Effects of increasing protein and energy in the milk replacer with or without direct-fed microbial supplementation on growth and performance of preweaned Holstein calves.

    Science.gov (United States)

    Geiger, A J; Ward, S H; Williams, C C; Rude, B J; Cabrera, C J; Kalestch, K N; Voelz, B E

    2014-11-01

    Forty-four Holstein calves were fed a direct-fed microbial (DFM) and 1 of 2 milk replacers to evaluate calf performance and growth. Treatments were (1) a control milk replacer [22:20; 22% crude protein (CP) and 20% fat], (2) an accelerated milk replacer (27:10; 27% CP and 10% fat), (3) the control milk replacer with added DFM (22:20+D), and (4) the accelerated milk replacer with added DFM (27:10+D). Dry matter intake, rectal temperatures, respiration scores and rates, and fecal scores were collected daily. Body weight, hip and withers height, heart girth, blood, and rumen fluid samples were collected weekly. Effects of treatment, sex, week, and their interactions were analyzed. Calves fed an accelerated milk replacer, regardless of DFM supplementation, consumed more CP and metabolizable energy in the milk replacer. No treatment differences were found for starter intake or intake of neutral detergent fiber or acid detergent fiber in the starter. Calves fed the accelerated milk replacer had greater preweaning and weaning body weight compared with calves fed the control milk replacer. Average daily gain was greater during the preweaning period for calves fed the accelerated milk replacer, but the same pattern did not hold true during the postweaning period. Feed efficiency did not differ among treatments. Hip height tended to be and withers height and heart girth were greater at weaning for calves fed the accelerated milk replacer compared with calves fed the control milk replacer. Fecal scores were greatest in calves fed DFM. Overall acetate, propionate, butyrate, and n-valerate concentrations were lower in calves fed the accelerated milk replacer, but DFM did not have an effect. Rumen pH was not different. Blood metabolites were unaffected by DFM supplementation, but calves fed the accelerated milk replacer had increased partial pressure of CO2, bicarbonate, and total bicarbonate in the blood. Direct-fed microbial supplementation did not appear to benefit the calf

  1. Cost-Effectiveness of Five Commonly Used Prosthesis Brands for Total Knee Replacement in the UK: A Study Using the NJR Dataset.

    Directory of Open Access Journals (Sweden)

    Mark Pennington

    Full Text Available There is a lack of evidence on the effectiveness or cost-effectiveness of alternative brands of prosthesis for total knee replacement (TKR. We compared patient-reported outcomes, revision rates, and costs, and estimated the relative cost-effectiveness of five frequently used cemented brands of unconstrained prostheses with fixed bearings (PFC Sigma, AGC Biomet, Nexgen, Genesis 2, and Triathlon.We used data from three national databases for patients who had a TKR between 2003 and 2012, to estimate the effect of prosthesis brand on post-operative quality of life (QOL (EQ-5D-3L in 53 126 patients at six months. We compared TKR revision rates by brand over 10 years for 239 945 patients. We used a fully probabilistic Markov model to estimate lifetime costs and quality-adjusted life years (QALYs, incremental cost effectiveness ratios (ICERs, and the probability that each prosthesis brand is the most cost effective at alternative thresholds of willingness-to-pay for a QALY gain.Revision rates were lowest with the Nexgen and PFC Sigma (2.5% after 10 years in 70-year-old women. Average lifetime costs were lowest with the AGC Biomet (£9 538; mean post-operative QOL was highest with the Nexgen, which was the most cost-effective brand across all patient subgroups. For example, for 70-year-old men and women, the ICERs for the Nexgen compared to the AGC Biomet were £2 300 per QALY. At realistic cost per QALY thresholds (£10 000 to £30 000, the probabilities that the Nexgen is the most cost-effective brand are about 98%. These results were robust to alternative modelling assumptions.AGC Biomet prostheses are the least costly cemented unconstrained fixed brand for TKR but Nexgen prostheses lead to improved patient outcomes, at low additional cost. These results suggest that Nexgen should be considered as a first choice prosthesis for patients with osteoarthritis who require a TKR.

  2. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Hockett, S.

    2010-06-01

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  3. Cost-effectiveness of energy efficiency programmes. Evaluating the impacts of a regional programme in France

    Energy Technology Data Exchange (ETDEWEB)

    Suerkemper, F.; Thomas, S. [Wuppertal Institute for Climate, Environment and Energy, Doeppersberg 19, 42103 Wuppertal (Germany); Osso, D. [EDF-R and D, Site des Renardieres-Avenue des Renardieres, Ecuelles, 77818 Moret-sur-Loing cedex (France); Baudry, P. [EDF-R and D, 1, Avenue du General de Gaulle, 92141 Clamart Cedex (France)

    2012-01-15

    This paper presents the evaluation of a regional energy efficiency programme implemented in two 'departements' of France. Electricite de France (EDF), a French energy company, provides refurbishment advice and financial incentives to end-users in the residential sector as well as specific training courses and certification to local installation contractors and building firms. Refurbishment measures analysed in this paper are efficient space heating equipment (condensing boilers, heat pumps and wood stoves or boilers), solar water heating systems and the installation of double-glazed windows. A billing analysis based on a survey of programme participants' energy consumption is used to calculate the energy savings attributed to the programme. In order to receive an economic feedback of this demonstration programme, the evaluation of both saved energy and programme costs is of importance. Detailed knowledge of the programme's cost-effectiveness is essential for EDF to achieve the saving obligations imposed by the French White Certificate scheme at the lowest cost. Results of this evaluation can support the development and implementation of further energy efficiency programmes with similar characteristics in other regions of France. The cost-effectiveness is determined from the perspective of the programme participant and the society as well as the energy company in charge of the programme. All cost and benefit components are calculated in Euro per kilowatt-hour, which allows a direct comparison of levelized costs of conserved energy with the avoidable costs of the energy supply system.

  4. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    Directory of Open Access Journals (Sweden)

    Dongmin Yu

    2017-06-01

    Full Text Available Many combined heat and power (CHP units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity and heat loads are firstly used as sizing criteria in finding the best capacities of different types of CHP with the help of the maximum rectangle (MR method. Subsequently, the genetic algorithm (GA will be used to optimise the daily energy costs of the different cases. Then, heat and electricity loads are jointly considered for sizing different types of CHP and for optimising the daily energy costs through the GA method. The optimisation results show that the GA sizing method gives a higher average daily energy cost saving, which is 13% reduction compared to a building without installing CHP. However, to achieve this, there will be about 3% energy efficiency reduction and 7% input power to rated power ratio reduction compared to using the MR method and heat demand in sizing CHP.

  5. A Low Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    Science.gov (United States)

    Li, Xianfeng; Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin

    2017-10-05

    Flow battery (FB) is one of the most promising stationary energy storage devices for storing renewable energies. However, commercial progress of the FBs is limited by their high cost and low energy density. Here we report a neutral zinc-iron FB with very low cost and high energy density. By using highly soluble FeCl2/ZnBr2 species, a charge energy density of 56.30 Wh/L can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe3+/Fe2+. The results indicated that an energy efficiency of 86.66% can be obtained at 40 mA/cm2 and the battery can run stably for more than 100 cycles. Furthermore, a porous membrane with low cost was employed to lower the capital cost to less than 50 $/kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB becomes a promising candidate for stationary energy storage applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Home energy cost-cutting clinic. Training manual

    Energy Technology Data Exchange (ETDEWEB)

    Naismith, R.; Swope, S.; Callander, R.S.

    1978-08-01

    This document includes text and figures used in Virginia state-wide homeowner energy education programs. It has been successfully used in over 400 presentations to over 30,000 citizens. The text includes instructions for presenters as well as the actual program material which includes a discussion of how heat flows, how energy is used in the home, and methods for reducing energy use.

  7. Environmental engineering: energy value of replacing waste disposal with resource recovery

    Science.gov (United States)

    Iranpour; Stenstrom; Tchobanoglous; Miller; Wright; Vossoughi

    1999-07-30

    Although in the past, environmental engineering has been primarily concerned with waste disposal, the focus of the field is now shifting toward viewing wastes as potential resources. Because reclamation usually consumes less energy than producing new materials, increasing reclamation not only reduces pollution but saves energy. Technological innovations contributing to this shift are summarized here, and are variously classified as emerging technologies or research topics, as either new departures or incremental improvements, and as opportunistic innovations, or examples of a unifying strategy. Both liquid and solid waste examples are given, such as a recent discovery of effects in disinfecting microfiltered reclaimed wastewater with ultraviolet light. In addition to its value in reducing pollution and conserving energy, this reorientation of environmental engineering could contribute to a more general shift toward greater cooperation among organizations dealing with the environment.

  8. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  9. Energy-relevant cost and the deregulated market; Energierelevante Kosten - Bedeutung im liberalisierten Markt

    Energy Technology Data Exchange (ETDEWEB)

    Fuenfgeld, C.

    2001-07-01

    quantification of energy-relevant cost factors means economic assessment of technical processes in in-house energy management. Against the background of rising energy cost and more difficult energy acquisition, it can provide important decision aids. In-house implementation is based on the classic tool of cost calculation and takes into account both the production process and the energy and cost. [German] Die Quantifizierung der energierelevanten Kosten ist die oekonomisch richtige Bewertung der technischen Zusammenhaenge innerhalb der betrieblichen Energiewirtschaft und kann vor dem Hintergrund wieder ansteigender Energiepreise und dem durch die Marktentwicklung angestigenen Aufwand der betrieblichen Energiebeschaffung wichtige Entscheidungshilfen geben. Die betriebliche Umsetzung der Methode erfolgt mit den klassischen Werkzeugen der Kostenrechnung und verbindet den betrieblichen Produktionsfluss mit dem von Energie und Kosten. (orig.)

  10. Replacing fossil based PET with biobased PEF; proess analysis, energy and GHG balance

    NARCIS (Netherlands)

    Eerhart, A.J.J.E.|info:eu-repo/dai/nl/341358541; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2012-01-01

    An energy and greenhouse gas (GHG) balance study was performed on the production of the bioplastic polyethylene furandicarboxylate (PEF) starting from corn based fructose. The goal of the study was to analyze and to translate experimental data on the catalytic dehydration of fructose to a simulation

  11. Replacing fossil based PET with biobased PEF; proess analysis, energy and GHG balance

    NARCIS (Netherlands)

    Eerhart, A.J.J.E.; Faaij, A.P.C.; Patel, M.K.

    2012-01-01

    An energy and greenhouse gas (GHG) balance study was performed on the production of the bioplastic polyethylene furandicarboxylate (PEF) starting from corn based fructose. The goal of the study was to analyze and to translate experimental data on the catalytic dehydration of fructose to a simulation

  12. 76 FR 56413 - Building Energy Codes Cost Analysis

    Science.gov (United States)

    2011-09-13

    ... analysis using an appropriate building energy estimation tool. DOE intends to use the EnergyPlus \\3...-revision codes, two prototype buildings would be analyzed--one that exactly complies with the pre-revision... in the following sections. \\4\\ ``Exactly complies'' means that the prototype complies with...

  13. Shared Savings Contracting for Reducing Energy Costs of Defense Facilities.

    Science.gov (United States)

    1983-01-01

    Program Evaluation for Resource Management," October 17, 1972. BUILDING ENERGY EFFICIENCY D. C. Solar Task Force, "Thirty Five Steps - Making...Conservation and Solar Work in the District of Columbia," Washington, D. C., 1982. National Institute of Building Sciences, " Building Energy Efficiency Project

  14. Designing a Portable and Low Cost Home Energy Management Toolkit

    NARCIS (Netherlands)

    Keyson, D.V.; Al Mahmud, A.; De Hoogh, M.; Luxen, R.

    2013-01-01

    In this paper we describe the design of a home energy and comfort management system. The system has three components such as a smart plug with a wireless module, a residential gateway and a mobile app. The combined system is called a home energy management and comfort toolkit. The design is inspired

  15. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self‐funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty‐three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  16. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  17. Power Plant Replacement Study

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  18. Energy use, cost and CO2 emissions of electric cars

    NARCIS (Netherlands)

    van Vliet, O.; Brouwer, A.S.; Kuramochi, T.; van den Broek, M.A.; Faaij, A.P.C.

    2010-01-01

    We examine efficiency, costs and greenhouse gas emissions of current and future electric cars (EV), including the impact from charging EV on electricity demand and infrastructure for generation and distribution. Uncoordinated charging would increase national peak load by 7% at 30% penetration rate o

  19. Permanent magnets in accelerators can save energy, space and cost

    DEFF Research Database (Denmark)

    Bødker, F.; Baandrup, L.O.; Hauge, N.

    2013-01-01

    Green Magnet® technology with close to zero electrical power consumption without the need for cooling water saves costs, space and natural resources. A compact dipole based on permanent magnets has been developed at Danfysik in collaboration with Sintex and Aarhus University. Our first Green Magnet...... Magnet technology in other accelerator systems like synchrotron light sources and transfer beamlines....

  20. Rightsizing HVAC Systems to Reduce Capital Costs and Save Energy

    Science.gov (United States)

    Sebesta, James

    2010-01-01

    Nearly every institution is faced with the situation of having to reduce the cost of a construction project from time to time through a process generally referred to as "value engineering." Just the mention of those words, however, gives rise to all types of connotations, thoughts, and memories (usually negative) for those in the facilities…

  1. Reported Energy and Cost Savings from the DOE ESPC Program: FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Bob S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy’s Energy Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 156 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project. For all 156 projects, there was sufficient information to compare estimated, reported, and guaranteed cost savings. For this group, the total estimated cost savings for the reporting periods addressed were $210.6 million, total reported cost savings were $215.1 million, and total guaranteed cost savings were $204.5 million. This means that on average: ESPC contractors guaranteed 97% of the estimated cost savings; projects reported achieving 102% of the estimated cost savings; and projects reported achieving 105% of the guaranteed cost savings. For 155 of the projects examined, there was sufficient information to compare estimated and reported energy savings. On the basis of site energy, estimated savings for those projects for the previous year totaled 11.938 million MMBtu, and reported savings were 12.138 million MMBtu, 101.7% of the estimated energy savings. On the basis of source energy, total estimated energy savings for the 155 projects were 19.052 million MMBtu, and reported saving were 19.516 million MMBtu, 102.4% of the estimated energy savings.

  2. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H;

    2015-01-01

    Cultured astrocytes treated with siRNA to knock down glutamate dehydrogenase (GDH) were used to investigate whether this enzyme is important for the utilization of glutamate as an energy substrate. By incubation of these cells in media containing different concentrations of glutamate (range 100......-500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP...... regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels...

  3. Energy and labor cost of gasoline engine remanufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Venta, E.R.; Wolsky, A.M.

    1978-09-01

    This report presents a detailed estimate of the labor and energy, by fuel type, required by the U.S. economy to remanufacture gasoline-fueled automobile and truck engines. Th estimate was obtained by combining data provided by several remanufacturers with the results of input--output analysis. A rough estimate of the labor and energy required to manufacture new engines is also given. These estimates suggest that remanufactured engines require 50% of the energy and 67% of the labor that new engines require.

  4. Commissioning: A Highly Cost-Effective Building Energy Management Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2011-01-06

    Quality assurance and optimization are essential elements of any serious technological endeavor, including efforts to improve energy efficiency. Commissioning is an important tool in this respect. The aim of commissioning new buildings is to ensure that they deliver-if not exceed-the performance and energy savings promised by their design. When applied to existing buildings, one-time or repeated commissioning (often called retrocommissioning) identifies the almost inevitable drift in energy performance and puts the building back on course, often surpassing the original design intent. In both contexts, commissioning is a systematic, forensic approach to improving performance, rather than a discrete technology.

  5. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  6. Costs and benefits of energy efficiency improvements in ceiling fans

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  7. Cost-effectiveness and incidence of renewable energy promotion in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Christoph [Oldenburg Univ. (Germany). Dept. of Economics; Landis, Florian [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Tovar Reanos, Miguel Angel [Zentrum fuer Europaeische Wirtschaftsforschung GmbH (ZEW), Mannheim (Germany)

    2017-08-01

    Over the last decade Germany has boosted renewable energy in power production by means of massive subsidies. The flip side are very high electricity prices which raises concerns that the transition cost towards a renewable energy system will be mainly borne by poor households. In this paper, we combine computable general equilibrium and microsimulation analysis to investigate the cost-effectiveness and incidence of Germany's renewable energy promotion. We find that the regressive effects of renewable energy promotion could be ameliorated by alternative subsidy financing mechanisms which achieve the same level of electricity generation from renewable energy sources.

  8. Life Cycle Cost Analysis of a Multi-Storey Residential Net Zero Energy Building in Denmark

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Heiselberg, Per

    2011-01-01

    It is well recognized that in the long run, the implementation of energy efficiency measures is a more cost-optimal solution in contrast to taking no action. However, the Net ZEB concept raises a new issue: how far should we go with energy efficiency measures and when should we start to apply...... indicate that in order to build a cost-effective Net ZEB, the energy use should be reduced to a minimum leaving just a small amount of left energy use to be covered by renewable energy generation. Moreover, from the user perspective in the Danish context, the district heating grid is a more expensive...

  9. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Katherine [Proton OnSite; Dalton, Luke [Proton OnSite; Roemer, Andy [Proton OnSite; Carter, Blake [Proton OnSite; Niedzwiecki, Mike [Proton OnSite; Manco, Judith [Proton OnSite; Anderson, Everett [Proton OnSite; Capuano, Chris [Proton OnSite; Wang, Chao-Yang [Penn State University; Zhao, Wei [Penn State University

    2014-02-05

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  10. Selective solar absorbers: A cost effective solution for access to clean energy in rural Africa

    CSIR Research Space (South Africa)

    Katumba, G

    2008-11-01

    Full Text Available In this present era of global energy crisis there is a greater need to turn to renewable, cost effective and sustainable energy resources. In rural Africa, in particular, the demand for domestic energy is even higher. This is exacerbated...

  11. 16 CFR Appendix K to Part 305 - Representative Average Unit Energy Costs

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Representative Average Unit Energy Costs K... CONGRESS RULE CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING...

  12. Cost-Benefit Analysis for Energy Management in Public Buildings: Four Italian Case Studies

    Directory of Open Access Journals (Sweden)

    Davide Astiaso Garcia

    2016-07-01

    Full Text Available Improving energy efficiency in public buildings is one of the main challenges for a sustainable requalification of energy issues and a consequent reduction of greenhouse gas (GHG emissions. This paper aims to provide preliminary information about economic costs and energy consumption reductions (benefits of some considered interventions in existing public buildings. Methods include an analysis of some feasible interventions in four selected public buildings. Energy efficiency improvements have been assessed for each feasible intervention. The difference of the building global energy performance index (EPgl has been assessed before and after each intervention. Economic costs of each intervention have been estimated by averaging the amount demanded by different companies for the same intervention. Results obtained show economic costs and the EPgl percentage improvement for each intervention, highlighting and allowing for the comparison of energy consumption reduction and relative economic costs. The research results come from data gathered from four public buildings, and as such they could not be used to generically identify cost-beneficial energy efficiency interventions for every context or building type. However, the data reveals useful cost based considerations for selecting energy efficiency interventions in other public buildings.

  13. A New Method for Low Cost Production of Titanium Alloys for Reducing Energy Consumption of Mechanical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z. Zak [Univ. of Utah, Salt Lake City, UT (United States); Chandran, Ravi [Univ. of Utah, Salt Lake City, UT (United States); Koopman, Mark [Univ. of Utah, Salt Lake City, UT (United States)

    2016-02-29

    properties), and finally, minimum machining is needed to fabricate finished Ti components. An energy analysis within this report provides more detail, but calculated values indicate that the HSPT process is less than half as energy intensive as conventional wrought processing, while producing mechanical properties that are comparable. In addition to the energy savings anticipated from the industrial production of Ti components, a second prong of energy savings resides in the use phase of components produced, primarily from use in the transportation sector. Titanium has a number of material qualities appropriate for the auto industry, particularly low mass and corrosion resistance. By reducing the weight of automobiles and other vehicles, energy costs and CO2 production will be reduced over the lifetime of the vehicles, and components in corrosive environments on vehicles, such as exhaust systems and other under carriage parts, may not have to be replaced during a vehicle’s lifetime. Our analysis indicates that by replacing only 5.6 kg of steel parts in an auto with Ti components across the entire US fleet would save approximately 486 million gallons of gasoline per year. This correlates to a reduction of 3.6 million metric tons of CO2 per year. The potential for replacing many more of the steel parts in automobiles with lighter weight titanium components is clear. The project was very successful overall, meeting all milestones and surpassing project goals in terms of mechanical properties and microstructures produced. In addition to tensile properties, fatigue properties were emphasized in the project work. Powder metallurgy processes often have porosity to some degree in their final microstructure, and porosity is a well-known cause of crack initiation and low fatigue performance. Although many automobile applications do not undergo fatigue stress regimes, many others do encounter cyclic stress, and design criteria in the latter case require good

  14. Cost Benefit and Alternatives Analysis of Distribution Systems with Energy Storage Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Tom; Nagarajan, Adarsh; Baggu, Murali; Bialek, Tom

    2017-06-27

    This paper explores monetized and non-monetized benefits from storage interconnected to distribution system through use cases illustrating potential applications for energy storage in California's electric utility system. This work supports SDG&E in its efforts to quantify, summarize, and compare the cost and benefit streams related to implementation and operation of energy storage on its distribution feeders. This effort develops the cost benefit and alternatives analysis platform, integrated with QSTS feeder simulation capability, and analyzed use cases to explore the cost-benefit of implementation and operation of energy storage for feeder support and market participation.

  15. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

    2014-06-30

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  16. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry: An ENERGY STAR® Guide for Plant and Energy Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Therkelsen, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2012-12-28

    The U.S. baking industry—defined in this Energy Guide as facilities engaged in the manufacture of commercial bakery products such as breads, rolls, frozen cakes, pies, pastries, and cookies and crackers—consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in food processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. A summary of basic, proven measures for improving plant-level water efficiency is also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. baking industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  18. Portfolio management : minimizing energy costs in an open access market

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, P. [U.S. Generating Company (United States)

    1998-09-01

    This presentation addressed the issue of evolving market structures for electric utilities, discussed portfolio management in an open access market and enumerated critical abilities that will be required for success in the new marketplace. Viewgraphs provided information regarding the current retail restructuring landscape and merchant plant activity by region. Bar graphs were included to represent the growth of power marketing and the results of utility divestiture auctions. Critical capabilities to successfully optimize a competitive energy portfolio, including functional integration, teamwork and goals alignment, the aggressive use of information technology, liquidity, and risk management, were discussed at length. As an example of the new approach, the structure and operating plans of PG and E, one of the largest unregulated energy trading company in the U.S., were reviewed. In brief, the company plans to be aggressive in all competitive energy markets, to focus on asset development and acquisition, and to gain liquidity through trading and marketing. 16 figs.

  19. Survival of ceramic bearings in total hip replacement after high-energy trauma and periprosthetic acetabular fracture.

    Science.gov (United States)

    Salih, S; Currall, V A; Ward, A J; Chesser, T J S

    2009-11-01

    Surgeons remain concerned that ceramic hip prostheses may fail catastrophically if either the head or the liner is fractured. We report two patients, each with a ceramic-on-ceramic total hip replacement who sustained high-energy trauma sufficient to cause a displaced periprosthetic acetabular fracture in whom the ceramic bearings survived intact. Simultaneous fixation of the acetabular fracture, revision of the cementless acetabular prosthesis and exchange of the ceramic bearings were performed successfully in both patients. Improved methods of manufacture of new types of alumina ceramic with a smaller grain size, and lower porosity, have produced much stronger bearings. Whether patients should be advised to restrict high-impact activities in order to protect these modern ceramic bearings from fracture remains controversial.

  20. Permanent magnets in accelerators can save energy, space and cost

    DEFF Research Database (Denmark)

    Bødker, F.; Baandrup, L.O.; Hauge, N.

    2013-01-01

    Green Magnet® technology with close to zero electrical power consumption without the need for cooling water saves costs, space and natural resources. A compact dipole based on permanent magnets has been developed at Danfysik in collaboration with Sintex and Aarhus University. Our first Green Magnet...... coils permit fine tuning of the magnetic field. Magnetic field measurements and thermal stability tests show that the Green Magnet fully meets the magnetic requirements of the previously used electromagnet. A permanent 30° bending dipole is currently being development to demonstrate the use of Green...

  1. Assessing the Costs and Benefits of the Superior Energy Performance Program

    Energy Technology Data Exchange (ETDEWEB)

    Therkelsen, Peter; McKane, Aimee; Sabouini, Ridah; Evans, Tracy

    2013-07-01

    Industrial companies are seeking to manage energy consumption and costs, mitigate risks associated with energy, and introduce transparency into reports of their energy performance achievements. Forty industrial facilities are participating in the U.S. DOE supported Superior Energy Performance (SEP) program in which facilities implement an energy management system based on the ISO 50001 standard, and pursue third-party verification of their energy performance improvements. SEP certification provides industrial facilities recognition for implementing a consistent, rigorous, internationally recognized business process for continually improving energy performance and achievement of established energy performance improvement targets. This paper focuses on the business value of SEP and ISO 50001, providing an assessment of the costs and benefits associated with SEP implementation at nine SEP-certified facilities across a variety of industrial sectors. These cost-benefit analyses are part of the U.S. DOE?s contribution to the Global Superior Energy Performance (GSEP) partnership, a multi-country effort to demonstrate, using facility data, that energy management system implementation enables companies to improve their energy performance with a greater return on investment than business-as-usual (BAU) activity. To examine the business value of SEP certification, interviews were conducted with SEP-certified facilities. The costs of implementing the SEP program, including internal facility staff time, are described and a marginal payback of SEP certification has been determined. Additionally, more qualitative factors with regard to the business value and challenges related to SEP and ISO 50001 implementation are summarized.

  2. The effects of dimensional parameters on sensing and energy harvesting of an embedded PZT in a total knee replacement

    Science.gov (United States)

    Safaei, Mohsen; Anton, Steven R.

    2016-04-01

    Total Knee Replacement (TKR), one of the most common surgeries in the United States, is performed when the patient is experiencing significant amounts of pain or when knee functionality has become substantially degraded. Despite impressive recent developments, only about 85% of patients are satisfied with the pain reduction after one year. Therefore, structural health and performance monitoring are integral for intraoperative and postoperative feedback. In extension of the author's previous work, a new configuration for implementation of piezoelectric transducers in total knee replacement bearings is proposed and FEA modeling is performed to attain appropriate sensing and energy harvesting ability. The predicted force transmission ratio to the PZT (ratio of force applied to the bearing to force transferred to the embedded piezoelectric transducer) is about 6.2% compared to about 5% found for the previous encapsulated design. Dimensional parameters of the polyethylene bearing including the diameter and depth of the PZT pocket as well as the placement geometry of the PZT transducer within the bearing are hypothesized as the most influential parameters on the performance of the designed system. The results show a small change of 1% and 2.3% in the output of the system as a result of variation in the PZT location and pocket diameter, respectively. Whereas, the output of the system is significantly sensitive to the pocket depth; a pocket 0.01 mm deeper than the PZT transducer leads to no force transmission, and a pocket 0.15 mm shallower leads to full load transmission to the PZT. In order to develop a self-powered sensor, the amount of energy harvested from tibial forces for the proposed geometry is investigated.

  3. Optimizing Energy Costs for Offices Connected to the Smart Grid

    NARCIS (Netherlands)

    Georgievski, Ilche; Degeler, Viktoriya; Pagani, Giuliano Andrea; Nguyen, Tuan Anh; Lazovik, Alexander; Aiello, Marco

    2012-01-01

    In addition to providing for a more reliable distribution infrastructure, the smart grid promises to give the end users better pricing and usage information. It is thus interesting for them to be ready to take advantage of features such as dynamic energy pricing and real-time choice of operators. In

  4. Energy performance requirements using the cost-optimal methodology

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    2013-01-01

    The Concerted Action EPBD (CA EPBD) has the main objective of assisting the EU Member States (MS) transpose and implement the recast Directive 2010/31/EU on the Energy Performance of Buildings (EPBD), published on 19 May 2010, as well as the continued implementation of the actions initiated with ...... MS, plus Norway and Croatia....

  5. Energy performance requirements using the cost-optimal methodology

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Thomsen, Kirsten Engelund

    2013-01-01

    The Concerted Action EPBD (CA EPBD) has the main objective of assisting the EU Member States (MS) transpose and implement the recast Directive 2010/31/EU on the Energy Performance of Buildings (EPBD), published on 19 May 2010, as well as the continued implementation of the actions initiated with ...

  6. Optimizing Energy Costs for Offices Connected to the Smart Grid

    NARCIS (Netherlands)

    Georgievski, Ilche; Degeler, Viktoriya; Pagani, Giuliano Andrea; Nguyen, Tuan Anh; Lazovik, Alexander; Aiello, Marco

    2012-01-01

    In addition to providing for a more reliable distribution infrastructure, the smart grid promises to give the end users better pricing and usage information. It is thus interesting for them to be ready to take advantage of features such as dynamic energy pricing and real-time choice of operators. In

  7. Harvesting forest biomass for energy in Minnesota: An assessment of guidelines, costs and logistics

    Science.gov (United States)

    Saleh, Dalia El Sayed Abbas Mohamed

    The emerging market for renewable energy in Minnesota has generated a growing interest in utilizing more forest biomass for energy. However, this growing interest is paralleled with limited knowledge of the environmental impacts and cost effectiveness of utilizing this resource. To address environmental and economic viability concerns, this dissertation has addressed three areas related to biomass harvest: First, existing biomass harvesting guidelines and sustainability considerations are examined. Second, the potential contribution of biomass energy production to reduce the costs of hazardous fuel reduction treatments in these trials is assessed. Third, the logistics of biomass production trials are analyzed. Findings show that: (1) Existing forest related guidelines are not sufficient to allow large-scale production of biomass energy from forest residue sustainably. Biomass energy guidelines need to be based on scientific assessments of how repeated and large scale biomass production is going to affect soil, water and habitat values, in an integrated and individual manner over time. Furthermore, such guidelines would need to recommend production logistics (planning, implementation, and coordination of operations) necessary for a potential supply with the least site and environmental impacts. (2) The costs of biomass production trials were assessed and compared with conventional treatment costs. In these trials, conventional mechanical treatment costs were lower than biomass energy production costs less income from biomass sale. However, a sensitivity analysis indicated that costs reductions are possible under certain site, prescriptions and distance conditions. (3) Semi-structured interviews with forest machine operators indicate that existing fuel reduction prescriptions need to be more realistic in making recommendations that can overcome operational barriers (technical and physical) and planning and coordination concerns (guidelines and communications

  8. Installed Cost Benchmarks and Deployment Barriers for Residential Solar Photovoltaics with Energy Storage: Q1 2016

    Energy Technology Data Exchange (ETDEWEB)

    Ardani, Kristen; O' Shaughnessy, Eric; Fu, Ran; McClurg, Chris; Huneycutt, Joshua; Margolis, Robert

    2016-12-01

    In this report, we fill a gap in the existing knowledge about PV-plus-storage system costs and value by providing detailed component- and system-level installed cost benchmarks for residential systems. We also examine other barriers to increased deployment of PV-plus-storage systems in the residential sector. The results are meant to help technology manufacturers, installers, and other stakeholders identify cost-reduction opportunities and inform decision makers about regulatory, policy, and market characteristics that impede solar plus storage deployment. In addition, our periodic cost benchmarks will document progress in cost reductions over time. To analyze costs for PV-plus-storage systems deployed in the first quarter of 2016, we adapt the National Renewable Energy Laboratory's component- and system-level cost-modeling methods for standalone PV. In general, we attempt to model best-in-class installation techniques and business operations from an installed-cost perspective. In addition to our original analysis, model development, and review of published literature, we derive inputs for our model and validate our draft results via interviews with industry and subject-matter experts. One challenge to analyzing the costs of PV-plus-storage systems is choosing an appropriate cost metric. Unlike standalone PV, energy storage lacks universally accepted cost metrics, such as dollars per watt of installed capacity and lifetime levelized cost of energy. We explain the difficulty of arriving at a standard approach for reporting storage costs and then provide the rationale for using the total installed costs of a standard PV-plus-storage system as our primary metric, rather than using a system-size-normalized metric.

  9. Energy intensive industry for Alaska. Volume I: Alaskan cost factors; market factors; survey of energy-intensive industries

    Energy Technology Data Exchange (ETDEWEB)

    Swift, W.H.; Clement, M.; Baker, E.G.; Elliot, D.C.; Jacobsen, J.J.; Powers, T.B.; Rohrmann, C.A.; Schiefelbein, G.L.

    1978-09-01

    The Alaskan and product market factors influencing industry locations in the state are discussed and a survey of the most energy intensive industries was made. Factors external to Alaska that would influence development and the cost of energy and labor in Alaska are analyzed. Industries that are likely to be drawn to Alaska because of its energy resources are analyzed in terms of: the cost of using Alaska energy resources in Alaska as opposed to the Lower 48; skill-adjusted wage and salary differentials between relevant Alaskan areas and the Lower 48; and basic plant and equipment and other operating cost differentials between relevant Alaskan areas and the Lower 48. Screening and evaluation of the aluminum metal industry, cement industry, chlor-alkali industry, lime industry, production of methanol from coal, petroleum refining, and production of petrochemicals and agrichemicals from North Slope natural gas for development are made.

  10. Cost-outcome analysis of joint replacement: evidence from a Spanish public hospital Análisis coste-resultado del remplazo de articulaciones: Evidencia de un hospital público español

    Directory of Open Access Journals (Sweden)

    José Luis Navarro Espigares

    2008-08-01

    Full Text Available Background and objectives: Efficiency-based healthcare decision-making has been widely accepted for some time, with cost per quality-adjusted life year (QALY as the main outcome measure. Nevertheless, for numerous medical procedures, little data are available on the cost per QALY gained. The aim of the present study was to calculate the cost per QALY gained with primary hip and knee replacement and to compare the result with the cost per QALY for other medical procedures, as well as with the maximum threshold cost considered acceptable in Spain. Methods: We performed a prospective cohort pre-test/post-test study of patients undergoing primary hip or knee arthroplasty. Age, sex, and clinical variables were recorded. Functional status and quality of life were measured by means of the WOMAC and EuroQol instruments, respectively, before the intervention and 6 months later. The direct costs of the intervention were calculated, with length of hospital stay and the prosthesis as the main cost drivers. Results: A total of 80 patients, 40 from each intervention, were included in this study. Both functional and perceived health status improved after the intervention. The number of QALYs gained in the knee cohort was 4.64, while that in the hip cohort was 0.86. The total cost of knee replacement was lower (6,865.52 € than that of hip replacement (7,891.21 €. The cost per QALY gained was 1,275.84 € and 7,936.12 € for knee and hip interventions, respectively. The calculations performed included a 6% discount rate for health outcomes, a 3% inflation rate for costs, and a success rate of 95% at 15 years. Conclusions: The costs of both knee and hip replacement were lower than the threshold of 30,000 € per QALY considered acceptable in Spain, and compared favorably with other medical and surgical procedures.Fundamento y objetivos: Está ampliamente aceptada la toma de decisiones sanitarias basada en la eficiencia, con el coste por año de vida ajustado

  11. Analysis of Implementing Lifetime Energy Cost, Including Fully Burdened Cost of Fuel and Energy Footprints of Contractors, as Mandatory Decision Factors in Navy Acquisition

    Science.gov (United States)

    2010-06-01

    25 3. Green Building in Government Construction Contracting, American Bar Association .............................. 26 III. METHODOLOGY...Energy Efficiency Project SFG Senior Focus Group TOC Total Ownership Cost USGBC United States Green Building Counsel xv ACKNOWLEDGMENTS...the currency market fluctuated, and thus would not necessarily indicate an increase or decrease in efficiency. 3. Green Building in Government

  12. Renewable Energies and CO2 Cost Analysis, Environmental Impacts and Technological Trends- 2012 Edition

    CERN Document Server

    Guerrero-Lemus, Ricardo

    2013-01-01

    Providing up-to-date numerical data across a range of topics related to renewable energy technologies, Renewable Energies and CO2 offers a one-stop source of key information to engineers, economists and all other professionals working in the energy and climate change sectors. The most relevant up-to-date numerical data are exposed in 201 tables and graphs, integrated in terms of units and methodology, and covering topics such as energy system capacities and lifetimes, production costs, energy payback ratios, carbon emissions, external costs, patents and literature statistics. The data are first presented and then analyzed to project potential future grid, heat and fuel parity scenarios, as well as future technology tendencies in different energy technological areas. Innovative highlights and descriptions of preproduction energy systems and components from the past four years have been gathered from selected journals and international energy departments from G20 countries. As the field develops, readers are in...

  13. A low-cost, low-energy tangible programming system for computer illiterates in developing regions

    CSIR Research Space (South Africa)

    Smith, Andrew C

    2008-07-01

    Full Text Available We present a low-cost, low-energy technology design that addresses the lack of readily available functional computers for the vast number of computer-illiterate people in developing countries. The tangible programming language presented...

  14. Cost and Benefit Tradeoffs in Using a Shade Tree for Residential Building Energy Saving

    Directory of Open Access Journals (Sweden)

    Sappinandana Akamphon

    2014-01-01

    Full Text Available Global warming and urban heat islands result in increased cooling energy consumption in buildings. Previous literature shows that planting trees to shade a building can reduce its cooling load. This work proposes a model to determine the cost effectiveness and profitability of planting a shade tree by considering both its potential to reduce cooling energy and its purchase and maintenance cost. A comparison between six selected tree species is used for illustration. Using growth rates, crown sizes, and shading coefficients, cooling energy savings from the tree shades are computed using an industrial-standard building energy simulation program, offset by costs of purchase, planting, and maintenance of these trees. The result shows that most worthwhile tree to plant should have high shading coefficient and moderate crown size to maximize shading while keeping the maintenance costs manageable.

  15. The 50 percent solution to reducing energy costs.

    Science.gov (United States)

    Whitson, B Alan

    2012-11-01

    Hospitals can use a five-step process to achieve energy savings: Define a minimum acceptable ROI or hurdle rate. Seek incentives, rebates, and tax benefits. Set a 10-year investment horizon for all project portfolios. Create a system for tracking and reporting the operational and financial performance of the project portfolios. At the end of the year, return 50 percent of the savings to the facilities department and use the rest to fund additional projects.

  16. Reported Energy and Cost Savings from the DOE ESPC Program: FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Bob S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy’s Energy Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 151 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project.

  17. Listen, wind energy costs nothing; Oyez tous, L'eolien ne coute rien

    Energy Technology Data Exchange (ETDEWEB)

    Poizat, F

    2008-09-15

    The author discusses the affirmation of the ADEME and the Environmental and sustainable development Ministry: the french wind park will costs in 2008 0,5 euro year for each household. He criticizes strongly this calculi, bringing many data on energy real cost today and in the next 10 years. Many references are provided. (A.L.B.)

  18. The case for renewable energy: levelised electricity costs under alternative abatement scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Windram, C.; Dix, S. [E3 International Pty Ltd., Indooroopilly, Qld. (Australia). Environment, Economics & Ethics

    2001-07-01

    This paper compares the relative cost performance of a number of conventional, clean coal and sustainable energy technologies under three alternative carbon abatement scenarios, each characterized by a different cost of abatement under an Australian domestic emissions trading scheme. 4 refs., 1 fig., 1 tab.

  19. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3 ...

    Science.gov (United States)

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfills in evaluating the economic and financial feasibility of LFG energy project development. In 2014, LMOP developed a public version of the model, LFGcost-Web (Version 3.0), to allow landfill and industry stakeholders to evaluate project feasibility on their own. LFGcost-Web can analyze costs for 12 energy recovery project types. These project costs can be estimated with or without the costs of a gas collection and control system (GCCS). The EPA used select equations from LFGcost-Web to estimate costs of the regulatory options in the 2015 proposed revisions to the MSW Landfills Standards of Performance (also known as New Source Performance Standards) and the Emission Guidelines (herein thereafter referred to collectively as the Landfill Rules). More specifically, equations derived from LFGcost-Web were applied to each landfill expected to be impacted by the Landfill Rules to estimate annualized installed capital costs and annual O&M costs of a gas collection and control system. In addition, after applying the LFGcost-Web equations to the list of landfills expected to require a GCCS in year 2025 as a result of the proposed Landfill Rules, the regulatory analysis evaluated whether electr

  20. Production and cost of harvesting, processing, and transporting small-diameter (< 5 inches) trees for energy

    Science.gov (United States)

    Fei Pan; Han-Sup Han; Leonard R. Johnson; William J. Elliot

    2008-01-01

    Dense, small-diameter stands generally require thinning from below to improve fire-tolerance. The resulting forest biomass can be used for energy production. The cost of harvesting, processing, and transporting small-diameter trees often exceeds revenues due to high costs associated with harvesting and transportation and low market values for forest biomass....

  1. High energy density capacitors for low cost applications

    Science.gov (United States)

    Iyore, Omokhodion David

    Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a

  2. Costs and benefits related to the use of tax incentives for energy-efficient appliances

    OpenAIRE

    Bio Intelligence Service

    2008-01-01

    The study examines four products with high energy-saving potential: refrigerators, washing machines, boilers and compact fluorescent lamps. The cost-benefit analysis is done in a comparative perspective so that the costs and benefits of energy taxation and a regulatory measure are calculated for the same products. The data from four different Member States (Denmark, France, Italy and Poland) are used in the analysis.

  3. [Cost and energy density of diet in Brazil, 2008-2009].

    Science.gov (United States)

    Ricardo, Camila Zancheta; Claro, Rafael Moreira

    2012-12-01

    This study aimed to evaluate the relationship between the cost and energy density of diet consumed in Brazilian households. Data from the Brazilian Household Budget Survey (POF 2008/2009) were used to identify the main foods and their prices. Similar items were grouped, resulting in a basket of 67 products. Linear programming was applied for the composition of isoenergetic baskets, minimizing the deviation from the average household diet. Restrictions were imposed on the inclusion of items and the energy contribution of the various food groups. A reduction in average cost of diet was applied at intervals of R$0.15 to the lowest possible cost. We identified an inverse association between energy density and cost of diet (p < 0.05), and at the lowest possible cost we obtained the maximum value of energy density. Restrictions on the diet's cost resulted in the selection of diets with higher energy density, indicating that cost of diet may lead to the adoption of inadequate diets in Brazil.

  4. How much electricity really costs. Comparison of the state subsidisation and overall social costs of conventional and renewable energy resources; Was Strom wirklich kostet. Vergleich der staatlichen Foerderungen und gesamtgesellschaftlichen Kosten konventioneller und erneuerbarer Energien

    Energy Technology Data Exchange (ETDEWEB)

    Kuechler, Swantje; Meyer, Bettina

    2012-07-01

    subsidisation and external costs are often not considered in the price of conventional energy resources but ultimately have to be paid nonetheless, be it the form of tax payments, the social costs of the climate change or of other burdens on humans and the environment. The study furnishes proof that the EEG reallocation charge levied for the promotion of renewable energy (3.59 cents per kWh in 2012) represents a far smaller cost burden than do conventional energy resources, and that it will remain so even if it raised substantially in the future to finance the conversion to a more climate-friendly, sustainable energy supply. Contrary to popular belief, renewable energy resources are not the big cost driving factor in our power supply system but rather a replacement of energy resources that are causing far greater consequential costs for tax payers and society as a whole. If power supply companies were made to include these additional costs of electricity production in their cost calculations, most renewable energy resources would already be competitive today.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  6. Processes and energy costs for mining lunar Helium-3

    Science.gov (United States)

    Sviatoslavsky, I. N.

    1988-09-01

    Preliminary investigations show that obtaining He-3 from the moon is technically feasible and economically viable. With the exception of beneficiation, the proposed procedures are state of the art. Mass of equipment needed from earth is of some concern, but resupply will eventually be ameliorated by the use of titanium from indigenous ilmenite. A complete energy payback from a D/He-3 fusion reactor utilizing lunar He-3 is approx. 80, providing ample incentive for commercial investment is forthcoming. Byproducts will be of great value to the resupply of a permanent lunar base and enhancement of space exploration.

  7. City-scale analysis of water-related energy identifies more cost-effective solutions.

    Science.gov (United States)

    Lam, Ka Leung; Kenway, Steven J; Lant, Paul A

    2017-02-01

    Energy and greenhouse gas management in urban water systems typically focus on optimising within the direct system boundary of water utilities that covers the centralised water supply and wastewater treatment systems, despite a greater energy influence by the water end use. This work develops a cost curve of water-related energy management options from a city perspective for a hypothetical Australian city. It is compared with that from the water utility perspective. The curves are based on 18 water-related energy management options that have been implemented or evaluated in Australia. In the studied scenario, the cost-effective energy saving potential from a city perspective (292 GWh/year) is far more significant than that from a utility perspective (65 GWh/year). In some cases, for similar capital cost, if regional water planners invested in end use options instead of utility options, a greater energy saving potential at a greater cost-effectiveness could be achieved in urban water systems. For example, upgrading a wastewater treatment plant for biogas recovery at a capital cost of $27.2 million would save 31 GWh/year with a marginal cost saving of $63/MWh, while solar hot water system rebates at a cost of $28.6 million would save 67 GWh/year with a marginal cost saving of $111/MWh. Options related to hot water use such as water-efficient shower heads, water-efficient clothes washers and solar hot water system rebates are among the most cost-effective city-scale opportunities. This study demonstrates the use of cost curves to compare both utility and end use options in a consistent framework. It also illustrates that focusing solely on managing the energy use within the utility would miss substantial non-utility water-related energy saving opportunities. There is a need to broaden the conventional scope of cost curve analysis to include water-related energy and greenhouse gas at the water end use, and to value their management from a city perspective. This

  8. Efficiency versus cost — A fundamental design conflict in energy science

    Directory of Open Access Journals (Sweden)

    Ohler C.

    2013-06-01

    Full Text Available An essential design conflict in energy technology is the trade-off between efficiency and cost. The lecture introduces concepts that deal with this trade-off and discusses real world examples. Among the many definitions of efficiency, exergetic efficiency is the most rigorous and often the most adequate for analyzing the efficiency of a process. Exergy is the maximum work obtainable from a system as it comes into equilibrium with its environment. Exergetic efficiency is illustrated here with the heating of buildings. The right concept to analyze the trade-off between efficiency and the initial capital cost of equipment is the net present value analysis. We discuss two examples, overhead power lines and energy storage. Electrothermal energy storage is a new energy storage technology that builds on both concepts, optimization of exergetic efficiency and balancing of initial cost with that efficiency. Finally, non-technical barriers for energy efficiency are mentioned.

  9. Benefit and cost competitiveness analysis of wind and solar power inter-continent transmission under global energy interconnection mode

    Science.gov (United States)

    Wei, Xiaoxia; Ding, Jian; Liu, Jie; Wei, Tiezhong

    2017-01-01

    Relying on the global energy Interconnection, considering the energy implementation, carrying out clean energy alternative is mainly to use the clean energy to take place of fossil energy. Under the green development scenario, This research gives the global energy interconnection development model, makes the Artic and the Equation as the connection points, gives the Northern hemisphere interconnection model and equator interconnection model unite the whole world energy. This research also identifies the factors effecting the transmission changes cost, including generation cost, transmission cost and landing cost. And take two continents connection as the prediction example, estimate these two continents cost benefit and variable power-jointed scheme cost competitiveness. It showed that under the global energy interconnection mode, the trans-continent mode had better benefit, and the landing cost is good to be used, can solve the pollution and energy restriction.

  10. Comparing the Mass, Energy, and Cost Effects of Lightweighting in Conventional and Electric Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    Johannes Hofer

    2014-09-01

    Full Text Available In this work the effect of weight reduction using advanced lightweight materials on the mass, energy use, and cost of conventional and battery electric passenger vehicles is compared. Analytic vehicle simulation is coupled with cost assessment to find the optimal degree of weight reduction minimizing manufacturing and total costs. The results show a strong secondary weight and cost saving potential for the battery electric vehicles, but a higher sensitivity of vehicle energy use to mass reduction for the conventional vehicle. Generally, light weighting has the potential to lower vehicle costs, however, the results are very sensitive to parameters affecting lifetime fuel costs for conventional and battery costs for electric vehicles. Based on current technology cost estimates it is shown that the optimal amount of primary mass reduction minimizing total costs is similar for conventional and electric vehicles and ranges from 22% to 39%, depending on vehicle range and overall use patterns. The difference between the optimal solutions minimizing manufacturing versus total costs is higher for conventional than battery electric vehicles.

  11. Energy cost of arousal: effect of sex, race and obesity.

    Science.gov (United States)

    Fontvieille, A M; Ferraro, R T; Rising, R; Larson, D E; Ravussin, E

    1993-12-01

    The basal (BMR) to sleeping metabolic rate (SMR) ratio might represent an estimate of the activation of the nervous system (central/sympathetic) from sleeping to basal state. Since this activation might be influenced by the degree of obesity, and might be different between sexes, we retrospectively analysed energy expenditure data collected for a large number of subjects. Twenty-four hour energy expenditure (24EE), BMR and SMR were measured in a respiratory chamber in 122 Caucasians (63 males/59 females, 32 +/- 10 years, 94 +/- 33 kg, 29 +/- 11% fat) (means +/- s.d.) and in 123 Pima Indians (68 males/55 females, 29 +/- 7 years, 100 +/- 25 kg, 34 +/- 9% fat). The BMR/SMR ratio varied greatly between individuals (1.05 +/- 0.08; range 0.87-1.34). In Pima Indians, BMR/SMR was inversely correlated to both fat mass (r = -0.26; P sleeping to the basal state are related to differences in the activation of the nervous system and/or to other metabolic factors.

  12. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

    2013-09-30

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

  13. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, Simon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, Luke A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

  14. 76 FR 13168 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2011-03-10

    ... of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products... pursuant to the Energy Policy and Conservation Act. The five sources are electricity, natural gas, No. 2... of the Energy Policy and Conservation Act (Act) requires that DOE prescribe test procedures for...

  15. Environmental residuals and capital costs of energy recovery from municipal sludge and feedlot manure

    Energy Technology Data Exchange (ETDEWEB)

    Ballou, S W; Dale, L; Johnson, R; Chambers, W; Mittelhauser, H

    1980-09-01

    The capital and environmental cost of energy recovery from municipal sludge and feedlot manure is analyzed. Literature on waste processing and energy conversion and interviews with manufacturers were used for baseline data for construction of theoretical models using three energy conversion processes: anaerobic digestion, incineration, and pyrolysis. Process characteristics, environmental impact data, and capital costs are presented in detail for each conversion system. The energy recovery systems described would probably be sited near large sources of sludge and manure, i.e., metropolitan sewage treatment plants and large feedlots in cattle-raising states. Although the systems would provide benefits in terms of waste disposal as well as energy production, they would also involve additional pollution of air and water. Analysis of potential siting patterns and pollution conflicts is needed before energy recovery systems using municipal sludge can be considered as feasible energy sources.

  16. Levelized Cost of Energy Analysis of Marine and Hydrokinetic Reference Models: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, D. S.; Yu, Y. H.; Neary, V.

    2015-04-24

    In 2010 the U.S. Department of Energy initiated the development of six marine energy converter reference models. The reference models are point designs of well-known marine energy converters. Each device was designed to operate in a specific marine resource, instead of a generic device that can be deployed at any location. This method allows each device to be used as a benchmark for future reference model to benchmark future devices. The six designs consist of three current energy converters and three wave energy converters. The reference model project has generated both technical and economic data sets that are available in the public domain. The methodology to calculate the levelized cost of energy for the reference model project and an overall comparison of the cost of energy from these six reference-model designs are presented in this paper.

  17. Benchmarking energy use and costs in salt-and-dry fish processing and lobster processing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The Canadian fish processing sector was the focus of this benchmarking analysis, which was conducted jointly by the Canadian Industry Program for Energy Conservation and the Fisheries Council of Canada, who retained Corporate Renaissance Group (CRG) to establish benchmarks for salt-and-dry processing operations in Nova Scotia and lobster processing operations in Prince Edward Island. The analysis was limited to the ongoing operations of the processing plants, and started with the landing of the fish/lobster and ended with freezer/cooler storage of the final products. Fuel used by the fishing fleet and in delivery trucks was not included in this study. The initial phase of each study involved interviews with management personnel at a number of plants in order to lay out process flow diagrams which were used to identify the series of stages of production for which energy consumption could be separately analyzed. Detailed information on annual plant production and total plant energy consumption and costs for the year by fuel type were collected, as well as inventories of energy-consuming machinery and equipment. At the completion of the data collection process, CRG prepared a summary of energy use, production data, assumptions and a preliminary analysis of each plant's energy use profile. Energy consumption and costs per short ton were calculated for each stage of production. Information derived from the calculations includes revised estimates of energy consumption by stage of production; energy costs per ton of fish; total energy consumption and costs associated with production of a standard product; and a detailed inter-plant comparison of energy consumption and costs per ton among the participating plants. Details of greenhouse gas (GHG) emissions and potential energy savings were also presented. 7 tabs., 3 figs.

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Concrete Industry

    OpenAIRE

    Kermeli, Katerina; Worrell, E.; Masanet, Eric

    2011-01-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for about 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficienc...

  19. Data of cost-optimality and technical solutions for high energy performance buildings in warm climate.

    Science.gov (United States)

    Zacà, Ilaria; D'Agostino, Delia; Maria Congedo, Paolo; Baglivo, Cristina

    2015-09-01

    The data reported in this article refers to input and output information related to the research articles entitled Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area by Zacà et al. (Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area, in press.) and related to the research article Cost-optimal analysis and technical comparison between standard and high efficient mono residential buildings in a warm climate by Baglivo et al. (Energy, 2015, 10.1016/j.energy.2015.02.062, in press).

  20. Impacts of energy consumption and emissions on the trip cost without late arrival at the equilibrium state

    Science.gov (United States)

    Tang, Tie-Qiao; Wang, Tao; Chen, Liang; Shang, Hua-Yan

    2017-08-01

    In this paper, we apply a car-following model, fuel consumption model, emission model and electricity consumption model to explore the influences of energy consumption and emissions on each commuter's trip costs without late arrival at the equilibrium state. The numerical results show that the energy consumption and emissions have significant impacts on each commuter's trip cost without late arrival at the equilibrium state. The fuel cost and emission cost prominently enhance each commuter's trip cost and the trip cost increases with the number of vehicles, which shows that considering the fuel cost and emission cost in the trip cost will destroy the equilibrium state. However, the electricity cost slightly enhances each commuter's trip cost, but the trip cost is still approximately a constant, which indicates that considering the electricity cost in the trip cost does not destroy the equilibrium state.

  1. The impact of relative energy prices on industrial energy consumption in China: a consideration of inflation costs.

    Science.gov (United States)

    He, Lingyun; Ding, Zhihua; Yin, Fang; Wu, Meng

    2016-01-01

    Significant effort has been exerted on the study of economic variables such as absolute energy prices to understand energy consumption and economic growth. However, this approach ignores general inflation effects, whereby the prices of baskets of goods may rise or fall at different rates from those of energy prices. Thus, it may be the relative energy price, not the absolute energy price, that has most important effects on energy consumption. To test this hypothesis, we introduce a new explanatory variable, the domestic relative energy price, which we define as "the ratio of domestic energy prices to the general price level of an economy," and we test the explanatory power of this new variable. Thus, this paper explores the relationship between relative energy prices and energy consumption in China from the perspective of inflation costs over the period from 1988 to 2012. The direct, regulatory and time-varying effects are captured using methods such as ridge regression and the state-space model. The direct impacts of relative energy prices on total energy consumption and intensity are -0.337 and -0.250, respectively; the effects of comprehensive regulation on energy consumption through the economic structure and the energy structure are -0.144 and -0.148, respectively; and the depressing and upward effects of rising and falling energy prices on energy consumption are 0.3520 and 0.3564, respectively. When economic growth and the energy price level were stable, inflation persisted; thus, rising energy prices benefitted both the economy and the environment. Our analysis is important for policy makers to establish effective energy-pricing policies that ensure both energy conservation and the stability of the pricing system.

  2. Operating costs and energy demand of wastewater treatment plants in Austria: benchmarking results of the last 10 years.

    Science.gov (United States)

    Haslinger, J; Lindtner, S; Krampe, J

    2016-12-01

    This work presents operating costs and energy consumption of Austrian municipal wastewater treatment plants (WWTPs) (≥10,000 PE-design capacity) that have been classified into different size groups. Different processes as well as cost elements are investigated and processes with high relevance regarding operating costs and energy consumption are identified. Furthermore, the work shows the cost-relevance of six investigated cost elements. The analysis demonstrates the size-dependency of operating costs and energy consumption. For the examination of the energy consumption the investigated WWTPs were further classified into WWTPs with aerobic sludge stabilisation and WWTPs with mesophilic sludge digestion. The work proves that energy consumption depends mainly on the type of sludge stabilisation. The results of the investigation can help to determine reduction potential in operating costs and energy consumption of WWTPs and form a basis for more detailed analysis which helps to identify cost and energy saving potential.

  3. Reliability and cost evaluation of small isolated power systems containing photovoltaic and wind energy

    Science.gov (United States)

    Karki, Rajesh

    Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates

  4. The Optimum Replacement of Weapon

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao; ZHANG Jin-chun

    2002-01-01

    The theory of LCC (Life Cycle Cost) is applied in this paper. The relation between the economic life of weapon and the optimum replacement is analyzed. The method to define the optimum replacement time of weapon is discussed.

  5. Energy cost of balance control during walking decreases with external stabilizer stiffness independent of walking speed.

    Science.gov (United States)

    Ijmker, Trienke; Houdijk, Han; Lamoth, Claudine J C; Beek, Peter J; van der Woude, Lucas H V

    2013-09-03

    Human walking requires active neuromuscular control to ensure stability in the lateral direction, which inflicts a certain metabolic load. The magnitude of this metabolic load has previously been investigated by means of passive external lateral stabilization via spring-like cords. In the present study, we applied this method to test two hypotheses: (1) the effect of external stabilization on energy cost depends on the stiffness of the stabilizing springs, and (2) the energy cost for balance control, and consequently the effect of external stabilization on energy cost, depends on walking speed. Fourteen healthy young adults walked on a motor driven treadmill without stabilization and with stabilization with four different spring stiffnesses (between 760 and 1820 Nm(-1)) at three walking speeds (70%, 100%, and 130% of preferred speed). Energy cost was calculated from breath-by-breath oxygen consumption. Gait parameters (mean and variability of step width and stride length, and variability of trunk accelerations) were calculated from kinematic data. On average external stabilization led to a decrease in energy cost of 6% (pwalking speed (p=0.111). These results show that active lateral stabilization during walking involves an energetic cost, which is independent of walking speed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Energy efficiency of formal low-cost housing in South Africa`s Gauteng region

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, E.H. [Centre for Experimental and Numerical Thermoflow (CENT), Dept. of Mechanical and Aeronautical Engineering, Univ. of Pretoria (South Africa); Van Wyk, S.L. [Centre for Experimental and Numerical Thermoflow (CENT), Dept. of Mechanical and Aeronautical Engineering, Univ. of Pretoria (South Africa)

    1996-12-01

    A large percentage of South Africa`s population is at present housed in low-cost dwellings. Furthermore, more than 2 million new houses must be built over the next 10 years to alleviate the current housing shortage. Unfortuanately the existing houses are very energy inefficient and if nothing is done now, the new houses will surely also be inefficient. It would have a tremendous impact on the inhabitant`s disposable income, health as well as their environment if these low-cost houses could be made energy efficient. This prompted the authors to investigate retrofit options to improve the energy efficiency of existing houses and to evaluate energy efficiency design concepts for new houses. The energy efficiency of the improvements was evaluated by means of computer simulations. Ceiling insulation was found to be the best retrofit for the typical formal low-cost house. By retrofitting existing formal low-cost houses with insulation integrated ceilings the Gauteng region could save Dollar 12 million in electricity costs per year and Dollar 0.79 billion in peak demand electricity supply. If the proposed new houses are supplied with insulation integrated ceilings the Gauteng region could save approximately Dollar 2 million in electricity costs per year and Dollar 224 million in peak demand electricity supply. (orig.)

  7. Marginal costs of intensified energy-efficiency measures in residential buildings; Grenzkosten bei forcierten Energie-Effizienzmassnahmen in Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, M.; Jochem, E. [Eidgenoessische Technische Hochschule (ETH), Centre for Energy Policy and Economics (CEPE), Zuerich (Switzerland); Kristen, K. [Eidgenoessische Technische Hochschule (ETH), Architektur und Baurealisation, Zuerich (Switzerland)

    2002-07-01

    This detailed report for the Swiss Federal Office of Energy (SFOE) examines the large potential for increasing the energy efficiency of residential buildings in Switzerland. The aims of the research project are described including investigation of costs and marginal costs for thermal insulation and efficiency measures, the updating of technical parameters for cost - efficiency characteristics on an empirical basis, a transparent presentation of cost/benefit ratios for different concepts. Another aim is to obtain a more detailed overview of costs and benefits that could be of use for planners, building owners and technology companies. The methodology used for the collection of data for the study is described. The report also takes a look at the indirect advantages of improving the thermal insulation of buildings and examines the initial economic and technical situation. A detailed review of the costs and benefits is given for the various elements of a building such as walls, floors and windows and a reference development scenario for the period 2000 -2030 is presented. Marginal cost curves for various categories of buildings are presented for thermal insulation and ventilation measures.

  8. Relationship between energy cost, swimming velocity, speed fluctuation in competitive swimming strokes

    OpenAIRE

    Barbosa, Tiago M.; Lima, A.B.; Portela, A; Novais, D.; L Machado; Colaço, P.; Gonçalves, P; Fernandes, R. J.; Keskinen, K.L.; Vilas-Boas, J. P.

    2006-01-01

    The purpose of this study was to analyse the relationships between the total energy expenditure ( tot), the energy cost (EC), the intra-cycle variation of the horizontal velocity of displacement of centre of mass (dv) and the mean swimming velocity (v) in the four competitive swimming strokes.

  9. An Investigation of Energy Consumption and Cost in Large Air-Conditioned Buildings. An Interim Report.

    Science.gov (United States)

    Milbank, N. O.

    Two similarly large buildings and air conditioning systems are comparatively analyzed as to energy consumption, costs, and inefficiency during certain measured periods of time. Building design and velocity systems are compared to heating, cooling, lighting and distribution capabilities. Energy requirements for pumps, fans and lighting are found to…

  10. Characterizing Synergistic Water and Energy Efficiency at the Residential Scale Using a Cost Abatement Curve Approach

    Science.gov (United States)

    Stillwell, A. S.; Chini, C. M.; Schreiber, K. L.; Barker, Z. A.

    2015-12-01

    Energy and water are two increasingly correlated resources. Electricity generation at thermoelectric power plants requires cooling such that large water withdrawal and consumption rates are associated with electricity consumption. Drinking water and wastewater treatment require significant electricity inputs to clean, disinfect, and pump water. Due to this energy-water nexus, energy efficiency measures might be a cost-effective approach to reducing water use and water efficiency measures might support energy savings as well. This research characterizes the cost-effectiveness of different efficiency approaches in households by quantifying the direct and indirect water and energy savings that could be realized through efficiency measures, such as low-flow fixtures, energy and water efficient appliances, distributed generation, and solar water heating. Potential energy and water savings from these efficiency measures was analyzed in a product-lifetime adjusted economic model comparing efficiency measures to conventional counterparts. Results were displayed as cost abatement curves indicating the most economical measures to implement for a target reduction in water and/or energy consumption. These cost abatement curves are useful in supporting market innovation and investment in residential-scale efficiency.

  11. Cost of Wind Energy in the United States: Trends from 2007 to 2012 (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M.

    2015-01-01

    This presentation provides an overview of recent technology trends observed in the United States including project size, turbine size, rotor diameter, hub height, annual average wind speed, and annual energy production. It also highlights area where system analysis is required to fully understand how these technology trends relate to the cost of wind energy.

  12. Cost of Wind Energy in the United States: Trends from 2007 to 2012 (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M.

    2015-01-01

    This presentation provides an overview of recent technology trends observed in the United States including project size, turbine size, rotor diameter, hub height, annual average wind speed, and annual energy production. It also highlights area where system analysis is required to fully understand how these technology trends relate to the cost of wind energy.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Adrian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Masanet, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Worrell, Ernst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-10-01

    The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.

  15. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by

  16. Promoting renewable energy and energy efficiency in Africa: a framework to evaluate employment generation and cost effectiveness

    Science.gov (United States)

    Cantore, Nicola; Nussbaumer, Patrick; Wei, Max; Kammen, Daniel M.

    2017-03-01

    The ongoing debate over the cost-effectiveness of renewable energy (RE) and energy efficiency (EE) deployment often hinges on the current cost of incumbent fossil-fuel technologies versus the long-term benefit of clean energy alternatives. This debate is often focused on mature or ‘industrialized’ economies and externalities such as job creation. In many ways, however, the situation in developing economies is at least as or even more interesting due to the generally faster current rate of economic growth and of infrastructure deployment. On the one hand, RE and EE could help decarbonize economies in developing countries, but on the other hand, higher upfront costs of RE and EE could hamper short-term growth. The methodology developed in this paper confirms the existence of this trade-off for some scenarios, yet at the same time provides considerable evidence about the positive impact of EE and RE from a job creation and employment perspective. By extending and adopting a methodology for Africa designed to calculate employment from electricity generation in the U.S., this study finds that energy savings and the conversion of the electricity supply mix to renewable energy generates employment compared to a reference scenario. It also concludes that the costs per additional job created tend to decrease with increasing levels of both EE adoption and RE shares.

  17. A calculation program for harvesting and transportation costs of energy wood; Energiapuun korjuun ja kuljetuksen kustannuslaskentaohjelmisto

    Energy Technology Data Exchange (ETDEWEB)

    Kuitto, P.J.

    1996-12-31

    VTT Energy is compiling a large and versatile calculation program for harvesting and transportation costs of energy wood. The work has been designed and will be carried out in cooperation with Metsaeteho and Finntech Ltd. The program has been realised in Windows surroundings using SQLWindows graphical database application development system, using the SQLBase relational database management system. The objective of the research is to intensify and create new possibilities for comparison of the utilization costs and the profitability of integrated energy wood production chains with each other inside the chains

  18. Cost allocation model for distribution networks considering high penetration of distributed energy resources

    DEFF Research Database (Denmark)

    Soares, Tiago; Pereira, Fábio; Morais, Hugo;

    2015-01-01

    , losses, and congestion costs) is proposed comprising the use of a large set of DER, namely distributed generation (DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehicles with capability of discharging energy to the network, which is known as vehicle......The high penetration of distributed energy resources (DER) in distribution networks and the competitive environment of electricity markets impose the use of new approaches in several domains. The network cost allocation, traditionally used in transmission networks, should be adapted and used...

  19. Cost information in energy bills for households effecting the adoption of energy techniques

    NARCIS (Netherlands)

    Entrop, A.G.; Dewulf, G.P.M.R.; Wamelink, J.W.F.; Geraedts, R.P.; Volker, L.

    2011-01-01

    Financial appraisal is an important aspect in adopting techniques that reduce the (fossil) energy use of buildings. When financial appraisal of an energy technique takes place, fixed prices for the form and amount of energy are often used and are multiplied by the estimated amount of energy savings.

  20. Potential Offshore Wind Energy Areas in California: An Assessment of Locations, Technology, and Costs

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    This report summarizes a study of possible offshore wind energy locations, technologies, and levelized cost of energy in the state of California between 2015 and 2030. The study was funded by the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), the federal agency responsible for regulating renewable energy development on the Outer Continental Shelf. It is based on reference wind energy areas where representative technology and performance characteristics were evaluated. These reference areas were identified as sites that were suitable to represent offshore wind cost and technology based on physical site conditions, wind resource quality, known existing site use, and proximity to necessary infrastructure. The purpose of this study is to assist energy policy decision-making by state utilities, independent system operators, state government officials and policymakers, BOEM, and its key stakeholders. The report is not intended to serve as a prescreening exercise for possible future offshore wind development.

  1. Modeling of Energy and Environmental Costs for Sustainability of Urban Areas

    Directory of Open Access Journals (Sweden)

    José Alfonso ARANDA

    2005-12-01

    Full Text Available The principal aim of this paper is to preent the results achieved by the prac-tical application of energy modelling to urban areas based on two inter related concepts: energy costs and environmental costs. The analysis has been carried out in three standard Municipalities located in a Mediterr-nean Zone (Spain selected based on their different size and socio-economic activities in order to facilitate the extrapolation of results. Energy flows of the chosen areas have been quantified and classified. In addition, energy and environmental costs have been aggregated for each productive sector.Using the methodology proposed in this paper in novative solutions could bespecially designed for diffe ent areas in order to ensure the sustainable development of u ban areas. F nally, the basis for changing the present deveopment model in the Municipalities is set out by means of the applica tion of sustainability prin ci ples set in Agenda 21.

  2. R&D portfolio analysis of low carbon energy technologies to reduce climate change mitigation costs

    Science.gov (United States)

    Zdybel, Rose M.

    In this dissertation we analyze the effects of low carbon energy technology R&D portfolios on the cost of climate change mitigation. We use the results to create the analytical foundation for a decision support system aimed at effectively communicating the effects of uncertainty to decision makers. Specifically, we focus on three main areas. The first is generating a correlated probability distribution around detailed energy price forecasts. The second is showing how the availability of advanced energy technologies and combinations of them affect the marginal abatement cost curve. The third is creating the analytic foundation for a decision support system (DSS) by using an integrated assessment model to analyze the effects of combinations of low carbon energy technologies on CO2 concentration stabilization costs and then combining the results with probabilistic data from expert elicitations to analyze R&D portfolios. The third part also involves creating a multivariate regression model to represent the relationship between variables for additional analysis.

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  4. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  5. The costs of failure: A preliminary assessment of major energy accidents, 1907-2007

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)

    2008-05-15

    A combination of technical complexity, tight coupling, speed, and human fallibility contribute to the unexpected failure of large-scale energy technologies. This study offers a preliminary assessment of the social and economic costs of major energy accidents from 1907 to 2007. It documents 279 incidents that have been responsible for $41 billion in property damage and 182,156 deaths. Such disasters highlight an often-ignored negative externality to energy production and use, and emphasize the need for further research. (author)

  6. The Cost and Benefit of Bulk Energy Storage in the Arizona Power Transmission System

    Science.gov (United States)

    Ruggiero, John

    This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission and generation expansion; and provide for generation reserve margins. As renewable energy resource penetration increases, the uncertainty and variability of wind and solar may be alleviated by bulk energy storage technologies. The quadratic programming function in MATLAB is used to simulate an economic dispatch that includes energy storage. A program is created that utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona transmission system, part of the Western Electricity Coordinating Council (WECC). The MATLAB program is used first to test the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization out-puts such as the system wide operating costs. Very high levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.

  7. A cost-effectiveness modelling study of strategies to reduce risk of infection following primary hip replacement based on a systematic review.

    Science.gov (United States)

    Graves, Nicholas; Wloch, Catherine; Wilson, Jennie; Barnett, Adrian; Sutton, Alex; Cooper, Nicola; Merollini, Katharina; McCreanor, Victoria; Cheng, Qinglu; Burn, Edward; Lamagni, Theresa; Charlett, Andre

    2016-07-01

    A deep infection of the surgical site is reported in 0.7% of all cases of total hip arthroplasty (THA). This often leads to revision surgery that is invasive, painful and costly. A range of strategies is employed in NHS hospitals to reduce risk, yet no economic analysis has been undertaken to compare the value for money of competing prevention strategies. To compare the costs and health benefits of strategies that reduce the risk of deep infection following THA in NHS hospitals. To make recommendations to decision-makers about the cost-effectiveness of the alternatives. The study comprised a systematic review and cost-effectiveness decision analysis. 77,321 patients who had a primary hip arthroplasty in NHS hospitals in 2012. Nine different treatment strategies including antibiotic prophylaxis, antibiotic-impregnated cement and ventilation systems used in the operating theatre. Change in the number of deep infections, change in the total costs and change in the total health benefits in quality-adjusted life-years (QALYs). Literature searches using MEDLINE, EMBASE, Cumulative Index to Nursing and Allied Health Literature and the Cochrane Central Register of Controlled Trials were undertaken to cover the period 1966-2012 to identify infection prevention strategies. Relevant journals, conference proceedings and bibliographies of retrieved papers were hand-searched. Orthopaedic surgeons and infection prevention experts were also consulted. English-language papers only. The selection of evidence was by two independent reviewers. Studies were included if they were interventions that reported THA-related deep surgical site infection (SSI) as an outcome. Mixed-treatment comparisons were made to produce estimates of the relative effects of competing infection control strategies. Twelve studies, six randomised controlled trials and six observational studies, involving 123,788 total hip replacements (THRs) and nine infection control strategies, were identified. The quality of

  8. An approach for model-based energy cost analysis of industrial automation systems

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A.; Goehner, P. [Institute of Industrial Automation and Software Engineering, University of Stuttgart, Pfaffenwaldring 47, 70550 Stuttgart (Germany)

    2012-08-15

    Current energy reports confirm the steadily dilating gap between available conventional energy resources and future energy demand. This gap results in increasing energy costs and has become a determining factor in economies. Hence, politics, industry, and research focus either on regenerative energy resources or on energy-efficient concepts, methods, and technologies for energy-consuming devices. A remaining challenge is energy optimization of complex systems during their operation time. In addition to optimization measures that can be applied in development and engineering, the generation of optimization measures that are customized to the specific dynamic operational situation, promise high-cost saving potentials. During operation time, the systems are located in unique situations and environments and are operated according to individual requirements of their users. Hence, in addition to complexity of the systems, individuality and dynamic variability of their surroundings during operation time complicate identification of goal-oriented optimization measures. This contribution introduces a model-based approach for user-centric energy cost analysis of industrial automation systems. The approach allows automated generation and appliance of individual optimization proposals. Focus of this paper is on a basic variant for a single industrial automation system and its operational parameters.

  9. An Evaluation of the Consumer Costs and Benefits of Energy Efficiency Resource Standards

    Science.gov (United States)

    Lessans, Mark D.

    Of the modern-day policies designed to encourage energy efficiency, one with a significant potential for impact is that of Energy Efficiency Resource Standards (EERS). EERS policies place the responsibility for meeting an efficiency target on the electric and gas utilities, typically setting requirements for annual reductions in electricity generation or gas distribution to customers as a percentage of sales. To meet these requirements, utilities typically implement demand-side management (DSM) programs, which encourage energy efficiency at the customer level through incentives and educational initiatives. In Maryland, a statewide EERS has provided for programs which save a significant amount of energy, but is ultimately falling short in meeting the targets established by the policy. This study evaluates residential DSM programs offered by Pepco, a utility in Maryland, for cost-effectiveness. However, unlike most literature on the topic, analysis focuses on the costs-benefit from the perspective of the consumer, and not the utility. The results of this study are encouraging: the majority of programs analyzed show that the cost of electricity saved, or levelized cost of saved energy (LCSE), is less expensive than the current retail cost of electricity cost in Maryland. A key goal of this study is to establish a metric for evaluating the consumer cost-effectiveness of participation in energy efficiency programs made available by EERS. In doing so, the benefits of these programs can be effectively marketed to customers, with the hope that participation will increase. By increasing consumer awareness and buy-in, the original goals set out through EERS can be realized and the policies can continue to receive support.

  10. Socioeconomic Status, Energy Cost, and Nutrient Content of Supermarket Food Purchases

    Science.gov (United States)

    Appelhans, Bradley M.; Milliron, Brandy-Joe; Woolf, Kathleen; Johnson, Tricia J.; Pagoto, Sherry L.; Schneider, Kristin L.; Whited, Matthew C.; Ventrelle, Jennifer C.

    2013-01-01

    Background The relative affordability of energy-dense versus nutrient-rich foods may promote socioeconomic disparities in dietary quality and obesity. Although supermarkets are the largest food source in the American diet, the associations between SES and the cost and nutrient content of freely chosen food purchases have not been described. Purpose To investigate relationships of SES with the energy cost ($/1000 kcal) and nutrient content of freely chosen supermarket purchases. Methods Supermarket shoppers (n=69) were recruited at a Phoenix AZ supermarket in 2009. The energy cost and nutrient content of participants’ purchases were calculated from photographs of food packaging and nutrition labels using dietary analysis software. Data were analyzed in 2010–2011. Results Two SES indicators, education and household income as a percentage of the federal poverty guideline (FPG), were associated with the energy cost of purchased foods. Adjusting for covariates, the amount spent on 1000 kcal of food was $0.26 greater for every multiple of the FPG, and those with a baccalaureate or postbaccalaureate degree spent an additional $1.05 for every 1000 kcal of food compared to those with no college education. Lower energy cost was associated with higher total fat and less protein, dietary fiber, and vegetables per 1000 kcal purchased. Conclusions Low-SES supermarket shoppers purchase calories in inexpensive forms that are higher in fat and less nutrient-rich. PMID:22424253

  11. Life-cycle cost and financial analysis of energy components in mass housing projects – A case project in sub-urban India

    Directory of Open Access Journals (Sweden)

    Shagufta Sajid Mumtaaz Sayed

    2015-12-01

    Full Text Available Environmental concern based designs are becoming essential in urban India. Shift of population from rural to urban cities is leading to the associated burden of mass housing facilities. The paper discusses the economic feasibility of using energy conservation green components by performing their life cycle cost analysis (LCCA in large mass housing projects. A total of six components including solar applications have been evaluated for a case project placed in Mumbai suburban location in India. LCCA is performed from the projections of Wholesale price indices and wholesale market price fluctuations of the commodities. Labour cost projections are performed from minimum wages provided by the ministry. For calculation of savings, exponential increase in electricity tariff is considered. The capital cost of energy components contributes in the range of 5–7% to the conventional built up area cost. LCCA suggests that the significant share of cost is related to maintenance, repair and replacement activities of all components. Financial analysis results suggest that the components provide a payback of 11 years at 8% discounting rate and 7 years at non discounted values. The results of this study are expected to benefit investors in mass housing projects for their financial and budgetary decision making in implementing energy efficient based design.

  12. Energy information systems (EIS): Technology costs, benefit, and best practice uses

    Energy Technology Data Exchange (ETDEWEB)

    Granderson, Jessica; Lin, Guanjing; Piette, Mary Ann

    2013-11-26

    Energy information systems are the web-based software, data acquisition hardware, and communication systems used to store, analyze, and display building energy data. They often include analysis methods such as baselining, benchmarking, load profiling, and energy anomaly detection. This report documents a large-scale assessment of energy information system (EIS) uses, costs, and energy benefits, based on a series of focused case study investigations that are synthesized into generalizable findings. The overall objective is to provide organizational decision makers with the information they need to make informed choices as to whether or not to invest in an EIS--a promising technology that can enable up to 20 percent site energy savings, quick payback, and persistent low-energy performance when implemented as part of best-practice energy management programs.

  13. Energy recovery efficiency and cost analysis of VOC thermal oxidation pollution control technology.

    Science.gov (United States)

    Warahena, Aruna S K; Chuah, Yew Khoy

    2009-08-01

    Thermal oxidation of VOC is extremely energy intensive, and necessitates high efficiency heat recovery from the exhaust heat. In this paper, two independent parameters heat recovery factor (HRF) and equipment cost factor (ECF) are introduced. HRF and ECF can be used to evaluate separately the merits of energy efficiency and cost effectiveness of VOC oxidation systems. Another parameter equipment cost against heat recovery (ECHR) which is a function of HRF and ECF is introduced to evaluate the merit of different systems for the thermal oxidation of VOC. Respective cost models were derived for recuperative thermal oxidizer (TO) and regenerative thermal oxidizer (RTO). Application examples are presented to show the use and the importance of these parameters. An application examples show that TO has a lower ECF while RTO has a higher HRF. However when analyzed using ECHR, RTO would be of advantage economically in longer periods of use. The analytical models presented can be applied in similar environmental protection systems.

  14. Cost of energy from some renewable and conventional technologies. Progress report, FY 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    Up-to-date, consistent, and transparent estimates of the cost of delivered energy from a selected number of solar and renewable technologies were developed and these were compared with the costs of conventional alternatives meeting the energy needs in comparable applications. Technology characterizations and cost assessments of representative systems relating to 23 solar and renewable resource technology/application pairs were performed. For each pair, identical assessments were also made for representative conventional (e.g., fossil fuel) competing systems. Section 2 summarizes the standardized methodology developed to do the technology characterizations and cost assessments. Assessments of technology/application pairs relating to distributed applications are presented in Section 3. Central system assessments are presented in Section 4. (MCW)

  15. A Method for Estimating Potential Energy and Cost Savings for Cooling Existing Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Van Geet, Otto

    2017-04-24

    NREL has developed a methodology to prioritize which data center cooling systems could be upgraded for better efficiency based on estimated cost savings and economics. The best efficiency results are in cool or dry climates where 'free' economizer or evaporative cooling can provide most of the data center cooling. Locations with a high cost of energy and facilities with high power usage effectiveness (PUE) are also good candidates for data center cooling system upgrades. In one case study of a major cable provider's data centers, most of the sites studied had opportunities for cost-effective cooling system upgrades with payback period of 5 years or less. If the cable provider invested in all opportunities for upgrades with payback periods of less than 15 years, it could save 27% on annual energy costs.

  16. A least cost energy analysis of US CO sub 2 reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Morris, S.C.; Lee, J.; Goldstein, G. (Brookhaven National Lab., Upton, NY (USA)); Solomon, B.D. (Environmental Protection Agency, Washington, DC (USA)); Hill, D. (Hill (Douglas), Huntington, NY (USA))

    1990-03-01

    Public policy debate on global climate change is increasingly focused on the cost of mitigating greenhouse gas emissions. Discussion in the US has centered on national energy policy and the desirability and cost of increased energy conversion efficiency and end-use conservation, and on shifting from high greenhouse gas emitting fuels to natural gas, renewable and nuclear-based energy sources. This paper overviews the US MARKAL model, a dynamic linear programming (LP) model of US energy supply and demand. Useful energy projections are specified exogenously to the model, which then determines the optimal energy supply that can meet the demand. We have updated MARKAL with currently available energy technology cost and market penetration data and have applied it to the CO{sub 2} reduction problem for the US. In addition, we have varied some key inputs to the model to test the sensitivity of the energy system to alternative assumptions and to overcome some of the key limitations of the input data. 27 refs., 10 figs., 5 tabs.

  17. Case studies of energy information systems and related technology: Operational practices, costs, and benefits

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Dewey, Jim

    2003-09-02

    Energy Information Systems (EIS), which can monitor and analyze building energy consumption and related data throughout the Internet, have been increasing in use over the last decade. Though EIS developers describe the capabilities, costs, and benefits of EIS, many of these descriptions are idealized and often insufficient for potential users to evaluate cost, benefit and operational usefulness. LBNL has conducted a series of case studies of existing EIS and related technology installations. This study explored the following questions: (1) How is the EIS used in day-to-day operation? (2) What are the costs and benefits of an EIS? (3) Where do the energy savings come from? This paper reviews the process of these technologies from installation through energy management practice. The study is based on interviews with operators and energy managers who use EIS. Analysis of energy data trended by EIS and utility bills was also conducted to measure the benefit. This paper explores common uses and findings to identify energy savings attributable to EIS, and discusses non-energy benefits as well. This paper also addresses technologies related to EIS that have been demonstrated and evaluated by LBNL.

  18. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Wang, Guangtao; Møller, H.B.

    2008-01-01

    oxidation to the perennial crops, however, the specific methane yield increases significantly and the ratio of energy output to input and of costs to benefit for the whole chain of biomass supply and conversion into biogas becomes higher than for corn. This will make the use of perennial crops as energy....... The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet...

  19. Levelized Cost of Energy Analysis of a Wind Power Generation System at Búrfell in Iceland

    Directory of Open Access Journals (Sweden)

    Birgir Freyr Ragnarsson

    2015-09-01

    Full Text Available Wind energy harnessing is a new energy production alternative in Iceland. Current installed wind power in Iceland sums to 1.8 MW, which in contrast is 0.1% of the country’s total electricity production. This article is dedicated to the exploration of the potential cost of wind energy production at Búrfell in the south of Iceland. A levelized cost of energy (LCOE approach was applied to the estimation of the potential cost. Weibull simulation is used to simulate wind data for calculations. A confirmation of the power law is done by comparing real data to calculated values. A modified Weibull simulation is verified by comparing results with actual on-site test wind turbines. A wind farm of 99MWis suggested for the site. Key results were the capacity factor (CF at Búrfell being 38.15% on average and that the LCOE for wind energy was estimated as 0.087–0.088 USD/kWh (assuming 10% weighted average cost of capital (WACC, which classifies Búrfell among the lowest LCOE sites for wind energy in Europe.

  20. Designing cost-effective seawater reverse osmosis system under optimal energy options

    Energy Technology Data Exchange (ETDEWEB)

    Gilau, Asmerom M.; Small, Mitchell J. [Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States)

    2008-04-15

    Today, three billion people around the world have no access to clean drinking water and about 1.76 billion people live in areas already facing a high degree of water stress. This paper analyzes the cost-effectiveness of a stand alone small-scale renewable energy-powered seawater reverse osmosis (SWRO) system for developing countries. In this paper, we have introduced a new methodology; an energy optimization model which simulates hourly power production from renewable energy sources. Applying the model using the wind and solar radiation conditions for Eritrea, East Africa, we have computed hourly water production for a two-stage SWRO system with a capacity of 35 m{sup 3}/day. According to our results, specific energy consumption is about 2.33 kW h/m{sup 3}, which is a lower value than that achieved in most of the previous designs. The use of a booster pump, energy recovery turbine and an appropriate membrane, allows the specific energy consumption to be decreased by about 70% compared to less efficient design without these features. The energy recovery turbine results in a reduction in the water cost of about 41%. Our results show that a wind-powered system is the least cost and a PV-powered system the most expensive, with finished water costs of about 0.50 and 1.00/m{sup 3}, respectively. By international standards, for example, in China, these values are considered economically feasible. Detailed simulations of the RO system design, energy options, and power, water, and life-cycle costs are presented. (author)

  1. DYNALIGHT DESKTOP: A GREENHOUSE CONTROL SYSTEM TO OPTIMIZE THE ENERGY COST-EFFICIENCY OF SUPPLEMENTARY LIGHTING

    DEFF Research Database (Denmark)

    Mærsk-Møller, Hans Martin; Kjær, Katrine Heinsvig; Ottosen, Carl-Otto;

    2016-01-01

    for energy and cost-efficient climate control strategies that do not compromise product quality. In this paper, we present a novel approach addressing dynamic control of supplemental light in greenhouses aiming to decrease electricity costs and energy consumption without loss in plant productivity. Our...... approach uses weather forecasts and electricity prices to compute energy and cost-efficient supplemental light plans, which fulfils the production goals of the grower. The approach is supported by a set of newly developed planning software, which interfaces with a greenhouse climate computer. The planning......In Northern Europe the production of ornamental pot plants in greenhouses requires use of supplemental light, as light is a restricting climatic factor for growth from late autumn until early spring. To make this production ecologically and economically sustainable there is an urgent need...

  2. Life cycle cost analysis of commercial buildings with energy efficient approach

    Directory of Open Access Journals (Sweden)

    Nilima N. Kale

    2016-09-01

    Full Text Available In any construction project, cost effectiveness plays a crucial role. The Life Cycle Cost (LCC analysis provides a method of determining entire cost of a structure over its expected life along with operational and maintenance cost. LCC can be improved by adopting alternative modern techniques without much alteration in the building. LCC effectiveness can be calculated at various stages of entire span of the building. Moreover this provides decision makers with the financial information necessary for maintaining, improving, and constructing facilities. Financial benefits associated with energy use can also be calculated using LCC analysis. In the present work, case study of two educational buildings has been considered. The LCC of these buildings has been calculated with existing condition and with proposed energy efficient approach (EEA using net present value method. A solar panel having minimum capacity as well as solar panel with desired capacity as per the requirements of the building has been suggested. The comparison of LCC of existing structure with proposed solar panel system shows that 4% of cost can be reduced in case of minimum capacity solar panel and 54% cost can be reduced for desired capacity solar panel system, along with other added advantages of solar energy.

  3. BIOMASS TO ENERGY IN THE SOUTHERN UNITED STATES: SUPPLY CHAIN AND DELIVERED COST

    Directory of Open Access Journals (Sweden)

    Ronalds W. Gonzalez

    2011-06-01

    Full Text Available Supply chain and delivered cost models for seven feedstocks (loblolly pine, Eucalyptus, natural hardwood, switchgrass, Miscanthus, sweet sorghum, and corn stover were built, simulating a supply of 453,597 dry tons per year to a biorefinery. Delivered cost of forest-based feedstocks ranged from $69 to $71 per dry ton. On the other hand, delivered cost of agricultural biomass ranged from $77.60 to $102.50 per dry ton. The total production area required for fast growing feedstocks was estimated as between 22,500 to 27,000 hectares, while the total production area for feedstocks with lower biomass productivity ranged from 101,200 to 202,300 hectares (corn stover and natural hardwood, respectively. Lower delivered cost per ton of carbohydrate and million BTU were found for loblolly pine, Eucalyptus, and natural hardwood. In addition, agricultural biomass had higher delivered costs for carbohydrate and energy value.

  4. The cost of reducing CO2 emissions - methodological approach, illustrated by the Danish energy plan

    DEFF Research Database (Denmark)

    Morthorst, P.E.

    1998-01-01

    available. One of the tools available for this purpose is the construction of cost-reduction curves, relating the marginal cost of CO2 reduction and the quantity of the reduced emission to specific technology options. This paper outlines different approaches for establishing cost-reduction curves for CO2...... those technological options that have the highest reduction potential and the lowest marginal costs, and vice versa. Based on the case of the Danish energy plan, the results of the analyses show that a number of reduction options with significant reduction potentials are available at relatively low...... marginal costs. Among others can be mentioned increased use of combined heat and power (CHP), substituting conventional coal-fired CHP plants with biomass ones and the development of offshore wind turbines: (C) 1998 Elsevier Science Ltd. All rights reserved....

  5. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  6. Minimizing Energy Cost in Electric Arc Furnace Steel Making by Optimal Control Designs

    Directory of Open Access Journals (Sweden)

    Er-wei Bai

    2014-01-01

    Full Text Available Production cost in steel industry is a challenge issue and energy optimization is an important part. This paper proposes an optimal control design aiming at minimizing the production cost of the electric arc furnace steel making. In particular, it is shown that with the structure of an electric arc furnace, the production cost which is a linear programming problem can be solved by the tools of linear quadratic regulation control design that not only provides an optimal solution but also is in a feedback form. Modeling and control designs are validated by the actual production data sets.

  7. Management of Energy Costs for Sme’s, Evidence From Kosova Economic Environment

    Directory of Open Access Journals (Sweden)

    Valon Kastrati

    2015-01-01

    Full Text Available This paper deals with issues of strategic management, particularly strategic planning of energy costs and their effect on the overall performance of businesses. It is based on empirical results of the original research survey Enterprise Surveys data for Republic of Kosova,. performed via questionnaire surveys by the World Bank in three rounds during years 2005, 2009 and 2013. The analyses presented in the paper were conducted on the third round sample of  organizations operating mostly in the SME sector in the Republic of Kosova.Among typical obstacles to the economic environment we found also the energy problem, specifically the power outages that increase further the costs of power supply for SME’s.  These phenomena not only create a state of turmoil and turbulence in the competitive environment and generate changes in market conditions, but require changes and development in organizations. In these circumstances organizations are forced to adapt costly solutions, like generators or other tools to guarantee  the customer satisfaction.Therefore to achieve any competitive advantage, organizations must take in consideration the current economic environment.The interdependence between the level of energy costs and enterprise performance criteria is examined with the use of some hypotheses. The results are commented and discussed.Keywords: energy costs, business strategy, performance criteria, questionnaire research,   

  8. Cost-Effectiveness of Home Energy Retrofits in Pre-Code Vintage Homes in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Fairey, P.; Parker, D.

    2012-11-01

    This analytical study examines the opportunities for cost-effective energy efficiency and renewable energy retrofits in residential archetypes constructed prior to 1980 (Pre-Code) in fourteen U.S. cities. These fourteen cities are representative of each of the International Energy Conservation Code (IECC) climate zones in the contiguous U.S. The analysis is conducted using an in-house version of EnergyGauge USA v.2.8.05 named CostOpt that has been programmed to perform iterative, incremental economic optimization on a large list of residential energy efficiency and renewable energy retrofit measures. The principle objectives of the study are as follows: to determine the opportunities for cost effective source energy reductions in this large cohort of existing residential building stock as a function of local climate and energy costs; and to examine how retrofit financing alternatives impact the source energy reductions that are cost effectively achievable.

  9. Energy Cost of Avoiding Pressure Oscillations in a Discrete Fluid Power Force System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2015-01-01

    -known. This paper builds upon theoretical findings on how shaping of the valve opening may reduce the cylinder pressure oscillations. The current paper extents the work by implementing the valve opening characteristics reducing the pressure oscillations on a full scale power take-off test-bench for wave energy...... converters. Further the energy losses introduced during the shifting period is investigated and compared for two valve opening algorithms. The investigation of the energy loss is utilised to quantify the importance of a fast valve switching and the energy cost of reducing pressure oscillations. The paper...

  10. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Wang, Guangtao; Møller, Henrik B.

    2008-01-01

    Perennial crops need far less energy to plant, require less fertilizer and pesticides, and show a lower negative environmental impact compared with annual crops like for example corn. This makes the cultivation of perennial crops as energy crops more sustainable than the use of annual crops....... The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet...... oxidation to the perennial crops, however, the specific methane yield increases significantly and the ratio of energy output to input and of costs to benefit for the whole chain of biomass supply and conversion into biogas becomes higher than for corn. This will make the use of perennial crops as energy...

  11. Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Hummon, M.

    2012-11-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  12. Low-cost nanomaterials toward greener and more efficient energy applications

    CERN Document Server

    Lin, Zhiqun

    2014-01-01

    This book will cover the most recent progress on the use of low-cost nanomaterials and development of low-cost/large scale processing techniques for greener and more efficient energy related applications, including but not limited to solar cells, energy storage, fuel cells, hydrogen generation, biofuels, etc. Leading researchers will be invited to author chapters in the field with their expertise. Each chapter will provide general introduction to a specific topic, current status of research and development, research challenges and outlook for future direction of research. This book aims

  13. A Novel Cost Based Model for Energy Consumption in Cloud Computing

    Science.gov (United States)

    Horri, A.; Dastghaibyfard, Gh.

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. PMID:25705716

  14. A Novel Cost Based Model for Energy Consumption in Cloud Computing

    Directory of Open Access Journals (Sweden)

    A. Horri

    2015-01-01

    Full Text Available Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.

  15. A novel cost based model for energy consumption in cloud computing.

    Science.gov (United States)

    Horri, A; Dastghaibyfard, Gh

    2015-01-01

    Cloud data centers consume enormous amounts of electrical energy. To support green cloud computing, providers also need to minimize cloud infrastructure energy consumption while conducting the QoS. In this study, for cloud environments an energy consumption model is proposed for time-shared policy in virtualization layer. The cost and energy usage of time-shared policy were modeled in the CloudSim simulator based upon the results obtained from the real system and then proposed model was evaluated by different scenarios. In the proposed model, the cache interference costs were considered. These costs were based upon the size of data. The proposed model was implemented in the CloudSim simulator and the related simulation results indicate that the energy consumption may be considerable and that it can vary with different parameters such as the quantum parameter, data size, and the number of VMs on a host. Measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment. Also, measured results validate the model and demonstrate that there is a tradeoff between energy consumption and QoS in the cloud environment.

  16. Electric energy costs and firm productivity in the countries of the Pacific Alliance

    Science.gov (United States)

    Camacho, Anamaria

    This paper explores the relation between energy as an input of production and firm-level productivity for Chile, Colombia, Mexico and Peru, all country members of the Pacific Alliance economic bloc. The empirical literature, has explored the impact of infrastructure on productivity; however there is limited analysis on the impact of particular infrastructure variables, such as energy, on productivity at the firm level in Latin America. Therefore, this study conducts a quantitative assessment of the responsiveness of productivity to energy cost and quality for Chile, Colombia, Mexico and Peru. For this, the empirical strategy is to estimate a Cobb-Douglas production function using the World Bank's Enterprise Survey to obtain comparable measures of output and inputs of production. This approach provides estimates of input factor elasticities for all of the factors of production including energy. The results indicate that electric energy costs explain cross-country differences in firm level productivity. For the particular case of Colombia, the country exhibits the lowest capital and labor productivity of the PA, and firm output is highly responsive to changes in energy use. As a result, the evidence suggests that policies reducing electric energy costs are an efficient alternative to increase firm performance, particularly in the case of Colombia.

  17. Ankle replacement

    Science.gov (United States)

    Ankle arthroplasty - total; Total ankle arthroplasty; Endoprosthetic ankle replacement; Ankle surgery ... You may not be able to have a total ankle replacement if you have had ankle joint infections in ...

  18. Knee Replacement

    Science.gov (United States)

    Knee replacement is surgery for people with severe knee damage. Knee replacement can relieve pain and allow you to ... Your doctor may recommend it if you have knee pain and medicine and other treatments are not ...

  19. Energy Efficiency and Least-Cost Planning: The Best Way to Save Money and Reduce Energy Use in Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Mowris, Robert J.

    1990-05-21

    If the 500 MW geothermal project on the Big Island of Hawaii is developed as planned, the Wao Kele O Puna rain forest will be severely damaged or destroyed. If this happens the State will lose one of its most precious resources. It would be tragic for this to happen, since on a least-cost basis, the geothermal project does not make economic sense. Improving energy efficiency in the commercial and residential sectors of Hawaii can save about 500 MW of power at a cost of $700 million.

  20. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2009-07-16

    The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which

  1. Cost-optimal levels of minimum energy performance requirements in the Danish Building Regulations

    Energy Technology Data Exchange (ETDEWEB)

    Aggerholm, S.

    2013-09-15

    The purpose of the report is to analyse the cost optimality of the energy requirements in the Danish Building Regulations 2010, BR10 to new building and to existing buildings undergoing major renovation. The energy requirements in the Danish Building Regulations have by tradition always been based on the cost and benefits related to the private economical or financial perspective. Macro economical calculations have in the past only been made in addition. The cost optimum used in this report is thus based on the financial perspective. Due to the high energy taxes in Denmark there is a significant difference between the consumer price and the macro economical for energy. Energy taxes are also paid by commercial consumers when the energy is used for building operation e.g. heating, lighting, ventilation etc. In relation to the new housing examples the present minimum energy requirements in BR 10 all shows gaps that are negative with a deviation of up till 16 % from the point of cost optimality. With the planned tightening of the requirements to new houses in 2015 and in 2020, the energy requirements can be expected to be tighter than the cost optimal point, if the costs for the needed improvements don't decrease correspondingly. In relation to the new office building there is a gap of 31 % to the point of cost optimality in relation to the 2010 requirement. In relation to the 2015 and 2020 requirements there are negative gaps to the point of cost optimality based on today's prices. If the gaps for all the new buildings are weighted to an average based on mix of building types and heat supply for new buildings in Denmark there is a gap of 3 % in average for the new building. The excessive tightness with today's prices is 34 % in relation to the 2015 requirement and 49 % in relation to the 2020 requirement. The component requirement to elements in the building envelope and to installations in existing buildings adds up to significant energy efficiency

  2. Modulation of fibroblast growth factor 19 expression by bile acids, meal replacement and energy drinks, milk, and coffee.

    Directory of Open Access Journals (Sweden)

    Amanda M Styer

    Full Text Available BACKGROUND: The enterohepatic pathway involving the fibroblast growth factor 19 (FGF19 and bile acids (BA has been linked with the etiology and remission of type 2 diabetes (T2D following Roux-en-Y gastric bypass (RYGB surgery. Specifically, diabetic patients had lower FGF19 circulating levels but postoperative FGF19 and BA levels were higher in diabetic patients that experience remission of T2D, as compared to non-diabetic patients and diabetic patients that do not experience remission. It has been proposed that this may be due to the direct flow of digestate-free bile acids into the ileum benefiting mostly T2D patients without severe diabetes. METHODS/RESULTS: We used a human colorectal cell line (LS174T that endogenously expresses FGF19, real time PCR, and Elisas for precise quantitation of FGF19 mRNA and secreted protein levels. We report here that BA and fractions of BA stimulated FGF19 in vitro but this effect was partially blocked when BA were pre-incubated with a lipoprotein mix which emulates digested food. In addition, we show that FGF19 mRNA was stimulated by meal replacement drinks (Ensure, Glucerna, SlimFast, non-fat milk, and coffee which has been linked with reduced risk for developing diabetes. Pure caffeine and the 5-hour Energy drink, on the other hand, decreased FGF19 mRNA. CONCLUSIONS: In summary, FGF19 expression in vitro is modifiable by popular drinks suggesting that such approaches could potentially be used for modulating FGF19 expression in humans.

  3. Increasing durability and lowering the overall cost of wave energy converters using Ultra High Performance Concrete

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Damkilde, Lars; Hansen, Niels A.

    2013-01-01

    Lowering the overall cost of wave energy converters is a necessity for creating a feasible solution to renewable energy. The design of wave energy converters is in general based on traditional steel design methods. In the design of steel structures subjected to significant dynamical loading...... and a harsh environment issues such fatigue resistance and durability are of major concern. The welded joints in steel structures significantly reduce the fatigue resistance and give a low utilization ratio of the steel material. Furthermore is coating of all exposed steel surfaces a necessity to secure...... as primary material in the design of wave energy converters is a feasible and promising solution, which reduce the overall cost of the structure significantly. This will be illustrated by means of a feasibility study carried out on the Wavestar project, where special attention is pointed at the arm and float...

  4. Guide to reducing energy use. budget costs. Volume II. Local energy management program

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, S O; Wood, E S; Guenther, S; Graves, T

    1979-10-01

    Information is presented to aid communities tailor an energy conservation program specifically to themselves. Existing and new buildings, procurement, employee transportation programs, street lighting systems, and energy resource recovery are discussed. Examples are given on what can and has been done in communities. (MCW)

  5. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    Science.gov (United States)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion

  6. Voluntary running in deer mice: speed, distance, energy costs and temperature effects.

    Science.gov (United States)

    Chappell, Mark A; Garland, Theodore; Rezende, Enrico L; Gomes, Fernando R

    2004-10-01

    The energetics of terrestrial locomotion are of considerable interest to ecologists and physiologists, but nearly all of our current knowledge comes from animals undergoing forced exercise. To explore patterns of energy use and behavior during voluntary exercise, we developed methods allowing nearly continuous measurements of metabolic rates in freely behaving small mammals, with high temporal resolution over periods of several days. We used this approach to examine relationships between ambient temperature (Ta), locomotor behavior and energy costs in the deer mouse, a small mammal that routinely encounters a large range of temperatures in its natural habitat. We tested for individual consistency in running behavior and metabolic traits, and determined how locomotor costs vary with speed and Ta. Because of the importance of thermoregulatory costs in small mammals, we checked for substitution of exercise heat for thermostatic heat production at Ta below the thermal neutral zone and determined the fraction of the daily energy budget comprising exercise costs. Locomotor behavior was highly variable among individuals but had high repeatability, at least over short intervals. We found few temperature-related changes in speed or distance run, but Ta strongly affected energy costs. Partial substitution of exercise heat for thermogenic heat occurred at low Ta. This reduced energy expenditure during low-temperature running by 23-37%, but running costs comprised a fairly minor fraction of the energy budget, so the daily energy savings via substitution were much smaller. Deer mice did not adjust running speed to maximize metabolic economy, as they seldom used the high speeds that provide the lowest cost of transport. The highest voluntary speeds (4-5 km h(-1)) were almost always below the predicted maximal aerobic speed, and were much less than the species' maximal sprint speed. Maximum voluntarily attained rates of oxygen consumption (VO2) were highest at low Ta, but rarely

  7. Cost and size estimates for an electrochemical bulk energy storage concept

    Science.gov (United States)

    Warshay, M.; Wright, L. O.

    1975-01-01

    Preliminary capital cost and size estimates were made for an electrochemical bulk energy storage concept for a redox-flow-cell system. Preliminary calculations showed that the redox-flow-cell system has great promise as a bulk energy storage system for power load leveling. The size of the system was estimated to be less than 2 percent of the size of a comparable pumped hydroelectric storage plant.

  8. Reduced emissions and lower costs: combining renewable energy and energy efficiency into a sustainable energy portfolio standard

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Marilyn A.; York, Dan; Kushler, Martin

    2007-05-15

    Combining renewable energy and energy efficiency in Sustainable Energy Portfolio Standard (SEPS) has emerged as a key state and national policy option to achieve greater levels of sustainable energy resources with maximum economic efficiency and equity. One advantage of the SEPS relative to a renewable portfolio standard or a stand-alone energy efficiency resource standard is enhanced flexibility and broader options for meeting targets. (author)

  9. Energy benchmarking of commercial buildings: a low-cost pathway toward urban sustainability

    Science.gov (United States)

    Cox, Matt; Brown, Marilyn A.; Sun, Xiaojing

    2013-09-01

    US cities are beginning to experiment with a regulatory approach to address information failures in the real estate market by mandating the energy benchmarking of commercial buildings. Understanding how a commercial building uses energy has many benefits; for example, it helps building owners and tenants identify poor-performing buildings and subsystems and it enables high-performing buildings to achieve greater occupancy rates, rents, and property values. This paper estimates the possible impacts of a national energy benchmarking mandate through analysis chiefly utilizing the Georgia Tech version of the National Energy Modeling System (GT-NEMS). Correcting input discount rates results in a 4.0% reduction in projected energy consumption for seven major classes of equipment relative to the reference case forecast in 2020, rising to 8.7% in 2035. Thus, the official US energy forecasts appear to overestimate future energy consumption by underestimating investments in energy-efficient equipment. Further discount rate reductions spurred by benchmarking policies yield another 1.3-1.4% in energy savings in 2020, increasing to 2.2-2.4% in 2035. Benchmarking would increase the purchase of energy-efficient equipment, reducing energy bills, CO2 emissions, and conventional air pollution. Achieving comparable CO2 savings would require more than tripling existing US solar capacity. Our analysis suggests that nearly 90% of the energy saved by a national benchmarking policy would benefit metropolitan areas, and the policy’s benefits would outweigh its costs, both to the private sector and society broadly.

  10. Implications of the international reduction pledges on long-term energy system changes and costs in China and India

    NARCIS (Netherlands)

    Lucas, P.L.; Shukla, P.R.; Chen, W.; van Ruijven, B.J.; Dhar, S.; den Elzen, M.G.J.; van Vuuren, D.P.

    2013-01-01

    This paper analyses the impact of postponing global mitigation action on abatement costs and energy systems changes in China and India. It compares energy-system changes and mitigation costs from a global and two national energy-system models under two global emission pathways with medium likelihood

  11. Changes in Energy Cost and Total External Work of Muscles in Elite Race Walkers Walking at Different Speeds

    Directory of Open Access Journals (Sweden)

    Chwała Wiesław

    2014-12-01

    Full Text Available The aim of the study was to assess energy cost and total external work (total energy depending on the speed of race walking. Another objective was to determine the contribution of external work to total energy cost of walking at technical, threshold and racing speed in elite competitive race walkers.

  12. Department of Defense Energy and Logistics: Implications of Historic and Future Cost, Risk, and Capability Analysis

    Science.gov (United States)

    Tisa, Paul C.

    Every year the DoD spends billions satisfying its large petroleum demand. This spending is highly sensitive to uncontrollable and poorly understood market forces. Additionally, while some stakeholders may not prioritize its monetary cost and risk, energy is fundamentally coupled to other critical factors. Energy, operational capability, and logistics are heavily intertwined and dependent on uncertain security environment and technology futures. These components and their relationships are less understood. Without better characterization, future capabilities may be significantly limited by present-day acquisition decisions. One attempt to demonstrate these costs and risks to decision makers has been through a metric known as the Fully Burdened Cost of Energy (FBCE). FBCE is defined as the commodity price for fuel plus many of these hidden costs. The metric encouraged a valuable conversation and is still required by law. However, most FBCE development stopped before the lessons from that conversation were incorporated. Current implementation is easy to employ but creates little value. Properly characterizing the costs and risks of energy and putting them in a useful tradespace requires a new framework. This research aims to highlight energy's complex role in many aspects of military operations, the critical need to incorporate it in decisions, and a novel framework to do so. It is broken into five parts. The first describes the motivation behind FBCE, the limits of current implementation, and outlines a new framework that aids decisions. Respectively, the second, third, and fourth present a historic analysis of the connections between military capabilities and energy, analyze the recent evolution of this conversation within the DoD, and pull the historic analysis into a revised framework. The final part quantifies the potential impacts of deeply uncertain futures and technological development and introduces an expanded framework that brings capability, energy, and

  13. Hydrologic Change during the Colonial Era of the United States: Beavers and the Energy Cost of Impoundments (Invited)

    Science.gov (United States)

    Green, M. B.; Bain, D. J.; Arrigo, J. S.; Duncan, J. M.; Kumar, S.; Parolari, A.; Salant, N.; Vorosmarty, C. J.; Aloysius, N. R.; Bray, E. N.; Ruffing, C. M.; Witherell, B. B.

    2009-12-01

    Europeans colonized North America in the early 17th century with intentions ranging between long-term inhabitation and quick extraction of resources for economic gain in Europe. Whatever the intentions, the colonists relied on the landscape for resources resulting in dramatic change to the forest and fur-bearing mammal population. We demonstrate that initial exploitation of North American forest and furs caused a substantial decrease in mean water residence time (τ) between 1600 and 1800 A.D. That loss, which regionally changed from 51 to 41 days, contrasts with conventional wisdom that humans tend to diminish variability in water resources by increasing storage capacity and thus increasing τ. The loss of τ resulted from over-hunted beaver for the hat market in Europe. Analysis suggests that colonial era demographics and economics did not allow human resource allocation to impoundment construction on a level matching the historic beaver effort. However, the τ appears to have regionally increased during the 19th century, suggesting that humans eventually began replacing the water storage lost with the beaver. The analysis highlights the energy cost of impounding water, which is likely to continue to be an important factor given the increasing need for stable water resources and finite energy resources.

  14. Barriers to Building Energy Efficiency (BEE) promotion: A transaction costs perspective

    Science.gov (United States)

    Qian Kun, Queena

    Worldwide, buildings account for a surprisingly high 40% of global energy consumption, and the resulting carbon footprint significantly exceeds that of all forms of transportation combined. Large and attractive opportunities exist to reduce buildings' energy use at lower costs and higher returns than in other sectors. This thesis analyzes the concerns of the market stakeholders, mainly real estate developers and end-users, in terms of transaction costs as they make decisions about investing in Building Energy Efficiency (BEE). It provides a detailed analysis of the current situation and future prospects for BEE adoption by the market's stakeholders. It delineates the market and lays out the economic and institutional barriers to the large-scale deployment of energy-efficient building techniques. The aim of this research is to investigate the barriers raised by transaction costs that hinder market stakeholders from investing in BEES. It explains interactions among stakeholders in general and in the specific case of Hong Kong as they consider transaction costs. It focuses on the influence of transaction costs on the decision-making of the stakeholders during the entire process of real estate development. The objectives are: 1) To establish an analytical framework for understanding the barriers to BEE investment with consideration of transaction costs; 2) To build a theoretical game model of decision making among the BEE market stakeholders; 3) To study the empirical data from questionnaire surveys of building designers and from focused interviews with real estate developers in Hong Kong; 4) To triangulate the study's empirical findings with those of the theoretical model and analytical framework. The study shows that a coherent institutional framework needs to be established to ensure that the design and implementation of BEE policies acknowledge the concerns of market stakeholders by taking transaction costs into consideration. Regulatory and incentive options

  15. Improved cost of energy comparison of permanent magnet generators for large offshore wind turbines

    NARCIS (Netherlands)

    Hart, K.; McDonald, A.; Polinder, H.; Corr, E.; Carroll, J.

    2014-01-01

    This paper investigates geared and direct-drive permanent magnet generators for a typical offshore wind turbine, providing a detailed comparison of various wind turbine drivetrain configurations in order to minimise the Cost of Energy. The permanent magnet generator topologies considered include a d

  16. CFD simulation for reduced energy costs in tubular photobioreactors using wall turbulence promoters

    NARCIS (Netherlands)

    Gomez Perez, Cesar; Espinosa, J.; Montenegro Ruiz, L.C.; Boxtel, van A.J.B.

    2015-01-01

    Tubular photobioreactors (PBR) have great potential for microalgae cultivation due to its high productivity compared with open ponds. However, the energy uptake for fluid circulation and mixing is significant, impacting the operation and production costs. In this work, we investigate by CFD simulati

  17. Improved cost of energy comparison of permanent magnet generators for large offshore wind turbines

    NARCIS (Netherlands)

    Hart, K.; McDonald, A.; Polinder, H.; Corr, E.; Carroll, J.

    2014-01-01

    This paper investigates geared and direct-drive permanent magnet generators for a typical offshore wind turbine, providing a detailed comparison of various wind turbine drivetrain configurations in order to minimise the Cost of Energy. The permanent magnet generator topologies considered include a

  18. A note on the energy-efficiency investments of an expected cost minimizer

    NARCIS (Netherlands)

    Kooreman, P.; Steerneman, A.G.M.

    1998-01-01

    This paper analyzes a consumer's choice between a high-efficiency and a low-efficiency version of an energy-using durable when the expected lifetimes of the two versions differ. A (small) difference in expected lifetimes may induce entirely different implications for the behavior of st cost minimizi

  19. Photovoltaic Electricity for Sustainable Building. Efficiency and Energy Cost Reduction for Isolated DC Microgrid

    Directory of Open Access Journals (Sweden)

    Manuela Sechilariu

    2015-07-01

    Full Text Available In the context of sustainable buildings, this paper investigates power flow management for an isolated DC microgrid and focuses on efficiency and energy cost reduction by optimal scheduling. Aiming at high efficiency, the local produced power has to be used where, when, and how it is generated. Thus, based on photovoltaic sources, storage, and a biofuel generator, the proposed DC microgrid is coupled with the DC distribution network of the building. The DC bus distribution maximizes the efficiency of the overall production-consumption system by avoiding some energy conversion losses and absence of reactive power. The isolated DC microgrid aims to minimize the total energy cost and thus, based on forecasting data, a cost function is formulated. Using a mixed integer linear programming optimization, the optimal power flow scheduling is obtained which leads to an optimization-based strategy for real-time power balancing. Three experimental tests, operated under different meteorological conditions, validate the feasibility of the proposed control and demonstrate the problem formulation of minimizing total energy cost.

  20. Predictors of energy cost during stair ascent and descent in individuals with chronic stroke.

    Science.gov (United States)

    Polese, Janaine Cunha; Scianni, Aline Alvim; Teixeira-Salmela, Luci Fuscaldi

    2015-12-01

    [Purpose] This study aimed to determine which clinical measures of walking performance and lower limb muscle strength would predict energy cost during stair ascent and descent in community-dwelling individuals with stroke. [Subjects and Methods] Regression analysis of cross-sectional data from 55 individuals between one and five years post-stroke was used to investigate the measures of walking (speed and distance covered during the 6-minute walk test [6MWT]), and strength of the paretic knee extensor and ankle plantar flexor muscles would predict energy cost during stair ascent and descent. [Results] Three predictors (habitual walking speed, distance covered during the 6MWT, and strength of the paretic knee extensor muscles) were kept in the model. Habitual walking speed alone explained 47% of the variance in energy cost during stair ascent and descent. When the strength of the paretic knee extensor muscles was included in the model, the explained variance increased to 53%. By adding the distance covered during the 6MWT, the variance increased to 58%. [Conclusion] Habitual walking speed, distance covered during the 6MWT, and strength of the paretic knee extensor muscles were significant predictors of energy cost during stair ascent and descent in individuals with mild walking limitations.

  1. The effect of ankle foot orthosis stiffness on the energy cost of walking: A simulation study

    NARCIS (Netherlands)

    Bregman, D.J.J.; Van der Krogt, M.M.; De Groot, V.; Harlaar, J.; Wisse, M.; Collins, S.H.

    2011-01-01

    Background In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot Ortho

  2. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  3. Long Distance Bioenergy Logistics: An assessment of costs and energy consumption for various biomass transport chains

    NARCIS (Netherlands)

    Suurs, R.A.A.

    2002-01-01

    This study gives an analysis of costs and energy consumption, associated with long distance bioenergy transport systems. In order to create the possibility of obtaining an insight in the system’s key factors, a model has been developed, taking into account different production systems,

  4. CFD simulation for reduced energy costs in tubular photobioreactors using wall turbulence promoters

    NARCIS (Netherlands)

    Gomez Perez, Cesar; Espinosa, J.; Montenegro Ruiz, L.C.; Boxtel, van A.J.B.

    2015-01-01

    Tubular photobioreactors (PBR) have great potential for microalgae cultivation due to its high productivity compared with open ponds. However, the energy uptake for fluid circulation and mixing is significant, impacting the operation and production costs. In this work, we investigate by CFD simulati

  5. Planning manual for energy resource development on Indian lands. Volume I. Benefit--cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    Section II follows a brief introduction and is entitled ''Benefit-Cost Analysis Framework.'' The analytical framework deals with two major steps involved in assessing the pros and cons of energy resource development (or any other type of development). The first is to identify and describe the overall tribal resource planning and decision process. The second is to develop a detailed methodological approach to the assessment of the benefits and costs of energy development alternatives within the context of the tribe's overall planning process. Sections III, IV, and V present the application of the benefit-cost analysis methodology to coal; oil and gas; and uranium, oil shale, and geothermal development, respectively. The methodology creates hypothetical examples that illustrate realistic development opportunities for the majority of tribes that have significant reserves of one or more of the resources that may be economic to develop.

  6. Solar energy for process heat: Design/cost studies of four industrial retrofit applications

    Science.gov (United States)

    French, R. L.; Bartera, R. E.

    1978-01-01

    Five specific California plants with potentially attractive solar applications were identified in a process heat survey. These five plants were visited, process requirements evaluated, and conceptual solar system designs were generated. Four DOE (ERDA) sponsored solar energy system demonstration projects were also reviewed and compared to the design/cost cases included in this report. In four of the five cases investigated, retrofit installations providing significant amounts of thermal energy were found to be feasible. The fifth was rejected because of the condition of the building involved, but the process (soap making) appears to be an attractive potential solar application. Costs, however, tend to be high. Several potential areas for cost reduction were identified including larger collector modules and higher duty cycles.

  7. GIS to support cost-effective decisions on renewable sources applications for low temperature geothermal energy

    CERN Document Server

    Gemelli, Alberto; Diamantini, Claudia; Longhi, Sauro

    2013-01-01

    Through the results of a developed case study of information system for low temperature geothermal energy, GIS to Support Cost-effective Decisions on Renewable Sources addresses the issue of the use of Geographic Information Systems (GIS) in evaluating cost-effectiveness of renewable resource exploitation regional scale. Focusing on the design of a Decision Support System, a process is presented aimed to transform geographic data into knowledge useful for analysis and decision-making on the economic exploitation of geothermal energy. This detailed description includes a literature review and technical issues related to data collection, data mining, decision analysis for the informative system developed for the case study. A multi-disciplinary approach to GIS design is presented which is also an innovative example of fusion of georeferenced data acquired from multiple sources including remote sensing, networks of sensors and socio-economic censuses. GIS to Support Cost-effective Decisions on Renewable Sources ...

  8. Energy Security: The Pathway to a Cost-Effective, Efficient, and Reliable Energy Future

    Science.gov (United States)

    2010-03-12

    reducing its dependence on oil. Many of these sources are already proven, or hold great promise. NUCLEAR ENERGY Chernobyl . Three-Mile Island. Any...energy sector, even though deaths from the Chernobyl "disaster" have yet to reach fifty. 96 Facts about the industry, and not nervous innuendo spurred by...both government and industry should look to expand where economically and socially feasible. BIOMASS Biomass uses plant, animal manure, or

  9. Utilizing an Energy Management System with Distributed Resources to Manage Critical Loads and Reduce Energy Costs

    Science.gov (United States)

    2014-09-01

    popularity of electric cars and the announcement that car manufacturer Tesla is going to build a large factory devoted to building Li-ion batteries...known for their use in electric and hybrid cars , but due to their high energy density they may become attractive as an energy storage option when...their price point comes down. A company called SolarCity has partnered with Tesla batteries and is advertising 6–8 year payback on investment for

  10. Fasting heat production and energy cost of standing activity in veal calves.

    Science.gov (United States)

    Labussière, Etienne; Dubois, Serge; van Milgen, Jaap; Bertrand, Gérard; Noblet, Jean

    2008-12-01

    Metabolic body size of veal calves is still calculated by using the 0.75 exponent and no data were available to determine energy cost of physical activity during the whole fattening period. Data from two trials focusing on protein and/or energy requirements were used to determine the coefficient of metabolic body size and the energy cost of standing activity in male Prim'Holstein calves. Total heat production was measured by indirect calorimetry in ninety-five calves weighing 60-265 kg and was divided using a modelling approach between components related to the BMR, physical activity and feed intake. The calculation of the energy cost of standing activity was based on quantifying the physical activity by using force sensors on which the metabolism cage was placed and on the interruption of an IR beam allowing the determination of standing or lying position of the calf. The best exponent relating zero activity fasting heat production (FHP 0) to metabolic body size was 0.85, which differed significantly from the traditionally used 0.75. Per additional kJ metabolizable energy (ME) intake, FHP 0 increased by 0.28 kJ; at a conventional daily 650 kJ/kg body weight (BW)0.85 ME intake, daily FHP 0 averaged 310 kJ/kg BW 0.85. Calves stood up sixteen times per day; total duration of standing increased from 5.1 to 6.4 h per day as animals became older. The hourly energy cost of standing activity was proportional to BW 0.65 and was estimated as 12.4 kJ/kg BW 0.65. These estimates allow for a better estimation of the maintenance energy requirements in veal calves.

  11. Energy cost of stair climbing and descending on the college alumnus questionnaire.

    Science.gov (United States)

    Bassett, D R; Vachon, J A; Kirkland, A O; Howley, E T; Duncan, G E; Johnson, K R

    1997-09-01

    In calculating the physical activity index (PAI) on the college alumnus questionnaire, it is assumed that 8 kcal are expended for every 20 steps climbed. This value is equal to an energy cost of 0.40 kcal.step-1. Since it is assumed that subjects climb and descend an equal number of stairs, the total value reflects the energy cost of stepping up (estimated at 0.30 kcal.step-1) and stepping down (estimated at 0.10 kcal.step-1). However, these values appear to be based on theoretical calculations rather than empirical observation. The purpose of this study was to quantify the energy cost of stair climbing and stair descending by measuring oxygen uptake. Twenty subjects performed continuous stair-climbing and stair-descending on an escalator at a stepping rate of 70 step.min-1. Heart rate was monitored by telemetry, and oxygen uptake was measured by the Douglas bag technique from 5 to 7 min. Results showed that the gross energy cost of stair climbing is 8.6 METs, and that of stair descending is 2.9 METs. Thus, for a 70-kg person the gross caloric costs of ascending stairs (0.15 kcal.step-1) and descending stairs (0.05 kcal.step-1) are one-half of the values previously assumed. In conclusion, the algorithm for calculating PAI on the college alumnus questionnaire should be modified to reflect a total cost of 0.20 kcal for going up and down one step. Even more precise estimates can be obtained by adjusting for body weight (going up and down one flight of stairs requires 1.63 MET.min).

  12. How Expensive Is Expensive Enough? Opportunities for Cost Reductions in Offshore Wind Energy Logistics

    DEFF Research Database (Denmark)

    Poulsen, Thomas; Hasager, Charlotte Bay

    2016-01-01

    This paper reveals that logistics may conservatively amount to 18% of the levelized cost of energy for offshore wind farms. This is the key finding from an extensive case study carried out within the organization of the world’s leading offshore wind farm developer and operator. The case study aimed...... to, and produced, a number of possible opportunities for offshore wind cost reductions through logistics innovation; however, within the case study company, no company-wide logistics organization existed to focus horizontally on reducing logistics costs in general. Logistics was not well defined...... within the case study company, and a logistics strategy did not exist. With full life-cycle costs of offshore wind farms still high enough to present a political challenge within the European Union in terms of legislation to ensure offshore wind diffusion beyond 2020, our research presents logistics...

  13. Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider

    CERN Document Server

    Lebrun, Philippe

    2010-01-01

    High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-of markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

  14. Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-04-01

    As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces.

  15. Utilization of biomass in the U.S. for the production of ethanol fuel as a gasoline replacement. I - Terrestrial resource potential. II - Energy requirements, with emphasis on lignocellulosic conversion

    Science.gov (United States)

    Ferchak, J. D.; Pye, E. K.

    The paper assesses the biomass resource represented by starch derived from feed corn, surplus and distressed grain, and high-yield sugar crops planted on set-aside land in the U.S. It is determined that the quantity of ethanol produced may be sufficient to replace between 5 to 27% of present gasoline requirements. Utilization of novel cellulose conversion technology may in addition provide fermentable sugars from municipal, agricultural and forest wastes, and ultimately from highly productive silvicultural operations. The potential additional yield of ethanol from lignocellulosic biomass appears to be well in excess of liquid fuel requirements of an enhanced-efficiency transport sector at present mileage demands. No conflict with food production would be entailed. A net-energy assessment is made for lignocellulosic biomass feedstocks' conversion to ethanol and an almost 10:1 energy yield/energy cost ratio determined. It is also found that novel cellulose pretreatment and enzymatic conversion methods still under development may significantly improve even that figure, and that both chemical-feedstocks and energy-yielding byproducts such as carbon dioxide, biogas and lignin make ethanol production potentially energy self-sufficient. A final high-efficiency production approach incorporates site-optimized, nonpolluting energy sources such as solar and geothermal.

  16. A cost optimization model for 100% renewable residential energy supply systems

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2012-01-01

    for the interdependencies between the different supply technologies as well as the construction energy of the installations, consumption profiles and on-site energy resource availability. This paper aims at developing such a model for the optimal sizing of renewable energy supply systems (RES) for residential Net ZEB......'s involving on-site production of heat and electricity in combination with electricity exchanged with the public grid. The model is based on linear programming and determines the optimal capacities for each relevant supply technology in terms of the overall system costs. It has been successfully applied...

  17. Some Simple Arguments about Cost Externalization and its Relevance to the Price of Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.; Winfree, R.

    1999-09-27

    The primary goal of fusion energy research is to develop a source of energy that is less harmful to the environment than are the present sources. A concern often expressed by critics of fusion research is that fusion energy will never be economically competitive with fossil fuels, which in 1997 provided 75% of the world's energy. And in fact, studies of projected fusion electricity generation generally project fusion costs to be higher than those of conventional methods. Yet it is widely agreed that the environmental costs of fossil fuel use are high. Because these costs aren't included in the market price, and furthermore because many governments subsidize fossil fuel production, fossil fuels seem less expensive than they really are. Here we review some simple arguments about cost externalization which provide a useful background for discussion of energy prices. The collectively self-destructive behavior that is the root of many environmental problems, including fossil fuel use, was termed ''the tragedy of the commons'' by the biologist G. Hardin. Hardin's metaphor is that of a grazing commons that is open to all. Each herdsman, in deciding whether to add a cow to his herd, compares the benefit of doing so, which accrues to him alone, to the cost, which is shared by all the herdsmen using the commons, and therefore adds his cow. In this way individually rational behavior leads to the collective destruction of the shared resource. As Hardin pointed out, pollution is one kind of tragedy of the commons. CO{sub 2} emissions and global warming are in this sense classic tragedies.

  18. Cost of protein synthesis and energy allocation during development of antarctic sea urchin embryos and larvae.

    Science.gov (United States)

    Pace, Douglas A; Manahan, Donal T

    2007-04-01

    Cold environments represent a substantial volume of the biosphere. To study developmental physiology in subzero seawater temperatures typically found in the Southern Ocean, rates and costs of protein synthesis were measured in embryos and larvae of Sterechinus neumayeri, the Antarctic sea urchin. Our analysis of the "cost of living" in extreme cold for this species shows (1) that cost of protein synthesis is strikingly low during development, at 0.41 +/- 0.05 J (mg protein synthesized)(-1) (n = 16); (2) that synthesis cost is fixed and independent of synthesis rate; and (3) that a low synthesis cost permits high rates of protein turnover at -1 degrees C, at rates comparable to those of temperate species of sea urchin embryos developing at 15 degrees C. With a low synthesis cost, even at the highest synthesis rates measured (gastrulae), the proportion of total metabolism accounted for by protein synthesis in the Antarctic sea urchin was 54%-a value similar to that of temperate sea urchin embryos. In the Antarctic sea urchin, up to 87% of metabolic rate can be accounted for by the combined energy costs of protein synthesis and the sodium pump. We conclude that, in Antarctic sea urchin embryos, high rates of protein synthesis can be supported in extreme-cold environments while still maintaining low rates of respiration.

  19. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.

    Science.gov (United States)

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2015-04-21

    This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits.

  20. Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-09-01

    A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front cost of this system because it was financed through an Energy Savings Performance Contract (ESPC). The ESPC payments are 10% less than the energy savings so that the prison saves an average of $6,700 per year, providing an immediate payback. The solar hot water system produces up to 50,000 gallons of hot water daily, enough to meet the needs of 1,250 inmates and staff who use the kitchen, shower, and laundry facilities. This publication details specifications of the parabolic trough solar system and highlights 5 years of measured performance data.

  1. A decision model for cost effective design of biomass based green energy supply chains.

    Science.gov (United States)

    Yılmaz Balaman, Şebnem; Selim, Hasan

    2015-09-01

    The core driver of this study is to deal with the design of anaerobic digestion based biomass to energy supply chains in a cost effective manner. In this concern, a decision model is developed. The model is based on fuzzy multi objective decision making in order to simultaneously optimize multiple economic objectives and tackle the inherent uncertainties in the parameters and decision makers' aspiration levels for the goals. The viability of the decision model is explored with computational experiments on a real-world biomass to energy supply chain and further analyses are performed to observe the effects of different conditions. To this aim, scenario analyses are conducted to investigate the effects of energy crop utilization and operational costs on supply chain structure and performance measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Thermochemical energy storage with ammonia: Aiming for the sunshot cost target

    Science.gov (United States)

    Lavine, Adrienne S.; Lovegrove, Keith M.; Jordan, Joshua; Anleu, Gabriela Bran; Chen, Chen; Aryafar, Hamarz; Sepulveda, Abdon

    2016-05-01

    Thermochemical energy storage has the potential to reduce the cost of concentrating solar thermal power. This paper presents recent advances in ammonia-based thermochemical energy storage (TCES), supported by an award from the U.S. Dept. of Energy SunShot program. Advances have been made in three areas: identification of promising approaches for underground containment of the gaseous products of the dissociation reaction, demonstration that ammonia synthesis can be used to generate steam for a supercritical-steam Rankine cycle, and a preliminary design for integration of the endothermic reactors within a tower receiver. Based on these advances, ammonia-based TCES shows promise to meet the 15/kWht SunShot cost target.

  3. Greening the Grid: Advances in Production Cost Modeling for India Renewable Energy Grid Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Palchak, David [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-07-12

    The Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid study uses advanced weather and power system modeling to explore the operational impacts of meeting India's 2022 renewable energy targets and identify actions that may be favorable for integrating high levels of renewable energy into the Indian grid. The study relies primarily on a production cost model that simulates optimal scheduling and dispatch of available generation in a future year (2022) by minimizing total production costs subject to physical, operational, and market constraints. This fact sheet provides a detailed look at each of these models, including their common assumptions and the insights provided by each.

  4. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

  5. Cost of district heating using geothermal energy; Ist geothermische Waerme wirtschaftlich?

    Energy Technology Data Exchange (ETDEWEB)

    Oppermann, G. [GRUNEKO AG, Ingenieure fuer Energiewirtschaft, Basel (Switzerland)

    1997-12-01

    The environmental advantages of a district heating network using geothermal energy are obvious. On the other hand utilizing geothermal energy is considered to be very expensive. The goal of this paper is to compare the costs of geothermal energy with other renewable energy sources. Based on the costs of realized plants and projects the following energy sources have been analysed. Geothermal energy, water of tunnel-drainage, waste heat of a sewage disposal platn and waste wood. All plants have a district heating network. The results are a contribution to the actuel discussion about public subsiding of geothermal energy. (orig.) [Deutsch] Die oekologischen Vorteile einer geothermischen Fernwaermeversorgung sind fuer jeden, der Bohrungen in Erwaegung zieht, unschwer erkennbar. Wie steht es aber mit den Kosten einer geothermischen Nutzung? Hier beleben Horrorzahlen wie auch Wunschdenken die Diskussionen. Der Artikel beabsichtigt einen sachlichen Beitrag zu dieser Diskussion uz liefern. Konkrete Bauprojekte im Megawattbereich der GRUNEKO AG werden kostenmaessig nach gleichen Kriterien analysiert und verglichen. Auf goethermischer Seite wird ein Doublettensystem und eine Tunnelwasserwaermenutzung kostenmaessig analysiert. Als Quervergleich werden ebenfalls GRUNEKO-Projekte mit regenerierbaren Energietraegern herangezogen (Holzschnitzelanlage, Klaeranlagenabwaerme, Seewasser-Abkuehlung). Alle Analgen haben Waermeverteilnetze. Die nachgewiesenen Kostendifferenzen zwischen Geothermie und anderen regenerativen Waermversorgungen koennten einen Beitrag leisten zu der gegenwaertig aktuellen `Ueberpruefung staatlicher Foerderungsmassnahmen zugunsten einer verstaerkten Nutzung der Geothermie`. (orig.)

  6. Energy conserved and costs saved by small and medium-size manufacturers, 1988--1989

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, F.W.

    1991-05-01

    Energy Analysis and Diagnostic Centers (EADCs) provided energy-conserving and cost saving assistance in 339 small and medium-size manufacturing plants nationwide during 1988-89. This report presents the results of what was recommended to those manufacturers, the record of what was implemented by them, and an analysis of the financial rewards gained by them. It also includes an accounting of the financial returns to the federal government, derived from taxes upon the cost savings, or incremental income, of the manufacturers who implement the EADCs` recommendations. EADCs collect implementation data within a year of the energy audit, and for these results that time period extended through 1990. The EADCs are located at accredited engineering departments of universities and staffed by faculty and students. At present there are 18 EADCs serving manufacturers in 37 states; of these, two were established as a result of the 1989 competition, and five more were chosen competitively in 1990. Most of the results in this report were generated by 11 EADCs (named in the Appendix); two others withdrew voluntarily after completing only 10 energy audits during 1988-89. Primary responsibility for selecting, training, evaluating, and managing the EADCs belongs to the Industrial Technology and Energy Management (ITEM) division of University City Science Center (UCSC). The Department of Energy`s Office of Industrial Technologies sponsors the EADC program through an agreement with UCSC.

  7. COST - EFFECTIVENESS ANALYSIS IN CONTEXT OF THE NEW LEGISLATION ON ENERGY EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Ionescu Sas Mihaela

    2015-07-01

    Full Text Available In this paper the author presents some aspects of a broader analysis on the macroeconomic effects it generates new energy regulations on energy efficiency in the European Union. Are presented for this purpose EU targets for achieving targets 20% reduction in energy consumption by 2020 and improve the prospect of cuts in 2030. In a time when environmental concerns, economic and social becoming increasingly important, being represented by climate change or the endangering energy security, resource depletion or ability to pay energy bills, reduce energy consumption in buildings and industrial sector of strategic importance, both nationally and internationally. In addition to efforts to build new buildings and industrial facilities with low energy requirements, obtained from conventional sources of energy is essential to address the high levels of consumption of existing buildings and facilities. Improving the energy efficiency of the existing buildings and facilities is essential not only for achieving national targets for energy efficiency in the medium term, but also to meet long-term objectives of the strategy on climate change and the transition to a competitive, low carbon dioxide by 2030. The analysis consists in determining and assessing costs, benefits on energy efficiency in the European Union and national level. In Romania the gradual liberalization of the electricity market and gas is unsustainable in the context of the energy sector, which faces a variety of challenges, including high energy losses. In the medium term, the energy market liberalization leads to an appreciable increase in electricity prices, gas and heat, a process that takes place very late and that will put high pressure on the capacity of all energy consumers (industrial and residential to pay energy bills. An obvious solution, but not convenient, is to reduce energy consumption through energy efficiency or by reducing energy losses. The article ends with the

  8. Measuring the Actual Energy Cost Performance of Green Buildings: A Test of the Earned Value Management Approach

    Directory of Open Access Journals (Sweden)

    Luay N. Dwaikat

    2016-03-01

    Full Text Available Reduced energy consumption is a key aspect of the green building. Nonetheless, research indicates that there is a performance gap between the predicted and the actual energy performance once buildings are occupied, which implies a cost deviation from the anticipated energy cost performance. However, the cost deviation also might result from lower or higher energy rates than expected. As an appropriate research methodology for existing theory testing, case study research strategy was adopted to empirically examine the earned value management (EVM approach to measure the actual life cycle cost performance of energy in green buildings. With slight methodological and terminological adaptations, it is found that the EVM approach can be applied to conduct a holistic cost performance measurement of the actual energy consumption in green buildings. The strength of the earned value approach is that it allows for detecting whether the energy cost saving or overrun results from lower or higher energy consumption, or from actual energy rate variations. The earned value approach allows for quantifying each cost variance independently, which is a significant aspect of actual energy cost performance measurement in green buildings.

  9. A cost optimization model for 100% renewable residential energy supply systems

    DEFF Research Database (Denmark)

    Milan, Christian; Bojesen, Carsten; Nielsen, Mads Pagh

    2012-01-01

    's involving on-site production of heat and electricity in combination with electricity exchanged with the public grid. The model is based on linear programming and determines the optimal capacities for each relevant supply technology in terms of the overall system costs. It has been successfully applied......The concept of net zero energy buildings (Net ZEB) has received increased attention throughout the last years. A well adapted and optimized design of the energy supply system is crucial for the performance of these buildings. To achieve this, a holistic approach is needed which accounts...... for the interdependencies between the different supply technologies as well as the construction energy of the installations, consumption profiles and on-site energy resource availability. This paper aims at developing such a model for the optimal sizing of renewable energy supply systems (RES) for residential Net ZEB...

  10. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  11. Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses.

    Directory of Open Access Journals (Sweden)

    Gottfried Sachs

    Full Text Available Albatrosses do something that no other birds are able to do: fly thousands of kilometres at no mechanical cost. This is possible because they use dynamic soaring, a flight mode that enables them to gain the energy required for flying from wind. Until now, the physical mechanisms of the energy gain in terms of the energy transfer from the wind to the bird were mostly unknown. Here we show that the energy gain is achieved by a dynamic flight manoeuvre consisting of a continually repeated up-down curve with optimal adjustment to the wind. We determined the energy obtained from the wind by analysing the measured trajectories of free flying birds using a new GPS-signal tracking method yielding a high precision. Our results reveal an evolutionary adaptation to an extreme environment, and may support recent biologically inspired research on robotic aircraft that might utilize albatrosses' flight technique for engineless propulsion.

  12. A Feasibility Analysis Methodology for Decentralized Wastewater Systems - Energy-Efficiency and Cost.

    Science.gov (United States)

    Naik, Kartiki S; Stenstrom, Michael K

    2016-03-01

    Centralized wastewater treatment, widely practiced in developed areas, involves transporting wastewater from large urban areas to a large capacity plant using a single network of sewers, whereas decentralization is the concept of wastewater collection, treatment and reuse at or near its point of generation. Smaller decentralized plants can achieve extensive reclamation and wastewater management with energy-efficient reclaimed water pumping, modularized expansion and lower capital investment. We devised a methodology to preliminarily assess these alternatives using local constraints and conducted a feasibility analysis for each option. It addressed various scenarios using the pump-back energy consumption, sewer and treatment plant construction and capacity expansion cost. We demonstrated this methodology by applying it to the Hollywood vicinity (California). In this study, the decentralized configuration was more economical and energy-efficient than the centralized system. The pump-back energy consumption was about 50% of the aeration energy consumption for the centralized option.

  13. Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses.

    Science.gov (United States)

    Sachs, Gottfried; Traugott, Johannes; Nesterova, Anna P; Dell'Omo, Giacomo; Kümmeth, Franz; Heidrich, Wolfgang; Vyssotski, Alexei L; Bonadonna, Francesco

    2012-01-01

    Albatrosses do something that no other birds are able to do: fly thousands of kilometres at no mechanical cost. This is possible because they use dynamic soaring, a flight mode that enables them to gain the energy required for flying from wind. Until now, the physical mechanisms of the energy gain in terms of the energy transfer from the wind to the bird were mostly unknown. Here we show that the energy gain is achieved by a dynamic flight manoeuvre consisting of a continually repeated up-down curve with optimal adjustment to the wind. We determined the energy obtained from the wind by analysing the measured trajectories of free flying birds using a new GPS-signal tracking method yielding a high precision. Our results reveal an evolutionary adaptation to an extreme environment, and may support recent biologically inspired research on robotic aircraft that might utilize albatrosses' flight technique for engineless propulsion.

  14. Speed regulated drives save energy and operating cost; Drehzahlvariable Antriebe senken Energie- und Betriebskosten

    Energy Technology Data Exchange (ETDEWEB)

    Possberg, Norbert

    2009-12-15

    The cement factory of the Lafarge group at Hope, United Kingdom, retrofitted the last two drive units of the production chain by an electronic speed regulation. By utilization of frequency converters in the cooler ventilation sector the total energy consumption lowered to more than 15 %. (orig./GL)

  15. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2009-07-16

    The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which

  16. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

    2009-09-01

    A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that

  17. Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries

    Science.gov (United States)

    Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; Susarla, Naresh; Dees, Dennis W.

    2017-02-01

    The price of the cathode active materials in lithium ion batteries is a key cost driver and thus significantly impacts consumer adoption of devices that utilize large energy storage contents (e.g. electric vehicles). A process model has been developed and used to study the production process of a common lithium-ion cathode material, lithiated nickel manganese cobalt oxide, using the co-precipitation method. The process was simulated for a plant producing 6500 kg day-1. The results indicate that the process will consume approximately 4 kWh kgNMC-1 of energy, 15 L kgNMC-1 of process water, and cost 23 to produce a kg of Li-NMC333. The calculations were extended to compare the production cost using two co-precipitation reactions (with Na2CO3 and NaOH), and similar cathode active materials such as lithium manganese oxide and lithium nickel cobalt aluminum oxide. A combination of cost saving opportunities show the possibility to reduce the cost of the cathode material by 19%.

  18. How Expensive Is Expensive Enough? Opportunities for Cost Reductions in Offshore Wind Energy Logistics

    Directory of Open Access Journals (Sweden)

    Thomas Poulsen

    2016-06-01

    Full Text Available This paper reveals that logistics may conservatively amount to 18% of the levelized cost of energy for offshore wind farms. This is the key finding from an extensive case study carried out within the organization of the world’s leading offshore wind farm developer and operator. The case study aimed to, and produced, a number of possible opportunities for offshore wind cost reductions through logistics innovation; however, within the case study company, no company-wide logistics organization existed to focus horizontally on reducing logistics costs in general. Logistics was not well defined within the case study company, and a logistics strategy did not exist. With full life-cycle costs of offshore wind farms still high enough to present a political challenge within the European Union in terms of legislation to ensure offshore wind diffusion beyond 2020, our research presents logistics as a next frontier for offshore wind constituencies. This important area of the supply chain is ripe to academically and professionally cultivate and harvest in terms of offshore wind energy cost reductions. Our paper suggests that a focused organizational approach for logistics both horizontally and vertically within the company organizations could be the way forward, coupled with a long-term legislative environment to enable the necessary investments in logistics assets and transport equipment.

  19. Energy cost based design optimization method for medium temperature CPC collectors

    Science.gov (United States)

    Horta, Pedro; Osório, Tiago; Collares-Pereira, Manuel

    2016-05-01

    CPC collectors, approaching the ideal concentration limits established by non-imaging optics, can be designed to have such acceptance angles enabling fully stationary designs, useful for applications in the low temperature range (T concentration factors in turn requiring seasonal tracking strategies. Considering the CPC design options in terms of effective concentration factor, truncation, concentrator height, mirror perimeter, seasonal tracking, trough spacing, etc., an energy cost function based design optimization method is presented in this article. Accounting for the impact of the design on its optical (optical efficiency, Incidence Angle Modifier, diffuse acceptance) and thermal performances (dependent on the concentration factor), the optimization function integrates design (e.g. mirror area, frame length, trough spacing/shading), concept (e.g. rotating/stationary components, materials) and operation (e.g. O&M, tilt shifts and tracking strategy) costs into a collector specific energy cost function, in €/(kWh.m2). The use of such function stands for a location and operating temperature dependent design optimization procedure, aiming at the lowest solar energy cost. Illustrating this approach, optimization results will be presented for a (tubular) evacuated absorber CPC design operating in Morocco.

  20. Energy Saving Potential, Costs and Uncertainties in the Industry: A Case Study of the Chemical Industry in Germany

    DEFF Research Database (Denmark)

    Bühler, Fabian; Guminski, Andrej; Gruber, Anna

    2017-01-01

    the uncertainties of the results and identifying the most influential input parameters. The identification of energy efficiency measures and the quantification of the associated technical potentials and costs are identified based on literature data and own assessments. Based on these findings, a cost curve...... to 1990. To achieve this ambitious goal, energy planners and industries alike require an overview of the existing energy efficiency measures, their technical potential as well as the costs for realizing this potential. Energy efficiency opportunities are commonly presented in marginal cost curves (MCCs......), which rank these measures according to specific implementation costs. Existing analyses, however, often do not take uncertainties in costs and potentials into account. The aim of this paper is to create a MCC of energy efficiency measures for the chemical industry in Germany, while quantifying...