WorldWideScience

Sample records for repetitively pulsed test

  1. Schlieren Imaging and Pulsed Detonation Engine Testing of Ignition by a Nanosecond Repetitively Pulsed Discharge

    Science.gov (United States)

    2016-05-16

    effect of the plasma is to produce active species, which quench to produce O atoms and release heat. The O atoms go on to initiate the fuel oxidation ...strong effect on ignition time for mixtures with MIE larger than the individual pulse energy. Stoichiometric ethylene –air has an MIE of 0.096 mJ... ethylene is so fast with just a single pulse, the effect of additional pulses is not noticeable on the time scale of the present experiments. In addition

  2. Testing of super conducting low-beta 704 Mhz cavities at 50 Hz pulse repetition rate in view of SPL- first results

    CERN Document Server

    Höfle, W; Lollierou, J; Valuch, D; Chel, S; Devanz, G; Desmons, M; Piquet, O; Paparella, R; Pierini, P

    2010-01-01

    In the framework of the preparatory phase for the luminosity upgrade of the LHC (SLHC-PP ) it is foreseen to characterize two superconducting RF cavities and demonstrate compliance of the required SPL field stability in amplitude and phase using a prototype LLRF system. We report on the preparation for testing of two superconducting low-beta cavities at 50 Hz pulse repetition rate including the setting-up of the low level RF control system to evaluate the performance of the piezo-tuning system and cavity field stability in amplitude and phase. Results from tests with 50 Hz pulse repetition rate are presented. Simulations of the RF system will be used to predict the necessary specifications for power and bandwidth to control the cavity field and derive specifications for the RF system and its control. Exemplary results of the simulation are presented.

  3. Repetitively Pulsed Backward-Wave Oscillator Investigations

    Science.gov (United States)

    1994-03-31

    and the FE phase by applying a’ Y pulsed electric field , Fig. 1. Sawyer-Tower circuit for displaying (4) partial reversal of P. inside the P-E...at temper- a pulsed electric field to switch the material atures up to the Curie temperature. Tests on into the PE or APE phase. With this combina- a

  4. Breakdown behavior of electronics at variable pulse repetition rates

    OpenAIRE

    Korte, S.; H. Garbe

    2006-01-01

    The breakdown behavior of electronics exposed to single transient electromagnetic pulses is subject of investigations for several years. State-of-the-art pulse generators additionally provide the possibility to generate pulse sequences with variable pulse repetition rate. In this article the influence of this repetition rate variation on the breakdown behavior of electronic systems is described. For this purpose microcontroller systems are examined during line-led exposure to pulses with repe...

  5. Properties of water surface discharge at different pulse repetition rates

    Energy Technology Data Exchange (ETDEWEB)

    Ruma,; Yoshihara, K. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Hosseini, S. H. R., E-mail: hosseini@kumamoto-u.ac.jp; Sakugawa, T.; Akiyama, H. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Akiyama, M. [Department of Electrical and Electronic Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Lukeš, P. [Institute of Plasma Physics, AS CR, Prague, Prague 18200 (Czech Republic)

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  6. Real-time energy measurement of high repetition rate ultrashort laser pulses using pulse integration and FPGA processing.

    Science.gov (United States)

    Tang, Qi-Jie; Yang, Dong-Xu; Wang, Jian; Feng, Yi; Zhang, Hong-Fei; Chen, Teng-Yun

    2016-11-01

    Real-time energy measurement using pulse integration method for high repetition rate ultrashort laser pulses based on FPGA (Field-Programmable Gate Array) and high-speed pipeline ADC (Analog-to-Digital Convertor) is introduced in this paper. There are two parts contained in this method: pulse integration and real-time data processing. The pulse integration circuit will convert the pulse to the step type signals which are linear to the laser pulse energy. Through the real-time data processing part, the amplitude of the step signals will be obtained by ADC sampling and conducting calculation in real time in FPGA. The test result shows that the method with good linearity (4.770%) and without pulse measurement missing is suitable for ultrashort laser pulses with high repetition rate up to 100 MHz.

  7. Real-time energy measurement of high repetition rate ultrashort laser pulses using pulse integration and FPGA processing

    Science.gov (United States)

    Tang, Qi-jie; Yang, Dong-xu; Wang, Jian; Feng, Yi; Zhang, Hong-fei; Chen, Teng-yun

    2016-11-01

    Real-time energy measurement using pulse integration method for high repetition rate ultrashort laser pulses based on FPGA (Field-Programmable Gate Array) and high-speed pipeline ADC (Analog-to-Digital Convertor) is introduced in this paper. There are two parts contained in this method: pulse integration and real-time data processing. The pulse integration circuit will convert the pulse to the step type signals which are linear to the laser pulse energy. Through the real-time data processing part, the amplitude of the step signals will be obtained by ADC sampling and conducting calculation in real time in FPGA. The test result shows that the method with good linearity (4.770%) and without pulse measurement missing is suitable for ultrashort laser pulses with high repetition rate up to 100 MHz.

  8. Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication.

    Science.gov (United States)

    Chen, Jian; Sickler, Jason W; Fendel, Peter; Ippen, Erich P; Kärtner, Franz X; Wilken, Tobias; Holzwarth, Ronald; Hänsch, Theodor W

    2008-05-01

    Generation of low-timing-jitter 150 fs pulse trains at 1560 nm with 2 GHz repetition rate is demonstrated by locking a 200 MHz fundamental polarization additive-pulse mode-locked erbium fiber laser to high-finesse external Fabry-Perot cavities. The timing jitter and relative intensity noise of the repetition-rate multiplied pulse train are investigated.

  9. A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source

    Science.gov (United States)

    Xun, Tao; Fan, Yu-wei; Yang, Han-wu; Zhang, Zi-cheng; Chen, Dong-qun; Zhang, Jian-de

    2017-06-01

    A compact L-band sealed-tube magnetically insulated transmission line oscillator (MILO) has been developed that does not require bulky external vacuum pump for repetitive operations. This device with a ceramic insulated vacuum interface, a carbon fiber array cathode, and non-evaporable getters has a base vacuum pressure in the low 10-6 Pa range. A dynamic 3-D Monte-Carlo model for the molecular flow movement and collision was setup for the MILO chamber. The pulse desorption, gas evolution, and pressure distribution were exactly simulated. In the 5 Hz repetition rate experiments, using a 600 kV diode voltage and 48 kA beam current, the average radiated microwave power for 25 shots is about 3.4 GW in 45 ns pulse duration. The maximum equilibrium pressure is below 4.0 × 10-2 Pa, and no pulse shortening limitations are observed during the repetitive test in the sealed-tube condition.

  10. Repetitive transcranial magnetic stimulator with controllable pulse parameters

    Science.gov (United States)

    Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  11. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    Science.gov (United States)

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  12. High voltage high repetition rate pulse using Marx topology

    Science.gov (United States)

    Hakki, A.; Kashapov, N.

    2015-06-01

    The paper describes Marx topology using MOSFET transistors. Marx circuit with 10 stages has been done, to obtain pulses about 5.5KV amplitude, and the width of the pulses was about 30μsec with a high repetition rate (PPS > 100), Vdc = 535VDC is the input voltage for supplying the Marx circuit. Two Ferrite ring core transformers were used to control the MOSFET transistors of the Marx circuit (the first transformer to control the charging MOSFET transistors, the second transformer to control the discharging MOSFET transistors).

  13. Power neodymium-glass amplifier of a repetitively pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2011-11-30

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 Multiplication-Sign 25 mm and a {approx}40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 {mu}s. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass {approx}3.2, the linear gain {approx}0.031 cm{sup -1} with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm{sup -3}. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4{lambda} ({lambda} = 0.63 {mu}m is the probing radiation wavelength).

  14. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    Energy Technology Data Exchange (ETDEWEB)

    Velikanov, S D; Zaretskiy, N A; Zotov, E A; Maneshkin, A A; Chuvatkin, R S; Yutkin, I M [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation); Kozlovsky, V I; Korostelin, Yu V; Krokhin, O N; Podmar' kov, Yu P; Savinova, S A; Skasyrsky, Ya K; Frolov, M P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-01-31

    The characteristics of a Fe:ZnSe laser pumped by a single-pulse free-running Er : YAG laser and a repetitively pulsed HF laser are presented. An output energy of 4.9 J is achieved in the case of liquid-nitrogen cooling of the Fe{sup 2+}:ZnSe active laser element longitudinally pumped by an Er:YAG laser with a pulse duration of 1 ms and an energy up to 15 J. The laser efficiency with respect to the absorbed energy is 47%. The output pulse energy at room temperature is 53 mJ. The decrease in the output energy is explained by a strong temperature dependence of the upper laser level lifetime and by pulsed heating of the active element. The temperature dependence of the upper laser level lifetime is used to determine the pump parameters needed to achieve high pulse energies at room temperature. Stable repetitively-pulsed operation of the Fe{sup 2+}:ZnSe laser at room temperature with an average power of 2.4 W and a maximum pulse energy of 14 mJ is achieved upon pumping by a 1-s train of 100-ns HF laser pulses with a repetition rate of 200 Hz. (lasers)

  15. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    Science.gov (United States)

    Velikanov, S. D.; Zaretskiy, N. A.; Zotov, E. A.; Kozlovsky, V. I.; Korostelin, Yu V.; Krokhin, O. N.; Maneshkin, A. A.; Podmar'kov, Yu P.; Savinova, S. A.; Skasyrsky, Ya K.; Frolov, M. P.; Chuvatkin, R. S.; Yutkin, I. M.

    2015-01-01

    The characteristics of a Fe:ZnSe laser pumped by a single-pulse free-running Er : YAG laser and a repetitively pulsed HF laser are presented. An output energy of 4.9 J is achieved in the case of liquid-nitrogen cooling of the Fe2+:ZnSe active laser element longitudinally pumped by an Er:YAG laser with a pulse duration of 1 ms and an energy up to 15 J. The laser efficiency with respect to the absorbed energy is 47%. The output pulse energy at room temperature is 53 mJ. The decrease in the output energy is explained by a strong temperature dependence of the upper laser level lifetime and by pulsed heating of the active element. The temperature dependence of the upper laser level lifetime is used to determine the pump parameters needed to achieve high pulse energies at room temperature. Stable repetitively-pulsed operation of the Fe2+:ZnSe laser at room temperature with an average power of 2.4 W and a maximum pulse energy of 14 mJ is achieved upon pumping by a 1-s train of 100-ns HF laser pulses with a repetition rate of 200 Hz.

  16. Spectroscopic Investigation of a Repetitively-Pulsed Nanosecond Discharge

    Science.gov (United States)

    Yee, Benjamin T.

    This work reports on an investigation of a repetitively-pulsed nanosecond discharge (RPND) in helium over a range of 0.3-16.0 Torr. The discharge was studied experimentally via laser-absorption spectroscopy and opticals emission spectroscopy measurements. In concert with the experimental campaign, a global model of a helium plasma was developed with the aid of particle-in-cell simulations. The global model was then used to predict the population kinetics and emissions of the RPND. Synthesis of the results provided new data and insights on the development of the RPND. Among the results were direct measurements of the triplet metastable states during the excitation period. This period was found to be unexpectedly long at low pressures (less than or equal to 1.0 Torr), suggesting an excess in high-energy electrons as compared to an equilibrium distribution. Other phenomena such as a prominent return stroke and additional energy deposition by reflections in the transmission line were also identified. Estimates of the electric field and electron temperatures were obtained for several conditions. Furthermore, several optical methods for electron temperature measurement were evaluated for application to the discharge. Based on the global model simulations, the coronal model was found to apply to the line ratio of the 33S-23Po and 31S-2 1Po transitions, however further work is needed to ascertain its applicability to experimental discharges. These results provide new insight on the development of the repetitively-pulsed nanosecond discharge. Specifically, they reveal new information about the excited state dynamics within the discharge, the non-equilibrium nature of its electrons, and several avenues for future studies. This study extends the present understanding of repetitively-pulsed discharges, and advances the knowledge of energy coupling between electric fields and plasmas.

  17. Repetitively Pulsed Electric Laser Acoustic Studies. Volume 1.

    Science.gov (United States)

    1983-09-01

    INGARD ET AL. SEP 83 UNCLASSIFIED APHAL-IR-83-2858-VOL-1 F336i5 86-C 2848 F/ 0/ 8, EEEmohEEEomhiE EohEEmhohEEEEE mhhhmmomhhlm...TR-83-2058, Vol 9, 0 REPETITIVELY PULSED ELECTRIC LASER ACOUSTIC STUDIES Volume I K. U. INGARD , CHARLES F. MCMILLAN uDEPARTMENT OF AERONAUTICS AND...CONTRACT OR GRANT NUMBER(s) K.U. Ingard and Charles F. McMillan F33615.80-C-2040 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT

  18. Laser-induced retinal damage threshold for repetitive-pulse exposure to 100-microsecs pulses

    Science.gov (United States)

    2014-10-07

    and is inde pendent of the pulse repetition frequency (PRF). When the injury mechanism is thermal denaturation, the pulses do interact , with the peak...energy incident on the cornea that passes through the pupil of the eye. TIE is expressed in this paper as the energy per pulse in the pulse train. 3...given in the guidelines as the corneal irradiance (J∕cm2), was multi plied by the area of a 7 mm pupil to give the allowable TIE. CP is a multiplicative

  19. Plasma Sheet Actuator Driven by Repetitive Nanosecond Pulses with a Negative DC Component

    Institute of Scientific and Technical Information of China (English)

    宋慧敏; 张乔根; 李应红; 贾敏; 吴云; 梁华

    2012-01-01

    A type of electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A three-electrode plasma sheet actuator driven by repetitive nanosecond pulses with a negative DC component was used to generate sliding discharge, which can be called nanosecond-pulse sliding discharge. The phenomenology and behaviour of the plasma sheet actuator were investigated experimentally. Discharge morphology shows that the formation of nanosecond-pulse sliding discharge is dependent on the peak value of the repetitive nanosecond pulses and negative DC component applied on the plasma sheet actuator. Compared to dielectric barrier discharge (DBD), the extension of plasma in nanosecond-pulse sliding discharge is quasi-diffusive, stable, longer and more intensive. Test results of particle image velocimetry demonstrate that the negative DC component applied to a third electrode could significantly modify the topology of the flow induced by nanosecond-pulse DBD. Body force induced by the nanosecond-pulse sliding discharge can be approximately in the order of mN. Both the maximum velocity and the body force induced by sliding discharge increase significantly as compared to single DBD. Therefore, nanosecond-pulse sliding discharge is a preferable plasma aerodynamic actuation generation mode, which is very promising in the field of aerodynamics.

  20. Acousto-optic pulse picking scheme with carrier-frequency-to-pulse-repetition-rate synchronization.

    Science.gov (United States)

    de Vries, Oliver; Saule, Tobias; Plötner, Marco; Lücking, Fabian; Eidam, Tino; Hoffmann, Armin; Klenke, Arno; Hädrich, Steffen; Limpert, Jens; Holzberger, Simon; Schreiber, Thomas; Eberhardt, Ramona; Pupeza, Ioachim; Tünnermann, Andreas

    2015-07-27

    We introduce and experimentally validate a pulse picking technique based on a travelling-wave-type acousto-optic modulator (AOM) having the AOM carrier frequency synchronized to the repetition rate of the original pulse train. As a consequence, the phase noise characteristic of the original pulse train is largely preserved, rendering this technique suitable for applications requiring carrier-envelope phase stabilization. In a proof-of-principle experiment, the 1030-nm spectral part of an 74-MHz, carrier-envelope phase stable Ti:sapphire oscillator is amplified and reduced in pulse repetition frequency by a factor of two, maintaining an unprecedentedly low carrier-envelope phase noise spectral density of below 68 mrad. Furthermore, a comparative analysis reveals that the pulse-picking-induced additional amplitude noise is minimized, when the AOM is operated under synchronicity. The proposed scheme is particularly suitable when the down-picked repetition rate is still in the multi-MHz-range, where Pockels cells cannot be applied due to piezoelectric ringing.

  1. Simple filtered repetitively pulsed vacuum arc plasma source

    Science.gov (United States)

    Chekh, Yu.; Zhirkov, I. S.; Delplancke-Ogletree, M. P.

    2010-02-01

    A very simple design of cathodic filtered vacuum arc plasma source is proposed. The source without filter has only four components and none of them require precise machining. The source operates in a repetitively pulsed regime, and for laboratory experiments it can be used without water cooling. Despite the simple construction, the source provides high ion current at the filter outlet reaching 2.5% of 400 A arc current, revealing stable operation in a wide pressure range from high vacuum to oxygen pressure up to more than 10-2 mbar. There is no need in complicated power supply system for this plasma source, only one power supply can be used to ignite the arc, to provide the current for the arc itself, to generate the magnetic field in the filter, and provide its positive electric biasing without any additional high power resistance.

  2. Coupling coefficient for TEA CO2 laser propulsion with variable pulse repetition rate

    Institute of Scientific and Technical Information of China (English)

    Yijun Zheng; Rongqing Tan; Donglei Wang; Guang Zheng; Changjun Ke; Kuohai Zhang; Chongyi Wan; Jin Wu

    2006-01-01

    @@ Because pulse repetition rate affected directly the momentum coupling coefficient of transversely excited atmospheric (TEA) CO2 laser propulsion, a double pulse trigger, controlling high voltage switch of laser excitation circuit, was designed. The pulse interval ranged between 5 and 100 ms. The momentum coupling coefficient for air-breathing mode laser propulsion was studied experimentally. It was found that the momentum coupling coefficient decreased with the pulse repetition rate increasing.

  3. Effects of pulse-to-pulse residual species on discharges in repetitively pulsed discharges through packed bed reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for conversion of toxic and waste gases, and CO2 removal. These discharges are repetitively pulsed having varying flow rates and internal geometries, which results in species from the prior pulse still being in the discharge zone at the time the following discharge pulse occurs. A non-negligible residual plasma density remains, which effectively acts as preionization. This residual charge changes the discharge properties of subsequent pulses, and may impact important PBR properties such as chemical selectivity. Similarly, the residual neutral reactive species produced during earlier pulses will impact the reaction rates on subsequent pulses. We report on results of a computational investigation of a 2D PBR using the plasma hydrodynamics simulator nonPDPSIM. Results will be discussed for air flowing though an array of dielectric rods at atmospheric pressure. The effects of inter-pulse residual species on PBR discharges will be quantified. Means of controlling the presence of residual species in the reactor through gas flow rate, pulse repetition, pulse width and geometry will be described. Comparisons will be made to experiments. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  4. Micromotion feature extraction of radar target using tracking pulses with adaptive pulse repetition frequency adjustment

    Science.gov (United States)

    Chen, Yijun; Zhang, Qun; Ma, Changzheng; Luo, Ying; Yeo, Tat Soon

    2014-01-01

    In multifunction phased array radar systems, different activities (e.g., tracking, searching, imaging, feature extraction, recognition, etc.) would need to be performed simultaneously. To relieve the conflict of the radar resource distribution, a micromotion feature extraction method using tracking pulses with adaptive pulse repetition frequencies (PRFs) is proposed in this paper. In this method, the idea of a varying PRF is utilized to solve the frequency-domain aliasing problem of the micro-Doppler signal. With appropriate atom set construction, the micromotion feature can be extracted and the image of the target can be obtained based on the Orthogonal Matching Pursuit algorithm. In our algorithm, the micromotion feature of a radar target is extracted from the tracking pulses and the quality of the constructed image is fed back into the radar system to adaptively adjust the PRF of the tracking pulses. Finally, simulation results illustrate the effectiveness of the proposed method.

  5. Non-contact thrust stand calibration method for repetitively pulsed electric thrusters.

    Science.gov (United States)

    Wong, Andrea R; Toftul, Alexandra; Polzin, Kurt A; Pearson, J Boise

    2012-02-01

    A thrust stand calibration technique for use in testing repetitively pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoid to produce a pulsed magnetic field that acts against a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasi-steady average deflection of the thrust stand arm away from the unforced or "zero" position can be related to the average applied force through a simple linear Hooke's law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other. The overall error on the linear regression fit used to determine the calibration coefficient was roughly 1%.

  6. Pulsed pumped Yb-doped fiber amplifier at low repetition rate

    Institute of Scientific and Technical Information of China (English)

    Changgeng Ye; Ping Yan; Mali Gong; Ming Lei

    2005-01-01

    A pulsed pumped Yb-doped double-clad fiber (DCF) master-oscillator power amplifier (MOPA) at low repetition rate is reported. Seeded by a passive Q-switched Nd:YAG microchip laser, the fiber amplifier can generate 167-kW peak-power and 0.83-ns duration pulses at 200-Hz repetition rate. Because of the pulsed pump approach, the amplified spontaneous emission (ASE) and the spurious lasing between pulses are well avoided, and the repetition rate can be set freely from single-shot to 1 kHz. Peak power scaling limitations that arise from the fiber facet damage are discussed.

  7. Repetition rate tunable ultra-short optical pulse generation based on electrical pattern generator

    Institute of Scientific and Technical Information of China (English)

    Xin Fu; Hongming Zhang; Meng Yan; Minyu Yao

    2009-01-01

    @@ An actively mode-locked laser with tunable repetition rate is proposed and experimentally demonstrated based on a programmable electrical pattern generator.By changing the repetition rate of the electrical patterns applied on the in-cavity modulator, the repetition rate of the output optical pulse sequences changes accordingly while the pulse width of the optical pulse train remains almost constant.In other words, the output ultra-short pulse train has a tunable duty cycle.In a proof-of-principle experiment, optical pulses with repetition rates of 10, 5, 2.5 and 1.25 GHz are obtained by adjusting the electrical pattern applied on the in-cavity modulator while their pulse widths remain almost unchanged.

  8. A Simulation of the Effects of Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion

    Directory of Open Access Journals (Sweden)

    Moon Soo Bak

    2012-01-01

    Full Text Available Two-dimensional kinetic simulation has been carried out to investigate the effects of repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse width are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns while the total power is kept constant. The lower repetition rates provide larger amounts of radicals such as O, H, and OH. However, the effect on stabilization is found to be the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronic states, but the varying effects on stabilization are also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.

  9. Non-Contact Thrust Stand Calibration Method for Repetitively-Pulsed Electric Thrusters

    Science.gov (United States)

    Wong, Andrea R.; Toftul, Alexandra; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    A thrust stand calibration technique for use in testing repetitively-pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoidal coil to produce a pulsed magnetic field that acts against the magnetic field produced by a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasisteady average deflection of the thrust stand arm away from the unforced or zero position can be related to the average applied force through a simple linear Hooke s law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other as the constant relating average deflection and average thrust match within the errors on the linear regression curve fit of the data. Quantitatively, the error on the calibration coefficient is roughly 1% of the coefficient value.

  10. Surface damage characteristics of CFC and tungsten with repetitive ELM-like pulsed plasma irradiation

    Science.gov (United States)

    Kikuchi, Y.; Nishijima, D.; Nakatsuka, M.; Ando, K.; Higashi, T.; Ueno, Y.; Ishihara, M.; Shoda, K.; Nagata, M.; Kawai, T.; Ueda, Y.; Fukumoto, N.; Doerner, R. P.

    2011-08-01

    Surface damage of carbon fiber composite (CFC) and tungsten (W) due to repetitive ELM-like pulsed plasma irradiation has been investigated by using a magnetized coaxial plasma gun. CX2002U CFC and stress-relieved W samples were exposed to repetitive pulsed deuterium plasmas with duration of ˜0.5 ms, incident ion energy of ˜30 eV, and surface absorbed energy density of ˜0.3-0.7 MJ/m2. Bright spots on a CFC surface during pulsed plasma exposures were clearly observed with a high-speed camera, indicating a local surface heating. No melting of a W surface was observed under a single plasma pulse exposure at energy density of ˜0.7 MJ/m2, although cracks were formed. Cracking of the W surface grew with repetitive pulsed plasma exposures. Subsequently, the surface melted due to localized heat absorption.

  11. Spectrum analysis of all parameter noises in repetition-rate laser pulse train

    Institute of Scientific and Technical Information of China (English)

    Junhua Tang; Yuncai Wang

    2006-01-01

    @@ The theoretical investigation of all parameter noises in repetition-rate laser pulse train was presented. The expression of power spectrum of laser pulse trains with all parameter noises was derived, and the power spectra of pulse trains with different noise parameters were numerically simulated. By comparing the power spectra with and without pulse-width jitter, we noted that pulse-width jitter could not be neglected compared with amplitude noise and timing jitter and contributed a great amount of noise into the power spectrum under the condition that the product of pulse width and angular frequency was larger than 1.

  12. Neodymium glass laser with a pulse energy of 220 J and a pulse repetition rate of 0.02 Hz

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, A A; Kulagin, O V; Khazanov, Efim A; Shaykin, A A [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2013-07-31

    A compact neodymium glass laser with a pulse energy of 220 J and a record-high pulse repetition rate of 0.02 Hz (pulse duration 30 ns) is developed. Thermally induced phase distortions are compensated using wave phase conjugation. The integral depolarisation of radiation is decreased to 0.4% by using linear compensation schemes. The second harmonic of laser radiation can be used for pumping Ti : sapphire multipetawatt complexes. (letters)

  13. Hydrodynamic size distribution of gold nanoparticles controlled by repetition rate during pulsed laser ablation in water

    Science.gov (United States)

    Menéndez-Manjón, Ana; Barcikowski, Stephan

    2011-02-01

    Most investigations on the laser generation and fragmentation of nanoparticles focus on Feret particle size, although the hydrodynamic size of nanoparticles is of great importance, for example in biotechnology for diffusion in living cells, or in engineering, for a tuned rheology of suspensions. In this sense, the formation and fragmentation of gold colloidal nanoparticles using femtosecond laser ablation at variable pulse repetition rates (100-5000 Hz) in deionized water were investigated through their plasmon resonance and hydrodynamic diameter, measured by Dynamic Light Scattering. The increment of the repetition rate does not influence the ablation efficiency, but produces a decrease of the hydrodynamic diameter and blue-shift of the plasmon resonance of the generated gold nanoparticles. Fragmentation, induced by inter-pulse irradiation of the colloids was measured online, showing to be more effective low repetition rates. The pulse repetition rate is shown to be an appropriate laser parameter for hydrodynamic size control of nanoparticles without further influence on the production efficiency.

  14. Programmable Control of the Pulse Repetition Rate in the Multiwave Strontium Vapor Laser System

    Directory of Open Access Journals (Sweden)

    Soldatov Anatoly

    2016-01-01

    Full Text Available The aim of the present work was the development of laser systems for ablation of biological tissues with a programmable control over the lasing pulse repetition rate in a wide range. A two-stage laser system consisting of a master oscillator and a power amplifier based on strontium vapor laser has been developed. The operation of the laser system in a single-pulse mode operation, multipulse mode operation, and with a pulse repetition rate up to 20 kHz has been technically implemented. The possibility of a bone tissue ablation with no visible thermal damage is shown.

  15. Optimizing drive parameters of a nanosecond, repetitively pulsed microdischarge high power 121.6 nm source

    Science.gov (United States)

    Stephens, J.; Fierro, A.; Trienekens, D.; Dickens, J.; Neuber, A.

    2015-02-01

    Utilizing nanosecond high voltage pulses to drive microdischarges (MDs) at repetition rates in the vicinity of 1 MHz previously enabled increased time-averaged power deposition, peak vacuum ultraviolet (VUV) power yield, as well as time-averaged VUV power yield. Here, various pulse widths (30-250 ns), and pulse repetition rates (100 kHz-5 MHz) are utilized, and the resulting VUV yield is reported. It was observed that the use of a 50 ns pulse width, at a repetition rate of 100 kHz, provided 62 W peak VUV power and 310 mW time-averaged VUV power, with a time-averaged VUV generation efficiency of ˜1.1%. Optimization of the driving parameters resulted in 1-2 orders of magnitude increase in peak and time-averaged power when compared to low power, dc-driven MDs.

  16. Optically pumped terahertz lasers with high pulse repetition frequency: theory and design

    Institute of Scientific and Technical Information of China (English)

    Yude Sun; Shiyou Fu; Jing Wang; Zhenghe Sun; Yanchao Zhang; Zhaoshuo Tian; Qi Wang

    2009-01-01

    Optically pumped terahertz (THz) lasers with high pulse repetition frequency are designed. Such a laser includes two parts: the optically pumping laser and the THz laser. The structures of the laser are described and analyzed. The rate equations for the pulsed THz laser are given. The kinetic process and laser pulse waveform for this kind of laser are numerically calculated based on the theory of rate equations. The theoretical results give a helpful guide to the research of such lasers.

  17. Experimental study of polarity dependence in repetitive nanosecond-pulse breakdown

    Institute of Scientific and Technical Information of China (English)

    Shao Tao; Sun Guang-Sheng; Yan Ping; Wang Jue; Yuan Wei-Qun; Zhang Shi-Chang

    2007-01-01

    Pulsed breakdown of dry air at ambient pressure has been investigated in the point-plane geometry,using repetitive nanosecond pulses with 10 ns risetime,20-30 as duration,and up to 100 kV amplitude.A major concern in this paper is to study the dependence of breakdown strength on the point-electrode polarity.Applied voltage,breakdown current and repetitive stressing time are measured under the experimental conditions of some variables including pulse voltage peak,gap spacing and repetition rate.The results show that increasing the E-field strength can decrease breakdown time lag,repetitive stressing time and the number of applied pulses as expected.However,compared with the traditional polarity dependence it is weakened and not significant in the repetitive nanosecond-pulse breakdown.The ambiguous polaxity dependence in the experimental study is involved with an accumulation effect of residual charges and metastable states.Moreover,it is suggested that the reactions associated with the detachment of negative ions and impact deactivation of metastable specms could provide a source of primary initiating electrons for breakdown.

  18. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    Science.gov (United States)

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  19. KAPTURE-2. A picosecond sampling system for individual THz pulses with high repetition rate

    Science.gov (United States)

    Müller, A.-S.

    2017-01-01

    This paper presents a novel data acquisition system for continuous sampling of ultra-short pulses generated by terahertz (THz) detectors. Karlsruhe Pulse Taking Ultra-fast Readout Electronics (KAPTURE) is able to digitize pulse shapes with a sampling time down to 3 ps and pulse repetition rates up to 500 MHz. KAPTURE has been integrated as a permanent diagnostic device at ANKA and is used for investigating the emitted coherent synchrotron radiation in the THz range. A second version of KAPTURE has been developed to improve the performance and flexibility. The new version offers a better sampling accuracy for a pulse repetition rate up to 2 GHz. The higher data rate produced by the sampling system is processed in real-time by a heterogeneous FPGA and GPU architecture operating up to 6.5 GB/s continuously. Results in accelerator physics will be reported and the new design of KAPTURE be discussed.

  20. A Repetitive Nanosecond Pulse Source for Generation of Large Volume Streamer Discharge

    Institute of Scientific and Technical Information of China (English)

    TAO Fengbo; ZHANG Qiaogen; GAO Bo; WANG Hu; LI Zhou

    2008-01-01

    Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse,a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap switch.By varying both the inter-pulse duration and the pulse frequency,the voltage recovery rate of the spark gap switch is investigated at different working conditions such as the gas pressure,the gas composition as well as the bias voltage.The results reveal that either increase in gas pressure or addition of SF6 to the air can increase the voltage recovery rate.The effect of gas composition on the voltage recovery rate is discussed based on the transferring and distribution of the residual space charges.The repetitive nanosecond pulse source is also applied to the generation of large volume,and the discharge currents are measured to investigate the effect of pulse repetition rate on the large volume streamer discharge.

  1. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    Science.gov (United States)

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  2. High-q microring resonator with narrow free spectral range for pulse repetition rate multiplication

    DEFF Research Database (Denmark)

    Pu, Minhao; Ji, Hua; Frandsen, Lars Hagedorn

    2009-01-01

    We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz.......We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz....

  3. Generation of picosecond laser pulses at 1030 nm with gigahertz range continuously tunable repetition rate.

    Science.gov (United States)

    Aubourg, Adrien; Lhermite, Jérôme; Hocquet, Steve; Cormier, Eric; Santarelli, Giorgio

    2015-12-01

    We report on a watt range laser system generating picosecond pulses using electro-optical modulation of a 1030 nm single frequency low noise laser diode. Its repetition rate is continuously tunable between 11 and 18 GHz. Over this range, output spectra and pulse characteristics are measured and compared with a numerical simulation. Finally, amplitude and residual phase noise measurements of the source are also presented.

  4. Longitudinally excited CO2 laser with short laser pulse operating at high repetition rate

    Science.gov (United States)

    Li, Jianhui; Uno, Kazuyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2016-11-01

    A short-pulse longitudinally excited CO2 laser operating at a high repetition rate was developed. The discharge tube was made of a 45 cm-long or 60 cm-long dielectric tube with an inner diameter of 16 mm and two metallic electrodes at the ends of the tube. The optical cavity was formed by a ZnSe output coupler with a reflectivity of 85% and a high-reflection mirror. Mixed gas (CO2:N2:He = 1:1:2) was flowed into the discharge tube. A high voltage of about 33 kV with a rise time of about 200 ns was applied to the discharge tube. At a repetition rate of 300 Hz and a gas pressure of 3.4 kPa, the 45 cm-long discharge tube produced a short laser pulse with a laser pulse energy of 17.5 mJ, a spike pulse energy of 0.2 mJ, a spike width of 153 ns, and a pulse tail length of 90 μs. The output power was 5.3 W. The laser pulse waveform did not depend on the repetition rate, but the laser beam profile did. At a low repetition rate of less than 50 Hz, the laser beam had a doughnut-like shape. However, at a high repetition rate of more than 150 Hz, the discharge concentrated at the center of the discharge tube, and the intensity at the center of the laser beam was higher. The laser beam profile depended on the distribution of the discharge. An output power of 7.0 W was achieved by using the 60 cm-long tube.

  5. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    Science.gov (United States)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  6. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Shalloo, R.J., E-mail: robert.shalloo@physics.ox.ac.uk; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S.M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150–170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  7. Effect of the pulse repetition rate on fiber-assisted tissue ablation

    Science.gov (United States)

    Kang, Hyun Wook

    2016-07-01

    The effect of the pulse repetition rate on ablation performance was evaluated ex vivo at various fiber sweeping speeds for an effective 532-nm laser prostatectomy. Three pulse repetition rates (7.5, 15, and 30 kHz) at 100 W were delivered to bovine liver tissue at three sweeping speeds (2, 4, and 6 mm/s) to achieve bulky tissue removal. Ablation performance was quantitatively compared in terms of the ablation volume and the coagulation thickness. The lowest pulse repetition rate of 7.5 kHz attained the highest ablation volume (101.5 ± 12.0 mm3) and the thinnest coagulation (0.7 ± 0.1 mm) along with superficial carbonization. The highest pulse repetition rate of 30 kHz was associated with the least tissue removal (65.8 ± 5.0 mm3) and the deepest thermal denaturation (1.1 ± 0.2 mm). Quantitative evaluations of laser parameters can be instrumental in facilitating ablation efficiency and maintaining hemostatic coagulation during treatment of large-sized benign prostate hyperplasia.

  8. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Science.gov (United States)

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  9. Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser

    Science.gov (United States)

    Si Fodil, Rachid; Amrani, Foued; Yang, Changxi; Kellou, Abdelhamid; Grelu, Ph.

    2016-07-01

    We experimentally investigate multipulse regimes obtained within a passively-mode-locked fiber laser that includes a Mach-Zehnder (MZ) interferometer. By adjusting the time delay imbalance of the MZ, ultrashort pulse trains at multi-GHz repetition rates are generated. We compare the observed dynamics with high-harmonic mode locking, and show that the multi-GHz pulse trains display an inherent instability, which has been overlooked. By using a recirculation loop containing the MZ, we demonstrate a significant improvement of the pulse train stability.

  10. Development of a compact and reliable repetitively pulsed Xe Cl (308 nm) excimer laser

    Indian Academy of Sciences (India)

    N S Benerji; N Varshnay; J K Mittal

    2013-02-01

    Development and operation characteristics of a repetitively pulsed UV spark pre-ionized XeCl(Xenon Chloride) excimer laser is described. The laser uses discharge pumped C–C charge transfer excitation. A compact gas circulation loop was adopted to achieve high repetition rate operation. The laser generates optical pulses of energy 150 mJ at 150 Hz reliably. The electrical to optical conversion efficiency obtained is 1%. The laser pulse duration is ∼8 nS (FWHM). The single fill gas lifetime have been found to be 2 × 106 shots for 20% reduction of energy without any halogen injection. The system is compact and reliable.

  11. All-solid-state repetitive semiconductor opening switch-based short pulse generator.

    Science.gov (United States)

    Ding, Zhenjie; Hao, Qingsong; Hu, Long; Su, Jiancang; Liu, Guozhi

    2009-09-01

    The operating characteristics of a semiconductor opening switch (SOS) are determined by its pumping circuit parameters. SOS is still able to cut off the current when pumping current duration falls to the order of tens of nanoseconds and a short pulse forms simultaneously in the output load. An all-solid-state repetitive SOS-based short pulse generator (SPG100) with a three-level magnetic pulse compression unit was successfully constructed. The generator adopts magnetic pulse compression unit with metallic glass and ferrite cores, which compresses a 600 V, 10 mus primary pulse into short pulse with forward pumping current of 825 A, 60 ns and reverse pumping current of 1.3 kA, 30 ns. The current is sent to SOS in which the reverse pumping current is interrupted. The generator is capable of providing a pulse with the voltage of 120 kV and duration of 5-6 ns while output load being 125 Omega. The highest repetition rate is up to 1 kHz.

  12. Dual-Comb Coherent Raman Spectroscopy with Lasers of 1-GHz Pulse Repetition Frequency

    CERN Document Server

    Mohler, Kathrin J; Yan, Ming; Hänsch, Theodor W; Picqué, Nathalie

    2016-01-01

    We extend the technique of multiplex coherent Raman spectroscopy with two femtosecond mode-locked lasers to oscillators of a pulse repetition frequency of 1 GHz. We demonstrate spectra of liquids, which span 1100 cm$^{-1}$ of Raman shifts. At a resolution of 6 cm$^{-1}$, their measurement time may be as short as 5 microseconds for a refresh rate of 2 kHz. The waiting period between acquisitions is improved ten-fold compared to previous experiments with two lasers of 100-MHz repetition frequencies.

  13. ROBUST REPETITIVE CONTROL FOR IMPROVING RATE SMOOTHNESS OF TEST TURNTABLE

    Institute of Scientific and Technical Information of China (English)

    LIUYu; ZENGMing; SUBao-ku

    2005-01-01

    A robust repetitive control scheme is used to improve the rate smoothness of a brushless DC motor (BLDCM) driven test turntable. The method synthesizes variable structure control (VSC) laws and repetitive control (RC) laws in a complementary manner. The VSC strategy can stabilize the system and suppress uncertainties, such as the aperiodic disturbance and noises, while RC strategy can eliminate the periodic rate fluctuation in a steady state. The convergence of the repetitive learning process is also guaranteed by VSC. A general nonlinear system model is discussed. The model can be considered as an extension of BLDCMs. The stability and asymptotic position tracking performance are validated by using Lyapunov functions. Simulation results show the effectiveness of the proposed approach for improving the rate smoothness.

  14. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force.

    Science.gov (United States)

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-08-07

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young's moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young's moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed.

  15. High Voltage Pulse Testing Survey.

    Science.gov (United States)

    1985-10-01

    Cryogenic 23 E. Liquids 26 F. Solids 28 1. Polyethylene 28 2. Cross-Linked Polyethylene ( XLPE ) 29 3. Polyimide and Polyvenylchloride (PVC) 31 VI Benefits 35 A...Strength of XLPE Cables 29 vii * 4" I PROGRAM OBJECTIVES The Pulse Test Survey summarizes government, industry, and technical reports on high voltage pulse...system of silicone oil on a XLPE (cross-linked polyethylene) spacer tends to lower the impulse breakdown by approximately 10 percent. The negative impulse

  16. The impacts of magnetic field on repetitive nanosecond pulsed dielectric barrier discharge in air

    Science.gov (United States)

    Liu, Yidi; Qi, Haicheng; Fan, Zhihui; Yan, Huijie; Ren, ChunSheng

    2016-11-01

    In this paper, the impacts of the parallel magnetic field on the repetitive nanosecond pulsed dielectric barrier discharge (DBD) are experimentally investigated by optical and electrical measurements. The DBD is generated between two parallel-plate electrodes in the ambient air with the stationary magnetic field on the order of 1 T. The experimental results show that additional microdischarge channels are generated and the photocurrent intensity of the plasma is increased by the magnetic field. The microdischarge channels develop along the magnetic field lines and the diffuse background emission of the discharge is stronger in the DBD with the magnetic field. As the pulse repetition frequency decreases from 1200 Hz to 100 Hz, only the photocurrent intensity of the third discharge that occurred at about 500 ns is noticeably increased by the additional magnetic field. It is believed that the enhancement of the memory effect and the confinement of the magnetic field on electrons are the main reasons.

  17. Correction of refraction index based on adjacent pulse repetition interval lengths

    Science.gov (United States)

    Wei, Dong; Aketagawa, Masato

    2014-11-01

    Correction of refraction index is important for length measurement. The two-color method has been widely used for correction. The wavelengths of lasers have been used as a ruler of that. Based on the analogy between the wavelength and the adjacent pulse repetition interval length (APRIL), in this paper we investigate the possibility of two-color method based on adjacent pulse repetition interval lengths. Since the wavelength-based two-color method can eliminate the inhomogeneous disturbance of effects caused by the phase refractive index, therefore the APRIL-based two-color method can eliminate the air turbulence of errors induced by the group refractive index. Our analysis will contribute to high-precision length measurement.

  18. Temporal dynamics of high repetition rate pulsed single longitudinal mode dye laser

    Indian Academy of Sciences (India)

    G Sridhar; V S Rawar; S Singh; L M Gantayet

    2013-08-01

    Theoretical and experimental studies of temporal dynamics of grazing incidence grating (GIG) cavity, single-mode dye laser pumped by high repetition rate copper vapour laser (CVL) are presented. Spectral chirp of the dye laser as they evolve in the cavity due to transient phase dynamics of the amplifier gain medium is studied. Effect of grating efficiency, focal spot size, pump power and other cavity parameters on the temporal behaviour of narrow band dye laser such as build-up time, pulse shape and pulse width is studied using the four level dye laser rate equation and photon evolution equation. These results are compared with experimental observations of GIG single-mode dye laser cavity. The effect of pulse stretching of CVL pump pulse on the temporal dynamics of the dye laser is studied.

  19. Spectral-temporal encoding and decoding of the femtosecond pulses sequences with a THz repetition rate

    Science.gov (United States)

    Tcypkin, A. N.; Putilin, S. E.

    2017-01-01

    Experimental and numerical modeling techniques demonstrated the possibilities of the spectral-time encoding and decoding for time division multiplexing sequence of femtosecond subpulses with a repetition rate of up to 6.4 THz. The sequence was formed as a result of the interference of two phase-modulated pulses. We report the limits of the application of the developed method of controlling formed sequence at the spectral-temporal coding.

  20. High repetition rate, compact micro-pulse all-solid-state laser

    Institute of Scientific and Technical Information of China (English)

    Yutong Feng; Junqing Meng; Weibiao Chen

    2007-01-01

    A high repetition rate, compact micro-pulse all-solid-state laser is designed. The diffusion bonded crystal of YAG, Nd:YAG, and Cr4+:YAG is taken as a monolithic cavity. The optimized initial transmission,output coupling, and pumping size of Cr4+:YAG are calculated. The experimental results show that the laser satisfies the requirement of a spaceborne laser range finder.

  1. The role of molecular vibration in nanosecond repetitively pulsed discharges and in DBDs in hydrogen plasmas

    Science.gov (United States)

    Colonna, G.; D'Ammando, G.; Pietanza, L. D.

    2016-10-01

    A self-consistent state-to-state model of pure hydrogen has been used to investigate the development of nanosecond repetitively pulsed discharges and dielectric barrier discharges, the latter coupling the kinetic model with an equation for the circuit, thus mimicking an insulated electrode with an external capacitance. Vibrationally excited states play a fundamental role, affecting the degrees of dissociation and ionization, as well as internal and free-electron distributions.

  2. Extraction of pulse repetition intervals from sperm whale click trains for ocean acoustic data mining.

    Science.gov (United States)

    Zaugg, Serge; van der Schaar, Mike; Houégnigan, Ludwig; André, Michel

    2013-02-01

    The analysis of acoustic data from the ocean is a valuable tool to study free ranging cetaceans and anthropogenic noise. Due to the typically large volume of acquired data, there is a demand for automated analysis techniques. Many cetaceans produce acoustic pulses (echolocation clicks) with a pulse repetition interval (PRI) remaining nearly constant over several pulses. Analyzing these pulse trains is challenging because they are often interleaved. This article presents an algorithm that estimates a pulse's PRI with respect to neighboring pulses. It includes a deinterleaving step that operates via a spectral dissimilarity metric. The sperm whale (SW) produces trains with PRIs between 0.5 and 2 s. As a validation, the algorithm was used for the PRI-based identification of SW click trains with data from the NEMO-ONDE observatory that contained other pulsed sounds, mainly from ship propellers. Separation of files containing SW clicks with a medium and high signal to noise ratio from files containing other pulsed sounds gave an area under the receiver operating characteristic curve value of 0.96. This study demonstrates that PRI can be used for the automated identification of SW clicks and that deinterleaving via spectral dissimilarity contributes to algorithm performance.

  3. Novel Method of Unambiguous Moving Target Detection in Pulse-Doppler Radar with Random Pulse Repetition Interval

    Directory of Open Access Journals (Sweden)

    Liu Zhen

    2012-03-01

    Full Text Available Blind zones and ambiguities in range and velocity measurement are two important issues in traditional pulse-Doppler radar. By generating random deviations with respect to a mean Pulse Repetition Interval (PRI, this paper proposes a novel algorithm of Moving Target Detection (MTD based on the Compressed Sensing (CS theory, in which the random deviations of the PRIare converted to the Restricted Isometry Property (RIP of the observing matrix. The ambiguities of range and velocity are eliminated by designing the signal parameters. The simulation results demonstrate that this scheme has high performance of detection, and there is no ambiguity and blind zones as well. It can also shorten the coherent processing interval compared to traditional staggered PRI mode because only one pulse train is needed instead of several trains.

  4. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  5. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    OpenAIRE

    Pai, David,; Lacoste, Deanna,; Laux, C.

    2010-01-01

    International audience; In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determine...

  6. Actual laser removal of black soiling crust from siliceous sandstone by high pulse repetition rate equipment: effects on surface morphology

    Directory of Open Access Journals (Sweden)

    Iglesias-Campos, M. A.

    2016-03-01

    Full Text Available This research project studies the role of pulse repetition rate in laser removal of black soiling crust from siliceous sandstone, and specifically, how laser fluence correlates with high pulse repetition rates in cleaning practice. The aim is to define practical cleaning processes and determine simple techniques for evaluation based on end-users’ perspective (restorers. Spot and surface tests were made using a Q-switched Nd:YAG laser system with a wide range of pulse repetition rates (5–200 Hz, systematically analysed and compared by macrophotography, portable microscope, stereomicroscope with 3D visualizing and area roughness measurements, SEM imaging and spectrophotometry. The results allow the conclusion that for operation under high pulse repetition rates the average of total energy applied per spot on a treated surface should be attendant upon fluence values in order to provide a systematic and accurate description of an actual laser cleaning intervention.En este trabajo se estudia el papel de la frecuencia de repetición en la limpieza láser de costras de contaminación sobre una arenisca silícea, y concretamente, como se relaciona fluencia y frecuencias elevadas en una limpieza real. Se pretende definir un procedimiento práctico de limpieza y determinar técnicas sencillas de evaluación desde el punto de vista de los usuarios finales (restauradores. Para el estudio se realizaron diferentes ensayos en spot y en superficie mediante un equipo Q-switched Nd:YAG con un amplio rango de frecuencias (5–200 Hz, que se analizaron y compararon sistemáticamente mediante macrofotografía, microscopio portátil, estereomicroscopio con visualización 3D y mediciones de rugosidad en área, imágenes SEM y espectrofotometría. Los resultados permiten proponer que, al trabajar con altas frecuencias, la media de la energía total depositada por spot en la superficie debería acompañar los valores de fluencia para describir y comprender mejor una

  7. Applications of ions produced by low intensity repetitive laser pulses for implantation into semiconductor materials

    Science.gov (United States)

    Wołowski, J.; Badziak, J.; Czarnecka, A.; Parys, P.; Pisarek, M.; Rosinski, M.; Turan, R.; Yerci, S.

    This work reports experiment concerning specific applications of implantation of laser-produced ions for production of semiconductor nanocrystals. The investigation was carried out in the IPPLM within the EC STREP `SEMINANO' project. A repetitive pulse laser system of parameters: energy up to 0.8 J in a 3.5 ns-pulse, wavelength of 1.06 μ m, repetition rate of up to 10 Hz, has been employed in these investigations. The characterisation of laser-produced ions was performed with the use of `time-of-flight' ion diagnostics simultaneously with other diagnostic methods in dependence on laser pulse parameters, illumination geometry and target material. The properties of laser-implanted and modified SiO2 layers on sample surface were characterised with the use of different methods (XPS + ASD, Raman spectroscopy, PL spectroscopy) at the Middle East Technological University in Ankara and at the Warsaw University of Technology. The production of the Ge nanocrystallites has been demonstrated for annealed samples prepared in different experimental conditions.

  8. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  9. High repetition ration solid state switched CO2 TEA laser employed in industrial ultrasonic testing of aircraft parts

    Science.gov (United States)

    von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo

    2015-02-01

    Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.

  10. Mode-locked Yb-doped fiber laser emitting broadband pulses at ultra-low repetition rates

    CERN Document Server

    Bowen, Patrick; Provo, Richard; Harvey, John D; Broderick, Neil G R

    2016-01-01

    We report on an environmentally stable, Yb-doped, all-normal dispersion, mode-locked fibre laser that is capable of creating broadband pulses with ultra-low repetition rates. Specifically, through careful positioning of fibre sections in an all-PM-fibre cavity mode-locked with a nonlinear amplifying loop mirror, we achieve stable pulse trains with repetition rates as low as 506 kHz. The pulses have several nanojules of energy and are compressible down to ultrashort (< 500 fs) durations.

  11. Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Martikainen, Kalle; Ruotsalainen, Ulla

    2010-12-01

    The central purpose of passive signal intercept receivers is to perform automatic categorization of unknown radar signals. Currently, there is an urgent need to develop intelligent classification algorithms for these devices due to emerging complexity of radar waveforms. Especially multifunction radars (MFRs) capable of performing several simultaneous tasks by utilizing complex, dynamically varying scheduled waveforms are a major challenge for automatic pattern classification systems. To assist recognition of complex radar emissions in modern intercept receivers, we have developed a novel method to recognize dynamically varying pulse repetition interval (PRI) modulation patterns emitted by MFRs. We use robust feature extraction and classifier design techniques to assist recognition in unpredictable real-world signal environments. We classify received pulse trains hierarchically which allows unambiguous detection of the subpatterns using a sliding window. Accuracy, robustness and reliability of the technique are demonstrated with extensive simulations using both static and dynamically varying PRI modulation patterns. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. The influence of the repetition rate on the nanosecond pulsed pin-to-pin microdischarges

    Science.gov (United States)

    Huang, Bang-Dou; Takashima, Keisuke; Zhu, Xi-Ming; Pu, Yi-Kang

    2014-10-01

    The effect of repetition rate on a nanosecond atmospheric pressure discharge is investigated. The discharge is generated between two pins in a mixture of Ne and Ar. The voltage, current, power waveforms and the temporally and spatially resolved electron density and an ‘effective’ electron temperature are measured, with a pulse interval between 1.5 and 200 µs. It is found that not only does the repetition rate have a strong influence on the breakdown voltage and the peak discharge power, but it can also affect the rise rate of the volume averaged electron density and its peak value. Temporally and spatially resolved measurement of the electron density and the effective electron temperature show that the spatial distributions of both quantities are also influenced by the repetition rate. In the initial discharge period of all cases, the sharp rise of the electron density correlates with the drastic drop of the effective electron temperature. It is suggested that the residual charges have a strong impact on the axial distribution of the electric field and energetic electrons between the electrodes during the breakdown period, as illustrated by a simple sheath model.

  13. Aging Characteristics on Epoxy Resin Surface Under Repetitive Microsecond Pulses in Air at Atmospheric Pressure

    Science.gov (United States)

    Xie, Qing; Liu, Xiong; Zhang, Cheng; Wang, Ruixue; Rao, Zhangquan; Shao, Tao

    2016-03-01

    Research on aging characteristics of epoxy resin (EP) under repetitive microsecond pulses is important for the design of insulating materials in high power apparatus. It is because that very fast transient overvoltage always occurs in a power system, which causes flashover and is one of the main factors causing aging effects of EP materials. Therefore, it is essential to obtain a better understanding of the aging effect on an EP surface resulting from flashover. In this work, aging effects on an EP surface were investigated by surface flashover discharge under repetitive microsecond pulses in atmospheric pressure. The investigations of parameters such as the surface micro-morphology and chemical composition of the insulation material under different degrees of aging were conducted with the aid of measurement methods such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Results showed that with the accumulation of aging energy on the material surface, the particles formed on the material surface increased both in number and size, leading to the growth of surface roughness and a reduction in the water contact angle; the surface also became more absorbent. Furthermore, in the aging process, the molecular chains of EP on the surface were broken, resulting in oxidation and carbonisation. supported by the Natural Science Foundation of Hebei Province (No. E2015502081), National Natural Science Foundation of China (Nos. 51222701, 51307060), and the National Basic Research Program of China (No. 2014CB239505-3)

  14. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    Science.gov (United States)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  15. An Improved Clutter Suppression Method for Weather Radars Using Multiple Pulse Repetition Time Technique

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    2017-01-01

    Full Text Available This paper describes the implementation of an improved clutter suppression method for the multiple pulse repetition time (PRT technique based on simulated radar data. The suppression method is constructed using maximum likelihood methodology in time domain and is called parametric time domain method (PTDM. The procedure relies on the assumption that precipitation and clutter signal spectra follow a Gaussian functional form. The multiple interleaved pulse repetition frequencies (PRFs that are used in this work are set to four PRFs (952, 833, 667, and 513 Hz. Based on radar simulation, it is shown that the new method can provide accurate retrieval of Doppler velocity even in the case of strong clutter contamination. The obtained velocity is nearly unbiased for all the range of Nyquist velocity interval. Also, the performance of the method is illustrated on simulated radar data for plan position indicator (PPI scan. Compared with staggered 2-PRT transmission schemes with PTDM, the proposed method presents better estimation accuracy under certain clutter situations.

  16. Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces

    Directory of Open Access Journals (Sweden)

    Venkatakrishnan Krishnan

    2011-01-01

    Full Text Available Abstract In this study, MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces under ambient condition were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction analysis (XRD, and X-ray photoelectron spectroscopy (XPS. The radiation fluence used was 0.5 J/cm2 at a pulse repetition rate of 25 MHz with 1 ms interaction time. SEM analysis of the irradiated surfaces showed self-assembled intermingled weblike nanofibrous structure in and around the laser-irradiated spots. Further TEM investigation on this nanostructure revealed that the nanofibrous structure is formed due to aggregation of Au-Si/Si nanoparticles. The XRD peaks at 32.2°, 39.7°, and 62.5° were identified as (200, (211, and (321 reflections, respectively, corresponding to gold silicide. In addition, the observed chemical shift of Au 4f and Si 2p lines in XPS spectrum of the irradiated surface illustrated the presence of gold silicide at the irradiated surface. The generation of Si/Au-Si alloy fibrous nanoparticles aggregate is explained by the nucleation and subsequent condensation of vapor in the plasma plume during irradiation and expulsion of molten material due to high plasma pressure.

  17. High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    Science.gov (United States)

    Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung

    2009-01-01

    A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.

  18. Measurements with the fast repetitive multi-pulse Edge Thomson Scattering system on TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Uzgel, Evren; Pospieszczyk, Albrecht; Unterberg, Bernhard [IEF-Plasmaphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Kantor, Mikhail [Ioffe Institute, RAS, Saint Petersburg (Russian Federation); Meiden, Hennie van der; Jaspers, Roger [FOM-Institute for Plasma Physics Rijnhuizen, Nieuwegein (Netherlands)

    2008-07-01

    A fast repetitive multi-pulse Edge Thomson Scattering system is in operation since March 2006 and provides a sophisticated tool for the study of transport processes in the edge region of the tokamak TEXTOR. The specially designed viewing optics enables the study of the dynamics of fast plasma phenomena with high spatial resolution at the plasma edge. Various measurements under different plasma conditions were performed where the influence of resonant magnetic perturbations generated by the Dynamic Ergodic Divertor on fast electron transport in the edge region was a point of emphasis. The electron density and temperature profiles obtained are compared with other edge diagnostics based on different measuring principles. The system utilizes a ruby laser delivering bursts of 15 pulses each with a pulse energy of about 15 J. The TEXTOR plasma itself is inside the laser cavity where the double-pass system allows high laser energies of each laser pulse through the plasma. The edge system (170 mm) has 98 spatial channels of 1.7 mm each. The lower detection limit of the edge system for T{sub e} is observed to be 30 eV.

  19. Measurements with the fast repetitive multi-pulse Edge Thomson scattering system on TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Uzgel, Evren; Pospieszczyk, Albrecht; Unterberg, Bernhard [Institut fuer Plasmaphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Kantor, Mikhail; Kouprienko, Denis [Ioffe Institute, RAS, Saint Petersburg (Russian Federation); Meiden, Hennie van der; Oyevaar, Theo; Jaspers, Roger [FOM-Institute for Plasma Physics Rijnhuizen, Nieuwegein (Netherlands)

    2007-07-01

    A fast repetitive multi-pulse Edge Thomson Scattering system is in operation since March 2006 and provides a sophisticated tool for the study of transport processes in the edge region of the tokamak TEXTOR. The specially designed viewing optics enables the study of the dynamics of fast plasma phenomena with high spatial resolution at the plasma edge. Various measurements under different plasma conditions were performed where the influence of resonant magnetic perturbations generated by the Dynamic Ergodic Divertor on fast electron transport in the edge region was a point of emphasis. The electron density and temperature profiles obtained will be compared with other edge diagnostics based on different measuring principles. The system utilizes a ruby laser delivering bursts of 15 pulses each with a pulse energy of about 15 J. The TEXTOR plasma itself is inside the laser cavity where the double-pass system allows high laser energies of each laser pulse through the plasma. The new edge system (170 mm) has 98 spatial channels of 1.7 mm each. The lower detection limit of the edge system for T{sub e} is observed to be 30 eV.

  20. High-Altitude Electromagnetic Pulse (HEMP) Testing

    Science.gov (United States)

    2015-07-09

    Electromagnetic Pulse Horizontal Electromagnetic Pulse Advanced Fast Electromagnetic Pulse Nuclear Weapons Effect Testing and Environments 16. SECURITY...TOP 01-2-620A 9 July 2015 G-1 APPENDIX G. ABBREVIATIONS. AFEMP Advanced Fast Electromagnetic ... Electromagnetic Pulse A burst of electromagnetic radiation from a nuclear explosion or a suddenly fluctuating magnetic field. The resulting electric and

  1. Threshold determinations for selective retinal pigment epithelium damage with repetitive pulsed microsecond laser systems in rabbits.

    Science.gov (United States)

    Framme, Carsten; Schuele, Georg; Roider, Johann; Kracht, Dietmar; Birngruber, Reginald; Brinkmann, Ralf

    2002-01-01

    In both clinical and animal studies, it has been shown that repetitive short laser pulses can cause selective retinal pigment epithelium damage (RPE) with sparing of photoreceptors. Our purpose was to determine the ophthalmoscopic and angiographic damage thresholds as a function of pulse durations by using different pulsed laser systems to optimize treatment modalities. Chinchilla-breed rabbits were narcotized and placed in a special holding system. Laser lesions were applied using a commercial laser slit lamp, contact lens, and irradiation with a frequency-doubled Nd:YLF laser (wave-length: 527 nm; repetition rate: 500 Hz; number of pulses: 100; pulse duration: 5 micros, 1.7 micros, 200 ns) and an argon-ion laser (514 nm, 500 Hz, 100 pulses, 5 micros and 200 ms). In all eyes, spots with different energies were placed into the regio macularis with a diameter of 102 microm (tophat profile). After treatment, fundus photography and fluorescein angiography were performed and radiant exposure for ED50 damage determined. Speckle measurements at the fiber tips were performed to determine intensity peaks in the beam profile. Using the Nd:YLF laser system, the ophthalmoscopic ED50 threshold energies were 25.4 microJ (5 micros), 32 microJ (1.7 micros), and 30 microJ (200 ns). The angiographic ED50 thresholds were 13.4 microJ (5 micros), 9.2 microJ (1.7 micros), and 6.7 microJ (200 ns). With the argon laser, the angiographic threshold for 5 micros pulses was 5.5 microJ. The ophthalmoscopic threshold could not be determined because of a lack of power; however, it was > 12 microJ. For 200 ms, the ED50 radiant exposures were 20.4 mW ophthalmoscopically and 19.2 mW angiographically. Speckle factors were found to be 1.225 for the Nd:YLF and 3.180 for the argon laser. Thus, the maximal ED50 -threshold radiant exposures for the Nd:YLF were calculated to be 362 mJ/cM2 (5 micros), 478 mJ/cm2 (1.7 micros), and 438 mJ/cm2 (200 ns) ophthalmoscopically. Angiographically, the thresholds

  2. Recent developments in high-resolution optical diagnostics of repetitively pulsed laser-target effects

    Science.gov (United States)

    Hugenschmidt, Manfred; Althaus, Marion

    1995-05-01

    High energy densities, as required both in research and in industry, are achieved by the use of lasers. Extremely highpower densities are obtained in the pulsed mode with short microsecond(s) -, ns-, or even ultrashort ps- to fs- pulses. The interaction of such powerful laser pulses with any type of solid state, liquid or gaseous materials is then causing rapidly developing, nonstationary, optically nonlinear processes. Experimental investigations of these effects are therefore requiring special measuring techniques with high spatial and temporal resolution. Optical and optronical methods have proven to be particularly useful. Methods based on laser diagnostics, including high speed photography, cinematography, speckle techniques, holography, videography, infrared techniques or arbitrary combinations of these, are therefore considered to be important tools in these laser effect studies. The investigations reported in the present paper are referring to carbon dioxide-laser effects in intensity ranges which are useful for many industrial applications, such as for example in the field of material processing. Basic interest is actually in pulsed, plasma sustained laser target interaction phenomena which occur above critical threshold power densities, specific for each type of material. Surface induced, highly ionized absorption waves are then determining the energy transfer from the coherent laser radiation field towards the targets. The experiments at ISL were aimed at investigating plasma parameters and their influence on the energy transfer rates, by fast optical, electrical and optronical techniques, such as mentioned above. The results to be discussed refer to target effects, basically observed on optically transparent materials, subject to high average power pulsed carbon dioxide-laser radiation, with repetition rates of several tens to hundred pps at multi-MW/cm2 to GW/cm2 peak power densities and average power densities in the multi-kW/cm2-range.

  3. Generation of low jitter and discrete tunable dual-wavelength optical pulses at arbitrary repetition rates

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-jiang; WANG Yun-cai

    2006-01-01

    A novel and simple method to generate low timing jitter and discrete tunable dual-wavelength optical pulses at arbitrary repetition rates is demonstrated in this paper.Two multiple quantum wells distributed feedback laser diodes,were used as the external seeding sources to inject the external photons into a gain-switched Fabry-Perot laser diode.The output wavelengths can be tuned discretely to coincide with any two lasing modes in the gain spectra range of the Fabry-Perot Laser diode,and the output side mode suppression ratio was better than 25 dB.Moreover,the timing jitter of optical pulses was reduced from 1.89 ps to 0.83 ps.It was empirically found that the lowest timing jitter operation occurred when the injected light wavelength is 0.2-0.3 nm shorter than the locked mode of the Fabry-Perot laser diode.To our knowledge,this is the first report of using two DFB laser diodes as a seeding source to reduce pulses jitter and select lasing dual-wavelength simultaneously.

  4. Electra: durable repetitively pulsed angularly multiplexed KrF laser system

    Science.gov (United States)

    Wolford, Matthew F.; Myers, Matthew C.; Giuliani, John L.; Sethian, John D.; Burns, Patrick M.; Hegeler, Frank; Jaynes, Reginald

    2008-02-01

    Electra is a repetitively pulsed, electron beam pumped Krypton Fluoride (KrF) laser at the Naval Research Laboratory that is developing the technologies that can meet the Inertial Fusion Energy (IFE) requirements for durability, efficiency, and cost. The technologies developed on Electra should be directly scalable to a full size fusion power plant beam line. As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system which, consists of a commercial discharge laser (LPX 305i, Lambda Physik), 175 keV electron beam pumped (40 ns flat-top) preamplifier, and 530 keV (100 ns flat-top) main amplifier. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Single shot yield of 452 J has been extracted from the initial shots of the Electra laser system using a relatively low energy preamplifier laser beam. In rep-rate burst of 5 Hz for durations of one second a total energy of 1.585 kJ (average 317 J/pulse) has been attained. Total energy of 2.5 kJ has been attained over a two second period. For comparison, the main amplifier of Electra in oscillator mode has demonstrated at 2.5 Hz rep-rate average laser yield of 270 J over a 2 hour period.

  5. Wavelength dependence of repetitive-pulse laser-induced damage threshold in beta-BaB2O4.

    Science.gov (United States)

    Kouta, H

    1999-01-20

    The dependence on wavelength of repetitive-pulse (10 Hz, 8-10 ns) laser-induced damage on beta barium metaborate (BBO) has been investigated. The thresholds of dielectric breakdown in bulk crystal have been found to be 0.3 GW/cm(2) at 266 nm, 0.9 GW/cm(2) at 355 nm, 2.3 GW/cm(2) at 532 nm, and 4.5 GW/cm(2) at 1064 nm. Results indicate two-photon absorption at 266 and 355 nm, which helps to produce an avalanche effect that causes breakdown at each of the four wavelengths tested. Neither the BBO refractive indices nor the absorption spectrum change until breakdown occurs.

  6. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Takehiro Tachizaki

    2013-03-01

    Full Text Available We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications.

  7. A real-time terahertz time-domain polarization analyzer with 80-MHz repetition-rate femtosecond laser pulses.

    Science.gov (United States)

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-03-11

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications.

  8. Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves.

    Science.gov (United States)

    Sejima, Takehiro; Takagi, Daisuke; Fukayama, Hiroshi; Makino, Amane; Miyake, Chikahiro

    2014-06-01

    Under field conditions, the leaves of plants are exposed to fluctuating light, as observed in sunfleck. The duration and frequency of sunfleck, which is caused by the canopy being blown by the wind, are in the ranges from 0.2 to 50 s, and from 0.004 to 1 Hz, respectively. Furthermore, >60% of the sunfleck duration ranges from 0.2 to 0.8 s. In the present research, we analyzed the effects of repetitive illumination by short-pulse (SP) light of sunflower leaves on the photosynthetic electron flow. The duration of SP light was set in the range from 10 to 300 ms. We found that repetitive illumination with SP light did not induce the oxidation of P700 in PSI, and mainly inactivated PSI. Increases in the intensity, duration and frequency of SP light enhanced PSI photoinhibition. PSI photoinhibition required the presence of O2. The inactivation of PSI suppressed the net CO2 assimilation. On the other hand, the increase in the oxidized state of P700 suppressed PSI inactivation. That is, PSI with a reduced reaction center would produce reactive oxygen species (ROS) by SP light, leading to PSI photodamage. This mechanism probably explains the PSI photodamage induced by constant light. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air%Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    Institute of Scientific and Technical Information of China (English)

    杨国清; 张冠军; 张文元

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  10. 3.7 GHz repetition rate operated narrow-bandwidth picosecond pulsed Yb fiber amplifier with an all-fiber multiplier

    Science.gov (United States)

    Wei, K. H.; Wen, R. H.; Guo, Y.

    2016-04-01

    A high power picosecond pulsed Yb fiber amplifier with a pulse repetition rate of 3.7 GHz is experimentally demonstrated. The seed is a gain switched distributed Bragg reflection (DBR) structured laser diode (LD) with a pulse duration of 130 ps and a repetition rate of 460 MHz. The pulse repetition rate is increased to 3.7 GHz by introducing an all-fiber multiplier, which is composed of four 2  ×  2 structured fiber couplers. The multiplied pulse train is amplified to 81 W through two stage Yb fiber amplifiers.

  11. Optical breakdown and filamentation of femtosecond laser pulses propagating in air at a kHz repetition rate

    Institute of Scientific and Technical Information of China (English)

    Duan Zuo-Liang; Chen Jian-Ping; Li Ru-Xin; Lin Li-Huang; Xu Zhi-Zhan

    2004-01-01

    We report the experiments on the optical breakdown and filamentation of femtosecond laser pulses propagating in air at a kHz repetition rate and with several hundreds micro-joule-energy. A 10m-long filament and its breakup and merging at the nonlinear focal region produced by modulational instability of femtosecond laser pulses in air are observed. A simple model based on the nonlinear Schrodinger equation coupled with multiphoton ionization law is presented to explain the several experimental results.

  12. NEO-LISP: Deflecting near-Earth objects using high average power, repetitively pulsed lasers

    Science.gov (United States)

    Phipps, C. R.; Michaelis, M. M.

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime; (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory; and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA's) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  13. Performance characteristics of an induction linac magnetic pulse compression modulator at multi-kilohertz pulse repetition frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, S.E.; Chambers, F.W.; Deadrick, F.J. [and others

    1991-05-01

    The ETA-II linear induction accelerator utilizes four pulse power conditioning chains. Magnetic pulse compression modulators (MAG1-Ds) form the last stage of each chain. A single power conditioning chain is used to drive the injector; the remaining three are used to drive 60 accelerator cells. Nominal parameters of the MAG1-D are an output voltage of greater than 120 kV, pulse width of 70 ns, and an output impedance of 2 ohms. Our operations goal for ETA-II is stable high average power operation at 5 kHz PRF. We have begun upgrading and characterizing the power conditioning chain on our High Average Power Test Stand (HAPTS). On HAPTS, the pulse to pulse amplitude stability has been improved to less than 0.7% (one sigma) and of order 3-5 ns random jitter about a systematic timing variation. In this paper we describe the status of our work to achieve the this paper we describe the status of our work to achieve the average power operation of ETA-II

  14. Repetitively pulsed Fe: ZnSe laser with an average output power of 20 W at room temperature of the polycrystalline active element

    Science.gov (United States)

    Velikanov, S. D.; Gavrishchuk, E. M.; Zaretsky, N. A.; Zakhryapa, A. V.; Ikonnikov, V. B.; Kazantsev, S. Yu.; Kononov, I. G.; Maneshkin, A. A.; Mashkovskii, D. A.; Saltykov, E. V.; Firsov, K. N.; Chuvatkin, R. S.; Yutkin, I. M.

    2017-05-01

    The energy and spectral-temporal characteristics of a Fe : ZnSe laser operating in pulsed and repetitively pulsed regimes are studied at room temperature of the polycrystalline active element. The crystal was pumped by a nonchain electric-discharge HF laser. The energy of the Fe : ZnSe laser in a single-pulse regime was 1.67 J at the slope efficiency with respect to the absorbed and incident energy of ∼43% and ∼27%, respectively. In a repetitively pulsed regime with a pulse repetition rate of 20 Hz and an efficiency with respect to the absorbed power of ∼40%, the average laser power was ∼20 W with an individual pulse energy of ∼1 J. The possibility of increasing the average power of the repetitively pulsed Fe : ZnSe laser at room temperature is discussed.

  15. 486nm blue laser operating at 500 kHz pulse repetition frequency

    Science.gov (United States)

    Creeden, Daniel; Blanchard, Jon; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.

    2016-03-01

    Compact, high power blue light in the 470-490nm region is difficult to generate due to the lack of laser sources which are easily convertible (through parametric processes) to those wavelengths. By using a pulsed Tm-doped fiber laser as a pump source for a 2-stage second harmonic generation (SHG) scheme, we have generated ~2W of 486.5nm light at 500kHz pulse repetition frequency (PRF). To our knowledge, this is the highest PRF and output power achieved in the blue region based on a frequency converted, monolithic fiber laser. This pump laser is a pulsed Tm-doped fiber laser/amplifier which generates 12.8W of 1946nm power at 500kHz PRF with diffraction-limited output from a purely single-mode fiber. The output from this laser is converted to 973nm through second harmonic generation (SHG). The 973nm is then converted to 486.5nm via another SHG stage. This architecture operates with very low peak power, which can be challenging from a nonlinear conversion standpoint. However, the low peak power enables the use of a single-mode monolithic fiber amplifier without undergoing nonlinear effects in the fiber. This also eliminates the need for novel fiber designs, large-mode area fiber, or free-space coupling to rod-type amplifiers, improving reliability and robustness of the laser source. Higher power and conversion efficiency are possible through the addition of Tm-doped fiber amplification stages as well as optimization of the nonlinear conversion process and nonlinear materials. In this paper, we discuss the laser layout, results, and challenges with generating blue light using a low peak power approach.

  16. A repetitively pulsed xenon chloride excimer laser with all ferrite magnetic cores (AFMC) based all solid state exciter

    Science.gov (United States)

    Benerji, N. S.; Varshnay, N. K.; Ghodke, D. V.; Singh, A.

    2016-10-01

    Performance of repetitively pulsed xenon chloride excimer laser (λ~308 nm) with solid state pulser consisting of magnetic pulse compression circuit (MPC) using all ferrite magnetic cores (AFMC) is reported. Laser system suitable for 100 Hz operation with inbuilt pre-ionizer, compact gas circulation and cooling has been developed and presented. In this configuration, high voltage pulses of ~8 μs duration are compressed to ~100 ns by magnetic pulse compression circuit with overall compression factor of ~80. Pulse energy of ~18 J stored in the primary capacitor is transferred to the laser head with an efficiency of ~85% compared to ~70% that is normally achieved in such configurations using annealed met-glass core. This is a significant improvement of about 21%. Maximum output laser pulse energy of ~100 mJ was achieved at repetition rate of 100 Hz with a typical pulse to pulse energy stability of ±5% and laser pulse energy of 150 mJ was generated at low rep-rate of ~40 Hz. This exciter uses a low current and low voltage solid state switch (SCR) that replaces high voltage and high current switch i. e, thyratron completely. The use of solid state exciter in turn reduces electromagnetic interference (EMI) effects particularly in excimer lasers where high EMI is present due to high di/dt. The laser is focused on a thin copper sheet for generation of micro-hole and the SEM image of the generated micro hole shows the energy stability of the laser at high repetition rate operation. Nearly homogeneous, regular and well developed xenon chloride (XeCl) laser beam spot was achieved using the laser.

  17. Excitation and relaxation of metastable atomic states in an active medium of a repetitively pulsed copper vapour laser

    Energy Technology Data Exchange (ETDEWEB)

    Bokhan, P A; Zakrevskii, D E; Lavrukhin, M A [A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation); Lyabin, N A; Chursin, A D [Research and production corporation ' Istok' , Fryazino, Moscow region (Russian Federation)

    2016-02-28

    The influence of a pre-pulse population of copper atom metastable states and their sub-population at a current pulse edge on the copper vapour laser pulse energy is studied under optimal temperature conditions. Experiments have been performed with active elements of a commercial laser having an internal diameter of a discharge channel of 14 and 20 mm. It is found that at a pulse repetition frequency of 12 – 14 kHz, corresponding to a maximal output power, the reduction of the energy due to a residual population of metastable states is by an order of magnitude less than due to their sub-population at a current pulse edge. The modelling based on the experimental results obtained has shown that in the case of an active element with an internal diameter of 14 mm, a decrease in the pulse leading edge from ∼25 ns to 0.6 ns does not reduce the laser pulse energy up to the repetition frequency of ∼50 kHz at an average output power of 70 W m{sup -1} and efficiency of ∼11%. (lasers)

  18. Broadly wavelength- and pulse width-tunable high-repetition rate light pulses from soliton self-frequency shifting photonic crystal fiber integrated with a frequency doubling crystal.

    Science.gov (United States)

    Lanin, Aleksandr A; Fedotov, Andrei B; Zheltikov, Aleksei M

    2012-09-01

    Soliton self-frequency shift (SSFS) in a photonic crystal fiber (PCF) pumped by a long-cavity mode-locked Cr:forsterite laser is integrated with second harmonic generation (SHG) in a nonlinear crystal to generate ultrashort light pulses tunable within the range of wavelengths from 680 to 1800 nm at a repetition rate of 20 MHz. The pulse width of the second harmonic output is tuned from 70 to 600 fs by varying the thickness of the nonlinear crystal, beam-focusing geometry, and the wavelength of the soliton PCF output. Wavelength-tunable pulses generated through a combination of SSFS and SHG are ideally suited for coherent Raman microspectroscopy at high repetition rates, as verified by experiments on synthetic diamond and polystyrene films.

  19. The influence of repetitively pulsed plasma immersion low energy ion implantation on TiN coating formation and properties

    Science.gov (United States)

    Sivin, D. O.; Ananin, P. S.; Dektyarev, S. V.; Ryabchikov, A. I.; Shevelev, A. E.

    2017-05-01

    Application of high frequency short pulse plasma immersion low energy ion implantation for titanium nitride coating deposition using vacuum arc metal plasma and hot-cathode gas-discharge plasma on R6M5 alloy was investigated. Implementation of negative repetitively pulsed bias with bias amplitude 2 kV, pulse duration 5 μs and pulse frequency 105 Hz leads to 6.2-fold decrease of vacuum arc macroparticle surface density for macroparticles with diameter less than 0.5 μm. Ion sputtering due coating deposition reduces the production rate approximately by 30%. It was found that with bias amplitude range from 1.1 to 1.4 kV and pulse duration 5 μs yields to formation of coatings with local hardness up to 40 GPa. This paper presents the results of experimental studies of adhesion strength, tribological properties and surface morphology of deposited TiN coatings.

  20. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    Science.gov (United States)

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  1. Investigation on repetition rate and pulse duration influences on ablation efficiency of metals using a high average power Yb-doped ultrafast laser

    Directory of Open Access Journals (Sweden)

    Lopez J.

    2013-11-01

    Full Text Available Ultrafast lasers provide an outstanding processing quality but their main drawback is the low removal rate per pulse compared to longer pulses. This limitation could be overcome by increasing both average power and repetition rate. In this paper, we report on the influence of high repetition rate and pulse duration on both ablation efficiency and processing quality on metals. All trials have been performed with a single tunable ultrafast laser (350 fs to 10ps.

  2. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    Science.gov (United States)

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  3. Repetitive Cyclic Potentiodynamic Polarization Scan Results for Reduced Sample Volume Testing

    Energy Technology Data Exchange (ETDEWEB)

    LaMothe, Margaret E. [Washington River Protection Solutions, Richland, WA (United States)

    2016-03-15

    This report is the compilation of data gathered after repetitively testing simulated tank waste and a radioactive tank waste sample using a cyclic potentiodynamic polarization (CPP) test method to determine corrosion resistance of metal samples. Electrochemistry testing of radioactive tank samples is often used to assess the corrosion susceptibility and material integrity of waste tank steel. Repetitive testing of radiological tank waste is occasionally requested at 222-S Laboratory due to the limited volume of radiological tank sample received for testing.

  4. Absolute OH Number Density Measurements in Lean Fuel-Air Mixtures Excited by a Repetitively Pulsed Nanosecond Discharge

    Science.gov (United States)

    2013-01-01

    discharge filaments and near the electrode edges [9]. Instead of using absorption measurement, an atmospheric pressure flame generated by a Hencken...DuPont) is placed between each electrode and the channel wall, to reduce air gaps and prevent corona discharge outside the cell. In the present work...1 Absolute OH Number Density Measurements in Lean Fuel-Air Mixtures Excited by a Repetitively Pulsed Nanosecond Discharge Zhiyao Yin, Campbell D

  5. Generation of a Sub-10 fs Laser Pulse by a Ring Oscillator with a High Repetition Rate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing; ZHAO Yan-Ying; WEI Zhi-Yi

    2009-01-01

    @@ A compact femtoescond Ti:sapphire ring oscillator composed of chirped mirrors is designed. By accurately optimizing the intra-cavity dispersion and the mode locking range of the ring configuration, we generate laser pulses as short as 7.7 fs with a repetition rate as high as 745 MHz. The spectrum spans from 660nm to 940nm and the average output power is 480row under the cw pump laser of 7.5 W.

  6. Wakefield-acceleration of relativistic electrons with few-cycle laser pulses at kHz-repetition-rate

    Science.gov (United States)

    Guenot, Diego; Gustas, Dominykas; Vernier, Aline; Boehle, Frederik; Beaurepaire, Benoit; Lopez-Martens, Rodrigo; Faure, Jerome; Appli Team

    2016-10-01

    The generation of relativistic electron beams using laser wakefield acceleration has become a standard technique, providing low emittance electron bunches with femtosecond durations. However, this technique usually requires multi-ten-terawatt lasers and is thus limited to low repetition-rate (typically 10 Hz or less). We have recently demonstrated the generation of few MeV electrons using 2.5-mJ, 4-fs, 1-kHz repetition-rate laser pulses, focused to relativistic intensity onto a gas jet with electron density 1020 cm-3. We have investigated the influence of the pulse duration, the gas density. We demonstrated that an electron beam with a charge in the range of 10-fC/shot, with a divergence of 20-mrad and a peaked spectrum with energies between 2 and 4 MeV can be generated at kHz repetition-rate. These results confirm the possibility of using few-cycle laser pulses with very low energy for exciting wakefields in the bubble regime and for trapping electrons, as predicted by PIC simulations. This kHz electron source is ideally suited for performing electron diffraction experiments with very high temporal resolution. Our results also open the way to other applications, such as the generation of a kHz ultrafast X-ray source. ERC femtoelec.

  7. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  8. PERIPHERAL APPLICATION OF REPETITIVE PULSE MAGNETIC STIMULATION ON JOINT CONTRACTURE FOR MOBILITY RESTORATION: CONTROLLED RANDOMIZED STUDY

    Directory of Open Access Journals (Sweden)

    Efthimios J. Kouloulas

    2016-10-01

    Full Text Available Background: Joint contracture is a limitation in the passive or active range of motion (ROM of a joint, where in addition to the mobility limiting factor the pain is also present. Repetitive pulsed Magnetic Stimulation (rPMS appears to be an effective, non-invasive and safety solution for treating this condition. Therefore aim of this study was to evaluate the effect of rPMS in treating joint contracture. Methods: 30 subjects with joint contracture in the knee were enrolled in this study and divided respectively into Treatment and Control group. The treatment group were delivered with rPMS therapy. The control group was delivered with conventional physiotherapy method (ultrasound. The primary outcome measurements were: 1. Mobility evaluation by goniometry (ROM in degrees while performing flexion and Patient Functional Assessment Questionnaire (PFAQ for ability to perform Activities of Daily Living (ADL and 2. Pain evaluation by 10-point Visual Analog Scale (VAS for pain perception. Absence of adverse events was set as a secondary measure. Results: The results of the study show statistical difference (p<0.05 between the levels of improvement of all studied parameters while comparing between both groups. The results suggest greater immobility restoration and pain relieving effect of the rPMS in comparison to conventional physiotherapy method. Conclusion: rPMS an effective and safe non-invasive method for mobility restoration and pain relief in case of joint contractures. This study suggests the method as beneficial and quality of life ameliorating among patients suffering from immobilized joints accompanied by pain.

  9. High-power, highly stable KrF laser with a 4-kHz pulse repetition rate

    Science.gov (United States)

    Borisov, V. M.; El'tsov, A. V.; Khristoforov, O. B.

    2015-08-01

    An electric-discharge KrF laser (248 nm) with an average output power of 300 W is developed and studied. A number of new design features are related to the use of a laser chamber based on an Al2O3 ceramic tube. A high power and pulse repetition rate are achieved by using a volume discharge with lateral preionisation by the UV radiation of a creeping discharge in the form of a homogeneous plasma sheet on the surface of a plane sapphire plate. Various generators for pumping the laser are studied. The maximum laser efficiency is 3.1%, the maximum laser energy is 160 mJ pulse-1, and the pulse duration at half maximum is 7.5 ns. In the case of long-term operation at a pulse repetition rate of 4 kHz and an output power of 300 W, high stability of laser output energy (σ <= 0.7%) is achieved using an all-solid-state pump system.

  10. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    Science.gov (United States)

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  11. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    Science.gov (United States)

    Baksht, E. Kh; Burachenko, A. G.; Lomaev, M. I.; Panchenko, A. N.; Tarasenko, V. F.

    2015-04-01

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ~4 ns and a rise time of ~2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 - 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr.

  12. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Baksht, E Kh; Burachenko, A G; Lomaev, M I; Panchenko, A N; Tarasenko, V F [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

    2015-04-30

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ∼4 ns and a rise time of ∼2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 – 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr. (laser applications and other topics in quantum electronics)

  13. Vertical Electromagnetic Pulse (VEMP) Testing

    Science.gov (United States)

    2009-09-11

    Device Measurement Accuracy Current Current Probes ±5% E-Field D-Dot Probe ±5% H-field B-Dot Probe ±5% Test Setup Digital Camera > 2 Megapixel...electromagnetic environment produced by a nuclear weapon consists of the ionization of the atmosphere and generation of an EMP. The gamma rays, neutrons , beta...Measurements . Measurements of each illumination will be made using an Electric Flux Density per unit time (D-dot) probes, so that the magnitude of

  14. Mechanisms of high-regularity periodic structuring of silicon surface by sub-MHz repetition rate ultrashort laser pulses

    Science.gov (United States)

    Gnilitskyi, Iaroslav; Gruzdev, Vitaly; Bulgakova, Nadezhda M.; Mocek, Tomáš; Orazi, Leonardo

    2016-10-01

    Silicon is one of the most abundant materials which is used in many areas of modern research and technology. A variety of those applications require surface nanopatterning with minimum structure defects. However, the high-quality nanostructuring of large areas of silicon surface at industrially acceptable speed is still a challenge. Here, we report a rapid formation of highly regular laser-induced periodic surface structures (HR-LIPSS) in the regime of strong ablation by infrared femtosecond laser pulses at sub-MHz repetition rate. Parameters of the laser-surface interactions and obtained experimental results suggest an important role of electrostatically assisted bond softening in initiating the HR-LIPSS formation.

  15. Drilling and cutting of thin metal plates in water with radiation of a repetitively pulsed Nd : YAG laser

    Science.gov (United States)

    Glova, A. F.; Lysikov, A. Yu

    2011-10-01

    The conditions of drilling and cutting of 0.15-mm-thick titanium and stainless steel plates in water with the radiation of a repetitively pulsed Nd : YAG laser having the mean power up to 30 W are studied experimentally in the absence of water and gas jets. Dependences of the maximal cutting speed in water on the radiation power are obtained, the cutting efficiency is determined, and the comparison with the conditions of drilling and cutting of plates in air is carried out.

  16. Transition from interpulse to afterglow plasmas driven by repetitive short-pulse microwaves in a multicusp magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Shail; Sahu, Debaprasad; Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2012-08-15

    In the power-off phase, plasmas generated by repetitive short-pulse microwaves in a multicusp magnetic field show a transitive nature from interpulse to afterglow as a function of pulse duration t{sub w} = 20-200 {mu}s. The ionized medium can be driven from a highly non equilibrium to an equilibrium state inside the pulses, thereby dictating the behavior of the plasma in the power-off phase. Compared to afterglows, interpulse plasmas observed for t{sub w} < 50 {mu}s are characterized by a quasi-steady-state in electron density that persists for {approx} 20-40 {mu}s even after the end of the pulse and has a relatively slower decay rate ({approx} 4.3 Multiplication-Sign 10{sup 4} s{sup -1}) of the electron temperature, as corroborated by optical measurements. The associated electron energy probability function indicates depletion in low energy electrons which appear at higher energies just after the end of the pulse. The transition occurs at t{sub w} {approx} 50 {mu}s as confirmed by time evolution of integrated electron numbers densities obtained from the distribution function.

  17. Transition from interpulse to afterglow plasmas driven by repetitive short-pulse microwaves in a multicusp magnetic field

    Science.gov (United States)

    Pandey, Shail; Sahu, Debaprasad; Bhattacharjee, Sudeep

    2012-08-01

    In the power-off phase, plasmas generated by repetitive short-pulse microwaves in a multicusp magnetic field show a transitive nature from interpulse to afterglow as a function of pulse duration tw = 20-200 μs. The ionized medium can be driven from a highly non equilibrium to an equilibrium state inside the pulses, thereby dictating the behavior of the plasma in the power-off phase. Compared to afterglows, interpulse plasmas observed for tw < 50 μs are characterized by a quasi-steady-state in electron density that persists for ˜ 20-40 μs even after the end of the pulse and has a relatively slower decay rate (˜ 4.3 × 104 s-1) of the electron temperature, as corroborated by optical measurements. The associated electron energy probability function indicates depletion in low energy electrons which appear at higher energies just after the end of the pulse. The transition occurs at tw ˜ 50 μs as confirmed by time evolution of integrated electron numbers densities obtained from the distribution function.

  18. Effect of pulse repetition rate and number of pulses in the analysis of polypropylene and high density polyethylene by nanosecond infrared laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leme, Flavio O. [Laboratorio de Quimica Analitica ' Henrique Bergamin Filho' , Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Godoi, Quienly [Laboratorio de Quimica Analitica ' Henrique Bergamin Filho' , Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Departamento de Quimica, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905 Sao Carlos, SP (Brazil); Kiyataka, Paulo H.M. [Centro de Tecnologia de Embalagens, Instituto de Tecnologia de Alimentos, Av. Brasil 2880, 13070-178 Campinas, SP (Brazil); Santos, Dario [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Rua Prof. Artur Riedel 275, 09972-270 Diadema, SP (Brazil); Agnelli, Jose A.M. [Departamento de Engenharia de Materiais, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905 Sao Carlos, SP (Brazil); and others

    2012-02-01

    Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO{sub 4}. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm{sup -2}), 2 {mu}s delay time and 6 {mu}s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant.

  19. A megawatt solid-state modulator for high repetition rate pulse generation

    Science.gov (United States)

    Wang, Y.; Pribyl, P.; Gekelman, W.

    2016-02-01

    A novel solid-state modulator capable of generating rapid consecutive power pulses is constructed to facilitate experiments on plasma interaction with high power microwave pulses. The modulator is designed to output a 100 kHz tone burst, which consists of up to 10 pulses, each with 1 μs duration and 1 MW peak power. The pulses are formed by discharging a total of 480 μF capacitors through 24 synchronized MOSFETs and 6 step-up transformers. The highly modular design, as a replacement of an old single-pulse version used in earlier experiments which employs a pulse forming network, brings great flexibility and wide potential to its application. A systematic cost-effectiveness analysis is also presented.

  20. Enhanced performance of a repetitively pulsed 130 mJ KrF laser with improved pre-ionization parameters

    Indian Academy of Sciences (India)

    N S Benerji; A Singh; N Varshnay; Bijendra Singh

    2014-01-01

    Studies related to the effect of pre-ionizer on laser output energy of a repetitively pulsed KrF laser are presented. The dependence of laser output energy, spectral width and beam spot homogeneity on pre-ionization parameters, namely its current and voltage rise time are reported here. Here, effectiveness of pre-ionization is optimized by improving pre-ionization current and rise time of the pump pulse of the automatic UV pre-ionizer KrF laser. It is observed that by increasing pre-ionization current from 6 kA to 10.6 kA, the output energy increases by about 30% (from 100 to 130 mJ). It is also observed that the emission spectral width reduces by almost 60% by increasing the pre-ionization current. Regular homogeneous and well-developed beam spot (nearly Hat-Top profile) was achieved under these optimized conditions.

  1. High Repetition-Rate Wakefield Electron Source Generated by Few-millijoule, 30 femtosecond Laser Pulses on a Density Downramp

    CERN Document Server

    He, Z -H; Easter, J H; Krushelnick, K; Nees, J A; Thomas, A G R

    2012-01-01

    We report on an experimental demonstration of laser wakefield electron acceleration using a sub-TW power laser by tightly focusing 30-fs laser pulses with only 8 mJ pulse energy on a 100 \\mu m scale gas target. The experiments are carried out at an unprecedented 0.5 kHz repetition rate, allowing "real time" optimization of accelerator parameters. Well-collimated and stable electron beams with a quasi-monoenergetic peak in excess of 100 keV are measured. Particle-in-cell simulations show excellent agreement with the experimental results and suggest an acceleration mechanism based on electron trapping on the density downramp, due to the time varying phase velocity of the plasma waves.

  2. Ultrastable fiber amplifier delivering 145-fs pulses with 6-μJ energy at 10-MHz repetition rate.

    Science.gov (United States)

    Wunram, Marcel; Storz, Patrick; Brida, Daniele; Leitenstorfer, Alfred

    2015-03-01

    A high-power femtosecond Yb:fiber amplifier operating with exceptional noise performance and long-term stability is demonstrated. It generates a 10-MHz train of 145-fs pulses at 1.03 μm with peak powers above 36 MW. The system features a relative amplitude noise of 1.5·10⁻⁶  Hz(-1/2) at 1 MHz and drifts of the 60-W average power below 0.3% over 72 hours of continuous operation. The passively phase-stable Er:fiber seed system provides ultrabroadband pulses that are synchronized at a repetition rate of 40 MHz. This combination aims at new schemes for sensitive experiments in ultrafast scientific applications.

  3. Search for Two-Photon Interaction with Axionlike Particles Using High-Repetition Pulsed Magnets and Synchrotron X Rays

    Science.gov (United States)

    Inada, T.; Yamazaki, T.; Namba, T.; Asai, S.; Kobayashi, T.; Tamasaku, K.; Tanaka, Y.; Inubushi, Y.; Sawada, K.; Yabashi, M.; Ishikawa, T.; Matsuo, A.; Kawaguchi, K.; Kindo, K.; Nojiri, H.

    2017-02-01

    We report on new results of a search for a two-photon interaction with axionlike particles (ALPs). The experiment is carried out at a synchrotron radiation facility using a "light shining through a wall (LSW)" technique. For this purpose, we develop a novel pulsed-magnet system, composed of multiple racetrack magnets and a transportable power supply. It produces fields of about 10 T over 0.8 m with a high repetition rate of 0.2 Hz and yields a new method of probing a vacuum with high intensity fields. The data obtained with a total of 27 676 pulses provide a limit on the ALP-two-photon coupling constant that is more stringent by a factor of 5.2 compared to a previous x-ray LSW limit for the ALP mass ≲0.1 eV .

  4. Search for Two-Photon Interaction with Axionlike Particles Using High-Repetition Pulsed Magnets and Synchrotron X Rays

    CERN Document Server

    Inada, T; Namba, T; Asai, S; Kobayashi, T; Tamasaku, K; Tanaka, Y; Inubushi, Y; Sawada, K; Yabashi, M; Ishikawa, T; Matsuo, A; Kawaguchi, K; Kindo, K; Nojiri, H

    2016-01-01

    We report on new results of a search for two-photon interaction with axionlike particles (ALPs). The experiment was carried out at a synchrotron radiation facility using a "light shining through a wall (LSW)" technique. For this purpose, we have developed a novel pulsed-magnet system, composed of multiple racetrack-magnets and a transportable power supply. It produces fields of about 10 T over 0.8 m with a high repetition rate of 0.2 Hz and yields a new method of probing vacuum with high intensity fields. The data obtained with a total of 27,676 pulses provide a limit on the ALP-two-photon coupling constant that is more stringent by a factor of 5.2 compared to a previous x-ray LSW limit for the ALP mass below 0.1 eV.

  5. Derivation of a formula describing the saturation correction of plane-parallel ionization chambers in pulsed fields with arbitrary repetition rate.

    Science.gov (United States)

    Karsch, Leonhard

    2016-04-21

    Gas-filled ionization chambers are widely used radiation detectors in radiotherapy. A quantitative description and correction of the recombination effects exists for two cases, for continuous radiation exposure and for pulsed radiation fields with short single pulses. This work gives a derivation of a formula for pulsed beams with arbitrary pulse rate for which the prerequisites of the two existing descriptions are not fulfilled. Furthermore, an extension of the validity of the two known cases is investigated. The temporal evolution of idealized charge density distributions within a plane parallel chamber volume is described for pulsed beams of vanishing pulse duration and arbitrary pulse repetition rate. First, the radiation induced release, movement and collection of the charge carriers without recombination are considered. Then, charge recombination is calculated basing on these simplified charge distributions and the time dependent spatial overlap of positive and negative charge carrier distributions. Finally, a formula for the calculation of the saturation correction factor is derived by calculation and simplification of the first two terms of a Taylor expansion for small recombination. The new formula of saturation correction contains the two existing cases, descriptions for exposure by single pulses and continuous irradiation, as limiting cases. Furthermore, it is possible to determine the pulse rate range for which each of the three descriptions is applicable by comparing the dependencies of the new formula with the two existing cases. As long as the time between two pulses is lower than one third of the collection time of the chamber, the formalism for a continuous exposure can be used. The known description for single pulse irradiation is only valid if the repetition rate is less than 1.2 times the inverse collection time. For all other repetition rates in between the new formula should be used. The experimental determination by Jaffe diagrams can be

  6. Derivation of a formula describing the saturation correction of plane-parallel ionization chambers in pulsed fields with arbitrary repetition rate

    Science.gov (United States)

    Karsch, Leonhard

    2016-04-01

    Gas-filled ionization chambers are widely used radiation detectors in radiotherapy. A quantitative description and correction of the recombination effects exists for two cases, for continuous radiation exposure and for pulsed radiation fields with short single pulses. This work gives a derivation of a formula for pulsed beams with arbitrary pulse rate for which the prerequisites of the two existing descriptions are not fulfilled. Furthermore, an extension of the validity of the two known cases is investigated. The temporal evolution of idealized charge density distributions within a plane parallel chamber volume is described for pulsed beams of vanishing pulse duration and arbitrary pulse repetition rate. First, the radiation induced release, movement and collection of the charge carriers without recombination are considered. Then, charge recombination is calculated basing on these simplified charge distributions and the time dependent spatial overlap of positive and negative charge carrier distributions. Finally, a formula for the calculation of the saturation correction factor is derived by calculation and simplification of the first two terms of a Taylor expansion for small recombination. The new formula of saturation correction contains the two existing cases, descriptions for exposure by single pulses and continuous irradiation, as limiting cases. Furthermore, it is possible to determine the pulse rate range for which each of the three descriptions is applicable by comparing the dependencies of the new formula with the two existing cases. As long as the time between two pulses is lower than one third of the collection time of the chamber, the formalism for a continuous exposure can be used. The known description for single pulse irradiation is only valid if the repetition rate is less than 1.2 times the inverse collection time. For all other repetition rates in between the new formula should be used. The experimental determination by Jaffe diagrams can be

  7. Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration

    KAUST Repository

    Heitz, Sylvain A

    2016-03-16

    The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region. © 2016 IOP Publishing Ltd.

  8. Investigation of Gas Heating by Nanosecond Repetitively Pulsed Glow Discharges Used for Actuation of a Laminar Methane-Air Flame

    KAUST Repository

    Lacoste, Deanna A.

    2017-05-24

    This paper reports on the quantification of the heating induced by nanosecond repetitively pulsed (NRP) glow discharges on a lean premixed methane-air flame. The flame, obtained at room temperature and atmospheric pressure, has an M-shape morphology. The equivalence ratio is 0.95 and the thermal power released by the flame is 113 W. The NRP glow discharges are produced by high voltage pulses of 10 ns duration, 7 kV amplitude, applied at a repetition frequency of 10 kHz. The average power of the plasma, determined from current and voltage measurements, is 1 W, i.e. about 0.9 % of the thermal power of the flame. Broadband vibrational coherent anti-Stokes Raman spectroscopy of nitrogen is used to determine the temperature of the flame with and without plasma enhancement. The temperature evolution in the flame area shows that the thermal impact of NRP glow discharges is in the uncertainty range of the technique, i.e., +/- 40 K.

  9. Surface modifications on toughened, fine-grained, recrystallized tungsten with repetitive ELM-like pulsed plasma irradiation

    Science.gov (United States)

    Kikuchi, Y.; Sakuma, I.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.; Ueda, Y.; Kurishita, H.

    2015-08-01

    Surface modifications of toughened, fine-grained, recrystallized tungsten (TFGR W) materials with 1.1 wt.% TiC and 3.3 wt.% TaC dispersoids due to repetitive ELM-like pulsed (∼0.15 ms) helium plasma irradiation have been investigated by using a magnetized coaxial plasma gun. No surface cracking at the center part of the TFGR W samples exposed to 20 plasma pulses of ∼0.3 MJ m-2 was observed. The suppression of surface crack formation due to the increase of the grain boundary strength by addition of TiC and TaC dispersoids was confirmed in comparison with a pure W material. On the other hand, surface cracks and small pits appeared at the edge part of the TFGR W sample after the pulsed plasma irradiation. Erosion of the TiC and TaC dispersoids due to the pulsed plasma irradiation could cause the small pits on the surface, resulting in the surface crack formation.

  10. Surface modifications on toughened, fine-grained, recrystallized tungsten with repetitive ELM-like pulsed plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Y., E-mail: ykikuchi@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Sakuma, I.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Ueda, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kurishita, H. [Institute for Materials Research, Tohoku University, Ibaraki 311-1313 (Japan)

    2015-08-15

    Surface modifications of toughened, fine-grained, recrystallized tungsten (TFGR W) materials with 1.1 wt.% TiC and 3.3 wt.% TaC dispersoids due to repetitive ELM-like pulsed (∼0.15 ms) helium plasma irradiation have been investigated by using a magnetized coaxial plasma gun. No surface cracking at the center part of the TFGR W samples exposed to 20 plasma pulses of ∼0.3 MJ m{sup −2} was observed. The suppression of surface crack formation due to the increase of the grain boundary strength by addition of TiC and TaC dispersoids was confirmed in comparison with a pure W material. On the other hand, surface cracks and small pits appeared at the edge part of the TFGR W sample after the pulsed plasma irradiation. Erosion of the TiC and TaC dispersoids due to the pulsed plasma irradiation could cause the small pits on the surface, resulting in the surface crack formation.

  11. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    Science.gov (United States)

    Yu, Sizhe; Lu, Xinpei

    2016-09-01

    We investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6mm gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using synthetic air and its components oxygen and nitrogen. It is found that the pressures are very different when the DBD mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-streamer, which is dominant in the traditional alternating-voltage DBDs. The pulsed DBD in a uniform mode develops in the form of plane ionization wave, due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and DBD develops in streamer instead, corresponding to the filamentary mode. Increasing the initiatory electron density by pre-ionization methods may contribute to discharge uniformity at higher pressures. We also find that the dependence of uniformity upon PRF is non-monotonic.

  12. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    Science.gov (United States)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  13. Repetitively pulsed electric laser acoustic studies. Volume 1. Final technical report, Jun 80-Jun 83

    Energy Technology Data Exchange (ETDEWEB)

    Ingard, K.U.; McMillan, C.F.

    1983-09-01

    This report summarizes a study of the acoustical characteristics of a closed loop duct system for pulsed lasers with emphasis on acoustic suppression technology. Several topics are considered involving wave propagation reflection and attenuation in a shock tube, in which pulse waves are generated, simulating those in a pulsed laser system. A detailed analysis of the design of parallel-baffle attenuators for suppression of acoustic waves is given, allowing for the contributions of the reflection transmitted and reverberant contributions to the sound pressure field in the optical cavity.

  14. 10  GHz pulse repetition rate Er:Yb:glass laser modelocked with quantum dot semiconductor saturable absorber mirror.

    Science.gov (United States)

    Resan, B; Kurmulis, S; Zhang, Z Y; Oehler, A E H; Markovic, V; Mangold, M; Südmeyer, T; Keller, U; Hogg, R A; Weingarten, K J

    2016-05-10

    Semiconductor saturable absorber mirror (SESAM) modelocked high pulse repetition rate (≥10  GHz) diode-pumped solid-state lasers are proven as an enabling technology for high data rate coherent communication systems owing to their low noise and high pulse-to-pulse optical phase-coherence. Compared to quantum well, quantum dot (QD)-based SESAMs offer potential advantages to such laser systems in terms of reduced saturation fluence, broader bandwidth, and wavelength flexibility. Here, we describe the first 10 GHz pulse repetition rate QD-SESAM modelocked laser at 1.55 μm, exhibiting 2 ps pulse width from an Er-doped glass oscillator (ERGO). The 10 GHz ERGO laser is modelocked with InAs/GaAs QD-SESAM with saturation fluence as low as 9  μJ/cm2.

  15. Bystander Effect Induced by Electroporation is Possibly Mediated by Microvesicles and Dependent on Pulse Amplitude, Repetition Frequency and Cell Type.

    Science.gov (United States)

    Prevc, Ajda; Bedina Zavec, Apolonija; Cemazar, Maja; Kloboves-Prevodnik, Veronika; Stimac, Monika; Todorovic, Vesna; Strojan, Primoz; Sersa, Gregor

    2016-10-01

    Bystander effect, a known phenomenon in radiation biology, where irradiated cells release signals which cause damage to nearby, unirradiated cells, has not been explored in electroporated cells yet. Therefore, our aim was to determine whether bystander effect is present in electroporated melanoma cells in vitro, by determining viability of non-electroporated cells exposed to medium from electroporated cells and by the release of microvesicles as potential indicators of the bystander effect. Here, we demonstrated that electroporation of cells induces bystander effect: Cells exposed to electric pulses mediated their damage to the non-electroporated cells, thus decreasing cell viability. We have shown that shedding microvesicles may be one of the ways used by the cells to mediate the death signals to the neighboring cells. The murine melanoma B16F1 cell line was found to be more electrosensitive and thus more prone to bystander effect than the canine melanoma CMeC-1 cell line. In B16F1 cell line, bystander effect was present above the level of electropermeabilization of the cells, with the threshold at 800 V/cm. Furthermore, with increasing electric field intensities and the number of pulses, the bystander effect also increased. In conclusion, electroporation can induce bystander effect which may be mediated by microvesicles, and depends on pulse amplitude, repetition frequency and cell type.

  16. 615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate.

    Science.gov (United States)

    Fischer, Jonathan; Heinrich, Alexander-Cornelius; Maier, Simon; Jungwirth, Julian; Brida, Daniele; Leitenstorfer, Alfred

    2016-01-15

    A combination of Er/Yb:fiber and Yb:thin-disk technology produces 615 fs pulses at 1030 nm with an average output power of 72 W. The regenerative amplifier allows variation of the repetition rate between 3 and 5 kHz with pulse energies from 13 to 17 mJ. A broadband and intense seed provided by the compact and versatile fiber front-end minimizes gain narrowing. The resulting sub-ps performance is ideal for nonlinear frequency conversion and pulse compression. Operating in the upper branch of a bifurcated pulse train, the system exhibits exceptional noise performance and stability.

  17. Phase-stable, multi-µJ femtosecond pulses from a repetition-rate tunable Ti:Sa-oscillator-seeded Yb-fiber amplifier

    Science.gov (United States)

    Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.

    2017-01-01

    We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

  18. Large area crystallization of amorphous Si with overlapping high repetition rate laser pulses

    KAUST Repository

    Ryu, Sang-Gil

    2012-09-01

    This paper presents a pulsed laser crystallization technique, enabling large area crystallization of amorphous Si to produce grains having well-defined size and orientation. The method is developed by first determining the parameters influencing crystallization induced by single laser pulses of circular cross-sectional profile. In a second step, crystallization by overlapping round spots is examined. The experiments reveal three zones characterized by distinctly different crystallized morphologies following the laser irradiation. One of these zones corresponds to the regime of lateral crystal growth, wherein grains are driven towards the center of the spot by the radial temperature gradient. These findings are then applied to processing via line beam profiles that facilitate large area crystallization upon rapid translation of the specimen. Crystallization of extended areas hinges on the determination of the crystal growth length for a single spot. The pitch between successive pulses is then set on the basis of this information. It is shown that the pulse energy has only a weak effect on the crystal growth length. © 2012 Elsevier B.V.

  19. Inductive Pulsed Plasma Thruster Development and Testing at NASA-MSFC

    Science.gov (United States)

    Polzin, Kurt A.

    2013-01-01

    THE inductive pulsed plasma thruster (IPPT) is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged producing a high current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. In the present work, we present a summary of the IPPT research and development conducted at NASA's Marshall Space Flight Center (MSFC). As a higher-power, still relatively low readiness level system, there are many issues associated with the eventual deployment and use of the IPPT as a primary propulsion system on spacecraft that remain to be addressed. The present program aimed to fabricate and test hardware to explore how these issues could be addressed. The following specific areas were addressed within the program and will be discussed within this paper. a) Conical theta-pinch IPPT geometry thruster configuration. b) Repetition-rate multi-kW thruster pulsing. c) Long-lifetime pulsed gas valve. d) Fast pulsed gas valve driver and controller. e) High-voltage, repetitive capacitor charging power processing unit. During the course of testing, a number of specific tests were conducted, including several that, to our knowledge, have either never been previously conducted (such as multi-KW repetition-rate operation) or have not been performed since the early 1990s (direct IPPT thrust measurements).2 Conical theta-pinch IPPT thrust stand measurements are presented in Fig. 1 while various time-integrated and time

  20. Testing a scale pulsed modulator for an IEC neutron source into a resistive load

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E [Los Alamos National Laboratory; Wheat, Robert M [Los Alamos National Laboratory; Aragonez, Robert [Los Alamos National Laboratory

    2009-01-01

    A 1/10th scaled prototype pulse modulator for an Inertial Electrostatic Confinement (IEC) neutron source has been designed and tested at Los Alamos National Laboratory (LANL). The scaled prototype modulator is based on a solid-state Marx architecture and has an output voltage of 13 kV and an output current of 10 A. The modulator has a variable pulse width between 50 {micro}s and 1 ms with < 5% droop at all pulse widths. The modulator operates with a duty factor up to 5% and has a maximum pulse repetition frequency of 1 kHz. The use of a solid-state Marx modulator in this application has several potential benefits. These benefits include variable pulse width and amplitude, inherent switch overcurrent and transient overvoltage protection, and increased efficiency over DC supplies used in this application. Several new features were incorporated into this design including inductorless charging, fully snubberless operation, and stage fusing. The scaled prototype modulator has been tested using a 1 k{Omega} resistive load. Test results are given. Short (50 {micro}s) and long (1 ms) pulses are demonstrated as well as high duty factor operation (1 kHz rep rate at a 50 {micro}s pulse width for a 5% duty factor). Pulse agility of the modulator is demonstrated through turning the individual Marx stages on and off in sequence producing ramp, pyramid, and reverse pyramid waveforms.

  1. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser

    CERN Document Server

    Yang, Heewon; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon

    2014-01-01

    We show that a 1.13-GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz - 10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-walled carbon nanotube (SWCNT)-coated mirrors. To our knowledge, this is the lowest timing jitter optical pulse train with the GHz repetition rate ever measured. If this pulse train is used for direct sampling of 565-MHz signals (Nyquist frequency of the pulse train), the demonstrated jitter level corresponds to the projected effective-number-of-bit (ENOB) of 17.8, which is much higher than the thermal noise limit of 50-ohm load resistance (~14 bits).

  2. Sentence Repetition Test for Measurement of Grammatical Development in Farsi Speaking Children

    Directory of Open Access Journals (Sweden)

    Mohammad Kamali

    2011-06-01

    Full Text Available Background and Aim: valid identification, prevention, and treatment of language disorders are a high priority for the speech and language professionals. One method for studying language development is sentence repetition that is faster to implement and analysis than other procedures. The aim of this project was constructing sentence repetition test as a quick measure of grammatical potency in 2.5 to 4 year old children.Methods: Sentences appropriate for 2.5 to 4 year old children were selected during several stages by speech and language pathologist and linguists. The validity of sentences was assessed by professional masters in this theme. Subsequently, 41 sentences including those with 80% high validity were selected as the test sentences. Appropriate pictures were also provided with sentences. The test was administrated to 72 children in 3 groups (2.5-3, 3-3.5, and 3.5-4 year olds, gender matched. The reliability was administered with a test-retest design across a 2 weeks interval.Results: Content validity Index for this test was 80%. "Test-retest reliability” was used for reliability of this test. The Interclass correlation coefficient for this test was 0.95 and standard error measurement was 7.45. The average of scores for sentence repetition, between groups was significant (p<0.001, p<0.001, p= 0.014.Conclusion: This sentence repetition test has the appropriate validity and reliability as well as the capability of proper and quick assessment (screening of grammatical development in 2.5 to 4 year old Persian speaking children.

  3. Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE.

    Science.gov (United States)

    Schmidt, J; Winnerl, S; Seidel, W; Bauer, C; Gensch, M; Schneider, H; Helm, M

    2015-06-01

    We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30 μm is discussed. In addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE.

  4. Building an Assessment Use Argument for sign language: the BSL Nonsense Sign Repetition Test

    OpenAIRE

    Mann, W.; Marshall, C. R.

    2010-01-01

    In this article, we adapt a concept designed to structure language testing more effectively, the Assessment Use Argument (AUA), as a framework for the development and/or use of sign language assessments for deaf children who are taught in a sign bilingual education setting. By drawing on data from a recent investigation of deaf children's nonsense sign repetition skills in British Sign Language, we demonstrate the steps of implementing the AUA in practical test design, development and use. Th...

  5. Characteristics of the evolution of a plasma generated by radiation from CW and repetitively pulsed CO2 lasers in different gases

    Science.gov (United States)

    Kanevskii, M. F.; Stepanova, M. A.

    1990-06-01

    The interaction between high-power CW and repetitively pulsed CO2 laser radiation and a low-threshold optical-breakdown plasma near a metal surface is investigated. The characteristics of the breakdown plasma are examined as functions of the experimental conditions. A qualitative analysis of the results obtained was performed using a simple one-dimensional model for laser combustion waves.

  6. Relativistic electron beams driven by single-cycle laser pulses at kHz repetition rate (Conference Presentation)

    Science.gov (United States)

    Faure, Jérôme; Guénot, Diego; Gustas, Dominykas; Vernier, Aline; Beaurepaire, Benoît; Böhle, Frederik; López-Martens, Rodrigo; Lifschitz, Agustin

    2017-05-01

    Laser-plasma accelerators are usually driven by 100-TW class laser systems with rather low repetition rates. However, recent years have seen the emergence of laser-plasma accelerators operating with kHz lasers and energies lower than 10 mJ. The high repetition-rate is particularly interesting for applications requiring high stability and high signal-to-noise ratio but lower energy electrons. For example, our group recently demonstrated that kHz laser-driven electron beams could be used to capture ultrafast structural dynamics in Silicon nano-membranes via electron diffraction with picosecond resolution. In these first experiments, electrons were injected in the density gradients located at the plasma exit, resulting in rather low energies in the 100 keV range. The electrons being nonrelativistic, the bunch duration quickly becomes picosecond long. Relativistic energies are required to mitigate space charge effects and maintain femtosecond bunches. In this paper, we will show very recent results where electrons are accelerated in laser-driven wakefields to relativistic energies, reaching up to 5 MeV at kHz repetition rate. The electron energy was increased by nearly two orders of magnitude by using single-cycle laser pulses of 3.5 fs, with only 2.5 mJ of energy. Using such short pulses of light allowed us to resonantly excite high amplitude and nonlinear plasma waves at high plasma density, ne=1.5-2×1020 cm-3, in a regime close to the blow-out regime. Electrons had a peaked distribution around 5 MeV, with a relative energy spread of 30 %. Charges in the 100's fC/shot and up to pC/shot where measured depending on plasma density. The electron beam was fairly collimated, 20 mrad divergence at Full Width Half Maximum. The results show remarkable stability of the beam parameters in terms of beam pointing and electron distribution. 3D PIC simulations reproduce the results very well and indicate that electrons are injected by the ionization of Nitrogen atoms, N5+ to N6

  7. Effect of the stimulus frequency and pulse number of repetitive transcranial magnetic stimulation on the inter-reversal time of perceptual reversal on the right superior parietal lobule

    Science.gov (United States)

    Nojima, Kazuhisa; Ge, Sheng; Katayama, Yoshinori; Ueno, Shoogo; Iramina, Keiji

    2010-05-01

    The aim of this study is to investigate the effect of the stimulus frequency and pulses number of repetitive transcranial magnetic stimulation (rTMS) on the inter-reversal time (IRT) of perceptual reversal on the right superior parietal lobule (SPL). The spinning wheel illusion was used as the ambiguous figures stimulation in this study. To investigate the rTMS effect over the right SPL during perceptual reversal, 0.25 Hz 60 pulse, 1 Hz 60 pulse, 0.5 Hz 120 pulse, 1 Hz 120 pulse, and 1 Hz 240 pulse biphasic rTMS at 90% of resting motor threshold was applied over the right SPL and the right posterior temporal lobe (PTL), respectively. As a control, a no TMS was also conducted. It was found that rTMS on 0.25 Hz 60 pulse and 1 Hz 60 pulse applied over the right SPL caused shorter IRT. In contrast, it was found that rTMS on 1 Hz 240-pulse applied over the right SPL caused longer IRT. On the other hand, there is no significant difference between IRTs when the rTMS on 0.5 Hz 120 pulse and 1 Hz 120 pulse were applied over the right SPL. Therefore, the applying of rTMS over the right SPL suggests that the IRT of perceptual reversal is effected by the rTMS conditions such as the stimulus frequency and the number of pulses.

  8. Analysis of Thermal Effects in Laser Rod Pumped by Repetitively Pulsed Laser Diode Array

    Institute of Scientific and Technical Information of China (English)

    DAI Qin; LI Xin-zhong; WU Ri-na; WANG Xi-jun

    2007-01-01

    Based on some assumptions, the numerical model of thermal distribution in solid state laser crystal pumped by pulsed laser diode is set up due to the pumped intensity distribution. Taking into account the property of YAG materials that varies with temperature, the transient temperature distribution of the laser crystal is calculated using finite element method on condition that K is a constant and a function of temperature. Then, the influence of the pumping parameters on the thermal effect in laser crystal is also discussed. This study is helpful to optimize the design of the diode side pumped solid state lasers.

  9. Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance

    Science.gov (United States)

    Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald

    2008-11-01

    As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.

  10. Copper bromide vapor brightness amplifiers with 100 kHz pulse repetition frequency

    Science.gov (United States)

    Trigub, M. V.; Evtushenko, G. S.; Torgaev, S. N.; Shiyanov, D. V.; Evtushenko, T. G.

    2016-10-01

    The paper presents a laser monitor with 10 μs time-resolution based on a high-frequency copper bromide vapor brightness amplifier. A sync circuit has been designed for single-pulse imaging. The analysis of amplifying characteristics of the active elements and active optical system (laser monitor) parameters allowed to determine the optimal concentration of HBr at which the images can be obtained with minimum distortions. For the active element operating at high frequencies (more than 50 kHz) as a brightness amplifier, the concentration of HBr must be lower than that needed for obtaining the maximum output power. The limiting brightness temperature of the background radiation which does not affect the image quality is determined. The potential feasibility of using a proposed brightness amplifier for visualizing processes blocked from viewing by the background radiation with the brightness temperature up to 8000 K is demonstrated.

  11. Pulsed single-blow regenerator testing

    Science.gov (United States)

    Oldson, J. C.; Knowles, T. R.; Rauch, J.

    1992-01-01

    A pulsed single-blow method has been developed for testing of Stirling regenerator materials performance. The method uses a tubular flow arrangement with a steady gas flow passing through a regenerator matrix sample that packs the flow channel for a short distance. A wire grid heater spanning the gas flow channel is used to heat a plug of gas by approximately 2 K for approximately 350 ms. Foil thermocouples monitor the gas temperature entering and leaving the sample. Data analysis based on a 1D incompressible-flow thermal model allows the extraction of Stanton number. A figure of merit involving heat transfer and pressure drop is used to present results for steel screens and steel felt. The observations show a lower figure of merit for the materials tested than is expected based on correlations obtained by other methods.

  12. Tunable GHz pulse repetition rate operation in high-power TEM(00)-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking.

    Science.gov (United States)

    Huang, Y J; Tzeng, Y S; Tang, C Y; Huang, Y P; Chen, Y F

    2012-07-30

    We report on a high-power diode-pumped self-mode-locked Nd:YLF laser with the pulse repetition rate up to several GHz. A novel tactic is developed to efficiently select the output polarization state for achieving the stable TEM(00)-mode self-mode-locked operations at 1053 nm and 1047 nm, respectively. At an incident pump power of 6.93 W and a pulse repetition rate of 2.717 GHz, output powers as high as 2.15 W and 1.35 W are generated for the σ- and π-polarization, respectively. We experimentally find that decreasing the separation between the gain medium and the input mirror not only brings in the pulse shortening thanks to the enhanced effect of the spatial hole burning, but also effectively introduces the effect of the spectral filtering to lead the Nd:YLF laser to be in a second harmonic mode-locked status. Consequently, pulse durations as short as 8 ps and 8.5 ps are obtained at 1053 nm and 1047 nm with a pulse repetition rate of 5.434 GHz.

  13. Effect of laser annealing using high repetition rate pulsed laser on optical properties of phosphorus-ion-implanted ZnO nanorods

    Science.gov (United States)

    Shimogaki, Tetsuya; Ofuji, Taihei; Tetsuyama, Norihiro; Okazaki, Kota; Higashihata, Mitsuhiro; Nakamura, Daisuke; Ikenoue, Hiroshi; Asano, Tanemasa; Okada, Tatsuo

    2014-02-01

    The effect of high repetition rate pulsed laser annealing with a KrF excimer laser on the optical properties of phosphorus-ion-implanted zinc oxide nanorods has been investigated. The recovery levels of phosphorus-ion-implanted zinc oxide nanorods have been measured by photoluminescence spectra and cathode luminescence images. Cathode luminescence disappeared over 300 nm below the surface due to the damage caused by ion implantation with an acceleration voltage of 25 kV. When the annealing was performed at a low repetition rate of the KrF excimer laser, cathode luminescence was recovered only in a shallow area below the surface. The depth of the annealed area was increased along with the repetition rate of the annealing laser. By optimizing the annealing conditions such as the repetition rate, the irradiation fluence and so on, we have succeeded in annealing the whole damaged area of over 300 nm in depth and in observing cathode luminescence. Thus, the effectiveness of high repetition rate pulsed laser annealing on phosphorus-ion-implanted zinc oxide nanorods was demonstrated.

  14. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability

    Science.gov (United States)

    Liu, Yuanshan; Zhang, Jian-Guo; Chen, Guofu; Zhao, Wei; Bai, Jing

    2010-09-01

    We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 µm wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice.

  15. Laser ablation efficiency during the production of Ag nanoparticles in ethanol at a low pulse repetition rate (1-10 Hz)

    Science.gov (United States)

    Valverde-Alva, M. A.; García-Fernández, T.; Esparza-Alegría, E.; Villagrán-Muniz, M.; Sánchez-Aké, C.; Castañeda-Guzmán, R.; de la Mora, M. B.; Márquez-Herrera, C. E.; Sánchez Llamazares, J. L.

    2016-10-01

    We studied the effect of the repetition rate of laser pulses (RRLP) in the range from 1-10 Hz in the production of silver nanoparticles (Ag-NPs) by laser ablation in ethanol. Laser pulses with a duration of 7 ns, a wavelength of 1064 nm and an energy of 60 mJ were used to ablate a 99.99% pure silver target immersed in 10 ml of ethanol. Transmittance analysis and atomic absorption spectroscopy were used to study the silver concentration in the colloidal solutions. The ablation process was studied by measuring the transmission of the laser pulses through the colloid. It is shown that for a fixed number of laser pulses (NLP) the ablation efficiency, in terms of the ablated silver mass per laser pulse, increases with the RRLP. This result contradicts what had previously been established in the literature.

  16. Experimental investigation of dielectric barrier discharge plasma actuators driven by repetitive high-voltage nanosecond pulses with dc or low frequency sinusoidal bias

    Science.gov (United States)

    Opaits, Dmitry F.; Likhanskii, Alexandre V.; Neretti, Gabriele; Zaidi, Sohail; Shneider, Mikhail N.; Miles, Richard B.; Macheret, Sergey O.

    2008-08-01

    Experimental studies were conducted of a flow induced in an initially quiescent room air by a single asymmetric dielectric barrier discharge driven by voltage waveforms consisting of repetitive nanosecond high-voltage pulses superimposed on dc or alternating sinusoidal or square-wave bias voltage. To characterize the pulses and to optimize their matching to the plasma, a numerical code for short pulse calculations with an arbitrary impedance load was developed. A new approach for nonintrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the schlieren technique, burst mode of plasma actuator operation, and two-dimensional numerical fluid modeling. The force and heating rate calculated by a plasma model was used as an input to two-dimensional viscous flow solver to predict the time-dependent dielectric barrier discharge induced flow field. This approach allowed us to restore the entire two-dimensional unsteady plasma induced flow pattern as well as characteristics of the plasma induced force. Both the experiments and computations showed the same vortex flow structures induced by the actuator. Parametric studies of the vortices at different bias voltages, pulse polarities, peak pulse voltages, and pulse repetition rates were conducted experimentally. The significance of charge buildup on the dielectric surface was demonstrated. The charge buildup decreases the effective electric field in the plasma and reduces the plasma actuator performance. The accumulated surface charge can be removed by switching the bias polarity, which leads to a newly proposed voltage waveform consisting of high-voltage nanosecond repetitive pulses superimposed on a high-voltage low frequency sinusoidal voltage. Advantages of the new voltage waveform were demonstrated experimentally.

  17. Reliability of the one-repetition-maximum power clean test in adolescent athletes.

    Science.gov (United States)

    Faigenbaum, Avery D; McFarland, James E; Herman, Robert E; Naclerio, Fernando; Ratamess, Nicholas A; Kang, Jie; Myer, Gregory D

    2012-02-01

    Although the power clean test is routinely used to assess strength and power performance in adult athletes, the reliability of this measure in younger populations has not been examined. Therefore, the purpose of this study was to determine the reliability of the 1-repetition maximum (1RM) power clean in adolescent athletes. Thirty-six male athletes (age 15.9 ± 1.1 years, body mass 79.1 ± 20.3 kg, height 175.1 ±7.4 cm) who had >1 year of training experience in weightlifting exercises performed a 1RM power clean on 2 nonconsecutive days in the afternoon following standardized procedures. All test procedures were supervised by a senior level weightlifting coach and consisted of a systematic progression in test load until the maximum resistance that could be lifted for 1 repetition using proper exercise technique was determined. Data were analyzed using an intraclass correlation coefficient (ICC[2,k]), Pearson correlation coefficient (r), repeated measures analysis of variance, Bland-Altman plot, and typical error analyses. Analysis of the data revealed that the test measures were highly reliable demonstrating a test-retest ICC of 0.98 (95% confidence interval = 0.96-0.99). Testing also demonstrated a strong relationship between 1RM measures in trials 1 and 2 (r = 0.98, p adolescent athletes when standardized testing procedures are followed and qualified instruction is present.

  18. RELIABILITY OF THE ONE REPETITION-MAXIMUM POWER CLEAN TEST IN ADOLESCENT ATHLETES

    Science.gov (United States)

    Faigenbaum, Avery D.; McFarland, James E.; Herman, Robert; Naclerio, Fernando; Ratamess, Nicholas A.; Kang, Jie; Myer, Gregory D.

    2013-01-01

    Although the power clean test is routinely used to assess strength and power performance in adult athletes, the reliability of this measure in younger populations has not been examined. Therefore, the purpose of this study was to determine the reliability of the one repetition maximum (1 RM) power clean in adolescent athletes. Thirty-six male athletes (age 15.9 ± 1.1 yrs, body mass 79.1 ± 20.3 kg, height 175.1 ±7.4 cm) who had more than 1 year of training experience with weightlifting exercises performed a 1 RM power clean on two nonconsecutive days in the afternoon following standardized procedures. All test procedures were supervised by a senior level weightlifting coach and consisted of a systematic progression in test load until the maximum resistance that could be lifted for one repetition using proper exercise technique was determined. Data were analyzed using an intraclass correlation coefficient (ICC [2,k]), Pearson correlation coefficient (r), repeated measures ANOVA, Bland-Altman plot, and typical error analyses. Analysis of the data revealed that the test measures were highly reliable demonstrating a test-retest ICC of 0.98 (95% CI = 0.96–0.99). Testing also demonstrated a strong relationship between 1 RM measures on trial 1 and trial 2 (r=0.98, padolescent athletes when standardized testing procedures are followed and qualified instruction is present. PMID:22233786

  19. Pulse Jet Mixing Tests With Noncohesive Solids

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael K.; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2012-02-17

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure all solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.

  20. Pulse Jet Mixing Tests With Noncohesive Solids

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro; Bailey, Sharon A.; Bower, John C.; Denslow, Kayte M.; Eakin, David E.; Elmore, Monte R.; Gauglitz, Phillip A.; Guzman, Anthony D.; Hatchell, Brian K.; Hopkins, Derek F.; Hurley, David E.; Johnson, Michael D.; Kirihara, Leslie J.; Lawler, Bruce D.; Loveland, Jesse S.; Mullen, O Dennis; Pekour, Mikhail S.; Peters, Timothy J.; Robinson, Peter J.; Russcher, Michael S.; Sande, Susan; Santoso, Christian; Shoemaker, Steven V.; Silva, Steve M.; Smith, Devin E.; Su, Yin-Fong; Toth, James J.; Wiberg, John D.; Yu, Xiao-Ying; Zuljevic, Nino

    2009-05-11

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important to release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than "disturbing" the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two perform¬ance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy

  1. Reliability and validity of the five-repetition sit-to-stand test for children with cerebral palsy.

    Science.gov (United States)

    Wang, Tze-Hsuan; Liao, Hua-Fang; Peng, Yi-Chun

    2012-07-01

    OBJECTIVE To investigate the psychometric properties of the five-repetition sit-to-stand test, a functional strength test, in children with spastic diplegia. Methodology study. Hospital, laboratory or home. In total, 108 children with spastic diplegia and 62 with typical development aged from five to 12 years were tested. For test-retest reliability, 22 children with spastic diplegia were tested twice within one week. Not applicable. The five-repetition sit-to-stand test measures time needed to complete five consecutive sit-to-stand cycles as quickly as possible. The higher the rate of five-repetition sit-to-stand (repetitions per second), the more strength a person has. The intraclass correlation coefficients of intra-session reliability and test-retest reliability were 0.95 and 0.99 respectively. The minimal detectable difference was 0.06 rep/sec. The convergent validity of the five-repetition sit-to-stand test was supported by significant correlation with one-repetition maximum of the loaded sit-to-stand test, isometric muscle strength, scores of Gross Motor Function Measure, and gait function (r or rho = 0.40-0.78). For known group validity, children with typical development and children classified as Gross Motor Function Classification System level I performed higher rates of five-repetition sit-to-stand than children classified as level II, and children classified as level II performed higher rates than level III. The five-repetition sit-to-stand test was a reliable and valid test to measure functional muscle strength in children with spastic diplegia in clinics.

  2. Conducted noise analysis and protection of 45 kJ/s, ±50 kV capacitor charging power supply when interfaced with repetitive Marx based pulse power system

    Science.gov (United States)

    Naresh, P.; Patel, Ankur; Sharma, Archana

    2015-09-01

    Pulse power systems with highly dynamic loads like klystron, backward wave oscillator (BWO), and magnetron generate highly dynamic noise. This noise leads to frequent failure of controlled switches in the inverter stage of charging power supply. Designing a reliable and compatible power supply for pulse power applications is always a tricky job when charging rate is in multiples of 10 kJ/s. A ±50 kV and 45 kJ/s capacitor charging power supply based on 4th order LCLC resonant topology has been developed for a 10 Hz repetitive Marx based system. Conditions for load independent constant current and zero current switching (ZCS) are derived mathematically. Noise generated at load end due to dynamic load is tackled effectively and reduction in magnitude noise voltage is achieved by providing shielding between primary and secondary of high voltage high frequency transformer and with LCLC low pass filter. Shielding scales down the ratio between coupling capacitance (Cc) and the collector-emitter capacitance of insulated gate bi-polar transistor switch, which in turn reduces the common mode noise voltage magnitude. The proposed 4th order LCLC resonant network acts as a low pass filter for differential mode noise in the reverse direction (from load to source). Power supply has been tested repeatedly with 5 Hz repetition rate with repetitive Marx based system connected with BWO load working fine without failure of single switch in the inverter stage.

  3. Laser generation of XeCl exciplex molecules in a longitudinal repetitively pulsed discharge in a Xe – CsCl mixture

    Energy Technology Data Exchange (ETDEWEB)

    Boichenko, A M [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Klenovskii, M S [National Research Tomsk Polytechnic University, Tomsk (Russian Federation)

    2015-12-31

    By using the previously developed kinetic model, we have carried out simulations to study the possibility of laser generation of XeCl exciplex molecules in the working medium based on a mixture of Xe with CsCl vapours, excited by a longitudinal repetitively pulsed discharge. The formation mechanism of exciplex molecules in this mixture is fundamentally different from the formation mechanisms in the traditional mixtures of exciplex lasers. The conditions that make the laser generation possible are discussed. For these conditions, with allowance for available specific experimental conditions of the repetitively pulsed discharge excitation, we have obtained the calculated dependences of the power and efficiency of generation on the reflectivity of mirrors in a laser cavity. (active media)

  4. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    Energy Technology Data Exchange (ETDEWEB)

    Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Sedin, A. A.; Tugushev, V. I. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-12-15

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.

  5. Investigation of the lasing characteristics of a barium vapor laser with pulse repetition frequencies up to 320 kHz for navigation

    Science.gov (United States)

    Soldatov, A. N.; Polunin, Yu. P.

    2015-11-01

    Results of experimental investigations into the characteristics of a laser on self-terminating transitions of the barium atom with λ = 1499 nm are presented for high pulse repetition frequencies (PRF). The frequency-energy characteristics are investigated in the self-heating mode of laser operation. Record values of PRF for the barium vapor laser, equal to ~320 kHz, have been attained.

  6. 1-MW peak power, 574-kHz repetition rate picosecond pulses at 515 nm from a frequency-doubled fiber amplifier

    Science.gov (United States)

    Zou, Feng; Wang, Ziwei; Wang, Zhaokun; Bai, Yang; Li, Qiurui; Zhou, Jun

    2016-11-01

    1-MW peak power picosecond, 574-kHz repetition rate green laser at 515-nm is generated from a frequency-doubled fiber amplifier. 12-ps pulses with 13.9-μJ energy at 515 nm are achieved with a noncritically phase-matched lithium triborate (LBO) crystal through second harmonic generation of a 1030 nm infrared source. The infrared source employs ultra-large-mode-area rod-type photonic crystal fiber (Rod-PCF) for direct picosecond amplification and delivers 20-W 11.6-ps 2.97-MW pulse train with near-diffraction-limited beam quality (M2 = 1.01).

  7. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    CERN Document Server

    Ryser, Manuel; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2014-01-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063nm. The diode was driven at a repetition rate of 40MHz and delivered 13$\\mu$W of fiber-coupled average output power. For the low output pulse energy of 0.33pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40MHz repetition rate to 1MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72dBs to an output pulse energy of 5.7$\\mu$J, pulse duration of 11ps and peak power of >0.6MW.

  8. Pulsed UV-C disinfection of Escherichia coli with light-emitting diodes, emitted at various repetition rates and duty cycles.

    Science.gov (United States)

    Wengraitis, Stephen; McCubbin, Patrick; Wade, Mary Margaret; Biggs, Tracey D; Hall, Shane; Williams, Leslie I; Zulich, Alan W

    2013-01-01

    A 2010 study exposed Staphylococcus aureus to ultraviolet (UV) radiation and thermal heating from pulsed xenon flash lamps. The results suggested that disinfection could be caused not only by photochemical changes from UV radiation, but also by photophysical stress damage caused by the disturbance from incoming pulses. The study called for more research in this area. The recent advances in light-emitting diode (LED) technology include the development of LEDs that emit in narrow bands in the ultraviolet-C (UV-C) range (100-280 nm), which is highly effective for UV disinfection of organisms. Further, LEDs would use less power, and allow more flexibility than other sources of UV energy in that the user may select various pulse repetition frequencies (PRFs), pulse irradiances, pulse widths, duty cycles and types of waveform output (e.g. square waves, sine waves, triangular waves, etc.). Our study exposed Escherichia coli samples to square pulses of 272 nm radiation at various PRFs and duty cycles. A statistically significant correlation was found between E. coli's disinfection sensitivity and these parameters. Although our sample size was small, these results show promise and are worthy of further investigation. Comparisons are also made with pulsed disinfection by LEDs emitting at 365 nm, and pulsed disinfection by xenon flash lamps. © 2012 U.S. Government. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  9. Advanced Test Accelerator (ATA) pulse power technology development

    Energy Technology Data Exchange (ETDEWEB)

    Reginato, L.L.; Branum, D.; Cook, E.

    1981-03-09

    The Advanced Test Accelerator (ATA) is a pulsed linear induction accelerator with the following design parameters: 50 MeV, 10 kA, 70 ns, and 1 kHz in a ten-pulse burst. Acceleration is accomplished by means of 190 ferrite-loaded cells, each capable of maintaining a 250 kV voltage pulse for 70 ns across a 1-inch gap. The unique characteristic of this machine is its 1 kHz burst mode capability at very high currents. This paper dscribes the pulse power development program which used the Experimental Test Accelerator (ETA) technology as a starting base. Considerable changes have been made both electrically and mechanically in the pulse power components with special consideration being given to the design to achieve higher reliability. A prototype module which incorporates all the pulse power components has been built and tested for millions of shots. Prototype components and test results are described.

  10. 33 CFR 159.111 - Pressure and vacuum pulse test.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Pressure and vacuum pulse test. 159.111 Section 159.111 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... vacuum pulse test. Liquid retention components of the device with manufacturer specified...

  11. Comparison of automated repetitive-sequence-based polymerase chain reaction and spa typing versus pulsed-field gel electrophoresis for molecular typing of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Church, Deirdre L; Chow, Barbara L; Lloyd, Tracie; Gregson, Daniel B

    2011-01-01

    Automated repetitive polymerase chain reaction (PCR) (DiversiLab, bioMérieux, St. Laurent, Quebec, Canada) and single locus sequence typing of the Staphylococcus protein A (spa) gene with spa-type assignment by StaphType RIDOM software were compared to pulsed-field gel electrophoresis (PFGE) as the "gold standard" method for methicillin-resistant Staphylococcus aureus (MRSA) typing. Fifty-four MRSA isolates were typed by all methods: 10 of known PFGE CMRSA type and 44 clinical isolates. Correct assignment of CMRSA type or cluster occurred for 47 of 54 (87%) of the isolates when using a rep-PCR similarity index (SI) of ≥95%. Rep-PCR gave 7 discordant results [CMRSA1 (3), CMRSA2 (1), CMRSA4 (1), and CMRSA10 (2)], and some CMRSA clusters were not distinguished (CMRSA10/5/9, CMRSA 7/8, and CMRSA3/6). Several spa types occurred within a single PFGE or repetitive PCR types among the 19 different spa types found. spa type t037 was shared by CMRSA3 and CMRSA6 strains, and CMRSA9 and most CMRSA10 strains shared spa type t008. Time to results for PFGE, repetitive PCR, and spa typing was 3-4 days, 24 h, and 48 h, respectively. The annual costs of using spa or repetitive PCR were 2.4× and 1.9× higher, respectively, than PFGE but routine use of spa typing would lower annual labor costs by 0.10 full-time equivalents compared to PFGE. Repetitive PCR is a good method for rapid outbreak screening, but MRSA isolates that share the same repetitive PCR or PFGE patterns can be distinguished by spa typing. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Repetitive characteristics of solid state high power long pulse generator%固态化高功率长脉冲驱动源重频特性

    Institute of Scientific and Technical Information of China (English)

    高景明; 杨汉武; 李嵩; 晏龙波; 钱宝良; 张军

    2016-01-01

    A solid state high power long pulse generator has been designed and constructed based on the key technologies of magnetic switch,low impedance pulse forming line,and inductive voltage adder,which was verified by single mode operation for peak power of 2 GW.For repetitive operation,a repetitive primary power supply of moderate voltage level was developed,the two stage magnetic pulse compressor was improved from aspects of reset and insulation,the pulsed charging was optimized where the inductive voltage adder was utilized for pulsed voltage step-up as well as for pulse charging and on-line direct current (DC)re-set was achieved by reasonable design of reset current path.At present,the experimental results achieved on a dummy load are output pulsed power of 2.1 GW,pulse width of 1 70 ns,repetitive rate of 20 Hz,operation time of 1 s and good for repeatability. For further improvement,the pseudospark switch would be replaced by serial connected thyristors to accomplish all solid-state de-sign.%基于固态化磁开关、低阻抗脉冲形成网络和感应电压叠加等关键技术,提出并研制了一台固态化高功率长脉冲驱动源。在前期通过2 GW 单次实验验证技术方案的基础上,研制了中等电压等级的重复频率初级电源;改进了两级磁脉冲压缩系统的复位和绝缘特性;优化了系统整体电路结构,利用感应电压叠加器完成充电磁开关和脉冲升压的双重功能;设计了合理的复位路径,实现了各部分磁芯的在线直流复位;并开展了重频运行研究。在电阻负载上获得了输出功率2.1 GW、脉宽约170 ns、重复频率20 Hz 及运行时间1 s 的实验结果,脉冲波形的重叠一致性好。

  13. Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography

    Science.gov (United States)

    Tian, Fenghua; Kozel, F. Andrew; Yennu, Amarnath; Croarkin, Paul E.; McClintock, Shawn M.; Mapes, Kimberly S.; Husain, Mustafa M.; Liu, Hanli

    2012-11-01

    Repetitive transcranial magnetic stimulation (rTMS) is a technology that stimulates neurons with rapidly changing magnetic pulses with demonstrated therapeutic applications for various neuropsychiatric disorders. Functional near-infrared spectroscopy (fNIRS) is a suitable tool to assess rTMS-evoked brain responses without interference from the magnetic or electric fields generated by the TMS coil. We have previously reported a channel-wise study of combined rTMS/fNIRS on the motor and prefrontal cortices, showing a robust decrease of oxygenated hemoglobin concentration (Δ[HbO2]) at the sites of 1-Hz rTMS and the contralateral brain regions. However, the reliability of this putative clinical tool is unknown. In this study, we develop a rapid optical topography approach to spatially characterize the rTMS-evoked hemodynamic responses on a standard brain atlas. A hemispherical approximation of the brain is employed to convert the three-dimensional topography on the complex brain surface to a two-dimensional topography in the spherical coordinate system. The test-retest reliability of the combined rTMS/fNIRS is assessed using repeated measurements performed two to three days apart. The results demonstrate that the Δ[HbO2] amplitudes have moderate-to-high reliability at the group level; and the spatial patterns of the topographic images have high reproducibility in size and a moderate degree of overlap at the individual level.

  14. 50-GHz repetition-rate, 280-fs pulse generation at 100-mW average power from a mode-locked laser diode externally compressed in a pedestal-free pulse compressor

    Science.gov (United States)

    Tamura, Kohichi R.; Sato, Kenji

    2002-07-01

    280-fs pedestal-free pulses are generated at average output powers exceeding 100 mW at a repetition rate of 50 GHz by compression of the output of a mode-locked laser diode (MLLD) by use of a pedestal-free pulse compressor (PFPC). The MLLD consists of a monolithically integrated chirped distributed Bragg reflector, a gain section, and an electroabsorption modulator. The PFPC is composed of a dispersion-flattened dispersion-decreasing fiber and a dispersion-flattened dispersion-imbalanced nonlinear optical loop mirror. Frequency modulation for linewidth broadening is used to overcome the power limitation imposed by stimulated Brillouin scattering.

  15. Summary of the 2012 Inductive Pulsed Plasma Thruster Development and Testing Program

    Science.gov (United States)

    Polzin, K. A.; Martin, A. K.; Eskridge, R. H.; Kimberlin, A. C.; Addona, B. M.; Devineni, A. P.; Dugal-Whitehead, N. R.; Hallock, A. K.

    2013-01-01

    Inductive pulsed plasma thrusters are spacecraft propulsion devices in which energy is capacitively stored and then discharged through an inductive coil. While these devices have shown promise for operation at high efficiency on a range of propellants, many technical issues remain before they can be used in flight applications. A conical theta-pinch thruster geometry was fabricated and tested to investigate potential improvements in propellant utilization relative to more common, flat-plate planar coil designs. A capacitor charging system is used to permit repetitive discharging of thrusters at multiple cycles per second, with successful testing accomplished at a repetition-rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. The conical theta-pinch thruster geometry was tested at cone angles of 20deg, 38deg, and 60deg, with single-pulse operation at 500 J/pulse and repetitionrate operation with the 38deg model quantified through direct thrust measurement using a hanging pendulum thrust stand. A long-lifetime valve was designed and fabricated, and initial testing was performed to measure the valve response and quantify the leak rate at beginning-of-life. Subscale design and testing of a capacitor charging system required for operation on a spacecraft is reported, providing insights into the types of components needed in the circuit topology employed. On a spacecraft, this system would accept as input a lower voltage from the spacecraft DC bus and boost the output to the high voltage required to charge the capacitors of the thruster.

  16. Reference values of nonword repetition test for Brazilian Portuguese-speaking children

    Directory of Open Access Journals (Sweden)

    Simone Rocha de Vasconcellos Hage

    2009-01-01

    Full Text Available Evaluation of the phonological working memory (PWM through repetition of nonwords can provide important information on the linguistic abilities of children, thus differentiating those with and without communication disorders. OBJECTIVE: The aim of this study was to obtain reference values in the Nonword Repetition Test (NWRT in order to investigate the performance of children without language disorders concerning this type of memory. Material and METHODS: The study was conducted on 480 normal children of both genders aged 4 years to 8 years and 11 months, attending preschool and elementary school. The NWRT consisted of repeating 20 (children up to 4 years or 40 (for children aged 5 years or more invented words with 2 to 5 syllables. The results were subjected to descriptive statistical analysis. Comparison between ages and between the number of syllables in nonwords was performed by the Tukey's multiple-comparison test and one-way analysis of variance, at a significance value of p<0.05. RESULTS: There was statistically significant difference (p<0.05 in performance between children of different age groups, except between 7- and 8-year-olds. The analysis also showed statistically significant difference (p<0.05 in the number of syllables between the different age groups. CONCLUSIONS: The reference values obtained indicated an improvement in performance with the increase of age of children, indicating an improvement in the storage of verbal material in the PWM. The performance was worsened with the increase in the number of syllables in words, demonstrating that the greater the number of syllables, the greater is the difficulty in storing verbal material.

  17. Formation of the active medium in high-power repetitively pulsed gas lasers pumped by an electron-beam-controlled discharge

    Science.gov (United States)

    Bulaev, V. D.; Lysenko, S. L.

    2015-07-01

    A high-power repetitively pulsed e-beam-controlled discharge CO2 laser is simulated numerically; the simulation results are compared with experimental data. Optimal sizes and design of electrodes and configuration of the external magnetic field are found, which allow one to introduce no less than 90% electric pump energy into a specified volume of the active medium, including the active volume of a laser with an aperture of 110 × 110 cm. The results obtained can also be used to design other types of highpower gas lasers.

  18. Generation of 220 mJ nanosecond pulses at a 10 Hz repetition rate with excellent beam quality in a diode-pumped Yb:YAG MOPA system.

    Science.gov (United States)

    Wandt, Christoph; Klingebiel, Sandro; Siebold, Mathias; Major, Zsuzsanna; Hein, Joachim; Krausz, Ferenc; Karsch, Stefan

    2008-05-15

    A novel all-diode-pumped master oscillator power amplifier system based on Yb:YAG crystal rods has been developed. It consists of a Q-switched oscillator delivering 3 mJ, 6.4 ns pulses at a 10 Hz repetition rate and an additional four-pass amplifier, which boosts the output energy to 220 mJ, while a close to TEM(00) beam quality could be observed. Additionally a simulation of the amplification was written that allows for further scaling considerations.

  19. Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing.

    Science.gov (United States)

    Cordette, S; Vedadi, A; Shoaie, M A; Brès, C-S

    2014-12-01

    We propose and experimentally demonstrate an all-optical Nyquist sinc-shaped pulse train source based on intensity modulation and four-wave mixing. The proposed scheme allows for the tunability of the bandwidth and the full flexibility of the repetition rate in the limit of the electronic bandwidth of the modulators used through the flexible synthesis of rectangular frequency combs. Bandwidth up to 360 GHz at 40 GHz rate and up to 45 frequency lines at 5 GHz rate are demonstrated with 40 GHz modulators.

  20. Gas-dynamic perturbations in an electric-discharge repetitively pulsed DF laser and the role of He in their suppression

    Energy Technology Data Exchange (ETDEWEB)

    Evdokimov, P A; Sokolov, D V [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2015-11-30

    The gas-dynamic perturbations in a repetitively pulsed DF laser are studied using a Michelson interferometer. Based on the analysis of experimental data obtained in two experimental sets (working medium without buffer gas and with up to 90% of He), it is concluded that such phenomena as isentropic expansion of a thermal plug, gas heating by shock waves and resonance acoustic waves do not considerably decrease the upper limit of the pulse repetition rate below a value determined by the time of the thermal plug flush out of the discharge gap. It is suggested that this decrease for a DF laser with the SF{sub 6} – D{sub 2} working mixture is caused by the development of overheat instability due to an increased energy deposition into the near-electrode regions and to the formation of electrode shock waves. Addition of He to the active media of the DF laser changes the discharge structure and improves its homogeneity over the discharge gape cross section, thus eliminating the reason for the development of this instability. A signification dilution of the active medium of a DF laser with helium up to the atmospheric pressure allowed us to achieve the limiting discharge initiation frequencies with the active medium replacement ratio K ∼ 1. (active media)

  1. Optimizing human semen cryopreservation by reducing test vial volume and repetitive test vial sampling

    DEFF Research Database (Denmark)

    Jensen, Christian F S; Ohl, Dana A; Parker, Walter R

    2015-01-01

    OBJECTIVE: To investigate optimal test vial (TV) volume, utility and reliability of TVs, intermediate temperature exposure (-88°C to -93°C) before cryostorage, cryostorage in nitrogen vapor (VN2) and liquid nitrogen (LN2), and long-term stability of VN2 cryostorage of human semen. DESIGN: Prospec......OBJECTIVE: To investigate optimal test vial (TV) volume, utility and reliability of TVs, intermediate temperature exposure (-88°C to -93°C) before cryostorage, cryostorage in nitrogen vapor (VN2) and liquid nitrogen (LN2), and long-term stability of VN2 cryostorage of human semen. DESIGN...

  2. High-repetition-rate compact excimer laser: UV light source for metrology, inspection, direct writing, and material testing

    Science.gov (United States)

    Huber, Heinz P.; Pflanz, Tobias; Goertler, Andreas; Schillinger, Helmut

    2003-06-01

    The discharge pumped excimer laser is a gas laser providing ultra violet (UV) radiation with well defined spectral, temporal and spatial properties. The fast development of excimer lasers in recent years has succeeded in designing very compact, table-top and turn-key systems delivering up to 20 W of radiation at 248 nm, 10 W at 193 nm and 2 W at 157 nm with repetition rates up to 2000 Hz (1, 5). Due to their short emission wavelength and compactness they are continuously replacing other light sources, like lamps and ion lasers, in applications as metrology, inspection, direct writing and material testing. Spatial and temporal beam properties of compact excimer lasers are very suitable to be utilized as illumination source in these applications. The compact excimer laser is combining the advantages of both, lamp and laser sources. It displays low temporal and spatial coherence, but has a narrow spectral emission range of a few hundred pm. The beam area is approximately 1/2 cm2, the divergence is in the order of 1 mrad. Variation of beam position and beam direction are negligible for most illumination applications. Compact excimer lasers are easy to integrate in measurement and inspection systems. Typically their footprint area is 0.25 m2. The power consumption is less than 1 kW, enabling single phase electrical supply and air cooling. State-of-the-art compact excimer lasers are compliant to all relevant SEMI regulations. The laser optics exceeds the life time of the laser tube, thus no optics cleaning and exchange is necessary in a whole life time of a laser tube of a few billion pulses (6).

  3. High-energy femtosecond Yb-doped all-fiber monolithic chirped-pulse amplifier at repetition rate of 1 MHz

    Science.gov (United States)

    Lv, Zhi-Guo; Teng, Hao; Wang, Li-Na; Wang, Jun-Li; Wei, Zhi-Yi

    2016-09-01

    A high-energy femtosecond all ytterbium fiber amplifier based on a chirped-pulse amplification (CPA) technique at a repetition rate of 1 MHz seeded by a dispersion-management mode-locked picosecond broadband oscillator is studied. We find that the compressed pulse duration is dependent on the amplified energy, the pulse duration of 804 fs corresponds to the maximum amplified energy of 10.5 μJ, while the shortest pulse duration of 424 fs corresponds to the amplified energy of 6.75 μJ. The measured energy fluctuation is approximately 0.46% root mean square (RMS) over 2 h. The low-cost femtosecond fiber laser source with super-stability will be widely used in industrial micromachines, medical therapy, and scientific studies. Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAC23B03), the National Key Basic Research Program of China (Grant No. 2013CB922401), and the National Natural Science Foundation of China (Grant No. 11474002).

  4. High Repetition-Rate Neutron Generation by Several-mJ, 35 fs pulses interacting with Free-Flowing D2O

    Science.gov (United States)

    Hah, Jungmoo; Petrov, George; Nees, John; He, Zhaohan; Hammig, Mark; Krushelnick, Karl; Thomas, Alexander

    2016-10-01

    Recent advance in ultra-high power laser technology allows a development of laser-based neutron sources. Here we demonstrate heavy-water based neutron source. Using several-mJ energy pulses from a high-repetition rate (½kHz), ultrashort (35 fs) pulsed laser interacting with a 10 μm diameter stream of free-flowing heavy water (D2O), we get a 2.45 MeV neutron flux of 105/s. In the intentionally generated pre-plasma, laser pulse energy is efficiently absorbed, and energetic deuterons are generated. As a convertor, the bulk heavy water stream target and the large volume of low density D2O vapor near the target are collided with accelerated deuterons, generating neutron through d(d,n)3He reactions. As laser pulse energy increased from 6mJ to 12mJ, the neutron flux increased. From the 2D particle-in-cell simulation, comparable neutron fluxes are shown at the similar laser characteristics to the experiment. Also, simulation shows forward and backward moving deuterons, which are main distributing ions impinging upon D2O stream and vapor, respectively. This material is based upon work supported by the Air Force Office of Scien- tific Research under Award Numbers FA9550-12-1-0310 (Young Investigator Program) and FA9550-14-1-0282.

  5. Pulse measurement apparatus and method

    Science.gov (United States)

    Marciante, John R.; Donaldson, William R.; Roides, Richard G.

    2011-10-25

    An embodiment of the invention is directed to a pulse measuring system that measures a characteristic of an input pulse under test, particularly the pulse shape of a single-shot, nano-second duration, high shape-contrast optical or electrical pulse. An exemplary system includes a multi-stage, passive pulse replicator, wherein each successive stage introduces a fixed time delay to the input pulse under test, a repetitively-gated electronic sampling apparatus that acquires the pulse train including an entire waveform of each replica pulse, a processor that temporally aligns the replicated pulses, and an averager that temporally averages the replicated pulses to generate the pulse shape of the pulse under test. An embodiment of the invention is directed to a method for measuring an optical or an electrical pulse shape. The method includes the steps of passively replicating the pulse under test with a known time delay, temporally stacking the pulses, and temporally averaging the stacked pulses. An embodiment of the invention is directed to a method for increasing the dynamic range of a pulse measurement by a repetitively-gated electronic sampling device having a rated dynamic range capability, beyond the rated dynamic range of the sampling device; e.g., enhancing the dynamic range of an oscilloscope. The embodied technique can improve the SNR from about 300:1 to 1000:1. A dynamic range enhancement of four to seven bits may be achieved.

  6. RELIABILITY OF THE ONE-REPETITION MAXIMUM TEST BASED ON MUSCLE GROUP AND GENDER

    Directory of Open Access Journals (Sweden)

    Dong-il Seo

    2012-06-01

    Full Text Available The purpose of the present study was to examine the influence of muscle group location and gender on the reliability of assessing the one-repetition maximum (1RM test. Thirty healthy males (n = 15 and females (n = 15 who experienced at least 3 months of continuous resistance training during the last 2 years aged 18-35 years volunteered to participate in the study. The 1RM for the biceps curl, lat pull down, bench press, leg curl, hip flexion, triceps extension, shoulder press, low row, leg extension, hip extension, leg press and squat were measured twice by a trained professional using a standard published protocol. Biceps curl, lat pull down, bench press, leg curl, hip flexion, and squat 1RM's were measured on the first visit, then 48 hours later, subjects returned for their second visit. During their second visit, 1RM of triceps extension, shoulder press, low row, leg extension, hip extension, and leg press were measured. One week from the second visit, participants completed the 1 RM testing as previously done during the first and second visits. The third and fourth visits were separated by 48 hours as well. All four visits to the laboratory were at the same time of day. A high intraclass correlation coefficient (ICC > 0.91 was found for all exercises, independent of gender and muscle group size or location, however there was a significant interaction for muscle group location (upper body vs. lower body in females (p < 0.027. In conclusion, a standardized 1RM testing protocol with a short warm-up and familiarization period is a reliable measurement to assess muscle strength changes regardless of muscle group location or gender

  7. Correlation between the 8-repetition maximum test and isokinetic dynamometry in the measurement of muscle strength of the knee extensors: A concurrent validity study.

    Science.gov (United States)

    Taylor, J David; Fletcher, James P

    2013-05-01

    The 8-repetition maximum test has the potential to be a feasible, cost-effective method of measuring muscle strength for clinicians. The purpose of this study was to investigate the concurrent validity of the 8-repetition maximum test in the measurement of muscle strength by comparing the 8-repetition maximum test to the gold standard of isokinetic dynamometry. Thirty participants (15 males and 15 females, mean age = 23.2 years [standard deviation = 1.0]) underwent 8-repetition maximum testing and isokinetic dynamometry testing of the knee extensors (at 60, 120, and 240 degrees per second) on two separate sessions with 2-3 days between each mode of testing. Linear regression was used to assess the validity by comparing the findings between 8-repetition maximum testing and isokinetic dynamometry testing. Significant correlations were found between the 8-repetition maximum and isokinetic dynamometry peak torque at each testing velocity (r  =  0.71-0.85). The highest correlations were between the 8-repetition maximum and isokinetic dynamometry peak torques at 60 (r  =  0.85) and 120 (r  =  0.85) degrees per second. The findings of this study provide supportive evidence for the use of 8-repetition maximum testing as a valid, alternative method for measuring muscle strength.

  8. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa; Ali, H.

    2016-08-15

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  9. Effect of power density and pulse repetition on laser shock peening of Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.R.; Shepard, M.J.; Prevey, P.S. III; Clauer, A.H.

    2000-02-01

    Laser shock peening (LSP) was applied to Ti-6Al-4V (wt.%) simulated airfoil specimens using a Nd:Glass laser. Laser shock peening processing parameters examined in the present study included power density (5.5, 7, and 9 GW/cm{sup 2}) and number of laser pulses per spot (one and three pulses/spot). The LSP's Ti-6Al-4V samples were examined using x-ray diffraction techniques to determine the residual stress distribution and percent cold work as a function of depth. It was found that the residual stress state and percent of cold work were relatively independent of LSP power density. However, the number of laser pulses per spot had a significant effect on both residual stress and percent of cold work for a given power density level. In addition, there was a strong correlation between the magnitude of residual compressive stresses generated and the percent cold work measured.

  10. Phase-matched high-order harmonics by interaction of Ar atoms with high-repetition-rate low-energy femtosecond laser pulses

    Institute of Scientific and Technical Information of China (English)

    XIE Xinhua; ZENG Zhinan; LI Ruxin; CHEN Shu; LU Haihe; YIN Dingjun; XU Zhizhan

    2004-01-01

    Phase-matched high-order harmonic generation in Ar gas-filled cell was investigated experimentally. We obtained phase-matched 27th order harmonic driven by a commercially available solid-state femtosecond laser system at 0.55 m J/pulse energy level and 1 kHz repetition rate. To our knowledge, this is the lowest driving laser energy used to obtain phase-matched 27th order harmonic in a static gas cell. High-order harmonic generation at different gas density was studied systematically. Spectral blueshift and broadening of high harmonics under different pressure were analyzed. We found that the source size and spatial distribution of high-order harmonics are quite different under the phase-matching condition from those of the phase-mismatching case.

  11. Application of Denisyuk pulsed holography to material testing

    NARCIS (Netherlands)

    Renesse, R.L. van; Burgmeijer, J.W.

    1983-01-01

    When holography is applied outside the laboratory, some well known problems are experienced: vibrations, rigid body motion, stray daylight. Pulse holography can overcome the difficulties with vibrations, but the other problems are less easily solved. When the object area to be holographically tested

  12. One-repetition maximum strength test represents a valid means to assess leg strength in vivo in humans.

    Science.gov (United States)

    Verdijk, Lex B; van Loon, Luc; Meijer, Kenneth; Savelberg, Hans H C M

    2009-01-01

    Skeletal muscle strength is often determined to evaluate the adaptive response to an exercise intervention programme. Although dynamometry is considered the "gold standard" for the assessment of muscle strength in vivo, one-repetition maximum (1-RM) testing performed on training-specific equipment is more commonly applied. We assessed the validity of specific knee extension 1-RM testing by comparison with dynamometry in a heterogeneous population (n=55). All participants performed 1-RM tests on regular leg extension and leg press machines. Additionally, isometric (at seven different knee angles) and isokinetic (at four different velocities) knee extension peak torques were determined. Pearson's r was calculated for the relationship between 1-RM data and peak torques for the entire population and for subgroups defined by age and gender. One-repetition maximum strength correlated strongly with the dynamometer results. One-repetition maximum leg extension correlated more strongly with peak torques than did 1-RM leg press (0.78leg muscle strength in vivo in young and elderly men and women. Considering the importance of training specificity in strength assessment, we argue that 1-RM testing can be applied to assess changes in leg muscle strength following an exercise intervention.

  13. A Pilot Study Comparing Two Nonword Repetition Tasks for Use in a Formal Test Battery

    Science.gov (United States)

    Tattersall, Patricia J.; Nelson, Nickola Wolf; Tyler, Ann A.

    2015-01-01

    Two sets of nonwords (with and without true morphemes) were compared for their ability to differentiate students in Grades 1 through 12 with and without language impairment (36 each; N = 72) on a nonword repetition task. Results indicated that either nonword type could contribute to differential diagnosis.

  14. Periodic disruptions induced by high repetition rate femtosecond pulses on magnesium-oxide-doped lithium niobate surfaces

    Science.gov (United States)

    Zhang, Shuanggen; Kan, Hongli; Zhai, Kaili; Ma, Xiurong; Luo, Yiming; Hu, Minglie; Wang, Qingyue

    2017-02-01

    In this paper, we demonstrate the periodic disruption formation on magnesium-oxide-doped lithium niobate surfaces by a femtosecond fiber laser system with wavelength and repetition rate of 1040 nm and 52 MHz, respectively. Three main experimental conditions, laser average power, scanning speed, and orientation of sample were systematically studied. In particular, the ablation morphologies of periodic disruptions under different crystal orientations were specifically researched. The result shows that such disruptions consisting of a bamboo-like inner structure appears periodically for focusing on the surface of X-, Y- and Z-cut wafers, which are formed by a rapid quenching of the material. Meanwhile, due to the anisotropic property, the bamboo-like inner structures consist of a cavity only arise from X- and Z-cut orientation.

  15. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    NARCIS (Netherlands)

    Irimia, D.; Dobrikov, D.; Kortekaas, R.; Voet, H.; Ende, D.A. van den; Groen, W.A.; Janssen, M.H.M.

    2009-01-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms t

  16. Extracting third order optical nonlinearities of Mn(III)-Phthalocyanine chloride using high repetition rate femtosecond pulses

    Science.gov (United States)

    Makhal, Krishnandu; Mathur, Paresh; Maurya, Sidharth; Goswami, Debabrata

    2017-02-01

    Third order nonlinearities of Mn(III)-Phthalocyanine chloride in dimethyl-sulphoxide under 50 fs pulses, operating at 94 MHz, by eliminating cumulative thermal effects have been investigated and reported by us. Modifications were done in data acquisition during Z-scan experiment, which included recording of time evolution waveform traces in an oscilloscope and not collection of Z versus transmission and utilization of a chopper of a suitable duty cycle. Time evolution traces were further processed analytically through MatLab® programming, which yielded Z-scan traces similar to what was obtained with single shot 50 fs pulse. We observed reverse saturable absorption at 800 nm owing to excited state absorption. We show that the nonlinear refractive index (γ) and nonlinear absorption coefficient (β) are over estimated almost 100 times, when MHz pulses are used compared to a situation, where thermo-optical nonlinearities are accounted. Illumination and dark periods are carefully set in a way, so that the sample is able to completely recover its initial temperature before arrival of the next pulse. Magnitudes of γ and β were found to be -(6.5-4.9) × 10-16 m2/W and (5.4-6.2) × 10-10 m/W under the MHz condition, whereas they were -(0.18-2.2) × 10-18 m2/W and (9.5-15) × 10-12 m/W under the thermally managed condition, respectively. To reveal the associated fast nonlinearity, femtosecond transient absorption experiment was performed, which inferred excited state absorption and ground state bleaching across the 450-780 nm region. Dynamics associated with these processes are reported along with fluorescence lifetime obtained through the TCSPC technique. Structure optimization using TDDFT calculations and HOMO-LUMO gaps with orbital pictures are also shown.

  17. Three-dimensional polymer nanostructures for applications in cell biology generated by high-repetition rate sub-15 fs near-infrared laser pulses

    Science.gov (United States)

    Licht, Martin; Straub, Martin; König, Karsten; Afshar, Maziar; Feili, Dara; Seidel, Helmut

    2011-03-01

    In recent years two-photon photopolymerization has emerged as a novel and extremely powerful technique of three-dimensional nanostructure formation. Complex-shaped structures can be generated using appropriate beam steering or nanopositioning systems. Here, we report on the fabrication of three-dimensional arrangements made of biocompatible polymer material, which can be used as templates for cell growth. Using three-dimensional cell cages as cell culture substrates is advantageous, as cells may develop in a more natural environment as compared to conventional planar growth methods. The two-photon fabrication experiments were carried out on a commercial microscope setup. Sub-15 fs pulsed Ti:Sapphire laser light (centre wavelength 800 nm, bandwidth 120 nm, repetition rate 85 MHz) was focused into the polymer material by a high-numerical aperture oil immersion objective. Due to the high peak intensities picojoule pulse energies in the focal spot are sufficient to polymerize the material at sub-100 nm structural element dimensions. Therefore, cell cages of sophisticated architecture can be constructed involving very fine features which take into account the specific needs of various types of cells. Ultimately, our research aims at three-dimensional assemblies of photopolymerized structural elements involving sub-100 nm features, which provide cell culture substrates far superior to those currently existing.

  18. Design and testing of 45 kV, 50 kHz pulse power supply for dielectric barrier discharges.

    Science.gov (United States)

    Sharma, Surender Kumar; Shyam, Anurag

    2016-10-01

    The design, construction, and testing of high frequency, high voltage pulse power supply are reported. The purpose of the power supply is to generate dielectric barrier discharges for industrial applications. The power supply is compact and has the advantage of low cost, over current protection, and convenient control for voltage and frequency selection. The power supply can generate high voltage pulses of up to 45 kV at the repetitive frequency range of 1 kHz-50 kHz with 1.2 kW input power. The output current of the power supply is limited to 500 mA. The pulse rise time and fall time are less than 2 μs and the pulse width is 2 μs. The power supply is short circuit proof and can withstand variable plasma load conditions. The power supply mainly consists of a half bridge series resonant converter to charge an intermediate capacitor, which discharges through a step-up transformer at high frequency to generate high voltage pulses. Semiconductor switches and amorphous cores are used for power modulation at higher frequencies. The power supply is tested with quartz tube dielectric barrier discharge load and worked stably. The design details and the performance of the power supply on no load and dielectric barrier discharge load are presented.

  19. New results from pulse tests in the CABRI reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, F.; Papin, J.; Haessler, M. [Institut de Proterction et de Surete Nucleaire, Saint Paul Lez Durance (France)] [and others

    1996-03-01

    At the 21st and 22nd WRSM (1,2), the motivation and objectives of the French program on the behaviour of high burnup PWR fuel under RIA conditions in the CABRI test reactor has been presented. The major results of the three first tests of the test matrix were presented and in particular REP-Na1, which failed at an unexpected low level of fuel enthalpy, was exposed to the community of nuclear safety research. At this time, no final understanding was reached for the origin of the failure. This objective is reached now. Two further tests, REP-Na4 and 5, have been performed in 1995, they demonstrated a satisfactory and safe behaviour by resisting to the early phase of severe loading during the RIA pulse test. Further examination work and analytical testing is in progress and the next tests with MOX fuel are being prepared.

  20. Design and testing of a 320 MW pulsed power supply

    Energy Technology Data Exchange (ETDEWEB)

    Schillig, J.B.; Boenig, H.J. [Los Alamos National Lab., NM (United States); Ferner, J.A. [National High Magnetic Field Lab., Tallahassee, FL (United States)] [and others

    1998-03-01

    For a 60 Tesla, 100 millisecond long pulse magnet five 64 MW (87.6 MVA) power converter modules have been installed. Each module provides a no-load voltage of 4.18 kV and a full load voltage of 3.20 kV at the rated current of 20 kA. The modules are connected to a 1,430 MVA/650 MJ inertial energy storage generator set, which is operated at 21 kV and frequencies between 60 and 42 Hz. They are designed to provide the rated power output for 2 seconds once every hour. Each module consists of two 21 kV/3.1 kV cast coil transformers and two 6-pulse rectifiers connected in parallel without an interphase reactor, forming a 12-pulse converter module. As far as possible standard high power industrial converter components were used, operated closer to their allowable limits. The converters are controlled by three programmable high speed controllers. In this paper the design of the pulsed converters, including control and special considerations for protection schemes with the converters supplying a mutually coupled magnet system, is detailed. Test results of the converters driving an ohmic-inductive load for 2 seconds at 20 kA and 3.2 kV are presented.

  1. Anthropometry increases 1 repetition maximum predictive ability of NFL-225 test for Division IA college football players.

    Science.gov (United States)

    Hetzler, Ronald K; Schroeder, Brian L; Wages, Jennifer J; Stickley, Christopher D; Kimura, Iris F

    2010-06-01

    The purpose of this study was to compare existing 1 repetition maximum (1RM) bench press prediction equations in National Collegiate Athletic Association (NCAA) Division IA college football players and determine if the error associated with the prediction of 1RM bench press from the National Football League (NFL)-225 test could be reduced through the addition of anthropometric measurements. Anthropometric measures, 1RM bench press, NFL-225 test repetitions to fatigue, and body composition data were collected on 87 Division IA football players (mean+/-SD age 19.9+/-1.3 years; height 182.3+/-7.3 cm; body mass 102.3+/-21.1 kg; % fat 13.9+/-6.7; 1RM bench press 140.5+/-2 6.6 kg; and NFL-225 reps to fatigue 14.1+/-8.0). Hierarchical regression revealed an R=0.87 when predicting 1RM from the NFL-225 test alone, which improved to R=0.90 with the addition of the anthropometric variables: arm circumference and arm length. The following equation was the best performing model to predict 1RM bench press: 1RM (lb)=299.08+2.47 arm circumference (cm)--4.60 arm length (cm)+5.84 reps @ 225; SEE=18.3 lb). This equation predicted 43.7% of subjects' within +/-10 lb of their actual 1RM bench press. Using a crossvalidation group, the equation resulted in estimates of 1RM which were not significantly different than the actual 1RM. Because of the variability that has been shown to be associated with 1RM prediction equations, the use of actual 1RM testing is recommended when this is a critical variable. However, coaches, scouts, and athletes, who choose to estimate 1RM bench press using repetitions to failure from the NFL-225 test, may benefit from the use of the equations developed in this study to estimate 1RM bench press with the inclusion of simple anthropometric measurements.

  2. 电激励重复频率非链式HF激光器%Electrically initiated repetitive-pulsed non-chain HF lasers

    Institute of Scientific and Technical Information of China (English)

    易爱平; 刘晶儒; 唐影; 黄珂; 黄欣; 于力; 马连英

    2011-01-01

    采用电子束和气体放电两种激励方式开展重复频率非链式HF激光研究.基于全固态脉冲功率源SPG200建立了重复频率HF实验装置,探索了产生重频大面积均匀电子束的技术途径,利用法拉第筒对进入激光气室的电子束的轴向均匀性进行了诊断,开展了激光器输出特性研究和重频实验调试,在C2 H6:SF6=0.035,总气压为35 kPa时,激光器输出能量最大约为4.8 mJ,并实现了最高30 Hz的HF激光稳定输出.采用峰化电容及紫外自动预电离技术设计研制了放电激励重频HF激光器,研究了SF6气体放电特性和重频运行稳定性.研究发现SF6气体放电具有典型的辉光放电、电压维持和电弧放电三阶段特征.在充电电压为28 kV,总气压为12 kPa,C2H6含量为8%时,放电激励HF激光器最大脉冲能量约 600 mJ,比能量输出达到8.5J/1,激光器的电光转换效率约为2.5%.该激光器在1-50 Hz实现了重频输出,首脉冲能量>500 mJ,在10 Hz时稳定输出能量约为200 mJ,%The repetitive-pulsed non-chain HF lasers initiated by e-beams and fast discharges were studied respectively. The e-beam initiated HF laser characterized by an all-solid-state generator was developed. A large area repetitive uniform e-beam was obtained and the Faraday cup was used to diagnose the uniformity of e-beam into the laser gas cell. The output characteristics of the laser were studied and the maximal energy of 4.8 mJ was obtained with gas mixture C2 H6: SF6 =0.035. The e-beam initiated HF laser could operate at the repetition rate of 30 Hz. The discharge initiated non-chain HF laser was designed by using the technologies of peaking capacitor and UV pre-ionizing. The discharge characteristics and stability of SF6 gas in repetition mode were studied. The results show that the discharge includes main discharge (volume discharge) and arc discharge, between which the voltage maintains and no evident discharge is visible. The maximal output

  3. Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance

    Science.gov (United States)

    Hallock, Ashley K.; Martin, Adam; Polzin, Kurt; Kimberlin, Adam; Eskridge, Richard

    2013-01-01

    Fabricated and tested CTP IPPTs at cone angles of 20deg, 38deg, and 60deg, and performed direct single-pulse impulse bit measurements with continuous gas flow. Single pulse performance highest for 38deg angle with impulse bit of approx.1 mN-s for both argon and xenon. Estimated efficiencies low, but not unexpectedly so based on historical data trends and the direction of the force vector in the CTP. Capacitor charging system assembled to provide rapid recharging of capacitor bank, permitting repetition-rate operation. IPPT operated at repetition-rate of 5 Hz, at maximum average power of 2.5 kW, representing to our knowledge the highest average power for a repetitively-pulsed thruster. Average thrust in repetition-rate mode (at 5 kV, 75 sccm argon) was greater than simply multiplying the single-pulse impulse bit and the repetition rate.

  4. Design, development and testing twin pulse tube cryocooler

    Science.gov (United States)

    Gour, Abhay Singh; Sagar, Pankaj; Karunanithi, R.

    2017-09-01

    The design and development of Twin Pulse Tube Cryocooler (TPTC) is presented. Both the coolers are driven by a single Linear Moving Magnet Synchronous Motor (LMMSM) with piston heads at both ends of the mover shaft. Magnetostatic analysis for flux line distribution was carried-out during design and development of LMMSM based pressure wave generator. Based on the performance of PWG, design of TPTC was carried out using Sage and Computational Fluid Dynamics (CFD) analysis. Detailed design, fabrication and testing of LMMSM, TPTC and their integration tests are presented in this paper.

  5. Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves.

    Science.gov (United States)

    Zivcak, Marek; Brestic, Marian; Kunderlikova, Kristyna; Sytar, Oksana; Allakhverdiev, Suleyman I

    2015-12-01

    It was previously found that photosystem I (PSI) photoinhibition represents mostly irreversible damage with a slow recovery; however, its physiological significance has not been sufficiently characterized. The aim of the study was to assess the effect of PSI photoinhibition on photosynthesis in vivo. The inactivation of PSI was done by a series of short light saturation pulses applied by fluorimeter in darkness (every 10 s for 15 min), which led to decrease of both PSI (~60 %) and photosystem II (PSII) (~15 %) photochemical activity. No PSI recovery was observed within 2 days, whereas the PSII was fully recovered. Strongly limited PSI electron transport led to an imbalance between PSII and PSI photochemistry, with a high excitation pressure on PSII acceptor side and low oxidation of the PSI donor side. Low and delayed light-induced NPQ and P700(+) rise in inactivated samples indicated a decrease in formation of transthylakoid proton gradient (ΔpH), which was confirmed also by analysis of electrochromic bandshift (ECSt) records. In parallel with photochemical parameters, the CO2 assimilation was also strongly inhibited, more in low light (~70 %) than in high light (~45 %); the decrease was not caused by stomatal closure. PSI electron transport limited the CO2 assimilation at low to moderate light intensities, but it seems not to be directly responsible for a low CO2 assimilation at high light. In this regard, the possible effects of PSI photoinhibition on the redox signaling in chloroplast and its role in downregulation of Calvin cycle activity are discussed.

  6. 新型高重复频率脉冲CO2激光器%Novel high repetition-rate pulse CO2 laser

    Institute of Scientific and Technical Information of China (English)

    郑义军; 刁伟伦; 谭荣清; 王东雷; 张阔海; 黄文武; 刘世明; 李能文; 孙科; 卢远添

    2013-01-01

    A novel transversely excited atmospheric (TEA) CO2 laser with high repetition- rate was reported. The size of laser is 300 mmí300 mmí300 mm. The discharge volume is 12í103 mm3, the length of cavity is 310 mm. The ultraviolet preionization makes the discharge even and stable, the output energy can be as high as 15 mJ under the circumstance of free oscillation, and the full width at half maximum of the light pulse is 70 ns. To acquire the high wind velocity, a turbocharger was used in the system of the fast- gas flow cycle. When the pressure in the cavity is 100 kPa, the wind speed is 100 m/s, and the repetition rate of the TEA CO2 laser is up to 1.5 kHz. On the basis of preliminary experiment, the system of the grating tuning line selection can be applied to the high repetition- rate pulse laser to abtain the output of grating line selection accurately and fast.%报道了一种新型高重复频率的脉冲CO2激光器。该型激光器结构紧凑,激光器外型尺寸为300 mm×300 mm×300 mm,工作气体放电增益体积为12×103 mm3,谐振腔的长度为310 mm。为了获得大体积均匀稳定的气体放电,激光器采用了紫外电晕预电离方式。在激光器自由运转时,单脉冲激光的输出能量达到15 mJ ,输出脉冲的半高全宽为70 ns。激光器采用紧凑型高速涡轮增压风机,在一个大气压的条件下,气流循环速度超过100 m/s,激光脉冲重复频率为1.5 kHz,采用大体积强迫冷却和气体主动置换技术,可以获得较长时间激光稳定输出。在已有的实验基础上,采用光栅调谐,可快速准确地实现高重复频率脉冲CO2激光器的谱线选支输出。

  7. Welding of glasses in optical and partial-optical contact via focal position adjustment of femtosecond-laser pulses at moderately high repetition rate

    Science.gov (United States)

    Tan, Hua; Duan, Ji'an

    2017-07-01

    We used 1030-nm femtosecond-laser pulses focused above/at/below the interface of two fused-silica glass substrates in optical and partial-optical contact to successfully weld them at a moderately high repetition rate of 600 kHz. Variation in the laser focal position for these two gap-distance regimes (optical and partial-optical contact) yields different bonding strengths (BSs) and machining mechanisms. The maximum bonding strength (58.2 MPa) can be achieved for a gap distance ≤λ /4 for optical-contact welding when laser focused below the interface, and the corresponding height of the welding seam was 23 μm. In addition, our results demonstrated that the "filamentation welding technique" is critical to the femtosecond-laser direct welding of glasses. Furthermore, line welding is significantly easier to realize when the femtosecond laser focuses at the interface in partial-optical-contact welding applications due to the combined effects of filamentation welding and ablation.

  8. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    Science.gov (United States)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  9. High-rate low-temperature dc pulsed magnetron sputtering of photocatalytic TiO2films: the effect of repetition frequency

    Directory of Open Access Journals (Sweden)

    Strýhal Z

    2007-01-01

    Full Text Available AbstractThe article reports on low-temperature high-rate sputtering of hydrophilic transparent TiO2thin films using dc dual magnetron (DM sputtering in Ar + O2mixture on unheated glass substrates. The DM was operated in a bipolar asymmetric mode and was equipped with Ti(99.5 targets of 50 mm in diameter. The substrate surface temperature Tsurfmeasured by a thermostrip was less than 180 °C for all experiments. The effect of the repetition frequency frwas investigated in detail. It was found that the increase of frfrom 100 to 350 kHz leads to (a an improvement of the efficiency of the deposition process that results in a significant increase of the deposition rate aDof sputtered TiO2films and (b a decrease of peak pulse voltage and sustaining of the magnetron discharge at higher target power densities. It was demonstrated that several hundreds nm thick hydrophilic TiO2films can be sputtered on unheated glass substrates at aD = 80 nm/min, Tsurf < 180 °C when high value of fr = 350 kHz was used. Properties of a thin hydrophilic TiO2film deposited on a polycarbonate substrate are given.

  10. Comparison of pulsed-field gel electrophoresis & repetitive sequence-based PCR methods for molecular epidemiological studies of Escherichia coli clinical isolates

    Directory of Open Access Journals (Sweden)

    Il Kwon Bae

    2014-01-01

    Full Text Available Background & objectives: PFGE, rep-PCR, and MLST are widely used to identify related bacterial isolates and determine epidemiologic associations during outbreaks. This study was performed to compare the ability of repetitive sequence-based PCR (rep-PCR and pulsed-field gel electrophoresis (PFGE to determine the genetic relationships among Escherichia coli isolates assigned to various sequence types (STs by two multilocus sequence typing (MLST schemes. Methods: A total of 41 extended-spectrum β-lactamase- (ESBL- and/or AmpC β-lactamase-producing E. coli clinical isolates were included in this study. MLST experiments were performed following the Achtman′s MLST scheme and the Whittam′s MLST scheme, respectively. Rep-PCR experiments were performed using the DiversiLab system. PFGE experiments were also performed. Results: A comparison of the two MLST methods demonstrated that these two schemes yielded compatible results. PFGE correctly segregated E. coli isolates belonging to different STs as different types, but did not group E. coli isolates belonging to the same ST in the same group. Rep-PCR accurately grouped E. coli isolates belonging to the same ST together, but this method demonstrated limited ability to discriminate between E. coli isolates belonging to different STs. Interpretation & conclusions: These results suggest that PFGE would be more effective when investigating outbreaks in a limited space, such as a specialty hospital or an intensive care unit, whereas rep-PCR should be used for nationwide or worldwide epidemiology studies.

  11. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter

    Science.gov (United States)

    Huber, Peter; Jöchle, Knut; Debus, Jürgen

    1998-10-01

    Monitoring the generation of cavitation is of great interest for diagnostic and therapeutic use of ultrasound in medicine, since cavitation is considered to play a major role in nonthermal ultrasound interactions with tissue. Important parameters are the number of cavitation events and the energy released during the bubble collapse. This energy is correlated to the maximum bubble radius which is related to the cavitation lifespan. The aim of this study was therefore to investigate the influence of the acoustic pressure amplitude and the pulse repetition frequency (PRF) in the field of a lithotripter (Lithostar, Siemens) on the number, size and lifespan of transient cavitation bubbles in water. We used scattered laser light recorded by a photodiode and stroboscopic photographs to monitor the cavitation activity. We found that PRF (range 0.5-5 Hz) had no influence on the cavitation bubble lifespan and size, whereas lifespan and size increased with the acoustic pressure amplitude. In contrast, the number of cavitation events strongly increased with PRF, whereas the pressure amplitude had no significant influence on the number of cavitation events. Thus, by varying the pressure amplitude and PRF, it might be possible to deliver a defined relative number of cavitations at a defined relative energy level in a defined volume. This seems to be relevant to further studies that address the biological effects of transient cavitation occurring in the fields of lithotripters.

  12. 遗传算法搜索雷达脉冲重复周期%Pulse Repetition Interval of Searching Radar under Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    华瑶; 孙晓闻

    2016-01-01

    采用脉冲多普勒体制的雷达需发射多个不同重复周期( PRI)的脉冲组对目标进行探测。在雷达工程中一般采用穷举搜索的方法来优选PRI,计算量巨大。文中研究了遗传算法( GA)搜索雷达PRI方法,针对机载雷达探测空中目标的特点,以速度盲区和距离盲区联合最小作为适应度评价函数,搜索结果具备良好的探测清晰区。通过仿真示例说明了遗传算法搜索PRI的有效性,并对遗传算法的计算量进行了分析。与穷举搜索法相比,遗传算法大大减少搜索数目,可以快速搜索出满足工程要求的PRI组合,具备良好的工程适用性。%Radars referred to as pulse-Doppler are systems that transmit several pulse trains of different pulse repetition interval (PRI) for target detection.The brute force is one of the conventional methods for the selection of PRI in engineering, and it is computationally intensive .Aiming to characteristic of the target in the air , the genetic algorithm ( GA) based on the fitness evalua-tion function which combines the blind velocity and blind range is presented to improve the efficiency of PRI search in the paper . Simulation results demonstrate the perfect performance of the proposed method and the detailed analysis of computationally cost based on GA method is made .Compared with the brute force , the GA method reduces the computation cost evidently and is suited for the rapid optimal search of radar PRI combination in engineering , and the results show the method's engineering applicability .

  13. Pulsed beam tests at the SANAEM RFQ beamline

    Science.gov (United States)

    Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.

    2017-07-01

    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.

  14. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Calculation of mass transfer in the remote cutting of metals by radiation of a high-power repetitively pulsed CO2 laser

    Science.gov (United States)

    Gladush, G. G.; Rodionov, N. B.

    2002-01-01

    The mechanism of remote cutting of steel plates by radiation of a high-power repetitively pulsed CO2 laser is theoretically studied. The models of melt removal by the gravity force and the recoil pressure of material vapour are proposed and the sufficient conditions for the initiation of cutting are determined. A numerical model of a thermally thin plate was employed to describe the cutting for large focal spots.

  15. Effects of multiple study-test repetition on the neural correlates of recognition memory: ERPs dissociate remembering and knowing

    Science.gov (United States)

    de Chastelaine, Marianne; Friedman, David; Cycowicz, Yael M.; Horton, Cort

    2009-01-01

    ERP frontal (300–500 ms) and parietal (500–700 ms) episodic memory (EM) effects are thought to reflect, respectively, familiarity and recollection. However, as most ERP studies use pre-experimentally familiar items, an alternative idea is that the frontal EM effect reflects conceptual priming. Repetition of unnameable symbols was used to assess modulations of the putative ERP indices of familiarity and recollection. The same symbols were viewed in each of 4 study/test blocks. Increases in familiarity and conceptual processing of symbols did not modulate the frontal EM effect, suggesting that it reflects neither familiarity nor conceptual priming. The magnitude of the parietal EM effect increased and its onset latency decreased across tests for items given remember (R), but not know (K) judgments. R and K old-new topographies differed. These findings support dual-process proposals that familiarity- and recollection-based processes are distinct. PMID:19055497

  16. Design and Testing of a Small Inductive Pulsed Plasma Thruster

    Science.gov (United States)

    Martin, Adam K.; Eskridge, Richard H.; Dominguez, Alexandra; Polzin, Kurt A.; Riley, Daniel P.; Kimberlin, Adam C.

    2015-01-01

    The design and testing of a small inductive pulsed plasma thruster (IPPT), shown in Fig. 1 with all the major subsystems required for a thruster of this kind are described. Thrust measurements and imaging of the device operated in rep-rated mode are presented to quantify the performance envelope of the device. The small IPPT described in this paper was designed to serve as a test-bed for the pulsed gas-valves and solid-state switches required for a IPPTs. A modular design approach was used to permit future modifications and upgrades. The thruster consists of the following sub-systems: a) a multi-turn, spiral-wound acceleration coil (27 cm o.d., 10 cm i.d.) driven by a 10 microFarad capacitor and switched with a high-voltage thyristor, b) a fast pulsed gas-valve, and c.) a glow-discharge pre-ionizer (PI) circuit. The acceleration-coil circuit may be operated at voltages up to 4 kV (the thyristor limit is 4.5 kV). The device may be operated at rep-rates up to 30 Hz with the present gas-valve. Thrust measurements and imaging of the device operated in rep-rated mode will be presented. The pre-ionizer consists of a 0.3 microFarad capacitor charged to 4 kV and connected to two annular stainless-steel electrodes bounding the area of the coil-face. The 4 kV potential is held across them and when the gas is puffed in over the coil, the PI circuit is completed, and a plasma is formed. Even at the less than optimal base-pressure in the chamber (approximately 5 × 10(exp -4) torr), the PI held-off the applied voltage, and only discharged upon command. For a capacitor charge of 2 kV the peak coil current is 4.1 kA, and during this pulse a very bright discharge (much brighter than from the PI alone) was observed (see Fig. 2). Interestingly, for discharges at this charge voltage the PI was not required as the current rise rate, dI/dt, of the coil itself was sufficient to ionize the gas.

  17. Pulse

    Science.gov (United States)

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the person's heart is pumping. Pulse ... rate gives information about your fitness level and health.

  18. Comparison of the DiversiLab repetitive element PCR system with spa typing and pulsed-field gel electrophoresis for clonal characterization of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Babouee, B; Frei, R; Schultheiss, E; Widmer, A F; Goldenberger, D

    2011-04-01

    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become an increasing problem worldwide in recent decades. Molecular typing methods have been developed to identify clonality of strains and monitor spread of MRSA. We compared a new commercially available DiversiLab (DL) repetitive element PCR system with spa typing, spa clonal cluster analysis, and pulsed-field gel electrophoresis (PFGE) in terms of discriminatory power and concordance. A collection of 106 well-defined MRSA strains from our hospital was analyzed, isolated between 1994 and 2006. In addition, we analyzed 6 USA300 strains collected in our institution. DL typing separated the 106 MRSA isolates in 10 distinct clusters and 8 singleton patterns. Clustering analysis into spa clonal complexes resulted in 3 clusters: spa-CC 067/548, spa-CC 008, and spa-CC 012. The discriminatory powers (Simpson's index of diversity) were 0.982, 0.950, 0.846, and 0.757 for PFGE, spa typing, DL typing, and spa clonal clustering, respectively. DL typing and spa clonal clustering showed the highest concordance, calculated by adjusted Rand's coefficients. The 6 USA300 isolates grouped homogeneously into distinct PFGE and DL clusters, and all belonged to spa type t008 and spa-CC 008. Among the three methods, DL proved to be rapid and easy to perform. DL typing qualifies for initial screening during outbreak investigation. However, compared to PFGE and spa typing, DL typing has limited discriminatory power and therefore should be complemented by more discriminative methods in isolates that share identical DL patterns.

  19. Comparison of the DiversiLab Repetitive Element PCR System with spa Typing and Pulsed-Field Gel Electrophoresis for Clonal Characterization of Methicillin-Resistant Staphylococcus aureus▿

    Science.gov (United States)

    Babouee, B.; Frei, R.; Schultheiss, E.; Widmer, A. F.; Goldenberger, D.

    2011-01-01

    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become an increasing problem worldwide in recent decades. Molecular typing methods have been developed to identify clonality of strains and monitor spread of MRSA. We compared a new commercially available DiversiLab (DL) repetitive element PCR system with spa typing, spa clonal cluster analysis, and pulsed-field gel electrophoresis (PFGE) in terms of discriminatory power and concordance. A collection of 106 well-defined MRSA strains from our hospital was analyzed, isolated between 1994 and 2006. In addition, we analyzed 6 USA300 strains collected in our institution. DL typing separated the 106 MRSA isolates in 10 distinct clusters and 8 singleton patterns. Clustering analysis into spa clonal complexes resulted in 3 clusters: spa-CC 067/548, spa-CC 008, and spa-CC 012. The discriminatory powers (Simpson's index of diversity) were 0.982, 0.950, 0.846, and 0.757 for PFGE, spa typing, DL typing, and spa clonal clustering, respectively. DL typing and spa clonal clustering showed the highest concordance, calculated by adjusted Rand's coefficients. The 6 USA300 isolates grouped homogeneously into distinct PFGE and DL clusters, and all belonged to spa type t008 and spa-CC 008. Among the three methods, DL proved to be rapid and easy to perform. DL typing qualifies for initial screening during outbreak investigation. However, compared to PFGE and spa typing, DL typing has limited discriminatory power and therefore should be complemented by more discriminative methods in isolates that share identical DL patterns. PMID:21307215

  20. Adjustable Shock Test Sled for Haversine Pulses at 250 fps

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, Troy [Honeywell Federal Manufacturing and Technologies, Kansas City, MO (United States); Hower, Brent [Honeywell Federal Manufacturing and Technologies, Kansas City, MO (United States); Seaholm, Aaron [Honeywell Federal Manufacturing and Technologies, Kansas City, MO (United States)

    2007-11-08

    New test requirements were developed by Sandia National Laboratory to simulate a regime of shock testing not previously performed at the Kansas City Plant operated by Honeywell Federal Manufacturing & Technologies. These environments were unique in that they involved amplitude of shock >1000g with relatively long pulse durations (greater 5 ms but less than 10 ms) and involved velocity changes up to 235 ft/sec. Ten months were available to develop, design, manufacture and prove-in this new capability. We designed a new shock sled to deliver this new family of shock environments in a laboratory test. The performance range of the new sled includes five specific shocks (1000 g – 8 ms, 1300 - 6 ms, 1500 g – 5.4 ms, 1950 g – 6 ms, 2250 g – 5.4 ms; all haversine shaped), and it also incorporates adjustability to accommodate new shocks within this range. These shock environments result in velocity changes ranging from 160 fps to 250 fps. The test sled accommodates test articles weighing up to 20 lbs and measuring up to 10” along any axis.

  1. Development and testing of pulsed and rotating detonation combustors

    Science.gov (United States)

    St. George, Andrew C.

    Detonation is a self-sustaining, supersonic, shock-driven, exothermic reaction. Detonation combustion can theoretically provide significant improvements in thermodynamic efficiency over constant pressure combustion when incorporated into existing cycles. To harness this potential performance benefit, countless studies have worked to develop detonation combustors and integrate these devices into existing systems. This dissertation consists of a series of investigations on two types of detonation combustors: the pulse detonation combustor (PDC) and the rotating detonation combustor (RDC). In the first two investigations, an array of air-breathing PDCs is integrated with an axial power turbine. The system is initially operated with steady and pulsed cold air flow to determine the effect of pulsed flow on turbine performance. Various averaging approaches are employed to calculate turbine efficiency, but only flow-weighted (e.g., mass or work averaging) definitions have physical significance. Pulsed flow turbine efficiency is comparable to steady flow efficiency at high corrected flow rates and low rotor speeds. At these conditions, the pulse duty cycle expands and the variation of the rotor incidence angle is constrained to a favorable range. The system is operated with pulsed detonating flow to determine the effect of frequency, fill fraction, and rotor speed on turbine performance. For some conditions, output power exceeds the maximum attainable value from steady constant pressure combustion due to a significant increase in available power from the detonation products. However, the turbine component efficiency estimated from classical thermodynamic analysis is four times lower than the steady design point efficiency. Analysis of blade angles shows a significant penalty due to the detonation, fill, and purge processes simultaneously imposed on the rotor. The latter six investigations focus on fundamental research of the RDC concept. A specially-tailored RDC data

  2. Diagnosis of high-repetition-rate pulse laser with pyroelectric detector%基于热释电探测器的重频脉冲激光诊断

    Institute of Scientific and Technical Information of China (English)

    张磊; 邵碧波; 杨鹏翎; 王振宝; 闫燕

    2011-01-01

    Based on the working principles of a pyroelectric detector, the transient response of the detector to the pulse laser is researched. The model of pyroelectric detector is built, and the response in practical application is simulated according to the parameters of materials and structures. Signal process circuits which are suitable for a high-repetition-rate pulse laser are designed. Finally', a number of the repetition frequency laser radiation experiments on the pyroelectric detector are carried out. The experiments on frequency response and pulse width of the detector are completed, and the feasibility of applying the pyroelectric detector to the energy measurement of the high-repetition-rate and narrow pulse laser is verified.%摘以热释电探测器的工作原理为基础,研究了热释电探测器对重频脉冲激光的瞬态响应特性,建立了热释电探测器对单脉冲激光辐照响应的工作模型,分析了影响探测器频率特性的主要因素。根据材料和结构参数模拟计算了实际应用中的响应模型。设计了信号检测电路并对其进行计算仿事。完成了探测器的频率响应、脉宽响应等实验测量,验证了热释电探测器用于高重频、窄脉冲激光能量测量的可行性。

  3. Compact repetitive high voltage nanosecond pulse generator%紧凑型重复频率高压纳秒脉冲电源及其仿真模型

    Institute of Scientific and Technical Information of China (English)

    庞磊; 陈纲亮; 何堃; 任保忠; 张乔根

    2012-01-01

    纳秒脉冲等离子体在诸多实际的工程应用中依赖于小型化且可靠的纳秒脉冲电源实现.设计了一种紧凑型全固态高压纳秒脉冲电源,该电源主要由直流电源部分、绝缘栅双极晶体管及其驱动控制电路、可饱和脉冲变压器、磁脉冲压缩网络等组成.通过理论计算分析、PSpice电路仿真以及实验研究表明,其最终可以在800 Ω的输出负载阻抗上获得幅值40 kV、脉冲宽度100 ns左右、脉冲上升沿约50 ns的高电压脉冲,重复频率最高可达5 kHz.%The application of nanosecond discharge plasma in many fields depends greatly on a compact repetitive high voltage nanosecond pulse generator. In this paper. a compact high voltage nanosecond pulse generator is presented > which is constructed with all-solid-state components. The pulse generator consists of DC module, insulated-gate bipolar transistors and its drivers, saturable pulse transformer and magnetic switch and so on. Simulation analysis and experimental investigation show that, the pulse generator can output pulsed voltage of 40 kV with duration about 100 ns and rise-time of 50 ns. Its highest repetitive frequency can be up to 5 kHz.

  4. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-08

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.

  5. Pulse irradiation tests of rock-like oxide fuel

    Science.gov (United States)

    Okonogi, K.; Nakamura, T.; Yoshinaga, M.; Ishijima, K.; Akie, H.; Takano, H.

    1999-08-01

    Pulse irradiation tests of special oxide fuel designed for plutonium disposal, called rock-like oxide (ROX), have been conducted in the Nuclear Safety Research Reactor (NSRR) to investigate the transient behavior of ROX fuel under reactivity initiated accident (RIA) conditions. An uranium free ROX, (Zr,Y)O 2-MgAl 2O 4-PuO 2, is proposed for once-through use of Pu in light water reactors. However, because of smaller negative Doppler and void reactivity coefficients in the ROX fuel, higher peak fuel enthalpies are expected under RIAs than for UO 2 fuel. Thus, the tests of simulated ROX, in which Pu was replaced by U for easier realization, were conducted to a peak fuel enthalpy of 0.96 kJ g -1 (230 cal g -1), which is above current Japanese safety limits for UO 2. The transient behavior of the simulated ROX fuel was quite different from that of UO 2, because of its different thermo-physical properties. Fuel failure was associated with fuel melting at peak fuel enthalpies of 1.63 kJ g -1 (390 cal g -1) to 2.22 kJ g -1 (530 cal g -1). Significant mechanical energy generation, the reason for the limit, however, was not observed.

  6. Studies on Pulse Jet Engine by Wind Tunnel Testing

    OpenAIRE

    Toshihiro Nakano; Michael Zeutzius; Hideo Miyanishi; Toshiaki Setoguchi; Kenji Kaneko

    2001-01-01

    Simple design and efficiency make pulse jet engines attractive for aeronautical short-term operation applications. An active control system extends the operating range and reduces the fuel consumption considerably so that this old technology might gain a new interest. The results on wind tunnel experiments have been reported together with the impact of combustion mode (pulse or steady) on system performance.

  7. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality......“Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...

  8. Efficacy of the National Football League-225 Test to Track Changes in One Repetition Maximum Bench Press After Training in National Collegiate Athletic Association Division IA Football Players.

    Science.gov (United States)

    Mann, J Bryan; Ivey, Pat A; Stoner, Josh D; Mayhew, Jerry L; Brechue, William F

    2015-11-01

    Numerous investigations have attested to the efficacy of the National Football League (NFL)-225 test to estimate one repetition maximum (1RM) bench press. However, no studies have assessed the efficacy of the test to track changes in strength across a training program. The purpose of this study was to determine the accuracy of the NFL-225 test for determining the change in 1RM bench press in National Collegiate Athletic Association Division IA college football players after training. Over a 4-year period, players (n = 203) were assessed before and after a 6-week off-season resistance program for 1RM bench press and repetitions completed with 102.3 kg (225 lbs). Test sessions typically occurred within 1 week of each other. Players significantly increased 1RM by 4.2 ± 8.6 kg and NFL-225 repetitions by 0.9 ± 2.3, although the effect size (ES) for each was trivial (ES = 0.03 and 0.07, respectively). National Football League 225 prediction equations had higher correlations with 1RM before training (intraclass correlation coefficient [ICC] = 0.95) than after training (ICC = 0.75). The correlation between the change in NFL-225 repetitions and change in 1RM was low and negative (r = -0.22, p football players and render the NFL-225 test less effective in predicting the change in 1RM bench press strength after short-term training.

  9. All-solid-state high-repetition-rate magnetic pulse compression generator%全固态高重复频率磁脉冲压缩发生器

    Institute of Scientific and Technical Information of China (English)

    张东东; 周媛; 李文峰; 许家雨; 王珏; 邵涛; 赵莹; 徐蓉

    2012-01-01

    The paper presents an all-solid-state high-repetition-rate pulse generator with adjustable output amplitude based on magnetic pulse compression (MPC) technique. The pulse compression network makes use of commercially available IGBTs switching a capacitor bank into a metglas transformer together with a voltage doubling circuit. The capacitor bank is charged to 500 V by a resonant LC charger, and also switched by a commercial diode. The output of the pulse generator is controlled by the gate voltage of the IGBTs. Pulses with a width of 70 ns can be generated with repetition rates up to 5 kHz. The amplitude can be controlled from 4 kV to 40 kV into a 500 Ω load. Equivalent circuits for the final operation stage of the compressor accounting for pre-pulse in magnetic switches are presented and analyzed, and the pre-pulse generation process of the MPC system is discussed. Simulation results show that, increasing the unsaturated inductance of the magnetic switch and reducing the load resistance enhance the pre-pulse peak. Thus to diminish the pre-pulse, a better ferrite core with higher permeability should be considered.%设计制作了全固态高重复频率磁脉冲压缩发生器,最高重复频率5 kHz,脉宽70 ns,通过调节初始储能电容上的电压可在500 Ω阻性负载上获得4~40 kV连续可调的输出电压.通过分析简化的磁压缩末级回路,分析了预脉冲产生的过程,得出了预脉冲的电压表达式,选取适当的磁芯相对磁导率,经过求解,得出在磁开关未饱和电感一定时预脉冲随负载阻值变化的曲线簇,从曲线中可以看出:随着负载的阻值的增大,预脉冲的峰值绝对值也增大;在负载恒定的情况下,增大磁开关未饱和电感的大小可以显著地减小负载两端预脉冲的峰值绝对值,这要求磁开关磁芯有更高的相对磁导率.

  10. Investigation of the Self-Healing Behaviors of Microcapsules/Bitumen Composites by a Repetitive Direct Tension Test

    Directory of Open Access Journals (Sweden)

    Jun-Feng Su

    2016-07-01

    Full Text Available The aim of this work was to evaluate the self-healing behaviors of bitumen using microcapsules containing rejuvenator by a modified fracture healing–refracture method through a repetitive tension test. Microcapsules had mean size values of 10, 20 and 30 μm with a same core/shell ratio of 1/1. Various microcapsules/bitumen samples were fabricated with microcapsule contents of 1.0, 3.0 and 5.0 wt. %, respectively. Tension strength values of microcapsules/bitumen samples were measured by a reparative fracture-healing process under different temperatures. It was found that these samples had tensile strength values larger than the data of pure bitumen samples under the same conditions after the four tensile fracture-healing cycles. Fracture morphology investigation and mechanism analysis indicated that the self-healing process was a process consisting of microcapsules being broken, penetrated and diffused. Moreover, the crack healing of bitumen can be considered as a viscosity driven process. The self-healing ability partly repaired the damage of bitumen during service life by comparing the properties of virgin and rejuvenated bitumen.

  11. Studies on Pulse Jet Engine by Wind Tunnel Testing

    Directory of Open Access Journals (Sweden)

    Toshihiro Nakano

    2001-01-01

    Full Text Available Simple design and efficiency make pulse jet engines attractive for aeronautical short-term operation applications. An active control system extends the operating range and reduces the fuel consumption considerably so that this old technology might gain a new interest. The results on wind tunnel experiments have been reported together with the impact of combustion mode (pulse or steady on system performance.

  12. Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions

    Science.gov (United States)

    2009-12-01

    FINAL REPORT Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions ESTCP Project WP-200212...PROGRAM ELEMENT NUMBER Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions 6. AUTHOR(S) 5d. PROJECT

  13. Shaped magnetic field pulses by multi-coil repetitive transcranial magnetic stimulation (rTMS) differentially modulate anterior cingulate cortex responses and pain in volunteers and fibromyalgia patients

    Science.gov (United States)

    2013-01-01

    Background Repetitive transcranial magnetic stimulation (rTMS) has shown promise in the alleviation of acute and chronic pain by altering the activity of cortical areas involved in pain sensation. However, current single-coil rTMS technology only allows for effects in surface cortical structures. The ability to affect activity in certain deep brain structures may however, allow for a better efficacy, safety, and tolerability. This study used PET imaging to determine whether a novel multi-coil rTMS would allow for preferential targeting of the dorsal anterior cingulate cortex (dACC), an area always activated with pain, and to provide preliminary evidence as to whether this targeted approach would allow for efficacious, safe, and tolerable analgesia both in a volunteer/acute pain model as well as in fibromyalgia chronic pain patients. Methods Part 1: Different coil configurations were tested in a placebo-controlled crossover design in volunteers (N = 16). Tonic pain was induced using a capsaicin/thermal pain model and functional brain imaging was performed by means of H215O positron emission tomography – computed tomography (PET/CT) scans. Differences in NRS pain ratings between TMS and sham treatment (NRSTMS-NRSplacebo) which were recorded each minute during the 10 minute PET scans. Part 2: 16 fibromyalgia patients were subjected to 20 multi-coil rTMS treatments over 4 weeks and effects on standard pain scales (Brief Pain Inventory, item 5, i.e. average pain NRS over the last 24 hours) were recorded. Results A single 30 minute session using one of 3 tested rTMS coil configurations operated at 1 Hz consistently produced robust reduction (mean 70% on NRS scale) in evoked pain in volunteers. In fibromyalgia patients, the 20 rTMS sessions also produced a significant pain inhibition (43% reduction in NRS pain over last 24 hours), but only when operated at 10 Hz. This degree of pain control was maintained for at least 4 weeks after the final session

  14. Relationships of skin depths and temperatures when varying pulse repetition frequencies from 2.0-μm laser light incident on pig skin

    Science.gov (United States)

    Schaaf, David; Johnson, Thomas

    2010-07-01

    Human perception of 2.0-μm infrared laser irradiation has become significant in such disparate fields as law enforcement, neuroscience, and pain research. Several recent studies have found damage thresholds for single-pulse and continuous wave irradiations at this wavelength. However, the only publication using multiple-pulse irradiations was investigating the cornea rather than skin. Literature has claimed that the 2.0-μm light characteristic thermal diffusion time was as long as 300-ms. Irradiating the skin with 2.0-μm lasers to produce sensation should follow published recommendations to use pulses on the order of 10 to 100 ms, which approach the theoretical thermal diffusion time. Therefore, investigation of the heating of skin for a variety of laser pulse combinations was undertaken. Temperatures of ex vivo pig skin were measured at the surface and at three depths from pulse sequences of six different duty factors. Differences were found in temperature rise per unit exposure that did not follow a linear relation to duty factor. The differences can be explained by significant heat conduction during the pulses. Therefore, the common heat modeling assumption of thermal confinement during a pulse may need to be experimentally verified if the pulse approaches the theoretical thermal confinement time.

  15. Evaluation of repetitive stimulation test (RST in 30 patients with Myasthenia Gravis, who were previously confirmed by clinical sign and tensilon test 1996-99

    Directory of Open Access Journals (Sweden)

    "Ghabaee M

    2001-07-01

    Full Text Available est (RST is the most commonly used electrodiagnostic test to asses the defect of neuromuscular transmission, which is reported to be positive in the diffuse and restricted ocular forms 60-95% and 14-50%, respectively. In a cross-sectional study, to determine the efficacy of repetitive stimulation test in myasthenia gravis, we evaluated the results in 30 cases who were hospitalized in Imam Khomeini Hospital during 1996-1999. Patients were first selected clinically and then confirmed by Tensilon test.Various clinical types including generalized and restricted ocular forms with different severity and duration were entered in this study. Considering the fact that the positiveness of the test is enhanced by assessment of more muscle groups, we evaluated decremental response in the facial, proximal and distal muscles of limbs. 90% of patients had the generalized form of the disease, whereas ocular myasthenia gravis was seen only in 10% of the cases. 74% of females and 73% of males showed positive response (overall: 73.3%. No significant association was found between the positive response, and age and sex. Peaks of incidences of the disease for the males were in fourth and sixth decades and for the females in thired decades

  16. Experiment on damage in K9 glass due to repetition rate pulsed CO2 laser radiation%重频脉冲CO2激光损伤K9玻璃的实验

    Institute of Scientific and Technical Information of China (English)

    王玺; 卞进田; 李华; 聂劲松; 孙晓泉; 尹学忠; 雷鹏

    2013-01-01

      对脉冲CO2激光在不同重频模式下损伤K9玻璃进行了实验研究。采用输出能量为10 J,脉宽为90 ns,重复频率在100 Hz至300 Hz之间连续可调的脉冲CO2激光器,对K9玻璃样品进行了激光损伤实验,观察到两次不同重频条件下样品的损伤形貌。实验结果表明,重频越高,对样品的损伤程度就越严重;应力损伤成为K9玻璃激光损伤的最主要的原因,在重频强激光的辐照下,K9玻璃表面出现强烈的等离子体闪光,伴随明显的熔融气化破坏,并形成等离子体爆轰波。爆轰波对玻璃材料产生了严重的力学冲击作用,这种应力作用足以对K9玻璃造成毁灭性破坏。运用有限元分析对激光辐照K9玻璃的温度与应力分布进行仿真,其计算结果与实验基本吻合。%  In this paper, the experiment on damage in K9 glass induced by pulsed CO2 laser under different repetition rates was carried out, which had a pulse width of 90 ns. The laser pulse energy was 10 J and the repetition rate was kept within the range of 100 Hz to 300 Hz. The damage morphologies of two kind repetition rates after laser irradiation were characterized. The experimental results indicate that the effect of laser irradiation on samples can be affected considerably by the change of laser repetition rate, and the intensity of damage morphology on the sample increases with the laser repetition rate, and the damage in K9 glass induced by pulsed CO2 laser is dominated by stress. As a result, the plasma detonation wave induced by laser occured, the material was broken result from the melting and evaporation of K9 glass. It is shown that the plasma detonation wave affected stress damage considerably, and this mechanical effect almost destroyed K9 glass sample. A numerical simulation was performed to calculate temperature and stress distributions in K9 glass sample irradiated by pulsed CO2 laser using finite element method. The model

  17. Development and testing of a 50 KA, pulsed superconducting cable

    Energy Technology Data Exchange (ETDEWEB)

    Wollan; DeClerc, J.; Hamilton, W.; Zeitlin, B.

    1983-05-01

    Prototype cables for 7.5 T, pulsed field application in tokamak poloidal field coils have been designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  18. 一种用于低重复频率窄脉冲的脉冲稳偏技术%A Novel Technique Applied to Low Repetition Narrow Band Pulse Polarization Stabilization

    Institute of Scientific and Technical Information of China (English)

    王建军; 许党朋; 李明中; 林宏奂; 张锐; 邓颖; 谭敬; 孙力军; 周寿桓

    2011-01-01

    新一代高功率固体激光装置前端系统大多采用了先进的全光纤全固化技术路线,为了实现单模光纤系统长期稳定输出,需要对系统中的偏振态有针对性地进行控制.提出一种主动偏振控制实现单模光纤系统低重复频率窄脉冲偏振稳定的方法.利用该技术开发的脉冲稳偏器在重复频率大于100 Hz,脉冲宽度大于1.5 ns的情况下,系统输出稳定性可控制在均方根(RMS)为1%和峰谷值(PV)为7%左右.所开发的脉冲稳偏器成功应用于我国第二代高功率固体激光装置前端系统中,输出稳定性指标优于国家点火装置(NIF).该技术可广泛应用于窄脉冲和低重复频率系统中实现偏振态的主动控制.%The all-fiber and all-solidified technique was installed to the front end of the next generation high power laser system. Appropriate control to the polarization was required to maintain the stabilization of the fiber system. In order to maintain low repetition narrow band pulses' polarization stabilization, a novel active control technique applied to single mode fiber laser system which worked with low repetition narrow band pulses was proposed. A root-meansquare of 1% and a peak to valley ratio of 7 % stability were achieved, when the pulse polarization stabilizer based on this novel technique was used to 1.5 ns pulses at repetition above 100 Hz. The new polarization stabilizer was applied to fiber front end of the second generation high power laser system. The performance index was better than national ignition facility (NIF), and this technique could be used to control the polarization of the narrow-band and lowrepetition system actively.

  19. Pulse testing in the presence of wellbore storage and skin effects

    Energy Technology Data Exchange (ETDEWEB)

    Ogbe, D.O.; Brigham, W.E.

    1984-08-01

    A pulse test is conducted by creating a series of short-time pressure transients in an active (pulsing) well and recording the observed pressure response at an observation (responding) well. Using the pressure response and flow rate data, the transmissivity and storativity of the tested formation can be determined. Like any other pressure transient data, the pulse-test response is significantly influenced by wellbore storage and skin effects. The purpose of this research is to examine the influence of wellbore storage and skin effects on interference testing in general and on pulse-testing in particular, and to present the type curves and procedures for designing and analyzing pulse-test data when wellbore storage and skin effects are active at either the responding well or the pulsing well. A mathematical model for interference testing was developed by solving the diffusivity equation for radial flow of a single-phase, slightly compressible fluid in an infinitely large, homogeneous reservoir. When wellbore storage and skin effects are present in a pulse test, the observed response amplitude is attenuated and the time lag is inflated. Consequently, neglecting wellbore storage and skin effects in a pulse test causes the calculated storativity to be over-estimated and the transmissivity to be under-estimated. The error can be as high as 30%. New correlations and procedures are developed for correcting the pulse response amplitude and time lag for wellbore storage effects. Using these correlations, it is possible to correct the wellbore storage-dominated response amplitude and time lag to within 3% of their expected values without wellbore storage, and in turn to calculate the corresponding transmissivity and storativity. Worked examples are presented to illustrate how to use the new correction techniques. 45 references.

  20. Pulsed Excitation in Eddy Current Non-Destructive Testing of Conductive Materials

    Directory of Open Access Journals (Sweden)

    Ladislav Janousek

    2008-01-01

    Full Text Available The paper deals with eddy current non-destructive testing of conductive materials. Basic principle of the method is explained. Two types of eddy current excitation, the harmonic one and the pulsed one, are discussed. The characteristics, advantages as well as disadvantages of the two excitation methods are compared. It is explained that the pulsed excitation gives more complex information about a tested object. Experimental results of the pulsed eddy current testing of a defect in an Aluminium plate are presented

  1. Standard practice for evaluating performance characteristics of ultrasonic Pulse-Echo testing instruments and systems without the use of electronic measurement instruments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice describes procedures for evaluating the following performance characteristics of ultrasonic pulse-echo examination instruments and systems: Horizontal Limit and Linearity; Vertical Limit and Linearity; Resolution - Entry Surface and Far Surface; Sensitivity and Noise; Accuracy of Calibrated Gain Controls. Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this practice are expressed in terms that relate to their potential usefulness for ultrasonic testing. Instrument characteristics expressed in purely electronic terms may be measured as described in E1324. 1.2 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be ev...

  2. A Q-Swicthed All-Solid-State Single-Longitudinal-Mode Laser with Adjustable Pulse-Width and High Repetition Rate

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jun; XU Shi-Zhong; HOU Xia; WEI Hui; CHEN Wei-Biao

    2006-01-01

    A single-longitudinal-mode (SLM) laser-diode pumped Nd: YAG laser with adjustable pulse width is developed by using the techniques of pre-lasing and changing polarization of birefingent crystal. The Q-switching voltage is triggered by the peak of the pre-lasing pulse to achieve the higher stability of output pulse energy. The output energy of more than 1mJ is obtained with output energy stability of 3% (rms) at 100 Hz. The pulsewidth can be adjusted from 30ns to 300ns by changing the Q-switching voltage. The probability of putting out single-longitudinal-mode pulses is almost 100%. The laser can be run over four hours continually without mode hopping.

  3. Design and Testing of Coils for Pulsed Electromagnetic Forming

    OpenAIRE

    Golovashchenko, S.; Bessonov, N.; Davies, R

    2006-01-01

    Coil design influences the distribution of electromagnetic forces applied to both the blank and the coil. The required energy of the process is usually defined by deformation of the blank. However, the discharge also results in a significant amount of heat being generated and accumulating in the coil. Therefore, EMF process design involves working with three different problems: 1) propagation of an electromagnetic field through the coil-blank system and generation of pulsed electromagnetic pr...

  4. Several Light Nulcie Evaluations Testing With LLNL Pulsed Sphere Benchmarks

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Huan-yu

    2012-01-01

    <正>In this work, Lawrence Livermore pulsed sphere experiments were modeled using Monte Carlo N-particle code (MCNP) for the purpose of benchmarking the new release of nuclear data librarys (CENDL-3[1], ENDF/B-Ⅶ.1[2], JENDL-4.0[3]). This program consisted of 12 different spheres, including 6 Li, 7Li, Be, C, N, O, LiD, Air, H2O, D2O, polythene and teflon. The calculated results were compared to experimental results[4-5].

  5. Pulsed Raman measurements of lattice temperature: Validity tests

    Science.gov (United States)

    Compaan, A.; Lee, M. C.; Lo, H. W.; Trott, G. J.; Aydinli, A.

    1983-10-01

    We measure the temperature dependence of the Raman correction factors and present data on the spot size and transverse beam quality of lasers used in the pulsed Raman measurements of lattice temperature in Si. Recent criticisms are also evaluated and shown to be inappropriate or in error. Finally we measure the shift of the 520-cm-1 Raman line and find it also to be consistent with the observed Stokes/anti-Stokes ratios indicating optic phonon populations characteristic of ˜450 °C.

  6. Laser-induced backside wet etching of silica glass with ns-pulsed DPSS UV laser at the repetition rate of 40 kHz

    Energy Technology Data Exchange (ETDEWEB)

    Niino, Hiroyuki; Kawaguchi, Yoshizo; Sato, Tadatake; Narazaki, Aiko; Gumpenberger, Thomas; Kurosaki, Ryozo [Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2007-04-15

    Surface micro-structuring of silica glass plates was performed by using laser- induced backside wet etching (LIBWE) upon irradiation with a single-mode laser beam from a diode-pumped solid-state (DPSS) UV laser with 40 kHz repetition rate at 266 nm. We have succeeded in a well-defined micro-pattern formation without debris and microcrack generation around the etched area on the basis of a galvanometer scanning system for the laser beam. Bubble dynamics after liquid ablation was monitored by impulse pressure detection with a fast- response piezoelectric pressure gauge.

  7. Temporal synchronization of GHz repetition rate electron and laser pulses for the optimization of a compact inverse-Compton scattering x-ray source

    CERN Document Server

    Hadmack, Michael R; Madey, John M J; Kowalczyk, Jeremy M D

    2014-01-01

    The operation of an inverse-Compton scattering source of x-rays or gamma-rays requires the precision alignment and synchronization of highly focused electron bunches and laser pulses at the collision point. The arrival times of electron and laser pulses must be synchronized with picosecond precision. We have developed an RF synchronization technique that reduces the initial timing uncertainty from 350 ps to less than 2 ps, greatly reducing the parameter space to be optimized while commissioning the x-ray source. We describe the technique and present measurements of its performance.

  8. Repetitively pulsed TEA CO{sub 2} laser and its application for second harmonic generation in ZnGeP{sub 2} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Koval' chuk, L V; Grezev, A N; Niz' ev, V G; Yakunin, V P [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Mezhevov, V S [Kaluga Laser Innovation and Technology Centre, Obninsk, Kaluga region (Russian Federation); Goryachkin, D A [Russian State Scientific Center for Robotics and Technical Cybernetics, St. Petersburg (Russian Federation); Sergeev, V V; Kalintsev, A G [Open Joint Stock Company S.I.Vavilov State Optical Institute, St. Petersburg (Russian Federation)

    2015-10-31

    Experimental results are presented on the development of a radiation source emitting at a wavelength of 4.775 μm with a pulse energy up to 50 mJ and an average power up to several watts in short pulse trains. A TEA CO{sub 2} laser and a nonlinear converter based on a ZnGeP{sub 2} crystal, which are specially designed for these experiments, are described. The main limitations of nonlinear conversion and possible ways to overcome these limitations are considered. (lasers)

  9. PTF, a new facility for pulse field testing of large scale superconducting cables and joints

    NARCIS (Netherlands)

    Smith, Bradford A.; Hale, J. Richard; Zhukovsky, Alex; Michael, Philip C.; Minervini, Joseph V.; Olmstead, Michael M.; Dekow, Gary L.; Rosati, James; Camille, Richard J.; Gung, Chen-yu; Gwinn, David; Silva, Frank; Fairfax, Stephen A.; Shen, Stewart; Knoopers, H.G.; Wessel, S.; Krooshoop, H.J.G.; Shevchenko, O.A.; Godeke, A.; Kate, ten H.H.J.

    1997-01-01

    A magnetic Pulse Test Facility (PTF), in which samples of CICC electrical joints from each ITER home team will be tested, has been fabricated at the MIT Plasma Fusion Center under an ITER task agreement. Construction of this facility has recently been completed, and an initial test phase on the firs

  10. PTF; a new facility for pulse field testing of large scale superconducting

    NARCIS (Netherlands)

    Smith, Bradford A.; Hale, J. Richard; Zhukovsky, Alex; Michael, Philip C.; Minervini, Joseph V.; Olmstead, Michael M.; Dekow, Gary L.; Rosati, James; Camille, Richard J.; Gung, Chen-yu; Gwinn, David; Silva, Frank; Fairfax, Stephen A.; Shen, Stewart; Knoopers, H.G.; Wessel, Wilhelm A.J.; Krooshoop, Hendrikus J.G.; Chevtchenko, O.A.; Godeke, A.; ten Kate, Herman H.J.

    1997-01-01

    A magnetic Pulse Test Facility (PTF), in which samples of CICC electrical joints from each ITER home team will be tested, has been fabricated at the MIT Plasma Fusion Center under an ITER task agreement. Construction of this facility has recently been completed, and an initial test phase on the

  11. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high

  12. [Evaluation of the risk related to repetitive work activities: testing of several methods proposed in the literature].

    Science.gov (United States)

    Capodaglio, E M; Facioli, M; Bazzini, G

    2001-01-01

    Pathologies due to the repetitive activity of the upper limbs constitutes a growing part of the work-related musculo-skeletal disorders. At the moment, there are no universally accepted and validated methods for the description and assessment of the work-related risks. Yet, the criteria fundamentally characterizing the exposure are rather clear and even. This study reports a practical example of the application of some recent risk assessment methods proposed in the literature, combining objective and subjective measures obtained on the field, with the traditional activity analysis.

  13. Cyclic State Orientation of Polar Molecules Produced by a Train of Half-Cycle Pulse Clusters of a Long Repetition Period

    Institute of Scientific and Technical Information of China (English)

    HUANG Yu-Xin; YANG Yu-Jun; WU Bin; GUO Fu-Ming; ZHU Qi-Ren

    2008-01-01

    @@ Using a variational method, we derive the optimal population distribution of angular momentum eigenstates for any given population range in a rotational wavepacket within the field-free cyclic state orientation framework.Correspondingly, we devise a train of half-cycle pulse clusters to purposively make the structure of the computed wavepacket approach the optimal population distribution, so that we can now utilize much more powerful means to realize an ideal orientation goal.

  14. SI Engine with repetitive NS spark plug

    Science.gov (United States)

    Pancheshniy, Sergey; Nikipelov, Andrey; Anokhin, Eugeny; Starikovskiy, Andrey; Laplase Team; Mipt Team; Pu Team

    2013-09-01

    Now de-facto the only technology for fuel-air mixtures ignition in IC engines exists. It is a spark discharge of millisecond duration in a short discharge gap. The reason for such a small variety of methods of ignition initiation is very specific conditions of the engine operation. First, it is very high-pressure of fuel-air mixture - from 5-7 atmospheres in old-type engines and up to 40-50 atmospheres on the operating mode of HCCI. Second, it is a very wide range of variation of the oxidizer/fuel ratio in the mixture - from almost stoichiometric (0.8-0.9) at full load to very lean (φ = 0.3-0.5) mixtures at idle and/or economical cruising mode. Third, the high velocity of the gas in the combustion chamber (up to 30-50 m/s) resulting in a rapid compression of swirling inlet flow. The paper presents the results of tests of distributed spark ignition system powered by repetitive pulse nanosecond discharge. Dynamic pressure measurements show the increased pressure and frequency stability for nanosecond excitation in comparison with the standard spark plug. Excitation by single nanosecond high-voltage pulse and short train of pulses was examined. In all regimes the nanosecond pulsed excitation demonstrate a better performance.

  15. The one repetition maximum test and the sit-to-stand test in the assessment of a specific pulmonary rehabilitation program on peripheral muscle strength in COPD patients

    Directory of Open Access Journals (Sweden)

    Zanini A

    2015-11-01

    Full Text Available Andrea Zanini,1,2 Marina Aiello,3 Francesca Cherubino,1 Elisabetta Zampogna,1 Andrea Azzola,4 Alfredo Chetta,3 Antonio Spanevello1,5 1Division of Pneumology, IRCCS Rehabilitation Institute of Tradate, Salvatore Maugeri Foundation, Tradate, Italy; 2Division of Internal and Respiratory Medicine, Malcantonese Hospital, Giuseppe Rossi Foundation, Castelrotto, Switzerland; 3Respiratory Disease and Lung Function Unit, Department of Clinical and Experimental Medicine, University of Parma, Padiglione Rasori, Parma, Italy; 4Division of Pneumology, Department of Internal Medicine, Ospedale Civico, Lugano, Switzerland; 5Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy Background: Individuals with COPD may present reduced peripheral muscle strength, leading to impaired mobility. Comprehensive pulmonary rehabilitation (PR should include strength training, in particular to lower limbs. Furthermore, simple tools for the assessment of peripheral muscle performance are required.Objectives: To assess the peripheral muscle performance of COPD patients by the sit-to-stand test (STST, as compared to the one-repetition maximum (1-RM, considered as the gold standard for assessing muscle strength in non-laboratory situations, and to evaluate the responsiveness of STST to a PR program.Methods: Sixty moderate-to-severe COPD inpatients were randomly included into either the specific strength training group or into the usual PR program group. Patients were assessed on a 30-second STST and 1-minute STST, 1-RM, and 6-minute walking test (6MWT, before and after PR. Bland–Altman plots were used to evaluate the agreement between 1-RM and STST. Results: The two groups were not different at baseline. In all patients, 1-RM was significantly related to the 30-second STST (r=0.48, P<0.001 and to 1-minute STST (r=0.36, P=0.005. The 30-second STST was better tolerated in terms of the perceived fatigue (P=0.002 and less time consuming (P<0

  16. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    Energy Technology Data Exchange (ETDEWEB)

    Nurkkala, P.; Hoikkanen, J. [Imatran Voima Oy, Vantaa (Finland)

    1997-12-31

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. `grounded` and `with goose neck`). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.). 3 refs.

  17. Summary of Altitude Pulse Testing of a 100-lbf L02/LCH4 Reaction Control Engine

    Science.gov (United States)

    Marshall, William M.; Kleinhenz, Julie E.

    2011-01-01

    Recently, liquid oxygen-liquid methane (LO2/LCH4) has been considered as a potential "green" propellant alternative for future exploration missions. The Propulsion and Cryogenic Advanced Development (PCAD) project has been tasked by NASA to develop this propulsion combination to enable safe and cost effective exploration missions. To date, limited experience with such combinations exist, and as a result a comprehensive test program is critical to demonstrating the viability of implementing such a system. The NASA Glenn Research Center has conducted a test program of a 100-lbf (445-N) reaction control engine (RCE) at the center s Altitude Combustion Stand (ACS), focusing on altitude testing over a wide variety of operational conditions. The ACS facility includes a unique propellant conditioning feed system (PCFS) which allows precise control of propellant inlet conditions to the engine. Engine performance as a result of these inlet conditions was examined extensively during the test program. This paper is a companion to the previous specific impulse testing paper, and discusses the pulsed mode operation portion of testing, with a focus on minimum impulse bit (I-bit) and repeatable pulse performance. The engine successfully demonstrated target minimum impulse bit performance at all conditions, as well as successful demonstration of repeatable pulse widths. Some anomalous conditions experienced during testing are also discussed, including a double pulse phenomenon which was not noted in previous test programs for this engine.

  18. Demonstration of a time-resolved x-ray scattering instrument utilizing the full-repetition rate of x-ray pulses at the Pohang Light Source

    Science.gov (United States)

    Jo, Wonhyuk; Eom, Intae; Landahl, Eric C.; Lee, Sooheyong; Yu, Chung-Jong

    2016-03-01

    We report on the development of a new experimental instrument for time-resolved x-ray scattering (TRXS) at the Pohang Light Source (PLS-II). It operates with a photon energy ranging from 5 to 18 keV. It is equipped with an amplified Ti:sappahire femtosecond laser, optical diagnostics, and laser beam delivery for pump-probe experiments. A high-speed single-element detector and high trigger-rate oscilloscope are used for rapid data acquisition. While this instrument is capable of measuring sub-nanosecond dynamics using standard laser pump/x-ray probe techniques, it also takes advantage of the dense 500 MHz standard fill pattern in the PLS-II storage ring to efficiently record nano-to-micro-second dynamics simultaneously. We demonstrate this capability by measuring both the (fast) impulsive strain and (slower) thermal recovery dynamics of a crystalline InSb sample following intense ultrafast laser excitation. Exploiting the full repetition rate of the storage ring results in a significant improvement in data collection rates compared to conventional bunch-tagging methods.

  19. Testing of a pulsed He supersonic beam for plasma edge diagnostic in the TJ-IU torsatron

    Science.gov (United States)

    Tabarés, F. L.; Tafalla, D.; Herrero, V.; Tanarro, I.

    1997-02-01

    A new, compact atomic beam source based on the supersonic expansion of He has been developed for application as a plasma edge diagnostic. The beam is produced from a pulsed valve with a duration between 0.2 to 2 ms and a nominal repetition rate 10 and a divergence of ± 1° have been achieved at stagnation pressures below 2 bar. The diagnostic has been tested in ECRH plasmas on the TJ-IU torsatron, representing the first application of a supersonic beam to plasma characterization, to our knowledge. Operational conditions which minimized the total amount of He injected into the plasma were chosen. Non-perturbative injection conditions in the low density plasmas could be obtained at local He densities of ⋍ 1 × 10 11 cm -3 and a beam diameter < 1 cm. Due to the relatively low electron density of the ECRH plasmas, and to the good penetration characteristics of the supersonic He beam, the diagnostic could be used up to fairly low values of the normalized plasma minor radius, {r}/{a} (a = 12 cm) . Details of the optimization of the atomic beam diagnostics and typical results for steady state conditions in the TJ-IU plasmas are presented.

  20. Testing of a pulsed He supersonic beam for plasma edge diagnostic in the TJ-IU torsatron

    Energy Technology Data Exchange (ETDEWEB)

    Tabares, F.L. [Association EURATOM/CIEMAT, Madrid (Spain); Tafalla, D. [Association EURATOM/CIEMAT, Madrid (Spain); Herrero, V. [Instituto de Estructura de la Materia, CSIC, 28006 Madrid (Spain); Tanarro, I. [Instituto de Estructura de la Materia, CSIC, 28006 Madrid (Spain)

    1997-02-01

    A new, compact atomic beam source based on the supersonic expansion of He has been developed for application as a plasma edge diagnostic. The beam is produced from a pulsed valve with a duration between 0.2 to 2 ms and a nominal repetition rate <500 Hz. A terminal speed ratio >10 and a divergence of {+-}1 have been achieved at stagnation pressures below 2 bar. The diagnostic has been tested in ECRH plasmas on the TJ-IU torsatron, representing the first application of a supersonic beam to plasma characterization, to our knowledge. Operational conditions which minimized the total amount of He injected into the plasma were chosen. Non-perturbative injection conditions in the low density plasmas could be obtained at local He densities of {approx_equal}1 x 10{sup 11} cm{sup -3} and a beam diameter <1 cm. Due to the relatively low electron density of the ECRH plasmas, and to the good penetration characteristics of the supersonic He beam, the diagnostic could be used up to fairly low values of the normalized plasma minor radius, r/a (a=12 cm). Details of the optimization of the atomic beam diagnostics and typical results for steady state conditions in the TJ-IU plasmas are presented. (orig.).

  1. Generation of Shear Alfvén Waves by Repetitive High Power Microwave Pulses Near the Electron Plasma Frequency - A laboratory study of a ``Virtual Antenna''

    Science.gov (United States)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2015-11-01

    ELF / ULF waves are important in terrestrial radio communications but difficult to launch using ground-based structures due to their enormous wavelengths. In spite of this generation of such waves by field-aligned ionospheric heating modulation was first demonstrated using the HAARP facility. In the future heaters near the equator will be constructed and laboratory experiments on cross-field wave propagation could be key to the program's success. Here we report a detailed laboratory study conducted on the Large Plasma Device (LaPD) at UCLA. In this experiment, ten rapid pulses of high power microwaves (250 kW X-band) near the plasma frequency were launched transverse to the background field, and were modulated at a variable fraction (0.1-1.0) of fci. Along with bulk electron heating and density modification, the microwave pulses generated a population of fast electrons. The field-aligned current carried by the fast electrons acted as an antenna that radiated shear Alfvén waves. It was demonstrated that a controllable arbitrary frequency (f

  2. Pulsed mixed n, {gamma} radiation fields for electronic testing

    Energy Technology Data Exchange (ETDEWEB)

    Nurdin, G.; Becret, C.; Jaureguy, J.C. [Etablissement Technique Central de l`Armement (ETCA), 94 - Arcueil (France); Vie, M.; Baboulet, J.P.; Lapeyre, P.; Ramisse, D. [D.G.A., 46 - Gramat (France)

    1994-12-31

    For combined n, {gamma} TREE testing we have modified the CALIBAN Fast Burst Reactor Field with CdO/Epoxy converters to cover the range [10{sup 11} -10{sup 12}] n.cm{sup -2} (1 MeV Si), [10{sup 7} - 10{sup 8}] cGy(Si).s{sup -1}. Activation and fission {sigma} {phi}vector, 1 MeV(Si) fluences, neutron spectra, total exposures and dose rates were predicted with good agreement by n, {gamma} photon transport codes. (author). 12 refs., 2 figs., 1 tab.

  3. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs.

  4. The development and testing of pulsed detonation engine ground demonstrators

    Science.gov (United States)

    Panicker, Philip Koshy

    2008-10-01

    The successful implementation of a PDE running on fuel and air mixtures will require fast-acting fuel-air injection and mixing techniques, detonation initiation techniques such as DDT enhancing devices or a pre-detonator, an effective ignition system that can sustain repeated firing at high rates and a fast and capable, closed-loop control system. The control system requires high-speed transducers for real-time monitoring of the PDE and the detection of the detonation wave speed. It is widely accepted that the detonation properties predicted by C-J detonation relations are fairly accurate in comparison to experimental values. The post-detonation flow properties can also be expressed as a function of wave speed or Mach number. Therefore, the PDE control system can use C-J relations to predict the post-detonation flow properties based on measured initial conditions and compare the values with those obtained from using the wave speed. The controller can then vary the initial conditions within the combustor for the subsequent cycle, by modulating the frequency and duty cycle of the valves, to obtain optimum air and fuel flow rates, as well as modulate the energy and timing of the ignition to achieve the required detonation properties. Five different PDE ground demonstrators were designed, built and tested to study a number of the required sub-systems. This work presents a review of all the systems that were tested, along with suggestions for their improvement. The PDE setups, ranged from a compact PDE with a 19 mm (3/4 in.) i.d., to two 25 mm (1 in.) i.d. setups, to a 101 mm (4 in.) i.d. dual-stage PDE setup with a pre-detonator. Propane-oxygen mixtures were used in the smaller PDEs. In the dual-stage PDE, propane-oxygen was used in the pre-detonator, while propane-air mixtures were used in the main combustor. Both rotary valves and solenoid valve injectors were studied. The rotary valves setups were tested at 10 Hz, while the solenoid valves were tested at up to 30 Hz

  5. Stability of relative oxygen pulse curve during repeated maximal cardiopulmonary testing in professional soccer players

    Directory of Open Access Journals (Sweden)

    R.R. Perim

    2011-07-01

    Full Text Available During cardiopulmonary exercise testing (CPET, stroke volume can be indirectly assessed by O2 pulse profile. However, for a valid interpretation, the stability of this variable over time should be known. The objective was to analyze the stability of the O2 pulse curve relative to body mass in elite athletes. VO2, heart rate (HR, and relative O2 pulse were compared at every 10% of the running time in two maximal CPETs, from 2005 to 2010, of 49 soccer players. Maximal values of VO2 (63.4 ± 0.9 vs 63.5 ± 0.9 mL O2•kg-1•min-1, HR (190 ± 1 vs188 ± 1 bpm and relative O2 pulse (32.9 ± 0.6 vs 32.6 ± 0.6 mL O2•beat-1•kg-1 were similar for the two CPETs (P > 0.05, while the final treadmill velocity increased from 18.5 ± 0.9 to 18.9 ± 1.0 km/h (P < 0.01. Relative O2 pulse increased linearly and similarly in both evaluations (r² = 0.64 and 0.63 up to 90% of the running time. Between 90 and 100% of the running time, the values were less stable, with up to 50% of the players showing a tendency to a plateau in the relative O2 pulse. In young healthy men in good to excellent aerobic condition, the morphology of the relative O2 pulse curve is consistent up to close to the peak effort for a CPET repeated within a 1-year period. No increase in relative O2pulse at peak effort could represent a physiologic stroke volume limitation in these athletes.

  6. First high power pulsed tests of a dressed 325 MHz superconducting single spoke resonator at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, R.; Branlard, J.; Chase, B.; Darve, C.; Joireman, P.; Khabiboulline, T.; Mukherjee, A.; Nicol, T.; Peoples-Evans, E.; Peterson, D.; Pischalnikov, Y.; /Fermilab

    2011-03-01

    In the recently commissioned superconducting RF cavity test facility at Fermilab (SCTF), a 325 MHz, {beta} = 0.22 superconducting single-spoke resonator (SSR1) has been tested for the first time with its input power coupler. Previously, this cavity had been tested CW with a low power, high Q{sub ext} test coupler; first as a bare cavity in the Fermilab Vertical Test Stand and then fully dressed in the SCTF. For the tests described here, the design input coupler with Q{sub ext} {approx} 10{sup 6} was used. Pulsed power was provided by a Toshiba E3740A 2.5 MW klystron.

  7. Long-Pulse Integrator Testing with DIII-D Magnetic Diagnostics

    Science.gov (United States)

    Slobodov, Ilia; Miller, Kenneth; Ziemba, Timothy; Prager, James; Carscadden, John; Hanson, Eric

    2016-10-01

    Eagle Harbor Technologies (EHT), Inc. has developed a high-gain integrator for magnetic diagnostics that meets ITER specifications including integration time and integration error limits. EHT has conducted testing of this long-pulse integrator at DIII-D with existing DIII-D magnetic probes. The EHT long-pulse integrator was operated for several hours up to a full day. During a single period of EHT integrator operation, DIII-D was pulsed multiple times. The multiple pulses from the DIII-D magnetic diagnostics can be clearly resolved in the integrator signal output. The results are compared to DIII-D measurements. EHT also operated the long pulse integrator in High Dynamic Range Mode (HDRM), which effectively allows for a dramatic increase in measurement bit depth for higher resolution signal acquisition with the same diagnostic and digitizers presently available on DIII-D. Additionally, EHT has tested a new microprocessor and FPGA-based digitizer, which can be included on the integrator PCB, for a single board magnetic diagnostic solution.

  8. Accuracy of indocyanine green pulse spectrophotometry clearance test for liver function prediction in transplanted patients

    Institute of Scientific and Technical Information of China (English)

    Chung-Bao Hsieh; Chung-Jueng Chen; Teng-Wei Chen; Jyh-Cherng Yu; Kuo-Liang Shen; Tzu-Ming Chang; Yao-Chi Liu

    2004-01-01

    AIM: To investigate whether the non-invasive real-time Indocynine green (ICG) clearance is a sensitive index of liver viability in patients before, during, and after liver transplantation.METHODS: Thirteen patients were studied, two before,three during, and eight following liver transplantation, with two patients suffering acute rejection. The conventional invasive ICG clearance test and ICG pulse spectrophotometry non-invasive real-time ICG clearance test were performed simultaneously. Using linear regression analysis we tested the correlation between these two methods. The transplantation condition of these patients and serum total bilirubin (T. Bil), alanine aminotransferase (ALT), and platelet count were also evaluated.RESULTS: The correlation between these two methods was excellent (r2=0.977).CONCLUSION: ICG pulse spectrophotometry clearance is a quick, non-invasive, and reliable liver function test in transplantation patients.

  9. A single-pulse shock tube coupled with high-repetition-rate time-of-flight mass spectrometry and gas chromatography for high-temperature gas-phase kinetics studies

    Science.gov (United States)

    Sela, P.; Shu, B.; Aghsaee, M.; Herzler, J.; Welz, O.; Fikri, M.; Schulz, C.

    2016-10-01

    Shock tubes are frequently used to investigate the kinetics of chemical reactions in the gas phase at high temperatures. Conventionally, two complementary arrangements are used where either time-resolved intermediate species measurements are conducted after the initiation of the reaction or where the product composition is determined after rapid initiation and quenching of the reaction through gas-dynamic processes. This paper presents a facility that combines both approaches to determine comprehensive information. A single-pulse shock tube is combined with high-sensitivity gas chromatography/mass spectrometry for product composition and concentration measurement as well as high-repetition-rate time-of-flight mass spectrometry for time-dependent intermediate concentration determination with 10 μs time resolution. Both methods can be applied simultaneously. The arrangement is validated with investigations of the well-documented thermal unimolecular decomposition of cyclohexene towards ethylene and 1,3-butadiene at temperatures between 1000 and 1500 K and pressures ranging from 0.8 to 2.4 bars. The comparison shows that the experimental results for both detections are in very good agreement with each other and with literature data.

  10. Laser radiation frequency conversion in carbon- and cluster-containing plasma plumes under conditions of single and two-color pumping by pulses with a 10-Hz repetition rate

    Science.gov (United States)

    Ganeev, R. A.

    2013-07-01

    This work reviews a series of investigations of different plasma plumes using single- and two-color laser systems that emit femtosecond pulses with a 10-Hz repetition rate. Results of investigation of the resonant enhancement of harmonics in tin plasma with the use of two types of pumps are analyzed, and it is shown that the tuning of the wavelengths of harmonics to ion-resonance levels plays an important role in increasing the conversion efficiency to high-order harmonics of the radiation to be converted. Investigations of different carbon-containing plasma media (carbon nanotubes, graphite, carbon aerogel, etc.) exhibit attractive properties of the nonlinear medium of this type for efficient generation of high-order harmonics. The results of the first experiments on the use of nanoparticles produced directly in the course of laser ablation of metals for increasing the efficiency of harmonics generated in this cluster-containing medium are analyzed. It is shown that new approaches realized in these investigations give hope that the nonlinear optical response of plasma media in the far-ultraviolet range can be further increased.

  11. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    CERN Document Server

    Charitonidis, Nikolaos; Fabich, Adrian; Meddahi, Malika; Gianfelice-Wendt, Eliana

    2015-01-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in a dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/201...

  12. Status and Planned Experiments of the Hiradmat Pulsed Beam Material Test Facility at CERN SPS

    Energy Technology Data Exchange (ETDEWEB)

    Charitonidis, Nikolaos [CERN; Efthymiopoulos, Ilias [CERN; Fabich, Adrian [CERN; Meddahi, Malika [CERN; Gianfelice-Wendt, Eliana [Fermilab

    2015-06-01

    HiRadMat (High Irradiation to Materials) is a facility at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, shock tests on high power targets, collimators) can be tested. The beam parameters (SPS 440 GeV protons with a pulse energy of up to 3.4 MJ, or alternatively lead/argon ions at the proton equivalent energy) can be tuned to match the needs of each experiment. It is a test area designed to perform single pulse experiments to evaluate the effect of high-intensity pulsed beams on materials in a dedicated environment, excluding long-time irradiation studies. The facility is designed for a maximum number of 1016 protons per year, in order to limit the activation of the irradiated samples to acceptable levels for human intervention. This paper will demonstrate the possibilities for research using this facility and go through examples of upcoming experiments scheduled in the beam period 2015/2016.

  13. A high flux pulsed source of energetic atomic oxygen. [for spacecraft materials ground testing

    Science.gov (United States)

    Krech, Robert H.; Caledonia, George E.

    1986-01-01

    The design and demonstration of a pulsed high flux source of nearly monoenergetic atomic oxygen are reported. In the present test setup, molecular oxygen under several atmospheres of pressure is introduced into an evacuated supersonic expansion nozzle through a pulsed molecular beam valve. A 10J CO2 TEA laser is focused to intensities greater than 10 to the 9th W/sq cm in the nozzle throat, generating a laser-induced breakdown with a resulting 20,000-K plasma. Plasma expansion is confined by the nozzle geometry to promote rapid electron-ion recombination. Average O-atom beam velocities from 5-13 km/s at fluxes up to 10 to the 18th atoms/pulse are measured, and a similar surface oxygen enrichment in polyethylene samples to that obtained on the STS-8 mission is found.

  14. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers.

    Science.gov (United States)

    Ancona, A; Döring, S; Jauregui, C; Röser, F; Limpert, J; Nolte, S; Tünnermann, A

    2009-11-01

    The influence of pulse duration on the laser drilling of metals at repetition rates of up to 1 MHz and average powers of up to 70 W has been experimentally investigated using an ytterbium-doped-fiber chirped-pulse amplification system with pulses from 800 fs to 19 ps. At a few hundred kilohertz particle shielding causes an increase in the number of pulses for breakthrough, depending on the pulse energy and duration. At higher repetition rates, the heat accumulation effect overbalances particle shielding, but significant melt ejection affects the hole quality. Using femtosecond pulses, heat accumulation starts at higher repetition rates, and the ablation efficiency is higher compared with picosecond pulses.

  15. Validity and variability of the 5-repetition sit-to-stand test in patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Møller, Andreas Buch; Bibby, Bo Martin; Guldhammer, Anders;

    2012-01-01

    Purpose: To investigate; (i) the relationship between the 5STS-test and lower extremity muscle strength and balance, and (ii) the variability of the 5STS-test in multiple sclerosis (MS) patients. Method: 22 MS patients were divided into two groups (Group A and Group B) who completed one 5STS...... familiarization test session and two testing sessions. In Group A, session 1 also included assessment of lower extremity muscle strength. Session 2 and 3 involved completion of two 5STS-tests and assessment of balance. In Group B, session 2 and 3 involved completion of two rounds of two 5STS-tests separated......, intra-assessor test-retest variability and intra-assessor variability within test were 25.5, 22.3, and 23.1%, respectively. Inter-assessor variability within test and inter-assessor variability were 23.4 and 5.9%, respectively. Conclusions: The 5STS-test is related to lower extremity muscle strength...

  16. 人眼安全高重频窄脉宽单模全光纤激光器特性研究%Characteristics of eye-safe high repetition frequency narrow pulse width single mode all fiber laser

    Institute of Scientific and Technical Information of China (English)

    张鑫; 刘源; 贺岩; 杨燕; 侯霞; 陈卫标

    2015-01-01

    介绍了基于主振荡功率放大结构的人眼安全全光纤激光器。首先对比了电光调制及直接调制产生的种子激光在百kHz重复频率、纳秒级脉冲宽度的激光放大器中优缺点,综合系统需求选择直接调制方式;之后对窄脉冲单模放大中出现的脉冲分裂现象进行了研究,选用10μm纤芯的双包层铒镱共掺光纤,仅通过两级放大即获得了1550 nm,重复频率为200 kHz,脉冲宽度为4.07 ns,峰值功率为1.02 kW的单模激光输出。具有结构紧凑、稳定可靠的特点,可用于三维视频激光雷达。%An eye-safe, all fiber, single mode, fiber laser based on master oscillator power amplifier configuration was presented. The advantages and disadvantages were compared between using a directly modulated diode laser and an electro-optical modulated continuous-wave diode as seed laser in sub-Mega Hertz, nanosecond fiber amplifier. The main restriction of power scaling in nanosecond fiber laser was pulse split. 10μm core double cladding erbium ytterbium co-doped fiber was employed as gain fiber of power amplifier. The directly modulated seed laser was then amplified by only two stage amplifiers. Finally, a peak power of 1.02 kW with 4.07 ns pulse duration at 200 kHz pulse repetition frequency with single-mode output was obtained and it is applicable in three dimensional video imaging lidar system.

  17. Topical antioxidants protect the skin from chemical-induced irritation in the repetitive washing test: a placebo-controlled, double-blind study.

    Science.gov (United States)

    Schempp, Christoph M; Meinke, Martina C; Lademann, Jürgen; Ferrari, Yvonne; Brecht, Thomas; Gehring, Wolfgang

    2012-10-01

    There is increasing evidence that reactive oxygen species play an important role in the development of both irritant and allergic contact dermatitis. To assess the potential of topical antioxidants to prevent the development of experimentally induced irritant contact dermatitis. We evaluated the effect of a cream containing a combination of antioxidants on sodium lauryl sulfate-induced irritant contact dermatitis in the repetitive washing test. As readout parameters for skin barrier function and cutaneous inflammation stratum corneum hydration, cutaneous blood flow and transepidermal water loss were assessed in 25 volunteers with bioengineering methods. In comparison with the cream base and a frequently used barrier cream, the antioxidant cream had high radical scavenging activity and effectively protected the skin from chemical-induced irritation. The superiority of the cream with antioxidants to the cream base suggests that reactive oxygen species, at least in part, play a role in the development of irritant contact dermatitis. © 2012 John Wiley & Sons A/S.

  18. Favorable effect of aerobic exercise on arterial pressure and aortic pulse wave velocity during stress testing.

    Science.gov (United States)

    Milatz, Florian; Ketelhut, Sascha; Ketelhut, Sascha; Ketelhut, Reinhard G

    2015-07-01

    Increased central pulse wave velocity is a major risk factor for cardiovascular disease. The favorable influence of exercise on arterial stiffness (AS) and blood pressure (BP) has been reported exclusively at rest. The present study investigated the influence of a single bout of acute cycling on AS and BP during recovery and, moreover, during cold pressor stress testing. 32 healthy men (33.7 ± 8 years, BMI 24 ± 2.5 kg/m²) performed a 60 minute endurance exercise on a bicycle ergometer (45 % VO2max). Before and after exercise aortic pulse wave velocity (aPWV) as well as central and peripheral BP were measured non-invasively at rest and at the end of a 2 minute cold pressor test (CPT). Even after 60 minutes of recovery aPWV (- 0.22 ± 0.3 m / sec) was significantly reduced (p testing.

  19. Rapidly pulsed helium droplet source

    Energy Technology Data Exchange (ETDEWEB)

    Pentlehner, Dominik; Riechers, Ricarda; Dick, Bernhard; Slenczka, Alkwin [Institute for Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg (Germany); Even, Uzi; Lavie, Nachum; Brown, Raviv; Luria, Kfir [Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv (Israel)

    2009-04-15

    A pulsed valve connected to a closed-cycle cryostat was optimized for producing helium droplets. The pulsed droplet beam appeared with a bimodal size distribution. The leading part of the pulse consists of droplets suitable for doping with molecules. The average size of this part can be varied between 10{sup 4} and 10{sup 6} helium atoms, and the width of the distribution is smaller as compared to a continuous-flow droplet source. The system has been tested in a single pulse mode and at repetition rates of up to 500 Hz with almost constant intensity. The droplet density was found to be increased by more than an order of magnitude as compared to a continuous-flow droplet source.

  20. QUALITY TESTING OF HEAT TREATMENT OF MEDIUM-CARBON STEEL CONSTRUCTION ITEMS BASED ON THE BIPOLAR PULSED REMAGNETIZATION

    Directory of Open Access Journals (Sweden)

    V. F. Matyuk

    2014-01-01

    Full Text Available The features of bipolar pulsed remagnetization of construction medium-carbon steel items for testing the heat treatment temperature and structure of these items are discussed, the methods of bipolar pulse remagnetization providing testing of items of considered steels are suggested.

  1. Vibration measurement based on the optical cross-correlation technique with femtosecond pulsed laser

    Science.gov (United States)

    Han, Jibo; Wu, Tengfei; Zhao, Chunbo; Li, Shuyi

    2016-10-01

    Two vibration measurement methods with femtosecond pulsed laser based on the optical cross-correlation technique are presented independently in this paper. The balanced optical cross-correlation technique can reflect the time jitter between the reference pluses and measurement pluses by detecting second harmonic signals using type II phase-matched nonlinear crystal and balanced amplified photo-detectors. In the first method, with the purpose of attaining the vibration displacement, the time difference of the reference pulses relative to the measurement pluses can be measured using single femtosecond pulsed laser. In the second method, there are a couple of femtosecond pulsed lasers with high pulse repetition frequency. Vibration displacement associated with cavity length can be calculated by means of precisely measuring the pulse repetition frequency. The results show that the range of measurement attains ±150μm for a 500fs pulse. These methods will be suited for vibration displacement measurement, including laboratory use, field testing and industrial application.

  2. A cryogenic tensile testing apparatus for micro-samples cooled by miniature pulse tube cryocooler

    Science.gov (United States)

    Chen, L. B.; Liu, S. X.; Gu, K. X.; Zhou, Y.; Wang, J. J.

    2015-12-01

    This paper introduces a cryogenic tensile testing apparatus for micro-samples cooled by a miniature pulse tube cryocooler. At present, tensile tests are widely applied to measure the mechanical properties of materials; most of the cryogenic tensile testing apparatus are designed for samples with standard sizes, while for non-standard size samples, especially for microsamples, the tensile testing cannot be conducted. The general approach to cool down the specimens for tensile testing is by using of liquid nitrogen or liquid helium, which is not convenient: it is difficult to keep the temperature of the specimens at an arbitrary set point precisely, besides, in some occasions, liquid nitrogen, especially liquid helium, is not easily available. To overcome these limitations, a cryogenic tensile testing apparatus cooled by a high frequency pulse tube cryocooler has been designed, built and tested. The operating temperatures of the developed tensile testing apparatus cover from 20 K to room temperature with a controlling precision of ±10 mK. The apparatus configurations, the methods of operation and some cooling performance will be described in this paper.

  3. Repetitive testing of TBTO, Sea-Nine 211 and farnesol using Balanus Amphitrite (Darwin) cypris larvae: variability in larval sensitivity

    NARCIS (Netherlands)

    Willemsen, P.R.; Overbeke, J.C.; Suurmond, A.

    1998-01-01

    Settlement inhibition assays with mass cultured cypris larvae of the barnacle Balanus amphitrite are widely used in (anti)fouling research. In this study, TBTO, Sea-Nine 211 and farnesol were tested repeatedly using multiple batches of larvae to study variability in larval sensitivity. There were si

  4. Progress of the ELISE test facility: towards one hour pulses in hydrogen

    Science.gov (United States)

    Wünderlich, D.; Fantz, U.; Heinemann, B.; Kraus, W.; Riedl, R.; Wimmer, C.; the NNBI Team

    2016-10-01

    In order to fulfil the ITER requirements, the negative hydrogen ion source used for NBI has to deliver a high source performance, i.e. a high extracted negative ion current and simultaneously a low co-extracted electron current over a pulse length up to 1 h. Negative ions will be generated by the surface process in a low-temperature low-pressure hydrogen or deuterium plasma. Therefore, a certain amount of caesium has to be deposited on the plasma grid in order to obtain a low surface work function and consequently a high negative ion production yield. This caesium is re-distributed by the influence of the plasma, resulting in temporal instabilities of the extracted negative ion current and the co-extracted electrons over long pulses. This paper describes experiments performed in hydrogen operation at the half-ITER-size NNBI test facility ELISE in order to develop a caesium conditioning technique for more stable long pulses at an ITER relevant filling pressure of 0.3 Pa. A significant improvement of the long pulse stability is achieved. Together with different plasma diagnostics it is demonstrated that this improvement is correlated to the interplay of very small variations of parameters like the electrostatic potential and the particle densities close to the extraction system.

  5. Shock adhesion test for composite bonded assembly using a high pulsed power generator

    Science.gov (United States)

    Gay, E.; Berthe, L.; Buzaud, E.; Boustie, M.; Arrigoni, M.

    2013-07-01

    In a context of the rising use of composite assemblies in aeronautic or defense fields, the assessment of their strength is a key issue. The method developed in this study attempts to provide solutions. A shock adhesion test based on short compressive loads, obtained by a high pulsed power generator, is proposed as a proof test to ensure the quality of composite bonded assemblies. A calibrated load induces a local tensile stress able to damage the bond interface. The high pulsed power source is the GEnerateur de Pression Isentropique device (Isentropic Pressure Generator), used to generate the required stresses, with a 450 ns pulse duration to test assemblies above the mm thickness range. The understanding of the mechanisms of wave propagation and tensile stress generation within these multilayer assemblies are scientific challenges. The ability of the technique to induce a tensile stress able to disbond the laminates and the assemblies is demonstrated. This paper details the response of carbon epoxy laminates and their bonded assemblies to a shock loading near the damage threshold.

  6. 纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究%Investigation of thermodynamic progress of silicon ablated by nanosecond uv repetitive pulse laser

    Institute of Scientific and Technical Information of China (English)

    包凌东; 韩敬华; 段涛; 孙年春; 高翔; 冯国英; 杨李茗; 牛瑞华; 刘全喜

    2012-01-01

    采用波长为355nm的纳秒紫外重复脉冲激光对单晶硅片进行了盲孔加工实验,观测了随脉冲增加激光烧蚀硅片的外观形貌和盲孔孔深、孔径的变化规律,并对紫外激光辐照硅片的热力学过程进行了分析.研究结果表明:紫外激光加工硅盲孔是基于热、力效应共同作用的结果,热效应会使得硅材料熔化、气化甚至发生电离产生激光等离子体,为材料的去除提供条件;激光等离子体冲击波以及高温气态物向外膨胀会对熔化材料产生压力致使其向外喷射,为重复脉冲的进一步烧蚀提供了条件;力效应主要沿着激光传输的方向,垂直于硅表面,使得去除部位主要集中在孔的深度方向,达到较高的孔径比,实验观察孔径比可达8:1;此外,激光等离子体的产生也阻止了激光对靶面的作用,加之随孔深的增加激光发生散焦,使得烧蚀深度有一定的限制,实验观察烧蚀脉冲个数在前100个时加工效率较高.%The blind holes processing experiment is conducted on the silicon under the radiation of a 355 nm nanosecond UV repetitive pulse laser. With the increase of the laser pulse number, the variations of the silicon morphology, the depth and aperture of the blind holes are observed, and the thermodynamic process of UV laser irradiating silicon is analyzed. The results show that the formation of the blind silicon hole in the laser ablation process is due to the interaction between thermal effect and force effect. Thermal effect results in fusion, vaporization and even producing laser plasma by ionization in silicon, which is essential to the removal of the material. The molten material is compressed by the plasma shock wave and the expansion of the high-temperature gaseous material,and then ejection outward, which will benefit the further ablation; the force propagates along the laser transmission direction,perpendicular to the silicon

  7. Repetitive frequency electromagnetic pulse simulator based on inductive adding technique%基于感应叠加技术的重复频率电磁脉冲模拟器

    Institute of Scientific and Technical Information of China (English)

    于成大; 徐笑娟; 罗进; 何山红; 冯德仁

    2012-01-01

    The development and experiment of a small bounded wave simulator are introduced, including the development of the double exponential repetitive frequency pulse source based on the hydrogen thyratron inductive-adder, the design of output coaxial shielding structure, the calculation of the field distribution of the output transformer, the development of the small flat-plate radiator, and the calculation and simulation about the working space E-field of the radiator. The preliminary measurement results of the working space E-field of the radiator are also presented. The experiment results show that the E-field in the working space of the radiator space accords with the linear superposition principle, even if there are differences between the parameters of thyratrons and between the parameters of grid trigger clocks.%介绍了小型平板型有界波模拟器的研制和实验,包括基于氢闸流管感应叠加技术的双指数波重频脉冲源的研制、输出同轴屏蔽结构的设计与输出变压器磁场分布的计算、小型平板型辐射器的设计及工作区内电场的计算与仿真,给出了辐射器工作区内电场初步测量的结果.实验结果表明:即使在感应叠加单元的氢闸流管器件和栅极触发时钟的参数存在差异的情况下,辐射器的工作区内电场基本上符合线性叠加原则.

  8. Study of synthetic aperture lidar imaging with lower pulse repeti-tion frequency%低脉冲重复频率合成孔径激光雷达成像

    Institute of Scientific and Technical Information of China (English)

    郭亮; 曾晓东; 邢孟道; 唐禹

    2011-01-01

    为提高合成孔径激光雷达(SAL)的分辨率,从激光脉冲调制与脉冲重复频率(PRF)的矛盾入手,提出了一种沿方位向放置多个望远镜接收的系统设计方法,利用空间自南度解决由于较低PRF带来的方位模糊问题.分析了SAL系统由于平台连续运动的影响(表现为多普勒频移项),提出了多普勒平移补偿方法.通过仿真实验验证了本文所提系统设计的正确性,和所给方法的有效性,有效地解决了方位模糊问题.%Synthetic aperture lidar (SAL) is a new active imaging system, which can offer a finer azimuth resolution than conventional SAR systems. The concept of equivalent phase center was described After analysis of the conflict between the modulation of laser signal and pulse repetition frequency (PRF) of the lidar system, which leads to the ambiguity of the Doppler domain in the azimuth direction,a proper system was given,which uses a series of telescopes placed in the azimuth direction. This system makes use of information of the space domain,and removes the ambiguity of the frequency domain in the azimuth direction. The motion during the transmission of a sweep and the reception of the corresponding echo induce a Doppler shift. And then,a method compensating the Doppler shift iwa given. The simulation results show the validity of the given system and method, which can remove the ambiguity.

  9. A feasible repetitive transcranial magnetic stimulation clinical protocol in migraine prevention

    Directory of Open Access Journals (Sweden)

    Shawn Zardouz

    2016-10-01

    Full Text Available Objective: This case series was conducted to determine the clinical feasibility of a repetitive transcranial magnetic stimulation protocol for the prevention of migraine (with and without aura. Methods: Five patients with migraines underwent five repetitive transcranial magnetic stimulation sessions separated in 1- to 2-week intervals for a period of 2 months at a single tertiary medical center. Repetitive transcranial magnetic stimulation was applied to the left motor cortex with 2000 pulses (20 trains with 1s inter-train interval delivered per session, at a frequency of 10 Hz and 80% resting motor threshold. Pre- and post-treatment numerical rating pain scales were collected, and percent reductions in intensity, frequency, and duration were generated. Results: An average decrease in 37.8%, 32.1%, and 31.2% were noted in the intensity, frequency, and duration of migraines post-repetitive transcranial magnetic stimulation, respectively. A mean decrease in 1.9±1.0 (numerical rating pain scale ± standard deviation; range: 0.4–2.8 in headache intensity scores was noted after the repetitive transcranial magnetic stimulation sessions. Conclusion: The tested repetitive transcranial magnetic stimulation protocol is a well-tolerated, safe, and effective method for migraine prevention.

  10. A Quantitative Analysis of Pulsed Signals Emitted by Wild Bottlenose Dolphins

    Science.gov (United States)

    Couchinho, Miguel N.; dos Santos, Manuel E.

    2016-01-01

    Common bottlenose dolphins (Tursiops truncatus), produce a wide variety of vocal emissions for communication and echolocation, of which the pulsed repertoire has been the most difficult to categorize. Packets of high repetition, broadband pulses are still largely reported under a general designation of burst-pulses, and traditional attempts to classify these emissions rely mainly in their aural characteristics and in graphical aspects of spectrograms. Here, we present a quantitative analysis of pulsed signals emitted by wild bottlenose dolphins, in the Sado estuary, Portugal (2011–2014), and test the reliability of a traditional classification approach. Acoustic parameters (minimum frequency, maximum frequency, peak frequency, duration, repetition rate and inter-click-interval) were extracted from 930 pulsed signals, previously categorized using a traditional approach. Discriminant function analysis revealed a high reliability of the traditional classification approach (93.5% of pulsed signals were consistently assigned to their aurally based categories). According to the discriminant function analysis (Wilk’s Λ = 0.11, F3, 2.41 = 282.75, P < 0.001), repetition rate is the feature that best enables the discrimination of different pulsed signals (structure coefficient = 0.98). Classification using hierarchical cluster analysis led to a similar categorization pattern: two main signal types with distinct magnitudes of repetition rate were clustered into five groups. The pulsed signals, here described, present significant differences in their time-frequency features, especially repetition rate (P < 0.001), inter-click-interval (P < 0.001) and duration (P < 0.001). We document the occurrence of a distinct signal type–short burst-pulses, and highlight the existence of a diverse repertoire of pulsed vocalizations emitted in graded sequences. The use of quantitative analysis of pulsed signals is essential to improve classifications and to better assess the contexts

  11. A Quantitative Analysis of Pulsed Signals Emitted by Wild Bottlenose Dolphins.

    Science.gov (United States)

    Luís, Ana Rita; Couchinho, Miguel N; Dos Santos, Manuel E

    2016-01-01

    Common bottlenose dolphins (Tursiops truncatus), produce a wide variety of vocal emissions for communication and echolocation, of which the pulsed repertoire has been the most difficult to categorize. Packets of high repetition, broadband pulses are still largely reported under a general designation of burst-pulses, and traditional attempts to classify these emissions rely mainly in their aural characteristics and in graphical aspects of spectrograms. Here, we present a quantitative analysis of pulsed signals emitted by wild bottlenose dolphins, in the Sado estuary, Portugal (2011-2014), and test the reliability of a traditional classification approach. Acoustic parameters (minimum frequency, maximum frequency, peak frequency, duration, repetition rate and inter-click-interval) were extracted from 930 pulsed signals, previously categorized using a traditional approach. Discriminant function analysis revealed a high reliability of the traditional classification approach (93.5% of pulsed signals were consistently assigned to their aurally based categories). According to the discriminant function analysis (Wilk's Λ = 0.11, F3, 2.41 = 282.75, P < 0.001), repetition rate is the feature that best enables the discrimination of different pulsed signals (structure coefficient = 0.98). Classification using hierarchical cluster analysis led to a similar categorization pattern: two main signal types with distinct magnitudes of repetition rate were clustered into five groups. The pulsed signals, here described, present significant differences in their time-frequency features, especially repetition rate (P < 0.001), inter-click-interval (P < 0.001) and duration (P < 0.001). We document the occurrence of a distinct signal type-short burst-pulses, and highlight the existence of a diverse repertoire of pulsed vocalizations emitted in graded sequences. The use of quantitative analysis of pulsed signals is essential to improve classifications and to better assess the contexts of

  12. A Quantitative Analysis of Pulsed Signals Emitted by Wild Bottlenose Dolphins.

    Directory of Open Access Journals (Sweden)

    Ana Rita Luís

    Full Text Available Common bottlenose dolphins (Tursiops truncatus, produce a wide variety of vocal emissions for communication and echolocation, of which the pulsed repertoire has been the most difficult to categorize. Packets of high repetition, broadband pulses are still largely reported under a general designation of burst-pulses, and traditional attempts to classify these emissions rely mainly in their aural characteristics and in graphical aspects of spectrograms. Here, we present a quantitative analysis of pulsed signals emitted by wild bottlenose dolphins, in the Sado estuary, Portugal (2011-2014, and test the reliability of a traditional classification approach. Acoustic parameters (minimum frequency, maximum frequency, peak frequency, duration, repetition rate and inter-click-interval were extracted from 930 pulsed signals, previously categorized using a traditional approach. Discriminant function analysis revealed a high reliability of the traditional classification approach (93.5% of pulsed signals were consistently assigned to their aurally based categories. According to the discriminant function analysis (Wilk's Λ = 0.11, F3, 2.41 = 282.75, P < 0.001, repetition rate is the feature that best enables the discrimination of different pulsed signals (structure coefficient = 0.98. Classification using hierarchical cluster analysis led to a similar categorization pattern: two main signal types with distinct magnitudes of repetition rate were clustered into five groups. The pulsed signals, here described, present significant differences in their time-frequency features, especially repetition rate (P < 0.001, inter-click-interval (P < 0.001 and duration (P < 0.001. We document the occurrence of a distinct signal type-short burst-pulses, and highlight the existence of a diverse repertoire of pulsed vocalizations emitted in graded sequences. The use of quantitative analysis of pulsed signals is essential to improve classifications and to better assess the

  13. An efficient ultrasonic SAFT imaging for pulse-echo immersion testing

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hong Wei [Changsha University of Science and Technology, Changsha (China); Jeong, Hyun Jo [Div. of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2017-04-15

    An ultrasonic synthetic aperture focusing technique (SAFT) using a root mean square (RMS) velocity model is proposed for pulse-echo immersion testing to improve the computational efficiency. Considering the immersion ultrasonic testing of a steel block as an example, three kinds of imaging were studied (B-Scan, SAFT imaging based on ray tracing technology and RMS velocity). The experimental results show that two kinds of SAFT imaging have almost the same imaging performance, while the efficiency of RMS velocity SAFT imaging is almost 25 times greater than the SAFT based on Snell's law.

  14. Pulse-train Stimulation of Primary Somatosensory Cortex Blocks Pain Perception in Tail Clip Test.

    Science.gov (United States)

    Lee, Soohyun; Hwang, Eunjin; Lee, Dongmyeong; Choi, Jee Hyun

    2017-04-01

    Human studies of brain stimulation have demonstrated modulatory effects on the perception of pain. However, whether the primary somatosensory cortical activity is associated with antinociceptive responses remains unknown. Therefore, we examined the antinociceptive effects of neuronal activity evoked by optogenetic stimulation of primary somatosensory cortex. Optogenetic transgenic mice were subjected to continuous or pulse-train optogenetic stimulation of the primary somatosensory cortex at frequencies of 15, 30, and 40 Hz, during a tail clip test. Reaction time was measured using a digital high-speed video camera. Pulse-train optogenetic stimulation of primary somatosensory cortex showed a delayed pain response with respect to a tail clip, whereas no significant change in reaction time was observed with continuous stimulation. In response to the pulse-train stimulation, video monitoring and local field potential recording revealed associated paw movement and sensorimotor rhythms, respectively. Our results show that optogenetic stimulation of primary somatosensory cortex at beta and gamma frequencies blocks transmission of pain signals in tail clip test.

  15. Studies on an improved indigenous pressure wave generator and its testing with a pulse tube cooler

    Science.gov (United States)

    Jacob, S.; Karunanithi, R.; Narsimham, G. S. V. L.; Kranthi, J. Kumar; Damu, C.; Praveen, T.; Samir, M.; Mallappa, A.

    2014-01-01

    Earlier version of an indigenously developed Pressure Wave Generator (PWG) could not develop the necessary pressure ratio to satisfactorily operate a pulse tube cooler, largely due to high blow by losses in the piston cylinder seal gap and due to a few design deficiencies. Effect of different parameters like seal gap, piston diameter, piston stroke, moving mass and the piston back volume on the performance is studied analytically. Modifications were done to the PWG based on analysis and the performance is experimentally measured. A significant improvement in PWG performance is seen as a result of the modifications. The improved PWG is tested with the same pulse tube cooler but with different inertance tube configurations. A no load temperature of 130 K is achieved with an inertance tube configuration designed using Sage software. The delivered PV power is estimated to be 28.4 W which can produce a refrigeration of about 1 W at 80 K.

  16. Repetitive maladaptive behavior: beyond repetition compulsion.

    Science.gov (United States)

    Bowins, Brad

    2010-09-01

    Maladaptive behavior that repeats, typically known as repetition compulsion, is one of the primary reasons that people seek psychotherapy. However, even with psychotherapeutic advances it continues to be extremely difficult to treat. Despite wishes and efforts to the contrary repetition compulsion does not actually achieve mastery, as evidenced by the problem rarely resolving without therapeutic intervention, and the difficulty involved in producing treatment gains. A new framework is proposed, whereby such behavior is divided into behavior of non-traumatic origin and traumatic origin with some overlap occurring. Repetitive maladaptive behavior of non-traumatic origin arises from an evolutionary-based process whereby patterns of behavior frequently displayed by caregivers and compatible with a child's temperament are acquired and repeated. It has a familiarity and ego-syntonic aspect that strongly motivates the person to retain the behavior. Repetitive maladaptive behavior of traumatic origin is characterized by defensive dissociation of the cognitive and emotional components of trauma, making it very difficult for the person to integrate the experience. The strong resistance of repetitive maladaptive behavior to change is based on the influence of both types on personality, and also factors specific to each. Psychotherapy, although very challenging at the best of times, can achieve the mastery wished and strived for, with the aid of several suggestions provided.

  17. Application of Pressure Pulse Test Analysis in CO2 Leakage Detection and Monitoring

    Science.gov (United States)

    Shakiba, M.; Hosseini, S. A.

    2015-12-01

    Over the past decade, numerous research and industrial projects have been devoted to investigate the feasibility and efficiency of carbon dioxide capture, storage, and utilization. Besides the studies over the characteristics of candidate formations for CO2 injection, much attention has been paid to answer the environmental concerns regarding the CO2 leak to overlying formations. To first detect and then track a possible CO2 leak, different techniques have been proposed in the literature; however, most of them examine only a small portion of the formation and have a low resolution for early leak detection. To further increase the extent of the investigation zone and to monitor a large section of the formation in more detail, multi-well testing techniques have received a significant attention. Pressure pulse testing is a multi-well test technique in which a pressure signal generated by periods of injection and shut-in from a pulser well is propagated inside the formation, and the corresponding response is recorded at the observer wells. The recorded pressure response is then analyzed to measure the rock and fluid properties and to monitor the possible changes over the time. In this research study, we have applied frequency methods as well as superposition principle to interpret the pressure pulse test data and monitor the changes in transmissibility and storativity of the formation between the well pairs. We have used synthetic reservoir models and numerical reservoir simulations to produce the pressure pulse test data. The analysis of the simulation results indicated that even a small amount of CO2 leak in the investigation zone can have a measurable effect on the calculated storativity and transmissibility factors. This can be of a great importance when an early leak detection is of interest. Moreover, when multiple wells are available in the formation, the distribution of the calculated parameters can visualize the extent of CO2 leak, which has a great

  18. Development and initial testing of a pulse oximetry prototype for measuring dental pulp vitality

    Science.gov (United States)

    Cerqueira, M.; Ferreira, M.; Caramelo, F.

    2015-05-01

    The guiding principle of endodontic treatment is to preserve teeth while maintaining its aesthetic and functional roles. To accomplish this goal the assessment of teeth pulp vitality is very important since it will determine the procedures that should be adopted and define the therapy strategy. Currently, the most commonly tests for determining dental pulp state are the thermal and the electrical tests, which are based on nerve response and, because of that, have a relatively high rate of false positives and false negatives cases. In this work we present a simple test to be used in the clinical setting for evaluating noninvasively the existence of blood perfusion in dental pulp. This test is based on pulse oximetry principle that was devised to indirectly measure the amount of oxygen in blood. Although pulse oximetry has already demonstrated its usefulness in clinical environment its usage for the determination of dental pulp vitality has been frustrated by several factors, notably the absence of a suitable sensor to the complex shape of the various coronary teeth. We developed a suitable sensor and present the first trials with promising results, regarding the ability for distinguish teeth with and without blood perfusion.

  19. Thermal nuclear pulse simulation at the National Solar Thermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.; Ralph, M.E. (Sandia National Labs., Albuquerque, NM (USA)); Ghanbari, C.M. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Oeding, R.; Shaw, K. (PDA Engineering, Albuquerque, NM (USA))

    1991-01-01

    The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico is being used to simulate the thermal pulse from a nuclear weapon on relatively large surfaces. Pulses varying in length from 2 seconds to 7 seconds have been produced. The desired pulse length varies as a function of the yield of the weapon being simulated. The present experiment capability can accommodate samples as large as 1.2 {times} 1.5 meters. Samples can be flat or three-dimensional. Samples exposed have ranged from fabrics (protective clothing) to an aircraft canopy and cockpit system, complete with a mannequin in a flight suit and helmet. In addition, a windowed wind tunnel has been constructed which permits exposure of flight surface materials to thermal transients with air speed of Mach 0.8. The wind tunnel can accommodate samples up to .48 {times} .76 meters or an array of smaller samples. The maximum flux capability of the NSTTF is about 70 calories/cm{sup 2}-sec. A black-body temperature of about 6000 K is produced by the solar beam and is therefore ideal for simulating the nuclear source. 3 refs., 7 figs.

  20. Pulse-to-pulse Diagnostics at High Reprate

    Science.gov (United States)

    Green, Bertram; Kovalev, Sergey; Golz, Torsten; Stojanovich, Nikola; Fisher, Alan; Kampfrath, Tobias; Gensch, Michael

    2016-03-01

    Femtosecond level diagnostic and control of sub-picosecond electron bunches is an important topic in modern accelerator research. At the same time new linear electron accelerators based on quasi-CW SRF technology will be the drivers of many future 4th Generation lightsources such as X-ray free electron lasers. A high duty cycle, high stability and online pulse to pulse diagnostic at these new accelerators are crucial ingredients to the success of these large scale facilities. A novel THz based online monitor concept is presented that has the potential to give access to pulse to pulse information on bunch form, arrival time and energy at high repetition rate and down to sub pC charges. We furthermore show experimentally that pulse to pulse arrival time measurements can be used to perform pump-probe experiments with a temporal resolution in the few-fs regime and an exceptional dynamic range. Our scheme has been tested at the superradiant test facility TELBE, but can be readily transferred to other SRF accelerator driven photon sources, such as X-FELs.

  1. High voltage pulse generator

    Science.gov (United States)

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  2. Grammatical Change through Repetition.

    Science.gov (United States)

    Arevart, Supot

    1989-01-01

    The effect of repetition on grammatical change in an unrehearsed talk is examined based on a case study of a single learner. It was found that repetition allows for accuracy monitoring in that errors committed in repeated contexts undergo correction. Implications for teaching are discussed. (23 references) (LB)

  3. The Negative Repetition Effect

    Science.gov (United States)

    Mulligan, Neil W.; Peterson, Daniel J.

    2013-01-01

    A fundamental property of human memory is that repetition enhances memory. Peterson and Mulligan (2012) recently documented a surprising "negative repetition effect," in which participants who studied a list of cue-target pairs twice recalled fewer targets than a group who studied the pairs only once. Words within a pair rhymed, and…

  4. Characterization of a medical X-ray machine for testing the response of electronic dosimeters in pulsed radiation fields

    Science.gov (United States)

    Guimarães, Margarete C.; Da Silva, Teógenes A.

    2014-11-01

    Electronic personal dosimeters (EPD) based on solid state detectors have been used for personnel monitoring for radiation protection purpose; their use has been extended to practices with pulsed radiation beams although their performance is not well known. Deficiencies in the EPD response in pulsed radiation fields have been reported; they were not detected before since type tests and calibrations of EPDs were established in terms of continuous X and gamma reference radiations. An ISO working group was formed to elaborate a standard for test conditions and performance requirements of EPDs in pulsed beams; the PTB/Germany implemented a special X-ray facility for generating the reference pulsed radiation beams. In this work, an 800 Plus VMI medical X-ray machine of the Dosimeter Calibration Laboratory of CDTN/CNEN was characterized to verify its feasibility to perform EPD tests. Characterization of the x-ray beam was done in terms of practical peak voltage, half-value layer, mean energy and air kerma rate. Reference dosimeters used for air kerma measurements were verified as far their metrological coherence and a procedure for testing EDPs was established. Electronic personal dosimeters (EPD) have been used for personnel monitoring. EPD use has been extended to pulsed radiation beams. Deficiencies in the EPD response in pulsed beams have been reported. The feasibility of using a medical X-ray machine to perform EPD tests was studied. Reference dosimeters were verified and EPD testing procedure was established.

  5. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  6. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  7. Repetitive energy transfer from an inductive energy store

    Energy Technology Data Exchange (ETDEWEB)

    Honig, E.M.

    1984-01-01

    The theoretical and experimental results of a research program aimed at finding practical ways to transfer energy repetitively from an inductive energy store to various loads are discussed. The objectives were to investigate and develop the high power opening switches and transfer circuits needed to enable high-repetition-rate operation of such systems, including a feasibility demonstration at a current level near 10 kA and a pulse repetition rate of 1-10 kpps with a 1-ohm load. The requirements of nonlinear, time-varying loads, such as the railgun electromagnetic launcher, were also addressed. Energy storage capability is needed for proper power conditioning in systems where the duty factor of the output pulse train is low. Inductive energy storage is attractive because it has both a high energy storage density and a fast discharge capability. By producing a pulse train with a peak power of 75 MW at a pulse repetition rate of 5 kpps in a one-ohm load system, this research program was the first to demonstrate fully-controlled, high-power, high-repetition-rate operation of an inductive energy storage and transfer system with survivable switches. Success was made possible by using triggered vacuum gap switches as repetitive, current-zero opening switches and developing several new repetitive transfer circuits using the counterpulse technique.

  8. The test ability of an adaptive pulse wave for ADC testing

    NARCIS (Netherlands)

    Sheng, Xiaoqin; Kerkhoff, Hans G.

    2010-01-01

    In the conventional ADC production test method, a high-quality analogue sine wave is applied to the Analogue-to-Digital Converter (ADC), which is expensive to generate. Nowadays, an increasing number of ADCs are integrated into a system-on-chip (SoC) platform design, which usually contains a digital

  9. On the repetitive operation of a self-switched transversely excited atmosphere CO2 laser

    Indian Academy of Sciences (India)

    Pallavi Raote; Gautam Patil; J Padma Nilaya; D J Biswas

    2010-11-01

    The repetition rate capability of self-switched transversely excited atmosphere (TEA) CO2 laser was studied for different gas flow configurations. For an optimized gas flow configuration, repetitive operation was achieved at a much smaller gas replenishment factor between two successive pulses when compared with repetitive systems energized by conventional pulsers.

  10. A harmonic pulse testing method for leakage detection in deep subsurface storage formations

    Science.gov (United States)

    Sun, Alexander Y.; Lu, Jiemin; Hovorka, Susan

    2015-06-01

    Detection of leakage in deep geologic storage formations (e.g., carbon sequestration sites) is a challenging problem. This study investigates an easy-to-implement frequency domain leakage detection technology based on harmonic pulse testing (HPT). Unlike conventional constant-rate pressure interference tests, HPT stimulates a reservoir using periodic injection rates. The fundamental principle underlying HPT-based leakage detection is that leakage modifies a storage system's frequency response function, thus providing clues of system malfunction. During operations, routine HPTs can be conducted at multiple pulsing frequencies to obtain experimental frequency response functions, using which the possible time-lapse changes are examined. In this work, a set of analytical frequency response solutions is derived for predicting system responses with and without leaks for single-phase flow systems. Sensitivity studies show that HPT can effectively reveal the presence of leaks. A search procedure is then prescribed for locating the actual leaks using amplitude and phase information obtained from HPT, and the resulting optimization problem is solved using the genetic algorithm. For multiphase flows, the applicability of HPT-based leakage detection procedure is exemplified numerically using a carbon sequestration problem. Results show that the detection procedure is applicable if the average reservoir conditions in the testing zone stay relatively constant during the tests, which is a working assumption under many other interpretation methods for pressure interference tests. HPT is a cost-effective tool that only requires periodic modification of the nominal injection rate. Thus it can be incorporated into existing monitoring plans with little additional investment.

  11. Results of the qualification test campaign of a Pulsed Plasma Thruster for Cubesat Propulsion (PPTCUP)

    Science.gov (United States)

    Ciaralli, S.; Coletti, M.; Gabriel, S. B.

    2016-04-01

    Pulsed Plasma Thruster for Cubesat Propulsion (PPTCUP) is an ablative pulsed plasma thruster designed with the aim of providing translational and orbital control to Cubesat platforms. The qualification model presented in this paper has been developed by Mars Space Ltd, Clyde Space Ltd and the University of Southampton to produce a versatile "stand-alone" module that can be bolted on the Cubesat structure, allowing the orbital control along the X or Y-axis of the satellite. An extensive and complete test campaign to qualify the unit for space flight, which includes electromagnetic compatibility (EMC) characterization, thermal cycling and mechanical tests, has been performed according to the NASA GEVS procedures. PPTCUP is characterized by an averaged specific impulse of 655±58 s and a deliverable total impulse of 48.2±4.2 Ns. Finally, it has been found that the unit is compliant with the EMC requirements and can successfully withstand the thermal and mechanical loads typical of a Cubesat space mission.

  12. Testing of Diode-Clamping in an Inductive Pulsed Plasma Thruster Circuit

    Science.gov (United States)

    Toftul, Alexandra; Polzin, Kurt A.; Martin, Adam K.; Hudgins, Jerry L.

    2014-01-01

    Testing of a 5.5 kV silicon (Si) diode and 5.8 kV prototype silicon carbide (SiC) diode in an inductive pulsed plasma thruster (IPPT) circuit was performed to obtain a comparison of the resulting circuit recapture efficiency,eta(sub r), defined as the percentage of the initial charge energy remaining on the capacitor bank after the diode interrupts the current. The diode was placed in a pulsed circuit in series with a silicon controlled rectifier (SCR) switch, and the voltages across different components and current waveforms were collected over a range of capacitor charge voltages. Reverse recovery parameters, including turn-off time and peak reverse recovery current, were measured and capacitor voltage waveforms were used to determine the recapture efficiency for each case. The Si fast recovery diode in the circuit was shown to yield a recapture efficiency of up to 20% for the conditions tested, while the SiC diode further increased recapture efficiency to nearly 30%. The data presented show that fast recovery diodes operate on a timescale that permits them to clamp the discharge quickly after the first half cycle, supporting the idea that diode-clamping in IPPT circuit reduces energy dissipation that occurs after the first half cycle

  13. Repetition and Translation Shifts

    Directory of Open Access Journals (Sweden)

    Simon Zupan

    2006-06-01

    Full Text Available Repetition manifests itself in different ways and at different levels of the text. The first basic type of repetition involves complete recurrences; in which a particular textual feature repeats in its entirety. The second type involves partial recurrences; in which the second repetition of the same textual feature includes certain modifications to the first occurrence. In the article; repetitive patterns in Edgar Allan Poe’s short story “The Fall of the House of Usher” and its Slovene translation; “Konec Usherjeve hiše”; are compared. The author examines different kinds of repetitive patterns. Repetitions are compared at both the micro- and macrostructural levels. As detailed analyses have shown; considerable microstructural translation shifts occur in certain types of repetitive patterns. Since these are not only occasional; sporadic phenomena; but are of a relatively high frequency; they reduce the translated text’s potential for achieving some of the gothic effects. The macrostructural textual property particularly affected by these shifts is the narrator’s experience as described by the narrative; which suffers a reduction in intensity.

  14. High-repetition-rate XeCl waveguide laser without gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, C.P.; Gordon C. III; Moutoulas, C.; Feldman, B.J.

    1987-03-01

    Operation of a microwave discharge XeCl laser at pulse-repetition rates extending to 8 kHz without flow of the laser gas is reported. Present limits on pulse-repetition rate appear to be imposed by thermally induced refractive-index gradients.

  15. Numerical Modeling of Dual-Pulse Shock Test Machine for Simulating Underwater Explosion Shock Loads on Warship Equipments

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-yi; WANG Gong-xian; WANG Yu

    2009-01-01

    In order to qualify shock resistance performance of shipboard equipments and simulate real underwater explosion environment, a novel dual-puise shock test machine is proposed. The new machine will increase testing capability and meet special shock testing requirement. Two key parts of the machine, the velocity generator and the shock pulse regulator, play an important role in producing the positive acceleration pulse and the succeeding negative acceleration pulse, respectively. The generated dual-pulse shock for test articles is in conformity with an anti-shock test specification. Based on the impact theory, a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism that involves conversion of gas potential energy and dissipation of kinetic energy. Simulation results have demonstrated that the proposed machine is able to produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain, which sets up a base for the construction of the machine.

  16. Trialogue: Preparation, Repetition and...

    Science.gov (United States)

    Oberg, Antoinette; And Others

    1996-01-01

    This paper interrogates both curriculum theory and the limits and potentials of textual forms. A set of overlapping discourses (a trialogue) focuses on inquiring into the roles of obsession and repetition in creating deeply interpretive locations for understanding. (SM)

  17. Consumer Electronics Testing to Fast-Rise EMP (Electromagnetic Pulse) (VEMPS (Vertical Electromagnetic Pulse Simulator) 2 Development)

    Science.gov (United States)

    1989-06-01

    complete descrip- tion of all test configurations used at FEMPS, see Erler and Dancz [7]. Three types of test data were collected throughout the test...under HDL contract DAAL02-87-C-0052 (November 1987). 7. J. Erler and J. Dancz, Consumer Electronics Updated Test Plan, Sci- ence Applications...International Corporation, SAIC-102-87-021, under HDL contract DAAL02-86-D-0041 (15 July 1987). 8. J. Erler and W. Byers, FEMPS Consumer Electronics Tests

  18. Predictive study of the poloidal field coil insert behaviour under pulsed current tests

    Science.gov (United States)

    Lacroix, B.; Ciazynski, D.; Duchateau, J. L.; Nicollet, S.; Pauty, N.

    2008-02-01

    Within the ITER Poloidal Field conductor design validation, the Poloidal Field Conductor Insert (PFCI) has been manufactured and will be tested in the Central Solenoid Model Coil (CSMC) facility at JAEA Naka (Japan). In this test facility, the PFCI can be tested under ITER-relevant operating conditions, the field produced by the CSMC being varied to simulate the real situation of the PF coils in ITER. Predictive analyses have been performed in order to study the electromagnetic and thermal-hydraulic behaviour of the PFCI, under two scenarios proposed for pulsed current tests. During these scenarios, simulations have been performed with the THEA code, in which classical formulas for the AC losses in a cable have been introduced. The study focuses on the lower part of the winding, which is a 44 m long conductor including a joint. It covers the sample thermal-hydraulic behaviour with particular emphasis on the losses. Due to the overcompaction in the joint area, the total energy dissipated during a scenario can be equivalent in the joint and in the conductor, in spite of the reduced length of the joint (0.45 m). This particular point is discussed and has led to the analysis of the temperature margin in the joint.

  19. Laboratory tests of the Pulse Height Analysis system for Wendelstein 7-X

    Science.gov (United States)

    Kubkowska, M.; Czarnecka, A.; Figacz, W.; Jabłoński, S.; Kaczmarczyk, J.; Krawczyk, N.; Ryć, L.; Biedermann, C.; Koenig, R.; Thomsen, H.; Weller, A.; W7-X Team

    2015-10-01

    A pulse height analysis (PHA) system has been designed and manufactured for the Wendelstein 7-X stellarator, in such a way as to be already compatible with later quasi-continuous operation requirements. The diagnostic will provide X-ray spectra with energy resolution better than 180 eV . The system has three energy channels: 0.25-20 keV, 0.95-20 keV and 1.5-20 keV . For each channel a separate Silicon Drift Detector (SDD) equipped with a suitably selected beryllium foil is used. The range of the 3 energy channels can be further adapted to particular experiments by moving via a pneumatic actuator additional beryllium filters in front of the fixed ones. The PHA system is intended for measuring impurity species (e.g. C, Fe, Ni), electron temperature and for investigating possible suprathermal tails in the spectra. The system will be installed on the horizontal port AEK50 on W7-X. The SDD detectors, the replaceable filters and the adjustable piezo driven slits which allow to suitably adapt the X-ray signal intensity are mounted inside a vacuum chamber which is connected to the plasma vessel via a gate valve. The on-air diagnostic components are the preamplifiers, the Digital X-Ray Processor (XIA, U.S.A.), a computer, and an X-ray calibration source. For controlling the operation of the entire diagnostic system, as well as, for the data acquisition of the electrical pulses coming a special code was developed. The paper presents the construction of the PHA system for W7-X and the laboratory tests of its mechanical parts together with the information on the code developed to operate the diagnostic. The diagnostic was also tested and characterised by measuring Fe55 spectrum and fluorescence spectra of Ni, Fe, Cr and Cu induced by an X-ray mini-tube.

  20. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael

    2013-08-15

    The development of a pump laser system for a high power and high repetition rate optical parametric chirped-pulse amplification (OPCPA) is presented in this thesis. The OPCPA system requires pump pulse energies in the range of tens of millijoules at high repetition rates with sub-picosecond pulse durations. This can be achieved to some extend with Innoslab amplifier technology. However, scaling to higher pulse energies at high repetition rates may be problematic. With the thin-disk amplifier presented in this thesis, output energies of 140 mJ at 100 kHz repetition rate could be achieved in burst-mode operation, which is a world record for this type of laser amplifier. Due to its material and spectral properties, ytterbium doped YAG (Yb:YAG) is used as a gain medium for the high power amplifier stages. The low quantum defect and the comparatively large emission bandwidth makes this material the choice for high power operation and sub-picosecond compressed pulse durations. The output beam profile as well as the shape of the output bursts is ideal to pump an OPCPA system. An OPCPA output energy in the millijoule range with repetition rates of 100 kHz to 1 MHz is needed to generate seed pulses for the FEL and for the application as pump-probe laser at the FEL facility. Since the development of this laser system needs to meet requirements set by the Free-Electron Laser in Hamburg (FLASH), the amplifier is conceived for burst-mode operation. The main requirement is a high intra-burst pulse repetition rate of more than 100 kHz and a uniform pulse train (burst) with equal properties for every pulse. The burst-mode is an operation mode where the laser never reaches a lasing equilibrium, which means that the behavior of the amplifier is similar to a switch-on of the laser system for every burst. This makes the development of the amplifier system difficult. Therefore, an analytical model has been developed to study the amplification process during the burst. This includes the

  1. Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics

    Science.gov (United States)

    Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A.; Bustamante, John G.; Kirkconnell, Carl S.; Luong, Thomas T.; Murphy, J. B.; Haley, Michael F.

    2014-01-01

    The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed on a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.

  2. Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A. [The Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Bustamante, John G. [Georgia Institute of Technology, Atlanta, GA 30332 (United States); Kirkconnell, Carl S.; Luong, Thomas T.; Murphy, J. B.; Haley, Michael F. [Iris Technology, Irvine, CA 92616 (United States)

    2014-01-29

    The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed on a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.

  3. Synthesis gas regeneration electrotechnology using volume high-voltage pulsed discharges: corona and barrier ones

    Directory of Open Access Journals (Sweden)

    M.I. Boyko

    2014-09-01

    Full Text Available Factory testing of a created high-voltage complex (plant has been conducted. The complex consists of two pulse generators with the repetition rate of up to 50,000 pulses per second and load reactors with pulsed discharges - corona and barrier ones. Transistor (IGBT keys are used as energy switches. The efficient mode of coke gas methane conversion (steam reforming to syngas has been obtained with application of the complex created. A unidirectional action of the pulsed discharges, the gas mixture temperature, and a nickel catalyst has reduced the specific energy consumption for synthesis gas regeneration during the conversion. A feasible mechanism of this conversion is described.

  4. Reconstruction of stress corrosion cracks using signals of pulsed eddy current testing

    Science.gov (United States)

    Wang, Li; Xie, Shejuan; Chen, Zhenmao; Li, Yong; Wang, Xiaowei; Takagi, Toshiyuki

    2013-06-01

    A scheme to apply signals of pulsed eddy current testing (PECT) to reconstruct a deep stress corrosion crack (SCC) is proposed on the basis of a multi-layer and multi-frequency reconstruction strategy. First, a numerical method is introduced to extract conventional eddy current testing (ECT) signals of different frequencies from the PECT responses at different scanning points, which are necessary for multi-frequency ECT inversion. Second, the conventional fast forward solver for ECT signal simulation is upgraded to calculate the single-frequency pickup signal of a magnetic field by introducing a strategy that employs a tiny search coil. Using the multiple-frequency ECT signals and the upgraded fast signal simulator, we reconstructed the shape profiles and conductivity of an SCC at different depths layer-by-layer with a hybrid inversion scheme of the conjugate gradient and particle swarm optimisation. Several modelled SCCs of rectangular or stepwise shape in an SUS304 plate are reconstructed from simulated PECT signals with artificial noise. The reconstruction results show better precision in crack depth than the conventional ECT inversion method, which demonstrates the validity and efficiency of the proposed PECT inversion scheme.

  5. High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Zysset, B.; LaGasse, M.J.; Fujimoto, J.G.; Kafka, J.D.

    1989-02-06

    A high repetition rate femtosecond dye amplifier is demonstrated using a laser diode pumped Q-switched Nd:YAG laser. Amplification of wavelength tunable 300 fs pulses from a synchronously mode-locked rhodamine dye laser is achieved with a saturated gain of 70 and a small gain of 200 at a repetition rate of 800 Hz. Maximum pulse energies of 40 nJ are obtained, and pulse compression to as short as 30 fs is demonstrated.

  6. High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser

    Science.gov (United States)

    Zysset, B.; LaGasse, M. J.; Fujimoto, J. G.; Kafka, J. D.

    1989-02-01

    A high repetition rate femtosecond dye amplifier is demonstrated using a laser diode pumped Q-switched Nd:YAG laser. Amplification of wavelength tunable 300 fs pulses from a synchronously mode-locked rhodamine dye laser is achieved with a saturated gain of 70 and a small gain of 200 at a repetition rate of 800 Hz. Maximum pulse energies of 40 nJ are obtained, and pulse compression to as short as 30 fs is demonstrated.

  7. Characteristics of Repetitive Nanosecond-pulse Discharge in Atmospheric Air with a Tube-to-plane Gap%大气压空气中管-板电极结构重复频率纳秒脉冲的放电特性

    Institute of Scientific and Technical Information of China (English)

    章程; 邵涛; 于洋; 姜慧; 许家雨; 严萍

    2011-01-01

    Repetitive nanosecond-pulse is focused on because it can provide extremely high overvoltage for excitation of non-thermal plasma at atmospheric air.With an excitation of negative repetitive pulses of 15 ns rise-time and 30~40 ns duration,characteristics of repetitive nanosecond-pulse discharge in atmospheric air with a tube-to-plane gap are investigated by the measurement of their electrical discharge parameters,images,and X-ray diffraction.Results show that nanosecond-pulse discharge has 3 discharge forms,which is corona,diffuse,and filamentary discharge,respectively,and the discharge modes and their transition are affected by the air gap spacing.In addition,it is detected that the main part of X-ray energy in X-ray diffraction locates at 30 to 90 keV.%由于重复频率窄脉冲气体放电具有的高过电压倍数,能够稳定地激励大气压空气等离子体,近年来受到了广泛关注。为此,利用上升沿15ns、半高宽30~40ns的负极性ns脉冲激励大气压管-板电极结构空气放电,通过电压电流测量,放电图像拍摄和X射线探测研究了ns脉冲气体放电模式和X射线辐射特性。结果表明,ns脉冲放电存在电晕、弥散和丝状3种模式,各模式及其转换与气隙距离相关。放电中测得的X射线辐射能量主要集中在30~90keV。

  8. Pulsed X-rays for interventional radiology: tests on active personal dosemeters (APD) (European project FP7 ORAMED WP3); Rayons X pulses pour la radiologie interventionnelle: tests sur dosimetres personnel actifs

    Energy Technology Data Exchange (ETDEWEB)

    Denoziere, M.; Bordy, J.M.; Daures, J.; Lecerf, N

    2009-07-01

    this report presents the results of the tests performed on Active Personal dosemeters (A.P.D.) to check their responses in pulsed X-ray beam used in interventional X-ray radiology. this work is one of the goal of O.R.A.M.E.D W.P.3. (Optimization of radiation protection for medical staff)The response of seven A.P.D.s types was measured in terms of dose equivalent Hp (10) for different pulsed X-ray width and dose rate. (author)

  9. Crossatron switch as thyratron replacement in high repetition rate, high average power modulators

    Science.gov (United States)

    Sullivan, J. S.

    1988-06-01

    The Crossatron is a cold cathode, low pressure, gas discharge switch with opening and closing capabilities. Due to its cold cathode operation, the Crossatron may offer lifetime advantages compared to the hydrogen thyratron. Unfortunately, little information regarding Crossatron lifetime and performance in high repetition rate, high average power, pulse modulators exists. Four prototype Crossatron devices, fabricated by Hughes Aircraft, were obtained to evaluate their performance and lifetime in high repetition rate, high average power, pulse modulators that had previously been equipped with hydrogen thyratrons. The prototype Crossatrons were evaluated over a range of operating parameters. Various grid drive, keep alive power levels and triggering schemes were employed in the tests. Switch parameters such as trigger time, anode fall time, jitter, recovery time, peak di/dt, switch efficiency, and the gas pumping effect of the discharge were observed. One Crossatron prototype was also subjected to lifetime tests that accumulated tens of billions of pulses. Lifetime data will be compared to various thyratron models tested similarly.

  10. Evidence of surface charge effects in T-branch nanojunctions using microsecond-pulse testing

    Energy Technology Data Exchange (ETDEWEB)

    Iniguez-de-la-Torre, I; Mateos, J; Gonzalez, T [Departamento de Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Roelens, Y; Gardes, C; Bollaert, S [Institut d' Electronique de Microelectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Universite de Lille 1, Avenue Poincare BP60069, 59652, Villeneuve d' Ascq CEDEX (France)

    2011-11-04

    The understanding of the influence of surface charge effects on the electrical properties of nanostructures is a key aspect for the forthcoming generations of electronic devices. In this paper, by using an ultrafast electrical pulse characterization technique, we report on the room-temperature time response of a T-branch nanojunction which allows us to identify the signature of surface states. Different pulse widths from 500 ns to 100 {mu}s were applied to the device. For a given pulse width, the stem voltage is measured and compared with the DC result. The output value in the stem is found to depend on the pulse width and to be related to the characteristic charging time of the interface states. As expected, the results show that the well-known nonlinear response of T-branch junctions is more pronounced for long pulses, beyond such a characteristic time.

  11. Pulse Jet Mixer Overblow Testing for Assessment of Loadings During Multiple Overblows

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, David M.; Bontha, Jagannadha R.; Michener, Thomas E.; Nigl, Franz; Yokuda, Satoru T.; Leigh, Richard J.; Golovich, Elizabeth C.; Baumann, Aaron W.; Kurath, Dean E.; Hoza, Mark; Combs, William H.; Fort, James A.; Bredt, Ofelia P.

    2009-07-20

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks. The WTP consists of three primary facilities: pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste feed from the Hanford tank farms and separate it into 1) a high-volume, low-activity liquid stream stripped of most solids and radionuclides and 2) a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJMs) that will provide some or all of the mixing in the vessels. This technology was selected for use in so-called “black cell” regions of the WTP, where maintenance capability will not be available for the operating life of the WTP. PJM technology was selected for use in these regions because it has no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. This report contains the results of single and multiple PJM overblow tests conducted in a large, ~13 ft-diameter × 15-ft-tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. These single and multiple PJM overblow tests were conducted using water and a clay simulant to bound the lower and upper rheological properties of the waste streams anticipated to be processed in the WTP. Hydrodynamic pressures were measured at a number of locations in the test vessel using an array of nine pressure sensors and four hydrophones. These measurements were made under normal and limiting vessel operating conditions (i.e., maximum PJM fluid emptying velocity, maximum and minimum vessel

  12. Pulse Jet Mixer Overblow Testing for Assessment of Loadings During Multiple Overblows

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, David M.; Bontha, Jagannadha R.; Michener, Thomas E.; Nigl, Franz; Yokuda, Satoru T.; Leigh, Richard J.; Golovich, Elizabeth C.; Baumann, Aaron W.; Kurath, Dean E.; Hoza, Mark; Combs, William H.; Fort, James A.; Bredt, Ofelia P.

    2008-03-03

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks. The WTP consists of three primary facilities: pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste feed from the Hanford tank farms and separate it into 1) a high-volume, low-activity liquid stream stripped of most solids and radionuclides and 2) a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJMs) that will provide some or all of the mixing in the vessels. This technology was selected for use in so-called “black cell” regions of the WTP, where maintenance capability will not be available for the operating life of the WTP. PJM technology was selected for use in these regions because it has no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. This report contains the results of single and multiple PJM overblow tests conducted in a large, ~13 ft-diameter × 15-ft-tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. These single and multiple PJM overblow tests were conducted using water and a clay simulant to bound the lower and upper rheological properties of the waste streams anticipated to be processed in the WTP. Hydrodynamic pressures were measured at a number of locations in the test vessel using an array of nine pressure sensors and four hydrophones. These measurements were made under normal and limiting vessel operating conditions (i.e., maximum PJM fluid emptying velocity, maximum and minimum vessel

  13. Novel porcine repetitive elements

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-12-01

    Full Text Available Abstract Background Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. Results We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI. These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute, covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. Conclusion The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics.

  14. Repetitive Bunches from RF-Photo Gun Radiate Coherently

    CERN Document Server

    Van der Geer, C A J; Van der Geer, S B

    2004-01-01

    We consider to feed the laser wake field accelerator of the alpha-X project by a train of low charge pancake electron bunches to reduce undesired expansion due to space-charge forces. To this purpose the photo excitation laser of the rf-injector is split into a train of sub-pulses, such that each of the produced electron bunches falls into a successive ponderomotive well of the plasma accelerator. This way the total accelerated charge is not reduced. The repetitive photo gun can be tested, at low energy, by connecting it directly to the undulator and monitoring the radiation. The assertions are based on the results of new GPT simulations.

  15. Thermal degradation of two liquid fuels and detonation tests for pulse detonation engine studies

    Science.gov (United States)

    Rocourt, X.; Gillard, P.; Sochet, I.; Piton, D.; Prigent, A.

    2007-02-01

    The use of liquid fuels such as kerosene is of interest for the pulse detonation engine (PDE). Within this context, the aim of this work, which is a preliminary study, was to show the feasibility to initiate a detonation in air with liquid-fuel pyrolysis products, using energies and dimensions of test facility similars to those of PDEs. Therefore, two liquids fuels have been compared, JP10, which is a synthesis fuel generally used in the field of missile applications, and decane, which is one of the major components of standard kerosenes (F-34, Jet A1, ...). The thermal degradation of these fuels was studied with two pyrolysis processes, a batch reactor and a flow reactor. The temperatures varied from 600°C to 1,000°C and residence times for the batch reactor and the flow reactor were, respectively, between 10 30 s and 0.1 2 s. Subsequently, the detonability of synthetic gaseous mixtures, which was a schematisation of the decomposition state after the pyrolysis process, has been studied. The detonability study, regarding nitrogen dilution and equivalence ratio, was investigated in a 50 mm-diameter, 2.5 m-long detonation tube. These dimensions are compatible with applications in the aircraft industry and, more particularly, in PDEs. Therefore, JP10 and decane were compared to choose the best candidate for liquid-fuel PDE studies.

  16. Application of Hilbert-Huang transform for defect recognition in pulsed eddy current testing

    Science.gov (United States)

    Liu, Baoling; Huang, Pingjie; Hou, Dibo; Chen, Xiao; Zhang, Guangxin

    2015-07-01

    Defect recognition plays an important role in the structure integrity and health monitor of in-service equipment. However, it is difficult to recognise deep-layer defect or small-size defect in conductive structure during pulsed eddy current (PEC) testing. Aiming at the issue, this article proposes a method based on Hilbert-Huang transform which consists of two modules: data processing and defect recognition. In the data processing module, the PEC response signal is decomposed into a few of intrinsic mode functions (IMFs) using ensemble empirical mode decomposition method. The IMFs whose variance contribution rates are bigger than 1% are chosen to reconstruct signal in order to remove noise. In the defect recognition module, the features based on specific frequency components of marginal spectrum (MS) of the reconstructed signals are extracted to discriminate those defects in surface and subsurface. Furthermore, the normalisation MS energy ratio is proposed to quantify defects which cannot be distinguished using peak value in time domain. Experiments show that the proposed method can achieve better de-noising effect and defect evaluation, which contributes to the recognition of those complicated defects such as deep-layered and small-sized defect.

  17. Medium Repetition Rate TEA Laser For Industrial Applications

    Science.gov (United States)

    Walter, Bruno

    1987-09-01

    The design and performance of an inexpensive compact repetitively pulsed TEA CO2 laser is described. The device uses a modified corona preionization technique and a fast transverse gas flow to achieve high repetition rates. An output energy of 500 mJ per pulse and an out-put power of 6.2W at 40Hz have been obtained. Due to the small energy needed for preionization, the efficiency of the device is high, whereas the gas dissociation is low when compared with commercial laser systems. This results in the relatively small fresh laser gas exchange of 20 ltr h-1 for long term operation.

  18. Repetitive operation of an L-band magnetically insulated transmission line oscillator with metal array cathode

    Science.gov (United States)

    Qin, Fen; Wang, Dong; Xu, Sha; Zhang, Yong; Fan, Zhi-kai

    2016-04-01

    We present the repetitive operation research results of an L-band magnetically insulated transmission line oscillator with metal array cathode (MAC-MILO) in this paper. To ensure a more uniform emission of electrons emitted from the cathode, metal plates with different outer radii and thicknesses are periodically arranged in longitudinal direction on the cathode substrate to act as emitters. The higher order mode depressed MILO (HDMILO) structure is applied to ensure stability of the tube. Comparison experiments are carried out between velvet cathode and MAC MILO driven by a 20 GW/40 Ω/40 ns/20 Hz pulse power system. Experimental results reveal that the MAC has much lower outgassing rate, much longer life time, and higher repetitive stability. The MAC-MILO could work stably with a rep-rate up to 20 Hz at a power level of 550 MW when employing a 350 kV/35 kA electric pulse. The TE11 mode radiation pattern in the farfield region reveals the tube works steadily on the dominant mode. More than 2000 shots have been tested in repetitive mode without any obvious degradation of the detected microwave parameters.

  19. Ultrafast high-repetition imaging of fuel sprays using picosecond fiber laser.

    Science.gov (United States)

    Purwar, Harsh; Wang, Hongjie; Tang, Mincheng; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Godin, Thomas; Hideur, Ammar

    2015-12-28

    Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.

  20. The First Pulse of the Extremely Bright GRB 130427A: A Test Lab for Synchrotron Shocks

    Science.gov (United States)

    Preece, R.; Burgess, J. Michael; von Kienlin, A.; Bhat, P. N.; Briggs, M. S.; Byrne, D.; Chaplin, V.; Cleveland, W.; Collazzi, A. C.; Goldstein, A.; Kouveliotou, C.; Wilson-Hodge, C.; Gehrels, N.; Harding, A. K.; Nemmen, R.; Racusin, J. L.; Scargle, J. D.

    2013-01-01

    Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 s is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.

  1. Study on Pulse Skip Modulation Mode in Smart Power Integrated Circuits and Its Test Technology

    Institute of Scientific and Technical Information of China (English)

    LUO Ping

    2005-01-01

    @@ Up to now, the popular control modes for smart power integrated circuit (SPIC) are PWM and PFM.PWM bases on constant frequency variable width (CFVW) control pulse, whereas, PFM bases on constant width variable frequency (CWVF) control pulse. PWM converter has low efficiency with light loads and high amplitude harmonic. On the other hand,the control circuit and filter for PFM are much complex. This dissertation proposes a novel modulation mode named pulse skip modulation (PSM)for SPIC converter, which bases on constant width constant frequency (CWCF) control pulse. It is shown that PSM converter would improve its efficiency and suppress EMI. It also has quick response speed, good interfere rejection and strong robust. Furthermore, it is easy to realize PSM control circuit. The modulating theories of PSM are firstly studied in the world according to the author's investigation.

  2. Total Ionizing Dose Test Report for the UC1823A Pulse Width Modulator

    Science.gov (United States)

    Chen, Dakai; Forney, James

    2017-01-01

    The purpose of this study is to examine the total ionizing dose susceptibility for the UC1823A pulse width modulator manufactured by Texas Instruments, Inc. The part is suspected to be vulnerable to enhanced low dose rate sensitivity (ELDRS).

  3. Intradermorreação de Montenegro após sucessivas repetições do teste em Porteirinha, MG Montenegro intradermoreaction after the test sequential repetitions in Porteirinha, Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    Verônica Carneiro Borges

    2003-04-01

    Full Text Available Para avaliar a resposta a sucessivas aplicações da intradermorreação de Montenegro (IDRM, repetimos quatro vezes o teste em moradores de uma área endêmica de calazar que tiveram o exame negativo há 3-4 anos. Inicialmente, repetimos três IDRM nos que permaneceram negativos, com intervalo de 60 dias entre elas. Na segunda etapa, realizamos uma última reação em todos participantes do estudo. Do total de 49 indivíduos com IDRM prévia negativa, 19 (38,8% positivaram o teste em alguma das vezes, 17 (34,7% abandonaram o estudo e 13 (26,5% permaneceram com resultado negativo em todas as aplicações. Na segunda etapa, a repetição da IDRM mostrou que dos 14 que eram positivos em algum dos testes, 8 assim permaneceram e 6 tornaram-se negativos. Nossos resultados confirmam a possibilidade de indução de hipersensibilidade tardia em alguns indivíduos pela aplicação da IDRM.With the purpose of evaluating the response of sequential applications of Montenegro intradermoreaction (IDRM, we have repeated four times the test in the inhabitants of an endemic area for kala-azar, that resulted negative 3-4 years ago. Firstly, we have repeated three IDRM in those who remained negative, with a 60-day interval among them. In the second stage, we have performed a last reaction in all participants of the study. From the total of 49 individuals with prior negative IDRM, 19 (38.8% have positivated the test in some of the times, 17 (34.7% have given up the study and 13 (26.5% remained with a negative result in all the applications. In the second stage, the repetition of IDRM has shown that from the 14 positive in some of the tests, 8 remained like this and 6 have become negative. Our results confirm the possibility of late hypersensitivity induction in some individuals as a consequence of IDRM application.

  4. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification

    NARCIS (Netherlands)

    Witte, S.; Zinkstok, R.T.; Hogervorst, W.; Eikema, K.S.E.

    2005-01-01

    We demonstrate the generation of 9.8 +/- 0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti: Sapphire oscillator to

  5. Frequency and amplitude characteristics of a high-repetition-rate hybrid TEA-CO/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Lachambre, J.L.; Lavigne, P.; Verreault, M.; Otis, G.

    1978-02-01

    The envelope and frequency characteristics of the output pulse of a high-repetition-rate hybrid TEA-CO/sub 2/ laser are presented. Both the intrapulse and interpulse laser frequency stability are experimentally determined at repetition rates up to 300 Hz. The recovery of the CW laser signal following the generation of the TEA laser pulse is analyzed theoretically and experimentally. Short term reproducibilities of + or - 2 MHz are observed at a pulse repetition rate of 300 Hz with initial chirp rates of about 1.5 MHz/microsec. Improvements and limits on power and repetition rate are discussed.

  6. Characterization of pulsed x-ray beams for tests of electronic dosemeter performance; Caracterizacao de feixes de raios X pulsados para testes de desempenho de dosimetros eletronicos

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Margarete C.; Silva, Teogenes A. da, E-mail: mcg@cdtn.br, E-mail: silvata@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Curso de Pos-Graduacao em Ciencias e Tecnologia das Radiacoes, Materiais e Minerais

    2013-10-01

    Electronic dosimeters, due to direct reading, have been increasingly used for individual or area monitoring for purposes of radiation protection in X-ray fields used in diagnostic radiology. Deficiencies of performance in pulsed beams of such dosimeters have been published, which are not detected by the calibration procedures and performance tests established by international standards only for continuous beams of radiation. In Brazil, there are no performance requirements of dosimeters in pulsed beams, or a laboratory that performs testing for reliability in the use of dosimeters. This study aims to characterize the X-ray machine Medical VMI 800 Plus in the Laboratory Calibration of Dosimeters of CDTN/CNEN - Brazilian CNEN institute - and study the feasibility of its use for performance testing of electronic dosimeters. (author)

  7. Dependence of a rabbit's reaction on the frequency of repetition of an impulse and current exposition in experiment

    Directory of Open Access Journals (Sweden)

    Koklin А.Е.

    2013-12-01

    Full Text Available Now electroshock devices are used as a civilian weapon for self-defense and as a non-lethal weapon in the police. Therefore, medical-biological safety testing of electroshock devices should be carried out. Development of hygienic regulations is relevant as well. The aim of our work is the study of the biological effects of pulsed current depending on the pulse frequency, pulse amplitude and exposure. Material and methods. We compared the biological effects with varying frequency of the current pulse (50, 400, and 600 Hz with varying exposure (0.25, 0.5 and 1.0 s.. Average pulse power in all cases was equal, and the pulse energy was different. Experiments were performed on rabbits. Biological effects of stun device were evaluated by clinical lesions, as well as electrophysiological parameters: ECG and electro-pneumogram. Results. Response was observed only in the current period (0.25 s, 0.5 s or 1 s was disorientation, convulsing, dyspnea. The degree of severity of the reaction was determined by a combination of pulse repetition frequency and exposure. Immediately after switching off the current noted vocalization, decreased heart rate and breathing. Heart rate and respiration in 5 minutes back to the normal values. Conclusions. In the results of the research has got a comparative classification organism's response (based on a points system as well as the characteristic of the biological response of the individual systems of the body on the parameters of the current pulse.

  8. Pulsed photothermal radiometry for noncontact spectroscopy, material testing and inspection measurement

    Science.gov (United States)

    Tam, A. C.

    1984-08-01

    Photothermal Radiometry (PTR) is a sensitive technique for noncontact spectroscopy and inspection. Its principle is the following: a modulated beam of photons (or other particles) produces temperature transients in a sample; the corresponding transients in the infrared thermal radiation emitted from the sample are analyzed. This can provide absolute absorption coefficients, as well as information on thermal diffusivity, layered structure, and dimensions. Variations of PTR are possible with continuously-modulated or pulsed excitation, and with transmission or back-scattering detection. These variations are reviewed. The recent technique of pulsed PTR with backscattering detection is described in more detail, and some important single-ended remote sensing applications are discussed.

  9. A pulsed magnetic stress applied to Drosophila melanogaster flies

    Science.gov (United States)

    Delle Side, D.; Bozzetti, M. P.; Friscini, A.; Giuffreda, E.; Nassisi, V.; Specchia, V.; Velardi, L.

    2014-04-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  10. The role of short-term memory impairment in nonword repetition, real word repetition, and nonword decoding: A case study.

    Science.gov (United States)

    Peter, Beate

    2017-09-21

    In a companion study, adults with dyslexia and adults with a probable history of childhood apraxia of speech showed evidence of difficulty with processing sequential information during nonword repetition, multisyllabic real word repetition and nonword decoding. Results suggested that some errors arose in visual encoding during nonword reading, all levels of processing but especially short-term memory storage/retrieval during nonword repetition, and motor planning and programming during complex real word repetition. To further investigate the role of short-term memory, a participant with short-term memory impairment (MI) was recruited. MI was confirmed with poor performance during a sentence repetition and three nonword repetition tasks, all of which have a high short-term memory load, whereas typical performance was observed during tests of reading, spelling, and static verbal knowledge, all with low short-term memory loads. Experimental results show error-free performance during multisyllabic real word repetition but high counts of sequence errors, especially migrations and assimilations, during nonword repetition, supporting short-term memory as a locus of sequential processing deficit during nonword repetition. Results are also consistent with the hypothesis that during complex real word repetition, short-term memory is bypassed as the word is recognized and retrieved from long-term memory prior to producing the word.

  11. A repetitive 0.14 THz relativistic surface wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guangqiang; Tong Changjiang; Li Xiaoze; Wang Xuefeng; Li Shuang; Lu Xicheng [Northwest Institute of Nuclear Technology, P.O. Box 69-1, Xi' an 710024 (China); Wang Jianguo [Northwest Institute of Nuclear Technology, P.O. Box 69-1, Xi' an 710024 (China); School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2013-04-15

    Preliminary experimental results of a repetitive 0.14 THz overmoded relativistic surface wave oscillator (RSWO) are presented in this paper. The repetitive RSWO is developed by using a rectangularly corrugated slow-wave structure with overmoded ratio of 3 and a foilless diode emitting annular electron beam with thickness of 0.5 mm. The high quality electron beams at the repetition rate of 10 are obtained over a wide range of diode voltage (180 kV < U < 240 kV) and current (700 A < I < 1.2 kA). The generation experiments of RSWO are conducted at an axial pulsed magnetic field whose maximum strength and duration can reach about 2.7 T and 1 s, respectively. The experimental results show that the RSWO successfully produces reasonable uniform terahertz pulses at repetition rate of 10, and the pulse duration, frequency, and power of a single pulse are about 1.5 ns, 0.154 THz, and 2.6 MW, respectively, whereas the dominated radiation mode of the RSWO is TM{sub 02}.

  12. MIMICRY, DIFFERENCE AND REPETITION

    Directory of Open Access Journals (Sweden)

    Marcelo Mendes de Souza

    2008-07-01

    Full Text Available This article addresses Homi K. Bhabha’s concept of mimicry in a broader context, other than that of cultural studies and post-colonial studies, bringing together other concepts, such as that of Gilles Deleuze in Difference and repetition, among other texts, and other names, such as Silviano Santiago, Jorge Luís Borges, Franz Kafka and Giorgio Agamben. As a partial conclusion, the article intends to oppose Bhabha’s freudian-marxist view to Five propositions on Psychoanalysis (1973, Gilles Deleuze’s text about Psychoanalysis published right after his book The Anti-Oedipus.

  13. Pulsed direct and constant direct currents in the pilocarpine iontophoresis sweat chloride test.

    Science.gov (United States)

    Gomez, Carla Cristina Souza; Servidoni, Maria de Fatima; Marson, Fernando Augusto de Lima; Canavezi, Paulo Jose Coelho; Vinagre, Adriana Mendes; Costa, Eduardo Tavares; Ribeiro, Antonio Fernando; Ribeiro, Maria Angela Gonçalves de Oliveira; Toro, Adyleia Aparecida Dalbo Contrera; Pavan, Celia Regina; Rondon, Michelle Vivine Sá Dos Santos; Lorena, Sonia Leticia Silva; Vieria, Francisco Ubaldi; Ribeiro, Jose Dirceu

    2014-12-13

    The classic sweat test (CST) is the golden standard for cystic fibrosis (CF) diagnosis. Then, our aim was compare the production and volume of sweat, and side effects caused by pulsed direct current (PDC) and constant direct current (CDC). To determine the optimal stimulation time (ST) for the sweat collection. To verify the PDC as CF diagnosis option. Prospective study with cross-sectional experimental intervention. Experiment 1 (right arm): PDC and CDC. ST at 10 min and sweat collected at 30 min. Currents of 0.5; 0.75; 1.0 and 1.5 mA and frequencies of 0, 200, 1,000 and 5,000 Hz applied. Experiment 2 (left arm): current of 1.0 mA, ST at 5 and 10 min and sweat collected at 15 and 30 min with frequencies of 0; 200; 1,000 and 5,000 Hz applied Experiments 1 and 2 were performed with current density (CD) from 0.07 to 0.21 mA/cm2. Experiment 3: PDC was used in typical CF patients with two CFTR mutations screened and or with CF diagnosis by rectal biopsy and patients with atypical CF. 48 subjects (79.16% female) with average of 29.54 ± 8.87 years old were enrolled. There was no statistical difference between the interaction of frequency and current in the sweat weight (p = 0.7488). Individually, positive association was achieved between weight sweat and stimulation frequency (p = 0.0088); and current (p = 0.0025). The sweat production was higher for 10 min of stimulation (p = 0.0023). The sweat collection was better for 30 min (p = 0.0019). The skin impedance was not influenced by ST and sweat collection (p > 0.05). The current frequency was inversely associated with the skin impedance (p < 0.0001). The skin temperature measured before stimulation was higher than after (p < 0.0001). In Experiment 3 (29 subjects) the PDC showed better kappa index compared to CDC (0.9218 versus 0.5205, respectively). The performance of the CST with CDC and PDC with CD of 0.14 to 0.21 mA/cm2 showed efficacy in steps of stimulation and collection of sweat, without side effects. The optimal

  14. Temporal Shaping of High Peak Power Pulse Trains from a Burst-Mode Laser System

    Directory of Open Access Journals (Sweden)

    Jörg Körner

    2015-12-01

    Full Text Available It has been shown in the past that pulsed laser systems operating in the so-called “burst mode” are a beneficial approach to generate high peak power laser pulses at high repetition rates suitable for various applications. So far, most high-energy burst-mode laser systems put great effort into generating a homogeneous energy distribution across the burst duration, e.g., by shaping the pump pulse. In this work, we present a new shaping technique, which is able to produce arbitrary energy distributions within the burst by pre-shaping the seed pulse burst with a Pockels cell. Furthermore, this technique allows for the precompensation of any static modulations across the burst, which may be introduced during the subsequent amplification process. Therefore, a pulse burst with a uniform energy distribution can also be generated. The method is tested with an ultra-short pulse burst mode laser amplifier system producing bursts of a 1 ms duration with a pulse repetition rate of 1 MHz and a maximum output power of 800 W during the burst. Furthermore, a method to predict the influence of the amplifier on a non-uniformly shaped burst is presented and successfully tested to produce a pre-defined pulse shape after amplification.

  15. Field test and theoretical analysis of electromagnetic pulse propagation velocity on crossbonded cable systems

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Bak, Claus Leth; Gudmundsdottir, Unnur Stella

    2014-01-01

    In this paper, the electromagnetic pulse propagation velocity on a three-phase cable system, consisting of three single core (SC) cables in flat formation with an earth continuity conductor is under study. The propagation velocity is an important parameter for most travelling wave off- and online...

  16. Development and testing of a 50-kA, pulsed superconducting cable

    Science.gov (United States)

    Wollan, J. J.; Hamilton, W. C.; Declerc, J.; Zeitlin, B. A.

    1982-11-01

    Prototype cables for 7.5-T, pulsed field application in Tokamak poloidal coils were designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  17. Development and testing of a 50-kA, pulsed superconducting cable

    Energy Technology Data Exchange (ETDEWEB)

    Wollan, J.J.; Hamilton, W.C.; DeClerc, J.; Zeitlin, B.A.

    1982-01-01

    Prototype cables for 7.5-T, pulsed field application in tokamak poloidal field coils have been designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  18. Repetition rate continuously tunable 10-GHz picosecond mode-locked fiber ring laser

    Institute of Scientific and Technical Information of China (English)

    Fang Wan; Ziyu Wang

    2006-01-01

    A couple of simple-structure phase modulators were used in active mode-locked fiber laser to implement repetition rate continuous tuning. The laser produces pulse as short as 5.7 ps whose repetition rate tuning can cover the spacing of the adjoining order mode-locking frequencies.

  19. Experimental and Numerical Study on the Deformation Mechanism in AZ31B Mg Alloy Sheets Under Pulsed Electric-Assisted Tensile and Compressive Tests

    Science.gov (United States)

    Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong

    2016-06-01

    The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.

  20. Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate.

    Science.gov (United States)

    Dantan, Aurélien; Laurat, Julien; Ourjoumtsev, Alexei; Tualle-Brouri, Rosa; Grangier, Philippe

    2007-07-09

    We demonstrate high gain amplification of 160-femtosecond pulses in a compact double-pass cryogenic Ti:sapphire amplifier. The setup involves a negative GVD mirrors recompression stage, and operates with a repetition rate between 0.2 and 4 MHz with a continuous pump laser. Amplification factors as high as 17 and 320 nJ Fourier-limited pulses are obtained at a 800 kHz repetition rate.

  1. Optical beam dynamics in a gas repetitively heated by femtosecond filaments

    CERN Document Server

    Jhajj, N; Wahlstrand, J K; Milchberg, H M

    2013-01-01

    We investigate beam pointing dynamics in filamentation in gases driven by high repetition rate femtosecond laser pulses. Upon suddenly exposing a gas to a kilohertz train of filamenting pulses, the filament is steered from its original direction to a new stable direction whose equilibrium is determined by a balance among buoyant, viscous, and diffusive processes in the gas. Results are shown for Xe and air, but are broadly applicable to all configurations employing high repetition rate femtosecond laser propagation in gases.

  2. FRB repetition and non-Poissonian statistics

    CERN Document Server

    Connor, Liam; Oppermann, Niels

    2016-01-01

    We discuss some of the claims that have been made regarding the statistics of fast radio bursts (FRBs). In an earlier paper \\citep{2015arXiv150505535C} we conjectured that flicker noise associated with FRB repetition could show up in non-cataclysmic neutron star emission models, like supergiant pulses. We show how the current limits of repetition would be significantly weakened if their repeat rate really were non-Poissonian and had a pink or red spectrum. Repetition and its statistics have implications for observing strategy, generally favouring shallow wide-field surveys, since in the non-repeating scenario survey depth is unimportant. We also discuss the statistics of the apparent latitudinal dependence of FRBs, and offer a simple method for calculating the significance of this effect. We provide a generalized Bayesian framework for addressing this problem, which allows for direct model comparison. It is shown how the evidence for a steep latitudinal gradient of the FRB rate is less strong than initially s...

  3. First test of a power-pulsed electronics system on a GRPC detector in a 3-Tesla magnetic field

    CERN Document Server

    Caponetto, L; de la Taille, C; Dulucq, F; Kieffer, R; Laktineh, I; Lumb, N; Mirabito, L; Seguin-Moreau, N

    2012-01-01

    An important technological step towards the realization of an ultra-granular hadronic calorimeter to be used in the future International Linear Collider (ILC) experiments has been made. A 33X50 cm2 GRPC detector equipped with a power-pulsed electronics board offering a 1cm2 lateral segmentation was successfully tested in a 3-Tesla magnet operating at the H2 beam line of the CERN SPS. An important reduction of power consumption with no deterioration of the detector performance is obtained when the power-pulsing mode is applied. This important result shows that ultra-granular calorimeters for ILC experiments are not only an attractive but also a realistic option.

  4. Pulsed photothermal radiometry for noncontact spectroscopy, material testing and inspection measurements

    Science.gov (United States)

    Tam, A. C.

    1985-02-01

    Photothermal radiometry (PTR) is a sensitive technique for noncontact spectroscopy and inspection. Its principle is the following: a modulated beam of photons (or other particles) produces temperature transients in a sample; the corresponding transients in the IR thermal radiation emitted from the sample are analyzed. This can provide absolute absorption coefficients, as well as information on thermal diffusivity, layered structure and dimensions. Variations of PTR are possible with continuously-modulated or pulsed excitation, and with transmission or back-scattering detection. These variations are reviewed. The recent technique of pulsed PTR with back-scattering detection is described in more detail, and some important single-ended remote-sensing applications are discussed.

  5. Repetition in Waiting for Godot

    Institute of Scientific and Technical Information of China (English)

    李想; 魏妍

    2015-01-01

    Waiting for Godot is one of the most famous plays written by Samuel Barclay Beckett, and also is the founding work of“Theatre of the Absurd”. In the drama, repetitive phenomena shed light on the whole construction considerably. All the charac-ters were helpless and unthinking. Their dialogues were simple, nonsense and repetitive. Two scenes were cyclical. Repetition was used subtly in order to express the theme of the play, showing mental crisis after depravation of WWII.

  6. Design, Construction and Testing of a Pulsed High Energy Inductive Superconducting Energy Storage System

    Science.gov (United States)

    1975-09-01

    10,000 tim;es larger tnan the resistive voltaje and can be !-½vce evough to de;tr,)y electronic equip-ient. This task car. be accu)rplmshrd by...2.67 kH. FA 2483 231 E cNu 42 1 o Time 0.2 ms/cm Figure 128 Single pulse of current to 0.2 2 load delivered by helium switch. Firingj voltaj - 2,000 V

  7. [INVITED] Laser welding of glasses at high repetition rates - Fundamentals and prospects

    Science.gov (United States)

    Richter, Sören; Zimmermann, Felix; Tünnermann, Andreas; Nolte, Stefan

    2016-09-01

    We report on the welding of various glasses with ultrashort laser pulses. Femtosecond laser pulses at repetition rates in the MHz range are focused at the interface between two substrates, resulting in multiphoton absorption and heat accumulation from successive pulses. This leads to local melting and subsequent resolidification which can be used to weld the glasses. The fundamental interaction process was studied using an in-situ micro Raman setup to measure the laser induced temperature distribution and its temporal decay. The induced network changes were analyzed by Raman spectrocopy identifying an increase of three and four membered silicon rings within the laser irradiated area. In order to determine the stability of the laser welded samples a three point bending test was used. Thereby, we identified that the maximal achievable breaking strength is limited by laser induced stress surrounding the modified material. To minimize the amount of stress bursts of laser pulses or an post processing annealing step can be applied. Besides fused silica, we welded borosilicate glasses and glasses with a low thermal expansion coefficient. Even the welding of different glass combinations is possible demonstrating the versatility of ultrashort pulse induced laser welding.

  8. Recent Performance and Ignition Tests of the pulsed SNS H- Source for 1-MW Neutron Production

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, Martin P [ORNL; Han, Baoxi [ORNL; Murray, Jr, S N [ORNL; Pennisi, Terry R [ORNL; Piller, Chip [ORNL; Santana, Manuel [ORNL; Welton, Robert F [ORNL

    2015-01-01

    After acquiring several reliable spare targets, SNS ramped the beam power from 850 kW to 1.4 MW, which required an increase in H- beam pulse length from 0.88 to 1.0 ms at 60 Hz. This increase initially produced slow 2-MHz power ramp-ups and, after several weeks of uninterrupted operation, it produced plasma outages every time the pulse length was raised above ~0.95 ms. Similar outages were previously observed towards the end of long service cycles, which were believed to indicate that the breakdown voltage of the high purity hydrogen started to exceed the induced electric fields. In 2011 the RF was reconfigured to start with 10 cycles of 1.96 MHz, which yielded the shortest H- beam rise times and apparently eliminated those plasma outages. The new, pulse-length dependent outages were eliminated by increasing the initial frequency to 1.985 MHz. However, careful frequency studies are unable to justify this frequency. In addition, the paper discusses the issues and solutions for the electron-dump voltage, which starts to sag and become unstable after several weeks of high current operation.

  9. High-repetition-rate femtosecond dye amplifier using a laser-diode-pumped neodymium:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Zysset, B.; LaGasse, M.J.; Fujimoto, J.G.; Kafka, J.D.

    1989-02-06

    A high-repetition-rate femotosecond dye amplifier is demonstrated using a laser-diode-pumped Q-switched Nd:YAG laser. Amplification of wavelength-tunable 300-fs pulses from a synchronously mode-locked rhodamine dye laser is achieved with a saturated gain of 70 and a small gain of 200 at a repetition rate of 800 Hz. Maximum pulse energies of 40 nJ are obtained, and pulse compression to as short as 30 fs is demonstrated.

  10. A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests

    Science.gov (United States)

    Forquin, Pascal; Zinszner, Jean-Luc

    2017-01-01

    Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the `wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, `wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  11. Repetition priming from moving faces.

    Science.gov (United States)

    Lander, Karen; Bruce, Vicki

    2004-06-01

    Recent experiments have suggested that seeing a familiar face move provides additional dynamic information to the viewer, useful in the recognition of identity. In four experiments, repetition priming was used to investigate whether dynamic information is intrinsic to the underlying face representations. The results suggest that a moving image primes more effectively than a static image, even when the same static image is shown in the prime and the test phases (Experiment 1). Furthermore, when moving images are presented in the test phase (Experiment 2), there is an advantage for moving prime images. The most priming advantage is found with naturally moving faces, rather than with those shown in slow motion (Experiment 3). Finally, showing the same moving sequence at prime and test produced more priming than that found when different moving sequences were shown (Experiment 4). The results suggest that dynamic information is intrinsic to the face representations and that there is an advantage to viewing the same moving sequence at prime and test.

  12. RF Pulse compression stabilization at the CTF3 CLIC test facility

    CERN Document Server

    Dubrovskiy, Alexey

    2010-01-01

    In the CTF3 accelerator, the RF produced by each of ten 3 GHz klystrons goes through waveguides, RF pulse compressors and splitters. The RF phase and power transformation of these devices depend on their temperature. The quantitative effect of the room temperature variation on the RF was measured. It is the major source of undesired changes during the CTF3 operation. An RF phaseloop and a compressor temperature stabilization are developed to suppress the phase fluctuation and the power profile change due to the temperature variation. The implementation is transparent for operators, it does not limit anyhow the flexibility of RF manipulations. Expected and measured suppression characteristics will be given.

  13. Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate

    Science.gov (United States)

    Girault, M.; Le Garrec, J.-L.; Mitchell, J. B. A.; Jouvard, J.-M.; Carvou, E.; Menneveux, J.; Yu, J.; Ouf, F.-X.; Carles, S.; Potin, V.; Pillon, G.; Bourgeois, S.; Perez, J.; Marco de Lucas, M. C.; Lavisse, L.

    2016-06-01

    The influence of a reactive atmosphere on the formation of nanoparticles (NPs) in the plasma plume generated by nanosecond pulsed laser irradiation of metal targets (Ti, Al, Ag) was probed in situ using Small Angle X-ray Scattering (SAXS). Air and different O2-N2 gas mixtures were used as reactive gas within atmospheric pressure. SAXS results showed the formation of NPs in the plasma-plume with a mean radius varying in the 2-5 nm range. A decrease of the NPs size with increasing the O2 percentage in the O2-N2 gas mixture was also showed. Ex situ observations by transmission electron microscopy and structural characterizations by X-ray diffraction and Raman spectroscopy were also performed for powders collected in experiments done using air as ambient gas. The stability of the different metal oxides is discussed as being a key parameter influencing the formation of NPs in the plasma-plume.

  14. Understanding maximal repetitions in strings

    CERN Document Server

    Crochemore, Maxime

    2008-01-01

    The cornerstone of any algorithm computing all repetitions in a string of length n in O(n) time is the fact that the number of runs (or maximal repetitions) is O(n). We give a simple proof of this result. As a consequence of our approach, the stronger result concerning the linearity of the sum of exponents of all runs follows easily.

  15. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, an anthropomorfized archive of a past intimacy and an all-encompassing immersive environment modulating continuously in real space-time....

  16. Demonstration of a high repetition rate capillary discharge waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, A. J., E-mail: ajgonsalves@lbl.gov; Pieronek, C.; Daniels, J.; Bulanov, S. S.; Waldron, W. L.; Mittelberger, D. E.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, F.; Antipov, S.; Butler, J. E. [Euclid TechLabs, Gaithersburg, Maryland 20879 (United States); Bobrova, N. A.; Sasorov, P. V. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)

    2016-01-21

    A hydrogen-filled capillary discharge waveguide operating at kHz repetition rates is presented for parameters relevant to laser plasma acceleration (LPA). The discharge current pulse was optimized for erosion mitigation with laser guiding experiments and MHD simulation. Heat flow simulations and measurements showed modest temperature rise at the capillary wall due to the average heat load at kHz repetition rates with water-cooled capillaries, which is promising for applications of LPAs such as high average power radiation sources.

  17. Recent view to the results of pulse tests in the IGR reactor with high burn-up fuel

    Energy Technology Data Exchange (ETDEWEB)

    Asmolov, V.; Yegorova, L. [Russian Research Centre, Moscow (Russian Federation)

    1996-03-01

    Testing of 43 fuel elements (13 fuel elements with high burn-up fuel, 10 fuel elements with preirradiated cladding and fresh fuel, and 20 non-irradiated fuel elements) was carried out in the IGR pulse reactor with a half width of the reactor power pulse of about 0.7 sec. Tests were conducted in capsules with no coolant flow and with standard initial conditions in the capsule of 20{degrees}C and 0.2 MPa. Two types of coolant were used: water and air. One purpose of the test program was to determine the thresholds and mechanisms of fuel rod failure under RIA conditions for VVER fuel rods over their entire exposure range, from zero to high burn-up. These failure thresholds are often used in safety analyses. The tests and analyses were designed to reveal the influence on fuel rod failure of (1) the mechanical properties of the cladding, (2) the pellet-to-cladding gap, (3) fuel burn-up, (4) fuel-to-coolant heat transfer, and other parameters. The resulting data base can also be used for validation of computer codes used for analyzing fuel rod behavior. Three types of test specimens were used in the tests, and diagrams of these specimens are shown in Fig. 1. {open_quotes}Type-C{close_quotes} specimens were re-fabricated from commercial fuel rods of the VVER-1000 type that had been subjected to many power cycles of operation in the Novovoronezh Nuclear Power Plant (NV NPP). {open_quotes}Type-D{close_quotes} specimens were fabricated from the same commercial fuel rods used above, but the high burn-up oxide fuel was removed from the cladding and was replaced with fresh oxide fuel pellets. {open_quotes}Type-D{close_quotes} specimens thus provided a means of separating the effects of the cladding and the oxide fuel pellets and were used to examine cladding effects only.

  18. a Portable Pulsed Neutron Generator

    Science.gov (United States)

    Skoulakis, A.; Androulakis, G. C.; Clark, E. L.; Hassan, S. M.; Lee, P.; Chatzakis, J.; Bakarezos, M.; Dimitriou, V.; Petridis, C.; Papadogiannis, N. A.; Tatarakis, M.

    2014-02-01

    The design and construction of a pulsed plasma focus device to be used as a portable neutron source for material analysis such as explosive detection using gamma spectroscopy is presented. The device is capable of operating at a repetitive rate of a few Hz. When deuterium gas is used, up to 105 neutrons per shot are expected to be produced with a temporal pulse width of a few tens of nanoseconds. The pulsed operation of the device and its portable size are its main advantage in comparison with the existing continuous neutron sources. Parts of the device include the electrical charging unit, the capacitor bank, the spark switch (spark gap), the trigger unit and the vacuum-fuel chamber / anode-cathode. Numerical simulations are used for the simulation of the electrical characteristics of the device including the scaling of the capacitor bank energies with total current, the pinch current, and the scaling of neutron yields with energies and currents. The MCNPX code is used to simulate the moderation of the produced neutrons in a simplified geometry and subsequently, the interaction of thermal neutrons with a test target and the corresponding prompt γ-ray generation.

  19. Perceptual Repetition Blindness Effects

    Science.gov (United States)

    Hochhaus, Larry; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    The phenomenon of repetition blindness (RB) may reveal a new limitation on human perceptual processing. Recently, however, researchers have attributed RB to post-perceptual processes such as memory retrieval and/or reporting biases. The standard rapid serial visual presentation (RSVP) paradigm used in most RB studies is, indeed, open to such objections. Here we investigate RB using a "single-frame" paradigm introduced by Johnston and Hale (1984) in which memory demands are minimal. Subjects made only a single judgement about whether one masked target word was the same or different than a post-target probe. Confidence ratings permitted use of signal detection methods to assess sensitivity and bias effects. In the critical condition for RB a precue of the post-target word was provided prior to the target stimulus (identity precue), so that the required judgement amounted to whether the target did or did not repeat the precue word. In control treatments, the precue was either an unrelated word or a dummy.

  20. Self-controlled KR schedules: does repetition order matter?

    Science.gov (United States)

    Patterson, Jae T; Carter, Michael J; Hansen, Steve

    2013-08-01

    The impact of an experimenter-defined repetition schedule on the utility of a self-controlled KR context during motor skill acquisition was examined. Participants were required to learn three novel spatial-temporal tasks in either a random or blocked repetition schedule with or without the opportunity to control their KR. Results from the retention period showed that participants provided control over their KR schedule in a random repetition schedule demonstrated superior learning. However, performance measures from the transfer test showed that, independent of repetition schedule, learners provided the opportunity to control their KR schedule demonstrated superior transfer performance compared to their yoked counterparts. The dissociated impact of repetition schedule and self-controlled KR schedules on retention and transfer is discussed.

  1. Impaired speech repetition and left parietal lobe damage.

    Science.gov (United States)

    Fridriksson, Julius; Kjartansson, Olafur; Morgan, Paul S; Hjaltason, Haukur; Magnusdottir, Sigridur; Bonilha, Leonardo; Rorden, Christopher

    2010-08-18

    Patients with left hemisphere damage and concomitant aphasia usually have difficulty repeating others' speech. Although impaired speech repetition, the primary symptom of conduction aphasia, has been associated with involvement of the left arcuate fasciculus, its specific lesion correlate remains elusive. This research examined speech repetition among 45 stroke patients who underwent aphasia testing and MRI examination. Based on lesion-behavior mapping, the primary structural damage most closely associated with impaired speech repetition was found in the posterior portion of the left arcuate fasciculus. However, perfusion-weighted MRI revealed that tissue dysfunction, in the form of either frank damage or hypoperfusion, to the left inferior parietal lobe, rather than the underlying white matter, was associated with impaired speech repetition. This latter result suggests that integrity of the left inferior parietal lobe is important for speech repetition and, as importantly, highlights the importance of examining cerebral perfusion for the purpose of lesion-behavior mapping in acute stroke.

  2. A Long-Pulse Modulator for the TESLA Test Facility (TTF)

    CERN Document Server

    Kaesler, W

    2004-01-01

    The long-pulse (1.6 ms) klystron modulator for TTF is a hardtube pulser using a Bouncer-circuit for droop compensation. It is built up with new advanced components representing industrial standards. The on-/off switch is a rugged 12 kV IGCT-stack with a fast 4kA turn-off capability. The 100 kJ storage capacitor bank contains only three capacitors with self-healing, segmented PP-foil technology. A new 100 kA solid-state switch based on light triggered thyristors (LTT) replaced the standard ignitrons as crowbar switches. The 300 kW high voltage power supply is based on modern switched mode technology.

  3. Pulse Electrodeposition and Nanoindentation Test of ZrO2/Ni Nanocomposite

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    ZrO2/Ni nanocomposite was produced via pulse electrodeposition using a nickel sulfmate bath. The effects of main factors including pH value, temperature T, current density Dk and ZrO2 content p on the electrodeposit were dealt with by the Taguchi method. Experimental results show that the current density and ZrO2 content affect the electrodepositing process significantly. Nanocomposite with an average grain size of about 50 nm and ZrO2 content of up to 0.4 wt% was produced under the optimal condition. The Young's modulus of the achieved composite is similar to that of polycrystalline Ni. The microhardness is much higher than that of common pure Ni, primarily due to the ultrafine grains of Ni matrix by the Hall-Petch mechanism. The homogeneous dispersion of stiff ZrO2 particles in the Ni matrix acting as dislocation pinning and microcrack pinning also results in the strengthening effect.

  4. Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Girault, M. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Le Garrec, J.-L.; Mitchell, J.B.A. [Institut de Physique de Rennes, UMR 6251 CNRS-Université de Rennes 1, 35042 Rennes Cedex (France); Jouvard, J.-M. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Carvou, E. [Institut de Physique de Rennes, UMR 6251 CNRS-Université de Rennes 1, 35042 Rennes Cedex (France); Menneveux, J.; Yu, J. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Ouf, F.-X. [Institut de Radioprotection et de Sureté Nucléaire IRSN/PSN-RES/SCA/LPMA BP 68, 91192 Gif-Sur-Yvette (France); Carles, S. [Institut de Physique de Rennes, UMR 6251 CNRS-Université de Rennes 1, 35042 Rennes Cedex (France); Potin, V.; Pillon, G.; Bourgeois, S. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Perez, J. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette Cedex (France); Marco de Lucas, M.C., E-mail: delucas@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); and others

    2016-06-30

    Highlights: • NPs formed in a plasma-plume during laser irradiation of metals (Al, Ti, Ag) were studied. • In situ SAXS and ex situ TEM, XRD and Raman spectra were measured. • NPs size decreased when increasing the O{sub 2} fraction in a controlled O{sub 2}+N{sub 2} atmosphere. • The oxidation of metal NPs in the plasma restricts the increase of the size of the NPs. - Abstract: The influence of a reactive atmosphere on the formation of nanoparticles (NPs) in the plasma plume generated by nanosecond pulsed laser irradiation of metal targets (Ti, Al, Ag) was probed in situ using Small Angle X-ray Scattering (SAXS). Air and different O{sub 2}–N{sub 2} gas mixtures were used as reactive gas within atmospheric pressure. SAXS results showed the formation of NPs in the plasma-plume with a mean radius varying in the 2–5 nm range. A decrease of the NPs size with increasing the O{sub 2} percentage in the O{sub 2}–N{sub 2} gas mixture was also showed. Ex situ observations by transmission electron microscopy and structural characterizations by X-ray diffraction and Raman spectroscopy were also performed for powders collected in experiments done using air as ambient gas. The stability of the different metal oxides is discussed as being a key parameter influencing the formation of NPs in the plasma-plume.

  5. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  6. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing

    Science.gov (United States)

    Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping

    2014-10-01

    Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.

  7. Effect of Airflows on Repetitive Nanosecond Volume Discharges

    Science.gov (United States)

    Tang, Jingfeng; Wei, Liqiu; Huo, Yuxin; Song, Jian; Yu, Daren; Zhang, Chaohai

    2016-03-01

    Atmospheric pressure discharges excited by repetitive nanosecond pulses have attracted significant attention for various applications. In this paper, a plate-plate discharge with airflows is excited by a repetitive nanosecond pulse generator. Under different experiment conditions, the applied voltages, discharge currents, and discharge images are recorded. The plasma images presented here indicate that the volume discharge modes vary with airflow speeds, and a diffuse and homogeneous volume discharge occurs at the speed of more than 35 m/s. The role of airflows provides different effects on the 2-stage pulse discharges. The 1st pulse currents nearly maintain consistency for different airflow speeds. However, the 2nd pulse current has a change trend of first decreasing and then rapidly increasing, and the value difference for 2nd pulse currents is about 20 A under different airflows. In addition, the experimental results are discussed according to the electrical parameters and discharge images. supported by National Natural Science Foundation of China (Nos. 51006027, 51437002, and 51477035)

  8. Coiled transmission line pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Kenneth Fox (Columbia, MO)

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  9. High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification.

    Science.gov (United States)

    Metzger, Thomas; Schwarz, Alexander; Teisset, Catherine Yuriko; Sutter, Dirk; Killi, Alexander; Kienberger, Reinhard; Krausz, Ferenc

    2009-07-15

    We report an optically synchronized picosecond pump laser for optical parametric amplifiers based on an Yb:YAG thin-disk amplifier. At 3 kHz repetition rate, pulse energies of 25 mJ with 1.6 ps pulse duration were achieved with an rms fluctuation in pulse energy of pumped regenerative amplifier.

  10. Brain responses evoked by high-frequency repetitive transcranial magnetic stimulation: an event-related potential study

    NARCIS (Netherlands)

    M. Hamidi; H.A. Slagter; G. Tononi; B.R. Postle

    2010-01-01

    Background Many recent studies have used repetitive transcranial magnetic stimulation (rTMS) to study brain-behavior relationships. However, the pulse-to-pulse neural effects of rapid delivery of multiple TMS pulses are unknown largely because of TMS-evoked electrical artifacts limiting recording of

  11. Emotional arousal enhances word repetition priming

    OpenAIRE

    Thomas, Laura A.; LaBar, Kevin S.

    2005-01-01

    Three experiments were conducted to determine if emotional content increases repetition priming magnitude. In the study phase of Experiment 1, participants rated high-arousing negative (taboo) words and neutral words for concreteness. In the test phase, they made lexical decision judgements for the studied words intermixed with novel words (half taboo, half neutral) and pseudowords. In Experiment 2, low-arousing negative (LAN) words were substituted for the taboo words, and in Experiment 3 al...

  12. DFB diode seeded low repetition rate fiber laser system operating in burst mode

    Science.gov (United States)

    Šajn, M.; Petelin, J.; Agrež, V.; Vidmar, M.; Petkovšek, R.

    2017-02-01

    A distributed feedback (DFB) diode, gain switched to produce pulses from 60 ps at high peak power of over 0.5 W, is used in burst mode to seed a fiber amplifier chain. High seed power, spectral filtering between amplifier stages and pulsed pumping are used to mitigate amplified spontaneous emission (ASE). The effect of pulse pumping synchronized with the seed on the ASE is explored for the power amplifier at low repetition. Different input and output energies at different burst repetition rates are examined and up to 85% reduction in ASE is achieved compared to continuous pumping. Finally, a numerical model is used to predict further reduction of ASE.

  13. Detection of volatile impurities in turbine oils by the heat-pulse testing method

    Science.gov (United States)

    Skripov, P. V.; Demin, V. A.; Shangin, V. V.; Starostin, A. A.

    2016-07-01

    The research is aimed at development and implementation of methods and devices to control critical sections of the oil system of the power equipment that operates in the real time mode. The task was to develop a method for rapid detection of volatile impurities in turbine oils. The approach to the study is based on quantitative assessment of the short-term thermal stability of the substance that is formally associated with the content of the volatile impurity. The approach was selected on the basis of the results of search experiments taking into consideration the formulation of requirements for the method and the device, viz., (1) the method should reliably determine the moisture content in the range of 10-150 g of the impurity per ton of oil and (2) the device is to be applicable "in situ." For this purpose, a variant of the method of the controlled pulse heating of a wire probe, a resistance thermometer, has been developed. The advantages of the method are its speed, sensitivity to small contents of volatile impurities regardless of the nature of the impurity, and smallness of methodologically contributed perturbation. The heating conditions of the probe most sensitive to the appearance of moisture— including its trace amounts—in the system, has been defined. The duration of the measurement is on the order of milliseconds; the heat flux density through the surface of the probe reaches 1 MW/m2. The essence of the method consists in measuring, in the characteristic time interval, the temperature of the thermal instability onset associated with the content of the volatile impurity. The approach proposed by the authors is aimed at increasing the lifetime of the oil and preventing unpredictable failures of the operating equipment.

  14. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    Science.gov (United States)

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  15. Passively Mode-Locked Fiber Laser with a Sub-Megahertz Repetition Rate

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiong; JIA Dong-Fang; WU Yong-Chao; WANG Chang-Le; WANG Zhao-Ying; YANG Tian-Xin

    2011-01-01

    We demonstrate an ultra-long cavity by which an all-fiber erbium-doped fiber laser is passively mode-locked by nonlinear polarization rotation.The length of the resonant cavity amounts to 466m,which can be achieved by incorporating a 420m highly nonlinear fiber.The laser generates stable mode-locked pulses with a 444 kHz fundamental repetition rate.A near transform-limited subpicosecond pulse is obtained without any dispersion compensation.The maximum average power of the output pulses is 5.16 mW,which corresponds to a per-pulse energy of 11.62nJ.A low-repetition-rate optical pulse train is required for many applications such as micromachining,biomedical diagnostics and lidar systems.[1-3] However,the repetition rate of conventional fiber lasers is normally tens of MHz.Pulse pickers such as Pockels cells or acousto-optic modulators are always used to lower the repetition rate,however,reduction in this way introduces significant energy losses,impairs the signal-to-noise ratio (SNR) and increases complexity.Because the pulse repetition rate of a modelocked laser is inversely proportional to its resonator length,longer cavities lead to lower pulse repetition rates and,consequently,to higher pulse energy at the same average power of radiation.%We demonstrate an ultra-long cavity by which an all-fiber erbium-doped fiber laser is passively mode-locked by nonlinear polarization rotation. The length of the resonant cavity amounts to 466 m, which can be achieved by incorporating a 420 m highly nonlinear fiber. The laser generates stable mode-locked pulses with a 444 kHz fundamental repetition rate. A near transform-limited subpicosecond pulse is obtained without any dispersion compensation. The maximum average power of the output pulses is 5.16mW, which corresponds to a per-pulse energy of 11.62 nJ.

  16. All solid state pulsed power system for water discharge

    OpenAIRE

    Sakugawa, Takashi; Yamaguchi, Takahiro; Yamamoto, Kunihiro; Kiyan, Tsuyoshi; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; サクガワ, タカシ; ヤマグチ, タカヒロ; ヤマモト, クニヒロ; キヤン, ツヨシ; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 佐久川, 貴志

    2005-01-01

    Pulsed power has been used to produce non-thermal plasmas in gases that generate a high electric field at the tip of streamer discharges, where high energy electrons, free radicals, and ozone are produced. Recently, all solid state pulsed power generators, which are operated with high repetition rate, long lifetime and high reliability, have been developed for industrial applications, such as high repetition rate pulsed gas lasers, high energy density plasma (EUV sources) and water discharges...

  17. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    CERN Document Server

    Bertarelli, A; Boccone, V; Carra, F; Cerutti, F; Charitonidis, N; Charrondiere, C; Dallocchio, A; Fernandez Carmona, P; Francon, P; Gentini, L; Guinchard, M; Mariani, N; Masi, A; Marques dos Santos, S D; Moyret, P; Peroni, L; Redaelli, S; Scapin, M

    2013-01-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser ...

  18. Testing Einstein's Weak Equivalence Principle with a 0.4-Nanosecond Giant Pulse of the Crab Pulsar

    CERN Document Server

    Yang, Yuan-Pei

    2016-01-01

    Einstein's weak equivalence principle (EEP) can be tested through the arrival time delay between photons with different frequencies. Assuming that the arrival time delay is solely caused by the gravitational potential of the Milky Way, we show that a "nano-shot" giant pulse with an unresolved duration $\\Delta t_{\\rm{obs}}-\\Delta t_{\\rm{DM}}<0.4~\\rm{ns}$ from the Crab pulsar poses a new upper limit on the deviation from EEP, i.e. $\\Delta\\gamma < 8\\times 10^{-16}$. This result provides the hitherto most stringent constraint on the EEP, improving by at least 2 to 3 orders of magnitude from the previous results based on fast radio bursts.

  19. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  20. Enhancing caries resistance with a short-pulsed CO2 9.3-μm laser: a laboratory study (Conference Presentation)

    Science.gov (United States)

    Rechmann, Peter; Rechmann, Beate M.; Groves, William H.; Le, Charles; Rapozo-Hilo, Marcia L.; Featherstone, John D. B.

    2016-02-01

    The objective of this laboratory study was to test whether irradiation with a new 9.3µm microsecond short-pulsed CO2-laser enhances enamel caries resistance with and without additional fluoride applications. 101 human enamel samples were divided into 7 groups. Each group was treated with different laser parameters (Carbon-dioxide laser, wavelength 9.3µm, 43Hz pulse-repetition rate, pulse duration between 3μs to 7μs (1.5mJ/pulse to 2.9mJ/pulse). Using a pH-cycling model and cross-sectional microhardness testing determined the mean relative mineral loss delta Z (∆Z) for each group. The pH-cycling was performed with or without additional fluoride. The CO2 9.3μm short-pulsed laser energy rendered enamel caries resistant with and without additional fluoride use.

  1. A Method for Generating Diffuse Discharge via Repetitive Nanosecond Pulses and Wire Electrodes in Room-temperature Atmospheric Air%利用重复频率纳秒脉冲和线电极产生常温常压下的大气压弥散放电

    Institute of Scientific and Technical Information of China (English)

    李黎; 刘云龙; 俞斌; 葛亚峰; 林福昌

    2014-01-01

    The non-equilibrium plasmas produced by diffuse discharges have a great potential of application in many high technology fields. In room-temperature atmospheric air, the formation mechanism of non-equilibrium plasma is discussed and analysed. It is concluded that generating diffuse discharge in open air should meet the three conditions: low-voltage excitation, plentiful electron avalanches and temperature inhibition of spatial charge particles. A method of generating diffuse discharge is proposed and implemented. Based on runaway electrons breakdown theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform electrical field are structured. The experiments are performed in linear-type and ring-type electrode pairs. The results prove that the proposed method can generate typical diffuse discharges in cm. gaps via nanosecond pluses with less than 100kV peak voltage, hundreds of Hz repetitive frequency.%大气压弥散放电产生非热平衡等离子体在诸多高新技术领域具有较大应用潜力。分析了在常温常压的大气压条件下,形成和维持非热平衡等离子体的机制,提出了实现弥散放电应设法满足低放电电压、多电子崩发展和带电粒子温度抑制的条件。由此设计了在开放的大气压空气环境中实现大面积弥散放电的装置。根据逃逸电子击穿理论,选择重复频率、较低占空比的纳秒脉冲电激励方式作为弥散放电的低电压驱动源。利用线型电极的小曲率半径,构成极不均匀电场间隙。弥散放电分别在直线型电极和圆环型电极中进行。实验结果表明,所研制的放电装置能够以百kV以内峰值纳秒脉冲电压、数百Hz的频率激励若干厘米等级间距的大气压弥散放电。

  2. Pulsed laser propulsion performance of 11-cm parabolic bell engines within the atmosphere

    Science.gov (United States)

    Myrabo, Leik N.; Libeau, M. A.; Meloney, E. D.; Bracken, R. L.; Knowles, T. B.

    2004-09-01

    The paper presents pulsed laser propulsion performance data for three 11-cm diameter aluminum parabolic (or "bell-shaped") engines, tested with the 10-kW PLVTS pulsed CO2 laser at White Sands Missile Range, NM. The single-pulse and multiple-pulse tests were conducted on two campaigns, Sept. 2000 and Sept. 2001, using a ballistic pendulum apparatus. The results from two different sets of PLVTS resonator optics were gathered (both 2X and 3X magnification). Assuming the vertex is set at the parabola's focus (i.e., and viewing outward towards the 11-cm exit plane), the bell engines had three different total included angles of 60, 87.2, and 120 degrees. As expected, the impulse and coupling coefficient performance of the 60 deg. bell generally exceeded that of the 87.2 deg. engine, which in turn outperformed the 120 deg. bell. The maximum single-pulse coupling coefficients varied from 275 to 375 N-sec/MJ. Multiple-pulse engine performance data was also gathered with the same ballistic pendulum in the first campaign. A sequence of from 2 to 8 pulses was transmitted into each bell at a pulse repetition frequency of 25 HZ -- all delivered within the first 1/8th cycle of the pendulum's swing. In general, only small variations in the coupling coefficient were observed throughout the string of pulses.

  3. Note: Design and tests of a 13 kA-6.5 kV thyristor switch for a pulsed inductive vacuum ultraviolet source.

    Science.gov (United States)

    Teske, C; Lee, B-J; Jacoby, J; Schweizer, W; Sun, J Chao

    2010-04-01

    In this paper, the design, construction, and test procedure of a closing switch prototype based on thyristors is described. In particular, details are given about the design criteria and about the triggering board architecture, which is a high side biased, self supplied unit using the electrical energy derived from a local snubber network for the gate drive. The structure guarantees a hard firing gate pulse for the required high dI/dt application. Further, the results of the prototype tests are presented and discussed. The stack assembly has a holding voltage of 6.5 kV and is used for switching a series resonant circuit with a ringing frequency of 12 kHz for a pulsed inductive vacuum ultraviolet source. Maximum current amplitudes of 13 kA and pulse energies of more than 600 J were switched during the test procedure.

  4. Optimization of native fluorescence detection of proteins using a pulsed nano laser excitation source

    OpenAIRE

    Heywood, Matthew S.; Farnsworth, Paul B.

    2010-01-01

    We present a mathematical description of the S/N ratio in a fluorescence-based protein detector for capillary electrophoresis that uses a pulsed UV laser at 266 nm as an excitation source. The model accounts for photobleaching, detector volume, laser repetition rate, and analyte flow rate. We have experimentally characterized such a system, and present a comparison of the experimental data with the predictions of the model. Using the model, the system was optimized for test analytes tryptopha...

  5. Repetition in English Political Public Speaking

    Institute of Scientific and Technical Information of China (English)

    李红梅

    2010-01-01

    Repetition is frequently used in English political public speaking to make it easy to be remembered and powerful to move the feelings of the public. This paper is intended to analyze the functions of repetition and different levels of repetition to highlight the significance of repetition in English political public speaking and the ability of using it in practice.

  6. Nonlinear processes associated with the amplification of MHz-linewidth laser pulses in single-mode Tm:fiber

    Science.gov (United States)

    Sincore, Alex; Bodnar, Nathan; Bradford, Joshua; Abdulfattah, Ali; Shah, Lawrence; Richardson, Martin C.

    2017-03-01

    This work studies the accumulated nonlinearities when amplifying a narrow linewidth 2053 nm seed in a single mode Tm:fiber amplifier. A control of repetition rate and pulse duration (>30 ns). The pulses are subsequently amplified and the repetition rate is further reduced using a second acousto-optic modulator. It is well known that spectral degradation occurs in such fibers for peak powers over 100's of watts due to self-phase modulation, four-wave mixing, and stimulated Raman scattering. In addition to enabling a thorough test bed to study such spectral broadening, this system will also enable the investigation of stimulated Brillouin scattering thresholds in the same system. This detailed study of the nonlinearities encountered in 2 μm fiber amplifiers is important in a range of applications from telecommunications to the amplification of ultrashort laser pulses.

  7. Pulse Shape Characterization of Silicon Diodes for HGCal with data from Beam Test at CERN

    CERN Document Server

    De Silva, Malinda

    2016-01-01

    The High Luminosity phase of the LHC (starting operation in 2025) will provide unprecedented instantaneous and integrated luminosity, with 25 ns bunch crossing intervals and up to 140 pileup events. A challenge is to provide excellent physics performance in such a harsh environment to fully exploit the HL-LHC potentialities and explore new physics frontiers. In this context, the High Granularity Calorimeter is the detector designed to provide electromagnetic and hadronic energy coverage and reconstruction in the forward direction of the upgraded CMS. In April 2016 and June 2016, a set of 36 diodes were tested in order to understand various characteristics of its performance, in order to use them in the upgraded HG Calorimeter. Here, the silicon diodes were mounted onto a test bench at CERN’s beam test area and exposed to electron showers. Data received from these diodes were acquired and analysed separately. The objective of this report is to show the variation of Time Rise, Time Over Threshold with various...

  8. Study of filamentation with a high power high repetition rate ps laser at 1.03 µm.

    Science.gov (United States)

    Houard, A; Jukna, V; Point, G; André, Y-B; Klingebiel, S; Schultze, M; Michel, K; Metzger, T; Mysyrowicz, A

    2016-04-01

    We study the propagation of intense, high repetition rate laser pulses of picosecond duration at 1.03 µm central wavelength through air. Evidence of filamentation is obtained from measurements of the beam profile as a function of distance, from photoemission imaging and from spatially resolved sonometric recordings. Good agreement is found with numerical simulations. Simulations reveal an important self shortening of the pulse duration, suggesting that laser pulses with few optical cycles could be obtained via double filamentation. An important lowering of the voltage required to induce guided electric discharges between charged electrodes is measured at high laser pulse repetition rate.

  9. High repetition rate passively Q-switched fiber and microchip lasers for optical resolution photoacoustic imaging

    Science.gov (United States)

    Shi, Wei; Utkin, Ilya; Ranasinghesagara, Janaka; Pan, Lei; Godwal, Yogesh; Kerr, Shaun; Zemp, Roger J.; Fedosejevs, Robert

    2010-02-01

    Optical-resolution photoacoustic microscopy is a novel imaging technology for visualizing optically-absorbing superficial structures in vivo with lateral spatial resolution determined by optical focusing rather than acoustic detection. Since scanning of the illumination spot is required, the imaging speed is limited by the scanning speed and the laser pulse repetition rate. Unfortunately, lasers with high-repetition rate and suitable pulse durations and energies are difficult to find. We are developing compact laser sources for this application. Passively Q-switched fiber and microchip lasers with pulse repetition rates up to 300 kHz are demonstrated. Using a diode-pumped microchip laser fiber-coupled to a large mode-area Yb-doped fiber amplifier we obtained 60μJ 1-ns pulses at the frequency-doubled 532-nm wavelength. The pulse-repetition rate was determined by the power of the microchip laser pump source at 808nm and may exceed 10 kHz. Additionally, a passively Q-switched fiber laser utilizing a Yb-doped double-cladding fiber and an external saturable absorber has shown to produce 250ns pulses at repetition rates of 100-300 KHz. A photoacoustic probe enabling flexible scanning of the focused output of these lasers consisted of a 45-degree glass prism in an optical index-matching fluid. Photoacoustic signals exiting the sample are deflected by the prism to an ultrasound transducer. Phantom studies with a 7.5-micron carbon fiber demonstrate the ability to image with optical rather than acoustic resolution. We believe that the high pulse-repetition rates and the potentially compact and fiber-coupled nature of these lasers will prove important for clinical imaging applications where realtime imaging performance is essential.

  10. RECENT TEST RESULTS OF THE FAST-PULSED 4 T COS DIPOLE GSI 001.

    Energy Technology Data Exchange (ETDEWEB)

    MORITZ, G.; KAUGERTS, J.; ESCALLIER, J.; GANETIS, G.; JAIN, A.; MARONE, A.; MURATORE, J.; THOMAS, R.; WANDERER, P.; ET AL.

    2005-05-26

    For the FAIR-project at GSI a model dipole was built at BNL with the nominal field of 4 T and a nominal ramp rate of 1 T/S. The magnet design was similar to the RHIC dipole, with some changes for loss reduction and better cooling. The magnet was already successfully tested in a vertical cryostat, with good training behavior. Cryogenic losses were measured and first results of field harmonics were published. However, for a better understanding of the cooling process, quench currents at several ramp rates were investigated. Detailed measurements of the field harmonics at 2 T/S between 0 and 4 T were performed.

  11. Repetitive element hypermethylation in multiple sclerosis patients.

    Science.gov (United States)

    Neven, K Y; Piola, M; Angelici, L; Cortini, F; Fenoglio, C; Galimberti, D; Pesatori, A C; Scarpini, E; Bollati, V

    2016-06-18

    Multiple sclerosis (MS) is a complex disorder of the central nervous system whose cause is currently unknown. Evidence is increasing that DNA methylation alterations could be involved in inflammatory and neurodegenerative diseases and could contribute to MS pathogenesis. Repetitive elements Alu, LINE-1 and SAT-α, are widely known as estimators of global DNA methylation. We investigated Alu, LINE-1 and SAT-α methylation levels to evaluate their difference in a case-control setup and their role as a marker of disability. We obtained blood samples from 51 MS patients and 137 healthy volunteers matched by gender, age and smoking. Methylation was assessed using bisulfite-PCR-pyrosequencing. For all participants, medical history, physical and neurological examinations and screening laboratory tests were collected. All repetitive elements were hypermethylated in MS patients compared to healthy controls. A lower Expanded Disability Status Scale (EDSS) score was associated with a lower levels of LINE-1 methylation for 'EDSS = 1.0' and '1.5 ≤ EDSS ≤ 2.5' compared to an EDSS higher than 3, while Alu was associated with a higher level of methylation in these groups: 'EDSS = 1.0' and '1.5 ≤ EDSS ≤ 2.5'. MS patients exhibit an hypermethylation in repetitive elements compared to healthy controls. Alu and LINE-1 were associated with degree of EDSS score. Forthcoming studies focusing on epigenetics and the multifactorial pathogenetic mechanism of MS could elucidate these links further.

  12. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    Science.gov (United States)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    In the framework of its research on the deep disposal of radioactive waste in shale formations, the French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a large array of in situ programs concerning the confining properties of shales in their underground research laboratory at Tournemire (SW France). One of its aims is to evaluate the occurrence and processes controlling radionuclide migration through the host rock, from the disposal system to the biosphere. Past research programs carried out at Tournemire covered mechanical, hydro-mechanical and physico-chemical properties of the Tournemire shale as well as water chemistry and long-term behaviour of the host rock. Studies show that fluid circulations in the undisturbed matrix are very slow (hydraulic conductivity of 10-14 to 10-15 m.s-1). However, recent work related to the occurrence of small scale fractures and clay-rich fault gouges indicate that fluid circulations may have been significantly modified in the vicinity of such features. To assess the transport properties associated with such faults, IRSN designed a series of in situ and laboratory experiments to evaluate the contribution of both diffusive and advective process on water and solute flux through a clay-rich fault zone (fault core and damaged zone) and in an undisturbed shale formation. As part of these studies, Modular Mini-Packer System (MMPS) hydraulic testing was conducted in multiple boreholes to characterize hydraulic conductivities within the formation. Pressure data collected during the hydraulic tests were analyzed using the nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) code to estimate hydraulic conductivity and formation pressures of the tested intervals. Preliminary results indicate hydraulic conductivities of 5.10-12 m.s-1 in the fault core and damaged zone and 10-14 m.s-1 in the adjacent undisturbed shale. Furthermore, when compared with neutron porosity data from borehole

  13. Varianish: Jamming with Pattern Repetition

    Directory of Open Access Journals (Sweden)

    Jort Band

    2014-10-01

    Full Text Available In music, patterns and pattern repetition are often regarded as a machine-like task, indeed often delegated to drum Machines and sequencers. Nevertheless, human players add subtle differences and variations to repeated patterns that are musically interesting and often unique. Especially when looking at minimal music, pattern repetitions create hypnotic effects and the human mind blends out the actual pattern to focus on variation and tiny differences over time. Varianish is a musical instrument that aims at turning this phenomenon into a new musical experience for musician and audience: Musical pattern repetitions are found in live music and Varianish generates additional (musical output accordingly that adds substantially to the overall musical expression. Apart from the theory behind the pattern finding and matching and the conceptual design, a demonstrator implementation of Varianish is presented and evaluated.

  14. Development and testing of neutron pulse time stamping data acquisition system for neutron noise experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajeev [Reactor Physics Design Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Yakub Ali, M [Radio Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Degweker, S.B. [Theoretical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Vishwasrao, S.C. [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Jadhav, R.T. [Radio Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2015-01-11

    Statistical correlation techniques find applications in the analysis of zero power reactor noise and in passive neutron assay (PNA). A large number of apparently different techniques have been in use in these application areas and traditionally the electronics modules used for data acquisition and analysis is specific to the method used. In this paper we describe a data acquisition scheme developed by us, which is independent of the specific analysis method and can therefore be used for all of them. This is a neutron time stamping data acquisition system based on a timer card and an interface software to acquire and store the data in the required format. The system has been successfully tested with two statistically different types of neutron sources, namely a random Poisson source (Pu–Be) and a correlated source (a nuclear reactor)

  15. Wakefield issue and its impact on X-ray photon pulse in the SXFEL test facility

    CERN Document Server

    Song, Minghao; Feng, Chao; Deng, Haixiao; Liu, Bo; Wang, Dong

    2015-01-01

    Besides the designed beam acceleration, the energy of electrons changed by the longitudinal wakefields in a real free-electron laser (FEL) facility, which may degrade FEL performances from the theoretical expectation. In this paper, with the help of simulation codes, the wakefields induced beam energy loss in the sophisticated undulator section is calculated for Shanghai soft X-ray FEL, which is a two-stage seeded FEL test facility. While the 1st stage 44 nm FEL output is almost not affected by the wakefields, it is found that a beam energy loss about 0.8 MeV degrades the peak brightness of the 2nd stage 8.8 nm FEL by a factor of 1.6, which however can be compensated by a magnetic field fine tuning of each undulator segment.

  16. REPETITIVE CLUSTER-TILTED ALGEBRAS

    Institute of Scientific and Technical Information of China (English)

    Zhang Shunhua; Zhang Yuehui

    2012-01-01

    Let H be a finite-dimensional hereditary algebra over an algebraically closed field k and CFm be the repetitive cluster category of H with m ≥ 1.We investigate the properties of cluster tilting objects in CFm and the structure of repetitive clustertilted algebras.Moreover,we generalize Theorem 4.2 in [12](Buan A,Marsh R,Reiten I.Cluster-tilted algebra,Trans.Amer.Math.Soc.,359(1)(2007),323-332.) to the situation of CFm,and prove that the tilting graph KCFm of CFm is connected.

  17. High-efficiency synthesis of nanoparticles in a repetitive multigap spark discharge generator

    Science.gov (United States)

    Ivanov, V. V.; Efimov, A. A.; Mylnikov, D. A.; Lizunova, A. A.; Bagazeev, A. V.; Beketov, I. V.; Shcherbinin, S. V.

    2016-08-01

    We describe a method of obtaining aerosol nanoparticles in a repetitive spark discharge generator with 12 interelectrode gaps between tin electrodes, which operates at a pulse repetition frequency of 2.5 kHz. During synthesis of tin oxide nanoparticles in air, the mass productivity of the gas discharge generator reaches up to 9 g/h for primary particles with characteristic sizes within 5-10 nm and agglomerate size on the order of 50 nm.

  18. Functional design and implementation with on-line programmable technology in optical fiber communication pulse code modulation test system

    Science.gov (United States)

    Xu, Yuan; Ding, Huan; Gao, Youtang

    2010-10-01

    In order to complete the functional design in the fiber optical communication pulse code modulation test system, taking advantage of CPLD / FPGA and SOPC technology, software solutions used to design system hardware features and control functions, thereby the whole system could attain optimisation in the logic control as well as encoding and decoding functional designs on the motherboard, enabling this system fulfill the capacities varying from simple digital simulation transmission modulate to the high speed fiber optical communication network information encoding and decoding functions. Simultaneously the application of logarithmic pressure companding technique, PCM encoding and decoding system to improve the small signal quantizing SNR(Signal-to-Noise Ratio), TP3067 adopting A rate thirteen broken lines to carry on signal pressure companding. When the signal at a certain stage, the quantizing SNR is invariable(as signal receives uniform quantization in this phase, therefore the quantizing SNR drops along with signal amplititude decreasing). Test results are as follows: ideal various signal encoding and decoding system waveforms, high performance parameters , achieve the desired designing aim, a entirely new approach to realize different kinds of information encoding and decoding model building and implementation, saving development costs, improving design efficiency, satisfactory actual results, stable operation.

  19. Heat-pulse flowmeter test to characterize the seawater intrusion in fractured rock, western coast of Korea

    Science.gov (United States)

    Oh, H.; Hwang, S.; Shin, J.; Park, K.

    2007-12-01

    Seawater intrusion occurs commonly along the western and southern coasts of Korea. Almost coastal area consists of a reclaimed land, and is affected by seawater intrusion through the fractured rocks connected the seaside within several kilometers of coasts. A combination of drilling, conventional geophysical well logging including caliper log, natural gamma log, fluid temperature/conductivity log etc., acoustic televiewer, flowmeter, hydrophysical logging, packer test, and freshwater injection test was performed to evaluate seawater intrusion through the fractured rock in Baeksu-eup, Youngkwang-gun, Korea. The geological structure of the survey area comprises mud, sand, and granite and andesite bedrock (below an approximate depth of 22 m). The test boreholes are located with the brackish area interpreted with surface geophysical survey and hydrogeochemcial survey. The depth of two test boreholes is 50m, and the diameter is 3 inch, the distance between boreholes is 10m. Although the core log showed the several fractures, we didn't identify the minor fractures using 3-arm caliper logs because of small aperture size of fractures. The electrical conductivity of the borehole fluid is seen to be more than 1000 μS/cm at depth of about 35 m, and the highest conductivity is about 5000 μS/cm. Several intervals shown the change of conductivity logs doesn't relate with fractures identified by 3-arm caliper logs. In order to verify the permeable fractures, heat-pulse flowmeter test was conducted within single hole and interpreted with Paillet inversion method. Five permeable fractures are detected and hydraulic properties are estimated. These results are compared with hydrophysical logging performed one borehole. After the replacement of borehole fluid with freshwater, the change of fluid conductivity shows at least seven fractures with different salinity. Main fractures with highest salinity detected acoustic televiewer show low dip angles. To define subsurface connection

  20. Wakefield issue and its impact on X-ray photon pulse in the SXFEL test facility

    Science.gov (United States)

    Song, Minghao; Li, Kai; Feng, Chao; Deng, Haixiao; Liu, Bo; Wang, Dong

    2016-06-01

    Besides the designed beam acceleration, the energy of electrons is changed by the longitudinal wakefields in a real free-electron laser (FEL) facility, which may degrade FEL performances from the theoretical expectation. In this paper, with the help of simulation codes, the wakefields induced beam energy loss in the sophisticated undulator section is calculated for Shanghai soft X-ray FEL, which is a two-stage seeded FEL test facility. While the 1st stage 44 nm FEL output is almost not affected by the wakefields, it is found that a beam energy loss about 0.8 MeV degrades the peak brightness of the 2nd stage 8.8 nm FEL by a factor of 1.6, which however can be compensated by a magnetic field fine tuning of each undulator segment. And the longitudinal coherence of the 8.8 nm FEL output illustrates a slight degradation, because of the beam energy curvatures induced by the wakefields.

  1. Picosecond Pulse Laser Microstructuring of silicon

    Institute of Scientific and Technical Information of China (English)

    赵明; 尹钢; 朱京涛; 赵利

    2003-01-01

    We report the experimental results of picosecond pulse laser microstructuring (pulse duration 35ps, wavelength 1.06μm, repetition rate 10Hz) of silicon using the direct focusing technique. Arrays of sharp conical spikes located below the initial surface have been formed by cumulative picosecond pulsed laser irradiation of silicon in SF6. Irradiation of silicon surface in air, N2, or vacuum creates ripple-like patterns, but does not create the sharp conical spikes.

  2. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification.

    Science.gov (United States)

    Witte, S; Zinkstok, R; Hogervorst, W; Eikema, K

    2005-06-27

    We demonstrate the generation of 9.8+/-0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti:Sapphire oscillator to 23 mJ/pulse, resulting in 10.5 mJ/pulse after compression while amplified fluorescence is kept below 1%. We employ grating-based stretching and compression in combination with an LCD phase-shaper, allowing compression close to the Fourier limit of 9.3 fs.

  3. Upconversion chirped pulse amplification of ultrashort pulses using a multimode Tm:ZBLAN fiber

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.M.; Sosnowski, T.; Stock, M.L.; Norris, T.B.; Squier, J.; Mourou, G. [Univ. of Michigan, Ann Arbor, MI (United States). Center for Ultrafast Optical Science; Dennis, M.L.; Duling, I.N. III [Naval Research Lab., Washington, DC (United States)

    1995-11-01

    Microjoule pulse energies are achieved from a single stage upconversion fiber amplifier for the first time in this demonstration of chirped pulse amplification using a multimode TM:ZBLAN fiber. A Ti:sapphire laser system provides the seed pulse for the upconversion fiber amplifier which produces subpicosecond pulse trains with energies as great as 16 {micro}J at repetition rate of 4.4 kHz. The compressed, pulse peak power is more than 1 MW, and the pulse is characterized both temporally and spatially.

  4. Quantitative sensory testing may predict response to sphenopalatine ganglion pulsed radiofrequency treatment in cluster headaches: a case series

    NARCIS (Netherlands)

    Chua Hai Liang, N.; Vissers, K.C.P.; Wilder-Smith, O.H.G.

    2011-01-01

    Pulsed radiofrequency treatment has been described as a nonablative alternative to radiofrequency thermocoagulation for the management of certain chronic pain syndromes. We present our first three patients with long-standing cluster headaches who were treated with pulsed radiofrequency to the spheno

  5. Repetitive elements in parasitic protozoa

    Directory of Open Access Journals (Sweden)

    Clayton Christine

    2010-05-01

    Full Text Available Abstract A recent paper published in BMC Genomics suggests that retrotransposition may be active in the human gut parasite Entamoeba histolytica. This adds to our knowledge of the various types of repetitive elements in parasitic protists and the potential influence of such elements on pathogenicity. See research article http://www.biomedcentral.com/1471-2164/11/321

  6. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Young, W. C., E-mail: wcyoung2@wisc.edu; Den Hartog, D. J. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-11-15

    A new, high-repetition rate laser is in development for use on the Thomson scattering diagnostic on the Madison Symmetric Torus. The laser has been tested at a rate of 200 kHz in a pulse-burst operation, producing bursts of 5 pulses above 1.5 J each, while capable of bursts of 17 pulses at 100 kHz. A master oscillator-power amplifier architecture is used with a Nd:YVO{sub 4} oscillator, four Nd:YAG amplifiers, and a Nd:glass amplifier. A radial profile over the pulse sequence is measured by using a set of graphite apertures and an energy meter, showing a change in beam quality over a pulsing sequence.

  7. 1.32 μm Nd3+∶YAG Pulse Laser

    Institute of Scientific and Technical Information of China (English)

    WANG Zhaoying; WU Xing

    2002-01-01

    Using specially coated mirrors, an output energy of 0.97 J at 1.32 μm from a Nd3+∶YAG pulse laser is obtained with pumping energy of 66 J. The repetition rate is 1 pulse/sec and the slope efficiency is 1.7%. The repetition rate can be changed from 1 pulse/sec to 10 pulses/sec.

  8. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Bertarelli, A., E-mail: alessandro.bertarelli@cern.ch [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Berthome, E. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Boccone, V. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Carra, F. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Cerutti, F. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Charitonidis, N. [CERN, Engineering Department, Machines and Experimental Facilities Group (EN-MEF), CH-1211 Geneva 23 (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Charrondiere, C. [CERN, Engineering Department, Industrial Controls and Engineering Group (EN-ICE), CH-1211 Geneva 23 (Switzerland); Dallocchio, A.; Fernandez Carmona, P.; Francon, P.; Gentini, L.; Guinchard, M.; Mariani, N. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Masi, A. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Marques dos Santos, S.D.; Moyret, P. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Peroni, L. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Redaelli, S. [CERN, Beams Department, Accelerators and Beams Physics Group (BE-ABP), CH-1211 Geneva 23 (Switzerland); Scapin, M. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-08-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser Doppler vibrometer and high-speed camera). The method presented in this paper, combining experimental measurements with numerical simulations, may find applications to assess materials under very high strain rates and temperatures in domains well beyond particle physics (severe accidents in fusion and fission nuclear facilities, space debris impacts, fast and intense loadings on materials and structures etc.)

  9. Performance of a 4 Kelvin pulse-tube cooled cryostat with dc SQUID amplifiers for bolometric detector testing

    CERN Document Server

    Barron, Darcy; Keating, Brian; Quillin, Ron; Stebor, Nathan; Wilson, Brandon

    2013-01-01

    The latest generation of cosmic microwave background (CMB) telescopes is searching for the undetected faint signature of gravitational waves from inflation in the polarized signal of the CMB. To achieve the unprecedented levels of sensitivity required, these experiments use arrays of superconducting Transition Edge Sensor (TES) bolometers that are cooled to sub-Kelvin temperatures for photon-noise limited performance. These TES detectors are read out using low- noise SQUID amplifiers. To rapidly test these detectors and similar devices in a laboratory setting, we constructed a cryogenic refrigeration chain consisting of a commercial two-stage pulse-tube cooler, with a base temperature of 3 K, and a closed-cycle 3He/4He/3He sorption cooler, with a base temperature of 220 mK. A commercial dc SQUID system, with sensors cooled to 4 K, was used as a highly-sensitive cryogenic ammeter. Due to the extreme sensitivity of SQUIDs to changing magnetic fields, there are several challenges involving cooling them with puls...

  10. A contactless microwave-based diagnostic tool for high repetition rate laser systems

    CERN Document Server

    Braggio, C

    2014-01-01

    We report on a novel electro-optic device for the diagnostics of high repetition rate laser systems. It is composed of a microwave receiver and of a second order nonlinear crystal, whose irradiation with a train of short laser pulses produces a time-dependent polarization in the crystal itself as a consequence of optical rectification. This process gives rise to the emission of microwave radiation that is detected by a receiver and is analyzed to infer the repetition rate and intensity of the pulses. We believe that this new method may overcome some of the limitations of photodetection techniques.

  11. High power, high repetition rate, few picosecond Nd:LuVO₄ oscillator with cavity dumping.

    Science.gov (United States)

    Gao, Peng; Guo, Jie; Li, Jinfeng; Lin, Hua; Yu, Haohai; Zhang, Huaijin; Liang, Xiaoyan

    2015-12-28

    We investigate the potential use of Nd:LuVO4 in high average power, high repetition rate ultrafast lasers. Maximum mode-locked average power of 28 W is obtained at the repetition rate of 58 MHz. The shortest pulse duration is achieved at 4 ps without dispersion compensation. With a cavity dumping technique, the pulse energy is scaling up to 40.7 μJ at 300 kHz and 14.3 μJ at 1.5 MHz.

  12. Repetition suppression and repetition priming are processing outcomes.

    Science.gov (United States)

    Wig, Gagan S

    2012-01-01

    Abstract There is considerable evidence that repetition suppression (RS) is a cortical signature of previous exposure to the environment. In many instances RS in specific brain regions is accompanied by improvements in specific behavioral measures; both observations are outcomes of repeated processing. In understanding the mechanism by which brain changes give rise to behavioral changes, it is important to consider what aspect of the environment a given brain area or set of areas processes, and how this might be expressed behaviorally.

  13. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance.

    Science.gov (United States)

    Monnet, Xavier; Bleibtreu, Alexandre; Ferré, Alexis; Dres, Martin; Gharbi, Rim; Richard, Christian; Teboul, Jean-Louis

    2012-01-01

    We tested whether the poor ability of pulse pressure variation to predict fluid responsiveness in cases of acute respiratory distress syndrome was related to low lung compliance. We also tested whether the changes in cardiac index induced by passive leg-raising and by an end-expiratory occlusion test were better than pulse pressure variation at predicting fluid responsiveness in acute respiratory distress syndrome patients. Prospective study. Medical intensive care unit. We included 54 patients with circulatory shock (63 ± 13 yrs; Simplified Acute Physiology Score II, 63 ± 24). Twenty-seven patients had acute respiratory distress syndrome (compliance of the respiratory system, 22 ± 3 mL/cm H2O). In nonacute respiratory distress syndrome patients, the compliance of the respiratory system was 45 ± 9 mL/cm H2O. We measured the response of cardiac index (transpulmonary thermodilution) to fluid administration (500 mL saline). Before fluid administration, we recorded pulse pressure variation and the changes in pulse contour analysis-derived cardiac index induced by passive leg-raising and end-expiratory occlusion. Fluid increased cardiac index ≥ 15% (44% ± 39%) in 30 "responders." Pulse pressure variation was significantly correlated with compliance of the respiratory system (r = .58), but not with tidal volume. The higher the compliance of the respiratory system, the better the prediction of fluid responsiveness by pulse pressure variation. A compliance of the respiratory system of 30 mL/cm H2O was the best cut-off for discriminating patients regarding the ability of pulse pressure variation to predict fluid responsiveness. If compliance of the respiratory system was >30 mL/cm H2O, then the area under the receiver-operating characteristics curve for predicting fluid responsiveness was not different for pulse pressure variation and the passive leg-raising and end-expiratory occlusion tests (0.98 ± 0.03, 0.91 ± 0.06, and 0.97 ± 0.03, respectively). By contrast

  14. Multi-Objective Optimization of Pulse Testing Results Using Parallel Compositional Simulations for Reservoir Characterization of a CO2-EOR Field in Mississippi

    Science.gov (United States)

    Min, B.; Wheeler, M.; Sun, A. Y.

    2016-12-01

    This study aims at calibrating subsurface models by reproducing pulse testing results carried out at a CO2-EOR field located in Mississippi. Pulse testing is a cost-effective tool to evaluate the hydraulic conductivity of rock formation for geological carbon sequestration projects because the periodic injection of CO2 reduces the interference on reservoir operations. The pressure perturbation induced by the injection is recorded at two monitoring wells at the test area of the field. The observed pressure pulse patterns are reproduced by running compositional simulations. The computational cost associated with the numerical simulations is reduced using high-performance parallel computing. For efficient history matching, the observed and simulated pulse patterns in the time domain are transformed into the frequency domain using fast Fourier transform. The CO2 injection responses are assimilated using an evolutionary multi-objective optimization algorithm in order to improve the matching process and to quantify the posterior uncertainty. A tradeoff relationship between the matching qualities measured at the monitoring wells is detected by invoking multi-objective optimization. The posterior ensemble composed of non-dominated subsurface models reduces the bias in the uncertainty models as compared to conventional global-objective optimization algorithms, indicating that the model calibration based on Pareto-optimality can yield rigorous uncertainty quantification.

  15. Hydrogeology from 10,000 ft below: lessons learned in applying pulse testing for leakage detection in a carbon sequestration formation

    Science.gov (United States)

    Sun, A. Y.; Lu, J.; Hovorka, S. D.; Freifeld, B. M.; Islam, A.

    2015-12-01

    Monitoring techniques capable of deep subsurface detection are desirable for early warning and leakage pathway identification in geologic carbon storage formations. This work investigates the feasibility of a leakage detection technique based on pulse testing, which is a traditional hydrogeological characterization tool. In pulse testing, the monitoring reservoir is stimulated at a fixed frequency and the acquired pressure perturbation signals are analyzed in the frequency domain to detect potential deviations in the reservoir's frequency domain response function. Unlike traditional time-domain analyses, the frequency-domain analysis aims to minimize the interference of reservoir noise by imposing coded injection patterns such that the reservoir responses to injection can be uniquely determined. We have established the theoretical basis of the approach in previous work. Recently, field validation of this pressure-based, leakage detection technique was conducted at a CO2-EOR site located in Mississippi, USA. During the demonstration, two sets of experiments were performed using 90-min and 150-min pulsing periods, for both with and without leak scenarios. Because of the lack of pre-existing leakage pathways, artificial leakage CO2 was simulated by rate-controlled venting from one of the monitoring wells. Our results show that leakage events caused a significant deviation in the amplitude of the frequency response function, indicating that pulse testing may be used as a cost-effective monitoring technique with a strong potential for automation.

  16. Cohesive Function of Lexical Repetition in Text

    Institute of Scientific and Technical Information of China (English)

    张莉; 卢沛沛

    2013-01-01

    Lexical repetition is the most direct form of lexical cohesion,which is the central device for making texts hang together. Although repetition is the most direct way to emphasize,it performs the cohesive effect more apparently.

  17. Diagnostic for a high-repetition rate electron photo-gun and first measurements

    Science.gov (United States)

    Filippetto, D.; Doolittle, L.; Huang, G.; Norum, E.; Portmann, G.; Qian, H.; Sannibale, F.

    2015-05-01

    The APEX electron source at LBNL combines the high-repetition-rate with the high beam brightness typical of photoguns, delivering low emittance electron pulses at MHz frequency. Proving the high beam quality of the beam is an essential step for the success of the experiment, opening the doors of the high average power to brightness-hungry applications as X-Ray FELs, MHz ultrafast electron diffraction etc.. As first step, a complete characterization of the beam parameters is foreseen at the Gun beam energy of 750 keV. Diagnostics for low and high current measurements have been installed and tested, and measurements of cathode lifetime and thermal emittance in a RF environment with mA current performed. The recent installation of a double slit system, a deflecting cavity and a high precision spectrometer, allow the exploration of the full 6D phase space. Here we discuss the present layout of the machine and future upgrades, showing the latest results at low and high repetition rate, together with the tools and techniques used.

  18. Antimicrobial photodynamic treatment of gram-negative bacteria with a cationic phenothiazine dye under pulsed light irradiation

    Science.gov (United States)

    Kawauchi, Satoko; Sato, Shunichi; Yamaguchi, Toru; Shinomiya, Nariyoshi; Saito, Daizo; Ashida, Hiroshi; Obara, Minoru; Kikuchi, Makoto

    2005-08-01

    In-vitro photodynamic inactivation of Ps. aeruginosa with methylene blue under pulsed light excitation was investigated at different pulse repetition rates. Bacterial suspensions were illuminated with 670-nm nanosecond pulsed light with a peak intensity of 2.0 MW/cm2 at pulse repetition rates in the range of 5-30 Hz. Photobactericidal effect increased with increasing pulse repetition rate for the same total light dose; more than two orders in magnitude reduction of bacterial survival fraction was obtained at 30 Hz. Such a positive dependence of photobactericidal effect on pulse repetition rate was inconsistent with our previous results for human lung cancer cells that were photodynamically treated with a lysosomal sensitizer. The reason for the increased photobactericidal effect at the high pulse repetition rate is discussed.

  19. Power Enhancement Cavity for Burst-Mode Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun [ORNL

    2015-01-01

    We demonstrate a novel optical cavity scheme and locking method that can realize the power enhancement of picosecond UV laser pulses operating at a burst mode with arbitrary burst (macropulse) lengths and repetition rates.

  20. Pulsed Green Laser for Time Resolved Raman Spectroscopy Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will demonstrate the feasibility of developing a fully packaged, efficient, short pulse, high repetition rate frequency doubled micro-chip...

  1. Research progress of directional pulsed eddy current strain testing%方向性脉冲涡流应力检测研究进展

    Institute of Scientific and Technical Information of China (English)

    周德强; 田贵云; 尤丽华; 王海涛

    2011-01-01

    Directional pulsed eddy current testing(PECT) technology is a new type of pulsed eddy current testing technology. Because of the directional characteristics. It has previous performance in strain testing in anisotropic metal components. The recent research progress including the theory, feature extraction, and strain test of anisotropic metal components of directional pulsed eddy current nondestructive test are reviewed. The future trend of development is analyzed.%方向性脉冲涡流检测技术是一种新型的脉冲涡流检测技术,由于具有方向特性,在脉冲涡流各向异性金属部件应力检测中具有明显的优越性.综述了方向性脉冲涡流无损检测技术在理论、信号特征提取、应力检测等方面的国内外研究进展,分析了方向性脉冲涡流无损检测技术的发展方向.

  2. Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction.

    Science.gov (United States)

    Flisar, Karel; Meglic, Sasa Haberl; Morelj, Jernej; Golob, Janvit; Miklavcic, Damijan

    2014-12-01

    Among other applications, electroporation is used for the inactivation of pathogens and extraction of substances from microorganisms in liquids where large scale flow systems are used. The aim of our work was therefore to test a pulse generator that enables continuous pulsed electric field (PEF) treatment for Escherichia coli inactivation and microalgae lipid extraction. In the continuous flow PEF system, the flow rate was adjusted so that each bacterial cell received a defined number of pulses. The results of PEF flow treatment showed that the number of pulses influences E. coli inactivation to the same extent as in the previously described cuvette system, i.e., batch system. The continuous flow PEF system was also tested and evaluated for lipid extraction from microalgae Chlorella vulgaris. In control experiments, lipids were extracted via concentration of biomass, drying and cell rupture using pressure or an organic solvent. In contrast, electroporation bypasses all stages, since cells were directly ruptured in the broth and the oil that floated on the broth was skimmed off. The initial experiments showed a 50% oil yield using the electroporation flow system in comparison to extraction with organic solvent. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. PCR amplification of repetitive sequences as a possible approach in relative species quantification

    DEFF Research Database (Denmark)

    Ballin, Nicolai Zederkopff; Vogensen, Finn Kvist; Karlsson, Anders H

    2012-01-01

    in binary mixtures. PCR LUX primers were designed that amplify repetitive and single copy sequences to establish the species dependent number (constants) (SDC) of amplified repetitive sequences per genome. The SDCs and data from amplification of repetitive sequences were tested for their applicability...... to relatively quantify the amount of chicken DNA in a binary mixture of chicken DNA and pig DNA. However, the designed PCR primers lack the specificity required for regulatory species control....

  4. Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics

    Energy Technology Data Exchange (ETDEWEB)

    Schultze, M [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermannstrasse 1, D-85748 Garching (Germany); Goulielmakis, E [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermannstrasse 1, D-85748 Garching (Germany); Uiberacker, M [Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany); Hofstetter, M [Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany); Kim, J [Laser Science Laboratory, Department of Physics, POSTECH, Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, D [Laser Science Laboratory, Department of Physics, POSTECH, Pohang, Kyungbuk 790-784 (Korea, Republic of); Krausz, F [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermannstrasse 1, D-85748 Garching (Germany); Kleineberg, U [Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany)

    2007-07-15

    Single 170-as extreme ultraviolet (XUV) pulses delivering more than 10{sup 6} photons/pulse at {approx}100 eV at a repetition rate of 3 kHz are produced by ionizing neon with waveform-controlled sub-5 fs near-infrared (NIR) laser pulses and spectrally filtering the emerging near-cutoff high-harmonic continuum with a broadband, chirped multilayer molybdenum-silicon (Mo/Si) mirror.

  5. Switchable repetition rate bound solitons passively mode-locked fiber laser

    Science.gov (United States)

    Wang, Xuqin; Yao, Yong

    2016-11-01

    We present a kind of a switchable repetition rate mode-locked of bound-state solitons in a fiber laser based on Bi2Se3 saturable absorber (SA). In the fiber laser, two forms of the bound-state optical spectrum with central wavelength of 1532 nm are observed. The fiber laser is operate at the abnormal group velocity dispersion and the bound state pulses are equally distributed to the temporal domain. The fundamental cavity repetition-rate is 1.11 MHz with a pulse duration of 2.27 ps. The output average power and the pulse peak energy are 1.53 mW and 607 W respectively, which the pump power is 267 mW. The different repetition-rates are also achieved by changing the pump power or adjusting the angle of polarization controller. In the experiment, the repetition-rate is switched from 1.11 MHz to 41.32 MHz (37th-order, the highest repetition-rate).

  6. Efficient Spectral Broadening in the 100-W Average Power Regime Using Gas Filled Kagome HC-PCF and Pulse Compression

    CERN Document Server

    Emaury, Florian; Debord, Benoit; Ghosh, Debashri; Diebold, Andreas; Gerome, Frederic; Suedmeyer, Thomas; Benabid, Fetah; Keller, Ursula

    2014-01-01

    We present nonlinear pulse compression of a high-power SESAM-modelocked thin-disk laser (TDL) using an Ar-filled hypocycloid-core Kagome Hollow-Core Photonic Crystal Fiber (HC-PCF). The output of the modelocked Yb:YAG TDL with 127 W average power, a pulse repetition rate of 7 MHz, and a pulse duration of 740 fs was spectrally broadened 16-fold while propagating in a Kagome HC-PCF containing 13 bar of static Argon gas. Subsequent compression tests performed using 8.4% of the full available power resulted in a pulse duration as short as 88 fs using the spectrally broadened output from the fiber. Compressing the full transmitted power through the fiber (118 W) could lead to a compressed output of >100 W of average power and >100 MW of peak power with an average power compression efficiency of 88%. This simple laser system with only one ultrafast laser oscillator and a simple single-pass fiber pulse compressor, generating both high peak power >100 MW and sub-100-fs pulses at megahertz repetition rate, is very int...

  7. The golden ratio of gait harmony: repetitive proportions of repetitive gait phases.

    Science.gov (United States)

    Iosa, Marco; Fusco, Augusto; Marchetti, Fabio; Morone, Giovanni; Caltagirone, Carlo; Paolucci, Stefano; Peppe, Antonella

    2013-01-01

    In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number φ known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with φ, the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (F = 0.870, P = 0.422, repeated measure analysis of variance) or from φ (P = 0.670, 0.820, 0.422, resp., t-tests). The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait.

  8. The Golden Ratio of Gait Harmony: Repetitive Proportions of Repetitive Gait Phases

    Directory of Open Access Journals (Sweden)

    Marco Iosa

    2013-01-01

    Full Text Available In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with , the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (, , repeated measure analysis of variance or from (, resp., t-tests. The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait.

  9. Object color affects identification and repetition priming.

    Science.gov (United States)

    Uttl, Bob; Graf, Peter; Santacruz, Pilar

    2006-10-01

    We investigated the influence of color on the identification of both non-studied and studied objects. Participants studied black and white and color photos of common objects and memory was assessed with an identification test. Consistent with our meta-analysis of prior research, we found that objects were easier to identify from color than from black and white photos. We also found substantial priming in all conditions, and study-to-test changes in an object's color reduced the magnitude of priming. Color-specific priming effects were large for color-complex objects, but minimal for color-simple objects. The pattern and magnitude of priming effects was not influenced either by the extent to which an object always appears in the same color (i.e., whether a color is symptomatic of an object) or by the object's origin (natural versus fabricated). We discuss the implications of our findings for theoretical accounts of object perception and repetition priming.

  10. Place field repetition and spatial learning in a multicompartment environment.

    Science.gov (United States)

    Grieves, Roddy M; Jenkins, Bryan W; Harland, Bruce C; Wood, Emma R; Dudchenko, Paul A

    2016-01-01

    Recent studies have shown that place cells in the hippocampus possess firing fields that repeat in physically similar, parallel environments. These results imply that it should be difficult for animals to distinguish parallel environments at a behavioral level. To test this, we trained rats on a novel odor-location task in an environment with four parallel compartments which had previously been shown to yield place field repetition. A second group of animals was trained on the same task, but with the compartments arranged in different directions, an arrangement we hypothesised would yield less place field repetition. Learning of the odor-location task in the parallel compartments was significantly impaired relative to learning in the radially arranged compartments. Fewer animals acquired the full discrimination in the parallel compartments compared to those trained in the radial compartments, and the former also required many more sessions to reach criterion compared to the latter. To confirm that the arrangement of compartments yielded differences in place cell repetition, in a separate group of animals we recorded from CA1 place cells in both environments. We found that CA1 place cells exhibited repeated fields across four parallel local compartments, but did not do so when the same compartments were arranged radially. To confirm that the differences in place field repetition across the parallel and radial compartments depended on their angular arrangement, and not incidental differences in access to an extra-maze visual landmark, we repeated the recordings in a second set of rats in the absence of the orientation landmark. We found, once again, that place fields showed repetition in parallel compartments, and did not do so in radially arranged compartments. Thus place field repetition, or lack thereof, in these compartments was not dependent on extra-maze cues. Together, these results imply that place field repetition constrains spatial learning.

  11. Performance verification and system integration tests of the pulse shape processor for the soft x-ray spectrometer onboard ASTRO-H

    Science.gov (United States)

    Takeda, Sawako; Tashiro, Makoto S.; Ishisaki, Yoshitaka; Tsujimoto, Masahiro; Seta, Hiromi; Shimoda, Yuya; Yamaguchi, Sunao; Uehara, Sho; Terada, Yukikatsu; Fujimoto, Ryuichi; Mitsuda, Kazuhisa

    2014-07-01

    The soft X-ray spectrometer (SXS) aboard ASTRO-H is equipped with dedicated digital signal processing units called pulse shape processors (PSPs). The X-ray microcalorimeter system SXS has 36 sensor pixels, which are operated at 50 mK to measure heat input of X-ray photons and realize an energy resolution of 7 eV FWHM in the range 0.3-12.0 keV. Front-end signal processing electronics are used to filter and amplify the electrical pulse output from the sensor and for analog-to-digital conversion. The digitized pulses from the 36 pixels are multiplexed and are sent to the PSP over low-voltage differential signaling lines. Each of two identical PSP units consists of an FPGA board, which assists the hardware logic, and two CPU boards, which assist the onboard software. The FPGA board triggers at every pixel event and stores the triggering information as a pulse waveform in the installed memory. The CPU boards read the event data to evaluate pulse heights by an optimal filtering algorithm. The evaluated X-ray photon data (including the pixel ID, energy, and arrival time information) are transferred to the satellite data recorder along with event quality information. The PSP units have been developed and tested with the engineering model (EM) and the flight model. Utilizing the EM PSP, we successfully verified the entire hardware system and the basic software design of the PSPs, including their communication capability and signal processing performance. In this paper, we show the key metrics of the EM test, such as accuracy and synchronicity of sampling clocks, event grading capability, and resultant energy resolution.

  12. Micro pulse laser radar

    Science.gov (United States)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  13. Variação da força muscular em testes repetitivos de 1-RM em crianças pré-púberes Variación de la fuerza en tests repetitivos de 1-RM en pre-púberes Variation of the muscular strength in repetitive 1-RM test in prepubescent children

    Directory of Open Access Journals (Sweden)

    André Luiz Demantova Gurjão

    2005-12-01

    sometidos a ocho sesiones de pruebas de 1-RM en los ejercicios de extensión de piernas en máquina y curl con barra en pie, con el intervalo de 48 horas entre cada sesión. Tres esfuerzos, intervalados durante 3-5 minutos de descanso, fueron ejecutados por los chicos en cada uno de los ejercicios escogidos. Se observaron aumentos significantes de 30,2% y 22,7% entre la primera y la octava sesión de pruebas en los ejercicios de la extensión de piernas en máquina y curl con barra en pie, respectivamente (P 0,05. Esos resultados indican que el número necesario de sesiones para la estabilización de la fuerza muscular en las pruebas de 1-RM parece ser dependiente de la tarea de cada tipo ejecutado y, posiblemente, del tamaño del agrupamiento de los agonistas musculares involucraron en la ejecución de la tarea del motivo. Por consiguiente, lo que resulta nos hace pensar en que para una evaluación más necesaria de la fuerza muscular de los muchachos pré-puberes, a través de las pruebas de 1-RM, son necesarias de tres a cinco sesiones del familiarization.Although one-repetition maximum tests (1-RM are widely employed to evaluate the muscular power, the lack of previous familiarization with the test procedures may cause erroneous interpretations. Thus, the purpose of this study was to analyze the behavior of the muscular strength in prepubescent children during 1-RM repetitive tests. For this, nine boys (9.5 ± 0.5 years; 35.1 ± 6.9 kg; 138.3 ± 6.1 cm with no previous experience in weight exerciseswere submitted to eight sessions of 1-RM tests in the leg extension and arm curl exercises, and with a 48 hours interval between sessions. Three trials with 3-5 minutes of resting interval were performed by subjects in each of the chosen exercises. It was observed significant increases of 30.2% and 22.7% between the first and eighth session in the leg extension and arm curl exercise tests, respectively (P < 0.05. However, no statistically significant difference was found

  14. High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers.

    Science.gov (United States)

    Klingebiel, Sandro; Wandt, Christoph; Skrobol, Christoph; Ahmad, Izhar; Trushin, Sergei A; Major, Zsuzsanna; Krausz, Ferenc; Karsch, Stefan

    2011-03-14

    We present a chirped pulse amplification (CPA) system based on diode-pumped Yb:YAG. The stretched ns-pulses are amplified and have been compressed to less than 900 fs with an energy of 200 mJ and a repetition rate of 10 Hz. This system is optically synchronized with a broadband seed laser and therefore ideally suited for pumping optical parametric chirped pulse amplification (OPCPA) stages on a ps-timescale.

  15. Near- infrared, mode-locked waveguide lasers with multi-GHz repetition rates

    Science.gov (United States)

    Choudhary, A.; Lagatsky, A. A.; Zhang, Z. Y.; Zhou, K. J.; Wang, Q.; Hogg, R. A.; Pradeesh, K.; Rafailov, E. U.; Resan, B.; Oehler, A. E. H.; Weingarten, K. J.; Sibbett, W.; Brown, C. T. A.; Shepherd, D. P.

    2014-02-01

    In this work, we discuss mode-locking results obtained with low-loss, ion-exchanged waveguide lasers. With Yb3+-doped phosphate glass waveguide lasers, a repetition rate of up to 15.2 GHz was achieved at a wavelength of 1047 nm with an average power of 27 mW and pulse duration of 811 fs. The gap between the waveguide and the SESAM introduced negative group velocity dispersion via the Gires Tournois Interferometer (GTI) effect which allowed the soliton mode-locking of the device. A novel quantum dot SESAM was used to mode-lock Er3+, Yb3+-doped phosphate glass waveguide lasers around 1500 nm. Picosecond pulses were achieved at a maximum repetition rate of 6.8 GHz and an average output power of 30 mW. The repetition rate was tuned by more than 1 MHz by varying the pump power.

  16. Effects of picosecond laser repetition rate on ablation of Cr12MoV cold work mold steel

    Science.gov (United States)

    Wu, Baoye; Deng, Leimin; Liu, Peng; Zhang, Fei; Duan, Jun; Zeng, Xiaoyan

    2017-07-01

    In this paper, the effects of pulse repetition rate on ablation efficiency and quality of Cr12MoV cold work mold steel have been studied using a picosecond (ps) pulse Nd:YVO4 laser system at λ= 1064 nm. The experimental results of area ablation on target surface reveal that laser repetition rate plays a significant role in controlling ablation efficiency and quality. Increasing the laser repetition rate, while keeping a constant mean power improves the ablation efficiency and quality. For each laser mean power, there is an optimal repetition rate to achieve a higher laser ablation efficiency with low surface roughness. A high ablation efficiency of 42.29, 44.11 and 47.52 μm3/mJ, with surface roughness of 0.476, 0.463 and 0.706 μm could be achieved at laser repetition rate of 10 MHz, for laser mean power of 15, 17 and 19 W, respectively. Scanning electron microcopy images revels that the surface morphology evolves from rough with numerous craters, to flat without pores when we increased the laser repetition rate. The effects of laser repetition rate on the heat accumulation, plasma shield and ablation threshold were analyzed by numerical simulation, spectral analysis and multi-laser shot, respectively. The synergetic effects of laser repetition rate on laser ablation rate and machining quality were analyzed and discussed systemically in this paper.

  17. Directed cell movement in pulsed electric fields.

    Science.gov (United States)

    Franke, K; Gruler, H

    1994-01-01

    Human granulocytes exposed to pulsed electric guiding fields were investigated. The trajectories were determined from digitized pictures (phase contrast). The basic results are: (i) No directed response was induced by pulsed electric guiding fields having a zero averaged field. (ii) A directed response was induced by pulsed electric guiding fields having a non-zero averaged field. (iii) The directed response was enhanced for pulse sequences having a repetition time of 8 s. (iv) The lag-time between signal recognition and cellular response was 8-10 s. The results are discussed in the framework of a self-ignition model.

  18. Femtosecond Ti:sapphire cryogenic amplifier with high gain and MHz repetition rate

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Laurat, Julien; Ourjoumtsev, Alexei

    2007-01-01

    We demonstrate high gain amplification of 160-femtosecond pulses in a compact double-pass cryogenic Ti:sapphire amplifier. The setup involves a negative GVD mirrors recompression stage, and operates with a repetition rate between 0.2 and 4 MHz with a continuous pump laser. Amplification factors...

  19. High Repetition Rate and Frequency Stabilized Ho:YLF Laser for CO2 Differential Absorption Lidar

    Science.gov (United States)

    Bai, Yingxin; Yu, Jirong; Petros, M.; Petzar, Pau; Trieu, Bo; Lee, Hyung; Singh, U.

    2009-01-01

    High repetition rate operation of an injection seeded Ho:YLF laser has been demonstrated. For 1 kHz operation, the output pulse energy reaches 5.8mJ and the optical-to-optical efficiency is 39% when the pump power is 14.5W.

  20. Circuit considerations for repetitive railguns

    Energy Technology Data Exchange (ETDEWEB)

    Honih, E.M.

    1986-01-01

    Railgun electromagnetic launchers have significant military and scientific potential. They provide direct conversion of electrical energy to projectile kinetic energy, and they offer the hope of achieving projectile velocities greatly exceeding the limits of conventional guns. With over 10 km/sec already demonstrated, railguns are attracting attention for tactical and strategic weapons systems and for scientific equation-of-state research. The full utilization of railguns will require significant improvements in every aspect of system design - projectile, barrel, and power source - to achieve operation on a large scale. This paper will review fundamental aspects of railguns, with emphasis on circuit considerations and repetitive operation.

  1. Phase-coded pulse aperiodic transmitter coding

    Directory of Open Access Journals (Sweden)

    I. I. Virtanen

    2009-07-01

    Full Text Available Both ionospheric and weather radar communities have already adopted the method of transmitting radar pulses in an aperiodic manner when measuring moderately overspread targets. Among the users of the ionospheric radars, this method is called Aperiodic Transmitter Coding (ATC, whereas the weather radar users have adopted the term Simultaneous Multiple Pulse-Repetition Frequency (SMPRF. When probing the ionosphere at the carrier frequencies of the EISCAT Incoherent Scatter Radar facilities, the range extent of the detectable target is typically of the order of one thousand kilometers – about seven milliseconds – whereas the characteristic correlation time of the scattered signal varies from a few milliseconds in the D-region to only tens of microseconds in the F-region. If one is interested in estimating the scattering autocorrelation function (ACF at time lags shorter than the F-region correlation time, the D-region must be considered as a moderately overspread target, whereas the F-region is a severely overspread one. Given the technical restrictions of the radar hardware, a combination of ATC and phase-coded long pulses is advantageous for this kind of target. We evaluate such an experiment under infinitely low signal-to-noise ratio (SNR conditions using lag profile inversion. In addition, a qualitative evaluation under high-SNR conditions is performed by analysing simulated data. The results show that an acceptable estimation accuracy and a very good lag resolution in the D-region can be achieved with a pulse length long enough for simultaneous E- and F-region measurements with a reasonable lag extent. The new experiment design is tested with the EISCAT Tromsø VHF (224 MHz radar. An example of a full D/E/F-region ACF from the test run is shown at the end of the paper.

  2. Do Stimulus-Action Associations Contribute to Repetition Priming?

    Science.gov (United States)

    Dennis, Ian; Perfect, Timothy J.

    2013-01-01

    Despite evidence that response learning makes a major contribution to repetition priming, the involvement of response representations at the level of motor actions remains uncertain. Levels of response representation were investigated in 4 experiments that used different tasks at priming and test. Priming for stimuli that required congruent…

  3. Do Stimulus-Action Associations Contribute to Repetition Priming?

    Science.gov (United States)

    Dennis, Ian; Perfect, Timothy J.

    2013-01-01

    Despite evidence that response learning makes a major contribution to repetition priming, the involvement of response representations at the level of motor actions remains uncertain. Levels of response representation were investigated in 4 experiments that used different tasks at priming and test. Priming for stimuli that required congruent…

  4. Development and testing of a pulsed helium ion source for probing materials and warm dense matter studies

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Q., E-mail: qji@lbl.gov; Seidl, P. A.; Waldron, W. L.; Takakuwa, J. H.; Persaud, A.; Schenkel, T. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Friedman, A.; Grote, D. P.; Barnard, J. J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-02-15

    The neutralized drift compression experiment was designed and commissioned as a pulsed, linear induction accelerator to drive thin targets to warm dense matter (WDM) states with peak temperatures of ∼1 eV using intense, short pulses (∼1 ns) of 1.2 MeV lithium ions. At that kinetic energy, heating a thin target foil near the Bragg peak energy using He{sup +} ions leads to more uniform energy deposition of the target material than Li{sup +} ions. Experiments show that a higher current density of helium ions can be delivered from a plasma source compared to Li{sup +} ions from a hot plate type ion source. He{sup +} beam pulses as high as 200 mA at the peak and 4 μs long were measured from a multi-aperture 7-cm-diameter emission area. Within ±5% variation, the uniform beam area is approximately 6 cm across. The accelerated and compressed pulsed ion beams can be used for materials studies and isochoric heating of target materials for high energy density physics experiments and WDM studies.

  5. 脉冲漏磁检测中的涡流效应%Eddy Current Effect in Pulsed Magnetic Flux Leakage Testing

    Institute of Scientific and Technical Information of China (English)

    费骏骉; 左宪章; 田贵云; 张云; 张韬

    2012-01-01

    In order to comprehend the characteristic of eddy current effect in pulsed magnetic flux leakage testing, this paper lays the foundation to further analyze pulsed magnetic flux leakage testing signal, builds simulating model of finite element in pulsed magnetic flux leakage testing, observes the distribution of transient magnetic field and induced eddy current in the test and analyzes and studies the features of characteristic quantity of induced eddy current and influential factors. The result shows that transient magnetic field and induced eddy current overall correspond with skin effect and affect each other in pulsed magnetic flux leakage testing. Induced eddy current has the feature of shallow penetrating depth and strong induction. Peak time of eddy current density has relative stronger resolution on depth direction. Electrical conductivity and magnetic conductivity affect the penetrating depth of induced eddy current and resolution of peak time of density on depth direction; pulsed stimulating ascendant time constant only affects the penetrating depth of induced eddy current, not relevant to resolution of peak time of density on depth direction.%为了解脉冲漏磁检测中涡流效应的特点,奠定进一步分析脉冲漏磁检测信号的基础,建立了脉冲漏磁检测的有限元仿真模型,观察了检测中瞬态磁场和感生涡流的分布,分析了感生涡流特征量的特点及影响因素。结果表明,脉冲漏磁检测中,瞬态磁场和感生涡流总体上符合集肤效应并相互影响,其中感生涡流具有渗透深度浅、感应强度大的特点,涡流密度峰值时间在深度方向上有较强的分辨率。电导率和磁导率影响感生涡流的渗透深度和密度峰值时间在深度方向上的分辨率;脉冲激励上升时间常数只影响感生涡流的渗透深度,而和密度峰值时间在深度方向上的分辨率无关。

  6. New 500-kV Ion Source Test Strand for HIF

    Energy Technology Data Exchange (ETDEWEB)

    Sangster, T.C.; Ahle, L.E.; Halaxa, E.F.; Karpenko, V.P.; Oldaker, M.E.; Mitchell, J.W.; Beck, D.N.; Bieniosek, F.M.; Henestroza, E.; Kwan, J.W.

    2000-03-09

    One of the most challenging aspects of ion beam driven inertial fusion energy is the reliable and efficient generation of low emittance, high current ion beams. The primary ion source requirements include a rise time of order 1-{micro}sec, a pulse width of at least 20-{micro}sec, a flattop ripple of less than 0.1% and a repetition rate of at least 5-HZ. Naturally, at such a repetition rate, the duty cycle of the source must be greater than 10{sup 8} pulses. Although these specifications do not appear to exceed the state-of-the-art for pulsed power, considerable effort remains to develop a suitable high current ion source. Therefore, we are constructing a 500-kV test stand specifically for studying various ion source concepts including surface, plasma and metal vapor arc. This paper will describe the test stand design specifications as well as the details of the various subsystems and components.

  7. Influence of Input Pulse Durations on Properties of Er3+/Yb3+ Co-doped DCFA

    Institute of Scientific and Technical Information of China (English)

    ZHAN Sheng-bao; ZHAO Shang-hong; SHI Lei; XU Jie; ZHAO Xiao-ming

    2006-01-01

    Based on propagation-rate equations,the influence of different input pulse durations on the properties of Er3+/Yb3+ co-doped double-clad fiber amplifier at dynamic equilibrium was analyzed. The change characteristic of output power sag with pulse duration and repetition rate was shown. Whether single or multi-channel input pulses are amplified,the shorter the input pulse duration is,the smaller the power sags of output pulse will be. At low repetition rate,upper gain values(Gupper) of gain swing are almost the same for different input pulse durations,which tend to the small signal gain,but lower gain value(Glower) of short input pulse is larger than that of long input pulse. At high repetition rate,lower gain value(Glower) approaches to upper gain value(Gupper).

  8. Effect of Repetition Rate on Femtosecond Laser-Induced Homogenous Microstructures

    Directory of Open Access Journals (Sweden)

    Sanchari Biswas

    2016-12-01

    Full Text Available We report on the effect of repetition rate on the formation and surface texture of the laser induced homogenous microstructures. Different microstructures were micromachined on copper (Cu and titanium (Ti using femtosecond pulses at 1 and 10 kHz. We studied the effect of the repetition rate on structure formation by comparing the threshold accumulated pulse ( F Σ p u l s e values and the effect on the surface texture through lacunarity analysis. Machining both metals at low F Σ p u l s e resulted in microstructures with higher lacunarity at 10 kHz compared to 1 kHz. On increasing F Σ p u l s e , the microstructures showed higher lacunarity at 1 kHz. The effect of the repetition rate on the threshold F Σ p u l s e values were, however, considerably different on the two metals. With an increase in repetition rate, we observed a decrease in the threshold F Σ p u l s e on Cu, while on Ti we observed an increase. These differences were successfully allied to the respective material characteristics and the resulting melt dynamics. While machining Ti at 10 kHz, the melt layer induced by one laser pulse persists until the next pulse arrives, acting as a dielectric for the subsequent pulse, thereby increasing F Σ p u l s e . However, on Cu, the melt layer quickly resolidifies and no such dielectric like phase is observed. Our study contributes to the current knowledge on the effect of the repetition rate as an irradiation parameter.

  9. Effect of Repetition Rate on Femtosecond Laser-Induced Homogenous Microstructures.

    Science.gov (United States)

    Biswas, Sanchari; Karthikeyan, Adya; Kietzig, Anne-Marie

    2016-12-19

    We report on the effect of repetition rate on the formation and surface texture of the laser induced homogenous microstructures. Different microstructures were micromachined on copper (Cu) and titanium (Ti) using femtosecond pulses at 1 and 10 kHz. We studied the effect of the repetition rate on structure formation by comparing the threshold accumulated pulse ( F Σ p u l s e ) values and the effect on the surface texture through lacunarity analysis. Machining both metals at low F Σ p u l s e resulted in microstructures with higher lacunarity at 10 kHz compared to 1 kHz. On increasing F Σ p u l s e , the microstructures showed higher lacunarity at 1 kHz. The effect of the repetition rate on the threshold F Σ p u l s e values were, however, considerably different on the two metals. With an increase in repetition rate, we observed a decrease in the threshold F Σ p u l s e on Cu, while on Ti we observed an increase. These differences were successfully allied to the respective material characteristics and the resulting melt dynamics. While machining Ti at 10 kHz, the melt layer induced by one laser pulse persists until the next pulse arrives, acting as a dielectric for the subsequent pulse, thereby increasing F Σ p u l s e . However, on Cu, the melt layer quickly resolidifies and no such dielectric like phase is observed. Our study contributes to the current knowledge on the effect of the repetition rate as an irradiation parameter.

  10. Studies of the uncanny: the repetition factor

    Directory of Open Access Journals (Sweden)

    Julia Teitelroit Martins

    2011-06-01

    Full Text Available Freud’s essay The Uncanny (Das Unheimliche offers many indications for the comprehension of an aesthetics of the uncanny which deserve to be explored. Nonetheless, a concept traverses it from beginning to end: the return – which enables its reading under the light of Beyond the pleasure principle, written along the same span of time. Emphasis is given to the uncanny in the sense of repetition of the different – a paradox in terms, like the strangely familiar uncanny. In order to test the validity of an aesthetic reading under this perspective, follows an analysis of the brief short story “A terceira margem do rio” (“The third margin of the river”, by Guimarães Rosa.

  11. Pulsed inductive HF laser

    Energy Technology Data Exchange (ETDEWEB)

    Razhev, A M; Kargapol' tsev, E S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Churkin, D S; Demchuk, S V [Novosibirsk State University, Novosibirsk (Russian Federation)

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  12. Ultra-wideband short-pulse radar with range accuracy for short range detection

    Science.gov (United States)

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  13. The design and construction of a pulsed beam generation system based on high intensity cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to perform the studies on a pulsed beam generation system based on a high intensity cyclotron, a test beam line with a pulsed beam generation for a 10 MeV compact cyclotron (CYCIAE-10) has been designed and constructed at China Institute of Atomic Energy (CIAE). A 70 MHz continuous H- beam can be pulsed to the pulse length of less than 10 ns with a repetition rate of 4.4 MHz. The sine waveform with a frequency of 2.2 MHz is adopted for the chopper and a mesh structure with single drift and dual gaps is used for the 70 MHz buncher. A helical resonator is designed and constructed based on simulations and experiments on the RF matching for the chopper. A helical inductance loop that is exceptionally large of its kind and equipped with water cooling for the resonator has been successfully wound and a 500 W solid RF amplifier has been manufactured. A special measuring device has been designed, which can be used to measure both the DC beam and the pulsed beam. The required pulsed beam was obtained after pulsed beam tuning.

  14. Digital repetitive control under varying frequency conditions

    OpenAIRE

    Ramos Fuentes, Germán Andrés

    2012-01-01

    The tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area and Repetitive Control has proven to be an efficient way to face this topic; however, in some applications the period of the signal to be tracked/rejected changes in time or is uncertain, which causes and important performance degradation in the standard repetitive controller. This thesis presents some contributions to the open topic of repetitive control workin...

  15. Steel Pulsed Eddy Current Testing Method%钢板脉冲涡流检测方法

    Institute of Scientific and Technical Information of China (English)

    杨理践; 裴磊; 杨继华

    2011-01-01

    In order to effectively increase the depth of penetration of pulsed eddy current signals to detect cracks in steel plate,this paper presented the method of increasing the excitation current. It used low voltage high current power supply and power MOSFET chopper means to produce a large current pulse. It designed the pulsed eddy current probe which composed of the rectangular coils and two Hall sensors. And the amplifying and filtering circuit was made. It adopted the data acquisition card to acquire signals. It used LabVIEW platform, with peak scanning method, realized pulsed eddy current signals differential detection, to effectively identify the sub-surface cracks in thick steel plate.%为了有效增加脉冲涡流信号的渗透深度以检测较厚钢板裂纹缺陷,提出了增大激励电流的方法.用低压大电流电源和功率MOSFET斩波的方式产生大电流脉冲;设计了由矩形激励线圈和2片霍尔传感器构成的脉冲涡流检测探头并制作放大滤波电路;采用数据采集卡采集信号,以LabVIEW为平台,采用峰值扫描方法,实现脉冲涡流信号的差分检测,达到有效识别较厚钢板亚表面裂纹缺陷.

  16. 重频脉冲放电等离子体处理聚合物材料加快表面电荷消散的实验研究%Experimental Study of Accelerating Surface Charge Dissipation on Polymer Treated by Repetitively Pulsed Discharge Plasmas

    Institute of Scientific and Technical Information of China (English)

    马云飞; 章程; 李传扬; 陈根永; 周远翔; 邵涛

    2016-01-01

    LDPE films after treatment formed oxygen-containing polar species such as carbonyl. Three- dimensional distribution of the surface potential show that the process of decay was accelerated after DBD treatment. The decay rate improved with increasing treatment time. The results were explained for two aspects: one reason was that the reduction of water contact angle resulted in increasing of adsorption water content on the surface. It would increase surface conductivity and accelerate charge carriers to migrate along the surface. Another reason was that DBD treatment introduced polar carbonyl group on the surface, leading to the energy level of surface trap shallow. In summary, DBD generated by repetition frequency pulse can effectively accelerate surface charge dissipation of LDPE films. This can provide a reference for applications.

  17. Technology of Pulse Power Capacitors

    Science.gov (United States)

    Qin, Shanshan

    Polymer film of pulse discharge capacitors operated at high repetition rate dissipates substantial power. The thermal conductivity of biaxially oriented polypropylene (BOPP) is measured as a function of metallization resistivity. The thermal conductivity in the plane of the film is about twice that of bulk polypropylene. Thermal design is optimized based on the measurement for large capacitors with multiple windings in a container. High discharge speed results in high current density at the wire arc sprayed end connections which tend to deteriorate gradually, resulting in capacitor failure during operation. To assure the end connection quality before assembly, a test procedure and apparatus for end connection integrity was developed based on monitoring the partial discharge pattern from end connection during discharge. The mechanism of clearing is analyzed which shows arc extinguishes due to the increased arc length and reduced energy so that capacitor can function normally after breakdown. In the case of a clearing discharge, the power dissipation appears to increase with time, although this is not a feature of previous models. Submicrosecond discharge requires minimizing inductance which can be achieved by optimizing the winding structure so that submicrosecond discharge becomes practical. An analysis of the inductance of multisection, very high voltage capacitors is carried out, which identifies low inductance structures for this type of capacitor.

  18. Movement repetitions in physical and occupational therapy during spinal cord injury rehabilitation.

    Science.gov (United States)

    Zbogar, D; Eng, J J; Miller, W C; Krassioukov, A V; Verrier, M C

    2017-02-01

    Longitudinal observational study. To quantify the amount of upper- and lower-extremity movement repetitions (that is, voluntary movements as part of a functional task or specific motion) occurring during inpatient spinal cord injury (SCI), physical (PT) and occupational therapy (OT), and examine changes over the inpatient rehabilitation stay. Two stand-alone inpatient SCI rehabilitation centers. Participants: A total of 103 patients were recruited through consecutive admissions to SCI rehabilitation. Trained assistants observed therapy sessions and obtained clinical outcome measures in the second week following admission and in the second to last week before discharge. PT and OT time, upper- and lower-extremity repetitions and changes in these outcomes over the course of rehabilitation stay. We observed 561 PT and 347 OT sessions. Therapeutic time comprised two-thirds of total therapy time. Summed over PT and OT, the median upper-extremity repetitions in patients with paraplegia were 7 repetitions and in patients with tetraplegia, 42 repetitions. Lower-extremity repetitions and steps primarily occurred in ambulatory patients and amounted to 218 and 115, respectively (summed over PT and OT sessions at discharge). Wilcoxon-signed rank tests revealed that most repetition variables did not change significantly over the inpatient rehabilitation stay. In contrast, clinical outcomes for the arm and leg improved over this time period. Repetitions of upper- and lower-extremity movements are markedly low during PT and OT sessions. Despite improvements in clinical outcomes, there was no significant increase in movement repetitions over the course of inpatient rehabilitation stay.

  19. A high repetition rate XUV seeding source for FLASH2

    Energy Technology Data Exchange (ETDEWEB)

    Willner, Arik

    2012-05-15

    Improved performance of free-electron laser (FEL) light sources in terms of timing stability, pulse shape and spectral properties of the amplified FEL pulses is of interest in material science, the fields of ultrafast dynamics, biology, chemistry and even special branches in industry. A promising scheme for such an improvement is direct seeding with high harmonic generation (HHG) in a noble gas target. A free-electron laser seeded by an external extreme ultraviolet (XUV) source is planned for FLASH2 at DESY in Hamburg. The requirements for the XUV/soft X-ray source can be summarized as follows: A repetition rate of at least 100 kHz in a 10 Hz burst is needed at variable wavelengths from 10 to 40 nm and pulse energies of several nJ within a single laser harmonic. This application requires a laser amplifier system with exceptional parameters, mJ-level pulse energy, 10-15 fs pulse duration at 100 kHz (1 MHz) burst repetition rate. A new optical parametric chirped-pulse amplification (OPCPA) system is under development in order to meet these requirements, and very promising results have been achieved in the last three years. In parallel to this development, a new HHG concept is necessary to sustain high average power of the driving laser system and to generate harmonics with high conversion efficiencies. Currently, the highest conversion efficiency with HHG has been demonstrated using gas-filled capillary targets. For our application, only a free-jet target can be used for HHG, in order to overcome damage threshold limitations of HHG target optics at a high repetition rate. A novel dual-gas multijet gas target has been developed and first experiments show remarkable control of the degree of phase matching forming the basis for improved control of the harmonic photon flux and the XUV pulse characteristics. The basic idea behind the dual-gas concept is the insertion of matching zones in between multiple HHG sources. These matching sections are filled with hydrogen which

  20. A High Power and High Repetition Rate Modelocked Ti-Sapphire Laser for Photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    J. Hansknecht; M. Poelker

    2001-07-01

    A high power cw mode-locked Ti-sapphire laser has been constructed to drive the Jefferson Lab polarized photoinjector and provide > 500 mW average power with 50 ps pulsewidths at 499 MHz or 1497 MHz pulse repetition rates. This laser allows efficient, high current synchronous photoinjection for extended periods of time before intrusive steps must be taken to restore the quantum efficiency of the strained layer GaAs photocathode. The use of this laser has greatly enhanced the maximum high polarization beam current capability and operating lifetime of the Jefferson Lab photoinjector compared with previous performance using diode laser systems. A novel modelocking technique provides a simple means to phase-lock the optical pulse train of the laser to the accelerator and allows for operation at higher pulse repetition rates to {approx} 3 GHz without modification of the laser cavity. The laser design and characteristics are described below.

  1. [Repetition and fear of dying].

    Science.gov (United States)

    Lerner, B D

    1995-03-01

    In this paper a revision is made of the qualifications of Repetition (R) in Freuds work, i.e. its being at the service of the Pleasure Principle and, beyond it, the binding of free energy due to trauma. Freud intends to explain with this last concept the "fort-da" and the traumatic dreams (obsessively reiterated self-reproaches may be added to them). The main thesis of this work is that R. is not only a defense against the recollection of the ominous past (as in the metaphorical deaths of abandonment and desertion) but also a way of maintaining life and identify fighting against the inescapable omninous future (known but yet experienced), i.e. our own death. Some forms of R. like habits, identificatory behaviors and sometimes even magic, are geared to serve the life instinct. A literary illustration shows this desperate fight.

  2. Pressure rig for repetitive casting

    Science.gov (United States)

    Vasquez, Peter (Inventor); Hutto, William R. (Inventor); Philips, Albert R. (Inventor)

    1989-01-01

    The invention is a pressure rig for repetitive casting of metal. The pressure rig performs like a piston for feeding molten metal into a mold. Pressure is applied to an expandable rubber diaphragm which expands like a balloon to force the metal into the mold. A ceramic cavity which holds molten metal is lined with blanket-type insulating material, necessitating only a relining for subsequent use and eliminating the lengthy cavity preparation inherent in previous rigs. In addition, the expandable rubber diaphragm is protected by the insulating material thereby decreasing its vulnerability to heat damage. As a result of the improved design the life expectancy of the pressure rig contemplated by the present invention is more than doubled. Moreover, the improved heat protection has allowed the casting of brass and other alloys with higher melting temperatures than possible in the conventional pressure rigs.

  3. Scheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique.

    Science.gov (United States)

    Nakazawa, Masataka; Yoshida, Masato

    2008-05-15

    We have succeeded in achieving independent control of the repetition rate and optical frequency of a pulse laser by employing a regenerative mode-locking technique. By adopting a voltage-controlled microwave phase shifter or an optical delay line in a regenerative feedback loop we can control the repetition rate of the laser without directly disturbing the optical frequencies. We experimentally show how this independent control can be realized by employing a 40 GHz harmonically and regeneratively mode-locked fiber laser.

  4. All solid-state high power microwave source with high repetition frequency.

    Science.gov (United States)

    Bragg, J-W B; Sullivan, W W; Mauch, D; Neuber, A A; Dickens, J C

    2013-05-01

    An all solid-state, megawatt-class high power microwave system featuring a silicon carbide (SiC) photoconductive semiconductor switch (PCSS) and a ferrimagnetic-based, coaxial nonlinear transmission line (NLTL) is presented. A 1.62 cm(2), 50 kV 4H-SiC PCSS is hard-switched to produce electrical pulses with 7 ns full width-half max (FWHM) pulse widths at 2 ns risetimes in single shot and burst-mode operation. The PCSS resistance drops to sub-ohm when illuminated with approximately 3 mJ of laser energy at 355 nm (tripled Nd:YAG) in a single pulse. Utilizing a fiber optic based optical delivery system, a laser pulse train of four 7 ns (FWHM) signals was generated at 65 MHz repetition frequency. The resulting electrical pulse train from the PCSS closely follows the optical input and is utilized to feed the NLTL generating microwave pulses with a base microwave-frequency of about 2.1 GHz at 65 MHz pulse repetition frequency (prf). Under typical experimental conditions, the NLTL produces sharpened output risetimes of 120 ps and microwave oscillations at 2-4 GHz that are generated due to damped gyromagnetic precession of the ferrimagnetic material's axially pre-biased magnetic moments. The complete system is discussed in detail with its output matched into 50 Ω, and results covering MHz-prf in burst-mode operation as well as frequency agility in single shot operation are discussed.

  5. Memory, emotion, and pupil diameter: Repetition of natural scenes.

    Science.gov (United States)

    Bradley, Margaret M; Lang, Peter J

    2015-09-01

    Recent studies have suggested that pupil diameter, like the "old-new" ERP, may be a measure of memory. Because the amplitude of the old-new ERP is enhanced for items encoded in the context of repetitions that are distributed (spaced), compared to massed (contiguous), we investigated whether pupil diameter is similarly sensitive to repetition. Emotional and neutral pictures of natural scenes were viewed once or repeated with massed (contiguous) or distributed (spaced) repetition during incidental free viewing and then tested on an explicit recognition test. Although an old-new difference in pupil diameter was found during successful recognition, pupil diameter was not enhanced for distributed, compared to massed, repetitions during either recognition or initial free viewing. Moreover, whereas a significant old-new difference was found for erotic scenes that had been seen only once during encoding, this difference was absent when erotic scenes were repeated. Taken together, the data suggest that pupil diameter is not a straightforward index of prior occurrence for natural scenes. © 2015 Society for Psychophysiological Research.

  6. High-repetition rate industrial TEA CO2 laser with average output power of 1.5 kW

    Science.gov (United States)

    Wan, Chongyi; Liu, Shiming; Zhou, Jinwen; Qi, Jilan; Yang, Xiaola; Wu, Jin; Tan, Rongqing; Wang, Lichun; Mei, Qichu

    1995-03-01

    High power high repetition rate TEA CO2 laser has potential importance in material processing such as shock hardening, glazing, drilling, welding, and cutting for high damage threshold materials, as well as in chemical reaction and isotope separation. This paper describes a transverse-flow closed-cycle UV-preionized TEA CO2 laser with peak pulse power of 20 MW, maximum average power of 1.5 KW at repetition rate of 300 HZ. The laser has compact constructure of gas flow circulation system using tangential fans. With addition of small amounts of H2 and CO to the normal CO2-N2-He gas mixture, one filling sealed operating lifetime is up to millions of pulses. A novel spark gap switch has been developed for very high repetition rate laser discharge in the condition of high pulse power.

  7. Research and Development of ns Pulse Width Ultrafast Pulsed Power Supply%ns 级快脉冲电源研制

    Institute of Scientific and Technical Information of China (English)

    陈锦晖; 韩谦

    2014-01-01

    高重复频率ns级快脉冲电源是粒子加速器超快 kicker注入引出技术中有待攻克的关键技术难题。本工作利用计算机仿真和桌面实验等手段从理论上研究了感应叠加技术、射频MOSFET开关及驱动电路技术,并在此基础上设计研制了1台10级感应叠加的快脉冲电源性能样机。经初步测试,10级叠加性能样机在500 Hz低频工作条件下,输出脉冲幅度>4.3 kV ,脉冲前沿<2.8 ns ,脉冲宽度<9 ns ,基本达到了预期目标。%High repetition rate ,nanosecond pulse width fast pulsed power supply is a key technology to be overcome for particle accelerator fast kicker injection and ejection . In this paper ,inductive adder topology ,the RF MOSFET and its driver circuit were studied by computer simulation and table circuit experiment .On the basis of theory research ,a ten-grade inductive adder pulsed power supply evaluating prototype was developed .The preliminary test of the prototype was completed .A ten-grade adder can produce a short pulse of pulse amplitude>4.3 kV ,front edge<2.8 ns ,and pulse width<9 ns into 50 Ω at 500 Hz repetition rate .

  8. Flow Separation Control on Airfoil With Pulsed Nanosecond Discharge Actuator

    NARCIS (Netherlands)

    Correale, G.; Popov, I.B.; Ratikin, A.E.; Starikovskii, A.Y.; Hulshoff, S.J.; Veldhuis, L.L.M.

    2011-01-01

    An experimental study of flow separation control with a nanosecond pulse plasma actuator was performed in wind-tunnel experiments. The discharge used had a pulse width of 12 ns and rising time of 3 ns with voltage up to 12 kV. Repetition frequency was adjustable up to 10 kHz. The first series of exp

  9. Ultraviolet excimer laser ablation: the effect of wavelength and repetition rate on in vivo guinea pig skin

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, J.; Kibbi, A.G.; Farinelli, W.; Boll, J.; Tan, O.T.

    1987-06-01

    Multiple dermatologic conditions that are currently treated with traditional cold-knife surgery are amenable to laser therapy. The ideal surgical treatment would be precise and total removal of abnormal tissue with maximal sparing of remaining structures. The ultraviolet (UV) excimer laser is capable of such precise tissue removal due to the penetration depth of 193 nm and 248 nm irradiation of 1 micron per pulse. This type of ablative tissue removal requires a high repetition rate for efficient lesional destruction. Excimer laser radiation at 193 nm is capable of high repetition rates, which are necessary while 248 nm radiation causes increasing nonspecific thermal injury as the laser repetition rate is increased.

  10. Coordinated Research Program in Pulsed Power Physics.

    Science.gov (United States)

    1985-12-20

    of different foil materials are listed ( Eninger , 1981). A severe constraint for long e-beam pulses and/or repetitive operation is foil heating. In...demonstration of state-to- state dissociative electron capture rate in 12," Opt. Comm., vol. 40, p. 425, 1982. 159J J. E. Eninger , "Broad area electron

  11. Compact transient-grating self-referenced spectral interferometry for sub-nanojoule femtosecond pulses characterization

    CERN Document Server

    Shen, Xiong; Liu, Jun; Li, Ruxin

    2016-01-01

    The self-referenced spectral interferometry (SRSI) technique, which is usually used for microjoule-level femtosecond pulses characterization, is improved to characterize weak femtosecond pulses with nanojoule based on the transient-grating effect. Both femtosecond pulses from an amplifier with 3 nJ per pulse at 1 kHz repetition rates and femtosecond pulses from an oscillator with less than 0.5 nJ per pulse at 84 MHz repetition rates are successfully characterized. Furthermore, through a special design, the optical setup of the device is even smaller than a palm which will makes it simple and convenient during the application. These improvements extend the application of SRSI technique to the characterization of femtosecond pulses in a broad range. Not only pulses from an amplifier but also pulses from an oscillator or weak pulses used in ultrafast spectroscopy can be monitored with this SRSI method right now.

  12. Diode-Pumped Nanosecond Pulsed Laser with Pulse-Transmission-Mode Q-Switch

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; HUO Yu-Jing; HE Shu-Fang; FENG Li-Chun

    2001-01-01

    Q-switched pulses at 1.064μm with a peak power of 5.02kW and a pulse width of2.8ns were obtained which were pumped by a 1 W laser diode on the Nd:YVO4 microchip at the 1 kHz repetition rate. These values were achieved by combining the techniques of aconsto-optic Q-switching and electro-optic pulse-transmission-mode Q-switching. The temporal characteristics of the pulses were analysed numerically. The experimental results are shown to be in good agreement with theoretical predictions.

  13. Bremsstrahlung {gamma}-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi [Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196 (Japan); Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196, Japan and Photon Pioneers Center in Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196 (Japan)

    2012-07-11

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free {gamma}-ray imaging systems. The calculated yield of {gamma}-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on {gamma}-ray imaging is also discussed.

  14. Bremsstrahlung γ-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    Science.gov (United States)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

    2012-07-01

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free γ-ray imaging systems. The calculated yield of γ-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on γ-ray imaging is also discussed.

  15. Comparing repetition-based melody segmentation models

    NARCIS (Netherlands)

    Rodríguez López, M.E.; de Haas, Bas; Volk, Anja

    2014-01-01

    This paper reports on a comparative study of computational melody segmentation models based on repetition detection. For the comparison we implemented five repetition-based segmentation models, and subsequently evaluated their capacity to automatically find melodic phrase boundaries in a corpus of 2

  16. Task Repetition and Second Language Speech Processing

    Science.gov (United States)

    Lambert, Craig; Kormos, Judit; Minn, Danny

    2017-01-01

    This study examines the relationship between the repetition of oral monologue tasks and immediate gains in L2 fluency. It considers the effect of aural-oral task repetition on speech rate, frequency of clause-final and midclause filled pauses, and overt self-repairs across different task types and proficiency levels and relates these findings to…

  17. Repetitions: A Cross-Cultural Study.

    Science.gov (United States)

    Murata, Kumiko

    1995-01-01

    This study investigated how repetition is used in conversation among native speakers of British English, native speakers of Japanese, and Japanese speakers of English. Five interactional functions of repetition (interruption-orientated, solidarity, silence-avoidance, hesitation, and reformulation) were identified, as well as the cultural factors…

  18. Digital repetitive control under varying frequency conditions

    CERN Document Server

    Ramos, Germán A; Olm, Josep M

    2013-01-01

    The tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area. Repetitive Control has proven to be an efficient way to face this topic. However, in some applications the frequency of the reference/disturbance signal is time-varying or uncertain. This causes an important performance degradation in the standard Repetitive Control scheme. This book presents some solutions to apply Repetitive Control in varying frequency conditions without loosing steady-state performance. It also includes a complete theoretical development and experimental results in two representative systems. The presented solutions are organized in two complementary branches: varying sampling period Repetitive Control and High Order Repetitive Control. The first approach allows dealing with large range frequency variations while the second allows dealing with small range frequency variations. The book also presents applications of the described techniques to a Roto-magnet plant and...

  19. Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression.

    Science.gov (United States)

    Emaury, Florian; Saraceno, Clara J; Debord, Benoit; Ghosh, Debashri; Diebold, Andreas; Gèrôme, Frederic; Südmeyer, Thomas; Benabid, Fetah; Keller, Ursula

    2014-12-15

    We present nonlinear pulse compression of a high-power SESAM-modelocked thin-disk laser (TDL) using an Ar-filled hypocycloid-core kagome hollow-core photonic crystal fiber (HC-PCF). The output of the modelocked Yb:YAG TDL with 127 W average power, a pulse repetition rate of 7 MHz, and a pulse duration of 740 fs was spectrally broadened 16-fold while propagating in a kagome HC-PCF containing 13 bar of static argon gas. Subsequent compression tests performed using 8.4% of the full available power resulted in a pulse duration as short as 88 fs using the spectrally broadened output from the fiber. Compressing the full transmitted power through the fiber (118 W) could lead to a compressed output of >100  W of average power and >100  MW of peak power with an average power compression efficiency of 88%. This simple laser system with only one ultrafast laser oscillator and a simple single-pass fiber pulse compressor, generating both high peak power >100  MW and sub-100-fs pulses at megahertz repetition rate, is very interesting for many applications such as high harmonic generation and attosecond science with improved signal-to-noise performance.

  20. Ultra-short pulsed ytterbium-doped fiber laser and amplifier

    Institute of Scientific and Technical Information of China (English)

    Guanglei Ding; Xin Zhao; Yishan Wang; Wei Zhao; Guofu Chen

    2006-01-01

    @@ This paper investigates a high power all fiber ultrashort pulse laser system. This system consists of a modelocking laser oscillator, a multi-stage amplifier, a pulse selector, and a paired grating pulse compressor.With pulse energy of 12 μJ at repetition rate of 30 kHz, the laser at center wavelength of 1.05 μm was obtained. Pulse width of 525 fs was achieved after the grating pair compressor.