WorldWideScience

Sample records for replacement discussion heats

  1. Essential Specification Elements for Heat Exchanger Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Bower, L.

    2015-07-01

    Performance upgrade and equipment degradation are the primary impetuses for a nuclear power plant to engage in the large capital cost project of heat exchanger replacement. Along with attention to these issues, consideration of heat exchanger Codes and Standards, material improvements, thermal redesign, and configuration are essential for developing User’s Design Specifications for successful replacement projects. The User’s Design Specification is the central document in procuring ASME heat exchangers. Properly stated objectives for the heat exchanger replacement are essential for obtaining the materials, configurations and thermal designs best suited for the nuclear power plant. Additionally, the code of construction required and the applied manufacturing standard (TEMA or HEI) affects how the heat exchanger may be designed or configured to meet the replacement goals. Knowledge of how Codes and Standards affect design and configuration details will aid in writing the User’s Design Specification. Joseph Oat Corporation has designed and fabricated many replacement heat exchangers for the nuclear power industry. These heat exchangers have been constructed per ASME Section III to various Code-Years or ASME Section VIII-1 to the current Code-Year also in accordance with TEMA and HEI. These heat exchangers have been a range of like-for-like replacement to complete thermal, material and configuration redesigns. Several examples of these heat exchangers with their Code, Standard and specification implications are presented. (Author.

  2. Radiation control report on intermediate heat exchanger replacement and related works

    International Nuclear Information System (INIS)

    Kanou, Y.; Yamanaka, T.; Sasajima, T.; Hoshiba, H.; Emori, S.; Shindou, K.

    2002-03-01

    The 13th periodical inspection of the experimental fast reactor JOYO is being made from Jun. 2000 to Jan. 2003. While this inspection, from the end of Oct. 2000 to Nov. 2001, the MK-III modification work on heat transport system was made in lower region of the reactor containment vessel in the reactor facility (under floor area). In the MK-III modification work, the works important to radiation control were the replacement of intermediate heat exchangers (IHXs) and fixtures, and the picking out of the surveillance material from primary heat transport piping carried out in the maintenance building. Because the working areas of these works were executed in small space around the complicated primary heat transport piping, workability was bad and dose rate from the corrosion products (CP) in piping or fixtures was high. In such condition, radiation control was performed mainly concerned about external exposure. The planted total external exposure of the IHX replacement and related works was 7135 man-mSv (target of total dose control: less than 5708 man-mSv, 80% of the plan), derived from special radiation work plants for segmental works, concerned about work procedure, number of workers, period of work, dose rate of working area and surface dose rate of equipments. The special radiation control organization was established for such long and large-scale work. The spatial organization held detailed discussion about radiation control of this work with the execution section and contractors appropriately, performance careful external/internal exposure control and surface contamination control and made efforts to reduce te external exposure thoroughly. As a result of these action, the total external exposure was 2386 man·mSv (≅33% of the plan, ≅42% of the target) and the maximum individual exposure were 24.7 mSv for staffs and 21.7mSv for contractors. The dose rate, surface contamination and air contamination while the works were kept under the control level with the

  3. Optimal composition of fluid-replacement beverages.

    Science.gov (United States)

    Baker, Lindsay B; Jeukendrup, Asker E

    2014-04-01

    The objective of this article is to provide a review of the fundamental aspects of body fluid balance and the physiological consequences of water imbalances, as well as discuss considerations for the optimal composition of a fluid replacement beverage across a broad range of applications. Early pioneering research involving fluid replacement in persons suffering from diarrheal disease and in military, occupational, and athlete populations incurring exercise- and/or heat-induced sweat losses has provided much of the insight regarding basic principles on beverage palatability, voluntary fluid intake, fluid absorption, and fluid retention. We review this work and also discuss more recent advances in the understanding of fluid replacement as it applies to various populations (military, athletes, occupational, men, women, children, and older adults) and situations (pathophysiological factors, spaceflight, bed rest, long plane flights, heat stress, altitude/cold exposure, and recreational exercise). We discuss how beverage carbohydrate and electrolytes impact fluid replacement. We also discuss nutrients and compounds that are often included in fluid-replacement beverages to augment physiological functions unrelated to hydration, such as the provision of energy. The optimal composition of a fluid-replacement beverage depends upon the source of the fluid loss, whether from sweat, urine, respiration, or diarrhea/vomiting. It is also apparent that the optimal fluid-replacement beverage is one that is customized according to specific physiological needs, environmental conditions, desired benefits, and individual characteristics and taste preferences.

  4. Primary heat transport pump mechanical seal replacement strategy for Pickering B

    International Nuclear Information System (INIS)

    Chacinsi, V.

    1995-01-01

    Pickering Nuclear Generating Station is a CANDU PHWR eight unit station located on Lake Ontario. The station is divided into Pickering A (Units 1 to 4) and Pickering B (Units 5 to 8). Pickering B is the focus of this paper. Each unit is rated at 540 MWe. The Primary Heat Transport (PHT) system, which is used to cool the fuel, is divided into four quadrants. Each quadrant has four vertical Byron Jackson PHT main circulation pumps. Three pumps in each quadrant are required for normal operation, leaving one pump in each quadrant as a spare. Each Pickering PHT pump has a Byron Jackson Type SU two stage mechanical seal. The typical pressure breakdown across the seal is 8.7-4.5-1.0 MPa. Certain features of seal operation and the PHT system which influence seal replacement are discussed below. (author)

  5. Practical implementation of models for replacing coal-fuelled heating systems by modern heating systems; Praktische Umsetzung von Realisierungsmodellen zur Abloesung von Kohleheizung durch moderne Heizungssysteme

    Energy Technology Data Exchange (ETDEWEB)

    Krug, N. [Institut fuer Kaelte-, Klima-, Energie-Technik GmbH, Essen (Germany); Hack, M.

    1997-12-31

    In many houses in the new federal states, the entire heating system needs to be replaced. Financing of such projects is an important issue. The work studies other ways of financing investments into heating and distribution systems than the classic ones. Basic financing problems and obstacles as well as the contracts and financing solutions decided on are discussed. Extracts from the civil code of law round off the contribution. (MSK) [Deutsch] Da es in den neuen Bundeslaendern unerlaesslich ist,die gesamte Heizungsanlage neu zu errichten, ist es wichtig, die Finanzierung fuer diesen Weg zu sichern. Dieses Forschungsvorhanben hat das Zie, andere als die klassischen Wege zu finden, die diese investiven Massnahmen in die notwendige Verteilungs-und Heizungsanlage rechtlich absichern. Dazu werden die Grundprobleme und Hemmnisse zur Finanzierung sowie die Vertrags-und Finanzierungsloesungen angesprochen. Auszuege aus dem BGB ergaenzen die Ausfuehrungen.

  6. Life extension of MAPS-2 by replacement of boiler hairpin type heat exchangers

    International Nuclear Information System (INIS)

    Tripathi, J.C.; Rastogi, S.K.; Rastogi, A.K.

    2006-01-01

    The steam generating equipment in MAPS-1 and 2 are Hairpin type comprises of eight boiler assemblies arranged in two banks of four boilers each. Each hairpin type heat exchangers consist of 195 Monel-400 tubes of 12.7 mm OD x 1.24 mm WT. One boiler assembly consists of eleven inverted U type heat exchangers (called hairpin type heat exchangers) mounted in parallel on inlet and outlet heavy water manifolds and connected to steam drum through individual short riser. Heavy water flows through these tubes where as feed water enters the shell at the bottom of one leg called pre-heat leg. After commissioning of MAPS-2 in 1985, five hairpins of MAPS-2 developed leak during the course of operation by the year 1999. Absence of physical access for health assessment of steam generator tube and lack of provision for tube sheet cleaning to remove the deposits on feed water side had caused pile and resulted in tube failures by under deposit pitting corrosion. All the 88 hairpins of MAPS-2 were replaced to extend the plant life when MAPS-2 was taken out of grid for En-masse Coolant Channel Replacement job (EMCCR) in the year 2001 - 03. The long shutdown of MAPS units for EMCCR was considered to be cost effective since unscheduled plant shut downs on account of tube leaks could be avoided. (author)

  7. Discussion on application of water source heat pump technology to uranium mines

    International Nuclear Information System (INIS)

    An Qiang

    2011-01-01

    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines. (authors)

  8. Feasibility study on rehabilitation and improvement of thermal power plants, district heating and heat supply system in Botosani City

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Discussions have been given on the improvement and modification project intended of saving energies and reducing greenhouse gas emission in the Botosani district heating and heat supplying facilities in Romania. Thirty years have elapsed since the building of the Botosani district heating and heat supplying facilities, whereas noticeable energy loss has occurred due to aged deterioration, such as thermal efficiency decrease, performance decrease, and hot water leakage due to piping corrosion. The present project is intended to improve the heat production and power generation facility efficiencies, and reduce the heat loss in heat transportation and distribution to less than 5%. The improvements will be implemented by replacing and rehabilitating the existing boilers, replacing the turbine generators, and replacing the transportation and distribution pipelines and heat exchangers. As a result of the discussions, the present project is estimated to result in annual fuel conservation of 35,820 tons of crude oil equivalent, and annual reduction of the greenhouse gas emission of 110,835 t-CO2. The total amount of the initial investment for the project would be 11.369 billion yen, and the payback period would be 12 years. The project will produce profit of 31.358 billion yen in 20 years, thus the project is financially feasible. (NEDO)

  9. Discussion on the Heat and Mass Transfer Model on the Pool Surface

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon-Joon; Choo, Yeon-Jun [FNC Tech., Yongin (Korea, Republic of); Ha, Sang-Jun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Heat transfer on the pool surface involves the evaporation and condensation of steam in the presence of non-condensable gas. It is a kind of inter-phase heat transfer. This phenomenon has been regarded as less important on the thermal hydraulic behaviors such as pressure, temperature, hydrogen distribution, and so on in the nuclear reactor containment building. As a matter of fact, several RAIs (requests for additional information) during the licensing review of the developed CAP have been presented. And early in 2000s the steam condensation on the water surface of IRWST was a concern of APR1400 design. Such an increased concern is believed because it is a newly adopted system. This study discusses the pool surface heat transfer by reviewing the models of several well-known containment analysis codes, and conducting the sensitivities. This study discussed the pool surface heat transfer. The related models of CAP, GOTHIC, CONTEMPT-LT, and CONTEMPT4 were compared. The sensitivity of heat transfer coefficient for SKN3 and 4 using conventional code CONTEMPT-LT/028-A showed little effect. And the sensitivity of relative humidity and heat transfer area for latent heat transfer shows that CAP locates between GOTHIC and CONTEMPT4/MOD. The sensitivity for sensible heat transfer also shows similar trend. Conclusively, current CAP model of pool surface heat transfer has no fatal defect.

  10. Discussion on the Heat and Mass Transfer Model on the Pool Surface

    International Nuclear Information System (INIS)

    Hong, Soon-Joon; Choo, Yeon-Jun; Ha, Sang-Jun

    2016-01-01

    Heat transfer on the pool surface involves the evaporation and condensation of steam in the presence of non-condensable gas. It is a kind of inter-phase heat transfer. This phenomenon has been regarded as less important on the thermal hydraulic behaviors such as pressure, temperature, hydrogen distribution, and so on in the nuclear reactor containment building. As a matter of fact, several RAIs (requests for additional information) during the licensing review of the developed CAP have been presented. And early in 2000s the steam condensation on the water surface of IRWST was a concern of APR1400 design. Such an increased concern is believed because it is a newly adopted system. This study discusses the pool surface heat transfer by reviewing the models of several well-known containment analysis codes, and conducting the sensitivities. This study discussed the pool surface heat transfer. The related models of CAP, GOTHIC, CONTEMPT-LT, and CONTEMPT4 were compared. The sensitivity of heat transfer coefficient for SKN3 and 4 using conventional code CONTEMPT-LT/028-A showed little effect. And the sensitivity of relative humidity and heat transfer area for latent heat transfer shows that CAP locates between GOTHIC and CONTEMPT4/MOD. The sensitivity for sensible heat transfer also shows similar trend. Conclusively, current CAP model of pool surface heat transfer has no fatal defect

  11. Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids

    Science.gov (United States)

    Cutbirth, J. Michael

    2012-01-01

    A non-toxic, non-flammable, low-freezing heat transfer fluid is being developed for drop-in replacement within current and future heat transfer loops currently using water or alcohol-based coolants. Numerous water-soluble compounds were down-selected and screened for toxicological, physical, chemical, compatibility, thermodynamic, and heat transfer properties. Two fluids were developed, one with a freezing point near 0 C, and one with a suppressed freezing point. Both fluids contain an additive package to improve material compatibility and microbial resistance. The optimized sub-zero solution had a freezing point of 30 C, and a freezing volume expansion of 10-percent of water. The toxicity of the solutions was experimentally determined as LD(50) greater than 5g/kg. The solutions were found to produce minimal corrosion with materials identified by NASA as potentially existing in secondary cooling loops. Thermal/hydrodynamic performance exceeded that of glycol-based fluids with comparable freezing points for temperatures Tf greater than 20 C. The additive package was demonstrated as a buffering agent to compensate for CO2 absorption, and to prevent microbial growth. The optimized solutions were determined to have physically/chemically stable shelf lives for freeze/thaw cycles and longterm test loop tests.

  12. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  13. Experimental performance of R432A to replace R22 in residential air-conditioners and heat pumps

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Shim, Yun-Bo; Jung, Dongsoo

    2009-01-01

    In this study, thermodynamic performance of R432A and HCFC22 is measured in a heat pump bench tester under both air-conditioning and heat pumping conditions. R432A has no ozone depletion potential and very low greenhouse warming potential of less than 5. R432A also offers a similar vapor pressure to HCFC22 for 'drop-in' replacement. Test results showed that the coefficient of performance and capacity of R432A are 8.5-8.7% and 1.9-6.4% higher than those of HCFC22 for both conditions. The compressor discharge temperature of R432A is 14.1-17.3 deg. C lower than that of HCFC22 while the amount of charge for R432A is 50% lower than that of HCFC22 due to its low density. Overall, R432A is a good long term 'drop-in' environmentally friendly alternative to replace HCFC22 in residential air-conditioners and heat pumps due to its excellent thermodynamic and environmental properties

  14. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [ARIES Collaborative, New York, NY (United States); Podorson, David [ARIES Collaborative, New York, NY (United States); Varshney, Kapil [ARIES Collaborative, New York, NY (United States)

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  15. Performance of R433A for replacing HCFC22 used in residential air-conditioners and heat pumps

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Shim, Yun-Bo; Jung, Dongsoo

    2008-01-01

    In this study, thermodynamic performance of R433A and HCFC22 is measured in a heat pump bench tester under air-conditioning and heat pumping conditions. R433A has no ozone depletion potential and very low greenhouse warming potential of less than 5. R433A also offers a similar vapor pressure to HCFC22 for possible 'drop-in' replacement. Test results showed that the coefficient of performance of R433A is 4.9-7.6% higher than that of HCFC22 while the capacity of R433A is 1.0-5.5% lower than that of HCFC22 for both conditions. The compressor discharge temperature of R433A is 22.6-27.9 deg. C lower than that of HCFC22 while the amount of charge for R433A is 57.0-57.7% lower than that of HCFC22 due to its low density. Overall, R433A is a good long term environmentally friendly alternative to replace HCFC22 in residential air-conditioners and heat pumps due to its excellent thermodynamic and environmental properties with minor adjustments

  16. Flued head replacement alternatives

    International Nuclear Information System (INIS)

    Smetters, J.L.

    1987-01-01

    This paper discusses flued head replacement options. Section 2 discusses complete flued head replacement with a design that eliminates the inaccessible welds. Section 3 discusses alternate flued head support designs that can drastically reduce flued head installation costs. Section 4 describes partial flued head replacement designs. Finally, Section 5 discusses flued head analysis methods. (orig./GL)

  17. Replacing critical radiators to increase the potential to use low-temperature district heating – A case study of 4 Danish single-family houses from the 1930s

    International Nuclear Information System (INIS)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2016-01-01

    Low-temperature district heating is a promising technology for providing homes with energy-efficient heating in the future. However, it is of great importance to maintain thermal comfort in existing buildings when district heating temperatures are lowered. This case study evaluated the actual radiator sizes and heating demands in 4 existing Danish single-family houses from the 1930s. A year-long dynamic simulation was performed for each of the houses to evaluate the potential to lower the heating system temperatures. The results indicate that there is a large potential to use low-temperature district heating in existing single-family houses. In order to obtain the full potential of low-temperature district heating, critical radiators must be replaced. Based on a novel method, a total of nine radiators were identified to be critical to ensure thermal comfort and low return temperatures in two of the case-houses. If these radiators were replaced it would be possible to lower the average heating system temperatures to 50 °C/27 °C in all four houses. - Highlights: • Comparison of dynamically calculated heat demands and radiator sizes. • Method for identification and evaluation of critical radiators was tested. • Existing houses can be heated with low-temperature heating for most of the year. • Replacing critical radiators helps ensure comfort and low return temperatures.

  18. Water Replacement Schedules in Heat Stress

    Science.gov (United States)

    Londeree, Ben R.; and others

    1969-01-01

    Although early ingestion of cold water appears to lead to greater relief from heat stress during physical exertion than late ingestion, this difference is reduced toward the end of an hour's work in high heat and humidity. (CK)

  19. International examples of steam generator replacement

    International Nuclear Information System (INIS)

    Wiechmann, K.

    1993-01-01

    Since 1979-1980 a total of twelve nuclear power plants world-wide have had their steam generators replaced. The replacement of the Combustion steam generators in the Millstone-2 plant in the United States was completed very recently. Steam generator replacement activities are going on at present in four plants. In North Anna, the steam generators have been under replacement since January 1990. In Japan, preparations have been started for Genkai-1. Since January 1992, the two projects in Beznau-1, Switzerland, and Doel-3, Belgium, have bee planned and executed in parallel. Why steam generator replacement? There are a number of defect mechanisms which give rise to the need for early steam generator replacement. One of the main reasons is the use of Inconel-600 as material for the heating tubes. Steam generator heating tubes made of Inconel-600 have been known to exhibit their first defects due to stress corrosion cracking after less than one year of operation. (orig.) [de

  20. Energetical and economical assessment of the waste heat problem

    International Nuclear Information System (INIS)

    Demicheli, U.; Voort, E. van der; Schneiders, A.; Zegers, P.

    1977-01-01

    Electrical power plants produce large quantities of low grade heat that remain unused. For ecological reasons this waste heat must be dispersed by means of expensive cooling devices. Waste heat could be used in acquacultural and agricultural complexes this replacing large amounts of primary energy. Energetical and economical aspects are discussed. The state of the art of these and other utilisations is outlined. A different approach to the problem is to reduce the production of waste heat. Various strategies to achieve this challenge are outlined and their actual state and possible future developments are discussed. Finally, the various most promising utilizations are examined from an energetical point of view

  1. Heat supply from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stach, V [Ustav Jaderneho Vyzkumu CSKAE, Rez (Czechoslovakia)

    1978-05-01

    The current state of world power production and consumption is assessed. Prognoses made for the years 1980 to 2000 show that nuclear energy should replace the major part of fossil fuels not only in the production of power but also in the production of heat. In this respect high-temperature reactors are highly prospective. The question is discussed of the technical and economic parameters of dual-purpose heat and power plants. It is, however, necessary to solve problems arising from the safe siting of nuclear heat and power plants and their environmental impacts. The economic benefits of combined power and heat production by such nuclear plants is evident.

  2. Discussion on problems of terrestrial heat and moderate-hot water at an uranium deposit in Jiangxi province

    International Nuclear Information System (INIS)

    Liu Xiangguo

    2003-01-01

    According to scientific research and technical summing up reports, based on the field investigation, the possible problems of terrestrial heat and moderate-hot water during the exploitation of an uranium deposit in Jiangxi Province are discussed. The preliminary analysis and discussion on the distribution, distribution regularity, causes of formation and correlation of terrestrial heat and moderate-hot water at the uranium deposit are carried out

  3. Optimization of costs for the DOEL 3 steam generator replacement

    International Nuclear Information System (INIS)

    Leblois, C.

    1994-01-01

    Several aspects of steam generator replacement economics are discussed on the basis of the recent replacement carried out in the Doel 3 unit. The choice between repair of replacement policies, as well as the selection of the intervention date were based on a comparison of costs in which various possible scenarios were examined. The contractual approach for the different works to be performed was also an important point, as well as the project organization in which CAD played an important role. This organization allowed to optimize the outage duration and to realize numerous interventions in the reactor building in parallel with the replacement itself. A last aspect of the optimization of costs is the possibility to uprate the plant power. In the case of Doel 3, the plant restarted with a nominal power increased by 10%, of which 5,7% were possible by the increase of the SG heat transfer area. (Author) 6 refs

  4. Conceptual design of a cassette compact toroid reactor (the zero-phase study) - Quick replacement of the reactor core

    International Nuclear Information System (INIS)

    Nishikawa, M.; Narikawa, T.; Iwamoto, M.; Watanabe, K.

    1986-01-01

    A study of a conceptual design for a ''cassette'' compact toroid reactor has been performed that emphasizes quick replacement handling. The core plasma, spheromak, is ohmically heated in a merging process between the core plasma and the gun-produced spheromak. The quick handling of replacement accomplished by using a functional material, a shape memory alloy (SMA) joint, which is proposed for release from first-wall high neutron loading in a newly devised mechanical and structural method. The SMA joint can be used for connecting or disconnecting the coupling by simply controlling the SMA temperature without the need for a robot system. Effective heat removal from the first wall and thermal and electromagnetic stress in a fusion core with very high heat flux are discussed from an engineering standpoint

  5. Flow boiling test of GDP replacement coolants

    International Nuclear Information System (INIS)

    Park, S.H.

    1995-01-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C 4 F 10 and C 4 F 8 , were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C 4 F 10 mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C 4 F 10 weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd

  6. Discussion of heat transfer phenomena in fluids at supercritical pressure with the aid of CFD models

    International Nuclear Information System (INIS)

    Sharabi, Medhat; Ambrosini, Walter

    2009-01-01

    The paper discusses heat transfer enhancement and deterioration phenomena observed in experimental data for fluids at supercritical pressure. The results obtained by the application of various CFD turbulence models in the prediction of experimental data for water and carbon dioxide flowing in circular tubes are firstly described. On this basis, the capabilities of the addressed models in predicting the observed phenomena are shortly discussed. Then, the analysis focuses on further results obtained by a low-Reynolds number k - ε model addressing one of the considered experimental apparatuses by changing the operating conditions. In particular, the usual imposed heat flux boundary condition is changed to assigned wall temperature, in order to highlight effects otherwise impossible to point out. The obtained results, supported by considerations drawn from experimental information, allow comparing the trends observed for heat transfer deterioration at supercritical pressure with those typical of the thermal crisis in boiling systems, clarifying old concepts of similarity among them

  7. Basic investigation on promotion of joint implementation in fiscal 2000. Investigations on modification and improvement project for Potoshani district heating and heat supplying facilities in Romania; 2000 nendo kyodo jisshi nado suishin kiso chosa hokokusho. Romania koku Potoshani chiiki danbo netsukyokyu setsubi no kaishu oyobi kaizen keikaku chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Discussions have been given on the improvement and modification project intended of saving energies and reducing greenhouse gas emission in the Potoshani district heating and heat supplying facilities in Romania. Thirty years have elapsed since the building of the Potoshani district heating and heat supplying facilities, whereas noticeable energy loss has occurred due to aged deterioration, such as thermal efficiency decrease, performance decrease, and hot water leakage due to piping corrosion. The present project is intended to improve the heat production and power generation facility efficiencies, and reduce the heat loss in heat transportation and distribution to less than 5%. The improvements will be implemented by replacing and rehabilitating the existing boilers, replacing the turbine generators, and replacing the transportation and distribution pipelines and heat exchangers. As a result of the discussions, the present project is estimated to result in annual fuel conservation of 35,820 tons of crude oil equivalent, and annual reduction of the greenhouse gas emission of 110,835 t-CO2. The total amount of the initial investment for the project would be 11.369 billion yen, and the payback period would be 12 years. The project will produce profit of 31.358 billion yen in 20 years, thus the project is financially feasible. (NEDO)

  8. Solar heating still in the early stages. Changes for hot water production - VDI meeting 'Efficient heating systems'

    Energy Technology Data Exchange (ETDEWEB)

    Goehringer, P

    1976-10-01

    More and more realism replaces the initial euphoria concerning the discussion on solar heating. Not only the possibilities are considered these days, but also the limits of this still controversial way of heating. This impression was deepened by a meeting of the VDI-Gesellschaft Technische Gebaeudeausruestung (Society for the technical equipment of buildings) held in Bonn. The heating of water with solar energy during the summer is viewed optimistically by the experts - as far as space heating is concerned, the sun collector is conceded only a very modest position in Central Europe within integrated heating systems. It is true that solar technology in the USA is already very sophisticated and economically feasible in many cases; however, techniques cannot be adopted unconditionally for Europe, as the average values of global solar radiation are much lower here. Thus, different technologies will be required.

  9. Design and manufacture of steam generators for replacement

    International Nuclear Information System (INIS)

    Hirano, Hiroshi; Kuri, Syuhei

    1995-01-01

    The basic specification of the steam generators for replacement as heat exchangers (the pressure, temperature, flow rate and thermal output on primary and secondary sides) is set same as that of steam generators before replacement, but the latest design reflecting the operation experience obtained so far and taking the countermeasures for preventing heating tube damage in it is adopted, such as the heating tubes made of TT 690 alloy, the tube support plates with four-lobe shape tube holes made of stainless steel, the stainless steel rest fittings of three in one set and so on. After the heating tube break accident in Mihama No. 2 plant, the quality control was further strengthened. The comparison of the specifications of the steam generators of respective plants before and after the replacement is shown. The main objective of improving steam generators is the heightening of the reliability of heating tubes against intergranular attack and primary water stress corrosion cracking. The improvements of heating tube material, tube support plate material, secondary side heat flow, the shape of tube holes of tube support plates, the method of expanding heating tubes, and vibration-controlling fittings are explained. As to the manufacturing procedure and quality control, the manufacture of raw materials, the build-up welding of tube plates, the manufacture of lower half shell plates, the tube hole making of support plates, the insection of outer cylinder, flow rate distribution plate. Support plates and heating tubes, the sealing welding and expanding of heating tubes, the fixing of rest fittings, the manufacture and fixing of water chamber cover, the manufacture of upper half shell, the fixing of parts inside it, the final joint and inspection are described. (K.I.)

  10. Restoration to serviceability of Bruce 'A' heat transfer equipment

    International Nuclear Information System (INIS)

    Gammage, D.; Machowski, C.; McGillivray, R.; Durance, D.; Kazimer, D.; Werner, K.

    2009-01-01

    Bruce Units 1 to 4 were shut down during the 1990s by the former Ontario Hydro, due in part to a long list of system and equipment deficiencies and concerns, including steam generator tube degradation as a consequence of the then-existing steam generator secondary side water chemistry conditions. Upon its creation in 2001, and following a program of condition assessment, Bruce Power was able to determine that Units 3 and 4 could return to service; but that Units 1 and 2 would require refurbishment. That Refurbishment Program, which is currently well advanced, included the re-assessment of the condition of equipment throughout the plant including the heat transfer equipment; and determination item-by-item as to what inspection, cleaning, repair, or even replacement would be required to put the equipment into a condition where it could be expected to operate reliably for the additional 30 years expected from the plant. Clearly the objective is to suitably restore the equipment to serviceability without doing more refurbishment work than is warranted - without replacing equipment except where absolutely necessary. The first task in such a program is determination of its scope - i.e. a listing of all heat exchangers. That list included everything from the steam generators (which required replacement, now completed), to much smaller heat exchangers in the heavy water upgrader systems (which were found to be in very good overall condition). There is also a very large number of other so-called 'balance-of-plant' heat exchangers; these include the maintenance coolers, moderator heat exchangers, shutdown coolers and a whole raft of smaller coolers - many of which are cooled directly by lake water with its potential for bio-fouling and 'BIC' (Biologically Induced Corrosion). This paper focuses primarily on the engineering assessment, inspection, repair and general refurbishment of the balance-of-plant heat exchangers. As will be discussed in the paper, the assessment of the

  11. Forced Convection Heat Transfer of a sphere in Packed Bed Arrangement

    International Nuclear Information System (INIS)

    Lee, Dong-Young; Chung, Bum-Jin

    2016-01-01

    This paper analysis and discuss the forced convective heat transfer from heated single sphere, which is buried in unheated packed bed, depending on Re d with porosity. The present work determines the test matrix for the packed bed experiment. And this study discuss difference of heat transfer according to the location of heated sphere and compared heated bed with heated sphere in packed bed and compared FCC (Face Centered Cubic), HCP (Hexagonal Closed Packed) structured packed bed with random packed. This paper is to discuss and make the plan to experiment the heat transfer for depending on location of heated single sphere in unheated packed bed, to compare single sphere in packed bed with heated packed bed and to compare the structured packed bed with random packed bed. The Nu d increase as heated single sphere is close to the wall and bottom because of increasing porosity and enhancing eddy motion respectively. The existing experiment of heated sphere in packed bed do not consider the preheating effect which decrease heat transfer on downstream. The heat transfer rate of structured packed bed is different from random packed bed because of unsteady flow in random packed bed. In this study, mass transfer experiments will replace heat transfer experiments based on analogy concept. An electroplating system is adopted using limiting current technique

  12. Forced Convection Heat Transfer of a sphere in Packed Bed Arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Young; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    This paper analysis and discuss the forced convective heat transfer from heated single sphere, which is buried in unheated packed bed, depending on Re{sub d} with porosity. The present work determines the test matrix for the packed bed experiment. And this study discuss difference of heat transfer according to the location of heated sphere and compared heated bed with heated sphere in packed bed and compared FCC (Face Centered Cubic), HCP (Hexagonal Closed Packed) structured packed bed with random packed. This paper is to discuss and make the plan to experiment the heat transfer for depending on location of heated single sphere in unheated packed bed, to compare single sphere in packed bed with heated packed bed and to compare the structured packed bed with random packed bed. The Nu{sub d} increase as heated single sphere is close to the wall and bottom because of increasing porosity and enhancing eddy motion respectively. The existing experiment of heated sphere in packed bed do not consider the preheating effect which decrease heat transfer on downstream. The heat transfer rate of structured packed bed is different from random packed bed because of unsteady flow in random packed bed. In this study, mass transfer experiments will replace heat transfer experiments based on analogy concept. An electroplating system is adopted using limiting current technique.

  13. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L.; Riemer, B.W.; Ryan, P.M.; Williamson, D.E.

    1991-01-01

    A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. A high-heat-flux, uncooled Faraday shield has also been designed for the fast-wave current drive (FWCD) antenna on D3-D. For both components, the improved understanding of the heating profiles made it possible to design for heat fluxes that would otherwise have been too close to mechanically established limits. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the D3-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed. 3 refs., 6 figs., 2 tabs

  14. Future heat supply of our cities. Heating by waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti, H E [Stadtwerke Hannover A.G. (Germany, F.R.); Technische Univ. Hannover (Germany, F.R.))

    1976-08-01

    The energy-price crisis resulted in structural changes of the complete energy supply and reactivated the question of energy management with respect to the optimum solution of meeting the energy requirements for space heating. Condensation power plants are increasingly replaced by thermal stations, the waste heat of which is used as so-called district heat. Thermal power stations must be situated close to urban areas. The problem of emission of harmful materials can partly be overcome by high-level emission. The main subject of the article, however, is the problem of conducting and distributing the heat. The building costs of heat pipeline systems and the requirements to be met by heat pipelines such as strength, heat insulation and protection against humidity and ground water are investigated.

  15. Carbohydrates as Fat Replacers.

    Science.gov (United States)

    Peng, Xingyun; Yao, Yuan

    2017-02-28

    The overconsumption of dietary fat contributes to various chronic diseases, which encourages attempts to develop and consume low-fat foods. Simple fat reduction causes quality losses that impede the acceptance of foods. Fat replacers are utilized to minimize the quality deterioration after fat reduction or removal to achieve low-calorie, low-fat claims. In this review, the forms of fats and their functions in contributing to food textural and sensory qualities are discussed in various food systems. The connections between fat reduction and quality loss are described in order to clarify the rationales of fat replacement. Carbohydrate fat replacers usually have low calorie density and provide gelling, thickening, stabilizing, and other texture-modifying properties. In this review, carbohydrates, including starches, maltodextrins, polydextrose, gums, and fibers, are discussed with regard to their interactions with other components in foods as well as their performances as fat replacers in various systems.

  16. Replacing critical radiators to increase the potential to use low-temperature district heating – A case study of 4 Danish single-family houses from the 1930s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    2016-01-01

    radiator sizes and heating demands in 4 existing Danish single-family houses from the 1930s. A year-long dynamic simulation was performed for each of the houses to evaluate the potential to lower the heating system temperatures. The results indicate that there is a large potential to use low......-temperature district heating in existing single-family houses. In order to obtain the full potential of low-temperature district heating, critical radiators must be replaced. Based on a novel method, a total of nine radiators were identified to be critical to ensure thermal comfort and low return temperatures in two...

  17. Heat-pump cool storage in a clathrate of freon

    Science.gov (United States)

    Tomlinson, J. J.

    Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.

  18. Age replacement models: A summary with new perspectives and methods

    International Nuclear Information System (INIS)

    Zhao, Xufeng; Al-Khalifa, Khalifa N.; Magid Hamouda, Abdel; Nakagawa, Toshio

    2017-01-01

    Age replacement models are fundamental to maintenance theory. This paper summarizes our new perspectives and hods in age replacement models: First, we optimize the expected cost rate for a required availability level and vice versa. Second, an asymptotic model with simple calculation is proposed by using the cumulative hazard function skillfully. Third, we challenge the established theory such that preventive replacement should be non-random and only corrective replacement should be made for the unit with exponential failure. Fourth, three replacement policies with random working cycles are discussed, which are called overtime replacement, replacement first, and replacement last, respectively. Fifth, the policies of replacement first and last are formulated with general models. Sixth, age replacement is modified for the situation when the economical life cycle of the unit is a random variable with probability distribution. Finally, models of a parallel system with constant and random number of units are taken into considerations. The models of expected cost rates are obtained and optimal replacement times to minimize them are discussed analytically and computed numerically. Further studies and potential applications are also indicated at the end of discussions of the above models. - Highlights: • Optimization of cost rate for availability level is discussed and vice versa. • Asymptotic and random replacement models are discussed. • Overtime replacement, replacement first and replacement last are surveyed. • Replacement policy with random life cycle is given. • A parallel system with random number of units is modeled.

  19. Radiation Source Replacement Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  20. Discussion on the applicability of entropy generation minimization and entransy theory to the evaluation of thermodynamic performance for heat pump systems

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2014-01-01

    Highlights: • Seven parameters are applied to the analyses of heat pump systems. • Applicability of entropy generation minimization and entransy theory is discussed. • All concepts except for entransy increase rate (EI) decreases with increasing COP. • Only EI increases with increasing heat flow into the high temperature heat sink. • Applicability of both theories is conditional, depending on the objectives. - Abstract: Based on the entropy generation minimization and entransy theory, we discuss the applicability of the concepts of entropy generation rate, entropy generation number, revised entropy generation number, exergy efficiency, entransy increase rate, entransy increase coefficient and entransy efficiency to the analyses of heat pump systems in this paper. The theoretical analyses show that all the concepts except for the entransy increase rate decrease monotonically with increasing COP, while only the entransy increase rate increases monotonically with increasing heat flow pumped into the high temperature heat sink. It is shown that the entransy increase rate is not as convenient as the other concepts for the COP analyses, while it is suitable for the analyses of the heat flow into the high temperature heat sources. Some numerical examples are also presented, and the results have verified the theoretical analyses. Therefore, the applicability of entropy generation minimization and entransy theory to the analyses of heat pump systems is conditional, depending on the design objectives

  1. Energy saving and emission reduction of China's urban district heating

    International Nuclear Information System (INIS)

    Chen, Xia; Wang, Li; Tong, Lige; Sun, Shufeng; Yue, Xianfang; Yin, Shaowu; Zheng, Lifang

    2013-01-01

    China's carbon dioxide (CO 2 ) emission ranks highest in the world. China is committed to reduce its CO 2 emission by 40% to 45% from the 2005 levels by 2020. To fulfill the target, China's CO 2 emission reduction must exceed 6995 million tons. Energy consumption and CO 2 emission of China's urban district heating (UDH) are increasing. The current policy implemented to improve UDH focuses on replacing coal with natural gas to reduce energy consumption and CO 2 emission to some extent. This paper proposes that heat pump heating (HPH) could serve as a replacement for UDH to help realize energy-saving and emission-reduction goals to a greater extent. The paper also analyzes the impact of this replacement on the heating and power generation sectors. The results show that replacing coal-based UDH with HPH decreases energy consumption and CO 2 emission by 43% in the heating sector. In the power generation sector, the efficiency of power generation at the valley electricity time increases by 0.512%, and the ratio of peak–valley difference decreases by 16.5%. The decreases in CO 2 emission from the heating and power generation sectors cumulatively account for 5.55% of China's total CO 2 emission reduction target in 2020. - Highlights: ► Replacing urban district heating with heat pump heating. ► Impact of heat pump heating on heating and power generation sectors. ► Potential of energy saving and emission reduction for heat pump heating. ► China should adjust current urban heating strategy

  2. Product Platform Replacements

    DEFF Research Database (Denmark)

    Sköld, Martin; Karlsson, Christer

    2012-01-01

    . To shed light on this unexplored and growing managerial concern, the purpose of this explorative study is to identify operational challenges to management when product platforms are replaced. Design/methodology/approach – The study uses a longitudinal field-study approach. Two companies, Gamma and Omega...... replacement was chosen in each company. Findings – The study shows that platform replacements primarily challenge managers' existing knowledge about platform architectures. A distinction can be made between “width” and “height” in platform replacements, and it is crucial that managers observe this in order...... to challenge their existing knowledge about platform architectures. Issues on technologies, architectures, components and processes as well as on segments, applications and functions are identified. Practical implications – Practical implications are summarized and discussed in relation to a framework...

  3. Green certificate system for heating - principal and practical challenges

    International Nuclear Information System (INIS)

    Eldegard, Tom

    2002-01-01

    A certificate system with an obligation to buying is a very relevant instrument in energy policy in order to stimulate the implementation of new renewable energy sources. This solution is widely supported; it is being institutionalized in many countries, especially in Europe and in the electricity sector, and the heating sector is soon to follow. This report discusses the broad lines of a possible green certificate system for the heating sector in Norway and concludes that it is might well be linked with a similar system for the electricity sector. For Norway, an isolated certificate system for the electricity sector would not be cost-effective. This is because this system would emphasize relatively expensive renewable electric energy rather than utilizing the large potential for replacing the electric heating of buildings with much cheaper renewable heat

  4. Efficiency potentials of heat pumps with combined heat and power. For maximum reduction of CO2 emissions and for electricity generation from fossil fuels with CO2 reduction in Switzerland

    International Nuclear Information System (INIS)

    Rognon, F.

    2005-06-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at how the efficiency potential of heat pumps together with combined heat and power systems can help provide a maximum reduction of CO 2 emissions and provide electricity generation from fossil fuel in Switzerland together with reductions in CO 2 emissions. In Switzerland, approximately 80% of the low-temperature heat required for space-heating and for the heating-up of hot water is produced by burning combustibles. Around a million gas and oil boilers were in use in Switzerland in 2000, and these accounted for approximately half the country's 41.1 million tonnes of CO 2 emissions. The authors state that there is a more efficient solution with lower CO 2 emissions: the heat pump. With the enormous potential of our environment it would be possible to replace half the total number of boilers in use today with heat pumps. This would be equivalent to 90 PJ p.a. of useful heat, or 500,000 systems. The power source for heat pumps should come from the substitution of electric heating systems (electric resistor-based systems) and from the replacement of boilers. This should be done by using combined heat and power systems with full heat utilisation. This means, according to the authors, that the entire required power source can be provided without the need to construct new electricity production plants. The paper examines and discusses the theoretical, technical, market and realisable potentials

  5. Feeder replacement tooling and processes

    International Nuclear Information System (INIS)

    Mallozzi, R.; Goslin, R.; Pink, D.; Askari, A.

    2008-01-01

    Primary heat transport system feeder integrity has become a concern at some CANDU nuclear plants as a result of thinning caused by flow accelerated corrosion (FAC). Feeder inspections are indicating that life-limiting wall thinning can occur in the region between the Grayloc hub weld and second elbow of some outlet feeders. In some cases it has become necessary to replace thinned sections of affected feeders to restore feeder integrity to planned end of life. Atomic Energy of Canada Limited (AECL) and Babcock and Wilcox Canada Ltd. (B and W) have developed a new capability for replacement of single feeders at any location on the reactor face without impacting or interrupting operation of neighbouring feeders. This new capability consists of deploying trained crews with specialized tools and procedures for feeder replacements during planned outages. As may be expected, performing single feeder replacement in the congested working environment of an operational CANDU reactor face involves overcoming many challenges with respect to access to feeders, available clearances for tooling, and tooling operation and performance. This paper describes some of the challenges encountered during single feeder replacements and actions being taken by AECL and B and W to promote continuous improvement of feeder replacement tooling and processes and ensure well-executed outages. (author)

  6. Thermodynamic performance analysis and algorithm model of multi-pressure heat recovery steam generators (HRSG) based on heat exchangers layout

    International Nuclear Information System (INIS)

    Feng, Hongcui; Zhong, Wei; Wu, Yanling; Tong, Shuiguang

    2014-01-01

    Highlights: • A general model of multi-pressure HRSG based on heat exchangers layout is built. • The minimum temperature difference is introduced to replace pinch point analysis. • Effects of layout on dual pressure HRSG thermodynamic performances are analyzed. - Abstract: Changes of heat exchangers layout in heat recovery steam generator (HRSG) will modify the amount of waste heat recovered from flue gas; this brings forward a desire for the optimization of the design of HRSG. In this paper the model of multi-pressure HRSG is built, and an instance of a dual pressure HRSG under three different layouts of Taihu Boiler Co., Ltd. is discussed, with specified values of inlet temperature, mass flow rate, composition of flue gas and water/steam parameters as temperature, pressure etc., steam mass flow rate and heat efficiency of different heat exchangers layout of HRSG are analyzed. This analysis is based on the laws of thermodynamics and incorporated into the energy balance equations for the heat exchangers. In the conclusion, the results of the steam mass flow rate, heat efficiency obtained for three heat exchangers layout of HRSGs are compared. The results show that the optimization of heat exchangers layout of HRSGs has a great significance for waste heat recovery and energy conservation

  7. Framework for replacing steel with aluminum fibers in bituminous mixes

    NARCIS (Netherlands)

    Pavlatos, N.; Apostolidis, P.; Scarpas, Athanasios

    2018-01-01

    This research explores the incentives for replacing steel fibers with aluminum fibers in fiber modified bituminous mixes. In this work the focus is on fiber modified bituminous mixes especially designed for induction heating. Inductive fibers are heated up because eddy currents are generated -

  8. Project No. 6 - Replacement of the heating and steam plant

    International Nuclear Information System (INIS)

    2000-01-01

    At present the Ignalina NPP facilities and Visaginas town are supplied with heat and steam from the district heating facility at Ignalina NPP. A back-up system, dating from 1979, supplies heat and steam when the district heating system is under repair or in case of outages of units 1 and 2. The existing back-up system does no longer meet with applicable technical and safety standards. A breakdown of the back-up system might result in the interruption of the supply to Ignalina NPP of heat and steam necessary for a number of processes, including waste management. Reconstruction of the existing boiler houses is not economically viable option, nor recommendable, for safety reasons, as it would mean the temporary closing of the back-up system. Project activities includes the design, construction and commissioning of the proposed facility, including all licensing documentation

  9. Structural considerations in steam generator replacement

    International Nuclear Information System (INIS)

    Bertheau, S.R.; Gazda, P.A.

    1991-01-01

    Corrosion of the tubes and tube-support structures inside pressurized water reactor (PWR) steam generators has led many utilities to consider a replacement of the generators. Such a project is a major undertaking for a utility and must be well planned to ensure an efficient and cost-effective effort. This paper discusses various structural aspects of replacement options, such as total or partial generator replacement, along with their associated pipe cuts; major structural aspects associated with removal paths through the equipment hatch or through an opening in the containment wall, along with the related removal processes; onsite movement and storage of the generators; and the advantages and disadvantages of the removal alternatives. This paper addresses the major structural considerations associated with a steam generator replacement project. Other important considerations (e.g., licensing, radiological concerns, electrical requirements, facilities for management and onsite administrative activities, storage and fabrication activities, and offsite transportation) are not discussed in this paper, but should be carefully considered when undertaking a replacement project

  10. Alternatives for metal hydride storage bed heating and cooling

    International Nuclear Information System (INIS)

    Fisher, I.A.; Ramirez, F.B.; Koonce, J.E.; Ward, D.E.; Heung, L.K.; Weimer, M.; Berkebile, W.; French, S.T.

    1991-01-01

    The reaction of hydrogen isotopes with the storage bed hydride material is exothermic during absorption and endothermic during desorption. Therefore, storage bed operation requires a cooling system to remove heat during absorption, and a heating system to add the heat needed for desorption. Three storage bed designs and their associated methods of heating and cooling and accountability are presented within. The first design is the current RTF (Replacement Tritium Facility) nitrogen heating and cooling system. The second design uses natural convection cooling with ambient glove box nitrogen and electrical resistance for heating. This design is referred to as the Naturally Cooled/Electrically Heated (NCEH) design. The third design uses forced convection cooling with ambient glove box nitrogen and electrical resistance for heating. The design is referred to as the Forced Convection Cooled/Electrically Heated (FCCEH) design. In this report the operation, storage bed design, and equipment required for heating, cooling, and accountability of each design are described. The advantages and disadvantages of each design are listed and discussed. Based on the information presented within, it is recommended that the NCEH design be selected for further development

  11. 'Pioneer' - A controlled air-water heat pump for the replacement of oil-fired and electric heating systems; Geregelte Waermepumpe Pioneer. Geregelte Luft-Wasser-Waermepumpe fuer Sanierungen von Oel- und Elektroheizungen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Boeckh, P. von; Borer, M.; Borer, T. [Fachhochschule beider Basel FHBB, Dept. Industrie, Abtlg. Maschinenbau, Muttenz (Switzerland); Eggenberger, H.J. [Solartis GmbH, WP-Versuchslabor EICH, Fuellinsdorf (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that involved the development of an air-water heat pump system that could replace existing oil-fired and electric heating systems. The system features variable-frequency compressor and ventilator drives and was tested on a special test bed that provided appropriately prepared primary air. The measurements and optimisations made included the definition of optimal parameters for ventilator and de-icing system, measurement of performance coefficients and noise emissions as well as on the suitability of the system for hot-water generation. The authors quote figures that show that the performance of the variable-speed system is much better than systems running in stop-and-go mode.

  12. Physiochemical properties, microstructure, and probiotic survivability of nonfat goats' milk yogurt using heat-treated whey protein concentrate as fat replacer.

    Science.gov (United States)

    Zhang, Tiehua; McCarthy, James; Wang, Guorong; Liu, Yanyan; Guo, Mingruo

    2015-04-01

    There is a market demand for nonfat fermented goats' milk products. A nonfat goats' milk yogurt containing probiotics (Lactobacillus acidophilus, and Bifidobacterium spp.) was developed using heat-treated whey protein concentrate (HWPC) as a fat replacer and pectin as a thickening agent. Yogurts containing untreated whey protein concentrate (WPC) and pectin, and the one with only pectin were also prepared. Skim cows' milk yogurt with pectin was also made as a control. The yogurts were analyzed for chemical composition, water holding capacity (syneresis), microstructure, changes in pH and viscosity, mold, yeast and coliform counts, and probiotic survivability during storage at 4 °C for 10 wk. The results showed that the nonfat goats' milk yogurt made with 1.2% HWPC (WPC solution heated at 85 °C for 30 min at pH 8.5) and 0.35% pectin had significantly higher viscosity (P yogurts and lower syneresis than the goats' yogurt with only pectin (P yogurt samples did not change much throughout storage. Bifidobacterium spp. remained stable and was above 10(6) CFU g(-1) during the 10-wk storage. However, the population of Lactobacillus acidophilus dropped to below 10(6) CFU g(-1) after 2 wk of storage. Microstructure analysis of the nonfat goats' milk yogurt by scanning electron microscopy revealed that HWPC interacted with casein micelles to form a relatively compact network in the yogurt gel. The results indicated that HWPC could be used as a fat replacer for improving the consistency of nonfat goats' milk yogurt and other similar products. © 2015 Institute of Food Technologists®

  13. Heat generated by knee prostheses.

    Science.gov (United States)

    Pritchett, James W

    2006-01-01

    Temperature sensors were placed in 50 knees in 25 patients who had one or both joints replaced. Temperature recordings were made before walking, after walking, and after cycling. The heat generated in healthy, arthritic, and replaced knees was measured. The knee replacements were done using eight different prostheses. A rotating hinge knee prosthesis generated a temperature increase of 7 degrees C in 20 minutes and 9 degrees C in 40 minutes. An unconstrained ceramic femoral prosthesis articulating with a polyethylene tibial prosthesis generated a temperature increase of 4 degrees C compared with a healthy resting knee. The other designs using a cobalt-chrome alloy and high-density polyethylene had temperature increases of 5 degrees-7 degrees C with exercise. Frictional heat generated in a prosthetic knee is not immediately dissipated and may result in wear, creep, and other degenerative processes in the high-density polyethylene. Extended periods of elevated temperature in joints may inhibit cell growth and perhaps contribute to adverse performance via bone resorption or component loosening. Prosthetic knees generate more heat with activity than healthy or arthritic knees. More-constrained knee prostheses generate more heat than less-constrained prostheses. A knee with a ceramic femoral component generates less heat than a knee with the same design using a cobalt-chromium alloy.

  14. CO{sub 2} reduction: potential of heat pumps when used together with combined heat and power units; Potentiel energetique des pompes a chaleur combinees au couplage chaleur-force. Pour une reduction maximale des emissions de CO{sub 2} et pour une production de courant fossile avec reduction des emissions de CO{sub 2} en Suisse - Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Rognon, F.

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined the potential of using heat pumps in combination with Combined Heat and Power (CHP) units as a replacement for fossil-fuel fired heating units in Switzerland. The electrical power produced by the CHP units can be used to provide power for the drives of heat pump systems. The author states that the fossil fuel consumption and the resulting emissions of carbon dioxide can be halved using this combination. Also, even more efficient systems using power produced in larger combined-cycle power generation are discussed. Further examples of how fossil-fired power generation in combination with heat pumps can not only replace fossil-fuelled heating systems but also provide additional electricity too are given. This overview includes figures on the potential of such combined systems.

  15. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25

    International Nuclear Information System (INIS)

    2001-03-01

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the extent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost everybody are

  16. Life explained by heat engines

    NARCIS (Netherlands)

    Muller, A.W.J.; Seckbach, J.

    2012-01-01

    Mitochondria are in essence fuel cells that use organics as reductant and oxygen as oxidant. In engineering, increasing attention is being given to the replacement of the internal combustion engine by the fuel cell. According to the Thermosynthesis theory, a similar replacement of heat engines by

  17. DEAP actuator and its high voltage driver for heating valve application

    DEFF Research Database (Denmark)

    Huang, Lina; Nørmølle, L. F.; Sarban, R.

    2014-01-01

    Due to the advantages of DEAP (Dielectric Electro Active Polymer) material, such as light weight, noise free operation, high energy and power density and fast response speed, it can be applied in a variety of applications to replace the conventional transducers or actuators. This paper introduces...... DEAP actuator to the heating valve system and conducts a case study to discuss the feasible solution in designing DEAP actuator and its driver for heating valve application. First of all, the heating valves under study are briefly introduced. Then the design and the development for DEAP actuator...... is illustrated in detail, and followed by the detailed investigation of the HV driver for DEAP actuator. In order to verify the implementation, the experimental measurements are carried out for DEAP actuator, its HV driver as well as the entire heating valve system....

  18. D-Zero HVAC Heat Pump Controls

    International Nuclear Information System (INIS)

    Markley, Dan

    2004-01-01

    This engineering note documents the integration of Dzero Heat Pump 1 through Heat Pump 15 into the cryo/gas process control system commonly referred to as the cryo control system. Heat pumps 1 through 15 control the ambient air temperature on the 3rd, 5th, and 6th floor office areas at Dzero. The entire Johnson HVAC control system was replaced with a Siemens control system in 1999 leaving behind the 15 heat pumps with stand-alone Johnson controllers. Now, these 15 heat pump Johnson controllers are being replaced with small stand alone Beckhoff BC9000 controllers. The Beckhoff BC9000 controllers are network able into the existing Intellution control system. The Beckhoff BC9000 controllers use the cryo private Ethernet network and an OPC driver to get data into the Intellution SCADA node databases. The BC9000 is also programmed over this same Ethernet network.

  19. 46 CFR 53.01-10 - Service restrictions and exceptions (replaces HG-101).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Service restrictions and exceptions (replaces HG-101... ENGINEERING HEATING BOILERS General Requirements § 53.01-10 Service restrictions and exceptions (replaces HG... lieu of the requirements in HG-101 of section IV of the ASME Boiler and Pressure Vessel Code...

  20. District heating from a community perspective : the Aboriginal experience

    Energy Technology Data Exchange (ETDEWEB)

    Wapachee, L. [Ouje-Bougoumou First Nation, Ouje-Bougoumou, PQ (Canada)

    2010-07-01

    This presentation discussed an alternative energy system that was incorporated into the planning and development of a new permanent village for the Ouje-Bougoumou Cree. The history of the Ouje-Bougoumou Cree people and its involvement with industry and governmental bodies were described at length. To provide for the long-term financial requirements of the community in a manner in harmony with Cree environmental philosophy, an appropriate alternative energy system was incorporated into the village architecture. Biomass district heating is an alternative energy system that uses a single source of energy to heat the community's houses and buildings. In this case, sawdust fuel is used to heat water, which is pumped through underground pipes to heat buildings before it cycles back to the plant for reheating. This system converts a waste product into usable energy, capturing and recycling energy while replacing conventional sources, such as oil, gas, or hydroelectricity, and creating local employment. Heat is the largest portion of the community's energy requirement. 11 figs., 1 tab.

  1. TPX heating and cooling system

    International Nuclear Information System (INIS)

    Kungl, D.J.; Knutson, D.S.; Costello, J.; Stoenescu, S.; Yemin, L.

    1995-01-01

    TPX, while having primarily super-conducting coils that do not require water cooling, still has very significant water cooling requirements for the plasma heating systems, vacuum vessel, plasma facing components, diagnostics, and ancillary equipment. This is accentuated by the 1000-second pulse requirement. Two major design changes, which have significantly affected the TPX Heating and Cooling System, have been made since the conceptual design review in March of 1993. This paper will discuss these changes and review the current status of the conceptual design. The first change involves replacing the vacuum vessel neutron shielding configuration of lead/glass composite tile by a much simpler and more reliable borated water shield. The second change reduces the operating temperature of the vacuum vessel from 150 C to ≥50 C. With this temperature reduction, all in-vessel components and the vessel will be supplied by coolant at a common ≥50 C inlet temperature. In all, six different heating and cooling supply requirements (temperature, pressure, water quality) for the various TPX components must be met. This paper will detail these requirements and provide an overview of the Heating and Cooling System design while focusing on the ramifications of the TPX changes described above

  2. Can photovoltaic replace nuclear?

    International Nuclear Information System (INIS)

    2017-01-01

    As the French law on energy transition for a green growth predicts that one third of nuclear energy production is to be replaced by renewable energies (wind and solar) by 2025, and while the ADEME proposes a 100 per cent renewable scenario for 2050, this paper proposes a brief analysis of the replacement of nuclear energy by solar photovoltaic energy. It presents and discusses some characteristics of photovoltaic production: production level during a typical day for each month (a noticeable lower production in December), evolution of monthly production during a year, evolution of the rate between nuclear and photovoltaic production. A cost assessment is then proposed for energy storage and for energy production, and a minimum cost of replacement of nuclear by photovoltaic is assessed. The seasonal effect is outlined, as well as the latitude effect. Finally, the authors outline the huge cost of such a replacement, and consider that public support to new photovoltaic installations without an at least daily storage mean should be cancelled

  3. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25; Solvarmedrevet koeling. Forberedelse af evt. deltagelse i IEA, Solar Heating Cooling Task 25

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the exent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost

  4. Analysis of the phonon surface specific heat using Green function techniques

    International Nuclear Information System (INIS)

    Silva Carrico, A. da; Albuquerque, E.L. de

    1981-01-01

    Green functions are derived for the displacement associated with acoustic vibrations in isotropic elastic media and used to evaluate the surface specific heat in the harmonic approximation. Only the low-temperature limit case is considered since, provided K sub(B) T/h is very small, the dispersion relation for the three acoustic branches can be replaced by its long-wavelenght form. The contributions of surface elastic waves of the Rayleigh and Love types are pointed out and their features discussed. The nature of the result and their relations to previous work in this field is also presented and discussed. (Author) [pt

  5. Analysis of the phonon surface specific heat using Green function techniques

    International Nuclear Information System (INIS)

    Carrico, A.S.; Albuquerque, E.L.

    1980-01-01

    Green functions are derived for the displacement associated with acoustic vibrations in isotropic elastic media and used to evaluate the surface specific heat in the harmonic approximation. We consider only the low-temperature limit case since, provided K B 1/h is very samll, we can replace the dispersion relation for the three acoustic branches by its long-wavelenghts form. The contributions of surface elastic waves ot the Rayleigh and Love types are pointed out and their features discussed. The nature of the result and their relations to previous work in this field is also presented and discussed. (author) [pt

  6. Light and heavy water replacing system in reactor container

    International Nuclear Information System (INIS)

    Miyamoto, Keiji.

    1979-01-01

    Purpose: To enable to determine the strength of a reactor container while neglecting the outer atmospheric pressure upon evacuation, by evacuating the gap between the reactor container and a biological thermal shield, as well as the container simultaneously upon light water - heavy water replacement. Method: Upon replacing light water with heavy water by vacuum evaporation system in a nuclear reactor having a biological thermal shield surrounding the reactor container incorporating therein a reactor core by way of a heat expansion absorbing gap, the reactor container and the havy water recycling system, as well as the inside of heat expansion absorbing gap are evacuated simultaneously. This enables to neglect the outer atmospheric outer pressure upon evacuation in the determination of the container strength, and the thickness of the container can be decreased by so much as the external pressure neglected. (Moriyama, K.)

  7. Political Participation Online: The Replacement and the Mobilisation Hypotheses Revisited

    DEFF Research Database (Denmark)

    Jensen, Jakob Linaa

    2013-01-01

    This article discusses the state of political participation online more than ten years after the Internet’s great popular breakthrough as an everyday medium. Denmark is used as a case study to critically re-examine the frequently discussed replacement and mobilisation hypotheses on behalf of the ...... participation, efficacy and social capital seem to have less impact on online political participation. In the end, these findings are related to more overall discussions on the democratising potential of the Internet.......This article discusses the state of political participation online more than ten years after the Internet’s great popular breakthrough as an everyday medium. Denmark is used as a case study to critically re-examine the frequently discussed replacement and mobilisation hypotheses on behalf...... of the Internet. The pure replacement hypothesis is rejected. Instead, it is found that the Internet still supplements rather than replaces other media, even among heavy Internet users. The Internet is one among several media used by ‘media omnivores’, and political participation online supplements rather than...

  8. Strategies for replacement of obsolete equipment - including reverse engineering

    International Nuclear Information System (INIS)

    Irish, C.S.

    2000-01-01

    The presentation shall detail the challenges facing nuclear power plants with the replacement of obsolete equipment and the strategies used to overcome those challenges. The presentation will outline the common equipment types which are either obsolete or are becoming obsolete, with a focus on safety related components. The four options of the obsolete equipment replacement philosophy will be presented with replacement examples from each of the options shown for discussion purposes. Detailed examples from each of the four obsolete equipment replacement options of: commercially available equivalent component; modification of a commercial available component; reverse engineering of the original component; and finally, design changes using a new component, shall be presented to evaluate the advantages and disadvantages of each option. The presentation will include the technical challenges, cost and schedule concerns for each of the four options. Emphasis will be placed on the technological challenges associated with replacing old and obsolete equipment. The following is a bullet list of the challenges which will be discussed: Missing, misleading or no information on the original component; Acquiring information from the original equipment manufacturer and the plant; Using a sample component for the replacement evaluation and or reverse engineering; and Reverse engineering old equipment with newly available discrete components. The presentation will include the equivalency documentation using the EPRI guidelines when replacing an original component with a different yet form, fit and functional equivalent component. The presentation will conclude with a discussion of the advantages and disadvantages of the replacement of the obsolete component with a form, fit and functional equivalent component vs. the replacement of the original component with a new component with today's technology. (author)

  9. Heat and power from MicroGen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-10-01

    This paper reports on the design of a domestic gas-fired cogeneration system developed to replace the central heating boiler. Technical details of the MicroGen demonstration unit are given, and the use of a Linear Free Piston Stirling Engine as the prime mover, and the results of modelling studies of energy demand indicating cost savings compared to conventional boilers are discussed. The enhancement of the benefits of micro-cogeneration through use of thermal and power storage and energy demand management, and the impact of micro-cogeneration on energy use in the home are considered. The UK and European Commission's targets for increased cogeneration capacity are noted.

  10. Investigations on installation of the heat exchange system in geothermal wells; Chinetsu koseinai netsukokan system donyu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The heat exchange system in geothermal wells is a system that replaces the air source heat pump and uses underground beds or groundwater as a heat source to heat rooms by collecting underground heat in winter, and cool rooms in summer by operating a heat media circuit in reverse direction through the action of a reverse flow valve to discharge heat underground. This paper describes feasibility investigations on the system including its technical trend for introducing the system technology. Technological and economic discussions were given by classifying the intra-well heat exchange device in its installation direction (horizontal loop type and vertical installation type), underground heat exchange media (antifreeze solution/water cyclic system and direct expansion system), and underground heat transfer (heat conduction system and heat convection system). As a result of discussing each system, it was concluded that the following two systems are promising: A = vertical installation, antifreeze solution/water cyclic and heat conduction system, and B = vertical installation, antifreeze solution/water cyclic and heat convection system. Since the system B was found to have better efficiency and economy among both systems, it is necessary to verify an intra-well heat exchange system and operation methods that suit the system B effectively. 21 refs., 8 tabs.

  11. Optimization on replacement and inspection period of plant equipment

    International Nuclear Information System (INIS)

    Takase, Kentaro; Kasai, Masao

    2004-01-01

    Rationalization of the plant maintenance is one of the main topics being investigated in Japanese nuclear power industries. Optimization of the inspection and replacement period of equipments is effective for the maintenance cost reduction. The more realistic model of the replacement policy is proposed in this study. It is based on the classical replacement policy model and its cost is estimated. Then, to consider the inspection for the maintenance, the formulation that includes the risk concept is discussed. Based on it, two variations of the combination of the inspection and the replacement are discussed and the costs are estimated. In this study the effect of the degradation of the equipment is important. The optimized maintenance policy depends on the existence of significant degradation. (author)

  12. Heat Roadmap Europe 1

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    2012-01-01

    Heat Roadmap Europe (Pre-study 1) investigates the role of district heating in the EU27 energy system by mapping local conditions across Europe, identifying the potential for district heating expansion, and subsequently simulating the potential resource in an hourly model of the EU27 energy system....... In 2010, approximately 12% of the space heating demand in Europe is met by district heating, but in this study four alternative scenarios are considered for the EU27 energy system: 1. 2010 with 30% district heating 2. 2010 with 50% district heating 3. 2030 with 30% district heating 4. 2050 with 50......% district heating These scenarios are investigated in two steps. Firstly, district heating replaces individual boilers by converting condensing power plants to combined heat and power plants (CHP) to illustrate how district heating improves the overall efficiency of the energy system. In the second step...

  13. Survey of high-temperature nuclear heat application

    International Nuclear Information System (INIS)

    Kirch, N.; Schaefer, M.

    1984-01-01

    Nuclear heat application at high temperatures can be divided into two areas - use of high-temperature steam up to 550 deg. C and use of high-temperature helium up to about 950 deg. C. Techniques of high-temperature steam and heat production and application are being developed in several IAEA Member States. In all these countries the use of steam for other than electricity production is still in a project definition phase. Plans are being discussed about using steam in chemical industries, oil refineries and for new synfuel producing plants. The use of nuclear generated steam for oil recovery from sands and shale is also being considered. High-temperature nuclear process heat production gives new possibilities for the application of nuclear energy - hard coals, lignites, heavy oils, fuels with problems concerning transport, handling and pollution can be converted into gaseous or liquid energy carriers with no loss of their energy contents. The main methods for this conversion are hydrogasification with hydrogen generated by nuclear heated steam reformers and steam gasification. These techniques will allow countries with large coal resources to replace an important part of their natural gas and oil consumption. Even countries with no fossil fuels can benefit from high-temperature nuclear heat - hydrogen production by thermochemical water splitting, nuclear steel making, ammonia production and the chemical heat-pipe system are examples in this direction. (author)

  14. Strategies for replacement of obsolete equipment, including reverse engineering

    International Nuclear Information System (INIS)

    Irish, C.S.

    2003-01-01

    The presentation shall detail the challenges facing nuclear power plants with the replacement of obsolete equipment and the strategies used to overcome those challenges. The presentation will outline the common equipment types which are either obsolete or are becoming obsolete, with a focus on safety related components. The four options of the obsolete equipment replacement philosophy will be presented with replacement examples from each of the options shown for discussion purposes. Detailed examples from each of the four obsolete equipment replacement options of, (1) commercially available equivalent component, (2) modification of a commercial available component, (3) reverse engineering of the original component and finally (4) design changes using a new component, shall be presented to evaluate the advantages and disadvantages of each option. The presentation will include the technical challenges, cost and schedule concerns for each of the four options. Emphasis will be placed on the technological challenges associated with replacing old and obsolete equipment. The following is a bullet list of the challenges which will be discussed: 1) Missing, misleading or no information on the original component. 2) Acquiring information from the original equipment manufacturer and the plant. 3) Using a sample component for the replacement evaluation and or reverse engineering. 4) Reverse engineering old equipment with newly available discrete components. The presentation will include the equivalency documentation using the EPRI guidelines when replacing an original component with a different yet form, fit and functional equivalent component. The presentation will conclude with a discussion of the advantages and disadvantages of the replacement of the obsolete component with a form, fit and functional equivalent component vs. the replacement of the original component with a new component with today's technology. (author)

  15. Mode selection of China's urban heating and its potential for reducing energy consumption and CO2 emission

    International Nuclear Information System (INIS)

    Chen, Xia; Wang, Li; Tong, Lige; Sun, Shufeng; Yue, Xianfang; Yin, Shaowu; Zheng, Lifang

    2014-01-01

    China's carbon dioxide (CO 2 ) emission ranks the highest in the world. CO 2 emission from urban central heating, which has an average annual growth rate of 10.3%, is responsible for 4.4% of China's total CO 2 emission. The current policy for improving urban central heating focuses on replacing coal with natural gas. This paper analyzes the existing situation and problems pertaining to urban heating, and evaluates the potential for reducing energy consumption and CO 2 emission by heat pump heating. The results show that the current policy of replacing coal with natural gas for urban central heating decreases energy consumption and CO 2 emission by 16.6% and 63.5%, respectively. On the other hand, replacing coal-based urban central heating with heat pump heating is capable of decreasing energy consumption and CO 2 emission by 57.6% and 81.4%, respectively. Replacing both urban central and decentralized heating with heat pump heating can lead to 67.7% and 85.8% reduction in energy consumption and CO 2 emission, respectively. The decreases in CO 2 emission will account for 24.5% of China's target to reduce total CO 2 emission by 2020. - Highlights: • Existing situation and problems of urban heating in China. • Feasibility of heat pump heating in China. • Potential of energy saving and emission reduction for heat pump heating. • China should adjust urban heating strategy. • Replacing urban central heating and decentralized heating with heat pump heating

  16. Decreasing of energy consumption for space heating in existing residential buildings; Combined geothermal and gas district heating systems

    International Nuclear Information System (INIS)

    Rosca, Marcel

    2000-01-01

    The City of Oradea, Romania, has a population of about 230 000 inhabitants. Almost 70% of the total heat demand, including industrial, is supplied by a classical East European type district heating system. The heat is supplied by two low grade coal fired co-generation power plants. The oldest distribution networks and substitutions, as well as one power plant, are 35 years old and require renovation or even reconstruction. The geothermal reservoir located under the city supplies at present 2,2% of the total heat demand. By generalizing the reinjection, the production can be increased to supply about 8% of the total heat demand, without any significant reservoir pressure or temperature decline over 25 years. Another potential energy source is natural gas, a main transport pipeline running close to the city. Two possible scenarios are envisaged to replace the low grade coal by natural gas and geothermal energy as heat sources for Oradea. In one scenario, the geothermal energy supplies the heat for tap water heating and the base load for space heating in a limited number of substations, with peak load being produced by natural gas fired boilers. In the other scenario, the geothermal energy is only used for tap water heating. In both scenarios, all substations are converted into heat plants, natural gas being the main energy source. The technical, economic, and environmental assessment of the two proposed scenarios are compared with each other, as well as with the existing district heating system. Two other possible options, namely to renovate and convert the existing co-generation power plants to natural gas fired boilers or to gas turbines, are only briefly discussed, being considered unrealistic, at least for the short and medium term future. (Author)

  17. Use of fiber reinforced concrete for concrete pavement slab replacement.

    Science.gov (United States)

    2014-03-01

    Unlike ordinary concrete pavement, replacement concrete slabs need to be open to traffic within 24 hours (sooner in : some cases). Thus, high early-strength concrete is used; however, it frequently cracks prematurely as a result of high : heat of hyd...

  18. Installation technology of reactor internals on shroud replacement work

    International Nuclear Information System (INIS)

    Miyano, Hiroshi

    1999-01-01

    Since the replacement of large welded reactor internals much as a core shroud did not have a precedent in the world, quite a few technologies had to be developed. Especially for the installation of new core shroud, jet pumps, core plate and top guide, the accurate weld and fit-up techniques for large structures was required to secure their integrity. The vessel shielding system was utilized to reduce general area dose rate such that all replacement work. For jet pump installation, automatic remote welding machines were used for high radiation area. As for the core shroud, shroud support weld prep machining tool with high accuracy, jacking system to support fit-up, new weld machine for small work space and low heat input weld joint were developed. Shroud replacement work in Fukushima Dai-ichi NPS Unit 3 (1F-3) with application of these development techniques, was successfully accomplished. The technology is applied for 1F-2 replacement work also. (author)

  19. New nuclear heat sources for district heating

    International Nuclear Information System (INIS)

    Lerouge, B.

    1975-01-01

    The means by which urban oil heating may be taken over by new energy sources, especially nuclear, are discussed. Several possibilities exist: pressurized water reactors for high powers, and low-temperature swimming-pool-type process-heat reactors for lower powers. Both these cases are discussed [fr

  20. Decentralized central heating

    Energy Technology Data Exchange (ETDEWEB)

    Savic, S.; Hudjera, A.

    1994-08-04

    The decentralized central heating is essentially based on new technical solutions for an independent heating unit, which allows up to 20% collectible energy savings and up to 15% savings in built-in-material. These savings are already made possible by the fact that the elements described under point A are thus eliminated from the classical heating. The thus superfluous made elements are replaced by new technical solutions described under point B - technical problem - and point E - patent claim. The technical solutions described in detail under point B and point E form together a technical unit and are essential parts of the invention protected by the patent. (author)

  1. A Bayesian perspective on age replacement with minimal repair

    International Nuclear Information System (INIS)

    Sheu, S.-H.; Yeh, R.H.; Lin, Y.-B.; Juang, M.-G.

    1999-01-01

    In this article, a Bayesian approach is developed for determining an optimal age replacement policy with minimal repair. By incorporating minimal repair, planned replacement, and unplanned replacement, the mathematical formulas of the expected cost per unit time are obtained for two cases - the infinite-horizon case and the one-replacement-cycle case. For each case, we show that there exists a unique and finite optimal age for replacement under some reasonable conditions. When the failure density is Weibull with uncertain parameters, a Bayesian approach is established to formally express and update the uncertain parameters for determining an optimal age replacement policy. Further, various special cases are discussed in detail. Finally, a numerical example is given

  2. Corrosion resistance of heat exchange equipment in hydrotreating Orenburg Condensate

    International Nuclear Information System (INIS)

    Teslya, B.M.; Burlov, V.V.; Parputs, I.V.; Parputs, T.P.

    1986-01-01

    The authors study the corrosion resistance of materials of construction and select appropriate materials for the fabrication of heat exchange equipment that will be serviceable under hydrotreating conditions. This paper discusses the Orenburg condensate hydrotreating unit which has been shut down repeatedly for repair because of corrosion damage to components of heat exchangers in the reactor section: tube bundles (08Kh18N10T steel), corrugated compensators (12Kh18N10T steel), and pins of the floating heads (37Kh13N8G8MFB steel). The authors recommend that the tube bundles and the compensators in heat exchangers in the reaction section should be fabricated of 08Kh21N6M2T or 10Kh17N13M2T steel. The pins have been replaced by new pins made of 10Kh17N13 X M2T steel, increasing the service life from 6-12 months to 2 years

  3. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  4. Soybean-derived biofuels and home heating fuels.

    Science.gov (United States)

    Mushrush, George W; Wynne, James H; Willauer, Heather D; Lloyd, Christopher L

    2006-01-01

    It is environmentally enticing to consider replacing or blending petroleum derived heating fuels with biofuels for many reasons. Major considerations include the soaring worldwide price of petroleum products, especially home heating oil, the toxicity of the petroleum-derived fuels and the environmental damage that leaking petroleum tanks afford. For these reasons, it has been suggested that domestic renewable energy sources be considered as replacements, or at the least, as blending stocks for home heating fuels. If recycled soy restaurant cooking oils could be employed for this purpose, this would represent an environmental advantage. Renewable plant sources of energy tend to be less toxic than their petroleum counterparts. This is an important consideration when tank leakage occurs. Home fuel oil storage tanks practically always contain some bottom water. This water environment has a pH value that factors into heating fuel stability. Therefore, the question is: would the biofuel help or exacerbate fuel stability and furnace maintenance issues?

  5. Steam generator replacement: a story of continuous improvement

    International Nuclear Information System (INIS)

    Sills, M.S.; Wilkerson, R.

    2009-01-01

    This paper provides a review of the history of steam generator replacement in the US focusing on the last five years. From the early replacements in the 1980s, there have been major technology improvements resulting in dramatically shorter outages and reduced radiological exposure for workers. Even though the changes for the last five years have been less dramatic, the improvement trend continues. No two steam generator replacement (SGR) projects are the same and there are some major differences including; the access path for the components to containment (is a construction opening in containment required), type of containment, number of steam generators, one piece or two piece replacement, plant type (Westinghouse, CE or B and W) and plant layout. These differences along with other variables such as delays due to plant operations and other activities not related to the steam generator replacement make analysis of performance data difficult. However, trends in outage performance and owner expectations can be identified. How far this trend will go is also discussed. Along with the trend of improved performance, there is also a significant variation in performance. Some of the contributors to this variation are identified. This paper addresses what is required for a successful outage, meeting the increasing expectations and setting new records. The authors will discuss various factors that contribute to the success of a steam generator replacement. These factors include technical issues and, equally important, organizational interface and the role the customer plays. Recommendations are provided for planning a successful steam generator replacement outage. (author)

  6. Heating profiles on ICRF antenna Faraday shields

    International Nuclear Information System (INIS)

    Taylor, D.J.; Baity, F.W.; Hahs, C.L. Riemer, B.W.; Ryan, D.M.; Williamson, D.E.

    1992-01-01

    Poor definition of the heating profiles that occur during normal operation of Faraday shields for ion cyclotron resonant frequency (ICRF) antennas has complicated the mechanical design of ICRF system components. This paper reports that at Oak Ridge National Laboratory (ORNL), Faraday shield analysis is being used in defining rf heating profiles. In recent numerical analyses of proposed hardware for the Burning Plasma Experiment (BPX) and DIII-D, rf magnetic fields at Faraday shield surfaces were calculated, providing realistic predictions of the induced skin currents flowing on the shield elements and the resulting dissipated power profile. Detailed measurements on mock-ups of the Faraday shields for DIII-D and the Tokamak Fusion Test Reactor (TFTR) confirmed the predicted magnetic field distributions. A conceptual design for an uncooled Faraday shield for the BPX ion cyclotron resonance heating (ICRH) antenna, which should withstand the proposed long-pulse operation, has been completed. The analytical effort is described in detail, with emphasis on the design work for the BPX ICRH antenna conceptual design and for the replacement Faraday shield for the DIII-D FWCD antenna. Results of analyses are shown, and configuration issues involved in component modeling are discussed

  7. Steam generator replacement at Doel 3 NPP (Belgium)

    International Nuclear Information System (INIS)

    Danhier, B.

    1993-01-01

    The reasons are presented that led to the conclusion that the most cost-effective strategy for the Doel 3 unit was the immediate replacement of the SG. Discussed are the advantages and drawbacks of the replacement techniques, the so-called 2, 3 and 4 cuts methods. The advantages are emphasized of intensive use of computer aided engineering in this kind of backfitting. The methodology applied to combine a power uprating of 10% over the nominal power with the steam generator replacement is presented. (author) 1 fig

  8. Theoretical study of heat pump system using CO2/dimethylether as refrigerant

    Directory of Open Access Journals (Sweden)

    Fan Xiao-Wei

    2013-01-01

    Full Text Available Nowadays, HCFC22 is widely used in heat pump systems in China, which should be phased out in the future. Thus, eco-friendly mixture CO2/dimethylether is proposed to replace HCFC22. Compared with pure CO2 and pure dimethylether, the mixture can reduce the heat rejection pressure, and suppress the flammability and explosivity of pure dimethylether. According to the Chinese National Standards on heat pump water heater and space heating system, performances of the subcritical heat pump system are discussed and compared with those of the HCFC22 system. It can be concluded that CO2 /dimethylether mixture works efficiently as a refrigerant for heat pumps with a large heat-sink temperature rise. When mass fraction of dimethylether is increased, the heat rejection pressure is reduced. Under the nominal working condition, there is an optimal mixture mass fraction of 28/72 of CO2/dimethylether for water heater application under conventional condensation pressure, 3/97 for space heating application. For water heater application, both the heating coefficient of performance and volumetric heating capacity increase by 17.90% and 2.74%, respectively, compared with those of HCFC22 systems. For space heating application, the heating coefficient of performance increases by 8.44% while volumetric heating capacity decreases by 34.76%, compared with those of HCFC22 systems. As the superheat degree increases, both the heating coefficient of performance and volumetric heating capacity tend to decrease.

  9. News from heat-pump research - Large-scale heat pumps, components, heat pumps and solar heating; News aus der Waermepumpen-Forschung - Gross-Waermepumpen, Komponenten, Waermepumpe und Solar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-15

    These proceedings summarise the presentations made at the 16{sup th} annual meeting held by the Swiss Federal Office of Energy's Heat Pump Research Program in Burgdorf, Switzerland. The proceedings include contributions on large-scale heat pumps, components and the activities of the heat pump promotion society. A summary of targets and trends in energy research in general is presented and an overview of the heat pump market in 2009 and future perspectives is given. International work within the framework of the International Energy Agency's heat pump group is reviewed, including solar - heat pump combinations. Field-monitoring and the analysis of large-scale heat pumps are discussed and the importance of the use of correct concepts in such installations is stressed. Large-scale heat pumps with carbon dioxide as working fluid are looked at, as are output-regulated air/water heat pumps. Efficient system solutions with heat pumps used both to heat and to cool are discussed. Deep geothermal probes and the potential offered by geothermal probes using carbon dioxide as a working fluid are discussed. The proceedings are rounded off with a list of useful addresses.

  10. Environmental flows and life cycle assessment of associated petroleum gas utilization via combined heat and power plants and heat boilers at oil fields

    International Nuclear Information System (INIS)

    Rajović, Vuk; Kiss, Ferenc; Maravić, Nikola; Bera, Oskar

    2016-01-01

    Highlights: • Environmental impact of associated petroleum gas flaring is discussed. • A modern trend of introducing cogeneration systems to the oil fields is presented. • Three alternative utilization options evaluated with life cycle assessment method. • Producing electricity and/or heat instead of flaring would reduce impacts. - Abstract: Flaring of associated petroleum gas is a major resource waste and causes considerable emissions of greenhouse gases and air pollutants. New environmental regulations are forcing oil industry to implement innovative and sustainable technologies in order to compete in growing energy market. A modern trend of introducing energy-effective cogeneration systems to the oil fields by replacing flaring and existing heat generation technologies powered by associated petroleum gas is discussed through material flow analysis and environmental impact assessment. The environmental assessment is based on the consequential life cycle assessment method and mainly primary data compiled directly from measurements on Serbian oil-fields or company-supplied information. The obtained results confirm that the utilization of associated petroleum gas via combined heat and power plants and heat boilers can provide a significant reduction in greenhouse gas emissions and resource depletion by displacing marginal production of heat and electricity. At the base case scenario, which assumes a 100% heat realization rate, the global warming potential of the combined heat and power plant and heat boiler scenarios were estimated at −4.94 and −0.54 kg CO_2_e_q Sm"−"3, whereas the cumulative fossil energy requirements of these scenarios were −48.7 and −2.1 MJ Sm"−"3, respectively. This is a significant reduction compared to the global warming potential (2.25 kg CO_2_e_q Sm"−"3) and cumulative fossil energy requirements (35.36 MJ Sm"−"3) of flaring. Nevertheless, sensitivity analyses have shown that life cycle assessment results are sensitive

  11. Influencing Swedish homeowners to adopt district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Akademigatan 1, 831 25 Oestersund (Sweden)

    2009-02-15

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Oestersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey. (author)

  12. Influencing Swedish homeowners to adopt district heating system

    International Nuclear Information System (INIS)

    Mahapatra, Krushna; Gustavsson, Leif

    2009-01-01

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Ostersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey

  13. Influencing Swedish homeowners to adopt district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Akademigatan 1, 831 25 Oestersund (Sweden)

    2009-02-15

    Improved energy efficiency and greenhouse gas mitigation could be achieved by replacing resistance heaters with district heating system. In 2005, only about 8% of the Swedish detached houses had district heating system. The expansion of such systems largely depends on homeowners' adoption decisions. And, to motivate homeowners to adopt district heating, it is essential to understand their decision-making process. In this context, in June 2005 we carried out a questionnaire survey of about 700 homeowners who lived in the city of Oestersund in houses with resistance heaters (baseline survey). About 84% of the respondents did not intend to install a new heating system. Since then these homeowners were influenced by (a) an investment subsidy by the Swedish government to replace resistance heaters with district heating, a brine/water-based heat pump, or a biomass-based heating system and (b) a marketing campaign by the municipality-owned district heating company. This paper analyses how these two measures influenced about 78% of the homeowners to adopt the district heating system. For this purpose we carried out a follow-up survey of the same homeowners in December 2006 (resurvey). Results showed that the investment subsidy and the marketing campaign created a need among the homeowners to adopt a new heating system. The marketing campaign was successful in motivating them to adopt the district heating system. The marketing strategy by the district heating company corresponds to the results obtained in the baseline survey. (author)

  14. Applications of molecular replacement to G protein-coupled receptors

    International Nuclear Information System (INIS)

    Kruse, Andrew C.; Manglik, Aashish; Kobilka, Brian K.; Weis, William I.

    2013-01-01

    The use of molecular replacement in solving the structures of G protein-coupled receptors is discussed, with specific examples being described in detail. G protein-coupled receptors (GPCRs) are a large class of integral membrane proteins involved in regulating virtually every aspect of human physiology. Despite their profound importance in human health and disease, structural information regarding GPCRs has been extremely limited until recently. With the advent of a variety of new biochemical and crystallographic techniques, the structural biology of GPCRs has advanced rapidly, offering key molecular insights into GPCR activation and signal transduction. To date, almost all GPCR structures have been solved using molecular-replacement techniques. Here, the unique aspects of molecular replacement as applied to individual GPCRs and to signaling complexes of these important proteins are discussed

  15. Advances in Rosetta structure prediction for difficult molecular-replacement problems

    International Nuclear Information System (INIS)

    DiMaio, Frank

    2013-01-01

    Modeling advances using Rosetta structure prediction to aid in solving difficult molecular-replacement problems are discussed. Recent work has shown the effectiveness of structure-prediction methods in solving difficult molecular-replacement problems. The Rosetta protein structure modeling suite can aid in the solution of difficult molecular-replacement problems using templates from 15 to 25% sequence identity; Rosetta refinement guided by noisy density has consistently led to solved structures where other methods fail. In this paper, an overview of the use of Rosetta for these difficult molecular-replacement problems is provided and new modeling developments that further improve model quality are described. Several variations to the method are introduced that significantly reduce the time needed to generate a model and the sampling required to improve the starting template. The improvements are benchmarked on a set of nine difficult cases and it is shown that this improved method obtains consistently better models in less running time. Finally, strategies for best using Rosetta to solve difficult molecular-replacement problems are presented and future directions for the role of structure-prediction methods in crystallography are discussed

  16. Thermodynamic and heat transfer analyses for R1234yf and R1234ze(E) as drop-in replacements for R134a in a small power refrigerating system

    International Nuclear Information System (INIS)

    Janković, Zvonimir; Sieres Atienza, Jaime; Martínez Suárez, José Antonio

    2015-01-01

    In this paper we present two different analyses of R1234yf and R1234ze(E) as drop-in replacements for R134a in a small power refrigeration system. The first analysis is based on equal evaporation and condensation temperatures before and after the refrigerant replacement. The second analysis is carried out for equal cooling medium conditions in the condenser, so that the transport properties and the heat transfer features in the condenser are considered for the three refrigerants. In order to perform the analyses, a simulation model was developed, that takes into account specific data, characteristics and dimensions of the main components of a small power refrigeration system. The model was validated with experimental data for R134a and later used to predict the behavior with R1234yf and R1234ze(E). Results show that different conclusions may be drawn if the drop-in analysis is carried out for equal condensation temperatures or for equal temperatures of the cooling medium in the condenser, as well as that these results are affected by the condenser design. In general, R1234yf seems as an adequate drop-in refrigerant for R134a, but R1234ze(E) may perform better when an overridden compressor can be used to match the refrigerating system cooling power. - Highlights: • Low GWP refrigerants R1234yf and R1234ze(E) are potential replacements for R134a. • Refrigerating system mathematical model to predict drop-in performance. • Drop-in analysis for the same evaporation and condensation temperatures. • Drop-in analysis for the same cooling medium temperatures. • Refrigerant heat transfer features have a great impact on the drop-in performance

  17. Equipment Replacement Decision Making: Opportunities and Challenges

    OpenAIRE

    Fan, Wei (David); Gemar, Mason D.; Machemehl, Randy

    2012-01-01

    The primary function of equipment managers is to replace the right equipment at the right time and at the lowest overall cost. In this paper, the opportunities and challenges associated with equipment replacement optimization (ERO) are discussed in detail. First, a comprehensive review of the state-of-the art and state-of-the practice literature for the ERO problem is conducted. Second, a dynamic programming (DP) based optimization solution methodology is presented to solve the ERO problem. T...

  18. An approach to solve replacement problems under intuitionistic fuzzy nature

    Science.gov (United States)

    Balaganesan, M.; Ganesan, K.

    2018-04-01

    Due to impreciseness to solve the day to day problems the researchers use fuzzy sets in their discussions of the replacement problems. The aim of this paper is to solve the replacement theory problems with triangular intuitionistic fuzzy numbers. An effective methodology based on fuzziness index and location index is proposed to determine the optimal solution of the replacement problem. A numerical example is illustrated to validate the proposed method.

  19. Heated uranium tetrafluoride target system to release non-rare gas fission products for the TRISTAN isotope separator

    International Nuclear Information System (INIS)

    Gill, R.L.

    1977-10-01

    Off-line experiments indicated that fluorides of As, Se, Br, Kr, Zr, Nb, Mo, Tc, Ru, Sb, Te, I and Xe could be volatilized, but except for Br, Kr, I and Xe, none of these elements were observed after mass separation in the on-line experiments. The results of the on-line experiments indicated a very low level of hydride contamination at ambient temperature and consequently, uranium tetrafluoride replaced uranyl stearate as the primary gaseous fission product target. Possible reasons for the failure of the heated target system to yield non-rare gas activities are discussed and suggestions for designing a new heated target system are presented

  20. Heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Canobbio, E.

    1981-01-01

    This paper reports on the 2nd Joint Grenoble-Varenna International Symposium on Heating in Toroidal Plasmas, held at Como, Italy, from the 3-12 September 1980. Important problems in relation to the different existing processes of heating. The plasma were identified and discussed. Among others, the main processes discussed were: a) neutral beam heating, b) ion-(electron)-cyclotron resonance heating, c) hybrid resonance and low frequency heating

  1. Cadmium plating replacements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  2. Step by step replacement of aging electronic equipment: a way to maintain high capacity factors

    International Nuclear Information System (INIS)

    Wilder, O.

    1990-01-01

    The paper discusses the following topics: replacement concept, aging, replacement, strategy and the Swedish situation. The replacement of important central systems started already 1986 in Oskarshamn 1

  3. Sleeving repair of heat exchanger tubes

    International Nuclear Information System (INIS)

    Street, Michael D.; Schafer, Bruce W.

    2000-01-01

    Defective heat exchanger tubes can be repaired using techniques that do not involve the cost and schedule penalties of component replacement. FTI's years of experience repairing steam generator tubes have been successfully applied to heat exchangers. Framatome Technologies heat exchanger sleeves can bridge defective areas of the heat exchanger tubes, sleeves have been designed to repair typical heat exchanger tube defects caused by excessive tube vibration, stress corrosion cracking, pitting or erosion. By installing a sleeve, the majority of the tube's heat transfer and flow capacity is maintained and the need to replace the heat exchanger can be delayed or eliminated. Both performance and reliability are improved. FTI typically installs heat exchanger tube sleeves using either a roll expansion or hydraulic expansion process. While roll expansion of a sleeve can be accomplished very quickly, hydraulic expansion allows sleeves to be installed deep within a tube where a roll expander cannot reach. Benefits of FTI's heat exchanger tube sleeving techniques include: - Sleeves can be positioned any where along the tube length, and for precise positioning of the sleeve eddy current techniques can be employed. - Varying sleeve lengths can be used. - Both the roll and hydraulic expansion processes are rapid and both produce joints that do not require stress relief. - Because of low leak rates and speed of installations, sleeves can be used to preventatively repair likely-to-fail tubes. - Sleeves can be used for tube stiffening and to limit leakage through tube defects. - Because of installation speed, there is minimal impact on outage schedules and budgets. FTI's recently installed heat exchanger sleeving at the Kori-3 Nuclear Power Station in conjunction with Korea Plant Service and Engineering Co., Ltd. The sleeves were installed in the 3A and 3B component cooling water heat exchangers. A total of 859 tubesheet and 68 freespan sleeves were installed in the 3A heat

  4. Service water system repair/replacement guidelines: Planning and implementation

    International Nuclear Information System (INIS)

    Frederick, G.J.; Gandy, D.W.; Peterson, A.G. Jr.; Findlan, S.J.

    1993-11-01

    Service water system failures have prompted concerns related to extended power plant operating life and plant availability. Selection and procurement of materials for repair or replacement of piping and components may be the most important factors in improving service water system reliability. The authors examined factors that contribute to reduced SWS reliability. The factors include material selection inadequacies, water treatment problems, operational/maintenance practices, fabrication procedures, environmental degradation mechanisms, and coating problems. The authors investigated material selection for replacement and repair, taking into account fabrication practices, environmental concerns, and cost comparisons of materials. They examined specific components such as piping, pumps, valves, and heat exchangers with regard to material selection and fabrication practice. Although proper material selection is essential in upgrading and maintaining the designed functions of a SWS, it is critical to address SWS repair/replacement activities with a systemwide approach. Degradation of materials in SWS applications are plant specific, depending on factors unique to each site such as geographic location, existing materials, operating procedures, and environment. All these characteristics must be addressed in making repair/replacement decisions. Criteria that must be integrated for successful long-term operation of SWS include the following: Materials selection (upgrade or in-kind replacement), Evaluation of root cause or nature of the failure mechanism, Scope of the repair/replacement activities, Material compatibility of the existing materials, Operational and maintenance procedures, Code or jurisdictional requirements, Economic considerations, Water treatment programs, System design improvements or modifications

  5. Extra Heat Loss Through Light Weight Roofs Due to Latent Heat

    DEFF Research Database (Denmark)

    Rode, Carsten

    1996-01-01

    that changes phase at the terminals of its passage.Note however, that convection of air most often will have an important effect on the overall heat flow - but that is a different topic.Macroscopic latent heat transferConsider the following scenario: Initially, moisture is present in its condensed or frozen......This report is one in a series of papers in Task 5 of IEA Annex 24 on how moisture and air movements affect the energy performance of building constructions. The effect of latent heat flow will be demonstrated by means of an example: a light weight flat roof.Latent heat flow is one of three...... processes by which moisture affects energy performance:Higher thermal conductivityMoist materials have higher thermal con-ductivity than when they are dry. This is because thermally conducting moisture replaces the better insulating air in the pores of the materials. Moisture also enhan-ces the thermal...

  6. New one cycle criteria for optimizing preventive replacement policies

    International Nuclear Information System (INIS)

    Hamidi, Maryam; Szidarovszky, Ferenc; Szidarovszky, Miklos

    2016-01-01

    Models are introduced and examined for the optimum scheduling of preventive replacements. The “replace first” and “replace last” models are known from the literature if the long term expected cost per unit time is minimized. We will first introduce the one cycle counterparts of these models when the expected costs per unit time in a single cycle is minimized. If the unit performs identical projects sequentially then the “replace next” model assumes that the preventive replacement is postponed until the ongoing project is finished. The termination time of this project is random which also depends on the scheduled time of the preventive replacement in contrary to the “replace first” and “replace last” models. The mathematical models are formulated and conditions are given for the existence of finite optima. Numerical examples and a simulation study illustrate the methodology and the numerical results show interesting comparisons of the different models. - Highlights: • The Single cycle age replacement model is extended incorporating repairable failures. • In order to avoid project interruption costs, three model variants are discussed. • Model variants are replace first, replace last and replace next. • In many cases analytic solutions are derived and illustrated by numerical examples. • The different model variants and their results are compared based on simulation studies.

  7. Radial compressor for a two-stage heat pump. Phase 2; Compresseur radial pour pompe a chaleur bi-etagee. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Schiffmann, J.; Favrat, D. [Federal Institute of Technology (EPFL), Industrial Energy Systems Laboratory (LENI), Lausanne (Switzerland); Molyneaux, A. [Ofttech SA, Lausanne (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reviews the results of the second phase of a project carried out at the Federal Institute of Technology in Lausanne, Switzerland, that involved the development of a two-stage heat pump that could replace conventional sources of domestic heating such as oil or gas-fired boilers. This report deals with the construction of a single-stage system to test the basic functions, aerodynamic bearings, drive and compressor and thus prove the correctness of the concept of the system. The results of the tests made are presented and discussed.

  8. Replacing coal by tire powder in ceramic industry

    Energy Technology Data Exchange (ETDEWEB)

    Mothe, C.G. [Dept. de Processos Organicos, Escola de Quimica/CT/UFRJ, Rio de Janeiro, RJ (Brazil); Mothe Filho, H.F. [Dept. de Geociencias, Inst. de Agronomia/UFRRJ, Seropedica, RJ (Brazil)

    2005-07-01

    Nowadays preserving nature, recycling or reusing materials are good policies. Around ten million tires are put out by year in Brazil, and it is not known for how long they will remain in environment till their complete degradation. This research used tires to replace coal in ceramic processing. In this way it helps to protect environment, to reduce the consumption of mineral deposits and to save money. Results show that tire powder can replace coal to obtain ceramic material, using one percent of tire. Experiments were carried out using TA instruments SDT 2960, in air or nitrogen atmospheres, at heating rate of 10 C/min., flow 120 ml/min. TG/DTA curves of tire and coal have exothermic events at close temperatures between 450-600 C. At range of temperatures clay have endothermic events. (orig.)

  9. Three Steam Generator Replacement Projects in 1995

    International Nuclear Information System (INIS)

    Holz, R.; Clavier, G.

    1996-01-01

    Since the companies Siemens AG and Framatome S. A. joined their experience and efforts in the field of steam generator replacements and formed a consortium in 1991, the following projects were performed in 1995: Ringhals 3, Tihange 3 and Asco 1. Further projects will follow in 1996, i. e., Doel 4 and Asco 2. Currently, this European consortium is bidding for the contract to replace the steam generators at the Krsko NPP and hopes to be awarded in 1996. An overview of the way the Consortium Siemens and Framatome approaches SG replacement projects is given based on the projects performed in 1995. Various aspects of project planning, management, licensing, personnel qualification and techniques used on site will be discussed. (author)

  10. Impact assessment of biomass-based district heating systems in densely populated communities. Part II: Would the replacement of fossil fuels improve ambient air quality and human health?

    Science.gov (United States)

    Petrov, Olga; Bi, Xiaotao; Lau, Anthony

    2017-07-01

    To determine if replacing fossil fuel combustion with biomass gasification would impact air quality, we evaluated the impact of a small-scale biomass gasification plant (BRDF) at a university campus over 5 scenarios. The overall incremental contribution of fine particles (PM2.5) is found to be at least one order of magnitude lower than the provincial air quality objectives. The maximum PM2.5 emission from the natural gas fueled power house (PH) could adversely add to the already high background concentration levels. Nitrogen dioxide (NO2) emissions from the BRDF with no engineered pollution controls for NOx in place exceeded the provincial objective in all seasons except during summer. The impact score, IS, was the highest for NO2 (677 Disability Adjusted Life Years, DALY) when biomass entirely replaced fossil fuels, and the highest for PM2.5 (64 DALY) and CO (3 DALY) if all energy was produced by natural gas at PH. Complete replacement of fossil fuels by one biomass plant can result in almost 28% higher health impacts (708 DALY) compared to 513 DALY when both the current BRDF and the PH are operational mostly due to uncontrolled NO2 emissions. Observations from this study inform academic community, city planners, policy makers and technology developers on the impacts of community district heating systems and possible mitigation strategies: a) community energy demand could be met either by splitting emissions into more than one source at different locations and different fuel types or by a single source with the least-impact-based location selection criteria with biomass as a fuel; b) advanced high-efficiency pollution control devices are essential to lower emissions for emission sources located in a densely populated community; c) a spatial and temporal impact assessment should be performed in developing bioenergy-based district heating systems, in which the capital and operational costs should be balanced with not only the benefit to greenhouse gas emission

  11. BC Hydro's integrated approach on replacing underground feeder cables

    Energy Technology Data Exchange (ETDEWEB)

    Tarampi, D. [BC Hydro, Burnaby, BC (Canada)

    2008-07-01

    BC Hydro's integrated approach on replacing underground feeder cables was discussed. The feeder cables were all in ducts encased in concrete and splices were identified in concrete manholes. The feeder cables averaged 35 to 40 failures per year, with a large majority of failures occurring in manholes or near terminations. The age of the cables was not known. A graphical representation of a condition assessment was presented with reference to an electrical test, metallurgical test, hardness test, and dye penetrating test. Prioritization steps were also listed, including a condition index and replacement threshold. Steps in prioritizing the condition index included determining the insulation index based on electrical test results; determining the manhole condition based on metallurgical test results; determining the customer importance factor and feeder load factor; and calculating the overall condition index based on the indices. A process flowchart was also illustrated. A replacement strategy was then discussed and a cost comparison of two options was described. Option 1 was to replace only the unjacketed cables while option two involved selective replacement. tabs., figs.

  12. Age replacement policy based on imperfect repair with random probability

    International Nuclear Information System (INIS)

    Lim, J.H.; Qu, Jian; Zuo, Ming J.

    2016-01-01

    In most of literatures of age replacement policy, failures before planned replacement age can be either minimally repaired or perfectly repaired based on the types of failures, cost for repairs and so on. In this paper, we propose age replacement policy based on imperfect repair with random probability. The proposed policy incorporates the case that such intermittent failure can be either minimally repaired or perfectly repaired with random probabilities. The mathematical formulas of the expected cost rate per unit time are derived for both the infinite-horizon case and the one-replacement-cycle case. For each case, we show that the optimal replacement age exists and is finite. - Highlights: • We propose a new age replacement policy with random probability of perfect repair. • We develop the expected cost per unit time. • We discuss the optimal age for replacement minimizing the expected cost rate.

  13. Trawsfynydd NPS: the economic and social impact of closure without replacement

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The paper concerns a study of the economic and social effects of the closure of Trawsfynydd Nuclear Power Station without replacement, carried out by the University College of North Wales. Performance of Trawsfynydd, unemployment and demand for replacement, are all discussed. (UK)

  14. Assessment Of DR-55 As A Drop-In Replacement For R410A

    OpenAIRE

    Shen, Bo; Abdelaziz, Omar; Liudahl, Lane

    2016-01-01

    R410A has zero ozone depletion potential (ODP), and is the most commonly used refrigerant in vapor compression systems for space cooling and space heating applications. However, it has significant global warming potential with GWP higher than 2000. To mitigate the global warming effect, industry and research institutes are actively pursuing a replacement for R410A, which should have much lower GWP, similar or higher efficiency. Â DR-55 is a design-compatible refrigerant replacement for R410A...

  15. Study of fuel cell powerplant with heat recovery

    Science.gov (United States)

    King, J. M.; Grasso, A. P.; Clausi, J. V.

    1975-01-01

    It was shown that heat can be recovered from fuel cell power plants by replacing the air-cooled heat exchangers in present designs with units which transfer the heat to the integrated utility system. Energy availability for a 40-kW power plant was studied and showed that the total usable energy at rated power represents 84 percent of the fuel lower heating value. The effects of design variables on heat availability proved to be small. Design requirements were established for the heat recovery heat exchangers, including measurement of the characteristics of two candidate fuel cell coolants after exposure to fuel cell operating conditions. A heat exchanger test program was defined to assess fouling and other characteristics of fuel cell heat exchangers needed to confirm heat exchanger designs for heat recovery.

  16. Life extension and replacement management for RAPS type steam generators

    International Nuclear Information System (INIS)

    Arya, R.C.; Rastogi, A.K.

    1996-01-01

    The steam generating equipment in first four units of Indian PHWRs Rajasthan Atomic Power Station (RAPS) 1-2 and Madras Atomic Power Station (MAPS) 1-2 are hairpin type and comprise of eight boiler assemblies. Each assembly consists of identical, single pass, inverted and vertical hairpin heat exchangers (10 for RAPS and 11 for MAPS) containing 195 monel-400 U tubes of 12.7 mm dia x 1.242 mm thick. The hot heavy water flows through these tubes and imparts heat to feed, light demineralized water entering the shell at the bottom of preheat leg. The heat is generated on the outer surface of the tubes. Details of studies carried out for life extension and replacement management for RAPS type steam generators are given. 1 fig., 5 tabs

  17. Advanced industrial ceramic heat pipe recuperators

    Energy Technology Data Exchange (ETDEWEB)

    Strumpf, H.J.; Stillwagon, T.L.; Kotchick, D.M.; Coombs, M.G.

    1988-01-01

    This paper summarizes the results of an investigation involving the use of ceramic heat pipe recuperators for high-temperature heat recovery from industrial furnaces. The function of the recuperator is to preheat combustion air with furnace exhaust gas. The heat pipe recuperator comprises a bundle of individual ceramic heat pipes acting in concert, with a partition separating the air and exhaust gas flow streams. Because each heat pipe is essentially an independent heat exchanger, the failure of a single tube does not compromise recuperator integrity, has only a minimal effect on overall heat exchanger performance and enables easier replacement of individual heat pipes. In addition, the heat pipe acts as an essentially isothermal heat transfer device, leading to a high thermodynamic efficiency. Cost estimates developed for heat pipe recuperator systems indicate favorable payback periods. Laboratory studies have demonstrated the feasibility of fabricating the required ceramic tubes, coating the inside of the tubes with CVD tungsten, and sealing the heat pipe with an electron-beam-welded or vacuum-brazed end cap.

  18. An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden

    International Nuclear Information System (INIS)

    Mahapatra, Krushna; Gustavsson, Leif

    2008-01-01

    Innovation and diffusion of renewable energy technologies play a major role in mitigation of climate change. In Sweden replacing electric and oil heating systems with innovative heating systems such as district heating, heat pumps and wood pellet boilers in detached homes is a significant mitigation option. Using an adopter-centric approach, we analyzed the influence of investment subsidy on conversion of resistance heaters and oil boilers, and the variation in diffusion pattern of district heating, heat pumps and pellet boilers in Swedish detached homes. Results from questionnaire surveys of 1500 randomly selected homeowners in September 2004 and January 2007 showed that more than 80% of the respondents did not intend to install a new heating system. Hence, about 37% of the homeowners still have electric and oil heating systems. The government investment subsidy was important for conversion from a resistance heater, but not from an oil boiler. This is because homeowners currently replacing their oil boilers are the laggards, while those replacing resistance heaters are the 'early adopters'. Economic aspects and functional reliability were the most important factors for the homeowners when considering a new heating system. There is a variation in the perceived advantages associated with each of the innovative heating systems and therefore, the diffusion patterns of such systems vary. Installers and interpersonal sources were the most important communication channels for information on heating systems

  19. An adopter-centric approach to analyze the diffusion patterns of innovative residential heating systems in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Krushna; Gustavsson, Leif [Ecotechnology, Mid Sweden University, 831 25 Oestersund (Sweden)

    2008-02-15

    Innovation and diffusion of renewable energy technologies play a major role in mitigation of climate change. In Sweden replacing electric and oil heating systems with innovative heating systems such as district heating, heat pumps and wood pellet boilers in detached homes is a significant mitigation option. Using an adopter-centric approach, we analyzed the influence of investment subsidy on conversion of resistance heaters and oil boilers, and the variation in diffusion pattern of district heating, heat pumps and pellet boilers in Swedish detached homes. Results from questionnaire surveys of 1500 randomly selected homeowners in September 2004 and January 2007 showed that more than 80% of the respondents did not intend to install a new heating system. Hence, about 37% of the homeowners still have electric and oil heating systems. The government investment subsidy was important for conversion from a resistance heater, but not from an oil boiler. This is because homeowners currently replacing their oil boilers are the laggards, while those replacing resistance heaters are the 'early adopters'. Economic aspects and functional reliability were the most important factors for the homeowners when considering a new heating system. There is a variation in the perceived advantages associated with each of the innovative heating systems and therefore, the diffusion patterns of such systems vary. Installers and interpersonal sources were the most important communication channels for information on heating systems. (author)

  20. Non-Darcy flow of water-based carbon nanotubes with nonlinear radiation and heat generation/absorption

    Directory of Open Access Journals (Sweden)

    T. Hayat

    2018-03-01

    Full Text Available Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy’s law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined. Keywords: Porous medium, Heat generation/absorption, SWCNTs and MWCNTs, Nonlinear radiation

  1. Impact of process parameters and design options on heat leaks of straight cryogenic distribution lines

    CERN Document Server

    Duda, Pawel; Chorowski, Maciej Pawel; Polinski, J

    2017-01-01

    The Future Circular Collider (FCC) accelerator will require a helium distribution system that will exceed the presently exploited transfer lines by almost 1 order of magnitude. The helium transfer line will contain five process pipes protected against heat leaks by a common thermal shield. The design pressure of the FCC process pipe with supercritical helium will be equal to 5.0 MPa, significantly exceeding the 2.0 MPa value in the present, state-of–art transfer lines. The increase of the design pressure requires construction changes to be introduced to the support system, the vacuum barriers and the compensation bellows. This will influence heat flows to the helium. The paper analyses the impact of the increased design pressure on the heat flow. The paper also offers a discussion of the design modifications to the compensation system, including the replacement of stainless steel with Invar—aimed at mitigating the pressure increase.

  2. Discussion on Papers 14 - 16

    International Nuclear Information System (INIS)

    Charles-Jones, S.; Muirhead, S.; Wilson, E.A.; Jefferson, M.; Binnie, C.J.A.; O'Connor, B.A.; Rothwell, P.; Cowie, D.

    1992-01-01

    Further observations were made on the great potential for tidal power developments in NW Australia. Discussion on the Severn Barrage paper and environmental effects of tidal power plants centred mainly around the impact on bird populations. The topics covered were: the adaptability of birds to changes in their environment with particular reference to the importance of inter-tidal areas for wildfowl and wading birds in the United Kingdom; the creation of mudflats as replacement feeding areas for wading birds; whether there is a danger that pressure from the construction industry might result in a barrage being built before the uncertainties in the environmental impact assessment are removed. Separate abstracts have been prepared for the three papers under discussion. (UK)

  3. Analysis of oil migration in one and two-stage heat pumps; Analyse de la migration d'huile dans les pompes a chaleur mono- et bi-etagees

    Energy Technology Data Exchange (ETDEWEB)

    Zehnder, M.; Favrat, D.

    2003-07-01

    This final report for the Swiss Federal Office of Energy SFOE describes work done at the Swiss Federal Institute of Technology in Lausanne, Switzerland, as part of the Swiss Retrofit Heat Pump project that examines ways of replacing traditional oil-fired domestic heating systems with heat pumps. The apparatus used to investigate the migration of oil within the refrigeration circuit of a purpose-built air-water heat pump is described. The construction of the heat pump, which could be operated in single or two-stage mode, is described and the results obtained from the investigations are presented. The properties of lubricants used in heat pumps are discussed and the techniques used to measure the oil concentration in the various parts of the refrigeration cycle, which include the use of an infra-red spectrometer, are described.

  4. Plasma heating

    International Nuclear Information System (INIS)

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of DpT burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating systems with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various function of heating, which are: - plasma heating to fusion-relevant parameters and to ignition in future machines, -non-inductive, steady-pstate current drive, - plasma profile control, -neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (author). 43 refs.; 13 figs.; 3 tabs

  5. Exergoeconomic optimization of an ammonia-water hybrid heat pump for heat supply in a spray drying facility

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2014-01-01

    Spray drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 XC. The inlet flow...... rate is 100,000 m3/h which yields a heat load of 6.1 MW. The exhaust air from the drying process is 80 XC. The implementation of an ammonia-water hybrid absorption-compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation...... ratios for a number of ammonia mass fractions and heat pump loads. An exergoeconomic optimization is applied to minimize the lifetime cost of the system. Technological limitations are applied to constrain the solution to commercial components. The best possible implementation is identified in terms...

  6. Primary extra-cranial meningioma following total hip replacement

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, T.J.; Beggs, I. [Royal Infirmary, Department of Radiology, Edinburgh (United Kingdom); Patton, J.T.; Porter, D. [Royal Infirmary, Department of Orthopaedics, Edinburgh (United Kingdom); Salter, D.M.; Al-Nafussi, A. [Royal Infirmary, Department of Pathology, Edinburgh (United Kingdom)

    2009-01-15

    A 61-year-old man presented with pain at the left hip and decreased mobility 10 years after total hip replacement. Imaging demonstrated a large destructive expansile mass adjacent to the prosthesis. Histological analysis confirmed the presence of an extra-cranial meningioma. Primary tumours after total hip replacement are rare and include soft tissue sarcomas, bone sarcomas and lymphomas. To our knowledge, no previous cases of primary extracranial meningioma have been identified. The imaging features, histology, pathogenesis and differential diagnosis are discussed. (orig.)

  7. Exergoeconomic optimization of an ammonia–water hybrid absorption–compression heat pump for heat supply in a spraydrying facility

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    Spray-drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 C yielding a heat...... load of 6.1 MW. The exhaust air from the drying process is 80 C. The implementation of anammonia–water hybrid absorption–compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation ratios for a number of ammonia mass...... fractions and heat pump loads. An exergo economic optimization is applied to minimize the lifetime cost of the system. Technological limitations are imposed to constrain the solution to commercial components. The best possible implementation is identified in terms of heat load, ammonia mass fraction...

  8. Design, materials and R and D issues of innovative thermal contact joints for high heat flux applications

    International Nuclear Information System (INIS)

    Federici, G.; Haines, J.; Tillack, M.S.; Ulrickson, M.

    1995-01-01

    Plasma facing components in fusion machines are designed with a layer of sacrificial armour material facing the plasma and a high-conductivity material in contact with the coolant. One of the most critical issues associated with making the proposed design concept work, from a power handling point of view, is achieving the necessary contact conductance between the armour and the heat sink.This paper presents a novel idea for the interface joint between the sacrificial armour and the actively cooled permanent heat sink. It consists of a thermal bond layer of a binary or more complex alloy, treated in the semi-solid region in such a way as to lead to a fine dispersion of a globular solid phase into a liquid matrix (rheocast process). The alloy in this ''mushy state'' exhibits a time-dependent, shear rate-dependent viscosity, which is maintained reversibly when the material is solidified and heated again in the semi-solid state. The function of the thermal bond layer is to facilitate heat transfer between the replaceable armour and the permanent heat sink without building up excessive thermal stresses, as in conventional brazed joints, and allow an easy replacement whenever needed without disturbing the coolant system. No contact pressure is required in this case to provide the desired heat transfer conductance, and the reversible thixotropic properties of the rheocast material should guarantee the stability of the layer in the semi-solid conditions.Key design, material and testing issues are identified and discussed in this paper with emphasis on specific needs for future research and development work. Examples of suitable material options which are being considered are reported together with some initial heat transfer analysis results. (orig.)

  9. Impact of Human Activity on Local Climate Change in Veľké Turovce by Heating and Possibilities for Carbon Dioxide Decrease

    Directory of Open Access Journals (Sweden)

    Hudec Matej

    2014-12-01

    Full Text Available The paper is aimed at detecting CO2 emissions from heating process of households in Veľké Turovce. It offers solutions for 100 % and 20 % replacement of conventional fuels by solar collector systems. In the village, 242 households heat by natural gas during average length of 21 weeks a year. Average amount of energy consumed in heating process after conversion is 18,503.06 kWh per household. For 100 % replacement of natural gas, 63 units of vacuum tube solar collector type Watt CP C 9 are required. In average duration of 23 weeks a year, 12 households heat by brown coal with average consumption of 20,339.75 kWh. For complete replacement, 69 pieces of solar collectors are required. The remaining 18 households heat by firewood in average duration of 22 week a year. The consumption of one household represents in average 19,125.07 kWh. In this case, the replacement of 100 % of firewood energy requires 65 pieces of solar panels. The amounts of saved CO2 emissions by collector system replacing 100 % of natural gas represent 926,336.39 kg of CO2 for 242 households. For 12 households heated by brown coal, it represents 152,767.65 kg of saved CO2 emissions. Last but not least, 30,553.53 kg of CO2 represent the amount of saved CO2 emission for 18 households heating by firewood. Prices of collector systems in case of 100 % replacement of conventional fuels would be 37,111.45 € for natural gas, 40,356.79 € for brown coal, and 38,203.23 € in case of replacement of firewood

  10. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  11. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  12. Market Potential for Residential Biomass Heating Equipment: Stochastic and Econometric Assessments

    OpenAIRE

    Adee Athiyaman

    2015-01-01

    This paper provides estimates of market potential for biomass-residential-heating equipment in the US: that is, the greatest amount of biomass-residential-heating equipment that can be sold by the industry. The author's analysis is limited to biomass equipment used most to heat the housing unit. Assuming that households equipped with 10+ year old primary heating devices will replace rather than repair the devices he predicts that approximately 1.4 million units of residential home heating equ...

  13. Swedish district heating - owners, prices and profitability

    International Nuclear Information System (INIS)

    Andersson, Sofie; Werner, S.

    2001-01-01

    Owners, prices and profitability are examined in this report for 152 Swedish district heating companies during 1999. Only public information available has been used: Prices from a national annual consumer study, energy supplied, lengths of district heating pipes installed, and average prices for energy supplied. These companies are responsible for 96 % of all district heat supplied in Sweden. District heating systems owned by municipalities were responsible for 65 % of all district heat supply, while the share of power companies was 34 %. Other private owners accounted for 1 %. Only 12 % of the board members are women and more than 40 % of the companies have no woman in the board. The prices gathered by the annual consumer study are good estimates of the price level of district heating in Sweden. The average revenues are only 4,1 % lower than the effective average of prices gathered. Price of district heating decrease with size and market share. Use of combined heat and power plants decrease prices slightly. Lower prices with size can mainly be explained by lower energy supply costs. Calculated rates of return in relation to calculated replacement values increase slightly by size and are almost independent of age and market share. The purport of these conclusions is that the district heating companies share the cost reduction from size with their customers, while the whole benefit from high market shares is repaid to the customers. Calculated rates of return vary among the owner groups examined. Lower rates are accepted by municipalities, while power companies have higher rates at the average costs used. Total replacement costs for the 152 companies has been estimated to 89 billion Swedish crowns or 10 billion Euro. Only correlation analyses using one dimension have been used in this study. A higher degree of quality can be obtained by using multi-dimensional analyses

  14. Efforts for optimization of BWR core internals replacement

    International Nuclear Information System (INIS)

    Iizuka, N.

    2000-01-01

    The core internal components replacement of a BWR was successfully completed at Fukushima-Daiichi Unit 3 (1F3) of the Tokyo Electric Power Company (TEPCO) in 1998. The core shroud and the majority of the internal components made by type 304 stainless steel (SS) were replaced with the ones made of low carbon type 316L SS to improve Intergranular Stress Corrosion Cracking (IGSCC) resistance. Although this core internals replacement project was completed, several factors combined to result in a longer-than-expected period for the outage. It was partly because the removal work of the internal components was delayed. Learning a lesson from whole experience in this project, some methods were adopted for the next replacement project at Fukushima-Daiichi Unit 2 (1F2) to shorten the outage and reduce the total radiation exposure. Those are new removal processes and new welding machine and so on. The core internals replacement work was ended at 1F2 in 1999, and both the period of outage and the total radiation exposure were the same degree as expected previous to starting of this project. This result shows that the methods adopted in this project are basically applicable for the core internals replacement work and the whole works about the BWR core internals replacement were optimized. The outline of the core internals replacement project and applied technologies at 1F3 and 1F2 are discussed in this paper. (author)

  15. Warm homes: Drivers of the demand for heating in the residential sector in New Zealand

    International Nuclear Information System (INIS)

    Howden-Chapman, Philippa; Viggers, Helen; Chapman, Ralph; O'Dea, Des; Free, Sarah; O'Sullivan, Kimberley

    2009-01-01

    New Zealand houses are large, often poorly constructed and heated, by OECD standards, and consequently are colder and damper indoors than recommended by the World Health Organisation. This affects both the energy consumption and the health of households. The traditional New Zealand household pattern of only heating one room of the house has been unchanged for decades, although there has been substantial market penetration of unflued gas heaters and more recently heat pumps. This paper describes the residential sector and the results of two community-based trials of housing and heating interventions that have been designed to measure the impact of (1) retrofitting insulation and (2) replacing unflued gas heaters and electric resistance heaters with heat pumps, wood pellet burners and flued gas heaters. The paper describes findings on the rebound effect or 'take-back'-the extent to which households take the gains from insulation and heating improvements as comfort (higher temperatures) rather than energy savings, and compares energy-saving patterns with those suggested by an earlier study. Findings on these aspects of household space heating are discussed in the context of the New Zealand government's policy drive for a more sustainable energy system, and the implications for climate change policy.

  16. Design of a thermochemical heat storage system for tap water heating in the built environment

    NARCIS (Netherlands)

    Gaeini, M.; de Jong, E.C.J.; Zondag, H.A.; Rindt, C.C.M.

    2014-01-01

    Replacing the use of fossil fuel by solar energy, as one of the most promising sustainable energy sources, is of high interest, because of climate change and depletion of fossil resources. However, to reach high solar fractions and to overcome the mismatch between supply and demand of solar heat,

  17. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  18. Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating

    International Nuclear Information System (INIS)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always. (general)

  19. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  20. Software-based annunciator replacement: a tale of two projects

    International Nuclear Information System (INIS)

    Simmons, G.T.

    2015-01-01

    Annunciator upgrade projects are often included as parts of operating plant life extension projects as the systems are old and replacement parts are difficult to source. This paper contains case studies of the software-based annunciator replacement projects at the Westinghouse SNUPPS training simulator in Pennsylvania and the Axpo Beznau nuclear power plant in Switzerland. Software-based annunciator systems can offer a number of feature enhancements including improved readability and operator awareness, easy configuration, alarm suppression features, and alarm management at operator workstations. This paper provides an overview of each project and discusses advantages, challenges, and lessons learned from both annunciator-replacement projects. (author)

  1. Software-based annunciator replacement: a tale of two projects

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, G.T., E-mail: simmongt@westinghouse.com [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2015-07-01

    Annunciator upgrade projects are often included as parts of operating plant life extension projects as the systems are old and replacement parts are difficult to source. This paper contains case studies of the software-based annunciator replacement projects at the Westinghouse SNUPPS training simulator in Pennsylvania and the Axpo Beznau nuclear power plant in Switzerland. Software-based annunciator systems can offer a number of feature enhancements including improved readability and operator awareness, easy configuration, alarm suppression features, and alarm management at operator workstations. This paper provides an overview of each project and discusses advantages, challenges, and lessons learned from both annunciator-replacement projects. (author)

  2. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, William L

    2012-10-31

    glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.

  3. Hip joint replacement

    Science.gov (United States)

    Hip arthroplasty; Total hip replacement; Hip hemiarthroplasty; Arthritis - hip replacement; Osteoarthritis - hip replacement ... Your hip joint is made up of 2 major parts. One or both parts may be replaced during surgery: ...

  4. Contamination of a church ceiling due to the burning of candles in combination with floor heating

    NARCIS (Netherlands)

    Schellen, H.L.; Deelman, J.; Aarle, van M.A.P.

    2005-01-01

    An air heating system originally heated St. Martinus’ church in Weert. Together with a large restoration in 1984 a floor heating system replaced this heating system. After this major renovation a number of problems arose: due to the floor heating system and massive granite floor the church could

  5. Contamination of a church ceiling due to the burning of candles in combination with floor heating

    NARCIS (Netherlands)

    Schellen, H.L.; Aarle, van M.A.P.

    2005-01-01

    An air heating system originally heated St. Martin's church in Weert. Together with an extensive restoration in 1984 a floor heating system replaced this heating system. After this major renovation a number of problems arose: due to the floor heating System and massive granite floor the church could

  6. New energy replacement method for resonant power supplies

    International Nuclear Information System (INIS)

    Karady, G.G.; Thiessen, H.A.

    1989-01-01

    The Resonant Power Supply is an economically and technically advanced solution for Rapid Cycling Accelerators. Several papers dealt with the design and operation of these power supplies, however, the energy replacement methods were not discussed in the past. This paper analyzes different energy-replacement methods and presents a new method. This method uses a 24-pulse converter to regulate the magnet current during flat-top and injection periods and replaces the energy loss by charging the accelerator capacitor bank during the flat-top, reset and injection periods, charge is injected in the circuit during the acceleration period, when it replaces the energy loss. This paper compares the new method with the existing ones. The analyses proved the feasibility of the proposed method. The operation of the proposed method was verified by a model experiment, which showed that the new circuit can be controlled accurately and operates with smaller disturbances to the power line than the existing systems. 2 refs., 6 figs., 1 tab

  7. Blowdown heat transfer surface in RELAP4/MOD6

    International Nuclear Information System (INIS)

    Nelson, R.A.; Sullivan, L.H.

    1978-01-01

    New heat transfer correlations for both PWR and BWR blowdowns have been implemented in the RELAP4/MOD6 program. The concept of a multidimensional surface is introduced with the heat flux from a given heat transfer correlation or correlations depicted as a mathematical surface that is dependent upon quality, wall superheat, mass flow and pressure. The heat transfer logic has been modularized to facilitate replacing boiling curves for future correlation data comparisons and investigations. To determine the validity of the blowdown surface, comparison has been performed using data from the Semiscale experimental facility. (author)

  8. Impact of process parameters and design options on heat leaks of straight cryogenic distribution lines

    Directory of Open Access Journals (Sweden)

    P. Duda

    2017-03-01

    Full Text Available The Future Circular Collider (FCC accelerator will require a helium distribution system that will exceed the presently exploited transfer lines by almost 1 order of magnitude. The helium transfer line will contain five process pipes protected against heat leaks by a common thermal shield. The design pressure of the FCC process pipe with supercritical helium will be equal to 5.0 MPa, significantly exceeding the 2.0 MPa value in the present, state-of–art transfer lines. The increase of the design pressure requires construction changes to be introduced to the support system, the vacuum barriers and the compensation bellows. This will influence heat flows to the helium. The paper analyses the impact of the increased design pressure on the heat flow. The paper also offers a discussion of the design modifications to the compensation system, including the replacement of stainless steel with Invar®—aimed at mitigating the pressure increase.

  9. Material development for gas-cooled high temperature reactors for the production of nuclear process heat

    International Nuclear Information System (INIS)

    Nickel, H.

    1977-04-01

    In the framework of the material development for gas-cooled high temperature reactors, considerable investigations of the materials for the reactor core and the primary cicuit are being conducted. Concerning the core components, the current state-of-the-art and the objectives of the development work on the spherical fuel elements, coated particles and structural graphite are discussed. As an example of the structural graphite, the non-replaceable reflector of the process heat reactor is discussed. The primary circuit will be constructed mainly from metallic materials, although some ceramics are also being considered. Components of interest are hot gas ducts, liners, methane reformer tubes and helium-helium intermediate heat exchangers. The gaseous impurities present in the helium coolant may cause oxidation and carburization of the nickel-base and iron-base alloys envisaged for use in these components, with a possible associated adverse effect on the mechanical properties such as creep and fatigue. Test capacity has therefore been installed to investigate materials behaviour in simulated reactor helium under both constant and alternating stress conditions. The first results on the creep behaviour of several alloys in impure helium are presented and discussed. (orig./GSC) [de

  10. In-core monitor housing replacement at Fukushima Daiichi Unit No.4

    International Nuclear Information System (INIS)

    Arai, Tomoyuki

    1999-01-01

    The in-core monitor (ICM) housing replacement of a Boiling Water Reactor (BWR) has been completed at Fukushima-Daiichi Unit No. 4 (1F4) of the Tokyo Electric Power Company (TEPCO) in Japan. Since cracking of the inside surface of an ICM housing was found in this unit, the ICM housing was replaced with one made of low-carbon stainless steel (SS) to improve Intergranular Stress Corrosion Cracking (IGSCC) resistance. This project is the first application of the replacement procedure for the ICM housing and employs various advanced technologies. The outline of the ICM housing replacement project and applied technologies are discussed in this paper. (author)

  11. The effect of preheated tendon as a lean meat replacement on the properties of fine emulsion sausages.

    Science.gov (United States)

    Sadler, D H; Young, O A

    1993-01-01

    Tendon from beef hind leg muscles was used to replace some of the lean in a conventional emulsion formulation. The tendon was homogenized and either used raw or preheated for 2·5 h at a range of temperatures (50, 60, 70, 80°C) before use. Texture analysis and sensory evaluation were performed on cylinders of cooked sausage. Texture analysis was carried out on formulations which had 20% of meat protein replaced by 20% tendons which were raw or had been preheated to 50, 60, 70, or 80°C. Fracturability decreased by about 40% with raw tendon, but was restored to within 20% of the no-replacement control if the tendon had been preheated. Hardness was approximately doubled by replacement with raw tendon or tendon heated at 50°C. At temperatures higher than that, hardness returned to approximately no-replacement levels. For sensory evaluation (0-25% replacement; preheating at 70°C), sausages were assessed by a 12-member panel for texture, flavour and overall acceptability. All attributes decreased with increasing collagen content, the decrease being less marked with preheated tendon. Thus more connective tissue could be added for the same panel score if the tissue was preheated. Comparison of the texture profile and the panel scores for texture at the same lean replacement level suggested that reduced fracturability was the texture parameter that panellists objected to when heated tendon replaced some of the lean. Other researchers have shown that connective tissue preheated to 100°C before addition in emulsion sausages results in improved yields and better sensory attributes, but the present results show that temperatures as low as 60°C can be effective for beef tendon. Copyright © 1993. Published by Elsevier Ltd.

  12. Experience and Prospects of Nuclear Heat Application

    International Nuclear Information System (INIS)

    Woite, G.; Konishi, T.; Kupitz, J.

    1998-01-01

    Relevant technical characteristics of nuclear reactors and heat application facilities for district heating, process heat and seawater desalination are presented and discussed. The necessity of matching the characteristics of reactors and heat applications has consequences for their technical and economic viability. The world-wide operating experience with nuclear district heating, process heating, process heat and seawater desalination is summarised and the prospects for these nuclear heat applications are discussed. (author)

  13. A regenerative elastocaloric heat pump

    Science.gov (United States)

    Tušek, Jaka; Engelbrecht, Kurt; Eriksen, Dan; Dall'Olio, Stefano; Tušek, Janez; Pryds, Nini

    2016-10-01

    A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg-1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.

  14. Fast numerical upscaling of heat equation for fibrous materials

    KAUST Repository

    Iliev, Oleg; Lazarov, Raytcho; Willems, Joerg

    2010-01-01

    We are interested in numerical methods for computing the effective heat conductivities of fibrous insulation materials, such as glass or mineral wool, characterized by low solid volume fractions and high contrasts, i.e., high ratios between the thermal conductivities of the fibers and the surrounding air. We consider a fast numerical method for solving some auxiliary cell problems appearing in this upscaling procedure. The auxiliary problems are boundary value problems of the steady-state heat equation in a representative elementary volume occupied by fibers and air. We make a simplification by replacing these problems with appropriate boundary value problems in the domain occupied by the fibers only. Finally, the obtained problems are further simplified by taking advantage of the slender shape of the fibers and assuming that they form a network. A discretization on the graph defined by the fibers is presented and error estimates are provided. The resulting algorithm is discussed and the accuracy and the performance of the method are illusrated on a number of numerical experiments. © Springer-Verlag 2010.

  15. Fast numerical upscaling of heat equation for fibrous materials

    KAUST Repository

    Iliev, Oleg

    2010-08-01

    We are interested in numerical methods for computing the effective heat conductivities of fibrous insulation materials, such as glass or mineral wool, characterized by low solid volume fractions and high contrasts, i.e., high ratios between the thermal conductivities of the fibers and the surrounding air. We consider a fast numerical method for solving some auxiliary cell problems appearing in this upscaling procedure. The auxiliary problems are boundary value problems of the steady-state heat equation in a representative elementary volume occupied by fibers and air. We make a simplification by replacing these problems with appropriate boundary value problems in the domain occupied by the fibers only. Finally, the obtained problems are further simplified by taking advantage of the slender shape of the fibers and assuming that they form a network. A discretization on the graph defined by the fibers is presented and error estimates are provided. The resulting algorithm is discussed and the accuracy and the performance of the method are illusrated on a number of numerical experiments. © Springer-Verlag 2010.

  16. Molecular-dynamics simulation of displacement cascades in Cu: analysis of replacement sequences

    International Nuclear Information System (INIS)

    King, W.E.; Benedek, R.

    1981-01-01

    Molecular-dynamics computer simulations of displacement cascades in copper have been performed for recoil energies up to 450 eV. Statistical analyses of the atomic replacements are presented. Linear replacement sequence lengths are extremely short on the average. The effect of the cooling phase of the cascade is discussed

  17. Natural refrigerants. Future heat pumps for district heating; Naturliga koeldmedier. Framtida vaermepumpar foer fjaerrvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Ingvarsson, Paul; Steen Ronnermark, Ingela [Fortum Teknik och Miljoe AB, Stockholm (Sweden); Eriksson, Marcus [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering and Environmental Science

    2004-01-01

    International work on refrigerants is aiming at phasing out HFC. The solution might be natural refrigerants. Within 15-20 years, when present heat pumps for district heating in Sweden are likely not in service any longer, it might still be good economy to install new heat pumps since only the machines need to be replaced. This report describes the possibilities to use natural refrigerants. A first screening resulted in further study on some hydrocarbons, ammonia and carbon dioxide. Water was considered to require too large volumes. In present plants it is practically not possible to use any natural refrigerants, partly because the compressors are not adapted. In new plants the situation is different. Today it is technically possible to install new heat pumps in the studied size, 15 MW{sub th}, using ammonia or hydrocarbons as refrigerant. But likely it is very difficult to get permits from authorities since the refrigerants are toxic or highly flammable. There is substantial international research on using carbon dioxide, and this refrigerant is also used in some applications. Carbon dioxide is used at high pressure and in a trans-critical process. Surprisingly, it turned out that one compressor manufacturer considers it possible to supply a heat pump for district heating within 5 years. This development has taken place in Russia, mainly for domestic use. Thus, within 15 to 20 years there will probably exist a technique where carbon dioxide is used. However, more development is needed. Additionally, low district heating return temperatures are also needed to get an acceptable COP. The investment cost for a heat pump installation is considered to be approx. 30 % higher when using ammonia or propane compared to using R134a. When using carbon dioxide there is in the longer run potential to get lower cost than for R134a. The COPs are almost identical if the systems are properly designed. In the carbon dioxide case the COP is somewhat lower, but has a potential for

  18. Focus group discussions among owners and non-owners of ground source heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, B.F.

    1988-07-01

    This research was sponsored by the Office of Buildings and Community Systems and conducted by the Pacific Northwest Laboratory as part of an ongoing effort to enhance the commercial use of federally developed technology. Federal dollars have supported research on the development of ground source heat pumps (GSHP) for several years. Though several companies currently sell GSHP's for residential use, their share of the total heating and air conditioning business remains less than one percent. Large manufacturing companies with national distribution have not yet added GSHP equipment to their product line. GSHP's use only about one half (Braud 1987) to one third (Bose 1987) of the energy needed to operate conventional furnaces and air conditioners. Consequently, a high level of market penetration by the GSHP offers direct benefits to both utility companies and individual users of the systems. Widespread use of these highly efficient systems will reduce both total energy consupmtion, and problems associated with high levels of energy use during peak periods. This will allow utility companies to delay capital expenditures for new facilities to meet the growing energy demand during peak periods. The cost effective use of electricity also reduces the likelihood of homeowners switching to a different fuel source for heating. 5 refs.

  19. Opportunity-based age replacement policy with minimal repair

    International Nuclear Information System (INIS)

    Jhang, J.P.; Sheu, S.H.

    1999-01-01

    This paper proposes an opportunity-based age replacement policy with minimal repair. The system has two types of failures. Type I failures (minor failures) are removed by minimal repairs, whereas type II failures are removed by replacements. Type I and type II failures are age-dependent. A system is replaced at type II failure (catastrophic failure) or at the opportunity after age T, whichever occurs first. The cost of the minimal repair of the system at age z depends on the random part C(z) and the deterministic part c(z). The opportunity arises according to a Poisson process, independent of failures of the component. The expected cost rate is obtained. The optimal T * which would minimize the cost rate is discussed. Various special cases are considered. Finally, a numerical example is given

  20. Heating and cooling with ground-loop heat pumps; Heizen und Kuehlen mit erdgekoppelten Waermepumpen

    Energy Technology Data Exchange (ETDEWEB)

    Afjei, Th.; Dott, R. [Institut Energie am Bau, Fachhochschule Nordwestschweiz (FHNW), Muttenz (Switzerland); Huber, A. [Huber Energietechnik AG, Zuerich (Switzerland)

    2007-08-15

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of the SFOE-project 'Heating and cooling with ground coupled heat pumps' in which the benefits and costs of a heat pump heating and cooling system with a borehole heat exchanger were examined. In particular the dimensioning of the hydraulic system, control concept and user behaviour are dealt with. The results of the simulations of thermal building behaviour with MATLAB/SIMULINK, CARNOT, and EWS are discussed. The results of parameter studies carried out, including varying shading, cooling characteristic curves, temperature differences in the heat exchanger and the dead time between heating and cooling mode are discussed. These showed that a simple system with heat pump and borehole heat exchanger for heating or preparation of domestic hot water as well as for passive cooling proved to be the best choice.

  1. Conversion of individual natural gas to district heating

    DEFF Research Database (Denmark)

    Möller, Bernd; Lund, Henrik

    2010-01-01

    Replacing individual natural gas heating with district heating based to increasing shares of renewable energy sources may further reduce CO2-emissions in the Danish Building mass, while increasing flexibility of the energy system to accommodate significantly larger amounts of variable renewable...... energy production. The present paper describes a geographical study of the potential to expand district heating into areas supplied with natural gas. The study uses a highly detailed spatial database of the built environment, its current and potential future energy demand, its supply technologies and its...

  2. Influence of heat treatment on magnesium alloys meant to automotive industry

    NARCIS (Netherlands)

    Popescu, G.; Moldovan, P.; Bojin, D.; Sillekens, W.H.

    2009-01-01

    The paper presents a study concerning the heat treatment realized on magnesium alloys, from AZ80 and ZK60 class. These alloys are destined to replace the conventional ferrous and aluminum alloys in automotive industry. It was realized the heat treatment, T5 - artificially aging, and it were

  3. Shoulder replacement - discharge

    Science.gov (United States)

    Total shoulder arthroplasty - discharge; Endoprosthetic shoulder replacement - discharge; Partial shoulder replacement - discharge; Partial shoulder arthroplasty - discharge; Replacement - shoulder - discharge; Arthroplasty - shoulder - discharge

  4. Replacing penalties

    Directory of Open Access Journals (Sweden)

    Vitaly Stepashin

    2017-01-01

    Full Text Available УДК 343.24The subject. The article deals with the problem of the use of "substitute" penalties.The purpose of the article is to identify criminal and legal criteria for: selecting the replacement punishment; proportionality replacement leave punishment to others (the formalization of replacement; actually increasing the punishment (worsening of legal situation of the convicted.Methodology.The author uses the method of analysis and synthesis, formal legal method.Results. Replacing the punishment more severe as a result of malicious evasion from serving accused designated penalty requires the optimization of the following areas: 1 the selection of a substitute punishment; 2 replacement of proportionality is serving a sentence other (formalization of replacement; 3 ensuring the actual toughening penalties (deterioration of the legal status of the convict. It is important that the first two requirements pro-vide savings of repression in the implementation of the replacement of one form of punishment to others.Replacement of punishment on their own do not have any specifics. However, it is necessary to compare them with the contents of the punishment, which the convict from serving maliciously evaded. First, substitute the punishment should assume a more significant range of restrictions and deprivation of certain rights of the convict. Second, the perfor-mance characteristics of order substitute the punishment should assume guarantee imple-mentation of the new measures.With regard to replacing all forms of punishment are set significant limitations in the application that, in some cases, eliminates the possibility of replacement of the sentence, from serving where there has been willful evasion, a stricter measure of state coercion. It is important in the context of the topic and the possibility of a sentence of imprisonment as a substitute punishment in cases where the original purpose of the strict measures excluded. It is noteworthy that the

  5. Solving nucleic acid structures by molecular replacement: examples from group II intron studies

    International Nuclear Information System (INIS)

    Marcia, Marco; Humphris-Narayanan, Elisabeth; Keating, Kevin S.; Somarowthu, Srinivas; Rajashankar, Kanagalaghatta; Pyle, Anna Marie

    2013-01-01

    Strategies for phasing nucleic acid structures by molecular replacement, using both experimental and de novo designed models, are discussed. Structured RNA molecules are key players in ensuring cellular viability. It is now emerging that, like proteins, the functions of many nucleic acids are dictated by their tertiary folds. At the same time, the number of known crystal structures of nucleic acids is also increasing rapidly. In this context, molecular replacement will become an increasingly useful technique for phasing nucleic acid crystallographic data in the near future. Here, strategies to select, create and refine molecular-replacement search models for nucleic acids are discussed. Using examples taken primarily from research on group II introns, it is shown that nucleic acids are amenable to different and potentially more flexible and sophisticated molecular-replacement searches than proteins. These observations specifically aim to encourage future crystallographic studies on the newly discovered repertoire of noncoding transcripts

  6. The possibilities of heat pumps utilisation for family houses and flats fumigation

    Directory of Open Access Journals (Sweden)

    Ján Pinka

    2006-10-01

    Full Text Available Heat pumps (HPs with the help of electricity use a renewable energy source to supply heat for homes or industrial buildings and to heat tap water. HP is a heating unit that will provide us with heat for our home for some 20 to 30 years to come and has a potential to replace traditional heating systems powered by gas, oil or coal. At this time, there is no other heating system that supplies clean heat with the help of up to 80 per cent of the renewable solar energy during all year.

  7. Advanced concepts and solutions for geothermal heating applied in Oradea, Romania

    Science.gov (United States)

    Antal, C.; Popa, F.; Mos, M.; Tigan, D.; Popa, B.; Muresan, V.

    2017-01-01

    Approximately 70% of the total population of Oradea benefits from centralized heating, about 55,000 apartments and 159,000 inhabitants are connected. The heating system of Oradea consists of: sources of thermal energy production (Combined heat and power (CHP) I Oradea and geothermal water heating plants); a transport network of heat; heat distribution network for heating and domestic hot water; substations, most of them equipped with worn and obsolete equipment. Recently, only a few heat exchangers were rehabilitated and electric valves were installed to control the water flow. After heat extraction, geothermal chilled waters from the Oradea area are: discharged into the sewer system of the city, paying a fee to the local water company which manages the city’s sewers; discharged into the small river Peta; or re-injected into the reservoir. In order to ensure environmental protection and a sustainable energy development in Oradea, renewable sources of energy have been promoted in recent years. In this respect, the creation of a new well for geothermal water re-injection into the reservoir limits any accidental thermal pollution of the environment, while ensuring the conservation properties of the aquifer by recharging with geothermal chilled water. The paper presents the achievements of such a project whose aim is to replace thermal energy obtained from coal with geothermal heating. The novelty consists in the fact that within the substation we will replace old heat exchangers, circulation pumps and valves with fully automated substations operating in parallel on both a geothermal system and on a primary heating system of a thermal plant.

  8. Use of waste heat from a dairy for heating of a community house

    Energy Technology Data Exchange (ETDEWEB)

    Rehn, C

    1976-01-01

    In a dairy, a lot of cooling capacity is needed. This article describes how this waste heat can be used for heating a community house including a sport establishment and producing hot water for that house. Four different technical solutions are discussed; (1) floor heat, (2) heat transfer connected to the ventilation, (3) regenerative heat exchanger, and (4) use of heat pumps.

  9. Two-stage absorber systems - Economically viable combined heat and cold generation; Wirtschaftlicher Kraft-Waerme-Kaelte-Verbund

    Energy Technology Data Exchange (ETDEWEB)

    Biniossek, H. [Giesecke und Devrient, Muenchen (Germany); Schmid, W. [Technische Gebaeudeausruestung, Muenchen (Germany)

    2008-07-01

    This article takes a look at how the possibilities of optimising power, heat and cold generation for the German Giesecke and Devrient company were examined and implemented. The company, which produces banknotes and chip-cards, chose the combination of a Combined Heat and Power (CHP) Unit and a two-stage absorber refrigeration system. The company's old system is briefly described and the reasons for replacing it are discussed. The careful dimensioning of the new system and the search for appropriate equipment are described. Intelligent power flows and a cooling system with two different temperature levels are described. Costs saved and emergency power generation are also looked at, as are the complex demands placed on the control of the system. The system's functioning is briefly described.

  10. Heat Generation Effects on U-Mo/Al through ABAQUS FEM Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Taewon; Jeong, Gwan Yoon; Lee, Cheol Min; Sohn Dongseong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    U-Mo/Al dispersion fuels have been considered a most promising candidate for a replacement of Highly Enriched Uranium (HEU) fuel in many research reactors. Coulson developed a FEM model which show the fuel meat realistically and compared the thermal conductivity results of two and three dimensional model. Williams also developed a FEM model which are different from the former in that it use regularly meshed unit cells. He showed a heat generation effects through FEM simulation and the effective thermal conductivity of the fuel with heat generated in the fuel particles is a little lower than that of the fuel with no heat generated. In the current work, the heat generation effects are analyzed and discussed in a wider range of volume fraction with more realistic models by using ABAQUS finite element package. The FEM model is used to determine the effective thermal conductivity of U-Mo/Al and to simulate the heat generation effects in the study. This model reflected the microscopic morphology of the fuel very well by making random distribution particles although the particle shape is considered as sphere. All simulation results show the heat generation effects although the effects are small when the volume fraction of fuels are high. When the particles are surrounded with interaction layers, the heat transfer from the particle to matrix is disturbed by interaction layers due to the low thermal conductivity of interaction layers. However this effects decreases when the sum of the volume fraction of fuels and interaction layers exceeds 40-50 vol% because a great portion of the heat must pass through fuels and interaction layers although the heat is applied on the surface. Therefore particle size and initial particle volume fractions will be the important factors for the heat generation effects when interaction layers grow during irradiations.

  11. Strategic vehicle fleet management - the replacement problem

    Directory of Open Access Journals (Sweden)

    Adam Redmer

    2016-03-01

    Full Text Available Background: Fleets constitute the most important production means in transportation. Their appropriate management is crucial for all companies having transportation duties. The paper is the third one of a series of three papers that the author dedicates to the strategic vehicle fleet management topic. Material and methods: The paper discusses ways of building replacement strategies for companies' fleets of vehicles. It means deciding for how long to exploit particular vehicles in a fleet (the fleet replacement problem - FR. The essence of this problem lies in the minimization of vehicle / fleet exploitation costs by balancing ownership and utilization costs and taking into account budget limitations. In the paper an original mathematical model (an optimization method allowing for the FR analysis is proposed. Results: An application of the proposed optimization method in a real-life decision situation (the case study within the Polish environment and the obtained solution are presented. The solution shows that there exist optimal exploitation periods of particular vehicles in a fleet. However, combination of them gives a replacement plan for an entire fleet violating budget constraints. But it is possible to adjust individual age to replacement of particular vehicles to fulfill budget constraints without losing economical optimality of a developed replacement plan for an entire fleet. Conclusions: The paper is the last one of a series of three papers that the author dedicated to the strategic vehicle fleet management topic including the following managerial decision problems: MAKE-or-BUY, sizing / composition and replacement.

  12. Performance analysis of diesel engine heat pump incorporated with heat recovery

    International Nuclear Information System (INIS)

    Shah, N.N.; Huang, M.J.; Hewitt, N.J.

    2016-01-01

    Highlights: • Diesel engine heat pump with heat recovery. • Water-to-water source heat pump based on R134a. • Possibility for different flow temperature for heat distribution system. • Possible retrofit application in off-gas or weak electricity network area. • Potential to diversify use of fossil fuel, primary energy and CO_2 emission savings. - Abstract: This paper presents experimental study of diesel engine heat pump (DEHP) system to find potential as retrofit technology in off-gas or weak electricity network area to replace existing gas/oil/electric heating system in domestic sector. Test set-up of diesel engine driven water-to-water heat pump system was built which included heat recovery arrangement from the engine coolant & exhaust gas. The system was designed to meet typical house heating demand in Northern Ireland. Performance of DEHP was evaluated to meet house-heating demand at different flow temperature (35, 45, 55 & 65 °C), a typical requirement of underfloor space heating, medium/high temperature radiators and domestic hot water. The performance was evaluated against four-evaporator water inlet temperature (0, 5, 10 & 15 °C) and at three different engine speed 1600, 2000 & 2400 rpm. Experiment results were analysed in terms of heating/cooling capacity, heat recovery, total heat output, primary energy ratio (PER), isentropic efficiency, etc. Test results showed that DEHP is able to meet house-heating demand with help of heat recovery with reduced system size. Heat recovery contributed in a range of 22–39% in total heat output. It is possible to achieve high flow temperature in a range of 74 °C with help of heat recovery. Overall system PER varied in a range of 0.93–1.33. Speed increment and flow temperature has significant impact on heat recovery, total heat output and PER. A case scenario with different flow temperature to match house-heating demand has been presented to show working potential with different heat distribution system

  13. Development and fabrication of heat-sterilizable inhalation therapy equipment

    Science.gov (United States)

    Irons, A. S.

    1974-01-01

    The development of a completely heat sterilizable intermittent positive pressure breathing (IPPB) ventilator in an effort to reduce the number of hospital acquired infections is reported. After appropriate changes in materials and design were made, six prototype units were fabricated and were successfully field tested in local hospitals. Most components of the modified ventilators are compatible with existing machines. In all but a few instances, such as installation of bacteria-retentive filters and a modified venturi, the change over from non-heat-sterilizable to sterilizable units was accomplished by replacement of heat labile materials with heat stable materials.

  14. Mechanical Aortic Valve Replacement in Octogenarian

    Directory of Open Access Journals (Sweden)

    Irfan Tasoglu

    2013-10-01

    Full Text Available Aim: This study analyzes the long-term outcomes of mechanical aortic valve replacement in octogenarian patients. Material and Method: A retrospective review was performed on 23 octogenarian patients who underwent mechanical aortic valve replacement. Hospital mortality, postoperative intensive care unit stay, hospital stay and long-term results was examined. Estimates of the cumulative event mortality rate were calculated by the Kaplan-Meier method. Results: The mean age of all patients was 82.9±2.3 years and most were men (65.22%. The median ejection fraction was 45%. 73.91% of patients were in New York Heart Association class III-IV. Thirteen patients (56.52% in this study underwent combined procedure, the remaining 10 (43.48% patients underwent isolated aortic valve replacement. The most common valve size was 23 mm. The mean intensive care unit stay was 1.76±1.14 days. The mean hospital stay was 9.33±5.06 days. No complications were observed in 56.52% patients during their hospital stay. The overall hospital mortality was 8.7%. Follow-up was completed for all 23 patients. Median follow-up time was 33 months (1-108 months. Actuarial survival among discharged from hospital was 59% at 5 years. Discussion: Mechanical aortic valve replacement is a safe procedure in octogenarian patients and can be performed safely even in combined procedure.

  15. Replacement of major nuclear power plant components for service life extension

    International Nuclear Information System (INIS)

    Novak, S.

    1987-01-01

    Problems are discussed associated with replacement of nuclear power plant components with the aim to extend their original scheduled life. The existing foreign experience shows that it is technically feasible to replace practically all basic components for which the necessity of replacement is established. Data is summed up on the replacement of steam generators in US and West German nuclear power plants showing the duration of the job, the total consumption of manhours, the collective dose equivalent and the cost. Attention is also focused on implemented and projected replacements of circulation pipes in nuclear power plants abroad. Based on these figures, the cost is estimated of the replacement of the reactor vessel and the steam generators for WWER-440 nuclear power plants. The conclusion is arrived at that even based on a conservative estimate, the extension by 20 years of the service life of a nuclear power plant is economically more effective than the construction of a new plant. (Z.M.) 2 tabs., 15 refs., 3 figs

  16. Designing heat exchangers for process heat reactors

    International Nuclear Information System (INIS)

    Quade, R.N.

    1980-01-01

    A brief account is given of the IAEA specialist meeting on process heat applications technology held in Julich, November 1979. The main emphasis was on high temperature heat exchange. Papers were presented covering design requirements, design construction and prefabrication testing, and selected problems. Primary discussion centered around mechanical design, materials requirements, and structural analysis methods and limits. It appears that high temperature heat exchanges design to nuclear standards, is under extensive development but will require a lengthy concerted effort before becoming a commercial reality. (author)

  17. Cryogenic heat exchanger fragile in cyclic operation; Fragilizacao de trocador de calor criogenico em operacao ciclica

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Marcelo Oliveira de [Air Products Brasil Ltda, Rio de janeiro, RJ (Brazil)

    2010-07-01

    This work aims to show the failure of a cryogenic plant recycle cold box Aluminum heat exchanger in a cyclic operation (stopping on pic hour), his attempts to repair and later decision-making by its replacement. Attempts to repair the Heat Exchanger (HEX) methodology adopted was to isolate the HEX passages that could allow the passage of gas for casting, bringing as a consequence the partial reduction of thermal exchange capacity. For the decision to replace the HEX: the methodology adopted was to risk assessment and the result of failure x total cost (maintenance + plant stopped) retries repair or replacement of the HEX. Based on the HEX repair attempts, not conclusive identification of the failure mechanism and the assessment of risk and consequence of failed x total cost of retries of repair or replacement of HEX: chosen by replacing this exchanger at the earliest possible opportunity. (author)

  18. Potentialities and type of integrating nuclear heating stations into district heating systems

    International Nuclear Information System (INIS)

    Munser, H.; Reetz, B.; Schmidt, G.

    1978-01-01

    Technical and economical potentialities of applying nuclear heating stations in district heating systems are discussed considering the conditions of the GDR. Special attention is paid to an optimum combination of nuclear heating stations with heat sources based on organic fuels. Optimum values of the contribution of nuclear heating stations to such combined systems and the economic power range of nuclear heating stations are estimated. Final considerations are concerned with the effect of siting and safety concepts of nuclear heating stations on the structure of the district heating system. (author)

  19. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  20. Application of intensified heat transfer for the retrofit of heat exchanger network

    International Nuclear Information System (INIS)

    Wang, Yufei; Pan, Ming; Bulatov, Igor; Smith, Robin; Kim, Jin-Kuk

    2012-01-01

    Highlights: → Novel design approach for the retrofit of HEN based on intensified heat transfer. → Development of a mathematical model to evaluate shell-and-tube heat exchanger performances. → Identification of the most appropriate heat exchangers requiring heat transfer enhancements in the heat exchanger network. -- Abstract: A number of design methods have been proposed for the retrofit of heat exchanger networks (HEN) during the last three decades. Although considerable potential for energy savings can be identified from conventional retrofit approaches, the proposed solutions have rarely been adopted in practice, due to significant topology modifications required and resulting engineering complexities during implementation. The intensification of heat transfer for conventional shell-and-tube heat exchangers can eliminate the difficulties of implementing retrofit in HEN which are commonly restricted by topology, safety and maintenance constraints, and includes high capital costs for replacing equipment and pipelines. This paper presents a novel design approach to solve HEN retrofit problems based on heat transfer enhancement. A mathematical model has been developed to evaluate shell-and-tube heat exchanger performances, with which heat-transfer coefficients and pressure drops for both fluids in tube and shell sides are obtained. The developed models have been compared with the Bell-Delaware, simplified Tinker and Wills-Johnston methods and tested with the HTRI (registered) and HEXTRAN (registered) software packages. This demonstrates that the new model is much simpler but can give reliable results in most cases. For the debottlenecking of HEN, four heuristic rules are proposed to identify the most appropriate heat exchangers requiring heat transfer enhancements in the HEN. The application of this new design approach allows a significant improvement in energy recovery without fundamental structural modifications to the network.

  1. Integrating Solar Heating into an Air Handling Unit to Minimize Energy Consumption

    OpenAIRE

    Wilson, Scott A

    2010-01-01

    The purpose of this project was to test a method of integrating solar heating with a small commercial air handling unit (AHU). In order to accomplish this a heat exchanger was placed in the reheat position of the AHU and piped to the solar heating system. This heat exchanger is used to supplement or replace the existing electric reheat. This method was chosen for its ability to utilize solar energy on a more year round basis when compared to a traditional heating system. It allows solar h...

  2. Ankle replacement

    Science.gov (United States)

    Ankle arthroplasty - total; Total ankle arthroplasty; Endoprosthetic ankle replacement; Ankle surgery ... Ankle replacement surgery is most often done while you are under general anesthesia. This means you will ...

  3. After-heat removal system

    International Nuclear Information System (INIS)

    Yamamoto, Michiyoshi; Mitani, Shinji.

    1982-01-01

    Purpose: To prevent contamination of suppression pool water and intrusion of corrosion products into a nuclear reactor. Constitution: Upon stop of an after-heat removing system, reactor water contained in pipelines is drained out to a radioactive wastes processing facility at the time the cooling operation mode has been completed. At the same time, water is injected from a pure water supply system to the after-heat removing system to discharge corrosion product and activated materials while cleaning the inside of the pipelines. Then, pure water is held in the pipelines and it is discharged again and replaced with pure water before entering the cooling mode operation. Thereafter, the cooling mode operation upon reactor shutdown is performed. (Yoshino, Y.)

  4. Discussion of the Integrate Designs between Solar Energy Water Heating System and Air-source Heat Pump%空气源热泵与太阳能热水系统集成设计探讨

    Institute of Scientific and Technical Information of China (English)

    王伟; 南晓红; 马俊; 李飞

    2011-01-01

    对不同地区应用的几种不同形式空气源热泵辅助型太阳能热水系统设计方案进行介绍探讨,并以其为基础提出一种新的空气源热泵与太阳能热水系统集成的多功能系统设计方案。总结了不同地区、不同形式空气源热泵辅助型太阳能热水系统的设计方案、特点及新集成系统运行模式等,为我国不同地区应用此类系统时选择具体设计方案提供参考。%In this paper,different designs of the solar energy water heating system aided by air-source heat pump(SEWH-ASHP) are introduced and discussed,then a new integrate design between solar energy water heating system and air-source heat pump is given.Characters of different designs of the solar energy water heating system aided by air-source heat pump in different area are summed and the operational modes of the integrate system are analysed,which would be a useful reference to chose for designing and using the system of SEWH-ASHP and integrate system in different areas in China.

  5. Discussion on the entransy expressions of the thermodynamic laws and their applications

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2013-01-01

    In this paper, the entransy expressions of the three thermodynamic laws are discussed. The entransy expression of the first law is that the entransy of any thermodynamic system is in balance. For the second law, the entransy expression for heat transfer is that the entransy flow will never be transported from a low temperature body to a high temperature body automatically and entransy dissipation always exists. The entransy expression for heat-work conversion is that it is impossible for any device to operate in a cycle that receives heat entransy flow from a single reservoir and results in an equivalent amount of work entransy flow. The two entransy expressions of the second law are proved to be equivalent to each other. For the third law, its entransy expression is that it is impossible to achieve the zero entransy for any body through limited processes. With these expressions, the Clausius inequality is proved, and the concept of entransy loss is defined. The application of entransy loss to heat transfer and heat-work conversion is discussed. - Highlights: • The entransy expressions of the three thermodynamic laws are discussed. • The Clausius inequality is proved with the entransy expressions of the laws. • The concept of entransy loss is defined with the entransy expressions of the laws. • Entransy loss can be used to analyze heat transfer and heat-work conversion

  6. Remote replacement of TF [toroidal field] and PF [poloidal field] coils for the compact ignition tokamak

    International Nuclear Information System (INIS)

    Macdonald, D.; Watkin, D.C.; Hollis, M.J.; DePew, R.E.; Kuban, D.P.

    1990-01-01

    The use of deuterium-tritium fuel in the Compact Ignition Tokamak will require applying remote handling technology for ex-vessel maintenance and replacement of machine components. Highly activated and contaminated components of the fusion devices auxiliary systems, such as diagnostics and RF heating, must be replaced using remotely operated maintenance equipment in the test cell. In-vessel remote maintenance included replacement of divertor and first wall hardware, faraday shields, and for an in-vessel inspection system. Provision for remote replacement of a vacuum vessel sector, toroidal field coil or poloidal field ring coil was not included in the project baseline. As a result of recent coil failures experienced at a number of facilities, the CIT project decided to reconsider the question of remote recovery from a coil failure and, in January of 1990, initiated a coil replacement study. This study focused on the technical requirements and impact on fusion machine design associated with remote recovery from any coil failure

  7. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  8. Nicotine replacement therapy

    Science.gov (United States)

    Smoking cessation - nicotine replacement; Tobacco - nicotine replacement therapy ... Before you start using a nicotine replacement product, here are some things to know: The more cigarettes you smoke, the higher the dose you may need to ...

  9. Heat conduction within linear thermoelasticity

    CERN Document Server

    Day, William Alan

    1985-01-01

    J-B. J. FOURIER'S immensely influential treatise Theorie Analytique de la Chaleur [21J, and the subsequent developments and refinements of FOURIER's ideas and methods at the hands of many authors, provide a highly successful theory of heat conduction. According to that theory, the growth or decay of the temperature e in a conducting body is governed by the heat equation, that is, by the parabolic partial differential equation Such has been the influence of FOURIER'S theory, which must forever remain the classical theory in that it sets the standard against which all other theories are to be measured, that the mathematical investigation of heat conduction has come to be regarded as being almost identicalt with the study of the heat equation, and the reader will not need to be reminded that intensive analytical study has t But not entirely; witness, for example, those theories which would replace the heat equation by an equation which implies a finite speed of propagation for the temperature. The reader is refe...

  10. Hip Replacement Surgery

    Science.gov (United States)

    ... Outreach Initiative Breadcrumb Home Health Topics English Español Hip Replacement Surgery Basics In-Depth Download Download EPUB ... PDF What is it? Points To Remember About Hip Replacement Surgery Hip replacement surgery removes damaged or ...

  11. Replacement of fish meal by protein soybean concentrate in practical diets for Pacific white shrimp

    Directory of Open Access Journals (Sweden)

    Mariana Soares

    2015-10-01

    Full Text Available ABSTRACTThe objective of this work was to evaluate the performance of Litopenaeus vannameifed different levels (0, 25, 50, 75, and 100% of soybean protein concentrate (63.07% crude protein, CP to replace fish meal-by product (61.24% CP. The study was conducted in clear water in fifteen 800 L tanks equipped with aeration systems, constant heating (29 ºC, and daily water exchange (30%. Each tank was stocked with 37.5 shrimp/m3 (3.03±0.14 g. Feed was supplied four times a day, at 6% of the initial biomass, adjusted daily. After 42 days, the weight gain of shrimp fed diets with 0 and 25% protein replacement was higher than that observed in shrimp fed 100% replacement, and there were no differences among those fed the other diets. Feed efficiency and survival did not differ among shrimp fed different protein replacements. There was a negative linear trend for growth parameters and feed intake as protein replacement with soybean protein concentrate increased. Fish meal by-product can be replaced by up to 75% of soybean protein concentrate, with no harm to the growth of Pacific white shrimp.

  12. Development of a contact heat exchanger for a constructable radiator system

    Science.gov (United States)

    Howell, H. R.

    1983-01-01

    A development program for a contact heat exchanger to be used to transfer heat from a spacecraft coolant loop to a heat pipe radiator is described. The contact heat exchanger provides for a connectable/disconnectable joint which allows for on-orbit assembly of the radiator system and replacement or exchange of radiator panels for repair and maintenance. The contact heat exchanger does not require the transfer of fluid across the joint; the spacecraft coolant loop remains contained in an all welded system with no static or dynamic fluid seals. The contact interface is also "dry' with no conductive grease or interstitial material required.

  13. Heat pumps; Synergy of high efficiency and low carbon electricity

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Akio

    2010-09-15

    Heat pump is attracting wide attention for its high efficiency to utilize inexhaustible and renewable ambient heat in the environment. With its rapid innovation and efficiency improvement, this technology has a huge potential to reduce CO2 emissions by replacing currently widespread fossil fuel combustion systems to meet various heat demands from the residential, commercial and industrial sectors. Barriers to deployment such as low public awareness and a relatively long pay-back period do exist, so it is strongly recommended that each country implement policies to promote heat pumps as a renewable energy option and an effective method to combat global warming.

  14. Natural convection heat transfer of fluid with temperature-dependent specific heat

    International Nuclear Information System (INIS)

    Tanaka, Amane; Kubo, Shinji; Akino, Norio

    1998-01-01

    The present study investigates natural convection from a heated vertical plate of fluid with temperature-dependent specific heat, which is introduced as a model of microencapsulated phase change material slurries (MCPCM slurries). The temperature dependence of specific heat is represented by Gauss function with three physical parameters (peak temperature, width of phase change temperature and latent heat). Boundary layer equations are solved numerically, and the velocity and temperature fields of the flow are obtained. The relation between the heat transfer coefficients and the physical parameters of specific heat is discussed. The results show that the velocities and temperatures are smaller, and the heat transfer coefficients are larger comparing with those of the fluid with constant specific heat. (author)

  15. Demand modelling for central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    Most researchers in the field of heat demand estimation have focussed on explaning the load for a given plant based on rather few measurements. This approach is simply the only one adaptable with the very limited data material and limited computer power. This way of dealing with the subject is here called the top-down approach, due to the fact that one tries to explain the load from the overall data. The results of such efforts are discussed in the report, leading to inspiration for own work. Also the significance of the findings to the causes for given heat loads are discussed and summarised. Contrary to the top-down approach applied in literature, a here-called bottom-up approach is applied in this work, describing the causes of a given partial load in detail and combining them to explain the total load for the system. Three partial load 'components' are discussed: 1) Space heating. 2) Hot-Water Consumption. 3) Heat losses in pipe networks. The report is aimed at giving an introduction to these subjects, but at the same time at collecting the previous work done by the author. Space heating is shortly discussed and loads are generated by an advanced simulation model. A hot water consumption model is presented and heat loads, generated by this model, utilised in the overall work. Heat loads due to heat losses in district heating a given a high priority in the current work. Hence a detailed presentation and overview of the subject is given to solar heating experts normally not dealing with district heating. Based on the 'partial' loads generated by the above-mentioned method, an overall load model is built in the computer simulation environment TRNSYS. The final tool is then employed for the generation of time series for heat demand, representing a district heating area. The results are compared to alternative methods for the generation of heat demand profiles. Results form this comparison will be presented. Computerised modelling of systems

  16. Policies for Renewable Heat

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    This paper builds on IEA publications, Deploying Renewables, Principles for Effective Policies and Deploying Renewables, Best and Future Policy Practice, that discuss the 'integrated policy approach,' whereby renewable energy technologies require different support policies at different stages of their maturity pathways. The paper discusses how the integrated policy approach applies to renewable heat. It attempts to provide guidance for policy-makers on renewable heat throughout the different phases of the policy lifecycle, allowing for the specific challenges of renewable heat and needs of the many stakeholders involved. Stimulating a market for heat involves challenges that are different and, often, more difficult to overcome than in the electricity and transport sectors.

  17. Knee Replacement

    Science.gov (United States)

    Knee replacement is surgery for people with severe knee damage. Knee replacement can relieve pain and allow you to ... Your doctor may recommend it if you have knee pain and medicine and other treatments are not ...

  18. Poly(4-vinylphenol) gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    Science.gov (United States)

    Fan, Ching-Lin; Shang, Ming-Chi; Hsia, Mao-Yuan; Wang, Shea-Jue; Huang, Bohr-Ran; Lee, Win-Der

    2016-03-01

    A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  19. Refurbishment and replacement efforts to mitigate ageing at Tarapur Atomic Power Station - an overview

    International Nuclear Information System (INIS)

    Katiyar, S.C.; Thattey, V.; Das, P.K.

    2006-01-01

    Tarapur Atomic Power Station (TAPS) - a twin Boiling Water Reactor unit and India's first Atomic Power Station was commissioned in April 1969, and was declared commercial in November 1969. Since then the light water moderated, low enriched uranium BWR with its demonstrated reliability and favourable economics is playing a vital role as a reliable source of power for the states of Maharashtra and Gujarat. The Power Station played a key role as a technology demonstrator validating the nuclear energy as safe and environmentally benign and economically viable alternate source of power generation in India. Built in the late sixties with state-of-the-art safety features prevailing then, TAPS has further evolved to be a safe plant with renovation and refurbishment efforts. Ageing Management Programme is in place at TAPS. Identification of systems, structures and components (SSCs) important to safety and availability, assessment of ageing degradation of these SSCs and mitigation through repair, replacement and refurbishment based on the investigations have enhanced the plant safety and reliability. The station's operating experience and feedback from BWRs operating abroad have also given inputs to Ageing Management Programme. A good number of major equipment have been replaced to mitigate ageing. Primary system piping, process heat exchangers, feed water heaters, turbine extraction system piping, turbine blades, emergency condenser tube bundles, various pumps, station batteries, electrical cables, circuit breakers etc. are some of them. Obsolescence is another aspect of ageing of a plant. Replacement of obsolete equipment and components particularly in C and I is another area where much headway has been made. Replacement and refurbishment of equipment have been done after detailed study and analysis so that current standards are met. Retrofitting the indigenously developed and fabricated equipment in a compact plant like TAPS was a difficult task and required lot of

  20. Esophageal replacement in children: Challenges and long-term outcomes

    Directory of Open Access Journals (Sweden)

    Giampiero Soccorso

    2016-01-01

    Full Text Available Replacement of a nonexistent or damaged esophagus continues to pose a significant challenge to pediatric surgeons. Various esophageal replacement grafts and techniques have not produced consistently good outcomes to emulate normal esophagus. Therefore, many techniques are still being practiced and recommended with no clear consensus. We present a concise literature review of the currently used techniques and with discussions on the advantages and anticipated morbidity. There are no randomized controlled pediatric studies to compare different types of esophageal replacements. Management and graft choice are based on geographical and personal predilections rather than on any discernible objective data. The biggest series with long-term outcome are reported for gastric transposition and colonic replacement. Comparison of different studies shows no significant difference in early (graft necrosis and anastomotic leaks or late complications (strictures, poor feeding, gastro-esophageal reflux, tortuosity of the graft, and Barrett′s esophagus. The biggest series seem to have lower complications than small series reflecting the decennials experience in their respective centers. Long-term follow-up is recommended following esophageal replacement for the development of late strictures, excessive tortuosity, and Barrett′s changes within the graft. Once child overcomes initial morbidity and establishes oral feeding, long-term consequences and complications of pediatric esophageal replacement should be monitored and managed in adult life.

  1. Savannah River Plant Low-Level Waste Heat Utilization Project preliminary analysis. Volume II. Options for capturing the waste heat

    International Nuclear Information System (INIS)

    1978-11-01

    Options for utilizing the heated SRP effluent are investigated. The temperature and availability characteristics of the heated effluent are analyzed. Technical options for energy recovery are discussed. A number of thermodynamic cycles that could generate electrical power using the energy in the heated SRP effluent are described. Conceptual designs for SRP application of two attractive options are presented. Other direct uses for the heated effluent, as heat sources for agriculture and aquaculture options are discussed

  2. Alpha male replacements in nonhuman primates: Variability in processes, outcomes, and terminology.

    Science.gov (United States)

    Teichroeb, Julie A; Jack, Katharine M

    2017-07-01

    Alpha male replacements occur in all primates displaying a dominance hierarchy but the process can be extremely variable. Here, we review the primate literature to document differences in patterns of alpha male replacements, showing that group composition and dispersal patterns account for a large proportion of this variability. We also examine the consequences of alpha male replacements in terms of sexual selection theory, infanticide, and group compositions. Though alpha male replacements are often called takeovers in the literature, this term masks much of the variation that is present in these processes. We argue for more concise terminology and provide a list of terms that we suggest more accurately define these events. Finally, we introduce the papers in this special issue on alpha male replacements in the American Journal of Primatology and discuss areas where data are still lacking. © 2017 Wiley Periodicals, Inc.

  3. District heating with SLOWPOKE energy systems

    International Nuclear Information System (INIS)

    Lynch, G.F.

    1988-03-01

    The SLOWPOKE Energy System, a benign nuclear heat source designed to supply 10 thermal megawatts in the form of hot water for local heating systems in buildings and institutions, is at the forefront of these developments. A demonstration unit has been constructed in Canada and is currently undergoing an extensive test program. Because the nuclear heat source is small, operates at atmospheric pressure, and produces hot water below 100 degrees Celcius, intrinsic safety features will permit minimum operator attention and allow the heat source to be located close to the load and hence to people. In this way, a SLOWPOKE Energy System can be considered much like the oil- or coal-fired furnace it is designed to replace. The low capital investment requirements, coupled with a high degree of localization, even for the first unit, are seen as attractive features for the implementation of SLOWPOKE Energy Systems in many countries

  4. Study of heat transfer in the heating wall during nucleate pool boiling

    International Nuclear Information System (INIS)

    Bergez, W.

    1991-12-01

    The subject of this these is to show the role of heat transfer in the wall during saturated pool boiling. This effect, usually neglected in the modelizations of boiling, can explain some behaviours of the ebullition cycle and of the activities of nucleation sites. Il has been found that the ebullition cycle can be described by two steps: (1) during bubble growth, the wall temperature decreases due to the evaporation of the micro-layer at the base of the bubble; (2) initial superheat is re-established mainly by radial heat conduction in the wall. It is then possible to account for the variations of the wall temperature displayed by liquid crystals put a the bottom of the heating surface, and for the influence of the contact angle on the heat transfer. In the case of the infinitely thick wall the main results are that the thermal transfer during the growth of the bubble depends on the thermal properties of both wall and liquid and that the time separating the detachment of a bubble and its replacement by a new one is proportional to the cross-section of the bubble and to the thermal diffusivity of the wall

  5. A model predictive control strategy for the space heating of a smart building including cogeneration of a fuel cell-electrolyzer system

    DEFF Research Database (Denmark)

    Sossan, Fabrizio; Bindner, Henrik W.; Madsen, Henrik

    2014-01-01

    The objective of this paper is to analyze the value of energy replacement in the context of demand response. Energy replacement is dened as the possibility of the consumer to choose the most convenient source for providing space heating to a smart building according to a dynamic electricity price....... In the proposed setup, heat is provided by conventional electric radiators and a combined heat and power generation system, composed by a fuel cell and an electrolyzer. The energy replacement strategy is formulated using model predictive control and mathematical models of the components involved. Simulations show...... that the predictive energy replacement strategy reduces the operating costs of the system and is able to provide a larger amount of regulating power to the grid. In the paper, we also develop a novel dynamic model of a PEM fuel cell suitable for micro-grid applications. The model is realized applying a grey...

  6. Direct Heat

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  7. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  8. A thermodynamic analysis of waste heat recovery from reciprocating engine power plants by means of Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Uusitalo, Antti; Honkatukia, Juha; Turunen-Saaresti, Teemu; Larjola, Jaakko

    2014-01-01

    Organic Rankine Cycle (ORC) is a Rankine cycle using organic fluid as the working fluid instead of water and steam. The ORC process is a feasible choice in waste heat recovery applications producing electricity from relatively low-temperature waste heat sources or in applications having a rather low power output. Utilizing waste heat from a large high-efficiency reciprocating engine power plant with ORC processes is studied by means of computations. In addition to exhaust gas heat recovery, this study represents and discusses an idea of directly replacing the charge air cooler (CAC) of a large turbocharged engine with an ORC evaporator to utilize the charge air heat in additional power production. A thermodynamic analysis for ORCs was carried out with working fluids toluene, n-pentane, R245fa and cyclohexane. The effect of different ORC process parameters on the process performance are presented and analyzed in order to investigate the heat recovery potential from the exhaust gas and charge air. A simplified feasibility consideration is included by comparing the ratio of the theoretical heat transfer areas needed and the obtained power output from ORC processes. The greatest potential is related to the exhaust gas heat recovery, but in addition also the lower temperature waste heat streams could be utilized to boost the electrical power of the engine power plant. A case study for a large-scale gas-fired engine was carried out showing that the maximum power increase of 11.4% was obtained from the exhaust gas and 2.4% from the charge air heat. - Highlights: • Waste heat recovery potential of reciprocating engines was studied. • Thermodynamic optimization for ORCs was carried out with different fluids. • The utilization of exhaust gas and charge air heat is presented and discussed. • Simplified economic feasibility study was included in the analysis. • Power increase of 11.4% was obtained from exhaust gas and 2.4% from charge air

  9. The heat engine cycle, the heat removal cycle, and ergonomics of the control room displays

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1986-01-01

    This paper discusses and illustrates the ergonomics of an integrated display, which will allow operators to monitor the heat engine cycle during normal operation of the plant, and the heat removal cycle during emergency operation of the plant. A computer-based iconic display is discussed as an overview to monitor these cycles. Specific emphasis is placed upon the process variables and process functions within each cycle, and the action of control systems and engineered safeguard systems within each cycle. This paper contains examples of display formats for the heat engine cycle and the heat removal cycle in a pressurized water reactor

  10. Development of a gas fired Vuilleumier heat pump for residential heating

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    1989-01-01

    A natural gas-driven heat pump based on the Vuilleumier principle has been developed for use in single-family houses. The pump has a heat output of 7.5 kW at a coefficient of performance of 1.62 based on the lower heat content of the gas fuel. The heat pump uses helium as working fluid at 20 MPa...... mean pressure, and it is designed as a semihermetic unit. A crank mechanism distinguished by very small loads on the piston rings was developed. The advantages and disadvantages of the Vuilleumier principle for heat-driven heat pumps are discussed. Results of the extensive experimental work...... are presented. A new 20 kW Vuilleumier heat pump is briefly described...

  11. Replacement of the computerized control system at NPP under operation

    International Nuclear Information System (INIS)

    Ermolaev, A.D.; Rakitin, I.D.

    1985-01-01

    Reasons and preconditions for replacement of the computerized control systems (CCS) at NPP under operation are consi-- dered. Problems dealing with management of CCS replacement, maintenance of a new CCS as well as NPP personnel training for the new system maintenance are discussed. A necessity of NPP personnel participation in these works in order to adapt CCS to requirements of NPP operation personnel and to initiate the training process is underlined. Replacement of CCS at NPP under operation is associated, as a rule, with obsolescence of old systems not ensuring growing requirements to NPP workability and safety. Principles observed at CCS replacement are reduced, mainly, to the following; maximum utilizatian of existing equipment, metal strUctures, cables, instruments, power supplies, ventilation system minimum of construction works and new communications; the least change of acting panels and boxes; changes in control desks should be introduced on the basis of the analysis of operator actions '

  12. Calculating the marginal costs of a district-heating utility

    International Nuclear Information System (INIS)

    Sjoedin, Joergen; Henning, Dag

    2004-01-01

    District heating plays an important role in the Swedish heat-market. At the same time, the price of district heating varies considerably among different district-heating utilities. A case study is performed here in which a Swedish utility is analysed using three different methods for calculating the marginal costs of heat supply: a manual spreadsheet method, an optimising linear-programming model, and a least-cost dispatch simulation model. Calculated marginal-costs, obtained with the three methods, turn out to be similar. The calculated marginal-costs are also compared to the actual heat tariff in use by the utility. Using prices based on marginal costs should be able to bring about an efficient resource-allocation. It is found that the fixed rate the utility uses today should be replaced by a time-of-use rate, which would give a more accurate signal for customers to change their heat consumptions. (Author)

  13. Defining line replaceable units

    NARCIS (Netherlands)

    Parada Puig, J. E.; Basten, R. J I

    2015-01-01

    Defective capital assets may be quickly restored to their operational condition by replacing the item that has failed. The item that is replaced is called the Line Replaceable Unit (LRU), and the so-called LRU definition problem is the problem of deciding on which item to replace upon each type of

  14. Nuclear boiling heat transfer and critical heat flux in titanium dioxide-water nanofluids

    International Nuclear Information System (INIS)

    Okawa, Tomio; Takamura, Masahiro; Kamiya, Takahito

    2011-01-01

    Nucleate boiling heat transfer was experimentally studied for saturated pool boiling of water-based nanofluids. Since significant nanoparticle deposition on the heated surface was observed after the nucleate boiling in nanofluids, measurement of CHF was also carried out using the nanoparticle deposited heated surface; pure water was used in the CHF measurement. In the present work, the heated surface was a 20 mm diameter cupper surface, and titanium-dioxide was selected as the material of nanoparticles. Experiments were performed for upward- and downward-facing surfaces. Although the CHFs for the downward-facing surface were generally lower than those for the upward-facing surface, the CHFs for the nanoparticle deposited surface were about 1.9 times greater than those for the bare surface in both the configurations. The CHF improvement corresponded well to the reduction of the surface contact angle. During the nucleate boiling in nanofluids, the boiling heat transfer showed peculiar behavior; it was first deteriorated, then improved, and finally approached to an equilibrium state. This observation indicated that the present nanofluid had competing effects to deteriorate and improve the nucleate boiling heat transfer. It was assumed that the wettability and the roughness of the heated surface were influenced by the deposited nanoparticles to cause complex variation of the number of active nucleation sites. During the nucleate boiling of pure water using the downward-facing surface, a sudden increase in the wall temperature was observed stochastically probably due to the accumulation of bubbles beneath the heated surface. Such behavior was not observed when the pure water was replaced by the nanofluid. (author)

  15. Effects of tetrodotoxin and ion replacements on the short-circuit current induced by Escherichiacoli heat stable enterotoxin across small intestine of the gerbil (Gerbillus cheesmani

    Directory of Open Access Journals (Sweden)

    Fawzia Yaqoub Al-Balool

    2004-03-01

    Full Text Available The effects of mucosally added Escherichia coli heat stable enterotoxin (STa 30 ng ml-1 on the basal short-circuit current (Isc in µA cm-2 across stripped and unstripped sheets of jejuna and ilea taken from fed, starved (4 days, water ad lib and undernourished (50% control food intake for 21 days gerbil (Gerbillus cheesmani were investigated. The effect of neurotoxin tetrodotoxin (TTX 10 µM and the effects of replacing chloride by gluconate or the effects of removing bicarbonate from bathing buffers on the maximum increase in Isc induced by STa were also investigated. The maximum increase in Isc which resulted from the addition of STa were significantly higher in jejuna and ilea taken from starved and undernourished gerbils when compared with the fed control both using stripped and unstripped sheets. In the two regions of the small intestine taken from fed and starved animals TTX reduced the maximum increase in Isc induced by STa across unstripped sheets only. Moreover in jejuna and ilea taken from undernourished gerbils TTX reduced significantly the maximum increase in Isc induced by STa across stripped and unstripped sheets. Replacing chloride by gluconate decreased the maximum increase in Isc induced by STa across jejuna and ilea taken from undernourished gerbils only. Removing bicarbonates from bathing buffer decreased the maximum increase in Isc across the jejuna and ilea taken from starved and undernourished gerbils.

  16. Non-Darcy flow of water-based carbon nanotubes with nonlinear radiation and heat generation/absorption

    Science.gov (United States)

    Hayat, T.; Ullah, Siraj; Khan, M. Ijaz; Alsaedi, A.; Zaigham Zia, Q. M.

    2018-03-01

    Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy's law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined.

  17. Supply of Prague with heat from a nuclear heat source

    International Nuclear Information System (INIS)

    Poul, F.

    1976-01-01

    The proposals are discussed of supplying Prague, the Czechoslovak Capital, with nuclear reactor-generated heat energy. The proposals meet the requirements of the general urban plan of development. The first nuclear heating plant is to be sited in the Kojetice locality, in the northern Prague suburb. It will be commissioned by 1984 and 1985. It is estimated that the maximum heat output in form of hot water will be 821 MW. By 1995 the construction of the second nuclear heating plant should be started southeast or east of Prague. The connection of these two nuclear plants to the hot water mains together with other conventional heating plants will secure the heat supply for Prague and its new housing estates and industrial works. (Oy)

  18. Hormone replacement therapy increases levels of antibodies against heat shock protein 65 and certain species of oxidized low density lipoprotein

    Directory of Open Access Journals (Sweden)

    Uint L.

    2003-01-01

    Full Text Available Hormone replacement therapy (HRT reduces cardiovascular risks, although the initiation of therapy may be associated with transient adverse ischemic and thrombotic events. Antibodies against heat shock protein (Hsp and oxidized low density lipoprotein (LDL have been found in atherosclerotic lesions and plasma of patients with coronary artery disease and may play an important role in the pathogenesis of atherosclerosis. The aim of the present study was to assess the effects of HRT on the immune response by measuring plasma levels of antibodies against Hsp 65 and LDL with a low and high degree of copper-mediated oxidative modification of 20 postmenopausal women before and 90 days after receiving orally 0.625 mg equine conjugate estrogen plus 2.5 mg medroxyprogesterone acetate per day. HRT significantly increased antibodies against Hsp 65 (0.316 ± 0.03 vs 0.558 ± 0.11 and against LDL with a low degree of oxidative modification (0.100 ± 0.01 vs 0.217 ± 0.02 (P<0.05 and P<0.001, respectively, ANOVA. The hormone-mediated immune response may trigger an inflammatory response within the vessel wall and potentially increase plaque burden. Whether or not this immune response is temporary or sustained and deleterious requires further investigation.

  19. Poly(4-vinylphenol gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2016-03-01

    Full Text Available A Microwave-Induction Heating (MIH scheme is proposed for the poly(4-vinylphenol (PVP gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  20. Crawl space assisted heat pump. [using stored ground heat

    Science.gov (United States)

    Ternes, M. P.

    1980-01-01

    A variety of experiments and simulations, currently being designed or underway, to determine the feasibility of conditioning the source air of an air to air heat pump using stored ground heat or cool to produce higher seasonal COP's and net energy savings are discussed. The ground would condition ambient air as it is drawn through the crawl space of a house. Tests designed to evaluate the feasibility of the concept, to determine the amount of heat or cool available from the ground, to study the effect of the system on the heating and cooling loads of the house, to study possible mechanisms which could enhance heat flow through the ground, and to determine if diurnal temperature swings are necessary to achieve successful system performance are described.

  1. TESTING OF REFRIGERANT MIXTURES IN RESIDENTIAL HEAT PUMPS

    Science.gov (United States)

    The report gives results of an investigation of four possibilities for replacing Hydrochlorofluorocarbon-22 (HCFC-22) with the non-ozone-depleting new refrigerants R-407D and R-407C in residential heat pumps. The first and simplest scenario was a retrofit with no hardware modific...

  2. Increased system benefit from cogeneration due to cooperation between district heating utility and industry

    Energy Technology Data Exchange (ETDEWEB)

    Danestig, M.; Henning, D. [Division of Energy Systems, Department of Mechanical Engineering, Linkoping Institute of Technology, Linkoping (Sweden)

    2004-07-01

    District heating and steam supply in the town Oernskoeldsvik in northern Sweden is in focus for this study. Low temperature waste heat from pulp manufacturing in the Donisjoe mill is now utilised for district heating production in heat pumps, which dominate district heating supply. Based on this traditional cooperation between the local district heating utility and the pulp industry, the parties discuss a partial outsourcing of the industrial steam supply to the utility, which may enable beneficial system solutions for both actors. The local utility must find a new location for a heating plant because a railway line is being built at the heat pump site. Planning for a new combined heat and power production (CHP) plant has started but its location is uncertain. If the plant can be situated close to the mill it can, besides district heating, produce steam, which can be supplied to adjacent industries. The municipality and its local utility are also considering investing in a waste incineration plant. But is waste incineration suitable for Ornskoeldsvik and how would it interact with cogeneration. Alternative cases have been evaluated with the MODEST energy system optimisation model, which minimises the cost for satisfying district heating and steam demand. The most profitable solution is to invest in a CHP plant and a waste incineration plant. Considering carbon dioxide emissions, the results from applying a local or a global perspective are remarkably different. In the latter case, generated electricity is assumed to replace power from coal condensing plants elsewhere in the North-European power grid. Therefore, minimum global CO{sub 2} emissions are achieved through maximal electricity production in a CHP plant. From this viewpoint, waste incineration should not be introduced because it would obstruct cogeneration. The study is carried out within the program Sustainable municipality run by the Swedish Energy Agency. (orig.)

  3. Hardware replacements and software tools for digital control computers

    International Nuclear Information System (INIS)

    Walker, R.A.P.; Wang, B-C.; Fung, J.

    1996-01-01

    Technological obsolescence is an on-going challenge for all computer use. By design, and to some extent good fortune, AECL has had a good track record with respect to the march of obsolescence in CANDU digital control computer technology. Recognizing obsolescence as a fact of life, AECL has undertaken a program of supporting the digital control technology of existing CANDU plants. Other AECL groups are developing complete replacement systems for the digital control computers, and more advanced systems for the digital control computers of the future CANDU reactors. This paper presents the results of the efforts of AECL's DCC service support group to replace obsolete digital control computer and related components and to provide friendlier software technology related to the maintenance and use of digital control computers in CANDU. These efforts are expected to extend the current lifespan of existing digital control computers through their mandated life. This group applied two simple rules; the product, whether new or replacement should have a generic basis, and the products should be applicable to both existing CANDU plants and to 'repeat' plant designs built using current design guidelines. While some exceptions do apply, the rules have been met. The generic requirement dictates that the product should not be dependent on any brand technology, and should back-fit to and interface with any such technology which remains in the control design. The application requirement dictates that the product should have universal use and be user friendly to the greatest extent possible. Furthermore, both requirements were designed to anticipate user involvement, modifications and alternate user defined applications. The replacements for hardware components such as paper tape reader/punch, moving arm disk, contact scanner and Ramtek are discussed. The development of these hardware replacements coincide with the development of a gateway system for selected CANDU digital control

  4. Practical model for economic optimization of a heat recovery plate heat exchanger and its examination

    Energy Technology Data Exchange (ETDEWEB)

    Lepach, T.; Marttila, E.; Hammo, S.

    1997-12-31

    This report presents a practical model for designers whose job it is to dimension a plate heat exchanger used especially in heat recovery systems for ventilation. Special attention was given to the economic optimization of such a unit. The first part of the report presents the most important types of heat exchangers and then goes on to present those that are normally used in ventilation systems for heat recovery. The second part discusses the operating costs, investments required and the savings in costs that can be achieved through heat recovery. The third part takes a look at the theory of heat transfer and the characteristics of heat exchanger. In the finally part, a utilization of this model is presented. The results from this are discussed in the following. The developed equations have been calculated and plotted by the use of the numeric software MATLAB. The code used for calculation with MATLAB is listed in the appendix. (orig.) 16 refs.

  5. Heat conduction

    International Nuclear Information System (INIS)

    Grigull, U.; Sandner, H.

    1984-01-01

    Included are discussions of rates of heat transfer by conduction, the effects of varying and changing properties, thermal explosions, distributed heat sources, moving heat sources, and non-steady three-dimensional conduction processes. Throughout, the importance of thinking both numerically and symbolically is stressed, as this is essential to the development of the intuitive understanding of numerical values needed for successful designing. Extensive tables of thermophysical properties, including thermal conductivity and diffusivity, are presented. Also included are exact and approximate solutions to many of the problems that arise in practical situations

  6. Heat transfer entropy resistance for the analyses of two-stream heat exchangers and two-stream heat exchanger networks

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2013-01-01

    The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer

  7. Heat transfer enhancement

    International Nuclear Information System (INIS)

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  8. Wave heating of the solar atmosphere

    Science.gov (United States)

    Arregui, Iñigo

    2015-04-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere.

  9. Various methods to improve heat transfer in exchangers

    Directory of Open Access Journals (Sweden)

    Pavel Zitek

    2015-01-01

    Full Text Available The University of West Bohemia in Pilsen (Department of Power System Engineering is working on the selection of effective heat exchangers. Conventional shell and tube heat exchangers use simple segmental baffles. It can be replaced by helical baffles, which increase the heat transfer efficiency and reduce pressure losses. Their usage is demonstrated in the primary circuit of IV. generation MSR (Molten Salt Reactors. For high-temperature reactors we consider the use of compact desk heat exchangers, which are small, which allows the integral configuration of reactor. We design them from graphite composites, which allow up to 1000°C and are usable as exchangers: salt-salt or salt-acid (e.g. for the hydrogen production. In the paper there are shown thermo-physical properties of salts, material properties and principles of calculations.

  10. Fluctuation of heat current in Josephson junctions

    Directory of Open Access Journals (Sweden)

    P. Virtanen

    2015-02-01

    Full Text Available We discuss the statistics of heat current between two superconductors at different temperatures connected by a generic weak link. As the electronic heat in superconductors is carried by Bogoliubov quasiparticles, the heat transport fluctuations follow the Levitov–Lesovik relation. We identify the energy-dependent quasiparticle transmission probabilities and discuss the resulting probability density and fluctuation relations of the heat current. We consider multichannel junctions, and find that heat transport in diffusive junctions is unique in that its statistics is independent of the phase difference between the superconductors.

  11. Flexible use of electricity in heat-only district heating plants

    Directory of Open Access Journals (Sweden)

    Erik Trømborg

    2017-01-01

    large extent, replace gas when heat demand exceeds the capacity of the heat pump. For the bio-based plant, we find that an electric boiler in addition to tank storage is not profitable in the normal electricity price scenario. The electric boiler investments are only profitable when electricity prices are as low as in the high inflow scenario. In that case the electric boiler will provide 17% of the heat supply in the example plant. Fuel prices for peak load and electricity grid tariffs are found to be decisive factors for the electricity use – and therefore flexibility options – provided by heat-only district heating plants.

  12. Lower hybrid heating experiments in tokamaks: an overview

    International Nuclear Information System (INIS)

    Porkolab, M.

    1985-10-01

    Lower hybrid wave propagation theory relevant to heating fusion grade plasmas (tokamaks) is reviewed. A brief discussion of accessibility, absorption, and toroidal ray propagation is given. The main part of the paper reviews recent results in heating experiments on tokamaks. Both electron and ion heating regimes will be discussed. The prospects of heating to high temperatures in reactor grade plasmas will be evaluated

  13. Solar heating - a major source of renewable energy

    International Nuclear Information System (INIS)

    Bosselaar, L.

    2001-01-01

    Actions that can be taken to increase the uptake of technology for solar water heaters and solar buildings are discussed. An overview of existing technology covers solar water heating, solar buildings, space heating, solar cooling, solar drying, solar desalination. Solar water heating, solar buildings and solar crop drying are discussed individually under the sub-headings of (a) the technology; (b) the market; (c) potential; (d) economics and (e) market acceleration strategies. Other subjects discussed are market acceleration, main opportunities, R and D needs and conclusions. The IEA solar heating and solar cooling programme is described

  14. Transcatheter aortic valve replacement

    Science.gov (United States)

    ... gov/ency/article/007684.htm Transcatheter aortic valve replacement To use the sharing features on this page, please enable JavaScript. Transcatheter aortic valve replacement (TAVR) is surgery to replace the aortic valve. ...

  15. Bivalent heating systems - Potential for savings through system optimisation

    International Nuclear Information System (INIS)

    Good, J.; Jenni, A.; Nussbaumer, T.

    2005-01-01

    This article tales a look at the potential for optimising bivalent heating installations for district heating systems fired with oil and wood. The influence of increases in the price of heating oil as compared to wood fuels is discussed. The authors comment that the proportion of expensive heating oil used in such installations is often too high. Price developments for both classes of fuel in 2005 are discussed. Factors influencing the proportions of oil and wood fuel used are listed and discussed, as is the mode of operation of the district heating systems, their extension and the consumers connected to them. The article provides information on the performance of 30 installations examined. Measures that can be taken to reduce the amount of heating oil used and to increase installation efficiency are presented and discussed

  16. Vibrational dynamics and heat capacity of polyglycine I.

    Science.gov (United States)

    Porwal, Vikas; Misra, Radha Mohan; Tandon, Poonam; Gupta, Vishwambhar Dayal

    2004-02-01

    Earlier works on polyglycine I suffer from several infirmities, such as the dynamic methylene group being replaced by a mass unit and the use of poorly resolved inelastic neutron spectra, which have resulted in wrong assignments and imprecise profile of dispersion curves. In addition, the density-of-states and heat capacity variation as a function of temperature are being reported for the first time. The heat capacity is in good agreement with the measurements reported earlier by Roles and Wunderlich within a certain range (230-350 K). Deviations set in beyond this could be due to the presence of two crystalline states (I and II) in the sample used for the heat capacity measurements.

  17. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  18. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  19. Experimental investigation on a pulsating heat pipe with hydrogen

    International Nuclear Information System (INIS)

    Deng, H R; Liu, Y M; Ma, R F; Han, D Y; Gan, Z H; Pfotenhauer, J M

    2015-01-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb 3 Sn and NbTi, MgB 2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB 2 , this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios. (paper)

  20. Geothermal probes and heat pump installation at the Gerzensee training centre; EWS-WP des Studienzentrums Gerzensee/BE

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, P.

    2004-07-01

    This preliminary report for the Swiss Federal Office of Energy (SFOE) presents the results of a refurbishment project at the Swiss National Bank's training centre in Gerzensee, Switzerland. Eight air-water heat pumps with a total heating capacity of 180 kW were replaced by two ground-coupled heat pumps, each with a heating capacity of 120 kW. The geothermal probes are additionally used for free-cooling during the summer season. An oil-fired boiler used for meeting peak-load and back-up purposes, was also replaced for reasons of higher energy efficiency. Both investments and running costs of the heating system are presented along with details on expenses for electrical installations and building adaptations. The improvements in energy-saving, when compared with the former air-water heat pump system, are impressive: Total energy consumption for space heating, hot water and for ventilation systems was lowered by around 54%. The oil consumption has been reduced from 34,800 to 6,600 litres/year, which corresponds to a reduction of 81%. Also, electrical power consumption by the heat pump installation was lowered by around 8%. Figures are given on the proportion of heating supplied by the heat-pump system that now covers 90.6% of total demand.

  1. Heat transfer in intermediate heat exchanger under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, H.

    2008-01-01

    The present paper describes the heat transfer in intermediate heat exchangers (IHXs) of liquid metal cooled fast reactors when flow rate is low such as a natural circulation condition. Although empirical correlations of heat transfer coefficients for IHX were derived using test data at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility, the heat transfer coefficient was very low compared to the well known correlation for liquid metals proposed by Seban-Shimazaki. The heat conduction in IHX was discussed as a possible cause of the low Nusselt number. As a result, the heat conduction is not significant under the natural circulation condition, and the heat conduction term in the energy equation can be neglected in the one-dimensional plant dynamics calculation. (authors)

  2. Testosterone Depletion by Castration May Protect Mice from Heat-Induced Multiple Organ Damage and Lethality

    Directory of Open Access Journals (Sweden)

    Ruei-Tang Cheng

    2010-01-01

    Full Text Available When the vehicle-treated, sham-operated mice underwent heat stress, the fraction survival and core temperature at +4 h of body heating were found to be 5 of 15 and 34.4∘C±0.3∘C, respectively. Castration 2 weeks before the start of heat stress decreased the plasma levels of testosterone almost to zero, protected the mice from heat-induced death (fraction survival, 13/15 and reduced the hypothermia (core temperature, 37.3∘C. The beneficial effects of castration in ameliorating lethality and hypothermia can be significantly reduced by testosterone replacement. Heat-induced apoptosis, as indicated by terminal deoxynucleotidyl- transferase- mediatedαUDP-biotin nick end-labeling staining, were significantly prevented by castration. In addition, heat-induced neuronal damage, as indicated by cell shrinkage and pyknosis of nucleus, to the hypothalamus was also castration-prevented. Again, the beneficial effects of castration in reducing neuronal damage to the hypothalamus as well as apoptosis in multiple organs during heatstroke, were significantly reversed by testosterone replacement. The data indicate that testosterone depletion by castration may protect mice from heatstroke-induced multiple organ damage and lethality.

  3. HEATING-7, Multidimensional Finite-Difference Heat Conduction Analysis

    International Nuclear Information System (INIS)

    2000-01-01

    1 - Description of program or function: HEATING 7.2i and 7.3 are the most recent developments in a series of heat-transfer codes and obsolete all previous versions distributed by RSICC as SCA-1/HEATING5 and PSR-199/HEATING 6. Note that Unix and PC versions of HEATING7 are available in the CCC-545/SCALE 4.4 package. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat- generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a run-time memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. In June 1997 HEATING 7.3 was added to the HEATING 7.2i packages, and the Unix and PC versions of both 7.2i and 7.3 were merged into one package. HEATING 7.3 is being released as a beta-test version; therefore, it does not entirely replace HEATING 7.2i. There is no published documentation for HEATING 7.3; but a listing of input specifications, which reflects changes for 7.3, is included in the PSR-199 documentation. For 3-D

  4. Gate replacement at the Upper Lake Falls development

    International Nuclear Information System (INIS)

    Chen, C.T.; Locke, A.E.; Brown, E.R.

    1998-01-01

    Nova Scotia Power's integrated approach to dam safety was discussed. One of the two intake gates at Unit 1 of the Upper Falls Power Plant on the Mersey River was replaced in 1997 as part of the Utility's upgrading program. In the event of governor failure or turbine runaway, the new roller gate will allow operators to close the original sliding gate first under a more-or-less balanced head condition, and then to close the new roller gate under a full-flow condition. The planning, design and construction of the new roller gate is described. One of the two head gates of Unit 2 at the same station will be replaced in a similar fashion in the fall of 1998. 4 refs., 7 figs

  5. Heat simulation via Scilab programming

    Science.gov (United States)

    Hasan, Mohammad Khatim; Sulaiman, Jumat; Karim, Samsul Arifin Abdul

    2014-07-01

    This paper discussed the used of an open source sofware called Scilab to develop a heat simulator. In this paper, heat equation was used to simulate heat behavior in an object. The simulator was developed using finite difference method. Numerical experiment output show that Scilab can produce a good heat behavior simulation with marvellous visual output with only developing simple computer code.

  6. Heat driven pulse pump

    Science.gov (United States)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  7. Optimization of a local district heating plant under fuel flexibility and performance

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; From, Niels

    2011-01-01

    are calculated for various local fuels in energyPRO. A comparison has been made between the reference model and the basis for individual solutions. The greatest reduction in heat price is obtained by replacing one engine with a new biogas where heat production is divided by 66% of biogas, 13% natural gas engines......, an investigation has been made to reduce the use of fossil fuels for district heating system and make use of the local renewable resources (Biogas, Solar and Geothermal) for district heating purpose. In this article, the techno-economic assessment is achieved through the development of a suite of models...

  8. Replacement of the cooling system of the TRIGA Mainz reactor

    International Nuclear Information System (INIS)

    Menke, H.

    1988-01-01

    The inspection of the reactor facility resulted in a recommendation to install a new heat exchanger and at the same time to separate the primary cooling circuit and the water purification system. Due to possible the deposition of lime and organic matter on the tubes, the heat transfer rate has decreased. In the meantime a rule has been introduced, according to which the pressure in the secondary cooling circuit must be permanently higher than in the primary cooling circuit which prompted the design of a new cooling system. The detail planning was completed in December 1987. In response to the regulatory requirements a motion for a replacement of the cooling system was submitted to the authorities. The start of the procedure is possible a year after the obtaining of the licenses. In the planning of the changes an upgrading of the steady state power to 300 kW is envisioned

  9. Heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Knoepfel, H.; Mazzitelli, G.

    1984-01-01

    The article is a rather detailed report on the highlights in the area of the ''Heating in toroidal plasmas'', as derived from the presentations and discussions at the international symposium with the same name, held in Rome, March 1984. The symposium covered both the physics (experiments and theory) and technology of toroidal fusion plasma heating. Both large fusion devices (either already in operation or near completion) requiring auxiliary heating systems at the level of tens of megawatts, as well as physics of their heating processes and their induced side effects (as studied on smaller devices), received attention. Substantial progress was reported on the broad front of auxiliary plasma heating and Ohmic heating. The presentation of the main conclusions of the symposium is divided under the following topics: neutral-beam heating, Alfven wave heating, ion cyclotron heating, lower hybrid heating, RF current drive, electron cyclotron heating, Ohmic heating and special contributions

  10. Software and man-machine interface considerations for a nuclear plant computer replacement and upgrade project

    International Nuclear Information System (INIS)

    Diamond, G.; Robinson, E.

    1984-01-01

    Some of the key software functions and Man-Machine Interface considerations in a computer replacement and upgrade project for a nuclear power plant are described. The project involves the installation of two separate computer systems: an Emergency Response Facilities Computer System (ERFCS) and a Plant Process Computer System (PPCS). These systems employ state-of-the-art computer hardware and software. The ERFCS is a new system intended to provide enhanced functions to meet NRC post-TMI guidelines. The PPCS is intended to replace and upgrade an existing obsolete plant computer system. A general overview of the hardware and software aspects of the replacement and upgrade is presented. The work done to develop the upgraded Man-Machine Interface is described. For the ERFCS, a detailed discussion is presented of the work done to develop logic to evaluate the readiness and performance of safety systems and their supporting functions. The Man-Machine Interface considerations of reporting readiness and performance to the operator are discussed. Finally, the considerations involved in the implementation of this logic in real-time software are discussed.. For the PPCS, a detailed discussion is presented of some new features

  11. Primary total hip replacement for displaced subcapital fractures of the femur.

    Science.gov (United States)

    Taine, W H; Armour, P C

    1985-03-01

    The management of displaced subcapital fracture of the hip is still controversial because of the high incidence of complications after internal fixation or hemiarthroplasty. To avoid some of these complications we have used primary total hip replacement for independently mobile patients over 65 years of age. A total of 163 cases, operated on over four years, have been reviewed. There were relatively more dislocations after operation for fracture than after total replacement for arthritis, and these were associated with a posterior approach to the hip. Only seven revision operations have been required. Of 57 patients who were interviewed an average of 42 months after replacement, 62% had excellent or good results as assessed by the Harris hip score. All the others had major systemic disease which affected their assessment. This inadequacy of current systems of hip assessment is discussed. It is concluded that total hip replacement is the best management for a selected group of patients with this injury, and that further prospective studies are indicated.

  12. Ankle replacement - discharge

    Science.gov (United States)

    ... total - discharge; Total ankle arthroplasty - discharge; Endoprosthetic ankle replacement - discharge; Osteoarthritis - ankle ... You had an ankle replacement. Your surgeon removed and reshaped ... an artificial ankle joint. You received pain medicine and were ...

  13. Heat generation: prices have only a minor influence

    International Nuclear Information System (INIS)

    Stadelmann, M.

    2006-01-01

    This article takes a look at long-term trends in the heat generation market. Here, heat-pumps, gas heaters and wood-fired systems, together with their combination with solar collectors, are gaining ground, whereas heating oil is loosing its share of the market. The various influences on the market and, in particular, price increases for oil are discussed. The influence of revised energy legislation is discussed, which calls for 20% of the standardised energy requirements of housing to be met by renewables or increased thermal insulation. Increased sales in the solar sector are discussed, as are future trends in the heating market

  14. Heat transfer augmentation in a tube using nanofluids under constant heat flux boundary condition: A review

    International Nuclear Information System (INIS)

    Singh, Vinay; Gupta, Munish

    2016-01-01

    Highlights: • Reviews heat transfer augmentation of nanofluids in a tube with constant heat flux. • Recent advances in hybrid nanofluids are reviewed. • Identifies and compares significant results. • Scope of future research in this area is discussed. - Abstract: In the last few decades, research on nanofluids has increased rapidly. Traditional heat transfer fluids with order of nanometer sized particles (1–100 nm) suspended in them are termed as nanofluids. Nanofluids have been proved as better heat transfer fluids despite of various contradictions in results by different research groups. The aim of this article is to review and summarize the recent experimental and theoretical studies on convective heat transfer in heat exchangers using constant heat flux boundary condition. The use of different types of nanoparticles with different base fluids by different research groups has been presented and compared. Further an overview of experimental results about heat transfer abilities of hybrid nanofluids from available literature sources is also presented. Finally, the challenges and future directions in which research can be further progress are discussed.

  15. Preliminary business plan: Plzen district heating system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The district heating system of the City of Plzen, Czech Republic, needs to have physical upgrades to replace aging equipment and to comply with upcoming environmental regulations. Also, its ownership and management are being changed as a result of privatization. As majority owner, the City has the primary goal of ensuring that the heating needs of its customers are met as reliably and cost-effectively as possible. This preliminary business plan is part of the detailed analysis (5 reports in all) done to assist the City in deciding the issues. Preparation included investigation of ownership, management, and technology alternatives; estimation of market value of assets and investment requirements; and forecasting of future cash flow. The district heating system consists of the Central Plzen cogeneration plant, two interconnected heating plants [one supplying both hot water and steam], three satellite heating plants, and cooperative agreements with three industrial facilities generating steam and hot water. Most of the plants are coal-fired, with some peaking units fired by fuel oil.

  16. Reliability of non-heated tube bends of boilers

    International Nuclear Information System (INIS)

    Bugaj, N.V.; Akhremenko, V.L.; Zamotaev, V.S.

    1984-01-01

    Bend failures are described for non-heated boiler tubes of 12Kh1MF and 20 steels. Methods of reliability evaluations are presented which permit revealing and replacing the bends with inadequate resources. Influences of operation conditions on bend durability is shown as well as the factors which are dominating at bend failures

  17. Study on Effects of Different Replacement Rate on Bending Behavior of Big Recycled Aggregate Self Compacting Concrete

    Science.gov (United States)

    Li, Jing; Guo, Tiantian; Gao, Shuai; Jiang, Lin; Zhao, Zhijun; Wang, Yalin

    2018-03-01

    Big recycled aggregate self compacting concrete is a new type of recycled concrete, which has the advantages of low hydration heat and green environmental protection, but its bending behavior can be affected by different replacement rate. Therefor, in this paper, the research status of big Recycled aggregate self compacting concrete was systematically introduced, and the effect of different replacement rate of big recycled aggregate on failure mode, crack distribution and bending strength of the beam were studied through the bending behavior test of 4 big recycled aggregate self compacting concrete beams. The results show that: The crack distribution of the beam can be affected by the replacement rate; The failure modes of big recycled aggregate beams are the same as those of ordinary concrete; The plane section assumption is applicable to the big recycled aggregate self compacting concrete beam; The higher the replacement rate, the lower the bending strength of big recycled aggregate self compacting concrete beams.

  18. Current topics in the radiology of joint replacement surgery

    International Nuclear Information System (INIS)

    Weissman, B.N.

    1990-01-01

    Several methods of total hip joint replacement are currently used. Radiographic appearances after cemented, bone ingrowth, press-fit, and bipolar hip prostheses are reviewed. The roles of nuclear medicine and arthrographic procedures for identifying complications are discussed. Total knee prostheses and, in particular, complications related to the patellar component are described.115 references

  19. Efficiency of heat pump systems in real operating conditions. Influence of storage concepts; Effizienz von Waermepumpensystemen unter realen Nutzungsbedingungen. Einfluss der Speicherkonzepte

    Energy Technology Data Exchange (ETDEWEB)

    Miara, Marek; Guenther, Danny [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany). Abt. Thermische Anlagen und Gebaeudetechnik

    2011-07-01

    Heat pump systems are used increasingly in space heating and freshwater heating. This is reflected in their fast-growing market shares in new buildings. There is a similar trend in modernisation of buildings and in the replacement of fossil-fuel heating systems. Investors appear to be convinced by the advantages of heat pumps.

  20. Patients Unicondylar Knee Replacement vs. Total Knee Replacement

    OpenAIRE

    Hedra Eskander

    2017-01-01

    The aim of this review article is to analyse the clinical effectiveness of total knee replacement (TKR) compared to unicondylar knee replacement (UKR) on patients. In terms of survival rates, revision rates and postoperative complications. The keywords used were: knee arthroplasty. Nearly three thousand articles were found on 25 August 2016. Of those, only twenty-five were selected and reviewed because they were strictly focused on the topic of this article. Compared with those who have TKR, ...

  1. LONG DURATION FLARE EMISSION: IMPULSIVE HEATING OR GRADUAL HEATING?

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jiong; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman MT 59717-3840 (United States)

    2016-03-20

    Flare emissions in X-ray and EUV wavelengths have previously been modeled as the plasma response to impulsive heating from magnetic reconnection. Some flares exhibit gradually evolving X-ray and EUV light curves, which are believed to result from superposition of an extended sequence of impulsive heating events occurring in different adjacent loops or even unresolved threads within each loop. In this paper, we apply this approach to a long duration two-ribbon flare SOL2011-09-13T22 observed by the Atmosphere Imaging Assembly (AIA). We find that to reconcile with observed signatures of flare emission in multiple EUV wavelengths, each thread should be heated in two phases, an intense impulsive heating followed by a gradual, low-rate heating tail that is attenuated over 20–30 minutes. Each AIA resolved single loop may be composed of several such threads. The two-phase heating scenario is supported by modeling with both a zero-dimensional and a 1D hydrodynamic code. We discuss viable physical mechanisms for the two-phase heating in a post-reconnection thread.

  2. Artificial Disc Replacement

    Science.gov (United States)

    ... Spondylolisthesis BLOG FIND A SPECIALIST Treatments Artificial Disc Replacement (ADR) Patient Education Committee Jamie Baisden The disc ... Disc An artificial disc (also called a disc replacement, disc prosthesis or spine arthroplasty device) is a ...

  3. Heat Diffusion in Gases, Including Effects of Chemical Reaction

    Science.gov (United States)

    Hansen, C. Frederick

    1960-01-01

    The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.

  4. Discussion on the thermal conductivity enhancement of nanofluids

    Science.gov (United States)

    2011-01-01

    Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed. PMID:21711638

  5. Economic feasibility of district heating delivery from industrial excess heat: A case study of a Swedish petrochemical cluster

    International Nuclear Information System (INIS)

    Morandin, Matteo; Hackl, Roman; Harvey, Simon

    2014-01-01

    The present work discusses the potential and the economic feasibility of DH (district heating) delivery using industrial excess heat from a petrochemical cluster at the Swedish West Coast. Pinch Analysis was used for estimating the DH capacity targets and for estimating the cost of heat exchanger installation. A discounted cash flow rate of return of 10% was used as a criterion for identifying the minimum yearly DH delivery that should be guaranteed for a given DH capacity at different DH sales prices. The study was conducted for the current scenario in which no heat recovery is achieved between the cluster plants and for a possible future scenario in which 50% of the fuel currently used for heating purposes is saved by increasing the heat recovery at the site. The competition between excess heat export and local energy efficiency measures is also discussed in terms of CO 2 emission consequences. The maximum capacity of DH delivery amounts today to around 235 MW, which reduces to 110 MW in the future scenario of increased site heat recovery. The results of our analysis show that feasible conditions exist that make DH delivery profitable in the entire capacity range. - Highlights: • Pinch Analysis targeting approach and short-cut cost accounting procedure. • Economic analysis for different DH delivery capacities up to maximum targets. • Sensitivity analysis of heat sales prices. • Parallel plants and cluster wide heat collection systems considered. • Competition between cluster internal heat recovery and excess heat export is discussed

  6. Socio-economic effects and benefits of biofuels in power and heat generation

    International Nuclear Information System (INIS)

    Turkki, J.

    1999-10-01

    This report studies the socioeconomic effects and benefits of domestic fuels - peat and wood and agricultural energy plants also - in power and heat generation. For evaluation of the employment and income effects, it compares the costs of domestic as well as imported fuels as regards to production, transportation and power stations by looking especially at the direct labour input and inputs in terms of intermediate products and investment. Their indirect employment effects and allocation to domestic factor income and imports are introduced by means of an input-output model. The net changes in the disposable incomes of local households, firms and municipalities, the government and other are derived from factor incomes by means of income redistribution. If in heat generation 15 MW oil heating plant is replaced by a peat heating plant, the annual local employment increases by 8 man years. If the fuel used is wood, employment increases by 9 man-years. The disposable income of the local economy rises annually about FIM 0,8 million with the peat alternative and FIM 0,9 million with the wood alternative. Although with the domestic fuel alternatives the income tax revenue grows and the unemployment security payments decrease, the loss of the high fuel taxes collected on oil means however, that the government is netloser by FIM 0,8-1,4 million annually. The total annual import bill decreases both with peat and wood by FIM 2,5 million respectively. Calculated by a small-sized 3/9 MW cogeneration station, which in heat generation replaces oil heating plants and in power generation replaces coal condensation power, the annual local employment effect is 11 man-years with peat and 12 with food fuel. The local economy gain an annual net income of FIM 0,8-0,9 million. The net increase of the government is FIM 0,1 million annually. With the wood alternative the government is a net looser by FIM 0,2 million. The annual import bill decreases by FIM 2,3-2,5 million. (orig.)

  7. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Science.gov (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  8. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Directory of Open Access Journals (Sweden)

    Giovanni Maria Carlomagno

    2014-11-01

    Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  9. Preliminary study of possible ORELA replacement options

    International Nuclear Information System (INIS)

    Olsen, D.K.; Martin, J.A.; Horen, D.J.

    1984-06-01

    Based on two conceptual design studies performed by the LANL Accelerator Technology Division, the possibilities in terms of accelerator systems for replacing ORELA with a more intense Maxwellian-type continuous-energy neutron source are summarized and discussed. The neutron intensities from ORELA are compared with those from existing or potential accelerator systems used for cross-section and condensed-matter studies. The best replacement options seem to involve a spallation source from 200- to 400-MeV protons on an ORELA-like target. Pulsing and intensity desiderata with such a source are discussed which correspond to a spectrum-averaged 100-fold improved figure of merit over ORELA for TOF measurements with only a tenfold increased source strength. Existing accelerator designs seem to be inadequate for such a source. Consequently, two conceptual designs were developed for this study by the LANL Accelerator Technology Division. The first conceptual design is for a 200-MeV large linac capable of accelerating 1.3 A during a macropulse; this linac standing alone could serve as an ORELA replacement source. The second conceptual design is for a much smaller 250-MeV PIGMI linac with a 28-mA macropulse current which feeds a proton accumulator ring and bunch-compressor transport line. This linac-ring-compressor (LIRIC) option would give a more cost-effective neutron source for cross-section measurements, whereas the large linac, or a modified version of it, would give a much simpler system more suitable for expansion. In particular, both conceptual designs would incorporate the present ORELA building and would provide approximately 100-fold improved neutron sources over ORELA for cross-section measurements. The total estimated cost of the LIRIC system would be $43M (1984), whereas the cost of the large linac would be about a factor of two more. 55 references, 11 figures, 19 tables

  10. Replacement

    Directory of Open Access Journals (Sweden)

    S. Radhakrishnan

    2014-03-01

    Full Text Available The fishmeal replaced with Spirulina platensis, Chlorella vulgaris and Azolla pinnata and the formulated diet fed to Macrobrachium rosenbergii postlarvae to assess the enhancement ability of non-enzymatic antioxidants (vitamin C and E, enzymatic antioxidants (superoxide dismutase (SOD and catalase (CAT and lipid peroxidation (LPx were analysed. In the present study, the S. platensis, C. vulgaris and A. pinnata inclusion diet fed groups had significant (P < 0.05 improvement in the levels of vitamins C and E in the hepatopancreas and muscle tissue. Among all the diets, the replacement materials in 50% incorporated feed fed groups showed better performance when compared with the control group in non-enzymatic antioxidant activity. The 50% fishmeal replacement (best performance diet fed groups taken for enzymatic antioxidant study, in SOD, CAT and LPx showed no significant increases when compared with the control group. Hence, the present results revealed that the formulated feed enhanced the vitamins C and E, the result of decreased level of enzymatic antioxidants (SOD, CAT and LPx revealed that these feeds are non-toxic and do not produce any stress to postlarvae. These ingredients can be used as an alternative protein source for sustainable Macrobrachium culture.

  11. Advances in design of air-heating collectors

    CSIR Research Space (South Africa)

    Johannsen, A

    1982-11-01

    Full Text Available Principles of the operation of air-heating collectors are discussed. The fundamental differences between the design principles of air-heating as opposed to water-heating collectors are highlighted. The main requirement is the transfer of heat from...

  12. Method for pre-heating lmfbr type reactors

    International Nuclear Information System (INIS)

    Yokozawa, Atsushi; Kataoka, Hajime.

    1978-01-01

    Purpose: To enable pre-heating for the inside of the reactor container and the inside of the coolant recycling system with no additional facilities. Method: The coolant recycling system is composed of a heat exchanger, a mechanical pump, a check valve, a flow meter or the like and it is connected in series by way of a pipe line to a reactor container. The mechanical pump is used as a gas recycling device upon pre-heating and it is designed so that a blower such as a fan can be replaced for the impeller of the pump. The inside of the reactor container and the inside of the coolant recycling system is at first filled with an inert gas such as for use with cover gas. Then, nuclear fuels are loaded to attain criticality. Simultaneously, the blower is started and the control rods are operated while cooling the nuclear fuel with the inert gas thus to obtain heat required for pre-heating the pipe line or the like from the nuclear fuels. After the completion of the pre-heating, the liquid metal is charged. (Ikeda, J.)

  13. FY 17 Q1 Commercial integrated heat pump with thermal storage milestone report

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Heiba, Ahmad [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The commercial integrated heat pump with thermal storage (AS-IHP) offers significant energy saving over a baseline heat pump with electric water heater. The saving potential is maximized when the AS-IHP serves coincident high water heating and high space cooling demands. A previous energy performance analysis showed that the AS-IHP provides the highest benefit in the hot-humid and hot-dry/mixed dry climate regions. Analysis of technical potential energy savings for these climate zones based on the BTO Market calculator indicated that the following commercial building market segments had the highest water heating loads relative to space cooling and heating loads education, food service, health care, lodging, and mercantile/service. In this study, we focused on these building types to conservatively estimate the market potential of the AS-IHP. Our analysis estimates maximum annual shipments of ~522,000 units assuming 100% of the total market is captured. An early replacement market based on replacement of systems in target buildings between 15 and 35 years old was estimated at ~136,000 units. Technical potential energy savings are estimated at ~0.27 quad based on the maximum market estimate, equivalent to ~13.9 MM Ton CO2 emissions reduction.

  14. Low temperature industrial waste heat utilization in the area 'Speyer-Ludwigshafen-Frankenthal-Worms'

    International Nuclear Information System (INIS)

    Nunold, K.; Krebs, A.

    1982-01-01

    The aim of the study is the elaboration of reliable facts whether and under which conditions low temperature industrial waste heat systems can be economically utilized for heating purposes. The source of the waste heat are power- and industrial plants. In order to obtain reliable results, investigations have been carried out in the area Speyer-Ludwigshafen-Frankenthal and Worms. These investigations showed a number of application possibilities for heat pumps and it became moreover evident that there is a high variaiton of the heat requirement due to social components and the different type of building structures of the consumers. The economic results showed that the application of this heating system can under certain conditions supplement resp. replace other heating systems. (orig.) [de

  15. An evaluation of analytical heat transfer area with various boiling heat transfer correlations in steam generator thermal sizing

    International Nuclear Information System (INIS)

    Jung, B. R.; Park, H. S.; Chung, D. M.; Baik, S. J.

    1999-01-01

    The computer program SAFE has been used to size and analyze the performance of a steam generator which has two types of heat transfer regions in Korean Standard Nuclear Power Plants (KSNP) and Korean Next Generation Reactor (KNGR) design. The SAFE code calculates the analytical boiling heat transfer area using the modified form of the saturated nucleate pool boiling correlation suggested by Rohsenow. The predicted heat transfer area in the boiling region is multiplied by a constant to obtain a final analytical heat transfer area. The inclusion of the multiplier in the analytical calculation has some disadvantage of loss of complete correlation by the governing heat transfer equation. Several comparative analyses have been performed quantitatively to evaluate the possibility of removing the multiplier in the analytical calculation in the SAFE code. The evaluation shows that the boiling correlation and multiplier used in predicting the boiling region heat transfer area can be replaced with other correlations predicting nearly the same heat transfer area. The removal of multiplier included in the analytical calculation will facilitate a direct use of a set of concerned analytical sizing values that can be exactly correlated by the governing heat transfer equation. In addition this will provide more reasonable basis for the steam generator thermal sizing calculation and enhance the code usability without loss of any validity of the current sizing procedure. (author)

  16. Application of deterministic and probabilistic methods in replacement of nuclear systems

    International Nuclear Information System (INIS)

    Vianna Filho, Alfredo Marques

    2007-01-01

    The economic equipment replacement problem is one of the oldest questions in Production Engineering. On the one hand, new equipment are more attractive given their best performance, better reliability, lower maintenance cost, etc. New equipment, however, require a higher initial investment and thus a higher opportunity cost, and impose special training of the labor force. On the other hand, old equipment represent the other way around, with lower performance, lower reliability and specially higher maintenance costs but in contrast having lower financial, insurance, and opportunity costs. The weighting of all these costs can be made with the various methods presented. The aim of this paper is to discuss deterministic and probabilistic methods applied to the study of equipment replacement. Two types of distinct problems will be examined, substitution imposed by the wearing and substitution imposed by the failures. In order to solve the problem of nuclear system substitution imposed by wearing, deterministic methods are discussed. In order to solve the problem of nuclear system substitution imposed by failures, probabilistic methods are discussed. (author)

  17. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.

    Science.gov (United States)

    Dahal, Naween; García, Stephany; Zhou, Jiping; Humphrey, Simon M

    2012-11-27

    An extensive comparative study of the effects of microwave versus conventional heating on the nucleation and growth of near-monodisperse Rh, Pd, and Pt nanoparticles has revealed distinct and preferential effects of the microwave heating method. A one-pot synthetic method has been investigated, which combines nucleation and growth in a single reaction via precise control over the precursor addition rate. Using this method, microwave-assisted heating enables the convenient preparation of polymer-capped nanoparticles with improved monodispersity, morphological control, and higher crystallinity, compared with samples heated conventionally under otherwise identical conditions. Extensive studies of Rh nanoparticle formation reveal fundamental differences during the nucleation phase that is directly dependent on the heating method; microwave irradiation was found to provide more uniform seeds for the subsequent growth of larger nanostructures of desired size and surface structure. Nanoparticle growth kinetics are also markedly different under microwave heating. While conventional heating generally yields particles with mixed morphologies, microwave synthesis consistently provides a majority of tetrahedral particles at intermediate sizes (5-7 nm) or larger cubes (8+ nm) upon further growth. High-resolution transmission electron microscopy indicates that Rh seeds and larger nanoparticles obtained from microwave-assisted synthesis are more highly crystalline and faceted versus their conventionally prepared counterparts. Microwave-prepared Rh nanoparticles also show approximately twice the catalytic activity of similar-sized conventionally prepared particles, as demonstrated in the vapor-phase hydrogenation of cyclohexene. Ligand exchange reactions to replace polymer capping agents with molecular stabilizing agents are also easily facilitated under microwave heating, due to the excitation of polar organic moieties; the ligand exchange proceeds with excellent retention of

  18. Heat input control in coke ovens battery using artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Kannan, C.; Sistla, S.; Kumar, D. [Tata Steel, Jamshedpur (India)

    2005-07-01

    Controlled heating is very essential for producing coke with certain desired properties. Controlled heating involves controlling the heat input into the battery dynamically depending on the various process parameters like current battery temperature, the set point of battery temperature, moisture in coal, ambient temperature, coal fineness, cake breakage etc. An artificial intelligence (AI) based heat input control has been developed in which currently some of the above mentioned process parameters are considered and used for calculating the pause time which is applied between reversal during the heating process. The AI based model currently considers 3 input variables, temperature deviation history, current deviation of the battery temperature from the target temperature and the actual heat input into the battery. Work is in progress to control the standard deviation of coke end temperature using this model. The new system which has been developed in-house has replaced Hoogovens supplied model. 7 figs.

  19. Fiscal 1999 basic research on promotion of joint implementation. Comprehensive feasibility study on efficiency improvement project for heat generation facilities and heat supply networks for district heating at districts in Moscow region, the Russian Federation (2 model districts within the region)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of conserving energy and reducing greenhouse gas, a survey is conducted for district heating facilities of the Khimki district and Voskresensk district in Moscow and for their heat supply networks. Four boilers existing at the Khimki district are all to be replaced by natural gas turbine centralized cogeneration plants, and four boilers existing at the Voskresensk district are all to be replaced by natural gas turbine cogeneration facilities. These projects are designated as Case 1 and Case 2, different from each other in terms of power generation capability and heat supply scale. As for investment, a total of 267-million dollars will be necessary for Case 1, and 208-million dollars for Case 2. As for energy conservation, energy will be saved by approximately 2.8-million tons in total in terms of oil in Case 1, and approximately 2-million tons in terms of oil in Case 2. As for greenhouse gas reduction, there will be a reduction of approximately 6.8-million tons in terms of CO2 in Case 1, and a reduction of approximately 4.9-million tons in terms of CO2 in Case 2. (NEDO)

  20. Primary separator replacement for Bruce Unit 8 steam generators

    International Nuclear Information System (INIS)

    Roy, S.B.; Mewdell, C.G.; Schneider, W.G.

    2000-01-01

    During a scheduled maintenance outage of Bruce Unit 8 in 1998, it was discovered that the majority of the original primary steam separators were damaged in two steam generators. The Bruce B steam generators are equipped with GXP type primary cyclone separators of B and W supply. There were localized perforations in the upper part of the separators and large areas of generalized wall thinning. The degradation was indicative of a flow related erosion corrosion mechanism. Although the unit- restart was justified, it was obvious that corrective actions would be necessary because of the number of separators affected and the extent of the degradation. Repair was not considered to be a practical option and it was decided to replace the separators, as required, in Unit 8 steam generators during an advanced scheduled outage. GXP separators were selected for replacement to minimize the impact on steam generator operating characteristics and analysis. The material of construction was upgraded from the original carbon steel to stainless steel to maximize the assurance of full life. The replacement of the separators was a first of a kind operation not only for Ontario Power Generation and B and W but also for all CANDU plants. The paper describes the degradations observed and the assessments, the operating experience, manufacture and installation of the replacement separators. During routine inspection in 1998, many of the primary steam separators in two of steam generators at Bruce Nuclear Division B Unit 8 were observed to have through wall perforations. This paper describes assessment of this condition. It also discusses the manufacture and testing of replacement primary steam separators and the development and execution of the replacement separator installation program. (author)

  1. Magnetic heating in the sun

    International Nuclear Information System (INIS)

    Chiuderi, C.

    1981-01-01

    The observational evidence for magnetic heating in the solar corona is presented. The possible ways of investigating theoretically the nature of the heating processes are critically discussed. Merits and disadvantages of the basic mechanisms so far proposed are reviewed. Finally, a preliminary application of the magnetic heating concept to stellar coronae is presented. (orig.)

  2. Application of nanofluids in plate heat exchanger: A review

    International Nuclear Information System (INIS)

    Kumar, Vikas; Tiwari, Arun Kumar; Ghosh, Subrata Kumar

    2015-01-01

    Highlights: • Use of nanofluid improves the heat transfer performance of plate heat exchanger. • Thermo-physical properties of the nanofluid have been discussed. • Optimum particle concentrations for maximum heat transfer is found to exist. - Abstract: Writing, or even making an attempt to write anything on or about Plate Heat Exchangers (Henceforth, PHE) would be no more than a futile effort to reassert and glorify an already stronghold state of PHEs, as is evident with the kind of multilayered and multi-tasked functions it performs, obviously in different forms, in various domains of work & walks of life, since a good long time. Nonetheless, in a bid to bring about a certain makeshift in the way the PHE has been functioning and sustaining, there was a need to revisit the structural pattern and the fluids that contribute to the performance of PHE. Summarily, this brings the researcher and designers to shift the focus not only from the conventional design but also to introduce a new substance which could further contribute to enhance the performance of the PHE. That is why, in recent times, the miniaturization of PHE and energy efficiency have become focal point of attention, discourse and research. While exploring for better alternates, the nanofluids have surfaced as probable (replaceable) substitutes. The Nanofluid is a relatively recent (in contrast with the PHEs) finding that promises, pronouncedly, greater heat absorbing and heat transport ability. The review article attempts to take a sneak peak into some of the important published articles that deal with the function and performance of PHEs using nanofluids. The first section of the paper presents observations by several authors on experimental and numerical results regarding thermal conductivity, viscosity, specific heat and heat transfer coefficients. The second section talks of application of nanofluids in plate heat exchangers. It has also examined the utility of nanofluids, particularly in PHEs

  3. Computerized heat balance models to predict performance of operating nuclear power plants

    International Nuclear Information System (INIS)

    Breeding, C.L.; Carter, J.C.; Schaefer, R.C.

    1983-01-01

    The use of computerized heat balance models has greatly enhanced the decision making ability of TVA's Division of Nuclear Power. These models are utilized to predict the effects of various operating modes and to analyze changes in plant performance resulting from turbine cycle equipment modifications with greater speed and accuracy than was possible before. Computer models have been successfully used to optimize plant output by predicting the effects of abnormal condenser circulating water conditions. They were utilized to predict the degradation in performance resulting from installation of a baffle plate assembly to replace damaged low-pressure blading, thereby providing timely information allowing an optimal economic judgement as to when to replace the blading. Future use will be for routine performance test analysis. This paper presents the benefits of utility use of computerized heat balance models

  4. Heat storage in the Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Sastry, J.S.

    Heat storage in the Andaman Sea in upper 20 m, where a strong halocline seems to inhibit vertical heat transport has been evaluated and discussed in relation to the other parameters of heat budget. Estimation of annual evaporation gives rise to 137...

  5. Capital Equipment Replacement Decisions

    OpenAIRE

    Batterham, Robert L.; Fraser, K.I.

    1995-01-01

    This paper reviews the literature on the optimal replacement of capital equipment, especially farm machinery. It also considers the influence of taxation and capital rationing on replacement decisions. It concludes that special taxation provisions such as accelerated depreciation and investment allowances are unlikely to greatly influence farmers' capital equipment replacement decisions in Australia.

  6. Stokes flow heat transfer in an annular, rotating heat exchanger

    International Nuclear Information System (INIS)

    Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.

    2011-01-01

    The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.

  7. Replacement of CFCs in thermodynamical systems; Remplacement des CFC dans les systemes thermodynamiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Some chlorofluorocarbons (CFCs) are well-adapted to coldness production by vapour compression and thus are widely used in the storage of agriculture-food products from the production to the domestic consumer but also in air-conditioning systems and heat pumps. Atmospheric impacts of the use of CFCs (`ozone hole`) led the international community to adopt remedial measures which aim to prohibit the production of CFCs. These constraints led the users of refrigerating fluids to use substitution fluids and to develop new techniques of energy recovery and heat/coldness production. This workshop takes stock of this situation and of the problems encountered by the various actors involved in the replacement of CFCs in thermodynamical systems: evolutions of regulation, point of view of refrigerating fluid producers and of compressors and heat exchangers manufacturers, research studies on substitution fluids, recovery of CFCs and other refrigerating fluids, revival in the use of natural fluids (like ammonia), and use of new thermodynamical systems like compression/absorption (water/ammonia) cycles. (J.S.)

  8. An alternative treatment of heat flow for charge transport in semiconductor devices

    International Nuclear Information System (INIS)

    Grupen, Matt

    2009-01-01

    A unique thermodynamic model of Fermi gases suitable for semiconductor device simulation is presented. Like other models, such as drift diffusion and hydrodynamics, it employs moments of the Boltzmann transport equation derived using the Fermi-Dirac distribution function. However, unlike other approaches, it replaces the concept of an electron thermal conductivity with the heat capacity of an ideal Fermi gas to determine heat flow. The model is used to simulate a field-effect transistor and show that the external current-voltage characteristics are strong functions of the state space available to the heated Fermi distribution.

  9. The effectiveness of heat pumps as part of CCGT-190/220 Tyumen CHP-1

    Directory of Open Access Journals (Sweden)

    Tretyakova Polina

    2017-01-01

    Full Text Available The article considers the possibility of increasing the energy efficiency of CCGT-190/220 Tyumen CHP-1 due to the utilization of low-grade heat given off in the condenser unit of the steam turbine. To assess the effectiveness of the proposed system, the indexes of thermal efficiency are given. As a result of a research the following conclusions are received: The heat-transfer agent heat pump, when heated uses low-grade heat TPP and increases heat output, but consumes the electricity. Using a heat pump is effective for a small temperature difference between the condenser and the evaporator. Good example is heating water before chemical treatment. This method is more efficient than using a replacement boiler and it is used in steam selection.

  10. Mechanisms of metasomatism in the calcite-pitchblende system: 2. Replacement of pitchblende by calcite

    International Nuclear Information System (INIS)

    Dymkov, Yu.M.

    1996-01-01

    The principal mechanisms of the nasturan replacement by calcite -intrametasomatism, frontal metasomatism, dispersive metasomatism, and transformative metasomatism - are discussed in terms of G.L. Pospelov's (1973) concept. The main chemical condition required by the process is an oxidized environment, in which the tetravalent uranium of pitchblende or transitional reduced phases (coffinite) oxidizes to yield readily soluble uranyl compounds. The latter are replaced by calcite

  11. Replacement of the ISIS control system

    International Nuclear Information System (INIS)

    Mannix, R.P.; Barton, C.J.; Brownless, D.M.; Kerr, J.C.

    1992-01-01

    In operation since 1985, ISIS is the world's most powerful pulsed spallation neutron source. The decision has been taken to replace the existing ISIS control system, which has been in use for over ten years. The problems of such a project, given the legacy of processor specific hardware and software are discussed, a long with the problems associated with incorporating existing interface hardware into any new system. Present progress using commercial workstation based control software is presented with, an assessment of the benefits and pitfalls of such an approach. (author)

  12. Replace or Modernize? The Future of the District of Columbia's Endangered Old and Historic Public Schools.

    Science.gov (United States)

    Twenty-First Century School Fund, Washington, DC.

    This report addresses the decision-making process for replacing or modernizing the District of Columbia Public Schools (DCPS) as proposed in the DCPS facility master plan. The three-section document discusses old and historic schools and their future; the schools' historical and architectural value; cost of replacement and modernization; design;…

  13. Optimal timing for intravascular administration set replacement.

    Science.gov (United States)

    Ullman, Amanda J; Cooke, Marie L; Gillies, Donna; Marsh, Nicole M; Daud, Azlina; McGrail, Matthew R; O'Riordan, Elizabeth; Rickard, Claire M

    2013-09-15

    The tubing (administration set) attached to both venous and arterial catheters may contribute to bacteraemia and other infections. The rate of infection may be increased or decreased by routine replacement of administration sets. This review was originally published in 2005 and was updated in 2012. The objective of this review was to identify any relationship between the frequency with which administration sets are replaced and rates of microbial colonization, infection and death. We searched The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2012, Issue 6), MEDLINE (1950 to June 2012), CINAHL (1982 to June 2012), EMBASE (1980 to June 2012), reference lists of identified trials and bibliographies of published reviews. The original search was performed in February 2004. We also contacted researchers in the field. We applied no language restriction. We included all randomized or controlled clinical trials on the frequency of venous or arterial catheter administration set replacement in hospitalized participants. Two review authors assessed all potentially relevant studies. We resolved disagreements between the two review authors by discussion with a third review author. We collected data for seven outcomes: catheter-related infection; infusate-related infection; infusate microbial colonization; catheter microbial colonization; all-cause bloodstream infection; mortality; and cost. We pooled results from studies that compared different frequencies of administration set replacement, for instance, we pooled studies that compared replacement ≥ every 96 hours versus every 72 hours with studies that compared replacement ≥ every 48 hours versus every 24 hours. We identified 26 studies for this updated review, 10 of which we excluded; six did not fulfil the inclusion criteria and four did not report usable data. We extracted data from the remaining 18 references (16 studies) with 5001 participants: study designs included neonate and adult

  14. Replacing lactose from calf milk replacers : effects on digestion and post-absorptive metabolism

    NARCIS (Netherlands)

    Gilbert, M.S.

    2015-01-01

    Summary PhD thesis Myrthe S. Gilbert

    Replacing lactose from calf milk replacers – Effects on digestion and post-absorptive metabolism

    Veal calves are fed milk replacer (MR) and solid feed. The largest part of the energy provided to veal calves

  15. Hot tap water production by a 4 kW sorption segmented reactor in household scale for seasonal heat storage

    NARCIS (Netherlands)

    Gaeini, M.; van Alebeek, R.; Scapino, L.; Zondag, H. A.; Rindt, C C.M.

    2018-01-01

    Replacing fossil fuel by solar energy as a promising sustainable energy source, is of high interest, for both electricity and heat generation. However, to reach high solar thermal fractions and to overcome the mismatch between supply and demand of solar heat, long term heat storage is necessary. A

  16. Engineering heat transfer

    International Nuclear Information System (INIS)

    Welty, J.R.

    1974-01-01

    The basic concepts of heat transfer are covered with special emphasis on up-to-date techniques for formulating and solving problems in the field. The discussion progresses logically from phenomenology to problem solving, and treats numerical, integral, and graphical methods as well as traditional analytical ones. The book is unique in its thorough coverage of the fundamentals of numerical analysis appropriate to solving heat transfer problems. This coverage includes several complete and readable examples of numerical solutions, with discussions and interpretations of results. The book also contains an appendix that provides students with physical data for often-encountered materials. An index is included. (U.S.)

  17. FY 1989 Report on heat pump/storage markets in Australia and New Zealand by the survey team; 1989 nendo Australia New Zealand heat pump chikunetsu shijo chosadan hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-01

    Inspections/surveys are conducted on the markets of heat pumps and heat storage systems in Australia and New Zealand, spread of these systems, R and D situations, energy-related problems and policies, and so on. In Australia, heat pumps are mainly used for air conditioning. Several heat pump units are in service in NSW, including the one in Grosvnor Place Building, which is combined with an ice heat storage system. It seems that no waste heat is utilized. Use of heat pumps in this country is possible, in particular for industrial purposes. Use of fluorochlorohydrocarbons is restricted in Australia, in spite of their small quantities actually used, which is accepted as a political consideration. No system of discounted late-nigh rate is adopted in this country, but heat storage is planned as a measure to level power consumption, because the power rate is increased when the consumption exceeds the contracted level. Water is replaced by ice as the heat storage medium. (NEDO)

  18. Reaction kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers

    International Nuclear Information System (INIS)

    Gokcen, Dincer; Bae, Sang-Eun; Brankovic, Stanko R.

    2011-01-01

    The study of the kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers is presented. The model system was Pt submonolayer deposition on Au(1 1 1) via red-ox replacement of Pb and Cu UPD monolayers on Au(1 1 1). The kinetics of a single replacement reaction was studied using the formalism of the comprehensive analytical model developed to fit the open circuit potential transients from deposition experiments. The practical reaction kinetics parameters like reaction half life, reaction order and reaction rate constant are determined and discussed with their relevance to design and control of deposition experiments. The effects of transport limitation and the role of the anions/electrolyte on deposition kinetics are investigated and their significance to design of effective deposition process is discussed.

  19. Heat and power from combustibles

    International Nuclear Information System (INIS)

    Zogg, M.

    2002-01-01

    This article compares four ways of generating heat and power from liquid and gaseous fuels. Various combinations of conventional boilers, heat pumps, combined heat and power units and combined-cycle power plants are considered and the ratio of heat to electrical power produced is discussed. Fuel requirements for the four combinations are looked at and net emissions of carbon dioxide, oxides of nitrogen and carbon monoxide presented in graphical form. The author makes recommendations on the choice of the technology to be used to generate heat and electricity for different heat/power ratios and criticises the all too slack emission limits for small combined heat and power units

  20. Discussion method for the Wigner-Seitz model applied to plane problems; Methode de discussion du modele Wigner-Seitz appliquee a des problemes plans

    Energy Technology Data Exchange (ETDEWEB)

    Winter, J

    1949-04-01

    This report discusses the approximation which consists, for the study of a waves field, in replacing a square domain by a circular domain in a square orthogonal mesh network. For this purpose, it is proposed to introduce J{sub 4}(Kr)cos(4{theta}) and Y{sub 4}(Kr)cos(4{theta}) terms and to modify the outside limits of the mesh for the calculation of the coefficients of these terms.

  1. Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux

    Science.gov (United States)

    Sobolev, S. L.

    2018-02-01

    Some analogies between different nonequilibrium heat conduction models, particularly random walk, the discrete variable model, and the Boltzmann transport equation with the single relaxation time approximation, have been discussed. We show that, under an assumption of a finite value of the heat carrier velocity, these models lead to the hyperbolic heat conduction equation and the modified Fourier law with relaxation term. Corresponding effective temperature and entropy have been introduced and analyzed. It has been demonstrated that the effective temperature, defined as a geometric mean of the kinetic temperatures of the heat carriers moving in opposite directions, acts as a criterion for thermalization and is a nonlinear function of the kinetic temperature and heat flux. It is shown that, under highly nonequilibrium conditions when the heat flux tends to its maximum possible value, the effective temperature, heat capacity, and local entropy go to zero even at a nonzero equilibrium temperature. This provides a possible generalization of the third law to nonequilibrium situations. Analogies and differences between the proposed effective temperature and some other definitions of a temperature in nonequilibrium state, particularly for active systems, disordered semiconductors under electric field, and adiabatic gas flow, have been shown and discussed. Illustrative examples of the behavior of the effective temperature and entropy during nonequilibrium heat conduction in a monatomic gas and a strong shockwave have been analyzed.

  2. Heat flow and heat generation in greenstone belts

    Science.gov (United States)

    Drury, M. J.

    1986-01-01

    Heat flow has been measured in Precambrian shields in both greenstone belts and crystalline terrains. Values are generally low, reflecting the great age and tectonic stability of the shields; they range typically between 30 and 50 mW/sq m, although extreme values of 18 and 79 mW/sq m have been reported. For large areas of the Earth's surface that are assumed to have been subjected to a common thermotectonic event, plots of heat flow against heat generation appear to be linear, although there may be considerable scatter in the data. The relationship is expressed as: Q = Q sub o + D A sub o in which Q is the observed heat flow, A sub o is the measured heat generation at the surface, Q sub o is the reduced heat flow from the lower crust and mantle, and D, which has the dimension of length, represents a scale depth for the distribution of radiogenic elements. Most authors have not used data from greenstone belts in attempting to define the relationship within shields, considering them unrepresentative and preferring to use data from relatively homogeneous crystalline rocks. A discussion follows.

  3. Concentrating PV/T Hybrid System for Simultaneous Electricity and Usable Heat Generation: A Review

    Directory of Open Access Journals (Sweden)

    Longzhou Zhang

    2012-01-01

    Full Text Available Photovoltaic (PV power generation is one of the attractive choices for efficient utilization of solar energy. Considering that the efficiency and cost of PV cells cannot be significantly improved in near future, a relatively cheap concentrator to replace part of the expensive solar cells could be used. The photovoltaic thermal hybrid system (PV/T, combining active cooling with thermal electricity and providing both electricity and usable heat, can enhance the total efficiency of the system with reduced cell area. The effect of nonuniform light distribution and the heat dissipation on the performance of concentrating PV/T was discussed. Total utilization of solar light by spectral beam splitting technology was also introduced. In the last part, we proposed an integrated compound parabolic collector (CPC plate with low precision solar tracking, ensuring effective collection of solar light with a significantly lowered cost. With the combination of beam splitting of solar spectrum, use of film solar cell, and active liquid cooling, efficient and full spectrum conversion of solar light to electricity and heat, in a low cost way, might be realized. The paper may offer a general guide to those who are interested in the development of low cost concentrating PV/T hybrid system.

  4. Heat exchanger performance monitoring guidelines

    International Nuclear Information System (INIS)

    Stambaugh, N.; Closser, W. Jr.; Mollerus, F.J.

    1991-12-01

    Fouling can occur in many heat exchanger applications in a way that impedes heat transfer and fluid flow and reduces the heat transfer or performance capability of the heat exchanger. Fouling may be significant for heat exchanger surfaces and flow paths in contact with plant service water. This report presents guidelines for performance monitoring of heat exchangers subject to fouling. Guidelines include selection of heat exchangers to monitor based on system function, safety function and system configuration. Five monitoring methods are discussed: the heat transfer, temperature monitoring, temperature effectiveness, delta P and periodic maintenance methods. Guidelines are included for selecting the appropriate monitoring methods and for implementing the selected methods. The report also includes a bibliography, example calculations, and technical notes applicable to the heat transfer method

  5. Numerical simulation of fluid flow and heat transfer in a concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Mokamati, S.V.; Prasad, R.C.

    2003-01-01

    In this paper, numerical simulation of a concentric tube heat exchanger is presented to determine the convective heat transfer coefficient and friction factor in a smooth tube. Increasing the convective heat transfer coefficient can increase heat transfer rate in a concentric tube heat exchanger from a given tubular surface area. This can be achieved by using heat transfer augmentation devices. This work constitutes the initial phase of the numerical simulation of heat transfer from tubes employing augmentation devices, such as twisted tapes, wire-coil inserts, for heat transfer enhancement. A computational fluid dynamics (CFD) simulation tool was developed with CFX software and the results obtained from the simulations are validated with the empirical correlations for a smooth tube heat exchanger. The difficulties associated with the simulation of a heat exchanger augmented with wire-coil inserts are discussed. (author)

  6. Review of ASME nuclear codes and standards- subcommittee on repairs, replacements, and modifications

    International Nuclear Information System (INIS)

    Mawson, T.J.

    1990-01-01

    As requested by the ASME board on Nuclear Codes and Standards, the Pressure Vessel Research Committee initiated a project to review Sections III and XI of the ASME Boiler and Pressure Vessel Code for the purposes of improving, clarifying, providing transition, consistency, compatibility, and simplifying code requirements. The project was organized with six subcommittees to address various Code activities: design; tests and examinations; documentation; quality assurance; repair, replacement and modification; and general requirements. This paper discusses how the subcommittee on repair, replacement and modification was organized to review the repair, replacement and modification requirements of the ASME boiler and pressure vessel code, Section III and Section XI for Class 1, 2, and 3 and MC components and their supports, and other documents of the nuclear industry related to the repair, replacement and modification requirements of the ASME code

  7. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  8. Features of an emergency heat-conducting path in reactors about lead-bismuth and lead heat-carriers

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Bokova, T.A.; Molodtsov, A.A.

    2006-01-01

    The reactor emergency heat removal systems should transfer heat from the surface of reactor core fuel element claddings to the primary circuit followed by heat transfer to the environment. One suggests three design approaches for emergency heat removal systems in lead-bismuth and lead cooled reactor circuits that take account of the peculiar nature of their features. Application of the discussed systems for emergency heat removal improves safety of lead-bismuth and lead cooled reactor plants [ru

  9. Cost justification of chiller replacement

    International Nuclear Information System (INIS)

    Baker, T.J.; Baumer, R.A.

    1993-01-01

    We often hear of products with paybacks that are too good to be true. Just a few weeks ago,a client received a recommendation from a national service company's local office. In the letter the company recommended that open-quotes due to the age and condition of the boiler ... that the school consider replacing the boiler... The cost for the new boiler can usually be recovered by lower fuel bills in 2 to 3 yearsclose quotes. This was for an installation in Southeast Texas where the boiler is only used 4 to 5 months per year. Analysis show the above claims to be nonsense. A new boiler would cost about $47,000 installed. Current total gas bills for the facility are $15,630 per year. They would have to shutoff the gas to the facility to have a three year payback. In fact, only two-thirds of the gas is used to heat the facility so we have only $10, 000 to write off against the new boiler. How much will the greater efficiency save? A 30% savings due to greater efficiency produces $3,000 per year in gas savings to offset the $47,000 cost, a 16 year payback. And much of the efficiency savings can be realized by adjusting the existing boiler. In another care a client wanted to investigate replacement of a twenty year old chiller plant with more efficient equipment. We investigated the project and determined that the payback would be greater than ten years. They did not operate the equipment during the summer and at less than 50% of capacity the balance of the year

  10. SOLAR HEAT TRANSFER THROUGH HDPC AND COPPER PIPE USING DIFFERENT FLUIDS

    OpenAIRE

    Muzamil Wani*, Karan Negi, Prince Mehandiratta

    2016-01-01

    Nowadays climate of growing energy needs and increasing environmental concern, alternatives to the use of non -renewable and polluting fossil fuels have to be investigated. One such alternative is solar energy; solar water heating is the prime application of solar energy. The problem faced by the existing solar water heating system is periodic inspections, maintenance, time to time component may need repair or replacement and also sufficient quantity of hot water is not available during clou...

  11. Implementing Replacement Cost Accounting

    Science.gov (United States)

    1976-12-01

    cost accounting Clickener, John Ross Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/17810 Downloaded from NPS Archive...Calhoun IMPLEMENTING REPLACEMENT COST ACCOUNTING John Ross CHckener NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS IMPLEMENTING REPLACEMENT COST ...Implementing Replacement Cost Accounting 7. AUTHORS John Ross Clickener READ INSTRUCTIONS BEFORE COMPLETING FORM 3. RECIPIENT’S CATALOG NUMBER 9. TYRE OF

  12. Neuronal replacement therapy: previous achievements and challenges ahead

    Science.gov (United States)

    Grade, Sofia; Götz, Magdalena

    2017-10-01

    Lifelong neurogenesis and incorporation of newborn neurons into mature neuronal circuits operates in specialized niches of the mammalian brain and serves as role model for neuronal replacement strategies. However, to which extent can the remaining brain parenchyma, which never incorporates new neurons during the adulthood, be as plastic and readily accommodate neurons in networks that suffered neuronal loss due to injury or neurological disease? Which microenvironment is permissive for neuronal replacement and synaptic integration and which cells perform best? Can lost function be restored and how adequate is the participation in the pre-existing circuitry? Could aberrant connections cause malfunction especially in networks dominated by excitatory neurons, such as the cerebral cortex? These questions show how important connectivity and circuitry aspects are for regenerative medicine, which is the focus of this review. We will discuss the impressive advances in neuronal replacement strategies and success from exogenous as well as endogenous cell sources. Both have seen key novel technologies, like the groundbreaking discovery of induced pluripotent stem cells and direct neuronal reprogramming, offering alternatives to the transplantation of fetal neurons, and both herald great expectations. For these to become reality, neuronal circuitry analysis is key now. As our understanding of neuronal circuits increases, neuronal replacement therapy should fulfill those prerequisites in network structure and function, in brain-wide input and output. Now is the time to incorporate neural circuitry research into regenerative medicine if we ever want to truly repair brain injury.

  13. Heat transfer enhancement in heat exchangers by longitudinal vortex generators

    International Nuclear Information System (INIS)

    Guntermann, T.; Fiebig, M.; Mitra, N.K.

    1990-01-01

    In this paper heat transfer enhancement and flow losses are computed for the interaction of a laminar channel flow with a pair of counterrotating longitudinal vortices generated by a pair of delta-winglets punched out of the channel wall. The geometry simulates an element of a fin-plate or fin-tube heat exchanger. The structure of the vortex flow and temperature distribution, the local heat transfer coefficients and the local flow losses are discussed for a sample case. For a Reynolds number of Re d = 1000 and a vortex generator angle of attack of β = 25 degrees heat transfer is enhanced locally by more than 300% and in the mean by 50%. These values increase further with Re and β

  14. Random walk and the heat equation

    CERN Document Server

    Lawler, Gregory F

    2010-01-01

    The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation by considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equation and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. The first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For exa...

  15. Fuel handling alternatives to prepare for large scale fuel channel replacement

    International Nuclear Information System (INIS)

    Martire, S.; Sandu, I.

    2007-01-01

    It is desirable to reduce the duration of defuelling the reactor in preparation for retube, as the cost of replacement power is $750K/day. Three fast defuelling concepts are presented. With the Through Flow Defuelling method, the fuel string is hydraulically pushed into the downstream Fuelling Machine (FM) by flow passing through the fuel channel. The Long Stroke C Ram method replaces the FM C Ram with a longer one capable of pushing all fuel bundles into the receiving FM. Defuelling Hardware uses enhanced design of ram extensions that interconnect mechanically to extend the Ram stroke to push fuel bundles into the receiving FM. This paper will present descriptions of each defuelling concept to prepare for Large Scale Fuel Channel Replacement. Advantages and disadvantages of each concept will be discussed and a recommendation will be made for future implementation. (author)

  16. Heat exchangers and recuperators for high temperature waste gases

    Science.gov (United States)

    Meunier, H.

    General considerations on high temperature waste heat recovery are presented. Internal heat recovery through combustion air preheating and external heat recovery are addressed. Heat transfer and pressure drop in heat exchanger design are discussed.

  17. Case Studies in Low-Energy District Heating Systems: Determination of Dimensioning Methods for Planning the Future Heating Infrastructure

    DEFF Research Database (Denmark)

    Tol, Hakan; Nielsen, Susanne Balslev; Svendsen, Svend

    suggests a plan for an energy efficient District Heating (DH) system with low operating temperatures, such as 55°C supply and 25°C return; connected to low-energy buildings. Different case studies referring to typical DH planning situations could show the rational basis for the integrated planning...... of the future’s sustainable and energy efficient heating infrastructure. In this paper, a case study which focuses on dimensioning method of piping network of low-energy DH system in a new settlement, located in Roskilde Municipality, Denmark, is presented. In addition to the developed dimensioning method......, results about the optimal network layout and substation type for low-energy DH systems are also pointed out regarding to this case study. A second case study, included in this paper, focuses on technical and economical aspects of replacing natural gas heating system to low-energy DH system in an existing...

  18. Geothermal energy and district heating in Ny-Ålesund, Svalbard

    OpenAIRE

    Iversen, Julianne

    2013-01-01

    This thesis presents the possibilities for using shallow geothermal energy for heating purposes in Ny-Ålesund. The current energy supply in Ny-Ålesund is a diesel generator, which does not comply with the Norwegian government and Ny-Ålesund Science Managers Committee’s common goal to maintain the natural environment in Ny-Ålesund. Ny-Ålesund has a potential for replacing the heat from the current diesel based energy source with geothermal energy. Geothermal energy is considered to have low im...

  19. Online discussion forums with embedded streamed videos on distance courses

    Directory of Open Access Journals (Sweden)

    Vicenc Fernandez

    2014-03-01

    Full Text Available Existing literature on education and technology has frequently highlighted the usefulness of online discussion forums for distance courses; however, the majority of such investigations have focused their attention only on text-based forums. The objective of this paper is to determine if the embedding of streamed videos in online discussion forums generates educational dialogue and consequently the feedback that students need in a Management Accounting Course. The findings suggest some interesting issues, such as: students prefer text answers except in complex questions, and videos never replace text commentaries and explanations, but rather complement them.

  20. Improving the thermal efficiency of a jaggery production module using a fire-tube heat exchanger.

    Science.gov (United States)

    La Madrid, Raul; Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel

    2017-12-15

    Jaggery is a product obtained after heating and evaporation processes have been applied to sugar cane juice via the addition of thermal energy, followed by the crystallisation process through mechanical agitation. At present, jaggery production uses furnaces and pans that are designed empirically based on trial and error procedures, which results in low ranges of thermal efficiency operation. To rectify these deficiencies, this study proposes the use of fire-tube pans to increase heat transfer from the flue gases to the sugar cane juice. With the aim of increasing the thermal efficiency of a jaggery installation, a computational fluid dynamic (CFD)-based model was used as a numerical tool to design a fire-tube pan that would replace the existing finned flat pan. For this purpose, the original configuration of the jaggery furnace was simulated via a pre-validated CFD model in order to calculate its current thermal performance. Then, the newly-designed fire-tube pan was virtually replaced in the jaggery furnace with the aim of numerically estimating the thermal performance at the same operating conditions. A comparison of both simulations highlighted the growth of the heat transfer rate at around 105% in the heating/evaporation processes when the fire-tube pan replaced the original finned flat pan. This enhancement impacted the jaggery production installation, whereby the thermal efficiency of the installation increased from 31.4% to 42.8%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  2. New approaches to the modelling of multi-component fuel droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S

    2015-02-25

    The previously suggested quasi-discrete model for heating and evaporation of complex multi-component hydrocarbon fuel droplets is described. The dependence of density, viscosity, heat capacity and thermal conductivity of liquid components on carbon numbers n and temperatures is taken into account. The effects of temperature gradient and quasi-component diffusion inside droplets are taken into account. The analysis is based on the Effective Thermal Conductivity/Effective Diffusivity (ETC/ED) model. This model is applied to the analysis of Diesel and gasoline fuel droplet heating and evaporation. The components with relatively close n are replaced by quasi-components with properties calculated as average properties of the a priori defined groups of actual components. Thus the analysis of the heating and evaporation of droplets consisting of many components is replaced with the analysis of the heating and evaporation of droplets consisting of relatively few quasi-components. It is demonstrated that for Diesel and gasoline fuel droplets the predictions of the model based on five quasi-components are almost indistinguishable from the predictions of the model based on twenty quasi-components for Diesel fuel droplets and are very close to the predictions of the model based on thirteen quasi-components for gasoline fuel droplets. It is recommended that in the cases of both Diesel and gasoline spray combustion modelling, the analysis of droplet heating and evaporation is based on as little as five quasi-components.

  3. Complementary role of cardiac CT in the assessment of aortic valve replacement dysfunction

    Science.gov (United States)

    Moss, Alastair J; Dweck, Marc R; Dreisbach, John G; Williams, Michelle C; Mak, Sze Mun; Cartlidge, Timothy; Nicol, Edward D; Morgan-Hughes, Gareth J

    2016-01-01

    Aortic valve replacement is the second most common cardiothoracic procedure in the UK. With an ageing population, there are an increasing number of patients with prosthetic valves that require follow-up. Imaging of prosthetic valves is challenging with conventional echocardiographic techniques making early detection of valve dysfunction or complications difficult. CT has recently emerged as a complementary approach offering excellent spatial resolution and the ability to identify a range of aortic valve replacement complications including structural valve dysfunction, thrombus development, pannus formation and prosthetic valve infective endocarditis. This review discusses each and how CT might be incorporated into a multimodal cardiovascular imaging pathway for the assessment of aortic valve replacements and in guiding clinical management. PMID:27843568

  4. ARP/wARP and molecular replacement: the next generation

    International Nuclear Information System (INIS)

    Cohen, Serge X.; Ben Jelloul, Marouane; Long, Fei; Vagin, Alexei; Knipscheer, Puck; Lebbink, Joyce; Sixma, Titia K.; Lamzin, Victor S.; Murshudov, Garib N.; Perrakis, Anastassis

    2008-01-01

    A systematic test shows how ARP/wARP deals with automated model building for structures that have been solved by molecular replacement. A description of protocols in the flex-wARP control system and studies of two specific cases are also presented. Automatic iterative model (re-)building, as implemented in ARP/wARP and its new control system flex-wARP, is particularly well suited to follow structure solution by molecular replacement. More than 100 molecular-replacement solutions automatically solved by the BALBES software were submitted to three standard protocols in flex-wARP and the results were compared with final models from the PDB. Standard metrics were gathered in a systematic way and enabled the drawing of statistical conclusions on the advantages of each protocol. Based on this analysis, an empirical estimator was proposed that predicts how good the final model produced by flex-wARP is likely to be based on the experimental data and the quality of the molecular-replacement solution. To introduce the differences between the three flex-wARP protocols (keeping the complete search model, converting it to atomic coordinates but ignoring atom identities or using the electron-density map calculated from the molecular-replacement solution), two examples are also discussed in detail, focusing on the evolution of the models during iterative rebuilding. This highlights the diversity of paths that the flex-wARP control system can employ to reach a nearly complete and accurate model while actually starting from the same initial information

  5. Impact of Next Generation District Heating Systems on Distribution Network Heat Losses: A Case Study Approach

    Science.gov (United States)

    Li, Yu; Rezgui, Yacine

    2018-01-01

    District heating (DH) is a promising energy pathway to alleviate environmental negative impacts induced by fossil fuels. Improving the performance of DH systems is one of the major challenges facing its wide adoption. This paper discusses the heat losses of the next generation DH based on the constructed Simulink model. Results show that lower distribution temperature and advanced insulation technology greatly reduce network heat losses. Also, the network heat loss can be further minimized by a reduction of heat demand in buildings.

  6. Pipe replacement in a water supply network: coordinated versus uncoordinated replacement and budget effects

    NARCIS (Netherlands)

    Dijk, van D.; Hendrix, E.M.T.

    2016-01-01

    Operators of underground water supply networks are challenged with pipe replacement
    decisions, because pipes are subject to increased failure rates as they age and financial resources
    are often limited.We study the optimal replacement time and optimal number of pipe replacements
    such

  7. Analysis of a Hybrid PV/Thermal Solar-Assisted Heat Pump System for Sports Center Water Heating Application

    Directory of Open Access Journals (Sweden)

    Y. Bai

    2012-01-01

    Full Text Available The application of solar energy provides an alternative way to replace the primary source of energy, especially for large-scale installations. Heat pump technology is also an effective means to reduce the consumption of fossil fuels. This paper presents a practical case study of combined hybrid PV/T solar assisted heat pump (SAHP system for sports center hot water production. The initial design procedure was first presented. The entire system was then modeled with the TRNSYS 16 computation environment and the energy performance was evaluated based on year round simulation results. The results show that the system COP can reach 4.1 under the subtropical climate of Hong Kong, and as compared to the conventional heating system, a high fractional factor of energy saving at 67% can be obtained. The energy performances of the same system under different climatic conditions, that include three other cities in France, were analyzed and compared. Economic implications were also considered in this study.

  8. The economic and environmental impacts of biofuel taxes on heating plants in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Braennlund, R.; Kristroem, B.; Sisask, A.

    1998-12-31

    Sweden`s energy policy is currently based on a large-scale introduction of biofuels. Following a 1980 nuclear power referendum, the current plan is to phase out nuclear power, replacing nuclear energy with renewable energy sources. This policy is supported by various tax breaks for biofuels. There is an ongoing discussion about a restructuring of the energy tax system, which will have far-reaching impact on the markets for biofuels. This paper evaluates the impact of changes in current energy taxation by analyzing a panel of approximately 150 district heating plants in Sweden. We estimate plant-specific production functions and derive the economic repercussions of the tax. We also estimate the resulting changes of emissions of sulfur, NOX and particulates and assess the externality costs Arbetsrapport 258. 6 refs, 4 figs, 11 tabs

  9. The economic and environmental impacts of biofuel taxes on heating plants in Sweden

    International Nuclear Information System (INIS)

    Braennlund, R.; Kristroem, B.; Sisask, A.

    1998-01-01

    Sweden's energy policy is currently based on a large-scale introduction of biofuels. Following a 1980 nuclear power referendum, the current plan is to phase out nuclear power, replacing nuclear energy with renewable energy sources. This policy is supported by various tax breaks for biofuels. There is an ongoing discussion about a restructuring of the energy tax system, which will have far-reaching impact on the markets for biofuels. This paper evaluates the impact of changes in current energy taxation by analyzing a panel of approximately 150 district heating plants in Sweden. We estimate plant-specific production functions and derive the economic repercussions of the tax. We also estimate the resulting changes of emissions of sulfur, NOX and particulates and assess the externality costs Arbetsrapport 258. 6 refs, 4 figs, 11 tabs

  10. Natural convection in a horizontal channel provided with heat generating blocks: Discussion of the isothermal blocks validity

    International Nuclear Information System (INIS)

    Mouhtadi, D.; Amahmid, A.; Hasnaoui, M.; Bennacer, R.

    2012-01-01

    Highlights: ► We examine the validity of isothermal model for blocks with internal heat generation. ► Criteria based on comparison of total and local quantities are adopted. ► Thermal conductivity and Biot number required for the validity of the isothermal model are dependent on the Rayleigh number. ► The validity conditions are also affected by the multiplicity of solutions. - Abstract: This work presents a numerical study of air natural convection in a horizontal channel provided with heating blocks periodically distributed on its lower adiabatic surface. The blocks are submitted to a uniform heat generation and the channel upper surface is maintained at a cold constant temperature. The main objective of this study is to examine the validity of the model with isothermal blocks for the system under consideration. Then the calculations are performed using two different models. In the first (denoted Model 1 or M1) the calculations are performed by imposing a uniform volumetric heat generation inside the blocks. In the second model (denoted Model 2 or M2), the blocks are maintained isothermal at the average blocks surface temperature deduced from the Model 1. The controlling parameters of the present problem are the thermal conductivity ratio of the solid block and the fluid (0.1 ⩽ k* = k s /k a ⩽ 200) and the Rayleigh number (10 4 ⩽ Ra ⩽ 10 7 ). The validity of the isothermal model is examined for various Ra by using criteria based on local and mean heat transfer characteristics. It is found that some solutions of the isothermal model do not reproduce correctly the results of the first model even for very large conductivity ratios. The Biot number below which the Model 2 is valid depends strongly on the Rayleigh number and the type of solution.

  11. Fluidised bed heat exchangers

    International Nuclear Information System (INIS)

    Elliott, D.E.; Healey, E.M.; Roberts, A.G.

    1974-01-01

    Problems that have arisen during the initial stages of development of fluidised bed boilers in which heat transfer surfaces are immersed in fluidised solids are discussed. The very high heat transfer coefficients that are obtained under these conditions can be exploited to reduce the total heat transfer surface to a fraction of that in normal boilers. However, with the high heat flux levels involved, tube stressing becomes more important and it is advantageous to use smaller diameter tubes. One of the initial problems was that the pumping power absorbed by the fluidised bed appeared to be high. The relative influence of the fluidising velocity (and the corresponding bed area), tube diameter, tube spacing, heat transfer coefficient and bed temperature on pumping power and overall cost was determined. This showed the importance of close tube packing and research was undertaken to see if this would adversely affect the heat transfer coefficient. Pressure operation also reduces the pumping power. Fouling and corrosion tests in beds burning coal suggest that higher temperatures could be reached reliably and cost studies show that, provided the better refractory metals are used, the cost of achieving higher temperatures is not unduly high. It now remains to demonstrate at large scale that the proposed systems are viable and that the methods incorporated to overcome start up and part lead running problems are satisfactory. The promising role of these heat transfer techniques in other applications is briefly discussed

  12. Replacement of the moderator cell unit of JRR-3's cold neutron source facility

    International Nuclear Information System (INIS)

    Hazawa, Tomoya; Nagahori, Kazuhisa; Kusunoki, Tsuyoshi

    2006-10-01

    The moderator cell of the JRR-3's cold neutron source (CNS) facility, converts thermal neutrons into cold neutrons by passing through liquid cold hydrogen. The cold neutrons are used for material and life science research such as the neutron scattering. The CNS has been operated since the start of JRR-3's in 1990. The moderator cell containing liquid hydrogen is made of stainless steel. The material irradiation lifetime is limited to 7 years due to irradiation brittleness. The first replacement was done by using a spare part made in France. This replacement work of 2006 was carried out by using the domestic moderator cell unit. The following technologies were developed for the moderator cell unit production. 1) Technical development of black treatment on moderator cell surface to increase radiation heat. 2) Development of bending technology of concentric triple tubes consisting from inside tube, Outside tube and Vacuum insulation tube. 3) Development of manufacturing technique of the moderator cell with complicated shapes. According to detail planed work procedures, replacement work was carried out. As results, the working days were reduced to 80% of old ones. The radiation dose was also reduced due to reduction of working days. It was verified by measurement of neutrons characteristics that the replaced moderator cell has the same performance as that of the old moderator cell. The domestic manufacturing of the moderator cell was succeeded. As results, the replacement cost was reduced by development of domestic production technology. (author)

  13. Industrial waste heat utilization for low temperature district heating

    International Nuclear Information System (INIS)

    Fang, Hao; Xia, Jianjun; Zhu, Kan; Su, Yingbo; Jiang, Yi

    2013-01-01

    Large quantities of low grade waste heat are discharged into the environment, mostly via water evaporation, during industrial processes. Putting this industrial waste heat to productive use can reduce fossil fuel usage as well as CO 2 emissions and water dissipation. The purpose of this paper is to propose a holistic approach to the integrated and efficient utilization of low-grade industrial waste heat. Recovering industrial waste heat for use in district heating (DH) can increase the efficiency of the industrial sector and the DH system, in a cost-efficient way defined by the index of investment vs. carbon reduction (ICR). Furthermore, low temperature DH network greatly benefits the recovery rate of industrial waste heat. Based on data analysis and in-situ investigations, this paper discusses the potential for the implementation of such an approach in northern China, where conventional heat sources for DH are insufficient. The universal design approach to industrial-waste-heat based DH is proposed. Through a demonstration project, this approach is introduced in detail. This study finds three advantages to this approach: (1) improvement of the thermal energy efficiency of industrial factories; (2) more cost-efficient than the traditional heating mode; and (3) CO 2 and pollutant emission reduction as well as water conservation. -- Highlights: •We review situation of industrial waste heat recovery with a global perspective. •We present a way to analyze the potential to utilize industrial waste heat for DH. •Northern China has huge potential for using low-grade industrial waste heat for DH. •A demonstration project is introduced using the universal approach we propose. •It proves huge benefits for factories, heat-supply companies and the society

  14. Introduction to Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  15. The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P.J.; Shonder, J.A.

    1998-03-01

    This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

  16. Heat transfer in high-level waste management

    International Nuclear Information System (INIS)

    Dickey, B.R.; Hogg, G.W.

    1979-01-01

    Heat transfer in the storage of high-level liquid wastes, calcining of radioactive wastes, and storage of solidified wastes are discussed. Processing and storage experience at the Idaho Chemical Processing Plant are summarized for defense high-level wastes; heat transfer in power reactor high-level waste processing and storage is also discussed

  17. Monitoring of Building Heating and Cooling Systems Based on Geothermal Heat Pump in Galicia (Spain

    Directory of Open Access Journals (Sweden)

    Franco D.

    2012-10-01

    Full Text Available In November 2009 was signed an agreement between Galicia’s Government and EnergyLab to develop a project related with the geothermal heatpumps (hereafter, GSHP technology. That project consisted in replacing the existing thermal equipment generators (diesel boilers and air-water heat pumps by GSHP systems in representative public buildings: two nursery schools, a university library, a health centre and a residential building. This new systems will reach the demands of existing heating, cooling and domestic hot water (hereafter, DHW. These buildings can serve as examples of energy and economic savings that can offer this technology. We will show detailed analysis of the GSHP facilities monitored, since the starting-up of them. Which includes: COP’s, EER’s, energy consumption, operating costs, operation hours of the system, economic and emissions comparative, geothermal exchange evolution graphs, environmental conditions evolution graphs (temperature and demands, etc. The results presented show an example of the important benefits of the GSHP technology and the significant savings that can offer its implementation for heating, cooling and DHW production.

  18. Measurement of heat transfers in cryogenic tank with several configurations

    International Nuclear Information System (INIS)

    Khemis, O.; Bessaieh, R.; Ait Ali, M.; Francois, M.X.

    2004-01-01

    The work presented here concerns the measurement of heat transfer in a cryogenic tank with several configurations. The experimental test incorporates the conductive heat in the neck, the convection heat transfers between the inner wall of the neck and the ascending vapor resulting from boiling, and the radiation heat transfers between the external envelope and the tank through a vacuum of 10 -8 mm Hg. An experimental prototype was produced in collaboration with the nuclear center of Orsay in France according to a didactic design, which takes into account the Wexler effect and the importance of the radiation compared to the conduction-convection heat transfer. The addition of a screen radiative ventilated with variable position on the neck (which can effectively replace several tens of floating screens), in order to find the optimal position, which minimizes the radiation flux, is presented in this paper

  19. Heating analysis of cobalt adjusters in reactor core

    International Nuclear Information System (INIS)

    Mei Qiliang; Li Kang; Fu Yaru

    2011-01-01

    In order to produce 60 Co source for industry and medicine applications in CANDU-6 reactor, the stainless steel adjusters were replaced with the cobalt adjusters. The cobalt rod will generate the heat when it is irradiated by neutron and γ ray. In addition, 59 Co will be activated and become 60 Co, the ray released due to 60 Co decay will be absorbed by adjusters, and then the adjusters will also generate the heat. So the heating rate of adjusters to be changed during normal operation must be studied, which will be provided as the input data for analyzing the temperature field of cobalt adjusters and the relative heat load of moderator. MCNP code was used to simulate whole core geometric configuration in detail, including reactor fuel, control rod, adjuster, coolant and moderator, and to analyze the heating rate of the stainless steel adjusters and the cobalt adjusters. The maximum heating rate of different cobalt adjuster based on above results will be provided for the steady thermal hydraulic and accident analysis, and make sure that the reactor is safe on the thermal hydraulic. (authors)

  20. Performance study of heat-pipe solar photovoltaic/thermal heat pump system

    International Nuclear Information System (INIS)

    Chen, Hongbing; Zhang, Lei; Jie, Pengfei; Xiong, Yaxuan; Xu, Peng; Zhai, Huixing

    2017-01-01

    Highlights: • The testing device of HPS PV/T heat pump system was established by a finished product of PV panel. • A detailed mathematical model of heat pump was established to investigate the performance of each component. • The dynamic and static method was combined to solve the mathematical model of HPS PV/T heat pump system. • The HPS PV/T heat pump system was optimized by the mathematical model. • The influence of six factors on the performance of HPS PV/T heat pump system was analyzed. - Abstract: A heat-pipe solar (HPS) photovoltaic/thermal (PV/T) heat pump system, combining HPS PV/T collector with heat pump, is proposed in this paper. The HPS PV/T collector integrates heat pipes with PV panel, which can simultaneously generate electricity and thermal energy. The extracted heat from HPS PV/T collector can be used by heat pump, and then the photoelectric conversion efficiency is substantially improved because of the low temperature of PV cells. A mathematical model of the system is established in this paper. The model consists of a dynamic distributed parameter model of the HPS PV/T collection system and a quasi-steady state distributed parameter model of the heat pump. The mathematical model is validated by testing data, and the dynamic performance of the HPS PV/T heat pump system is discussed based on the validated model. Using the mathematical model, a reasonable accuracy in predicting the system’s dynamic performance with a relative error within ±15.0% can be obtained. The capacity of heat pump and the number of HPS collectors are optimized to improve the system performance based on the mathematical model. Six working modes are proposed and discussed to investigate the effect of solar radiation, ambient temperature, supply water temperature in condenser, PV packing factor, heat pipe pitch and PV backboard absorptivity on system performance by the validated model. It is found that the increase of solar radiation, ambient temperature and PV

  1. Original Research: Metabolic alterations from early life thyroxine replacement therapy in male Ames dwarf mice are transient.

    Science.gov (United States)

    Darcy, Justin; Fang, Yimin; Hill, Cristal M; McFadden, Sam; Sun, Liou Y; Bartke, Andrzej

    2016-10-01

    Ames dwarf mice are exceptionally long-lived due to a Prop1 loss of function mutation resulting in deficiency of growth hormone, thyroid-stimulating hormone and prolactin. Deficiency in thyroid-stimulating hormone and growth hormone leads to greatly reduced levels of circulating thyroid hormones and insulin-like growth factor 1, as well as a reduction in insulin secretion. Early life growth hormone replacement therapy in Ames dwarf mice significantly shortens their longevity, while early life thyroxine (T4) replacement therapy does not. Possible mechanisms by which early life growth hormone replacement therapy shortens longevity include deleterious effects on glucose homeostasis and energy metabolism, which are long lasting. A mechanism explaining why early life T4 replacement therapy does not shorten longevity remains elusive. Here, we look for a possible explanation as to why early life T4 replacement therapy does not impact longevity of Ames dwarf mice. We found that early life T4 replacement therapy increased body weight and advanced the age of sexual maturation. We also find that early life T4 replacement therapy does not impact glucose tolerance or insulin sensitivity, and any deleterious effects on oxygen consumption, respiratory quotient and heat production are transient. Lastly, we find that early life T4 replacement therapy has long-lasting effects on bone mineral density and bone mineral content. We suggest that the transient effects on energy metabolism and lack of effects on glucose homeostasis are the reasons why there is no shortening of longevity after early life T4 replacement therapy in Ames dwarf mice. © 2016 by the Society for Experimental Biology and Medicine.

  2. Plasma heating: NBI ampersand RF, an introduction

    International Nuclear Information System (INIS)

    Koch, R.

    1996-01-01

    The additional heating and non-inductive current-drive methods are reviewed. First, the limitations of ohmic heating in tokamaks are examined and the motivations for using additional heating in tokamaks or other machines are discussed. Next we sketch the principles of heating by injection of fast neutrals - or Neutral Beam Injection (NBI). The principle of the injector is briefly outlined. Positive and negative ion based concepts are discussed. The remainder of the lecture focuses on the processes by which the beam transfers energy to the plasma: the ionisation and slowing-down processes. Next, I make a review of the different heating schemes based on the transfer of electromagnetic energy to the plasma. The different wave heating frequency ranges are listed and the propagation and damping peculiarities are sketched in each domain. Heating in the Alfven and lower hybrid wave domains are described in some more details. 21 refs., 9 figs., 1 tab

  3. Susceptibility of ectomycorrhizal fungi to soil heating.

    Science.gov (United States)

    Kipfer, Tabea; Egli, Simon; Ghazoul, Jaboury; Moser, Barbara; Wohlgemuth, Thomas

    2010-01-01

    Ectomycorrhizal (EcM) fungi are an important biotic factor for successful tree recruitment because they enhance plant growth and alleviate drought stress of their hosts. Thus, EcM propagules are expected to be a key factor for forest regeneration after major disturbance events such as stand-replacing forest fires. Yet the susceptibility of soil-borne EcM fungi to heat is unclear. In this study, we investigated the heat tolerance of EcM fungi of Scots pine (Pinus sylvestris L., Pinaceae). Soil samples of three soil depths were heated to the temperature of 45, 60 and 70 °C, respectively, and surviving EcM fungi were assessed by a bioassay using Scots pine as an experimental host plant. EcM species were identified by a combination of morphotyping and sequencing of the ITS region. We found that mean number of species per sample was reduced by the 60 and 70 °C treatment, but not by the 45 °C treatment. Species composition changed due to heat. While some EcM fungi species did not survive heating, the majority of species was also found in the heated samples. The most frequent species in the heat treatment were Rhizopogon roseolus, Cenococcum geophilum and several unidentified species. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. Influence of Total Knee Arthroplasty on Gait Mechanics of the Replaced and Non-Replaced Limb During Stair Negotiation.

    Science.gov (United States)

    Standifird, Tyler W; Saxton, Arnold M; Coe, Dawn P; Cates, Harold E; Reinbolt, Jeffrey A; Zhang, Songning

    2016-01-01

    This study compared biomechanics during stair ascent in replaced and non-replaced limbs of total knee arthroplasty (TKA) patients with control limbs of healthy participants. Thirteen TKA patients and fifteen controls performed stair ascent. Replaced and non-replaced knees of TKA patients were less flexed at contact compared to controls. The loading response peak knee extension moment was greater in control and non-replaced knees compared with replaced. The push-off peak knee abduction moment was elevated in replaced limbs compared to controls. Loading and push-off peak hip abduction moments were greater in replaced limbs compared to controls. The push-off peak hip abduction moment was greater in non-replaced limbs compared to controls. Future rehabilitation protocols should consider the replaced knee and also the non-replaced knee and surrounding joints. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. ICRF heating analysis on ASDEX plasmas

    International Nuclear Information System (INIS)

    Itoh, Sanae; Itoh, Kimitaka; Fukuyama, Atsushi; Morishita, Takayuki; Steinmetz, K.; Noterdaeme, J.-M.

    1988-01-01

    ICRF (ion cyclotron range of frequencies) waves heating in an ASDEX tokamak are analyzed. The excitation, propagation and absorption are studied by using a global wave code. This analysis is combined with a Fokker-Planck code. The waveform in the plasma, the loading resistance and the reactance of the antenna are calculated for both the minority ion heating and the second harmonic resonance heating. Attention is given to the change of the antenna loading associated with the L/H transition. Optimum conditions for the loading are discussed. In the minority heating case, the tail generation and thermalization are analyzed. Spatial profiles of the tail-ion temperature and the power transferred to the bulk electrons and ions are obtained. Central as well as off-central heating cases are investigated. The effect of the reactive electric field is discussed in connection with rf losses and impurity production. (author)

  6. Analysis and resolution of service water system heat exchanger tube failures at Clinton Power Station

    International Nuclear Information System (INIS)

    Bhayana, G.K.

    1992-01-01

    Microbiologically Influenced (or Induced) Corrosion (MIC) is generally prominent in a hospitable open loop environment with warmer temperatures and low flow or stagnant flow conditions. It is further enhanced by lack of chemical treatment of the cooling medium. Microbiologically induced corrosion is initiated by a metabolic process of the mocroorganisms. The influenced corrosion occurs when the growth of microorganisms create an environment for corrosion to exist by forming an oxygen-barrier or by producing metabolic by-products that attack metal surfaces. heat exchanger tubes, constructed of 90-10 Copper Nickel, located in two emergency Diesel Generators had to be replaced twice in less than two years. lack of effective chemical treatment was determined to be a contributing factor in both of the failures. The first failure was attributed to microbiologically induced corrosion and the second failure to a combination of microbiologically induced and influenced corrosion. This paper discusses the CPS heat exchanger tube failure analysis, the development and implementation of the MIC mitigation plan, various observations and the conclusions rendered

  7. Homotopy Perturbation Method for Thin Film Flow and Heat Transfer over an Unsteady Stretching Sheet with Internal Heating and Variable Heat Flux

    Directory of Open Access Journals (Sweden)

    I-Chung Liu

    2012-01-01

    Full Text Available We have analyzed the effects of variable heat flux and internal heat generation on the flow and heat transfer in a thin film on a horizontal sheet in the presence of thermal radiation. Similarity transformations are used to transform the governing equations to a set of coupled nonlinear ordinary differential equations. The obtained differential equations are solved approximately by the homotopy perturbation method (HPM. The effects of various parameters governing the flow and heat transfer in this study are discussed and presented graphically. Comparison of numerical results is made with the earlier published results under limiting cases.

  8. Heating and cooling processes in disks*

    Directory of Open Access Journals (Sweden)

    Woitke Peter

    2015-01-01

    Full Text Available This chapter summarises current theoretical concepts and methods to determine the gas temperature structure in protoplanetary disks by balancing all relevant heating and cooling rates. The processes considered are non-LTE line heating/cooling based on the escape probability method, photo-ionisation heating and recombination cooling, free-free heating/cooling, dust thermal accommodation and high-energy heating processes such as X-ray and cosmic ray heating, dust photoelectric and PAH heating, a number of particular follow-up heating processes starting with the UV excitation of H2, and the release of binding energy in exothermal reactions. The resulting thermal structure of protoplanetary disks is described and discussed.

  9. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Lefrois, R. T.; Mathur, A. K.

    1980-01-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  10. Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings

    International Nuclear Information System (INIS)

    Åberg, M.; Henning, D.

    2011-01-01

    The development towards more energy efficient buildings, as well as the expansion of district heating (DH) networks, is generally considered to reduce environmental impact. But the combined effect of these two progressions is more controversial. A reduced heat demand (HD) due to higher energy efficiency in buildings might hamper co-production of electricity and DH. In Sweden, co-produced electricity is normally considered to displace electricity from less efficient European condensing power plants. In this study, a potential HD reduction due to energy efficiency measures in the existing building stock in the Swedish city Linköping is calculated. The impact of HD reduction on heat and electricity production in the Linköping DH system is investigated by using the energy system optimisation model MODEST. Energy efficiency measures in buildings reduce seasonal HD variations. Model results show that HD reductions primarily decrease heat-only production. The electricity-to-heat output ratio for the system is increased for HD reductions up to 30%. Local and global CO 2 emissions are reduced. If co-produced electricity replaces electricity from coal-fired condensing power plants, a 20% HD reduction is optimal for decreasing global CO 2 emissions in the analysed DH system. - Highlights: ► A MODEST optimisation model of the Linköping district heating system is used. ► The impact of heat demand reduction on heat and electricity production is examined. ► Model results show that heat demand reductions decrease heat-only production. ► Local and global CO 2 emissions are reduced. ► The system electricity-to-heat output increases for reduced heat demand up to 30%.

  11. Hip Replacement: MedlinePlus Health Topic

    Science.gov (United States)

    ... invasive hip replacement (Medical Encyclopedia) Also in Spanish Topic Image MedlinePlus Email Updates Get Hip Replacement updates ... replacement - precautions Minimally invasive hip replacement Related Health Topics Hip Injuries and Disorders National Institutes of Health ...

  12. Feedwater heater performance evaluation using the heat exchanger workstation

    International Nuclear Information System (INIS)

    Ranganathan, K.M.; Singh, G.P.; Tsou, J.L.

    1995-01-01

    A Heat Exchanger Workstation (HEW) has been developed to monitor the condition of heat exchanging equipment power plants. HEW enables engineers to analyze thermal performance and failure events for power plant feedwater heaters. The software provides tools for heat balance calculation and performance analysis. It also contains an expert system that enables performance enhancement. The Operation and Maintenance (O ampersand M) reference module on CD-ROM for HEW will be available by the end of 1995. Future developments of HEW would result in Condenser Expert System (CONES) and Balance of Plant Expert System (BOPES). HEW consists of five tightly integrated applications: A Database system for heat exchanger data storage, a Diagrammer system for creating plant heat exchanger schematics and data display, a Performance Analyst system for analyzing and predicting heat exchanger performance, a Performance Advisor expert system for expertise on improving heat exchanger performance and a Water Calculator system for computing properties of steam and water. In this paper an analysis of a feedwater heater which has been off-line is used to demonstrate how HEW can analyze the performance of the feedwater heater train and provide an economic justification for either replacing or repairing the feedwater heater

  13. Heating patterns during cancer heat therapy as a function of blood flow

    International Nuclear Information System (INIS)

    Mendecki, J.; Friedenthal, E.; Botstein, C.; Sterzer, F.; Paglione, R.W.

    1984-01-01

    Heating patterns as a function of regional blood flow were evaluated in healthy tissues with different vascular characteristics as well as in a variety of tumors submitted to microwave and RF-induced hyperthermia. Generally, faster heating and slower cooling was demonstrated for tumors. Definite correlation was found between the power needed to heat given tissue volume to a specific temperature and the ability of this tissue to dissipate heat via vascular flow. The measurements show that during the early phase of heating of tumors temperature rises slowly up to about 40 0 C. indicating good heat exchanges but that at this level rapid increase of temperature occurs for relatively small increments of power input. It is suggested that blood flow in malignant tissue remains competent and responsive to low grade heating, but that at higher temperature levels, in contrast to normal tissue, tumor blood flow rapidly decreases indicating compromised vascular system. Implication for treatment protocols are discussed

  14. Aorto-right atrial fistula after ascending aortic replacement or aortic value replacement

    International Nuclear Information System (INIS)

    Zhi Aihua; Dai Ruping; Jiang Shiliang; Lu Bin

    2012-01-01

    Objective: To evaluate the CT features of aorto-right atrial fistula after aortic valve replacement (AVR) or ascending aortic replacement. Methods: Eighty-seven patients with aortic-right atrial fistula underwent CT after operation. The CT features were retrospectively analyzed. Fistula was measured according to maximum width of the shunt. Results: Aorto-right atrial fistula was detected in 87 patients after aortic valve replacement or ascending aortic replacement by CT scan. Among them, 25 patients were diagnosed as mild aorto-right atrial fistula, 47 patients as moderate, and 15 patients as severe. Thirty-seven patients underwent follow-up CT.Among them, 10 patients with mild to moderate aorto-right atrial fistula were considered to have complete regression, 8 patients with mild aorto-right atrial fistula considered to have incomplete regression, 14 patients with mild to moderate aorto-right atrial fistula considered to have stable condition, and 5 patients with moderate aorto-right atrial fistula considered to have progression at the 3-month follow-up. Conclusion: CT is a useful tool for defining aorto-right atrial fistula after AVR or ascending aortic replacement and for evaluating it in follow-up. (authors)

  15. District heating/cogeneration application studies for the Minneapolis-St Paul area. Executive summary; overall feasibility and economic viability for a district heating/new cogeneration system in Minneapolis-St. Paul

    Energy Technology Data Exchange (ETDEWEB)

    Margen, P.; Larsson, K.; Cronholm, L.A.; Marklund, J.E.

    1979-08-01

    A study was undertaken to determine the feasibility of introducing a large-scale, hot-water, district-heating system for the Minneapolis-St. Paul area. The analysis was based on modern European hot-water district-heating concepts in which cogeneration power plants supply the base-load thermal energy. Heat would be supplied from converted turbines of existing coal-fired power plants in Minneapolis and St. Paul. Toward the end of the 20-year development period, one or two new cogeneration units would be required. Thus, the district-heating system could use low-grade heat from either coal-fired or nuclear cogeneration power stations to replace the space-heating fuels currently used - natural gas and distillate oil. The following conclusions can be drawn: the concept is technically feasible, it has great value for fuel conservation, and with appropriate financing the system is economically viable.

  16. Transdermal testosterone replacement therapy in men

    Directory of Open Access Journals (Sweden)

    Ullah MI

    2014-01-01

    Full Text Available M Iftekhar Ullah,1 Daniel M Riche,1,2 Christian A Koch1,31Department of Medicine, University of Mississippi Medical Center, 2Department of Pharmacy Practice, The University of Mississippi, 3GV (Sonny Montgomery VA Medical Center, Jackson, MS, USAAbstract: Androgen deficiency syndrome in men is a frequently diagnosed condition associated with clinical symptoms including fatigue, decreased libido, erectile dysfunction, and metabolic syndrome. Serum testosterone concentrations decline steadily with age. The prevalence of androgen deficiency syndrome in men varies depending on the age group, known and unknown comorbidities, and the respective study group. Reported prevalence rates may be underestimated, as not every man with symptoms of androgen deficiency seeks treatment. Additionally, men reporting symptoms of androgen deficiency may not be correctly diagnosed due to the vagueness of the symptom quality. The treatment of androgen deficiency syndrome or male hypogonadism may sometimes be difficult due to various reasons. There is no consensus as to when to start treating a respective man or with regards to the best treatment option for an individual patient. There is also lack of familiarity with treatment options among general practitioners. The formulations currently available on the market are generally expensive and dose adjustment protocols for each differ. All these factors add to the complexity of testosterone replacement therapy. In this article we will discuss the general indications of transdermal testosterone replacement therapy, available formulations, dosage, application sites, and recommended titration schedule.Keywords: hypogonadism, transdermal, testosterone, sexual function, testosterone replacement therapy, estradiol

  17. Effects of Ar or O2 Gas Bubbling for Shape, Size, and Composition Changes in Silver-Gold Alloy Nanoparticles Prepared from Galvanic Replacement Reaction

    Directory of Open Access Journals (Sweden)

    Md. Jahangir Alam

    2013-01-01

    Full Text Available The galvanic replacement reaction between silver nanostructures and AuCl4- solution has recently been demonstrated as a versatile method for generating metal nanostructures with hollow interiors. Here we describe the results of a systematic study detailing the morphological, structural, compositional, and spectral changes involved in such a heterogeneous reaction on the nanoscale. Effects of Ar or O2 gas bubbling for the formation of Ag-Au alloy nanoparticles by the galvanic replacement between spherical Ag nanoparticles and AuCl4- especially were studied in ethylene glycol (EG at 150°C. The shape, size, and composition changes occur rapidly under O2 bubbling in comparison with those under Ar bubbling. The major product after 60 min heating under Ar gas bubbling was perforated Ag-Au alloy particles formed by the replacement reaction and the minor product was ribbon-type particles produced from splitting off some perforated particles. On the other hand, the major product after 60 min heating under O2 gas bubbling was ribbon-type particles. In addition, small spherical Ag particles are produced. They are formed through rereduction of Ag+ ions released from the replacement reaction and oxidative etching of Ag nanoparticles by O2/Cl− in EG.

  18. Ground-Coupling with Water Source Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, S

    0000-12-30

    Ground-coupled heat pumps (GCHPs) have been receiving increasing attention in recent years. In areas where the technology has been properly applied, they are the system of choice because of their reliability, high level of comfort, low demand, and low operating costs. Initially these systems were most popular in rural, residential applications where heating requirements were the primary consideration. However, recent improvements in heat pumps units and installation procedures have expanded the market to urban and commercial applications. This paper discusses some of the current activity in the commercial sector. The basic system and nomenclature are discussed. Several variations for commercial buildings are presented along with examples of systems in operation. Several advantages and disadvantages are listed. Operating and installation costs are briefly discussed. Finally, the GCHP is presented as an alternative that is able to counter much of the criticism leveled by the natural gas industry toward conventional heat pumps.

  19. Ground-Coupling with Water Source Heat Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, S.

    0001-01-01

    Ground-coupled heat pumps (GCHPs) have been receiving increasing attention in recent years. In areas where the technology has been properly applied, they are the system of choice because of their reliability, high level of comfort, low demand, and low operating costs. Initially these systems were most popular in rural, residential applications where heating requirements were the primary consideration. However, recent improvements in heat pumps units and installation procedures have expanded the market to urban and commercial applications. This paper discusses some of the current activity in the commercial sector. The basic system and nomenclature are discussed. Several variations for commercial buildings are presented along with examples of systems in operation. Several advantages and disadvantages are listed. Operating and installation costs are briefly discussed. Finally, the GCHP is presented as an alternative that is able to counter much of the criticism leveled by the natural gas industry toward conventional heat pumps.

  20. Techno-economic analysis of a local district heating plant under fuel flexibility and performance

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse

    2017-01-01

    are calculated using the same procedure according to the use of various local renewable fuels known as “biogas option,” “solar option,” “heat pump option,” and “imported heat option.” A comparison has been made between the reference option and other options. The greatest reduction in heat cost is obtained from......, an investigation has been made to reduce the use of fossil fuels for district heating system and make use of the local renewable resources (biogas, solar, and heat pump) for district heating purposes. In this article, the techno-economic assessment is achieved through the development of a suite of models...... the biogas option by replacing a new engine, where 66 % of the current fuel is substituted with biogas....

  1. Study on minimum heat-flux point during boiling heat transfer on horizontal plates

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1985-01-01

    The characteristics of boiling heat transfer are usually shown by the boiling curve of N-shape having the maximum and minimum points. As for the limiting heat flux point, that is, the maximum point, there have been many reports so far, as it is related to the physical burn of heat flux-controlling type heating surfaces. But though the minimum heat flux point is related to the quench point as the problems in steel heat treatment, the core safety of LWRs, the operational stability of superconducting magnets, the start-up characteristics of low temperature machinery, the condition of vapor explosion occurrence and so on, the systematic information has been limited. In this study, the effects of transient property and the heat conductivity of heating surfaces on the minimum heat flux condition in the pool boiling on horizontal planes were experimentally examined by using liquid nitrogen. The experimental apparatuses for steady boiling, for unsteady boiling with a copper heating surface, and for unsteady boiling with a heating surface other than copper were employed. The boiling curves obtained with these apparatuses and the minimum heat flux point condition are discussed. (Kako, I.)

  2. Environmental Assessment for the Bison School District Heating Plant Project, Institutional Conservation Program (ICP)

    International Nuclear Information System (INIS)

    1995-01-01

    This environmental assessment analyzes the environmental impacts of replacing the Bison, South Dakota School District's elementary school and high school heating system consisting of oil-fired boilers and supporting control system and piping

  3. 3-D modeling and motion simulation of fuel rod-replacing equipment

    International Nuclear Information System (INIS)

    Ding Jie; Zhu Libing

    2010-01-01

    In this paper, the process of 3-D modeling and motion simulation of fuel rod-replacing equipment using SolidWorks is described, and the application of SolidWorks in manufacturing and design improvement is discussed. Complexity of the manufacturing is reduced and reliability of the design is improved. (authors)

  4. Thermal resistance of a convectively cooled plate with applied heat flux and variable internal heat generation

    International Nuclear Information System (INIS)

    Venkataraman, N.S.; Cardoso, H.P.; Oliveira Filho, O.B. de

    1981-01-01

    The conductive heat transfer in a rectangular plate with nonuniform internal heat generation, with one end convectively cooled and a part of the opposite end subjected to external heat flux is considered. The remaining part of this end as well as the other two sides are thermally insulated. The governing differential equation is solved by a finite difference scheme. The variation of the thermal resistance with Biot modulus, the plate geometry, the internal heat generation parameter and the type of profile of internal heat generation is discussed. (author) [pt

  5. Minimally invasive aortic valve replacement

    DEFF Research Database (Denmark)

    Foghsgaard, Signe; Schmidt, Thomas Andersen; Kjaergard, Henrik K

    2009-01-01

    In this descriptive prospective study, we evaluate the outcomes of surgery in 98 patients who were scheduled to undergo minimally invasive aortic valve replacement. These patients were compared with a group of 50 patients who underwent scheduled aortic valve replacement through a full sternotomy...... operations were completed as mini-sternotomies, 4 died later of noncardiac causes. The aortic cross-clamp and perfusion times were significantly different across all groups (P replacement...... is an excellent operation in selected patients, but its true advantages over conventional aortic valve replacement (other than a smaller scar) await evaluation by means of randomized clinical trial. The "extended mini-aortic valve replacement" operation, on the other hand, is a risky procedure that should...

  6. Heat recovery from a cement plant with a Marnoch Heat Engine

    International Nuclear Information System (INIS)

    Saneipoor, P.; Naterer, G.F.; Dincer, I.

    2011-01-01

    This paper examines the performance of a new Marnoch Heat Engine (MHE) that recovers waste heat from within a typical cement plant. Two MHE units with compressed air as the working fluid are installed to recover the waste heat. The first unit on the main stack has four pairs of shell and tube heat exchangers. The second heat recovery unit is installed on a clinker quenching system. This unit operates with three pairs of shell and tube heat exchangers. The recovered heat is converted to electricity through the MHE system and used internally within the cement plant. A predictive model and results are presented and discussed. The results show the promising performance of the MHE's capabilities for efficient generation of electricity from waste heat sources in a cement plant. The new heat recovery system increases the efficiency of the cement plant and lowers the CO 2 emissions from the clinker production process. Moreover, it reduces the amount of waste heat to the environment and lowers the temperature of the exhaust gases. - Highlights: → This paper examines the thermodynamic performance of a new Marnoch Heat Engine (MHE) that recovers waste heat to produce electricity and improve the operating efficiency of a typical cement plant. → The first unit of the MHE on the main stack has four pairs of shell and tube heat exchangers and the second heat recovery unit is installed on a clinker quenching system. → Both predicted and experimental results demonstrate the promising performance of the MHE's capabilities for efficient generation of electricity from waste heat sources in a cement plant.

  7. Transdermal testosterone replacement therapy in men

    Science.gov (United States)

    Ullah, M Iftekhar; Riche, Daniel M; Koch, Christian A

    2014-01-01

    Androgen deficiency syndrome in men is a frequently diagnosed condition associated with clinical symptoms including fatigue, decreased libido, erectile dysfunction, and metabolic syndrome. Serum testosterone concentrations decline steadily with age. The prevalence of androgen deficiency syndrome in men varies depending on the age group, known and unknown comorbidities, and the respective study group. Reported prevalence rates may be underestimated, as not every man with symptoms of androgen deficiency seeks treatment. Additionally, men reporting symptoms of androgen deficiency may not be correctly diagnosed due to the vagueness of the symptom quality. The treatment of androgen deficiency syndrome or male hypogonadism may sometimes be difficult due to various reasons. There is no consensus as to when to start treating a respective man or with regards to the best treatment option for an individual patient. There is also lack of familiarity with treatment options among general practitioners. The formulations currently available on the market are generally expensive and dose adjustment protocols for each differ. All these factors add to the complexity of testosterone replacement therapy. In this article we will discuss the general indications of transdermal testosterone replacement therapy, available formulations, dosage, application sites, and recommended titration schedule. PMID:24470750

  8. Solar-assisted heat pump system for cost-effective space heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W; Kush, E A; Metz, P D

    1978-03-01

    The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

  9. An extended optimal replacement model for a deteriorating system with inspections

    International Nuclear Information System (INIS)

    Sheu, Shey-Huei; Tsai, Hsin-Nan; Wang, Fu-Kwun; Zhang, Zhe George

    2015-01-01

    This study considers a generalized replacement model for a deteriorating system in which failures can only be detected by inspection. The system is assumed to have two types of failures and is replaced at the occurrence of the Nth type I failure (minor failure), or the first type II failure (catastrophic failure), or at working age T, whichever occurs first. The probability of a type I or type II failure depends on the number of type I failures since the previous replacement. Such a system can be repaired after a type I failure, but is deteriorating stochastically. That is, the operating intervals are decreasing stochastically, whereas the durations of the repairs are increasing stochastically. Based on these assumptions, we determine the expected net cost rate and discuss various special cases of the model. Finally, we develop a computational algorithm for finding the optimal policy and present a numerical example to show the properties of the proposed model. - Highlight: • Replacement policy for system subject two types of failures or the system's working age. • Failures detected by inspections. • Decreasing operating times and increasing repair times. • Derive a cost function. • Determine the cost minimization policy

  10. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor

    Science.gov (United States)

    Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.

    2013-01-01

    This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

  11. Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks

    International Nuclear Information System (INIS)

    Mahmoud, Saad; Tang, Aaron; Toh, Chin; AL-Dadah, Raya; Soo, Sein Leung

    2013-01-01

    Highlights: • Inclusion of PCM can reduce heating rate and peak temperatures of the heat sinks. • Increasing the number of fins can enhance heat transfer to PCM. • Honeycomb inserts can replace machined fin structures in PCM based heat sinks. • PCMs with lower melting points produced lower heat sink operating temperatures. - Abstract: Efficient thermal management in portable electronic devices is necessary to ensure sufficiently low operating temperatures for reliability, increased installed functions, and user comfort. Using Phase Change Materials (PCMs) based heat sinks offers potential in these applications. However, PCMs generally suffer from low thermal conductivities; therefore it is important to enhance their thermal conductivity and improve cooling performance. This study presents experimental investigation of the effects of PCM material, heat sink designs and power levels on PCM based heat sinks performance for cooling electronic devices. Six PCMs were used including paraffin wax (as reference material), two materials based on mixture of inorganic hydrated salts, two materials based on mixture of organic substances and one material based on a mixture of both organic and inorganic materials. Also, six heat sink designs were tested: one with single cavity, two with parallel fin arrangement, two with cross fin arrangement, and one with honeycomb insert inside the single cavity. Heat sinks thermal performance was investigated using paraffin wax type PCM with power inputs ranging from 3 W to 5 W. Results showed that the inclusion of PCM can reduce heating rates and peak temperatures of heat sinks with increasing the number of fins can enhance heat distribution to PCM leading to lower heat sinks peak temperatures. Also, the use of honeycomb inserts to replace machined finned structures has shown comparable thermal performance. Regarding the PCM type, the material with the lowest melting temperature has shown the best performance in terms of lowest

  12. Thermal insulation of high confinement mode with dominant electron heating in comparison to dominant ion heating and corresponding changes of torque input

    International Nuclear Information System (INIS)

    Sommer, Fabian H.D.

    2013-01-01

    The ratio of heating power going to electrons and ions will undergo a transition from mixed electron and ion heating as it is in current fusion experiments to dominant electron heating in future experiments and reactors. In order to make valid projections towards future devices the connected changes in plasma response and performance are important to be study and understand: Do electron heated plasmas behave systematically different or is the change of heated species fully compensated by heat exchange from electrons to ions? How does particle transport influence the density profile? Is the energy confinement and the H-mode pedestal reduced with reduced torque input? Does the turbulent transport regime change fundamentally? The unique capabilities of the ECRH system at ASDEX Upgrade enable this change of heated species by replacing NBI with ECRH power and thereby offer the possibility to discuss these and other questions. For low heating powers corresponding to high collisionalities the transition from mixed electron and ion heating to pure electron heating showed next to no degradation of the global plasma parameters and no change of the edge values of kinetic profiles. The electron density shows an increased central peaking with increased ECRH power. The central electron temperature stays constant while the ion temperature decreases slightly. The toroidal rotation decreases with reduced NBI fraction, but does not influence the profile stability. The power balance analysis shows a large energy transfer from electrons to ions, so that the electron heat flux approaches zero at the edge whereas the ion heat flux is independent of heating mix. The ion heat diffusivity exceeds the electron one. For high power, low collisionality discharges global plasma parameters show a slight degradation with increasing electron heating. The density profile shows a strong peaking which remains unchanged when modifying the heating mix. The electron temperature profile is unchanged

  13. Solar heating systems for heating and hot water

    Energy Technology Data Exchange (ETDEWEB)

    Schnaith, G; Dittrich, K

    1980-07-01

    Deutsche Bundesbahn has shown an interest in solar heating systems, too. The items discussed include the useful radiation energy, design features of collectors, heat carrier media, safeguards and profitability studies. The system installed by Deutsche Bundesbahn in the social services building of the Munich-Laim railway workshop is described. In conclusion, the test results of the first few months of service are given. In order to obtain unambiguous results, it appears indispensable to arrange for an additional total trial period of not less than two years and to conduct tests also on further systems presently under construction.

  14. Partial knee replacement - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100225.htm Partial knee replacement - series—Normal anatomy To use the sharing ... A.M. Editorial team. Related MedlinePlus Health Topics Knee Replacement A.D.A.M., Inc. is accredited ...

  15. Solar heating and cooling of buildings

    Science.gov (United States)

    Bourke, R. D.; Davis, E. S.

    1975-01-01

    Solar energy has been used for space heating and water heating for many years. A less common application, although technically feasible, is solar cooling. This paper describes the techniques employed in the heating and cooling of buildings, and in water heating. The potential for solar energy to displace conventional energy sources is discussed. Water heating for new apartments appears to have some features which could make it a place to begin the resurgence of solar energy applications in the United States. A project to investigate apartment solar water heating, currently in the pilot plant construction phase, is described.

  16. Transient heat transfer characteristics of liquid helium

    International Nuclear Information System (INIS)

    Tsukamoto, Osami

    1976-01-01

    The transient heat transfer characteristics of liquid helium are investigated. The critical burnout heat fluxes for pulsive heating are measured, and empirical relations between the critical burnout heat flux and the length of the heat pulse are given. The burnout is detected by observing the super-to-normal transition of the temperature sensor which is a thin lead film prepared on the heated surface by vacuum evaporation. The mechanism of boiling heat transfer for pulsive heating is discussed, and theoretical relations between the critical burnout heat flux and the length of the heat pulse are derived. The empirical data satisfy the theoretical relations fairly well. (auth.)

  17. 24 CFR 891.405 - Replacement reserve.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Replacement reserve. 891.405....405 Replacement reserve. (a) Establishment of reserve. The Owner shall establish and maintain a replacement reserve to aid in funding extraordinary maintenance and repair and replacement of capital items...

  18. Electronic specific heats in metal--hydrogen systems

    International Nuclear Information System (INIS)

    Flotow, H.E.

    1979-01-01

    The electronic specific heats of metals and metal--hydrogen systems can in many cases be evaluated from the measured specific heats at constant pressure, C/sub p/, in the temperature range 1 to 10 K. For the simplest case, C/sub p/ = γT + βT 3 , where γT represents the specific heat contribution associated with the conduction electrons, and βT 3 represents lattice specific heat contribution. The electronic specific heat coefficient, γ, is important because it is proportional to electron density of states at the Fermi surface. A short description of a low temperature calorimetric cryostat employing a 3 He/ 4 He dilution refrigeration is given. Various considerations and complications encountered in the evaluation of γ from specific heat data are discussed. Finally, the experimental values of γ for the V--Cr--H system and for the Lu--H system are summarized and the variations of γ as function of alloy composition are discussed

  19. Replacement of unsteady heat transfer coefficient by equivalent steady-state one when calculating temperature oscillations in a thermal layer

    Science.gov (United States)

    Supel'nyak, M. I.

    2017-11-01

    Features of calculation of temperature oscillations which are damped in a surface layer of a solid and which are having a small range in comparison with range of temperature of the fluid medium surrounding the solid at heat transfer coefficient changing in time under the periodic law are considered. For the specified case the equations for approximate definition of constant and oscillating components of temperature field of a solid are received. The possibility of use of appropriately chosen steady-state coefficient when calculating the temperature oscillations instead of unsteady heat-transfer coefficient is investigated. Dependence for definition of such equivalent constant heat-transfer coefficient is determined. With its help the research of temperature oscillations of solids with canonical form for some specific conditions of heat transfer is undertaken. Comparison of the obtained data with results of exact solutions of a problem of heat conductivity by which the limits to applicability of the offered approach are defined is carried out.

  20. 24 CFR 880.602 - Replacement reserve.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Replacement reserve. 880.602... Replacement reserve. (a) A replacement reserve must be established and maintained in an interest-bearing account to aid in funding extraordinary maintenance and repair and replacement of capital items. (1) Part...

  1. The thermodynamic evolution of the hurricane boundary layer during eyewall replacement cycles

    Science.gov (United States)

    Williams, Gabriel J.

    2017-12-01

    Eyewall replacement cycles (ERCs) are frequently observed during the lifecycle of mature tropical cyclones. Although the kinematic structure and intensity changes during an ERC have been well-documented, comparatively little research has been done to examine the evolution of the tropical cyclone boundary layer (TCBL) during an ERC. This study will examine how the inner core thermal structure of the TCBL is affected by the presence of multiple concentric eyewalls using a high-resolution moist, hydrostatic, multilayer diagnostic boundary layer model. Within the concentric eyewalls above the cloud base, latent heat release and vertical advection (due to the eyewall updrafts) dominate the heat and moisture budgets, whereas vertical advection (due to subsidence) and vertical diffusion dominate the heat and moisture budgets for the moat region. Furthermore, it is shown that the development of a moat region within the TCBL depends sensitively on the moat width in the overlying atmosphere and the relative strength of the gradient wind field in the overlying atmosphere. These results further indicate that the TCBL contributes to outer eyewall formation through a positive feedback process between the vorticity in the nascent outer eyewall, boundary layer convergence, and boundary layer moist convection.

  2. From electron microscopy to X-ray crystallography: molecular-replacement case studies

    International Nuclear Information System (INIS)

    Xiong, Yong

    2008-01-01

    Test studies have been conducted on five crystal structures of large molecular assemblies, in which EM maps are used as models for structure solution by molecular replacement using various standard MR packages such as AMoRe, MOLREP and Phaser. Multi-component molecular complexes are increasingly being tackled by structural biology, bringing X-ray crystallography into the purview of electron-microscopy (EM) studies. X-ray crystallography can utilize a low-resolution EM map for structure determination followed by phase extension to high resolution. Test studies have been conducted on five crystal structures of large molecular assemblies, in which EM maps are used as models for structure solution by molecular replacement (MR) using various standard MR packages such as AMoRe, MOLREP and Phaser. The results demonstrate that EM maps are viable models for molecular replacement. Possible difficulties in data analysis, such as the effects of the EM magnification error, and the effect of MR positional/rotational errors on phase extension are discussed

  3. The heating boiler is never to blame; Der Kessel ist immer unschuldig

    Energy Technology Data Exchange (ETDEWEB)

    Stadelmann, M.

    2008-07-01

    In this article, certain prejudices are examined that are often encountered when the performance of so-called 'condensing' gas-fired heating boilers is discussed. The boundary conditions necessary for the condensation of the water vapour in the heating boiler's flue gasses are examined. The hydraulics and the flow and return temperatures of heating systems are discussed - this with reference to obtaining sufficiently low return temperatures for the condensation to occur. The adjustment of heating-water flow in the heating system in general is discussed. Such adjustments in the hydraulics of heating systems can help save a lot of heating energy and also assure that the heating system's circulation pump does not consume too much power. Professionals are quoted as saying that the majority of heating systems have never been properly adjusted hydraulically.

  4. 24 CFR 891.855 - Replacement reserves.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Replacement reserves. 891.855... § 891.855 Replacement reserves. (a) The mixed-finance owner shall establish and maintain a replacement... the funds will be used to pay for capital replacement costs for the Section 202 or 811 supportive...

  5. Laser Processed Condensing Heat Exchanger Technology Development

    Science.gov (United States)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  6. Innovative heat exchangers

    CERN Document Server

    Scholl, Stephan

    2018-01-01

    This accessible book presents unconventional technologies in heat exchanger design that have the capacity to provide solutions to major concerns within the process and power-generating industries. Demonstrating the advantages and limits of these innovative heat exchangers, it also discusses micro- and nanostructure surfaces and micro-scale equipment, and introduces pillow-plate, helical and expanded metal baffle concepts. It offers step-by-step worked examples, which provide instructions for developing an initial configuration and are supported by clear, detailed drawings and pictures. Various types of heat exchangers are available, and they are widely used in all fields of industry for cooling or heating purposes, including in combustion engines. The market in 2012 was estimated to be U$ 42.7 billion and the global demand for heat exchangers is experiencing an annual growth of about 7.8 %. The market value is expected to reach U$ 57.9 billion in 2016, and approach U$ 78.16 billion in 2020. Providing a valua...

  7. 25 CFR 700.53 - Dwelling, replacement.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Dwelling, replacement. 700.53 Section 700.53 Indians THE... Policies and Instructions Definitions § 700.53 Dwelling, replacement. The term replacement dwelling means a dwelling selected by the head of a household as a replacement dwelling that meets the criteria of this...

  8. Fluid replacement modulates oxidative stress- but not nitric oxide-mediated cutaneous vasodilation and sweating during prolonged exercise in the heat.

    Science.gov (United States)

    McNeely, Brendan D; Meade, Robert D; Fujii, Naoto; Seely, Andrew J E; Sigal, Ronald J; Kenny, Glen P

    2017-12-01

    The roles of nitric oxide synthase (NOS), reactive oxygen species (ROS), and angiotensin II type 1 receptor (AT 1 R) activation in regulating cutaneous vasodilation and sweating during prolonged (≥60 min) exercise are currently unclear. Moreover, it remains to be determined whether fluid replacement (FR) modulates the above thermoeffector responses. To investigate, 11 young men completed 90 min of continuous moderate intensity (46% V̇o 2peak ) cycling performed at a fixed rate of metabolic heat production of 600 W (No FR condition). On a separate day, participants completed a second session of the same protocol while receiving FR to offset sweat losses (FR condition). Cutaneous vascular conductance (CVC) and local sweat rate (LSR) were measured at four intradermal microdialysis forearm sites perfused with: 1 ) lactated Ringer (Control); 2 ) 10 mM N G -nitro-l-arginine methyl ester (l-NAME, NOS inhibition); 3 ) 10 mM ascorbate (nonselective antioxidant); or 4 ) 4.34 nM losartan (AT 1 R inhibition). Relative to Control (71% CVC max at both time points), CVC with ascorbate (80% and 83% CVC max ) was elevated at 60 and 90 min of exercise during FR (both P 0.31). In both conditions, CVC was reduced at end exercise with l-NAME (60% CVC max ; both P 0.19). LSR did not differ between sites in either condition (all P > 0.10). We conclude that NOS regulates cutaneous vasodilation, but not sweating, irrespective of FR, and that ROS influence cutaneous vasodilation during prolonged exercise with FR. Copyright © 2017 the American Physiological Society.

  9. Could wind replace nuclear?

    International Nuclear Information System (INIS)

    2017-01-01

    This article aims at assessing the situation produced by a total replacement of nuclear energy by wind energy, while facing consumption demand at any moment, notably in December. The authors indicate the evolution of the French energy mix during December 2016, and the evolution of the rate between wind energy production and the sum of nuclear and wind energy production during the same month, and then give briefly some elements regarding necessary investments in wind energy to wholly replace nuclear energy. According to them, such a replacement would be ruinous

  10. Heat pumps: planning, optimisation, operation and maintenance; Waermepumpen. Planung - Optimierung - Betrieb - Wartung

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, P. [Kunz-Beratungen, Dietlikon (Switzerland); Afjei, T. [Fachhochschule Nordwestschweiz, Institut fuer Energie am Bau, Muttenz (Switzerland); Betschart, W.; Prochaska, V. [Hochschule Luzern, Technik und Architektur, Horw (Switzerland); Hubacher, P. [Hubacher Engineering, Engelburg (Switzerland); Loehrer, R. [Scheco AG, Winterthur (Switzerland); Mueller, A. [Mueller und Pletscher AG, Winterthur (Switzerland)

    2008-01-15

    This handbook issued by the Swiss Federal Office of Energy (SFOE) in co-operation with a trade publication takes a look at the planning, optimisation, operation and maintenance of heat pumps. First of all, the basics of heat pump technology, heat pump components and refrigerants are discussed. Then, heat sources and heat distribution are looked at, followed by chapters on the integration of heat pumps into heating systems and noise protection topics. The definition of projects, commissioning and operation of heat pump systems are then discussed. Examples of installations round off the handbook.

  11. Managing heat and immune stress in athletes with evidence-based strategies.

    Science.gov (United States)

    Pyne, David B; Guy, Joshua H; Edwards, Andrew M

    2014-09-01

    Heat and immune stress can affect athletes in a wide range of sports and environmental conditions. The classical thermoregulatory model of heat stress has been well characterized, as has a wide range of practical strategies largely centered on cooling and heat-acclimation training. In the last decade evidence has emerged of an inflammatory pathway that can also contribute to heat stress. Studies are now addressing the complex and dynamic interplay between hyperthermia, the coagulation cascade, and a systemic inflammatory response occurring after transient damage to the gastrointestinal tract. Damage to the intestinal mucosal membrane increases permeability, resulting in leakage of endotoxins into the circulation. Practical strategies that target both thermoregulatory and inflammatory causes of heat stress include precooling; short-term heat-acclimation training; nutritional countermeasures including hydration, energy replacement, and probiotic supplementation; pacing strategies during events; and postevent cooling measures. Cooperation between international, national, and local sporting organizations is required to ensure that heat-management policies and strategies are implemented effectively to promote athletes' well-being and performance.

  12. Hourly simulation of a Ground-Coupled Heat Pump system

    Science.gov (United States)

    Naldi, C.; Zanchini, E.

    2017-01-01

    In this paper, we present a MATLAB code for the hourly simulation of a whole Ground-Coupled Heat Pump (GCHP) system, based on the g-functions previously obtained by Zanchini and Lazzari. The code applies both to on-off heat pumps and to inverter-driven ones. It is employed to analyse the effects of the inverter and of the total length of the Borehole Heat Exchanger (BHE) field on the mean seasonal COP (SCOP) and on the mean seasonal EER (SEER) of a GCHP system designed for a residential house with 6 apartments in Bologna, North-Center Italy, with dominant heating loads. A BHE field with 3 in line boreholes is considered, with length of each BHE either 75 m or 105 m. The results show that the increase of the BHE length yields a SCOP enhancement of about 7%, while the SEER remains nearly unchanged. The replacement of the on-off heat pump by an inverter-driven one yields a SCOP enhancement of about 30% and a SEER enhancement of about 50%. The results demonstrate the importance of employing inverter-driven heat pumps for GCHP systems.

  13. The role of large‐scale heat pumps for short term integration of renewable energy

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Blarke, Morten; Hansen, Kenneth

    2011-01-01

    technologies is focusing on natural working fluid hydrocarbons, ammonia, and carbon dioxide. Large-scale heat pumps are crucial for integrating 50% wind power as anticipated to be installed in Denmark in 2020, along with other measures. Also in the longer term heat pumps can contribute to the minimization...... savings with increased wind power and may additionally lead to economic savings in the range of 1,500-1,700 MDKK in total in the period until 2020. Furthermore, the energy system efficiency may be increased due to large heat pumps replacing boiler production. Finally data sheets for large-scale ammonium......In this report the role of large-scale heat pumps in a future energy system with increased renewable energy is presented. The main concepts for large heat pumps in district heating systems are outlined along with the development for heat pump refrigerants. The development of future heat pump...

  14. Design of internally heat-integrated distillation column (HIDiC): Uniform heat transfer area versus uniform heat distribution

    Energy Technology Data Exchange (ETDEWEB)

    Suphanit, B. [Department of Chemical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Pracha Utit Rd., Tungkru, Bangkok 10140 (Thailand)

    2010-03-15

    The internally heat-integrated distillation column (HIDiC) is a complex column configuration which is more energy efficient than the equivalent conventional column or the distillation column with direct vapor recompression scheme (VRC). Exploiting the heat integration between two diabatic sections operating at different pressures of the HIDiC can greatly enhance the energy performance of the system. On the other hand, the design and optimization of HIDiC is more difficult than those of the conventional distillation column or the column with VRC. The former involves many design parameters, and the most critical one is the pressure ratio between both diabatic sections. However, the heat distribution along the diabatic sections is also another significant factor not yet thoroughly investigated. In this work, two typical distribution schemes, i.e. uniform heat transfer area and uniform heat distribution, are studied by applying a novel approach to solve the simulation problem in Aspen Plus 2004.1. The comparison of both distributing schemes is discussed via two widely-used case studies, namely benzene-toluene separation and propylene-propane splitter. (author)

  15. Estimating heat-to-heat variation in mechanical properties from a statistician's point of view

    International Nuclear Information System (INIS)

    Hebble, T.L.

    1976-01-01

    A statistical technique known as analysis of variance (ANOVA) is used to estimate the variance and standard deviation of differences among heats. The total variation of a collection of observations and how an ANOVA can be used to partition the total variation into its sources are discussed. Then, the ANOVA is adapted to published Japanese data indicating how to estimate heat-to-heat variation. Finally, numerical results are computed for several tensile and creep properties of Types 304 and 316 SS

  16. A state-of-the-art review on hybrid heat pipe latent heat storage systems

    International Nuclear Information System (INIS)

    Naghavi, M.S.; Ong, K.S.; Mehrali, M.; Badruddin, I.A.; Metselaar, H.S.C.

    2015-01-01

    The main advantage of latent heat thermal energy storage systems is the capability to store a large quantity of thermal energy in an isothermal process by changing phase from solid to liquid, while the most important weakness of these systems is low thermal conductivity that leads to unsuitable charging/discharging rates. Heat pipes are used in many applications – as one of the most efficient heat exchanger devices – to amplify the charging/discharging processes rate and are used to transfer heat from a source to the storage or from the storage to a sink. This review presents and critically discusses previous investigations and analysis on the incorporation of heat pipe devices into latent heat thermal energy storage with heat pipe devices. This paper categorizes different applications and configurations such as low/high temperature solar, heat exchanger and cooling systems, analytical approaches and effective parameters on the performance of hybrid HP–LHTES systems.

  17. Heat generated by dental implant drills during osteotomy-a review: heat generated by dental implant drills.

    Science.gov (United States)

    Mishra, Sunil Kumar; Chowdhary, Ramesh

    2014-06-01

    Osseointegration is the more stable situation and results in a high success rate of dental implants. Heat generation during rotary cutting is one of the important factors influencing the development of osseointegration. To assess the various factors related to implant drills responsible for heat generation during osteotomy. To identify suitable literature, an electronic search was performed using Medline and Pubmed database. Articles published in between 1960 to February 2013 were searched. The search is focused on heat generated by dental implant drills during osteotomy. Various factors related to implant drill such effect of number of blades; drill design, drill fatigue, drill speed and force applied during osteotomies which were responsible for heat generation were reviewed. Titles and abstracts were screened, and literature that fulfilled the inclusion criteria was selected for a full-text reading. The initial literature search resulted in 299 articles out of which only 70 articles fulfils the inclusion criteria and were included in this systematic review. Many factors related to implant drill responsible for heat generation were found. Successful preparation of an implant cavity with minimal damage to the surrounding bone depends on the avoidance of excessive temperature generation during surgical drilling. The relationship between heat generated and implant drilling osteotomy is multifactorial in nature and its complexity has not been fully studied. Lack of scientific knowledge regarding this issue still exists. Further studies should be conducted to determine the various factors which generate less heat while osteotomy such as ideal ratio of force and speed in vivo, exact time to replace a drill, ideal drill design, irrigation system, drill-bone contact area.

  18. Replacement of ultrasonic energy as the heat source for a greener bio diesel production: A response surface methodology

    International Nuclear Information System (INIS)

    Babak Salamatinia; Hamed Mootabadi; Subhash Bhatia; Ahmad Zuhairi Abdullah

    2010-01-01

    The use of ultrasonic energy for mixing and the subsequent conversion to heat energy in the transesterification reaction of vegetable oil is reported. Effects of 5 important variables i.e. pulse on (s), pulse off (s), reaction time (min), power (%) and oil volume (ml) at constant alcohol to palm oil molar ratio (9:1) and initial reaction temperature of 35 degree Celsius were studied. A central composite design (CCD) using response surface technology (RSM) was employed. The results indicated that the reaction time did not play much role as the system reached steady state within the first few minutes. Longer the pulse on and the lower the pulse off at 70 % of the maximum power of could bring the reaction to desired temperature for volume of up to 60 ml. A model was proposed based on heat capacity of reactants for conversion of ultrasonic into heat and the final temperature of the system could be predicted. This model was tested with 5 types of vegetable oil including used palm oil, canola oil, sunflower oil and corn oil to study the effect of specific heat capacity of the oil. Three different types of catalysts with varying heat capacities were also tested for verification of the model. The model developed showed good predictions with less than 5 % error in different conditions. (author)

  19. A Simple Heat of Crystallization Experiment.

    Science.gov (United States)

    De Nevers, Noel

    1991-01-01

    A demonstration used in a heat and material balances class that explains how a reusable heat pack works is described. An initial homework problem or exam question is provided with its solution. A discussion of the solution is included. (KR)

  20. Survey of residential heat pump owner experience in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Unsoy, J

    1985-11-11

    Heat pump owners in 7 Canadian cities were surveyed to establish installation costs, repair costs and frequencies, and customer satisfaction with heat pump systems as a function of region, installing contractor, manufacturer, model, year of installation and system type. The following summarizes the major findings of the study. Most Canadian heat pumps are retrofit installations in existing homes. The majority of these heat pumps have either supplemented or replaced an oil furnace. The average age of heat pumps is 2.5 years. The median size of heat pumps installed is 2.5 tons. The three most popular brands by order of prevalence are York, Carrier and General Electric. Only about one-fifth of heat pump owners have purchased service contracts. Two-thirds of the heat pumps have never needed repairs. Eighty-three percent of heat pump owners have never incurred any repair costs; and of those that have, about half spent $100 or less. The most frequent repair problems are refrigerant leaks followed by relays and controls. Corrective actions average about 0.3 per unit year. The owners' evaluation of comfort from their heat pump is generally favourable. About 12% of the owners find the outdoor unit noisy and 10% feel maintenance costs are at a disadvantage. Overall, only 7% of heat pump owners indicated that they would not install a heat pump in their next house. Most heat pump owners are satisfied with their heat pump brand and installer. Owners with systems installed in newer homes are more satisfied with their heat pumps than those who have installed heat pumps in older homes. 3 figs., 93 tabs.

  1. Optimization criteria for low temperature waste heat utilization

    International Nuclear Information System (INIS)

    Kranebitter, F.

    1977-01-01

    A special case in this field is the utilization of very low temperature waste heat. The temperature level under consideration in this paper is in the range between the body temperature of human beings and their environment. The waste heat from power generation and industrial processes is also considered. Thermal energy conversion will be mainly accomplished by heat cycles where discharged waste heat is reverse proportional to the upper cycle temperature. Limiting this upper cycle temperature by technological reasons the optimization of the heat cycle will depend on the nature of the cycle itself and specially on the temperature selected for the heat discharge. The waste heat discharge is typical for the different kinds of heat cycles and the paper presents the four most important of them. Feasible heat transfer methods and their economic evaluations are discussed and the distillation processes will be the basis for further considerations. The waste heat utilization for distillation purposes could be realized by three different cycles, the open cycle, the closed cycle and the multy cycle. Resulting problems as deaeration of large water streams and removal of the dissolved gases and their solutions are also discussed. (M.S.)

  2. Type II dehydroquinase: molecular replacement with many copies

    International Nuclear Information System (INIS)

    Stewart, Kirsty Anne; Robinson, David Alexander; Lapthorn, Adrian Jonathan

    2007-01-01

    The type II dehydroquinase enzyme is a symmetrical dodecameric protein which crystallizes in either high-symmetry cubic space groups or low-symmetry crystal systems with multiple copies in the asymmetric unit. Both systems have provided challenging examples for molecular replacement; for example, a triclinic crystal form has 16 dodecamers (192 monomers) in the unit cell. Three difficult examples are discussed and two are used as test cases to compare the performance of four commonly used molecular-replacement packages. Type II dehydroquinase is a small (150-amino-acid) protein which in solution packs together to form a dodecamer with 23 cubic symmetry. In crystals of this protein the symmetry of the biological unit can be coincident with the crystallographic symmetry, giving rise to cubic crystal forms with a single monomer in the asymmetric unit. In crystals where this is not the case, multiple copies of the monomer are present, giving rise to significant and often confusing noncrystallographic symmetry in low-symmetry crystal systems. These different crystal forms pose a variety of challenges for solution by molecular replacement. Three examples of structure solutions, including a highly unusual triclinic crystal form with 16 dodecamers (192 monomers) in the unit cell, are described. Four commonly used molecular-replacement packages are assessed against two of these examples, one of high symmetry and the other of low symmetry; this study highlights how program performance can vary significantly depending on the given problem. In addition, the final refined structure of the 16-dodecamer triclinic crystal form is analysed and shown not to be a superlattice structure, but rather an F-centred cubic crystal with frustrated crystallographic symmetry

  3. New “stars” of global economy: TICKS comes to replace BRICS

    Directory of Open Access Journals (Sweden)

    Iryna Chychkalo-Kondratska

    2017-10-01

    Full Text Available The paper discusses the reasons for the establishment of BRICS, and the role of the BRICS countries in the global economy today. Special attention is paid to the analysis of the factors, which caused the "destruction" of BRICS. The BRICS group is now being replaced by a new grouping of fast-growing economies – TICKS in which Russia and Brazil are replaced by Taiwan and South Korea. The authors analyzed the macroeconomic indicators of the TICKS countries and proposed a new structure of the grouping - Thailand, India, China, Korea, Singapore. These countries have fast-developing high-tech industries, increasing foreign investments and GDP, as it is proved here by the respective calculations of the authors.

  4. Heat transfer characteristics and limitations analysis of heat-pipe-cooled thermal protection structure

    International Nuclear Information System (INIS)

    Guangming, Xiao; Yanxia, Du; Yewei, Gui; Lei, Liu; Xiaofeng, Yang; Dong, Wei

    2014-01-01

    The theories of heat transfer, thermodynamics and fluid dynamics are employed to develop the coupled heat transfer analytical methods for the heat-pipe-cooled thermal protection structure (HPC TPS), and a three-dimensional numerical method considering the sonic limit of heat pipe is proposed. To verify the calculation correctness, computations are carried out for a typical heat pipe and the results agree well with experimental data. Then, the heat transfer characteristics and limitations of HPC TPS are mainly studied. The studies indicate that the use of heat pipe can reduce the temperature at high heat flux region of structure efficiently. However, there is a frozen startup period before the heat pipe reaching a steady operating state, and the sonic limit will be a restriction on the heat transfer capability. Thus, the effects of frozen startup must be considered for the design of HPC TPS. The simulation model and numerical method proposed in this paper can predict the heat transfer characteristics of HPC TPS quickly and exactly, and the results will provide important references for the design or performance evaluation of HPC TPS. - Highlights: • Numerical methods for the heat-pipe-cooled thermal protection structure are studied. • Three-dimensional simulation model considering sonic limit of heat pipe is proposed. • The frozen startup process of the embedded heat pipe can be predicted exactly. • Heat transfer characteristics of TPS and limitations of heat pipe are discussed

  5. Analysis on the heating performance of a gas engine driven air to water heat pump based on a steady-state model

    International Nuclear Information System (INIS)

    Zhang, R.R.; Lu, X.S.; Li, S.Z.; Lin, W.S.; Gu, A.Z.

    2005-01-01

    In this study, the heating performance of a gas engine driven air to water heat pump was analyzed using a steady state model. The thermodynamic model of a natural gas engine is identified by the experimental data and the compressor model is created by several empirical equations. The heat exchanger models are developed by the theory of heat balance. The system model is validated by comparing the experimental and simulation data, which shows good agreement. To understand the heating characteristic in detail, the performance of the system is analyzed in a wide range of operating conditions, and especially the effect of engine waste heat on the heating performance is discussed. The results show that engine waste heat can provide about 1/3 of the total heating capacity in this gas engine driven air to water heat pump. The performance of the engine, heat pump and integral system are analyzed under variations of engine speed and ambient temperature. It shows that engine speed has remarkable effects on both the engine and heat pump, but ambient temperature has little influence on the engine's performance. The system and component performances in variable speed operating conditions is also discussed at the end of the paper

  6. Advances in the heat treatment of steels

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.; Kim, J.I.; Syn, C.K.

    1978-06-01

    A number of important recent advances in the processing of steels have resulted from the sophisticated uses of heat treatment to tailor the microstructure of the steels so that desirable properties are established. These new heat treatments often involve the tempering or annealing of the steel to accompish a partial or complete reversion from martensite to austenite. The influence of these reversion heat treatments on the product microstructure and its properties may be systematically discussed in terms of the heat treating temperature in relation to the phase diagram. From this perspective, four characteristic heat treatments are defined: (1) normal tempering, (2) inter-critical tempering, (3) intercritical annealing, and (4) austenite reversion. The reactions occurring during each of these treatments are described and the nature and properties of typical product microstructures discussed, with specific reference to new commercial or laboratory steels having useful and exceptional properties

  7. Seon heats with geothermal energy

    International Nuclear Information System (INIS)

    Hawkins, A.C.

    2001-01-01

    This article describes the combined use of ground water for the supply of drinking water for the municipality of Seon, Switzerland and as the basis for a district heating system. The use of the water, pumped up from a depth of 300 meters and exhibiting a temperature of 19.5 o C, as the heat source for heat pumps is described. The history of the project is discussed and figures are given on the district heating system that provides heat for an indoor swimming pool complex, industry and living accommodation in the village. Operational strategies used to make optimum use of tariff structures are described. The role played by local initiative in this innovative project is emphasised

  8. RELAP4/MOD6 reflood heat transfer and data comparison

    International Nuclear Information System (INIS)

    Nelson, R.A.; Sullivan, L.H.

    1981-01-01

    This discussion of RELAP4/MOD6 will be limited to the reflood heat transfer models and evaluation of these models by comparison of calculation with results from three reflood experiments. The discussion of the model includes the heat transfer surface concept, the heat transfer correlations, the superheat model and the entrainment model which presents both the two-phase heat transfer and hydraulic models. In the discussion of the reflood heat transfer, the mathematical concept of a multidimensional surface is used to represent the heat flux of a given heat transfer correlation or correlations dependent upon such variables as quality, wall superheat and flux. This concept has been used to investigate the characteristics of the correlations, which are discusssed in detail, and the way they are applied to the two-phase mixture. Of primary importance in the reflood core heat transfer is the consideration of thermal nonequilibrium between the phases and the liquid entrainment, and its distribution up the core. Results obtained to date show the heat transfer and hydraulics to be closely coupled. Comparison of the RELAP4/MOD6 reflood calculations with the data from the forced feed FLECHT and gravity feed FLECHT-SET and Semiscale reflood experiments indicates that the heat transfer and hydraulic models are operational and yield good results

  9. Natural-circulation flow pattern during the gamma-heating phase of an LBLOCA in a heavy-water moderated reactor

    International Nuclear Information System (INIS)

    Rodriguez, S.B.; Unal, C.; Pasamehmetoglu, K.O.; Motley, F.E.

    1992-01-01

    In a postulated large-break loss-of-coolant accident (LBLOCA), the core of the reactor is uncovered quickly as the liquid that drains out of the tank is replaced by air. During the LBLOCA, the reactor is scrammed. the moderator tank is drained, and fuel and control rod tubes are cooled internally by forced convection via the emergency cooling system (ECS) water. However, the safety rods, reflector assemblies, tank wall, and instrument rods continue to heat up as a result of gamma deposition. These components are primarily cooled by natural/mixed convection and radiation heat transfer. In this paper, the thermal-hydraulic analysis of a reactor moderator tank exposed to air during an LBLOCA is discussed. The analysis was performed using a special version of the Transient Reactor Analysis Code (TRAC). TRAC input and code modifications considered the appropriate modeling of ECS cooling, thermal radiation heat transfer, and natural convection. The major objective of the model was to calculate the limiting component temperature (that establishes the maximum operating power) as a result of gamma heating. In addition, the nature of the moderator tank air-circulation pattern and its effects on the limiting temperature under various conditions were analyzed. None of the components were found to exceed their structural limits when the pre-scram power level was 50% of historical power

  10. Prototype implementation and experimental analysis of water heating using recovered waste heat of chimneys

    Directory of Open Access Journals (Sweden)

    Mahmoud Khaled

    2015-03-01

    Full Text Available This work discusses a waste heat recovery system (WHRS applied to chimneys for heating water in residential buildings. A prototype illustrating the suggested system is implemented and tested. Different waste heat scenarios by varying the quantity of burned firewood (heat input are experimented. The temperature at different parts of the WHRS and the gas flow rates of the exhaust pipes are measured. Measurements showed that the temperature of 95 L tank of water can be increased by 68 °C within one hour. Obtained results show that the convection and radiation exchanges at the bottom surface of the tank have a considerable impact on the total heat transfer rate of the water (as high as 70%.

  11. A feasibility analysis of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry

    Directory of Open Access Journals (Sweden)

    Jankovich Dennis

    2015-01-01

    Full Text Available The thermodynamic analysis demonstrates the feasibility of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry. The main reason for replacement is to reduce the total amount of ammonia in spaces like deep-freezing chambers, daily chambers, working rooms and technical passageways. An ammonia-contaminated area is hazardous to human health and the safety of food products. Therefore the preferred reduced amount of ammonia is accumulated in the Central Refrigeration Engine Room, where the cascade NH3/CO2 device is installed as well. Furthermore, the analysis discusses and compares two left Carnot¢s refrigeration cycles, one for the standard ammonia device and the other for the cascade NH3/CO2 device. Both cycles are processes with two-stage compression and two-stage throttling. The thermodynamic analysis demonstrates that the selected refrigeration cycle is the most cost-effective process because it provides the best numerical values for the total refrigeration factor with respect to the observed refrigeration cycle. The chief analyzed influential parameters of the cascade device are: total refrigeration load, total reactive power, mean temperature of the heat exchanger, evaporating and condensing temperature of the low-temperature part.

  12. 谈供热系统中的节能问题%Discussion on the energy saving problem in heating system

    Institute of Scientific and Technical Information of China (English)

    赵旗

    2016-01-01

    基于供热节能的现状,分析了供热节能的必要性,并从化石燃料梯级利用、工业余热利用、分户计量收费、变频调速等方面,提出了实现供热节能的措施,从而提高能源的利用率。%Based on the current situation of heating energy,this paper analyzed the necessity of heating energy,and from the fossil fuels cascade utilization,industrial waste heat utilization,household metering and charging,variable frequency speed regulation and other aspects,proposed the measures to achieve energy saving heating,in order to improve the efficiency of energy use.

  13. Development of injectable hydrogels for nucleus pulposus replacement

    Science.gov (United States)

    Thomas, Jonathan D.

    Intervertebral disc degeneration has been reported as the underlying cause for 75% of cases of lower back pain and is marked by dehydration of the nucleus pulposus within the intervertebral disc. There have been many implant designs to replace the nucleus pulposus. Some researchers have proposed the replacement of the nucleus pulposus with hydrogel materials. The insertion of devices made from these materials further compromises the annulus of the disc. An ideal nucleus replacement could be injected into the disc space and form a solid in vivo. However, injectable replacements using curing elastomers and thermoplastic materials are not ideal because of the potentially harmful exothermic heat evolved from their reactions and the toxicity of the reactants used. We propose a hydrogel system that can be injected as a liquid at 25°C and solidified to yield a hydrogel within the intervertebral disc at 37°C. In aqueous solutions, these polymers have Lower Critical Solution Temperatures (LCST) between 25-37°C, making them unique candidate materials for this application. Poly(N-isopropylacrylamide) (PNIPAAm) is the most widely studied LCST polymer due to its drastic transition near body temperature. However, by itself, pure PNIPAAm forms a hydrogel that has low water content and can readily undergo plastic deformation. To increase the water content and impart elasticity to PNIPAAm hydrogels, grafted and branched hydrogel systems were created that incorporated the thermogelling PNIPAAm and hydrophilic poly(ethylene glycol) (PEG). In this research, the effects of polymer composition and monomer to initiator ratio, which controls polymer MW, on the in vitro swelling properties (mass, chemical, and compressive mechanical stability) of hydrogels formed from aqueous solutions of these polymers were evaluated. Immersion studies were also conducted in solutions to simulate the osmotic environment of the nucleus pulposus. The effects of repeated compression and unloading cycles

  14. Mesoscopic photon heat transistor

    DEFF Research Database (Denmark)

    Ojanen, T.; Jauho, Antti-Pekka

    2008-01-01

    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir......-Wingreen-Landauer-type of conductance formula, which gives the photonic heat current through an arbitrary circuit element coupled to two dissipative reservoirs at finite temperatures. As an illustration we present an exact solution for the case when the intermediate circuit can be described as an electromagnetic resonator. We discuss...

  15. Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

    1981-06-01

    A system was developed for utilizing nearby low temperature geothermal energy to heat two high-rate primary anaerobic digesters at the San Bernardino Wastewater Treatment Plant. The geothermal fluid would replace the methane currently burned to fuel the digesters. A summary of the work accomplished on the feasibility study is presented. The design and operation of the facility are examined and potentially viable applications selected for additional study. Results of these investigations and system descriptions and equipment specifications for utilizing geothermal energy in the selected processes are presented. The economic analyses conducted on the six engineering design cases are discussed. The environmental setting of the project and an analysis of the environmental impacts that will result from construction and operation of the geothermal heating system are discussed. A Resource Development Plan describes the steps that the San Bernardino Municipal Water Department could follow in order to utilize the resource. A preliminary well program and rough cost estimates for the production and injection wells also are included. The Water Department is provided with a program and schedule for implementing a geothermal system to serve the wastewater treatment plant. Regulatory, financial, and legal issues that will impact the project are presented in the Appendix. An outline of a Public Awareness Program is included.

  16. High temperature thermoacoustic heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [Energy research Centre of the Netherlands, 1755 ZG Petten (Netherlands)

    2012-06-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. A thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestics and offices energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6% and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  17. High Temperature Thermoacoustic Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-07-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. Thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestic and office energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6 % and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  18. Environmental systems analysis of biogas systems-Part II: The environmental impact of replacing various reference systems

    International Nuclear Information System (INIS)

    Boerjesson, Pal; Berglund, Maria

    2007-01-01

    This paper analyses the overall environmental impact when biogas systems are introduced and replace various reference systems for energy generation, waste management and agricultural production. The analyses are based on Swedish conditions using a life-cycle perspective. The biogas systems included are based on different combinations of raw materials and final use of the biogas produced (heat, power and transportation fuel). A general conclusion is that biogas systems normally lead to environmental improvements, which in some cases are considerable. This is often due to indirect environmental benefits of changed land use and handling of organic waste products (e.g. reduced nitrogen leaching, emissions of ammonia and methane), which often exceed the direct environmental benefits achieved when fossil fuels are replaced by biogas (e.g. reduced emissions of carbon dioxide and air pollutants). Such indirect benefits are seldom considered when biogas is evaluated from an environmental point of view. The environmental impact from different biogas systems can, however, vary significantly due to factors such as the raw materials utilised, energy service provided and reference system replaced

  19. Preliminary study on the forgeability and heat treatment response of niobium - containing tool steels materials

    International Nuclear Information System (INIS)

    Cescon, T.; Papaleo, R.

    1981-01-01

    The forgeability and microstructure of tool steels materials based on the M-2 composition, where W and V were partially replaced by Nb, were examined. The optimum heat-treating conditions were established. The poor response to heat treatment of some of the alloys studied indicated the need of increasing the C content of the steels when Nb is used as a substitute for W and V. (Author) [pt

  20. Domestic heating - the biomass challenge

    International Nuclear Information System (INIS)

    Rakos, C.

    1999-01-01

    This article highlights currently available efficient, low emission technical concepts for the combustion of wood, log-burning boilers, woodchip boilers, and the use of wood pellets. The economics of domestic heating with wood, the higher costs incurred with modern efficient wood burners as compared with fuelwood costs, and the proposed European Commission's campaign to implement more wood heated dwellings are discussed, and the transition from traditional to modern wood heating, and options for stimulating growth in renewable energy are considered

  1. Effects of replacing lactose from milk replacer by glucose, fructose, or glycerol on energy partitioning in veal calves

    NARCIS (Netherlands)

    Gilbert, M. S.; Pantophlet, A. J.; van den Borne, J. J. G. C.; Hendriks, W. H.; Schols, H. A.; Gerrits, W. J. J.

    Calf milk replacers contain 40 to 50% lactose. Fluctuating dairy prices are a major economic incentive to replace lactose from milk replacers by alternative energy sources. Our objective was, therefore, to determine the effects of replacement of lactose with glucose, fructose, or glycerol on energy

  2. Electro-magnetic heating in viscous oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Das, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Marathon Oil Corp., Houston, TX (United States)

    2008-10-15

    This paper discussed electromagnetic (EM) heating techniques for primary and secondary enhanced oil recovery (EOR) processes. Ohmic, induction, and formation resistive heating techniques were discussed. Issues related to energy equivalence and hardware requirements were reviewed. Challenges related to heat losses in vertical wellbores, well integrity, and galvanic corrosion were also outlined. A pair of 1500 foot horizontal wells in a heavy oil reservoir were then modelled in order to optimize EM recovery processes. DC current was used in a base case water flood run. Electrical conductivities were measured. The model was converted to a homogenous model in order to study injector and producer electrodes. The study showed that reservoir resistance was low, and most of the heating took place near the electrode area where electric lines diverged or converged. Results of the study suggested that EM heating in formations is not as efficient as steam-based processes. Accurate simulations of EM heating processes within reservoirs are difficult to obtain, as the amounts of estimated heat input are sensitive to grid refinement. It was concluded that hot spots in the EM electrodes have also caused failures in other field applications and studies. 11 refs., 12 figs.

  3. Discussion of thermal extraction chamber concepts for Lunar ISRU

    Science.gov (United States)

    Pfeiffer, Matthias; Hager, Philipp; Parzinger, Stephan; Dirlich, Thomas; Spinnler, Markus; Sattelmayer, Thomas; Walter, Ulrich

    The Exploration group of the Institute of Astronautics (LRT) of the Technische Universitüt a München focuses on long-term scenarios and sustainable human presence in space. One of the enabling technologies in this long-term perspective is in-situ resource utilization (ISRU). When dealing with the prospect of future manned missions to Moon and Mars the use of ISRU seems useful and intended. The activities presented in this paper focus on Lunar ISRU. This basically incorporates both the exploitation of Lunar oxygen from natural rock and the extraction of solar wind implanted particles (SWIP) from regolith dust. Presently the group at the LRT is examining possibilities for the extraction of SWIPs, which may provide several gaseous components (such as H2 and N2) valuable to a human presence on the Moon. As a major stepping stone in the near future a Lunar demonstrator/ verification experiment payload is being designed. This experiment, LUISE (LUnar ISru Experiment), will comprise a thermal process chamber for heating regolith dust (grain size below 500m), a solar thermal power supply, a sample distribution unit and a trace gas analysis. The first project stage includes the detailed design and analysis of the extraction chamber concepts and the thermal process involved in the removal of SWIP from Lunar Regolith dust. The technique of extracting Solar Wind volatiles from Regolith has been outlined by several sources. Heating the material to a threshold value seems to be the most reasonable approach. The present paper will give an overview over concepts for thermal extraction chambers to be used in the LUISE project and evaluate in detail the pros and cons of each concept. The special boundary conditions set by solar thermal heating of the chambers as well as the material properties of Regolith in a Lunar environment will be discussed. Both greatly influence the design of the extraction chamber. The performance of the chamber concepts is discussed with respect to the

  4. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    Science.gov (United States)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  5. Enhancement of heat and mass transfer by cavitation

    International Nuclear Information System (INIS)

    Zhang, Y N; Du, X Z; Xian, H Z; Zhang, Y N

    2015-01-01

    In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment

  6. Low-temperature nuclear heat applications: Nuclear power plants for district heating

    International Nuclear Information System (INIS)

    1987-08-01

    The IAEA reflected the needs of its Member States for the exchange of information in the field of nuclear heat application already in the late 1970s. In the early 1980s, some Member States showed their interest in the use of heat from electricity producing nuclear power plants and in the development of nuclear heating plants. Accordingly, a technical committee meeting with a workshop was organized in 1983 to review the status of nuclear heat application which confirmed both the progress made in this field and the renewed interest of Member States in an active exchange of information about this subject. In 1985 an Advisory Group summarized the Potential of Low-Temperature Nuclear Heat Application; the relevant Technical Document reviewing the situation in the IAEA's Member States was issued in 1986 (IAEA-TECDOC-397). Programme plans were made for 1986-88 and the IAEA was asked to promote the exchange of information, with specific emphasis on the design criteria, operating experience, safety requirements and specifications for heat-only reactors, co-generation plants and power plants adapted for heat application. Because of a growing interest of the IAEA's Member States about nuclear heat employment in the district heating domaine, an Advisory Group meeting was organized by the IAEA on ''Low-Temperature Nuclear Heat Application: Nuclear Power Plants for District Heating'' in Prague, Czechoslovakia in June 1986. The information gained up to 1986 and discussed during this meeting is embodied in the present Technical Document. 22 figs, 11 tabs

  7. A two-parameter nondiffusive heat conduction model for data analysis in pump-probe experiments

    Science.gov (United States)

    Ma, Yanbao

    2014-12-01

    Nondiffusive heat transfer has attracted intensive research interests in last 50 years because of its importance in fundamental physics and engineering applications. It has unique features that cannot be described by the Fourier law. However, current studies of nondiffusive heat transfer still focus on studying the effective thermal conductivity within the framework of the Fourier law due to a lack of a well-accepted replacement. Here, we show that nondiffusive heat conduction can be characterized by two inherent material properties: a diffusive thermal conductivity and a ballistic transport length. We also present a two-parameter heat conduction model and demonstrate its validity in different pump-probe experiments. This model not only offers new insights of nondiffusive heat conduction but also opens up new avenues for the studies of nondiffusive heat transfer outside the framework of the Fourier law.

  8. Lubricant depletion under various laser heating conditions in Heat Assisted Magnetic Recording (HAMR)

    Science.gov (United States)

    Xiong, Shaomin; Wu, Haoyu; Bogy, David

    2014-09-01

    Heat assisted magnetic recording (HAMR) is expected to increase the storage areal density to more than 1 Tb/in2 in hard disk drives (HDDs). In this technology, a laser is used to heat the magnetic media to the Curie point (~400-600 °C) during the writing process. The lubricant on the top of a magnetic disk could evaporate and be depleted under the laser heating. The change of the lubricant can lead to instability of the flying slider and failure of the head-disk interface (HDI). In this study, a HAMR test stage is developed to study the lubricant thermal behavior. Various heating conditions are controlled for the study of the lubricant thermal depletion. The effects of laser heating repetitions and power levels on the lubricant depletion are investigated experimentally. The lubricant reflow behavior is discussed as well.

  9. Heat loss mechanisms in a measurement of specific heat capacity of graphite

    International Nuclear Information System (INIS)

    Shipley, D.R.; Duane, S.

    1996-01-01

    Absorbed dose to graphite in electron beams with nominal energies in the range 3-20 MeV is determined by measuring the temperature rise in the core of a primary standard graphite calorimeter. This temperature rise is related to absorbed dose by a separate measurement of the specific heat capacity of the graphite core. There is, however, a small but significant amount of heat loss from the sample in the determination of specific heat capacity and corrections for these losses are required. This report discusses the sources of heat loss in the measurements and, where possible, provides estimates for the magnitude of these losses. For those mechanisms which are significant, a more realistic model of the measurement system is analysed and corrections for the losses are provided. (UK)

  10. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Directory of Open Access Journals (Sweden)

    Olkowski Tomasz

    2017-01-01

    Full Text Available The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  11. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Science.gov (United States)

    Olkowski, Tomasz; Lipiński, Seweryn; Olędzka, Aneta

    2017-10-01

    The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  12. Biomass gasification--a substitute to fossil fuel for heat application

    International Nuclear Information System (INIS)

    Dasappa, S.; Sridhar, H.V.; Sridhar, G.; Paul, P.J.; Mukunda, H.S.

    2003-01-01

    The paper addresses case studies of a low temperature and a high temperature industrial heat requirement being met using biomass gasification. The gasification system for these applications consists of an open top down draft reburn reactor lined with ceramic. Necessary cooling and cleaning systems are incorporated in the package to meet the end use requirements. The other elements included are the fuel conveyor, water treatment plant for recirculating the cooling water and adequate automation to start, shut down and control the operations of the gasifier system. Drying of marigold flower, a low temperature application is considered to replace diesel fuel in the range of 125-150 l h -1 . Gas from the 500 kg h -1 , gasifier system is piped into the producer gas burners fixed in the combustion chamber with the downstream process similar to the diesel burner. The high temperature application is for a heat treatment furnace in the temperature range of 873-1200 K. A 300 kg h -1 of biomass gasifier replaces 2000 l of diesel or LDO per day completely. The novelty of this package is the use of one gasifier to energize 16 burners in the 8 furnaces with different temperature requirements. The system operates over 140 h per week on a nearly nonstop mode and over 4000 h of operation replacing fossil fuel completely. The advantage of bioenergy package towards the economic and environmental considerations is presented

  13. Replacement of fine particle purification filter of the PHT purification system - 15083

    International Nuclear Information System (INIS)

    Lee, D.S.

    2015-01-01

    The increase of chalk river unidentified deposit (CRUD), a particulate corrosion product in PHT (primary heat transport) system with increased operating years of a nuclear power plant causes: -) the problems of increased heavy water decomposition and deuterium formation reaction due to catalytic reaction with CRUD, -) damage to PHT pump seal due to a corrosion product, -) damage to fuel channel closure seal, and increased radiation exposure of workers due to elevated dose rate in steam generator water chamber. Wolsung unit 3 and 4 have replaced fine filter media in PHT purification system in phases reducing the pore size of the filter media (5 μm → 2 μm → 1 μm → 0.45 μm) to solve this problem. The phased replacement of fine filter media by the one with a smaller pore size reduced CRUD in PHT system significantly and also radiation dose rate in steam generator water chamber. Accordingly, many problems related to the aging of a plant (including increased radiation exposure of workers during outage, damage to mechanical seal of PHT pump) have been solved. (author)

  14. Nuclear heat sources for cryogenic refrigerator applications

    International Nuclear Information System (INIS)

    Raab, B.; Schock, A.; King, W.G.; Kline, T.; Russo, F.A.

    1975-01-01

    Spacecraft cryogenic refrigerators require thermal inputs on the order of 1000 W. First, the characteristics of solar-electric and radioisotope heat source systems for supplying this thermal input are compared. Then the design of a 238 Pu heat source for this application is described, and equipment for shipping and handling the heat source is discussed. (LCL)

  15. Actual heating energy savings in thermally renovated Dutch dwellings

    International Nuclear Information System (INIS)

    Majcen, Daša; Itard, Laure; Visscher, Henk

    2016-01-01

    The register of the Dutch social housing stock was analysed, containing 300.000 dwellings, renovated between 2010 and 2013. The main objective was twofold: to evaluate the performance gap in these dwellings before and after the renovation and to establish what renovation measures achieve the highest reduction of consumption, particularly in practice (actual savings). The results showed large performance gaps in dwellings with low R and high U values, local heating systems, changes from a non-condensing into a condensing boiler and upgrades to a natural ventilation system. Regarding the actual effectiveness of renovation measures, replacement of old gas boilers with more efficient ones yields the highest energy reduction, followed by deep improvements of windows. Installing mechanical ventilation yields a small reduction compared to other measures, but still much larger than theoretically expected. The paper shows once more that the calculation method currently in use cannot be considered accurate if compared to actual consumption. The study demonstrated that unrealistic theoretical efficiencies of heating systems and insulation values are causing a part of the performance gap. Nowadays, large datasets of buildings thermal performance and actual consumption offer an opportunity to improve these misconceptions. - Highlights: • Performance gap is lower in more efficient buildings. • Replacements of gas boilers – the most energy reduction among renovation measures. • Replacing the ventilation system yields a much larger reduction than expected. • How well are the standard values of the calculation methods defined? • Provide large public building performance databases including actual use data.

  16. Delirium After Transcatheter Aortic Valve Replacement.

    Science.gov (United States)

    Giuseffi, Jennifer L; Borges, Nyal E; Boehm, Leanne M; Wang, Li; McPherson, John A; Fredi, Joseph L; Ahmad, Rashid M; Ely, E Wesley; Pandharipande, Pratik P

    2017-07-01

    Postoperative delirium is associated with increased mortality. Patients undergoing transcatheter aortic valve replacement are at risk for delirium because of comorbid conditions. To compare the incidence, odds, and mortality implications of delirium between patients undergoing transcatheter replacement and patients undergoing surgical replacement. The Richmond Agitation-Sedation Scale and the Confusion Assessment Method for the Intensive Care Unit were used to assess arousal level and delirium prospectively in all patients with severe aortic stenosis who had transcatheter or surgical aortic valve replacement at an academic medical center. Multivariable logistic regression was used to determine the relationship between procedure type and occurrence of delirium. Cox regression was used to assess the association between postoperative delirium and 6-month mortality. A total of 105 patients had transcatheter replacement and 121 had surgical replacement. Patients in the transcatheter group were older (median age, 81 vs 68 years; P replacement. Delirium is less likely to develop in the transcatheter group but is associated with higher mortality in both groups. ©2017 American Association of Critical-Care Nurses.

  17. Feasibility of a single-purpose reactor plant for district heating in Finland

    International Nuclear Information System (INIS)

    Tarjanne, R.; Vuori, S.; Eerikaeinen, L.; Saukkoriipi, L.

    A feasibility study of a single-purpose reactor for district heating is presented. The reactor chosen is of an ordinary pressurized water reactor type with a thermal output of 100 to 200 MW. Primary circuit steam generators employed in ordinary PWR's are replaced by water-water heat exchangers. For safety reasons an intermediate circuit separates the primary from the network water. The conditions of the district heating systems in Finland were taken into account, which led to the choice of an average temperature of 160 0 C for the reactor coolant and a pressure of 13.5 bar. This, coupled with minimal control requirements helped design a considerably simple reactor plant. On condition, the reactor satisfies the basic heat demand in a district heating system, the effective annual full-power operation time of the heating reactor is from 5000 h to 7000 h. Economic comparisons indicated that the heating reactor may be competitive if the operation period is of this order. As the reactor has to be sited near the heat consumption area for reasons of economy, the safety aspects are of major importance and may in themselves preclude the realization of the heating idea. (author)

  18. Air pollution prevention through urban heat island mitigation: An update on the urban heat island pilot project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, V.; Taha, H.; Quattrochi, D.; Luvall, J.

    1998-07-01

    Urban heat islands increase the demand for cooling energy and accelerate the formation of smog. They are created when natural vegetation is replaced by heat-absorbing surfaces such as building roofs and walls, parking lots, and streets. Through the implementation of measures designed to mitigate the urban heat island, communities can decrease their demand for energy and effectively cool the metropolitan landscape. In addition to the economic benefits, using less energy leads to reductions in emission of CO{sub 2}--a greenhouse gas--as well as ozone (smog) precursors such as NOx and VOCs. Because ozone is created when NOx and VOCs photochemically combine with heat and solar radiation, actions taken to lower ambient air temperature can significantly reduce ozone concentrations in certain areas. Measures to reverse the urban heat island include afforestation and the widespread use of highly reflective surfaces. To demonstrate the potential benefits of implementing these measures, EPA has teamed up with NASA and LBNL to initiate a pilot project with three US cities. As part of the pilot, NASA will use remotely-sensed data to quantify surface temperature, albedo, the thermal response number and NDVI vegetation of each city. This information will be used by scientists at Lawrence Berkeley National Laboratory (LBNL) along with other data as inputs to model various scenarios that will help quantify the potential benefits of urban heat island mitigation measures in terms of reduced energy use and pollution. This paper will briefly describe this pilot project and provide an update on the progress to date.

  19. TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS

    International Nuclear Information System (INIS)

    Henning, Wade G.; O'Connell, Richard J.; Sasselov, Dimitar D.

    2009-01-01

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a hot Earth and hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid (SAS), and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long-term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.

  20. Financing New Technologies, Equipment/Furniture Replacement, and Building Renovation: A Survey Report.

    Science.gov (United States)

    Shirk, Gary M.

    1984-01-01

    Reports results of survey of methods used by 77 North American academic and public libraries to finance implementation of new technologies, replace equipment and furniture, and renovate buildings. Financing methods used, frequency of use, choice, and range of methods are discussed. Eight references and list of survey participants are appended.…

  1. Economic and safety aspects of using moderator heat for feed water heating in a nuclear power plant

    International Nuclear Information System (INIS)

    Patwegar, I.A.; Dutta, Anu; Chaki, S.K.; Venkat Raj, V.

    2002-01-01

    Full text: In the proposed advanced heavy water reactor (AHWR), coolant and moderator are separated by the coolant channel. The coolant absorbs most of the fission heat produced in the reactor core. However, the moderator absorbs about 5 to 6 % of the fission heat. In a reactor producing 750 MW(th) power, this moderator heat is about 40 MW. In the present Indian PHWR (pressurized heavy water reactor) systems, this moderator heat is lost to a sink through the moderator heat exchangers, which are cooled by process water. This paper presents the results of the steam cycle analysis carried out for AHWR using moderator heat exchangers as part of the feed heating system. The present study is an attempt to determine the gain in electrical output (MW) if moderator heat is utilized for feed water heating. The operational and safety aspects of using moderator heat are also discussed in the paper

  2. Enhancing heat transfer in microchannel heat sinks using converging flow passages

    International Nuclear Information System (INIS)

    Dehghan, Maziar; Daneshipour, Mahdi; Valipour, Mohammad Sadegh; Rafee, Roohollah; Saedodin, Seyfolah

    2015-01-01

    Highlights: • The fluid flow and conjugate heat transfer in microchannel heat sinks are studied. • The Poiseuille and Nusselt numbers are presented for width-tapered MCHS. • Converging walls are found to enhance the thermal performance of MCHS. • The optimum performance of MCHS for fixed inlet and outlet pressures is discussed. • For the optimum configuration, the pumping power is reduced up to 75%. - Abstract: Constrained fluid flow and conjugate heat transfer in microchannel heat sinks (MCHS) with converging channels are investigated using the finite volume method (FVM) in the laminar regime. The maximum pressure of the MCHS loop is assumed to be limited due to constructional or operational conditions. Results show that the Poiseuille number increases with increased tapering, while the required pumping power decreases. Meanwhile, the Nusselt number increases with tapering as well as the convection heat transfer coefficient. The MCHS having the optimum heat transfer performance is found to have a width-tapered ratio equal to 0.5. For this tapering configuration and at the maximum pressure constraint of 3000 Pa, the pumping power reduces by a factor of 4 while the overall heat removal rate is kept fixed in comparison with a straight channel

  3. On Heat Transfer through a Solid Slab Heated Uniformly and Periodically: Determination of Thermal Properties

    Science.gov (United States)

    Rojas-Trigos, J. B.; Bermejo-Arenas, J. A.; Marin, E.

    2012-01-01

    In this paper, some heat transfer characteristics through a sample that is uniformly heated on one of its surfaces by a power density modulated by a periodical square wave are discussed. The solution of this problem has two contributions, comprising a transient term and an oscillatory term, superposed to it. The analytical solution is compared to…

  4. Optimization on replacement period of plant equipment

    International Nuclear Information System (INIS)

    Kasai, Masao; Asano, Hiromi

    2002-01-01

    Optimization of the replacement period of plant equipment is one of the main items to rationalize the activities on plant maintenance. There are several models to replace the equipment and the formulations for optimizing the replacement period are different among these models. In this study, we calculated the optimum replacement periods for some equipment parts based on the replacement models and found that the optimum solutions are not so largely differ from the replacement models as far as the replacement period is not so large. So we will be able to use the most usable model especially in the early phase of rationalization on plant maintenance, since there are large uncertainties in data for optimization. (author)

  5. Effect of finite heat input on the power performance of micro heat engines

    International Nuclear Information System (INIS)

    Khu, Kerwin; Jiang, Liudi; Markvart, Tom

    2011-01-01

    Micro heat engines have attracted considerable interest in recent years for their potential exploitation as micro power sources in microsystems and portable devices. Thermodynamic modeling can predict the theoretical performance that can be potentially achieved by micro heat engine designs. An appropriate model can not only provide key information at the design stage but also indicate the potential room for improvement in existing micro heat engines. However, there are few models reported to date which are suitable for evaluating the power performance of micro heat engines. This paper presents a new thermodynamic model for determining the theoretical limit of power performance of micro heat engines with consideration to finite heat input and heat leakage. By matching the model components to those of a representative heat engine layout, the theoretical power, power density, and thermal efficiency achievable for a micro heat engine can be obtained for a given set of design parameters. The effects of key design parameters such as length and thermal conductivity of the engine material on these theoretical outputs are also investigated. Possible trade-offs among these performance objectives are discussed. Performance results derived from the developed model are compared with those of a working micro heat engine (P3) as an example. -- Highlights: → Thermodynamic model for micro heat engines. → Effect of different parameters on potential performance. → Tradeoffs for determining optimal size of micro engines.

  6. Design verification for reactor head replacement

    International Nuclear Information System (INIS)

    Dwivedy, K.K.; Whitt, M.S.; Lee, R.

    2005-01-01

    This paper outlines the challenges of design verification for reactor head replacement for PWR plants and the program for qualification from the prospective of the utility design engineering group. This paper is based on the experience with the design confirmation of four reactor head replacements for two plants, and their interfacing components, parts, appurtenances, and support structures. The reactor head replacement falls under the jurisdiction of the applicable edition of the ASME Section XI code, with particular reference to repair/replacement activities. Under any repair/replacement activities, demands may be encountered in the development of program and plan for replacement due to the vintage of the original design/construction Code and the design reports governing the component qualifications. Because of the obvious importance of the reactor vessel, these challenges take on an added significance. Additional complexities are introduced to the project, when the replacement components are fabricated by vendors different from the original vendor. Specific attention is needed with respect to compatibility with the original design and construction of the part and interfacing components. The program for reactor head replacement requires evaluation of welding procedures, applicable examination, test, and acceptance criteria for material, welds, and the components. Also, the design needs to take into consideration the life of the replacement components with respect to the extended period of operation of the plant after license renewal and other plant improvements. Thus, the verification of acceptability of reactor head replacement provides challenges for development and maintenance of a program and plan, design specification, design report, manufacturer's data report and material certification, and a report of reconciliation. The technical need may also be compounded by other challenges such as widely scattered global activities and organizational barriers, which

  7. The benefits and risks of testosterone replacement therapy: a review

    Directory of Open Access Journals (Sweden)

    Nazem Bassil

    2009-06-01

    Full Text Available Nazem Bassil1, Saad Alkaade2, John E Morley1,31Division of Geriatric Medicine; 2Internal Medicine, Saint Louis University Health Sciences Center, St. Louis, Missouri, USA; 3GRECC, VA Medical Center, St. Louis, Missouri, USAAbstract: Increased longevity and population aging will increase the number of men with late onset hypogonadism. It is a common condition, but often underdiagnosed and undertreated. The indication of testosterone-replacement therapy (TRT treatment requires the presence of low testosterone level, and symptoms and signs of hypogonadism. Although controversy remains regarding indications for testosterone supplementation in aging men due to lack of large-scale, long-term studies assessing the benefits and risks of testosterone-replacement therapy in men, reports indicate that TRT may produce a wide range of benefits for men with hypogonadism that include improvement in libido and sexual function, bone density, muscle mass, body composition, mood, erythropoiesis, cognition, quality of life and cardiovascular disease. Perhaps the most controversial area is the issue of risk, especially possible stimulation of prostate cancer by testosterone, even though no evidence to support this risk exists. Other possible risks include worsening symptoms of benign prostatic hypertrophy, liver toxicity, hyperviscosity, erythrocytosis, worsening untreated sleep apnea or severe heart failure. Despite this controversy, testosterone supplementation in the United States has increased substantially over the past several years. The physician should discuss with the patient the potential benefits and risks of TRT. The purpose of this review is to discuss what is known and not known regarding the benefits and risks of TRT.Keywords: hypogonadism, testosterone replacement therapy, erectile dysfunction, osteoporosis, cardiovascular disease

  8. WATER SUPPLY PIPE REPLACEMENT CONSIDERING SUSTAINABLE TRANSITION TO POPULATION DECREASED SOCIETY

    Science.gov (United States)

    Hosoi, Yoshihiko; Iwasaki, Yoji; Aklog, Dagnachew; Masuda, Takanori

    Social infrastructures are aging and population is decreasing in Japan. The aged social infrastructures should be renewed. At the same time, they are required to be moved into new framework suitable for population decreased societies. Furthermore, they have to continue to supply sufficient services even during transition term that renewal projects are carried out. Authors propose sustainable soft landing management of infrastructures and it is tried to apply to water supply pipe replacement in this study. Methodology to replace aged pipes not only aiming for the new water supply network which suits for population decreased condition but also ensuring supply service and feasibility while the project is carried out was developed. It is applied for a model water supply network and discussions were carried out.

  9. Hydration rate and strength development of low-heat type portland cement mortar mixed with pozzolanic materials

    International Nuclear Information System (INIS)

    Matsui, Jun

    1998-01-01

    Recently, low-heat type Portland cement was specified in Japan Industrial Standards (JIS). Its hydration proceeds slowly. The results of the research so far obtained indicate that slow hydration of cement and mixing of pozzolanic materials with cement make micro-structure of harded cement paste dense and durable. In this study, a blended cement using low-heat type Portland cement and some of pozzolanic materials has been newly developed and its strength property and hydration ratio were checked. The followings are conclusion. (1) Hydration rate of cement paste varies with the replacement ratio of pozzolanic materials. (2) A good liner relationship between strength and total hydration rate of cement paste was observed. (3) A proper replacement ratio of both base-cement and pozzolanic material for manufacturing a blended cement is 50%. (author)

  10. Entropy resistance minimization: An alternative method for heat exchanger analyses

    International Nuclear Information System (INIS)

    Cheng, XueTao

    2013-01-01

    In this paper, the concept of entropy resistance is proposed based on the entropy generation analyses of heat transfer processes. It is shown that smaller entropy resistance leads to larger heat transfer rate with fixed thermodynamic force difference and smaller thermodynamic force difference with fixed heat transfer rate, respectively. For the discussed two-stream heat exchangers in which the heat transfer rates are not given and the three-stream heat exchanger with prescribed heat capacity flow rates and inlet temperatures of the streams, smaller entropy resistance leads to larger heat transfer rate. For the two-stream heat exchangers with fixed heat transfer rate, smaller entropy resistance leads to larger effectiveness. Furthermore, it is shown that smaller values of the concepts of entropy generation numbers and modified entropy generation number do not always correspond to better performance of the discussed heat exchangers. - Highlights: • The concept of entropy resistance is defined for heat exchangers. • The concepts based on entropy generation are used to analyze heat exchangers. • Smaller entropy resistance leads to better performance of heat exchangers. • The applicability of entropy generation minimization is conditional

  11. Design and fabrication of heat resistant multilayers

    International Nuclear Information System (INIS)

    Thorne, J.M.; Knight, L.V.; Peterson, B.G.; Perkins, R.T.; Gray, K.J.

    1986-01-01

    Many promising applications of multilayer x-ray optical elements subject them to intense radiation. This paper discusses the selection of optimal pairs of materials to resist heat damage and presents simulations of multilayer performance under extreme heat loadings

  12. Turbine steam path replacement at the Grafenrheinfeld Nuclear Power Station

    International Nuclear Information System (INIS)

    Weschenfelder, K.D.; Oeynhausen, H.; Bergmann, D.; Hosbein, P.; Termuehlen, H.

    1994-01-01

    In the last few years, replacement of old vintage steam turbine flow path components has been well established as a valid approach to improve thermal performance of aged turbines. In nuclear power plants, performance improvement is generally achieved only by design improvements since performance deterioration of old units is minor or nonexistent. With fossil units operating over decades loss in performance is an additional factor which can be taken into account. Such loss of performance can be caused by deposits, solid particle erosion, loss of shaft and inter-stage seal strips, etc. Improvement of performance is typically guaranteed as output increases for operation at full load. This value can be evaluated as a direct gain in unit capacity without fuel or steam supply increase. Since fuel intake does not change, the relative improvement of the net plant heat rate or efficiency is equal to the relative increase in output. The heat rate improvement is achieved not only at full load but for the entire load range. Such heat rate improvement not only moves a plant up on the load dispatch list increasing its capacity factor, but also extensive fuel savings can pay off for the investment cost of new steam path components. Another important factor is that quite often older turbine designs show a deterioration of their reliability and need costly repairs. With new flow path components an aged steam turbine starts a new useful life

  13. Plasma heating - a comparative overview for future applications

    International Nuclear Information System (INIS)

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of D-T burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating system with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various functions of heating, which are: Plasma heating to fusion-relevant parameters and to ignition in future machines, non-inductive, steady-state current drive, plasma profile control, neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alfven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (orig.)

  14. Compact solar heating systems - back on the way up

    International Nuclear Information System (INIS)

    Lainsecq, M. de

    2001-01-01

    This article discusses the upward trend being noted in the installation of compact solar heating systems in Switzerland. The contribution of these complete, easy-to-install systems to the increasing number of solar heating units on the market is discussed and the role played by the Solar Collector and Systems Testing Facility at the Institute of Solar Technology in Rapperswil, Switzerland, is emphasised. One of this institute's important publications is a list of certified compact solar heating systems. The high technical standards of the systems and the current price situation are discussed. The article is rounded off by an interview with a four-person family on their motivation to install such a hot-water system and their experience with its operation. Finally, future trends in the area are discussed

  15. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A

    1976-01-01

    Solar energy is discussed as an energy resource that can be converted into useful energy forms to meet a variety of energy needs. The review briefly explains the nature of this energy resource, the kinds of applications that can be made useful, and the status of several systems to which it has been applied. More specifically, information on solar collectors, solar water heating, solar heating of buildings, solar cooling plus other applications, are included.

  16. Tolerence for work-induced heat stress in men wearing liquidcooled garments

    Science.gov (United States)

    Blockley, W. V.; Roth, H. P.

    1971-01-01

    An investigation of the heat tolerance in men unable to dispose of metabolic heat as fast as it is produced within the body is discussed. Examinations were made of (a) the effect of work rate (metabolic rate) on tolerance time when body heat storage rate is a fixed quantity, and (b) tolerance time as a function of metabolic rate when heat loss is terminated after a thermal quasi-equilibrium was attained under comfortable conditions of heat transfer. The nature of the physiological mechanisms involved in such heat stress situations, and the possibility of using prediction techniques to establish standard procedures in emergencies involving cooling system failures are also discussed.

  17. Diagenetic replacement of Micas by Carbonates

    NARCIS (Netherlands)

    Oele, E.

    1961-01-01

    In the Ordovician sandstones of the Cantabrian Mountains a replacement of the micas by carbonate minerals could be observed. The absence of metamorphic minerals suggests a diagenetic replacement. This is supported by the finding of the same type of replacement in some undisturbed Pliocene sediments

  18. Identification of potential for heat pumps for space heating of houses as replacement for oil-fired boilers; Afdaekning af potentiale for varmepumper til opvarmning af helaarshuse til erstatning for oliefyr

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-15

    The analysis was intended to document and describe the realistic potential for conversion of oil-fired single-family houses to individual heat pumps of the type liquid / water and air / water. The assessment is based on a ''here and now'' condition and evaluates the potential from domestic economic factors. It is an overall analysis, and it has not been possible to analyze in detail the individual heat pump installation. The result of the analysis shows that for 75% of the houses it is not economically viable for the households to convert to a heat pump under the assumed conditions. In 25% of the houses with oil burner (and without access to public supply) it is considered economically viable to convert to a heat pump. About 1/3 of these houses can immediately install a heat pump, while 2/3 of the houses require substantial preparatory steps either in the form of investments in the building envelope and / or in the heat distribution the system. (LN)

  19. Heat-driven spin torques in antiferromagnets

    Science.gov (United States)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  20. Progress towards RF heated steady-state plasma operations on LHD by employing ICRF heating methods and improved divertor plates

    International Nuclear Information System (INIS)

    Kumazawa, R.; Mutoh, T.; Saito, K.

    2008-10-01

    A long pulse plasma discharge experiment was carried out using RF heating power in the Large Helical Device (LHD), a currentless magnetic confining system. Progress in long pulse operation is summarized since the 10th experimental campaign (2006). A scaling relation of the plasma duration time to the applied RF power has been derived from the experimental data so far collected. It indicates that there exists a critical divertor temperature and consequently a critical RF heating power P RFcrit =0.65 MW. The area on the graph of the duration time versus the RF heating power was extended over the scaling relation by replacing divertor plates with new ones with better heat conductivity. The cause of the plasma collapse at the end of the long pulse operation was found to be the penetration of metal impurities. Many thin flakes consisting of heavy metals and graphite in stratified layers were found on the divertor plates and it was thought that they were the cause of impurity metals penetrating into the plasma. In a simulation involving injecting a graphite-coated Fe pellet to the plasma it was found that 230 Eμm in the diameter of the Fe pellet sphere was the critical size which led the plasma to collapse. A mode-conversion heating method was examined in place of the minority ICRF heating which has been employed in almost all the long-pulse plasma discharges. It was found that this method was much better from the viewpoint of achieving uniformity of the plasma heat load to the divertors. It is expected that P RFcrit will be increased by using the mode-conversion heating method. (author)

  1. Technology, applications and modelling of ohmic heating: a review.

    Science.gov (United States)

    Varghese, K Shiby; Pandey, M C; Radhakrishna, K; Bawa, A S

    2014-10-01

    Ohmic heating or Joule heating has immense potential for achieving rapid and uniform heating in foods, providing microbiologically safe and high quality foods. This review discusses the technology behind ohmic heating, the current applications and thermal modeling of the process. The success of ohmic heating depends on the rate of heat generation in the system, the electrical conductivity of the food, electrical field strength, residence time and the method by which the food flows through the system. Ohmic heating is appropriate for processing of particulate and protein rich foods. A vast amount of work is still necessary to understand food properties in order to refine system design and maximize performance of this technology in the field of packaged foods and space food product development. Various economic studies will also play an important role in understanding the overall cost and viability of commercial application of this technology in food processing. Some of the demerits of the technology are also discussed.

  2. Performance analysis of double-effect absorption heat pump cycle using NH

    NARCIS (Netherlands)

    Wang, M.; Infante Ferreira, C.A.

    2017-01-01

    Ionic liquids (ILs), as novel absorbents, draw considerable attention for their potential roles in replacing H2O or LiBr aqueous solutions in conventional NH3/H2O or H2O/LiBr absorption chiller or heat pump cycles. In this paper, NH3/IL working pairs are proposed for implementation in parallel

  3. Electric heating guidelines: power smart home; 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Guidelines, for use by B. C. Hydro, were established for proper planning and design of an electric heating system for residential buildings. The guidebook is divided into five sections: (1) comfort and electric heating systems, (2) contractors` guide to heat loss calculation, (3) imperial heat loss factors, (4) metric heat loss factors, and (5) installation guidelines for electric heating systems. Individual topics discussed include heat loss and the human body, heating systems and comfort, heat loss design, air leakage, and soil conductivity factors. Design considerations and equipment standards were described for the following electric heating systems: electric resistance baseboard systems, forced flow unitary heaters, electric radiant cable in-floor systems, radiant ceiling systems, forced warm air heating systems, furnaces, and heat pumps. 68 tabs., 29 figs.

  4. On the application of the expected log-likelihood gain to decision making in molecular replacement.

    Science.gov (United States)

    Oeffner, Robert D; Afonine, Pavel V; Millán, Claudia; Sammito, Massimo; Usón, Isabel; Read, Randy J; McCoy, Airlie J

    2018-04-01

    Molecular-replacement phasing of macromolecular crystal structures is often fast, but if a molecular-replacement solution is not immediately obtained the crystallographer must judge whether to pursue molecular replacement or to attempt experimental phasing as the quickest path to structure solution. The introduction of the expected log-likelihood gain [eLLG; McCoy et al. (2017), Proc. Natl Acad. Sci. USA, 114, 3637-3641] has given the crystallographer a powerful new tool to aid in making this decision. The eLLG is the log-likelihood gain on intensity [LLGI; Read & McCoy (2016), Acta Cryst. D72, 375-387] expected from a correctly placed model. It is calculated as a sum over the reflections of a function dependent on the fraction of the scattering for which the model accounts, the estimated model coordinate error and the measurement errors in the data. It is shown how the eLLG may be used to answer the question `can I solve my structure by molecular replacement?'. However, this is only the most obvious of the applications of the eLLG. It is also discussed how the eLLG may be used to determine the search order and minimal data requirements for obtaining a molecular-replacement solution using a given model, and for decision making in fragment-based molecular replacement, single-atom molecular replacement and likelihood-guided model pruning.

  5. 47 CFR 13.17 - Replacement license.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Replacement license. 13.17 Section 13.17 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL RADIO OPERATORS General § 13.17 Replacement... request a replacement. The application must be accompanied by the required fee and submitted to the...

  6. 24 CFR 891.605 - Replacement reserve.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Replacement reserve. 891.605... 8 Assistance § 891.605 Replacement reserve. (a) Establishment of reserve. The Borrower shall establish and maintain a replacement reserve to aid in funding extraordinary maintenance, and repair and...

  7. Plastic heat exchangers: a state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D; Holtz, R E; Koopman, R N; Marciniak, T J; MacFarlane, D R

    1979-07-01

    Significant increases in energy utilization efficiency can be achieved through the recovery of low-temperature rejected heat. This energy conserving possibility provides incentive for the development of heat exchangers which could be employed in applications where conventional units cannot be used. Some unique anticorrosion and nonstick characteristics of plastics make this material very attractive for heat recovery where condensation, especially sulfuric acid, and fouling occur. Some of the unique characteristics of plastics led to the commercial success of DuPont's heat exchangers utilizing polytetrafluoroethylene (trade name Teflon) tubes. Attributes which were exploited in this application were the extreme chemical inertness of the material and its flexibility, which enabled utilization in odd-shaped spaces. The wide variety of polymeric materials available ensures chemical inertness for almost any application. Lower cost, compoundability with fillers to improve thermal/mechanical properties, and versatile fabrication methods are incentives for many uses. Also, since many plastics resist corrosion, they can be employed in lower temperature applications (< 436 K), where condensation can occur and metal units have been unable to function. It is clear that if application and design can be merged to produce a cost-effective alternate to present methods of handling low-temperature rejected heat, then there is significant incentive for plastic heat exchangers, to replace traditional metallic heat exchangers or to be used in services where metals are totally unsuited.

  8. 7 CFR 3015.167 - Replacement of equipment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Replacement of equipment. 3015.167 Section 3015.167..., DEPARTMENT OF AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Property § 3015.167 Replacement of equipment. (a) If needed, equipment may be exchanged for replacement equipment. Replacement of equipment may be...

  9. Solar energy and global heat balance of a city

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, Claude-Alain [Ecole Polytechnique Federale, Lab. d' Energie Solaire et de Physique du Batiment, Lausanne (Switzerland)

    2001-07-01

    The global energy balance of a city involves numerous energy flows and is rather complex. It includes, among others, the absorbed solar radiation and the energy fuels on one hand, and the heat loss to the environment --- by radiation, convection and evaporation --- on the other hand. This balance generally results in a temperature in the town that is slightly higher than in the surrounding country. Using solar energy saves imported fuels on one hand, but increases the absorption of solar radiation on the other hand. Simple, steady state models are used to assess the change of heat released to the environment when replacing the use of classical fuels by solar powered plants, on both the global and city scale. The conclusion is that, in most cases, this will reduce the heat released to the environment. The exception is cooling, for which a good solar alternative does not exist today. (Author)

  10. INULIN AS A PREBIOTIC AND FAT REPLACER IN MEAT PRODUCTS

    Directory of Open Access Journals (Sweden)

    Dragan Vasilev

    2017-01-01

    Full Text Available Fat reduction in meat products is demanded by consumers concerninghealth issues but represents a serious challenge for meat industry as fatty tissue plays an important role for the products properties. Because of that, a special attention is paid to the substances that could replace fatty tissue in meat products. Inulin represents a non digestible fructooligosaccharide that on the one hand represents a good prebiotic substance and from the other hand posses such technological propeties that make it a good fat replacer. In  aqueous systems inulin forms a gel having a structure similar to fats, it has neutral taste and smell and have no impact on the aroma of meat products. Inulin could be added to meat products in form of powder as well as a water suspension. Low fat fermented sausages with good sensory quality could be produced with the addition of inulin as a fat replacer, and such products have abit lower pH- and aw-value and contain a higher number of lactic acid bacteria then conventional products. In heat treated sausages, inulin improves water holding capacity and stability of the low fat meat batter, which reduces cooking loss and shows no adverse effect on the sensory properties of the low fat product. But, there are also certain limitations because it should be paid attention to the degree of polymerization as well as the amount of inulin added the product. Otherwise, on the one hand there could be some adverse effectson sensory properties of the product and from the other hand an excessive amount of inulin could lead to digestive problems by consumers.

  11. Study on Relative COP Changes with Increasing Heat Input Temperatures of Double Effect Steam Absorption Chillers

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2016-01-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers are mainly of double effect type. The COP of double effect varies from 0.7 to 1.2 depending on operation and maintenance practices of the chillers. Heat input to the chillers during operations could have impact on the COP of the chillers. This study is on relative COP changes with increasing the heat input temperatures for a steam absorption chiller at a gas fueled cogeneration plant. Reversible COP analysis and zero order model were used for evaluating COP of the chiller for 118 days operation period. Results indicate increasing COP trends for both the reversible COP and zero model COP. Although the zero model COP are within the range of double effect absorption chiller, it is not so for the actual COP. The actual COP is below the range of normal double effect COP. It is recommended that economic replacement analysis to be undertaken to assess the feasibility either to repair or replace the existing absorption chiller.

  12. Critical evaluation of molybdenum and its alloys for use in space reactor core heat pipes

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1981-01-01

    The choice of pure molybdenum as the prime candidate material for space reactor core heat pipes is examined, and the advantages and disadvantages of this material are brought into focus. Even though pure molybdenum heat pipes have been built and tested, this metal's high ductile-brittle transition temperature and modest creep strength place significant design restrictions on a core heat pipe made from it. Molybdenum alloys are examined with regard to their promise as potential replacements for pure molybdenum. The properties of TZM and molybdenum-rhenium alloys are examined, and it appears that Mo-Re alloys with 10 to 15 wt % rhenium offer the most advantage as an alternative to pure molybdenum in space reactor core heat pipes

  13. Playing Hot and Cold: How Can Russian Heat Policy Find Its Way Toward Energy Efficiency?

    Energy Technology Data Exchange (ETDEWEB)

    Roshchanka, Volha; Evans, Meredydd

    2012-09-15

    The Russian district heating has a large energy-saving potential, and, therefore, need for investments. The scale of needed investments is significant: the government estimates that 70 percent of the district heating infrastructure needs replacement or maintenance, a reflection of decades of under investment. Government budgets will be unable to cover them, and iInvolvingement ofthe private industry will be critical to attracting the necessary investementis necessary. For private parties to invest in district heating facilities across Russia, and not only in pockets of already successful enterprises, regulators have to develop a comprehensive policy that works district heating systems under various conditionscost-reflective tariffs, metering, incentives for efficiency and social support for the neediest (instead of subsidies for all).

  14. Heat transfer in a one-dimensional mixed convection loop

    International Nuclear Information System (INIS)

    Kim, Min Joon; Lee, Yong Bum; Kim, Yong Kyun; Kim, Jong Man; Nam, Ho Yun

    1999-01-01

    Effects of non-uniform heating in the core and additional forced circulation during decay heat removal operation are studied with a simplified mixed convection loop. The heat transfer coefficient is calculated analytically and measured experimentally. The analytic solution obtained from a one-dimensional heat equation is found to agree well with the experimental results. The effects of the non-uniform heating and the forced circulation are discussed

  15. 30 CFR 800.30 - Replacement of bonds.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Replacement of bonds. 800.30 Section 800.30... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS § 800.30 Replacement... replacement performance bonds. Replacement of a performance bond pursuant to this section shall not constitute...

  16. 24 CFR 572.125 - Replacement reserves.

    Science.gov (United States)

    2010-04-01

    ...) Homeownership Program Requirements-Implementation Grants § 572.125 Replacement reserves. (a) Purpose. A single replacement reserve may be established for the homeownership program only if HUD determines it is necessary to... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Replacement reserves. 572.125...

  17. Norwegian households' perception of wood pellet stove compared to air-to-air heat pump and electric heating

    International Nuclear Information System (INIS)

    Sopha, Bertha Maya; Kloeckner, Christian A.; Skjevrak, Geir; Hertwich, Edgar G.

    2010-01-01

    In 2003, the high dependency on electric heating combined with the high electricity price prompted a significant number of Norwegian households to consider alternative heating systems. The government introduced economic support for wood pellet heating and heat pumps. In contrast to the fast growing heat pump market, this financial support has not resulted in a widespread adoption of wood pellet heating. This paper studies factors that influence the choice of heating system based on Norwegian households' perceptions. Electric heating, heat pump and wood pellet heating were compared, with a special focus on wood pellet heating. This study was conducted as a questionnaire survey on two independent samples. The first sample consisted of 188 randomly chosen Norwegian households, mainly using electric heating; the second sample consisted of 461 households using wood pellet heating. Our results show that socio-demographic factors, communication among households, the perceived importance of heating system attributes, and the applied decision strategy all influence the Norwegian homeowners. The significance of these factors differs between the two samples and the preferred type of anticipated future heating system. Strategies for possible interventions and policy initiatives are discussed.

  18. Achieving low return temperature for domestic hot water preparation by ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Svendsen, Svend

    2017-01-01

    District heating (DH) is a cost-effective method of heat supply, especially to area with high heat density. Ultra-low-temperature district heating (ULTDH) is defined with supply temperature at 35-45 degrees C. It aims at making utmost use of the available low-temperature energy sources. In order...... to achieve high efficiency of the ULTDH system, the return temperature should be as low as possible. For the energy-efficient buildings in the future, it is feasible to use ULTDH to cover the space heating demand. However, considering the comfort and hygiene requirements of domestic hot water (DHW...... lower return temperature and higher efficiency for DHW supply, an innovative substation was devised, which replaced the bypass with an instantaneous heat exchanger and a micro electric storage tank. The energy performance of the proposed substation and the resulting benefits for the DH system...

  19. Influence of heating temperature on bainite transformation proceeding in chromium-nickel-molybdenum steels

    International Nuclear Information System (INIS)

    Kaletin, Yu.M.; Kaletin, A.Yu.

    1983-01-01

    The purpose of the present paper is to investigate the effect of heating and cooling from austenization temperature on development of bainite transformation in 37KhN3MFA and 18Kh2N4MA structural alloyed steels. The metallographical analysis of specimens has revealed that first crystals of bainite under slow heating up to 770-790 deg C appear at the temperature of about 500 deg C and at 475 deg C there has been much bainite over the whole cross section of the specimen. It is revealed that an increase of heating temperature and cooling rate replace the starting point of bainite transformation upwards. The strongest displacement of the point Bsub(S) into hogh-temperature range takes place after heating steel with the initial bainite structure in intercritical temperature range

  20. Heat flow method

    International Nuclear Information System (INIS)

    Chen Yunmei

    1994-01-01

    In this paper we study the heat flow of harmonic maps between two compact Riemannian manifolds. The global existence of the regular solution and the weak solution, as well as the blow up of the weak solution are discussed. (author). 14 refs

  1. Long-life slab replacement concrete.

    Science.gov (United States)

    2015-03-01

    This research was initiated following reports of high incidence of cracking on FDOT concrete pavement replacement : slab projects. Field slabs were instrumented for data acquisition from high-early-strength concrete pavement : replacement slabs place...

  2. Heat Transfer Basics and Practice

    CERN Document Server

    Böckh, Peter

    2012-01-01

    The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author’s experience indicates that students, after 40 lectures and exercises ...

  3. Nuclear reactor fuel replacement system

    International Nuclear Information System (INIS)

    Kayano, Hiroyuki; Joge, Toshio.

    1976-01-01

    Object: To permit the direction in which a fuel replacement unit is moving to be monitored by the operator. Structure: When a fuel replacement unit approaches an intermediate goal position preset in the path of movement, renewal of data display on a goal position indicator is made every time the goal position is changed. With this renewal, the prevailing direction of movement of the fuel replacement unit can be monitored by the operator. When the control of movement is initiated, the co-ordinates of the intermediate goal point A are displayed on a goal position indicator. When the replacement unit reaches point A, the co-ordinates of the next intermediate point B are displayed, and upon reaching point B the co-ordinates of the (last) goal point C are displayed. (Nakamura, S.)

  4. 24 CFR 970.31 - Replacement units.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Replacement units. 970.31 Section... PUBLIC HOUSING PROGRAM-DEMOLITION OR DISPOSITION OF PUBLIC HOUSING PROJECTS § 970.31 Replacement units. Notwithstanding any other provision of law, replacement public housing units may be built on the original public...

  5. Integrated multiscale simulation of combined heat and power based district heating system

    International Nuclear Information System (INIS)

    Li, Peifeng; Nord, Natasa; Ertesvåg, Ivar Ståle; Ge, Zhihua; Yang, Zhiping; Yang, Yongping

    2015-01-01

    Highlights: • Simulation of power plant, district heating network and heat users in detail and integrated. • Coupled calculation and analysis of the heat and pressure losses of the district heating network. • District heating is not preferable for very low heat load due to relatively high heat loss. • Lower design supply temperatures of the district heating network give higher system efficiency. - Abstract: Many studies have been carried out separately on combined heat and power and district heating. However, little work has been done considering the heat source, the district heating network and the heat users simultaneously, especially when it comes to the heating system with large-scale combined heat and power plant. For the purpose of energy conservation, it is very important to know well the system performance of the integrated heating system from the very primary fuel input to the terminal heat users. This paper set up a model of 300 MW electric power rated air-cooled combined heat and power plant using Ebsilon software, which was validated according to the design data from the turbine manufacturer. Then, the model of heating network and heat users were developed based on the fundamental theories of fluid mechanics and heat transfer. Finally the combined heat and power based district heating system was obtained and the system performances within multiscale scope of the system were analyzed using the developed Ebsilon model. Topics with regard to the heat loss, the pressure drop, the pump power consumption and the supply temperatures of the district heating network were discussed. Besides, the operational issues of the integrated system were also researched. Several useful conclusions were drawn. It was found that a lower design primary supply temperature of the district heating network would give a higher seasonal energy efficiency of the integrated system throughout the whole heating season. Moreover, it was not always right to relate low design

  6. The welfare implications of using exotic tortoises as ecological replacements.

    Science.gov (United States)

    Griffiths, Christine J; Zuël, Nicolas; Tatayah, Vikash; Jones, Carl G; Griffiths, Owen; Harris, Stephen

    2012-01-01

    Ecological replacement involves the introduction of non-native species to habitats beyond their historical range, a factor identified as increasing the risk of failure for translocations. Yet the effectiveness and success of ecological replacement rely in part on the ability of translocatees to adapt, survive and potentially reproduce in a novel environment. We discuss the welfare aspects of translocating captive-reared non-native tortoises, Aldabrachelys gigantea and Astrochelys radiata, to two offshore Mauritian islands, and the costs and success of the projects to date. Because tortoises are long-lived, late-maturing reptiles, we assessed the progress of the translocation by monitoring the survival, health, growth, and breeding by the founders. Between 2000 and 2011, a total of 26 A. gigantea were introduced to Ile aux Aigrettes, and in 2007 twelve sexually immature A. gigantea and twelve male A. radiata were introduced to Round Island, Mauritius. Annual mortality rates were low, with most animals either maintaining or gaining weight. A minimum of 529 hatchlings were produced on Ile aux Aigrettes in 11 years; there was no potential for breeding on Round Island. Project costs were low. We attribute the success of these introductions to the tortoises' generalist diet, habitat requirements, and innate behaviour. Feasibility analyses for ecological replacement and assisted colonisation projects should consider the candidate species' welfare during translocation and in its recipient environment. Our study provides a useful model for how this should be done. In addition to serving as ecological replacements for extinct Mauritian tortoises, we found that releasing small numbers of captive-reared A. gigantea and A. radiata is cost-effective and successful in the short term. The ability to release small numbers of animals is a particularly important attribute for ecological replacement projects since it reduces the potential risk and controversy associated with

  7. The welfare implications of using exotic tortoises as ecological replacements.

    Directory of Open Access Journals (Sweden)

    Christine J Griffiths

    Full Text Available Ecological replacement involves the introduction of non-native species to habitats beyond their historical range, a factor identified as increasing the risk of failure for translocations. Yet the effectiveness and success of ecological replacement rely in part on the ability of translocatees to adapt, survive and potentially reproduce in a novel environment. We discuss the welfare aspects of translocating captive-reared non-native tortoises, Aldabrachelys gigantea and Astrochelys radiata, to two offshore Mauritian islands, and the costs and success of the projects to date.Because tortoises are long-lived, late-maturing reptiles, we assessed the progress of the translocation by monitoring the survival, health, growth, and breeding by the founders. Between 2000 and 2011, a total of 26 A. gigantea were introduced to Ile aux Aigrettes, and in 2007 twelve sexually immature A. gigantea and twelve male A. radiata were introduced to Round Island, Mauritius. Annual mortality rates were low, with most animals either maintaining or gaining weight. A minimum of 529 hatchlings were produced on Ile aux Aigrettes in 11 years; there was no potential for breeding on Round Island. Project costs were low. We attribute the success of these introductions to the tortoises' generalist diet, habitat requirements, and innate behaviour.Feasibility analyses for ecological replacement and assisted colonisation projects should consider the candidate species' welfare during translocation and in its recipient environment. Our study provides a useful model for how this should be done. In addition to serving as ecological replacements for extinct Mauritian tortoises, we found that releasing small numbers of captive-reared A. gigantea and A. radiata is cost-effective and successful in the short term. The ability to release small numbers of animals is a particularly important attribute for ecological replacement projects since it reduces the potential risk and controversy

  8. Deep Heat Mining - Development of the hot dry rock and hot wet rock technologies for power and heat production in Switzerland; Deep Heat Mining. Entwicklung der Hot-Dry-Rock / Hot-Wet-Rock Technologie zur Strom- und Waermeproduktion in der Schweiz, insbesondere Deep Heat Mining, Basel

    Energy Technology Data Exchange (ETDEWEB)

    Haering, M. O.; Hopkirk, R. J.

    2003-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the progress and achievements made for two heat mining projects in Basle and Geneva. Work initialised at further sites in southern Switzerland and in the Bernese 'Oberland' alpine area is also mentioned. Project organisation and planning topics are examined. Seismic monitoring aspects are discussed and first practical studies on using the geothermal heat in Basle using hybrid energy conversion systems are discussed. For the Geneva project, details on site selection are given and ideas on combined geothermal and gas turbine plant are discussed.

  9. 31 CFR 361.8 - Claim for replacement.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Claim for replacement. 361.8 Section... § 361.8 Claim for replacement. Claim for replacement shall be made in writing to the Secretary, to the..., Parkersburg, WV 26106-1328. The claim, accompanied by a recommendation regarding the manner of replacement...

  10. Compilation of information on modeling of inductively heated cold crucible melters

    International Nuclear Information System (INIS)

    Lessor, D.L.

    1996-03-01

    The objective of this communication, Phase B of a two-part report, is to present information on modeling capabilities for inductively heated cold crucible melters, a concept applicable to waste immobilization. Inductively heated melters are those in which heat is generated using coils around, rather than electrodes within, the material to be heated. Cold crucible or skull melters are those in which the melted material is confined within unmelted material of the same composition. This phase of the report complements and supplements Phase A by Loren Eyler, specifically by giving additional information on modeling capabilities for the inductively heated melter concept. Eyler discussed electrically heated melter modeling capabilities, emphasizing heating by electrodes within the melt or on crucible walls. Eyler also discussed requirements and resources for the computational fluid dynamics, heat flow, radiation effects, and boundary conditions in melter modeling; the reader is referred to Eyler's discussion of these. This report is intended for use in the High Level Waste (HLW) melter program at Hanford. We sought any modeling capabilities useful to the HLW program, whether through contracted research, code license for operation by Department of Energy laboratories, or existing codes and modeling expertise within DOE

  11. Effect of growth hormone replacement therapy on pituitary hormone secretion and hormone replacement therapies in GHD adults

    DEFF Research Database (Denmark)

    Hubina, Erika; Mersebach, Henriette; Rasmussen, Ase Krogh

    2004-01-01

    We tested the impact of commencement of GH replacement therapy in GH-deficient (GHD) adults on the circulating levels of other anterior pituitary and peripheral hormones and the need for re-evaluation of other hormone replacement therapies, especially the need for dose changes.......We tested the impact of commencement of GH replacement therapy in GH-deficient (GHD) adults on the circulating levels of other anterior pituitary and peripheral hormones and the need for re-evaluation of other hormone replacement therapies, especially the need for dose changes....

  12. 24 CFR 891.745 - Replacement reserve.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Replacement reserve. 891.745... and Individuals-Section 162 Assistance § 891.745 Replacement reserve. The general requirements for the replacement reserve are provided in § 891.605. For projects funded under §§ 891.655 through 891.790, the...

  13. Minewater heat recovery project. Final Technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-04-01

    This report consists of three sections: (1) Design, experimental testing and performance analysis of the 20-ft long DBHE (Downhole Bundle Heat Exchanger); (2) Modified design of mine water heat exchanger; and (3) Performance tests on mine water heat exchanger. Appendices summarize design calculations, discuss the scope of the work tasks, and present a diary of the progress throughout the research and development project.

  14. Definition of a remuneration system for heat from renewable resources; Ausgestaltung einer Einspeiseverguetung fuer erneuerbare Waerme

    Energy Technology Data Exchange (ETDEWEB)

    Dettli, R.; Ott, W.; Philippen, D.; Umbricht, A.

    2009-06-15

    This report for the Swiss Federal Office of Energy (SFOE) deals with proposals for a remuneration system for heat obtained from renewable resources. Local and regional district heating systems cover around three percent of Swiss heating needs. The authors estimate that, if these systems were to be operated completely using renewable resources such as biomass, ambient heat and the renewable portion of heat from waste incineration, around seven per cent of needs could be met. Further, around 10,000 heating systems with a power of more than 350 kW could be operated with renewables. A further potential for the use of renewable heating resources can be found in wastewater treatment plants and industrial waste heat. Various obstacles and restraints on the use of renewable resources in the heating area are discussed. The idea of providing a cost-covering remuneration system for heat is discussed and compared with that for renewable electricity. The proposed system is discussed, which would provide investment subsidies, risk-coverage and project development subsidies. The report discusses the results of a market analysis and the differences to be found between the markets for electricity and heat. Existing promotional programs are noted and the aims of a possible remuneration system are discussed. A concept for a promotion program for renewable heat generation and the use of waste heat is introduced. The installations to be promoted and the amount of remuneration to be paid out are discussed. Finally, the costs and the effects of the proposed promotion scheme are discussed. A comprehensive appendix provides details on the proposed system and provides information on market volume, energy resources, networks and infrastructure, providers of heat energy, heat consumers and general conditions as far as factors such as pricing and legislation are concerned. Finally, the 'Climate Cent' foundation is commented on.

  15. Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS

    Science.gov (United States)

    Wang, Yongwei; Huai, Xiulan

    2018-04-01

    The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer.

  16. Heating-Business - The upward trend continues

    International Nuclear Information System (INIS)

    Wartburg, L. von

    2006-01-01

    This article presents the results of interviews carried out with eight leading heating experts on current developments in the heating business in Switzerland. The author comments on how the installers of heating systems are profiting from the good situation to be found in the building industry in general. Apart from refurbishment projects, the increasing interest in renewable forms of energy is commented on. New developments are covered, as are the interviewee's opinions on further market developments. Also the effects on market structure caused by increasing prices for heating oil are discussed. Finally the interviewee's opinions on future technological developments are presented

  17. Evaluation of tilapia skin gelatin as a mammalian gelatin replacer in acid milk gels and low-fat stirred yogurt.

    Science.gov (United States)

    Pang, Zhihua; Deeth, Hilton; Yang, Hongshun; Prakash, Sangeeta; Bansal, Nidhi

    2017-05-01

    Tilapia skin gelatin (TSG) was studied in a 3-stage process (cooling, annealing, and heating) for pure gelatin gels and in a 4-stage process (acidification, cooling, annealing, and heating) for acid milk gels and cultured yogurt. The aim was to evaluate the use of TSG as a replacement for mammalian gelatin in yogurt. In pure TSG gels, stronger gels with higher melting temperatures were formed with increasing TSG concentrations. Compared with bovine gelatin (BG), which gelled at a concentration of 2.5%, TSG gels had lower gelling (14.1°C) and melting (24°C) temperatures but comparable storage moduli during annealing. In acid milk gels, addition of TSG increased the firmness of the gels with increasing concentration. Gelling and melting points of TSG in milk gels were observed at sufficient concentrations during cooling and heating. Strands and sheets were observed in the electron micrographs of milk gels with 1% TSG and a very dense structure was observed with 2.5% TSG. Yogurt with 0.4% TSG had similar viscosity, consistency, pseudoplasticity, and thixotropy as yogurt containing 0.4% BG; no difference was perceived by sensory panelists according to a triangle test. Addition of 0.4% TSG completely prevented whey separation from the acid milk gel and yogurt. The results suggest that TSG could be a suitable replacement for mammalian gelatin in low-fat stirred yogurt. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Properties of fresh and hardened sustainable concrete due to the use of palm oil fuel ash as cement replacement

    Science.gov (United States)

    Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.

    2018-04-01

    Palm oil fuel ash (POFA) is a by-product resulting from the combustion of palm oil waste such as palm oil shell and empty fruit bunches to generate electricity in the palm oil mills. Considerable quantities of POFA thus generated, accumulate in the open fields and landfills, which causes atmospheric pollution in the form of generating toxic gases. Firstly, to protect the environment; and secondly, having excellent properties for this purpose; POFA can be and has been used as partial cement replacement in concrete preparation. Therefore, this paper compiles the results obtained from previous studies that address the properties of concrete containing POFA as cement replacement in fresh and hardened states. The results indicate that there is a great potential to using POFA as cement replacement because of its ability to improve compressive strength, reduce hydration heat of cement mortar and positively affect other fresh and hardened concrete properties. The paper recommends that conducting further studies to exploit high volume of POFA along with other additives as cement replacement while maintaining high quality of concrete can help minimize CO2 emissions due to concrete.

  19. Experimental investigations of heat transfer in thermo active building systems in combination with suspended ceilings

    DEFF Research Database (Denmark)

    Alvarez, Maria Alonso; Hviid, Christian Anker; Weitzmann, Peter

    2014-01-01

    buildings to cover acoustic requirements hinders the use of TABS. To measure the reduction of the heat capacity, several experiments are performed in a room equipped with TABS in the upper deck and mixing ventilation. The heat transfer is measured for different suspended ceiling covering percentages...... that the ventilation rate has a high influence on the convective heat capacity. When the ventilation rate is increased from 1.7 h-1 to 2.9 h-1, the heat transfer coefficient increases up to 16% for the same occupancy and suspended ceiling layout.......Thermo Active Building Systems (TABS), described as radiant heating or cooling systems with pipes embedded in the building structure, represent a sustainable alternative to replace conventional systems by using source temperatures close to room temperatures. The use of suspended ceiling in office...

  20. Decentralized substations for low-temperature district heating with no Legionella risk, and low return temperatures

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Li, Hongwei; Svendsen, Svend

    2016-01-01

    . From the results, realizing LTDH by the decentralized substation unit, 30% of the annual distribution heat loss inside the building can be saved compared to a conventional system with medium-temperature district heating. Replacing the bypass pipe with an in-line supply pipe and a heat pump...... with domestic hot water (DHW) circulation. In this study, a system with decentralized substations was analysed as a solution to this problem. Furthermore, a modification for the decentralized substation system were proposed in order to reduce the average return temperature. Models of conventional system...... with medium-temperature district heating, decentralized substation system with LTDH, and innovative decentralized substation system with LTDH were built based on the information of a case building. The annual distribution heat loss and the operating costs of the three scenarios were calculated and compared...