WorldWideScience

Sample records for repetitive visual task

  1. Visualizing stressful aspects of repetitive motion tasks and opportunities for ergonomic improvements using computer vision.

    Science.gov (United States)

    Greene, Runyu L; Azari, David P; Hu, Yu Hen; Radwin, Robert G

    2017-03-09

    Patterns of physical stress exposure are often difficult to measure, and the metrics of variation and techniques for identifying them is underdeveloped in the practice of occupational ergonomics. Computer vision has previously been used for evaluating repetitive motion tasks for hand activity level (HAL) utilizing conventional 2D videos. The approach was made practical by relaxing the need for high precision, and by adopting a semi-automatic approach for measuring spatiotemporal characteristics of the repetitive task. In this paper, a new method for visualizing task factors, using this computer vision approach, is demonstrated. After videos are made, the analyst selects a region of interest on the hand to track and the hand location and its associated kinematics are measured for every frame. The visualization method spatially deconstructs and displays the frequency, speed and duty cycle components of tasks that are part of the threshold limit value for hand activity for the purpose of identifying patterns of exposure associated with the specific job factors, as well as for suggesting task improvements. The localized variables are plotted as a heat map superimposed over the video, and displayed in the context of the task being performed. Based on the intensity of the specific variables used to calculate HAL, we can determine which task factors most contribute to HAL, and readily identify those work elements in the task that contribute more to increased risk for an injury. Work simulations and actual industrial examples are described. This method should help practitioners more readily measure and interpret temporal exposure patterns and identify potential task improvements.

  2. Task Repetition and Second Language Speech Processing

    Science.gov (United States)

    Lambert, Craig; Kormos, Judit; Minn, Danny

    2017-01-01

    This study examines the relationship between the repetition of oral monologue tasks and immediate gains in L2 fluency. It considers the effect of aural-oral task repetition on speech rate, frequency of clause-final and midclause filled pauses, and overt self-repairs across different task types and proficiency levels and relates these findings to…

  3. Improved Discrimination of Visual Stimuli Following Repetitive Transcranial Magnetic Stimulation

    OpenAIRE

    Waterston, Michael L.; Pack, Christopher C.

    2010-01-01

    BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a "virtual lesion" in stimulated brain regions, with correspondingly diminished behavioral performance. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of rTMS to visual cortex on subjects' ability to perform visual psychophysical tasks. Contrary t...

  4. Improved discrimination of visual stimuli following repetitive transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Michael L Waterston

    Full Text Available BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a "virtual lesion" in stimulated brain regions, with correspondingly diminished behavioral performance. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of rTMS to visual cortex on subjects' ability to perform visual psychophysical tasks. Contrary to expectations of a visual deficit, we find that rTMS often improves the discrimination of visual features. For coarse orientation tasks, discrimination of a static stimulus improved consistently following theta-burst stimulation of the occipital lobe. Using a reaction-time task, we found that these improvements occurred throughout the visual field and lasted beyond one hour post-rTMS. Low-frequency (1 Hz stimulation yielded similar improvements. In contrast, we did not find consistent effects of rTMS on performance in a fine orientation discrimination task. CONCLUSIONS/SIGNIFICANCE: Overall our results suggest that rTMS generally improves or has no effect on visual acuity, with the nature of the effect depending on the type of stimulation and the task. We interpret our results in the context of an ideal-observer model of visual perception.

  5. The relationship between task repetition and language proficiency

    Directory of Open Access Journals (Sweden)

    Ahmad Mojavezi

    2014-01-01

    Full Text Available Task repetition is now considered as an important task-based implementation variable which can affect complexity, accuracy, and fluency of L2 speech. However, in order to move towards theorizing the role of task repetition in second language acquisition, it is necessary that individual variables be taken into account. The present study aimed to investigate the way task repetition correlates with language proficiency and the differential effects that task repetition might have on the complexity, accuracy, and fluency of L2 learners with different levels of proficiency. Fifty language learners of different levels of proficiency, selected from two different language centers, participated in this study. They were asked to perform an oral narrative task twice with a one-week interval. Results revealed that, compared to the participants with lower L2 proficiency, participants with higher levels of L2 proficiency produced more complex, accurate, and fluent speech on the second encounter with the same task.

  6. Focus on form through task repetition in TBLT

    NARCIS (Netherlands)

    van de Guchte, M.; Braaksma, M.; Rijlaarsdam, G.; Bimmel, P.

    2015-01-01

    Because there has been little research on focus on form during the post-task phase in task-based language teaching, this experimental study investigates the effects of task repetition after having directed learners’ attention to form during the main task. The study comprises two interventions, where

  7. Task Repetition Effects on L1 Use in EFL Child Task-Based Interaction

    Science.gov (United States)

    Azkarai, Agurtzane; García Mayo, María del Pilar

    2017-01-01

    Research has shown that tasks provide second language (L2) learners with many opportunities to learn the L2. Task repetition has been claimed to benefit L2 learning since familiarity with procedure and/or content gives learners the chance to focus on more specific aspects of language. Most research on task repetition has focused on adult…

  8. Shortening of subjective visual intervals followed by repetitive stimulation.

    Directory of Open Access Journals (Sweden)

    Fuminori Ono

    Full Text Available Our previous research demonstrated that repetitive tone stimulation shortened the perceived duration of the preceding auditory time interval. In this study, we examined whether repetitive visual stimulation influences the perception of preceding visual time intervals. Results showed that a time interval followed by a high-frequency visual flicker was perceived as shorter than that followed by a low-frequency visual flicker. The perceived duration decreased as the frequency of the visual flicker increased. The visual flicker presented in one hemifield shortened the apparent time interval in the other hemifield. A final experiment showed that repetitive tone stimulation also shortened the perceived duration of preceding visual time intervals. We concluded that visual flicker shortened the perceived duration of preceding visual time intervals in the same way as repetitive auditory stimulation shortened the subjective duration of preceding tones.

  9. Neural dynamics during repetitive visual stimulation

    Science.gov (United States)

    Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter

    2015-12-01

    Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline

  10. Visual attention to advertising : The impact of motivation and repetition

    NARCIS (Netherlands)

    Pieters, RGM; Rosbergen, E; Hartog, M; Corfman, KP; Lynch, JG

    1996-01-01

    Using eye-tracking data, we examine the impact of motivation and repetition on visual attention to advertisements differing in argument quality. Our analyses indicate that repetition leads to an overall decrease in the amount of attention. However, while at first high motivation subjects attend to t

  11. Background music for repetitive task performance of severely retarded individuals.

    Science.gov (United States)

    Richman, J S

    1976-11-01

    Environmental manipulation in the form of specific tempo background music was used to assist in the habilitation of severely retarded persons. Thirty institutionalized retarded males were tested on a repetitive manual performance task judged to be similar to the type of tasks found in sheltered workshops. Each subject received each of the background treatments noncontingently: no music, slow tempo music, regular tempo music, fast tempo music. The results indicated that the regular tempo of background music facilitated the greatest improvement in performance, suggesting that the effect of music on performance is more complex than the issue of contingent presentation.

  12. Temporal evolution of gamma activity in human cortex during an overt and covert word repetition task

    Directory of Open Access Journals (Sweden)

    Eric eLeuthardt

    2012-05-01

    Full Text Available Different models for cortical processing of speech have been proposed. Classically, the regions participating in language were thought to be modular with a linear sequence of activations. More recently, modern theoretical models have posited a more hierarchical and distributed interaction of anatomic areas for the various stages of speech processing. Traditional imaging techniques can only define the location or time of cortical activation, which impedes the further validation and refinement of these models. In this study, we take advantage of recordings from the surface of the brain (electrocorticography ECoG, which can accurately detect the location and timing of cortical activations, to study the time course of ECoG gamma modulations during an overt and covert word repetition task for different cortical areas. For overt word production, our results show substantial perisylvian cortical activations early in the perceptual phase of the task that were maintained through word articulation. However, this broad activation is attenuated during the expressive phase of covert word repetition. Across the different repetition tasks, the utilization of the different cortical sites within the perisylvian region varied dependent on which stimulus was provided (auditory or visual cue and whether the word was to be spoken or imagined. Taken together, the data supports current models of speech that were defined with functional imaging. Moreover, this study demonstrates that the broad perisylvian speech network variably utilizes these cortical resources based on the nature of the cognitive task.

  13. Electromyographical Study on Muscle Fatigue in Repetitive Forearm Tasks

    Institute of Scientific and Technical Information of China (English)

    DAI Wentao; ZHAO Xiaorong; WANG Zhenglun; YANG Lei

    2007-01-01

    The purpose of this study was to examine whether repetitive muscle tasks in low weight load might influence the fatigue of forearm muscles, and to identify ergonomic risk factors of forearm muscle fatigue in these tasks. Sixteen healthy male volunteers performed eight wrist extensions in different frequency, weight and angle loads while being instructed to keep a dominant upper limb posture as constant as possible. Surface electromyograph (sEMG) was recorded from right extensors digitorium (ED), flexor carpi radialis (FCR), flexor carpi ulnaris (FCU) and extensor carpi ulnaris (ECU) during the task performance. Our results showed that mean power frequency (MPF) and median frequency (MF) values of ED, FCR and FCU were significantly lower (P<0.05) at high frequency load level than at low load level. However, MPF and MF values of ED were significantly lower (P<0.01) in higher load groups of frequency, angle and weight than in lower load groups. These results indicated that the fatigue of muscles varied in the same task, and the number-one risk factor of ECU, ED and FCR was angle load.

  14. Task Switching in a Hierarchical Task Structure: Evidence for the Fragility of the Task Repetition Benefit

    Science.gov (United States)

    Lien, Mei-Ching; Ruthruff, Eric

    2004-01-01

    This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms.…

  15. Impact of visual repetition rate on intrinsic properties of low frequency fluctuations in the visual network.

    Directory of Open Access Journals (Sweden)

    Yi-Chia Li

    Full Text Available BACKGROUND: Visual processing network is one of the functional networks which have been reliably identified to consistently exist in human resting brains. In our work, we focused on this network and investigated the intrinsic properties of low frequency (0.01-0.08 Hz fluctuations (LFFs during changes of visual stimuli. There were two main questions to be discussed in this study: intrinsic properties of LFFs regarding (1 interactions between visual stimuli and resting-state; (2 impact of repetition rate of visual stimuli. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed scanning sessions that contained rest and visual stimuli in various repetition rates with a novel method. The method included three numerical approaches involving ICA (Independent Component Analyses, fALFF (fractional Amplitude of Low Frequency Fluctuation, and Coherence, to respectively investigate the modulations of visual network pattern, low frequency fluctuation power, and interregional functional connectivity during changes of visual stimuli. We discovered when resting-state was replaced by visual stimuli, more areas were involved in visual processing, and both stronger low frequency fluctuations and higher interregional functional connectivity occurred in visual network. With changes of visual repetition rate, the number of areas which were involved in visual processing, low frequency fluctuation power, and interregional functional connectivity in this network were also modulated. CONCLUSIONS/SIGNIFICANCE: To combine the results of prior literatures and our discoveries, intrinsic properties of LFFs in visual network are altered not only by modulations of endogenous factors (eye-open or eye-closed condition; alcohol administration and disordered behaviors (early blind, but also exogenous sensory stimuli (visual stimuli with various repetition rates. It demonstrates that the intrinsic properties of LFFs are valuable to represent physiological states of human brains.

  16. Stimulus-Category and Response-Repetition Effects in Task Switching: An Evaluation of Four Explanations

    Science.gov (United States)

    Druey, Michel D.

    2014-01-01

    In many task-switch studies, task sequence and response sequence interact: Response repetitions produce benefits when the task repeats but produce costs when the task switches. Four different theoretical frameworks have been proposed to explain these effects: a reconfiguration-based account, association-learning models, an episodic-retrieval…

  17. Feasibility of High-Repetition, Task-Specific Training for Individuals With Upper-Extremity Paresis

    Science.gov (United States)

    Waddell, Kimberly J.; Birkenmeier, Rebecca L.; Moore, Jennifer L.; Hornby, T. George

    2014-01-01

    OBJECTIVE. We investigated the feasibility of delivering an individualized, progressive, high-repetition upper-extremity (UE) task-specific training protocol for people with stroke in the inpatient rehabilitation setting. METHOD. Fifteen patients with UE paresis participated in this study. Task-specific UE training was scheduled for 60 min/day, 4 days/wk, during occupational therapy for the duration of a participant’s inpatient stay. During each session, participants were challenged to complete ≥300 repetitions of various tasks. RESULTS. Participants averaged 289 repetitions/session, spending 47 of 60 min in active training. Participants improved on impairment and activity level outcome measures. CONCLUSION. People with stroke in an inpatient setting can achieve hundreds of repetitions of task-specific training in 1-hr sessions. As expected, all participants improved on functional outcome measures. Future studies are needed to determine whether this high-repetition training program results in better outcomes than current UE interventions. PMID:25005508

  18. The effect of 10 Hz repetitive transcranial magnetic stimulation of posterior parietal cortex on visual attention.

    Science.gov (United States)

    Dombrowe, Isabel; Juravle, Georgiana; Alavash, Mohsen; Gießing, Carsten; Hilgetag, Claus C

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the posterior parietal cortex (PPC) at frequencies lower than 5 Hz transiently inhibits the stimulated area. In healthy participants, such a protocol can induce a transient attentional bias to the visual hemifield ipsilateral to the stimulated hemisphere. This bias might be due to a relatively less active stimulated hemisphere and a relatively more active unstimulated hemisphere. In a previous study, Jin and Hilgetag (2008) tried to switch the attention bias from the hemifield ipsilateral to the hemifield contralateral to the stimulated hemisphere by applying high frequency rTMS. High frequency rTMS has been shown to excite, rather than inhibit, the stimulated brain area. However, the bias to the ipsilateral hemifield was still present. The participants' performance decreased when stimuli were presented in the hemifield contralateral to the stimulation site. In the present study we tested if this unexpected result was related to the fact that participants were passively resting during stimulation rather than performing a task. Using a fully crossed factorial design, we compared the effects of high frequency rTMS applied during a visual detection task and high frequency rTMS during passive rest on the subsequent offline performance in the same detection task. Our results were mixed. After sham stimulation, performance was better after rest than after task. After active 10 Hz rTMS, participants' performance was overall better after task than after rest. However, this effect did not reach statistical significance. The comparison of performance after rTMS with task and performance after sham stimulation with task showed that 10 Hz stimulation significantly improved performance in the whole visual field. Thus, although we found a trend to better performance after rTMS with task than after rTMS during rest, we could not reject the hypothesis that high frequency rTMS with task and high frequency rTMS during rest

  19. The effect of 10 Hz repetitive transcranial magnetic stimulation of posterior parietal cortex on visual attention.

    Directory of Open Access Journals (Sweden)

    Isabel Dombrowe

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS of the posterior parietal cortex (PPC at frequencies lower than 5 Hz transiently inhibits the stimulated area. In healthy participants, such a protocol can induce a transient attentional bias to the visual hemifield ipsilateral to the stimulated hemisphere. This bias might be due to a relatively less active stimulated hemisphere and a relatively more active unstimulated hemisphere. In a previous study, Jin and Hilgetag (2008 tried to switch the attention bias from the hemifield ipsilateral to the hemifield contralateral to the stimulated hemisphere by applying high frequency rTMS. High frequency rTMS has been shown to excite, rather than inhibit, the stimulated brain area. However, the bias to the ipsilateral hemifield was still present. The participants' performance decreased when stimuli were presented in the hemifield contralateral to the stimulation site. In the present study we tested if this unexpected result was related to the fact that participants were passively resting during stimulation rather than performing a task. Using a fully crossed factorial design, we compared the effects of high frequency rTMS applied during a visual detection task and high frequency rTMS during passive rest on the subsequent offline performance in the same detection task. Our results were mixed. After sham stimulation, performance was better after rest than after task. After active 10 Hz rTMS, participants' performance was overall better after task than after rest. However, this effect did not reach statistical significance. The comparison of performance after rTMS with task and performance after sham stimulation with task showed that 10 Hz stimulation significantly improved performance in the whole visual field. Thus, although we found a trend to better performance after rTMS with task than after rTMS during rest, we could not reject the hypothesis that high frequency rTMS with task and high frequency r

  20. Peripheral and central changes combine to induce motor behavioral deficits in a moderate repetition task

    OpenAIRE

    Coq, Jacques-Olivier; Barr, Ann E.; Strata, Fabrizio; Russier, Michael; Kietrys, David M; Merzenich, Michael M.; Byl, Nancy N; Barbe, Mary F

    2009-01-01

    Repetitive motion disorders, such as carpal tunnel syndrome and focal hand dystonia, can be associated with tasks that require prolonged, repetitive behaviors. Previous studies using animal models of repetitive motion have correlated cortical neuroplastic changes or peripheral tissue inflammation with fine motor performance. However, the possibility that both peripheral and central mechanisms coexist with altered motor performance has not been studied. In this study, we investigated the relat...

  1. The Effect of Task Repetition on Fluency and Accuracy of EFL Saudi Female Learners' Oral Performance

    Science.gov (United States)

    Gashan, Amani K.; Almohaisen, Fahad M.

    2014-01-01

    This study aimed to examine the effect of task repetition on foreign language output. Twenty eight Saudi female students in the Preparatory Year (PY) at King Saud university, were randomly selected to conduct an oral information-gap task. The participants were asked to perform the task two times with two-week interval between the two performances.…

  2. How to improve repetition ability in patients with Wernicke's aphasia: the effect of a disguised task.

    Science.gov (United States)

    Otsuki, M; Soma, Y; Yoshimura, N; Miyashita, K; Nagatsuka, K; Naritomi, H

    2005-05-01

    Dissociation "automatico-voluntaire" is a symptom observed in aphasic patients. We elucidated the difference between voluntary and involuntary speech output in a quantitative manner using the same task materials in nine patients with Wernicke's aphasia. All the patients exhibited better ability and less paraphasias in a repetition task elicited in a disguised condition than in an ordinary repetition condition. This result indicates that the output difficulty in Wernicke's aphasia might be a disability of volitional control over the language system.

  3. Force time-history affects fatigue accumulation during repetitive handgrip tasks.

    Science.gov (United States)

    Sonne, Michael W; Hodder, Joanne N; Wells, Ryan; Potvin, Jim R

    2015-02-01

    Muscle fatigue is associated with a higher risk of workplace injury, in particular during repetitive tasks. This study aimed to identify the effect of a complex force-time history (a task with multiple different submaximal effort levels) on fatigue accumulation and recovery during a handgrip task. We measured surface electromyography of the brachioradialis (BRD) and flexor carpi ulnaris (FCU) of ten right hand dominant females with no history of upper limb injury while they performed a complex submaximal visually targeted gripping task. The task consisted of 15%, 30%, 45%, 30%, and 15% maximum voluntary contraction (MVC) plateaus. Each plateau was held for 15s, followed by a 3s MVC and 3s of rest. The "pyramid" was repeated until fatigue criteria were met. Grip force, average EMG and mean power frequency (MnPF) for first cycle and fatigued last cycle, were compared. Post-plateau peak grip force was on average 20.5% MVC lower during the last cycle (pMVC after the first 15% MVC plateau (from baseline), by 5.3% MVC after the 30% MVC plateau and 6.8% MVC after the 45% MVC plateau. Further accumulation of fatigue after the second 30% MVC plateau however was minimal, only decreasing by 1.6% MVC. Recovery appeared to occur during the last 15% MVC plateau with an increase in post plateau grip force of 1.6% MVC. Interestingly, MnPF parameters confirmed significant fatigue accumulation during the back end of a force pyramid. We conclude that in a pattern of contractions with ascending, then descending force intensity, voluntary force recovery was present when the preceding force was of a lower intensity. These findings indicate preceding demands play a role in fatigue accumulation during complex tasks.

  4. Brain signal complexity rises with repetition suppression in visual learning.

    Science.gov (United States)

    Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah

    2016-06-21

    Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual

  5. Changes of the Prefrontal EEG (Electroencephalogram) Activities According to the Repetition of Audio-Visual Learning.

    Science.gov (United States)

    Kim, Yong-Jin; Chang, Nam-Kee

    2001-01-01

    Investigates the changes of neuronal response according to a four time repetition of audio-visual learning. Obtains EEG data from the prefrontal (Fp1, Fp2) lobe from 20 subjects at the 8th grade level. Concludes that the habituation of neuronal response shows up in repetitive audio-visual learning and brain hemisphericity can be changed by…

  6. Effects of Procedural Content and Task Repetition on Accuracy and Fluency in an EFL Context

    Science.gov (United States)

    Patanasorn, Chomraj

    2010-01-01

    Task-supported language teaching can help provide L2 learners communicative practice in EFL contexts. Additionally, it has been suggested that repetition of tasks can help learners develop their accuracy and fluency (Bygate, 2001; Gass, Mackey, Fernandez, & Alvarez-Torres, 1999; Lynch & Maclean, 2000). The purposes of the study were to investigate…

  7. Effects of Procedural Content and Task Repetition on Accuracy and Fluency in an EFL Context

    Science.gov (United States)

    Patanasorn, Chomraj

    2010-01-01

    Task-supported language teaching can help provide L2 learners communicative practice in EFL contexts. Additionally, it has been suggested that repetition of tasks can help learners develop their accuracy and fluency (Bygate, 2001; Gass, Mackey, Fernandez, & Alvarez-Torres, 1999; Lynch & Maclean, 2000). The purposes of the study were to investigate…

  8. Measuring Grammatical Development in Bilingual Mandarin-English Speaking Children with a Sentence Repetition Task

    Science.gov (United States)

    Woon, Chai Ping; Yap, Ngee Thai; Lim, Hui Woan; Wong, Bee Eng

    2014-01-01

    Sentence repetition (SR) tasks have been used to measure children's expressive language skills in normal and abnormal language development, and to examine the development of the speaking skills in second language acquisition, as well as to survey the proficiency of bilingual language development. Recently, SR tasks have been recognized as a…

  9. Assessing Measurement Invariance for Spanish Sentence Repetition and Morphology Elicitation Tasks

    Science.gov (United States)

    Kapantzoglou, Maria; Thompson, Marilyn S.; Gray, Shelley; Restrepo, M. Adelaida

    2016-01-01

    Purpose: The purpose of this study was to evaluate evidence supporting the construct validity of two grammatical tasks (sentence repetition, morphology elicitation) included in the Spanish Screener for Language Impairment in Children (Restrepo, Gorin, & Gray, 2013). We evaluated if the tasks measured the targeted grammatical skills in the same…

  10. Effects of task repetition on L2 oral performance

    OpenAIRE

    Finardi, Kyria Rebeca

    2008-01-01

    This study departs from the assumption that speaking an L2 is a complex cognitive ability (FORTKAMP, 2000) whose execution seems to involve tradeoff effects among the different goals of speech production, mainly among fluency, accuracy and complexity (BYGATE, 1998, 1999, 2001b; FOSTER e SKEHAN, 1996; SKEHAN e FOSTER, 1995, 2001; SKEHAN, 1998). Bygate (2001b) studied the effects of task familiarity on L2 speech performance. He found that in repeating a narrative task there were gains in terms ...

  11. Repetitive Transcranial Magnetic Stimulation in Resistant Visual Hallucinations in a Woman With Schizophrenia: A Case Report.

    Science.gov (United States)

    Ghanbari Jolfaei, Atefeh; Naji, Borzooyeh; Nasr Esfehani, Mehdi

    2016-03-01

    A 29-year-old woman with schizophrenia introduced for application of repetitive transcranial magnetic stimulation for refractory visual hallucinations. Following inhibitory rTMS on visual cortex she reported significant reduction in severity and simplification of complexity of hallucinations, which lasted for three months. rTMS can be considered as a possibly potent treatment for visual hallucinations.

  12. Unconscious Cognition Isn't that Smart: Modulation of Masked Repetition Priming Effect in the Word Naming Task

    Science.gov (United States)

    Kinoshita, Sachiko; Forster, Kenneth I.; Mozer, Michael C.

    2008-01-01

    Masked repetition primes produce greater facilitation in naming in a block containing a high, rather than low proportion of repetition trials. [Bodner, G. E., & Masson, M. E. J. (2004). "Beyond binary judgments: Prime-validity modulates masked repetition priming in the naming task". "Memory & Cognition", 32, 1-11] suggested this phenomenon…

  13. The Effect of Task Repetition and Noticing on EFL Learners' Oral Output

    Science.gov (United States)

    Baleghizadeh, Sasan; Derakhshesh, Ali

    2012-01-01

    Teaching grammar is still a topic of heated debate in second/foreign language teaching. One major approach to teaching grammar holds that the learners should receive reactive focus on form in the context of communicative language teaching. The present study is an attempt to examine the effect of task repetition along with reactive focus on form on…

  14. Excessive Response-Repetition Costs under Task Switching: How Response Inhibition Amplifies Response Conflict

    Science.gov (United States)

    Grzyb, Kai Robin; Hubner, Ronald

    2013-01-01

    The size of response-repetition (RR) costs, which are usually observed on task-switch trials, strongly varies between conditions with univalent and bivalent stimuli. To test whether top-down or bottom-up processes can account for this effect, we assessed in Experiment 1 baselines for univalent and bivalent stimulus conditions (i.e., for stimuli…

  15. A Pilot Study Comparing Two Nonword Repetition Tasks for Use in a Formal Test Battery

    Science.gov (United States)

    Tattersall, Patricia J.; Nelson, Nickola Wolf; Tyler, Ann A.

    2015-01-01

    Two sets of nonwords (with and without true morphemes) were compared for their ability to differentiate students in Grades 1 through 12 with and without language impairment (36 each; N = 72) on a nonword repetition task. Results indicated that either nonword type could contribute to differential diagnosis.

  16. The Differential Effects of Two Types of Task Repetition on the Complexity, Accuracy, and Fluency in Computer-Mediated L2 Written Production: A Focus on Computer Anxiety

    Science.gov (United States)

    Amiryousefi, Mohammad

    2016-01-01

    Previous task repetition studies have primarily focused on how task repetition characteristics affect the complexity, accuracy, and fluency in L2 oral production with little attention to L2 written production. The main purpose of the study reported in this paper was to examine the effects of task repetition versus procedural repetition on the…

  17. The Differential Effects of Two Types of Task Repetition on the Complexity, Accuracy, and Fluency in Computer-Mediated L2 Written Production: A Focus on Computer Anxiety

    Science.gov (United States)

    Amiryousefi, Mohammad

    2016-01-01

    Previous task repetition studies have primarily focused on how task repetition characteristics affect the complexity, accuracy, and fluency in L2 oral production with little attention to L2 written production. The main purpose of the study reported in this paper was to examine the effects of task repetition versus procedural repetition on the…

  18. Differential preparation intervals modulate repetition processes in task switching: an ERP study

    Directory of Open Access Journals (Sweden)

    Min eWang

    2016-02-01

    Full Text Available In task-switching paradigms, reaction times (RTs switch cost (SC and the neural correlates underlying the SC are affected by different preparation intervals. However, little is known about the effect of the preparation interval on the repetition processes in task-switching. To examine this effect we utilized a cued task-switching paradigm with long sequences of repeated trials. Response-stimulus intervals (RSI and cue-stimulus intervals (CSI were manipulated in short and long conditions. Electroencephalography (EEG and behavioral data were recorded. We found that with increasing repetitions, RTs were faster in the short CSI conditions, while P3 amplitudes decreased in the LS (long RSI and short CSI conditions. Positive correlations between RT benefit and P3 activation decrease (repeat 1 minus repeat 5, and between the slope of the RT and P3 regression lines were observed only in the LS condition. Our findings suggest that differential preparation intervals modulate repetition processes in task switching.

  19. The effects of study-task relevance on perceptual repetition priming

    Science.gov (United States)

    Holbrook, Jon B.; Bost, Preston R.; Cave, Carolyn Backer

    2003-01-01

    Repetition priming is easily elicited in many traditional paradigms, and the possibility that perceptual priming may be other than an automatic consequence of perception has received little consideration. This issue is explored in two experiments. In Experiment 1, participants named the target from a four-item category search study task more quickly than the nontarget study items at a later naming test. Experiment 2 extended this finding to conditions in which stimuli were individually presented at study. In three different study tasks, stimuli relevant to study-task completion elicited priming on a later test, but stimuli presented outside the context of a task did not. In both experiments, recognition was above chance for nonrelevant stimuli, suggesting that participants explicitly remembered stimuli that did not elicit priming. Results suggest that priming is sensitive to study-task demands and may reflect a more adaptive and flexible mechanism for modification of perceptual processing than previously appreciated.

  20. The Effect of Task Instructions on Students' Use of Repetition in Argumentative Discourse

    Science.gov (United States)

    Gilabert, Sandra; Garcia-Mila, Merce; Felton, Mark K.

    2013-11-01

    The reasoning belief of argumentum ad nauseam assumes that when someone repeats something often enough, he or she becomes more convincing. The present paper analyses the use of this strategy by seventh-grade students in an argumentation task. Sixty-five students (mean age: 12.2, SD = 0.4) from a public school in a mid-sized urban environment took part in the study. The students were asked to either argue to convince an opposing partner or argue to reach consensus with an opposing partner on three dilemmas that dealt with energy sources. Data were gathered according to a between-groups design that included one independent variable (argumentative goal: to convince vs. to reach consensus) and one dependent variable (the degree of argumentative repetitions). We predicted that in the condition to convince their partner, the students would use the repetition strategy more often in their attempts to be persuasive. Our findings show that the mean number of argumentative repetitions was significantly higher for the persuasion group for both of the most frequent argumentative structures (claim and claim data). The mean percentage of repeated claims for the persuasion condition was 86.2 vs. 69.0 for the consensus condition. For the claim data, the mean percentage for the persuasion group was 35.2 vs. 24.3 for the consensus group. Also, students in the persuasion group tended to repeat one idea many times rather than repeating many ideas a few times within the same argumentative structure. The results of our study support the hypothesis that the goal of the argumentative task mediates argumentative discourse and, more concretely, the rate of repetitions and the conceptual diversity of the statements. These differences in rates of repetition and conceptual diversity are related to the amount of learning produced by the instructional goal. We apply Mercer's idea that not all classroom argumentation tasks promote learning equally.

  1. THE EFFECT OF TASK REPETITION AND NOTICING ON EFL LEARNERS’ ORAL OUTPUT

    Directory of Open Access Journals (Sweden)

    Sasan Baleghizadeh

    2012-01-01

    Full Text Available Teaching grammar is still a topic of heated debate in second/foreign language teaching. One major approach to teaching grammar holds that the learners should receive reactive focus on form in the context of communicative language teaching. The present study is an attempt to examine the effect of task repetition along with reactive focus on form on learners’ subsequent accurate output. To achieve this end, four Iranian intermediate EFL students participated in this study by volunteering to present lectures while their voices were being recorded. After transcribing their voices at home, the participants corrected their mistakes and submitted the draft to their teacher for additional corrections. The revised draft was returned to the participants to prepare themselves for a second oral presentation. The comparison of the number of erroneous utterances made in the first and the second presentations confirmed the positive effect of task repetition on the participants’ more accurate second oral performance.

  2. Repetitive Visual Stimulation Enhances Recovery from Severe Amblyopia

    Science.gov (United States)

    Montey, Karen L.; Eaton, Nicolette C.; Quinlan, Elizabeth M.

    2013-01-01

    Severe amblyopia, characterized by a significant reduction in visual acuity through the affected eye, is highly resistant to reversal in adulthood. We have previously shown that synaptic plasticity can be reactivated in the adult rat visual cortex by dark exposure, and the reactivated plasticity can be harnessed to promote the recovery from severe…

  3. Understanding the contribution of target repetition and target expectation to the emergence of the prevalence effect in visual search.

    Science.gov (United States)

    Godwin, Hayward J; Menneer, Tamaryn; Riggs, Charlotte A; Taunton, Dominic; Cave, Kyle R; Donnel, Nick

    2016-06-01

    Behavior in visual search tasks is influenced by the proportion of trials on which a target is presented (the target prevalence). Previous research has shown that when target prevalence is low (2 % prevalence), participants tend to miss targets, as compared with higher prevalence levels (e.g., 50 % prevalence). There is an ongoing debate regarding the relative contributions of target repetition and the expectation that a target will occur in the emergence of prevalence effects. In order to disentangle these two factors, we went beyond previous studies by directly manipulating participants' expectations regarding how likely a target was to appear on a given trial. This we achieved without using cues or feedback. Our results indicated that both target repetition and target expectation contribute to the emergence of the prevalence effect.

  4. Selective attention modulates visual and haptic repetition priming: effects in aging and Alzheimer's disease.

    Science.gov (United States)

    Ballesteros, Soledad; Reales, José M; Mayas, Julia; Heller, Morton A

    2008-08-01

    In two experiments, we examined the effect of selective attention at encoding on repetition priming in normal aging and Alzheimer's disease (AD) patients for objects presented visually (experiment 1) or haptically (experiment 2). We used a repetition priming paradigm combined with a selective attention procedure at encoding. Reliable priming was found for both young adults and healthy older participants for visually presented pictures (experiment 1) as well as for haptically presented objects (experiment 2). However, this was only found for attended and not for unattended stimuli. The results suggest that independently of the perceptual modality, repetition priming requires attention at encoding and that perceptual facilitation is maintained in normal aging. However, AD patients did not show priming for attended stimuli, or for unattended visual or haptic objects. These findings suggest an early deficit of selective attention in AD. Results are discussed from a cognitive neuroscience approach.

  5. Sublexical Processing in Visual Recognition of Chinese Characters: Evidence from Repetition Blindness for Subcharacter Components

    Science.gov (United States)

    Yeh, Su-Ling; Li, Jing-Ling

    2004-01-01

    Repetition blindness (RB) refers to the failure to detect the second occurrence of a repeated item in rapid serial visual presentation (RSVP). In two experiments using RSVP, the ability to report two critical characters was found to be impaired when these two characters were identical (Experiment 1) or similar by sharing one repeated component…

  6. The activation of visual memory for facial identity is task-dependent: evidence from human electrophysiology.

    Science.gov (United States)

    Zimmermann, Friederike G S; Eimer, Martin

    2014-05-01

    The question whether the recognition of individual faces is mandatory or task-dependent is still controversial. We employed the N250r component of the event-related potential as a marker of the activation of representations of facial identity in visual memory, in order to find out whether identity-related information from faces is encoded and maintained even when facial identity is task-irrelevant. Pairs of faces appeared in rapid succession, and the N250r was measured in response to repetitions of the same individual face, as compared to presentations of two different faces. In Experiment 1, an N250r was present in an identity matching task where identity information was relevant, but not when participants had to detect infrequent targets (inverted faces), and facial identity was task-irrelevant. This was the case not only for unfamiliar faces, but also for famous faces, suggesting that even famous face recognition is not as automatic as is often assumed. In Experiment 2, an N250r was triggered by repetitions of non-famous faces in a task where participants had to match the view of each face pair, and facial identity had to be ignored. This shows that when facial features have to be maintained in visual memory for a subsequent comparison, identity-related information is retained as well, even when it is irrelevant. Our results suggest that individual face recognition is neither fully mandatory nor completely task-dependent. Facial identity is encoded and maintained in tasks that involve visual memory for individual faces, regardless of the to-be-remembered feature. In tasks without this memory component, irrelevant visual identity information can be completely ignored. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Learning better by repetition or variation? Is transfer at odds with task specific training?

    Science.gov (United States)

    Bonney, Emmanuel; Jelsma, Lemke Dorothee; Ferguson, Gillian D; Smits-Engelsman, Bouwien C M

    2017-01-01

    Transfer of motor skills is the ultimate goal of motor training in rehabilitation practice. In children with Developmental Coordination Disorder (DCD), very little is known about how skills are transferred from training situations to real life contexts. In this study we examined the influence of two types of practice on transfer of motor skills acquired in a virtual reality (VR) environment. One hundred and eleven children with DCD and their typically developing (TD) peers, aged 6-10 years (M = 8.0 SD = 1.0) were randomly assigned to either variable (n = 56) or repetitive practice (n = 55). Participants in the repetitive practice played the same exergame (ski slalom) twice weekly for 20 minutes, over a period of 5 weeks, while those in the variable group played 10 different games. Motor skills such as balance tasks (hopping), running and agility tasks, ball skills and functional activities were evaluated before and after 5 weeks of training. ANOVA repeated measures indicated that both DCD and TD children demonstrated transfer effects to real life skills with identical and non-identical elements at exactly the same rate, irrespective of the type of practice they were assigned to. Based on these findings, we conclude that motor skills acquired in the VR environment, transfers to real world contexts in similar proportions for both TD and DCD children. The type of practice adopted does not seem to influence children's ability to transfer skills acquired in an exergame to life situations but the number of identical elements does.

  8. SLAM: A Connectionist Model for Attention in Visual Selection Tasks.

    Science.gov (United States)

    Phaf, R. Hans; And Others

    1990-01-01

    The SeLective Attention Model (SLAM) performs visual selective attention tasks and demonstrates that object selection and attribute selection are both necessary and sufficient for visual selection. The SLAM is described, particularly with regard to its ability to represent an individual subject performing filtering tasks. (TJH)

  9. An Exploratory Study into Trade-Off Effects of Complexity, Accuracy, and Fluency on Young Learners' Oral Task Repetition

    Science.gov (United States)

    Sample, Evelyn; Michel, Marije

    2014-01-01

    Studying task repetition for adult and young foreign language learners of English (EFL) has received growing interest in recent literature within the task-based approach (Bygate, 2009; Hawkes, 2012; Mackey, Kanganas, & Oliver, 2007; Pinter, 2007b). Earlier work suggests that second language (L2) learners benefit from repeating the same or a…

  10. Too Much of a Good Thing: Stronger Bilingual Inhibition Leads to Larger Lag-2 Task Repetition Costs

    Science.gov (United States)

    Prior, Anat

    2012-01-01

    Inhibitory control and monitoring abilities of Hebrew-English bilingual and English monolingual university students were compared, in a paradigm requiring participants to switch between performing three distinct tasks. Inhibitory control was gauged by lag-2 task repetition costs, namely decreased performance on the final trial of sequences of type…

  11. Augmented metacognition addressing dynamic allocation of tasks requiring visual attention

    NARCIS (Netherlands)

    Bosse, T.; Doesburg, W. van; Maanen, P.P. van; Treur, J.

    2007-01-01

    This paper discusses the use of cognitive models as augmented metacognition on task allocation for tasks requiring visual attention. In the domain of naval warfare, the complex and dynamic nature of the environment makes that one has to deal with a large number of tasks in parallel. Therefore, human

  12. Task context impacts visual object processing differentially across the cortex.

    Science.gov (United States)

    Harel, Assaf; Kravitz, Dwight J; Baker, Chris I

    2014-03-11

    Perception reflects an integration of "bottom-up" (sensory-driven) and "top-down" (internally generated) signals. Although models of visual processing often emphasize the central role of feed-forward hierarchical processing, less is known about the impact of top-down signals on complex visual representations. Here, we investigated whether and how the observer's goals modulate object processing across the cortex. We examined responses elicited by a diverse set of objects under six distinct tasks, focusing on either physical (e.g., color) or conceptual properties (e.g., man-made). Critically, the same stimuli were presented in all tasks, allowing us to investigate how task impacts the neural representations of identical visual input. We found that task has an extensive and differential impact on object processing across the cortex. First, we found task-dependent representations in the ventral temporal and prefrontal cortex. In particular, although object identity could be decoded from the multivoxel response within task, there was a significant reduction in decoding across tasks. In contrast, the early visual cortex evidenced equivalent decoding within and across tasks, indicating task-independent representations. Second, task information was pervasive and present from the earliest stages of object processing. However, although the responses of the ventral temporal, prefrontal, and parietal cortex enabled decoding of both the type of task (physical/conceptual) and the specific task (e.g., color), the early visual cortex was not sensitive to type of task and could only be used to decode individual physical tasks. Thus, object processing is highly influenced by the behavioral goal of the observer, highlighting how top-down signals constrain and inform the formation of visual representations.

  13. The Effect of 10 Hz Repetitive Transcranial Magnetic Stimulation of Posterior Parietal Cortex on Visual Attention

    OpenAIRE

    Isabel Dombrowe; Georgiana Juravle; Mohsen Alavash; Carsten Gießing; Claus C Hilgetag

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) of the posterior parietal cortex (PPC) at frequencies lower than 5 Hz transiently inhibits the stimulated area. In healthy participants, such a protocol can induce a transient attentional bias to the visual hemifield ipsilateral to the stimulated hemisphere. This bias might be due to a relatively less active stimulated hemisphere and a relatively more active unstimulated hemisphere. In a previous study, Jin and Hilgetag (2008) tried to switc...

  14. Preposition accuracy on a sentence repetition task in school age Spanish-English bilinguals.

    Science.gov (United States)

    Taliancich-Klinger, Casey L; Bedore, Lisa M; Peña, Elizabeth D

    2017-05-16

    Preposition knowledge is important for academic success. The goal of this project was to examine how different variables such as English input and output, Spanish preposition score, mother education level, and age of English exposure (AoEE) may have played a role in children's preposition knowledge in English. 148 Spanish-English children between 7;0 and 9;11 produced prepositions in English and Spanish on a sentence repetition task from an experimental version of the Bilingual English Spanish Assessment Middle Extension (Peña, Bedore, Gutierrez-Clellen, Iglesias & Goldstein, in development). English input and output accounted for most of the variance in English preposition score. The importance of language-specific experiences in the development of prepositions is discussed. Competition for selection of appropriate prepositions in English and Spanish is discussed as potentially influencing low overall preposition scores in English and Spanish.

  15. Learning better by repetition or variation? Is transfer at odds with task specific training?

    Science.gov (United States)

    Bonney, Emmanuel; Ferguson, Gillian D.; Smits-Engelsman, Bouwien C. M.

    2017-01-01

    Objective Transfer of motor skills is the ultimate goal of motor training in rehabilitation practice. In children with Developmental Coordination Disorder (DCD), very little is known about how skills are transferred from training situations to real life contexts. In this study we examined the influence of two types of practice on transfer of motor skills acquired in a virtual reality (VR) environment. Method One hundred and eleven children with DCD and their typically developing (TD) peers, aged 6–10 years (M = 8.0 SD = 1.0) were randomly assigned to either variable (n = 56) or repetitive practice (n = 55). Participants in the repetitive practice played the same exergame (ski slalom) twice weekly for 20 minutes, over a period of 5 weeks, while those in the variable group played 10 different games. Motor skills such as balance tasks (hopping), running and agility tasks, ball skills and functional activities were evaluated before and after 5 weeks of training. Results ANOVA repeated measures indicated that both DCD and TD children demonstrated transfer effects to real life skills with identical and non-identical elements at exactly the same rate, irrespective of the type of practice they were assigned to. Conclusion Based on these findings, we conclude that motor skills acquired in the VR environment, transfers to real world contexts in similar proportions for both TD and DCD children. The type of practice adopted does not seem to influence children’s ability to transfer skills acquired in an exergame to life situations but the number of identical elements does. PMID:28333997

  16. Training Techniques for Visual Search in Complex Task Environments.

    Science.gov (United States)

    Guznov, Svyatoslav; Matthews, Gerald; Warm, Joel S; Pfahler, Marc

    2017-06-01

    The goal for this study was to evaluate several visual search training techniques in an unmanned aerial vehicle (UAV) simulated task environment. Operators controlling remote unmanned vehicles often must perform complex visual search tasks (e.g., target search). These tasks may pose substantial demands on the operator due to various environmental factors. Visual search training may reduce errors and mitigate stress, but the most effective form of training has not been determined. Participants were assigned to one of four training conditions: target, cue, visual scanning, or control. After the training, the effectiveness of the training techniques was tested during a 30-minute simulated UAV flight. A secondary task manipulation was included to further simulate the demands of a realistic UAV control and target search task. Subjective stress and fatigue were also assessed. Target training produced superior target search performances in more hits and fewer false alarms (FAs) when compared to the control condition. The visual scanning and cue trainings were moderately effective. Only target training performance was vulnerable to the secondary task load. The task was stressful, but training did not mitigate stress response. Training participants on the target and the cue appearance as well as active scanning of the visual field is promising for promoting effective target search for this simulated UAV environment. These training techniques could be used in preparation for intelligence, surveillance, and reconnaissance (ISR) missions that involve target search, especially where target appearance change is likely.

  17. Distinct acute zones for visual stimuli in different visual tasks in Drosophila.

    Directory of Open Access Journals (Sweden)

    Xing Yang

    Full Text Available The fruit fly Drosophila melanogaster has a sophisticated visual system and exhibits complex visual behaviors. Visual responses, vision processing and higher cognitive processes in Drosophila have been studied extensively. However, little is known about whether the retinal location of visual stimuli can affect fruit fly performance in various visual tasks. We tested the response of wild-type Berlin flies to visual stimuli at several vertical locations. Three paradigms were used in our study: visual operant conditioning, visual object fixation and optomotor response. We observed an acute zone for visual feature memorization in the upper visual field when visual patterns were presented with a black background. However, when a white background was used, the acute zone was in the lower visual field. Similar to visual feature memorization, the best locations for visual object fixation and optomotor response to a single moving stripe were in the lower visual field with a white background and the upper visual field with a black background. The preferred location for the optomotor response to moving gratings was around the equator of the visual field. Our results suggest that different visual processing pathways are involved in different visual tasks and that there is a certain degree of overlap between the pathways for visual feature memorization, visual object fixation and optomotor response.

  18. Task-Driven Evaluation of Aggregation in Time Series Visualization.

    Science.gov (United States)

    Albers, Danielle; Correll, Michael; Gleicher, Michael

    2014-01-01

    Many visualization tasks require the viewer to make judgments about aggregate properties of data. Recent work has shown that viewers can perform such tasks effectively, for example to efficiently compare the maximums or means over ranges of data. However, this work also shows that such effectiveness depends on the designs of the displays. In this paper, we explore this relationship between aggregation task and visualization design to provide guidance on matching tasks with designs. We combine prior results from perceptual science and graphical perception to suggest a set of design variables that influence performance on various aggregate comparison tasks. We describe how choices in these variables can lead to designs that are matched to particular tasks. We use these variables to assess a set of eight different designs, predicting how they will support a set of six aggregate time series comparison tasks. A crowd-sourced evaluation confirms these predictions. These results not only provide evidence for how the specific visualizations support various tasks, but also suggest using the identified design variables as a tool for designing visualizations well suited for various types of tasks.

  19. Concrete and abstract visualizations in history learning tasks

    NARCIS (Netherlands)

    Prangsma, Maaike; Van Boxtel, Carla; Kanselaar, Gellof; Kirschner, Paul A.

    2010-01-01

    Prangsma, M. E., Van Boxtel, C. A. M., Kanselaar, G., & Kirschner, P. A. (2009). Concrete and abstract visualizations in history learning tasks. British Journal of Educational Psychology, 79, 371-387.

  20. Evoking visual neglect-like deficits in healthy volunteers - an investigation by repetitive navigated transcranial magnetic stimulation.

    Science.gov (United States)

    Giglhuber, Katrin; Maurer, Stefanie; Zimmer, Claus; Meyer, Bernhard; Krieg, Sandro M

    2016-01-18

    In clinical practice, repetitive navigated transcranial magnetic stimulation (rTMS) is of particular interest for non-invasive mapping of cortical language areas. Yet, rTMS studies try to detect further cortical functions. Damage to the underlying network of visuospatial attention function can result in visual neglect-a severe neurological deficit and influencing factor for a significantly reduced functional outcome. This investigation aims to evaluate the use of rTMS for evoking visual neglect in healthy volunteers and the potential of specifically locating cortical areas that can be assigned for the function of visuospatial attention. Ten healthy, right-handed subjects underwent rTMS visual neglect mapping. Repetitive trains of 5 Hz and 10 pulses were applied to 52 pre-defined cortical spots on each hemisphere; each cortical spot was stimulated 10 times. Visuospatial attention was tested time-locked to rTMS pulses by a landmark task. Task pictures were displayed tachistoscopically for 50 ms. The subjects' performance was analyzed by video, and errors were referenced to cortical spots. We observed visual neglect-like deficits during the stimulation of both hemispheres. Errors were categorized into leftward, rightward, and no response errors. Rightward errors occurred significantly more often during stimulation of the right hemisphere than during stimulation of the left hemisphere (mean rightward error rate (ER) 1.6 ± 1.3 % vs. 1.0 ± 1.0 %, p = 0.0141). Within the left hemisphere, we observed predominantly leftward errors rather than rightward errors (mean leftward ER 2.0 ± 1.3 % vs. rightward ER 1.0 ± 1.0 %; p = 0.0005). Visual neglect can be elicited non-invasively by rTMS, and cortical areas eloquent for visuospatial attention can be detected. Yet, the correlation of this approach with clinical findings has to be shown in upcoming steps.

  1. The relationship between worker satisfaction and productivity in a repetitive industrial task.

    Science.gov (United States)

    Shikdar, Ashraf A; Das, Biman

    2003-11-01

    The objective of this investigation was to determine the manner by which production standards or goals, performance or production feedback and monetary or wage incentive affected or moderated the relationship between worker satisfaction and productivity in a repetitive production task in a fishing industry. The industrial study was conducted to measure worker satisfaction and productivity under various experimental conditions involving production standards, performance feedback and monetary incentive. Only the participative standard and performance feedback condition affected the worker satisfaction-productivity relationship significantly for the fish-trimming task. The positive correlation coefficient (0.87) for this condition was found to be highly significant. This has an important implication for setting a strategy for achieving higher worker satisfaction and productivity in such an industry. Production standards with feedback generally improved worker satisfaction and productivity. Monetary incentive further improved worker performance but added no incremental satisfaction gain. The incorporation of production standards, performance feedback and monetary incentive affected worker satisfaction and productivity differently and this had an effect on the worker satisfaction-productivity relationship. In an earlier laboratory study, no significant worker satisfaction-productivity relationship was found when subjects (college students) were provided with similar experimental conditions.

  2. Effect of fixation tasks on multifocal visual evoked potentials.

    Science.gov (United States)

    Martins, Alessandra; Klistorner, Alexander; Graham, Stuart; Billson, Frank

    2005-10-01

    This study investigated the effects of cognitive influence on the multifocal visual evoked potential (mVEP) at different levels of eccentricity. Three different foveal fixation conditions were utilized involving varying levels of task complexity. A more complex visual fixation task has been known to suppress peripheral signals in subjective testing. Twenty normal subjects had monocular mVEPs recorded using the AccuMap objective perimeter. This allowed simultaneous stimulation of 58 segments of the visual field to an eccentricity of 24 degrees. The mVEP was recorded using three different fixation conditions in random order. During task 1 the subject passively viewed the central fixation area. For task 2 alternating numbers were displayed within the fixation area; the subject on viewing the number '3' in the central fixation area indicated recognition by pressing a button. Throughout task 3, numbers were displayed as in task 2. The subject had the cognitive task of summating all the numbers. Analysis revealed that the increased attention and concentration demanded by tasks 2 and 3 in comparison with task 1 resulted in significantly enhanced central amplitudes of 9.41% (Mann-Whitney P = 0.0002) and 13.45% (P = 0.0002), respectively. These amplitudes became reduced in the periphery and approached those of task 1, resulting in no significant difference between the three tasks. Latencies demonstrated no significant difference between each task nor at any eccentricity (P > 0.05). As the complexity of each task increased the amount of alpha rhythm was significantly reduced. Our findings indicate that task 1 required a minimal demand of cognition and was associated with the greatest amount of alpha rhythm. It was also the most difficult to perform because of loss of interest. The other two tasks required a greater demand of higher order cognitive skills resulting in significantly enhanced amplitudes centrally and the attenuation of alpha rhythm. Therefore, amplitudes are

  3. Expectation Suppression in Early Visual Cortex Depends on Task Set.

    Science.gov (United States)

    St John-Saaltink, Elexa; Utzerath, Christian; Kok, Peter; Lau, Hakwan C; de Lange, Floris P

    2015-01-01

    Stimulus expectation can modulate neural responses in early sensory cortical regions, with expected stimuli often leading to a reduced neural response. However, it is unclear whether this expectation suppression is an automatic phenomenon or is instead dependent on the type of task a subject is engaged in. To investigate this, human subjects were presented with visual grating stimuli in the periphery that were either predictable or non-predictable while they performed three tasks that differently engaged cognitive resources. In two of the tasks, the predictable stimulus was task-irrelevant and spatial attention was engaged at fixation, with a high load on either perceptual or working memory resources. In the third task, the predictable stimulus was task-relevant, and therefore spatially attended. We observed that expectation suppression is dependent on the cognitive resources engaged by a subjects' current task. When the grating was task-irrelevant, expectation suppression for predictable items was visible in retinotopically specific areas of early visual cortex (V1-V3) during the perceptual task, but it was abolished when working memory was loaded. When the grating was task-relevant and spatially attended, there was no significant effect of expectation in early visual cortex. These results suggest that expectation suppression is not an automatic phenomenon, but dependent on attentional state and type of available cognitive resources.

  4. Mapping the cortical representation of speech sounds in a syllable repetition task.

    Science.gov (United States)

    Markiewicz, Christopher J; Bohland, Jason W

    2016-11-01

    Speech repetition relies on a series of distributed cortical representations and functional pathways. A speaker must map auditory representations of incoming sounds onto learned speech items, maintain an accurate representation of those items in short-term memory, interface that representation with the motor output system, and fluently articulate the target sequence. A "dorsal stream" consisting of posterior temporal, inferior parietal and premotor regions is thought to mediate auditory-motor representations and transformations, but the nature and activation of these representations for different portions of speech repetition tasks remains unclear. Here we mapped the correlates of phonetic and/or phonological information related to the specific phonemes and syllables that were heard, remembered, and produced using a series of cortical searchlight multi-voxel pattern analyses trained on estimates of BOLD responses from individual trials. Based on responses linked to input events (auditory syllable presentation), predictive vowel-level information was found in the left inferior frontal sulcus, while syllable prediction revealed significant clusters in the left ventral premotor cortex and central sulcus and the left mid superior temporal sulcus. Responses linked to output events (the GO signal cueing overt production) revealed strong clusters of vowel-related information bilaterally in the mid to posterior superior temporal sulcus. For the prediction of onset and coda consonants, input-linked responses yielded distributed clusters in the superior temporal cortices, which were further informative for classifiers trained on output-linked responses. Output-linked responses in the Rolandic cortex made strong predictions for the syllables and consonants produced, but their predictive power was reduced for vowels. The results of this study provide a systematic survey of how cortical response patterns covary with the identity of speech sounds, which will help to constrain

  5. Asymmetrical learning between a tactile and visual serial RT task

    NARCIS (Netherlands)

    Abrahamse, E.L.; van der Lubbe, Robert Henricus Johannes; Verwey, Willem B.

    2007-01-01

    According to many researchers, implicit learning in the serial reaction-time task is predominantly motor based and therefore should be independent of stimulus modality. Previous research on the task, however, has focused almost completely on the visual domain. Here we investigated sequence learning

  6. Task-Dependent Masked Priming Effects in Visual Word Recognition

    Science.gov (United States)

    Kinoshita, Sachiko; Norris, Dennis

    2012-01-01

    A method used widely to study the first 250 ms of visual word recognition is masked priming: These studies have yielded a rich set of data concerning the processes involved in recognizing letters and words. In these studies, there is an implicit assumption that the early processes in word recognition tapped by masked priming are automatic, and masked priming effects should therefore be invariant across tasks. Contrary to this assumption, masked priming effects are modulated by the task goal: For example, only word targets show priming in the lexical decision task, but both words and non-words do in the same-different task; semantic priming effects are generally weak in the lexical decision task but are robust in the semantic categorization task. We explain how such task dependence arises within the Bayesian Reader account of masked priming (Norris and Kinoshita, 2008), and how the task dissociations can be used to understand the early processes in lexical access. PMID:22675316

  7. Task-dependent masked priming effects in visual word recognition.

    Science.gov (United States)

    Kinoshita, Sachiko; Norris, Dennis

    2012-01-01

    A method used widely to study the first 250 ms of visual word recognition is masked priming: These studies have yielded a rich set of data concerning the processes involved in recognizing letters and words. In these studies, there is an implicit assumption that the early processes in word recognition tapped by masked priming are automatic, and masked priming effects should therefore be invariant across tasks. Contrary to this assumption, masked priming effects are modulated by the task goal: For example, only word targets show priming in the lexical decision task, but both words and non-words do in the same-different task; semantic priming effects are generally weak in the lexical decision task but are robust in the semantic categorization task. We explain how such task dependence arises within the Bayesian Reader account of masked priming (Norris and Kinoshita, 2008), and how the task dissociations can be used to understand the early processes in lexical access.

  8. Task Repetition and Its Impact on EFL Children's Negotiation of Meaning Strategies and Pair Dynamics: An Exploratory Study

    Science.gov (United States)

    del Pilar García Mayo, Maria; Imaz Agirre, Ainara

    2016-01-01

    Little research has been carried out on the effect of task repetition on young learners' negotiation of meaning (NoM) strategies and on pair dynamics. The present study aims to fill this gap by analysing the interaction of 60 dyads of third- and fourth-year primary English as a foreign language learners (8-9, 9-10 years old, respectively) while…

  9. A Quasi-Universal Nonword Repetition Task as a Diagnostic Tool for Bilingual Children Learning Dutch as a Second Language

    Science.gov (United States)

    Boerma, Tessel; Chiat, Shula; Leseman, Paul; Timmermeister, Mona; Wijnen, Frank; Blom, Elma

    2015-01-01

    Purpose: This study evaluated a newly developed quasi-universal nonword repetition task (Q-U NWRT) as a diagnostic tool for bilingual children with language impairment (LI) who have Dutch as a 2nd language. The Q-U NWRT was designed to be minimally influenced by knowledge of 1 specific language in contrast to a language-specific NWRT with which it…

  10. Effect of Repetition Lag on Priming of Unfamiliar Visual Objects in Young and Older Adults

    Science.gov (United States)

    Gordon, Leamarie T.; Soldan, Anja; Thomas, Ayanna K.; Stern, Yaakov

    2013-01-01

    Across three experiments, we examined the effect of repetition lag on priming of unfamiliar visual objects in healthy young and older adults. Multiple levels of lag were examined, ranging from short (one to four intervening stimuli) to long (50+ intervening stimuli). In each experiment, subjects viewed a series of new and repeated line drawings of objects and decided whether they depicted structurally possible or impossible figures. Experiment 1 and 2 found similar levels of priming in young and older adults at short and medium lags. At the longer repetition lags (∼20+ intervening stimuli), older adults showed less overall priming, as measured by reaction time facilitation, than young adults. This indicates that older adults can rapidly encode unfamiliar three-dimensional objects to support priming at shorter lags; however, they cannot maintain these representations over longer intervals. In addition to repetition lag, we also explored the relationship between priming and cognitive reserve, as measured by education and verbal intelligence. In the older adults, higher levels of cognitive reserve were associated with greater reaction time priming, suggesting that cognitive reserve may mediate the relationship between aging and priming. PMID:23276220

  11. Repetitive Transcranial Direct Current Stimulation Induced Excitability Changes of Primary Visual Cortex and Visual Learning Effects-A Pilot Study.

    Science.gov (United States)

    Sczesny-Kaiser, Matthias; Beckhaus, Katharina; Dinse, Hubert R; Schwenkreis, Peter; Tegenthoff, Martin; Höffken, Oliver

    2016-01-01

    Studies on noninvasive motor cortex stimulation and motor learning demonstrated cortical excitability as a marker for a learning effect. Transcranial direct current stimulation (tDCS) is a non-invasive tool to modulate cortical excitability. It is as yet unknown how tDCS-induced excitability changes and perceptual learning in visual cortex correlate. Our study aimed to examine the influence of tDCS on visual perceptual learning in healthy humans. Additionally, we measured excitability in primary visual cortex (V1). We hypothesized that anodal tDCS would improve and cathodal tDCS would have minor or no effects on visual learning. Anodal, cathodal or sham tDCS were applied over V1 in a randomized, double-blinded design over four consecutive days (n = 30). During 20 min of tDCS, subjects had to learn a visual orientation-discrimination task (ODT). Excitability parameters were measured by analyzing paired-stimulation behavior of visual-evoked potentials (ps-VEP) and by measuring phosphene thresholds (PTs) before and after the stimulation period of 4 days. Compared with sham-tDCS, anodal tDCS led to an improvement of visual discrimination learning (p visual perceptual learning and increased cortical excitability. tDCS is a promising tool to alter V1 excitability and, hence, perceptual visual learning.

  12. The Effects of Simultaneous Use of Careful Online Planning and Task Repetition on Accuracy, Complexity, and Fluency in EFL Learners' Oral Production

    Science.gov (United States)

    Ahmadian, Mohammad Javad; Tavakoli, Mansoor

    2011-01-01

    This article reports on a study that was primarily aimed at investigating the effects of simultaneous use of careful online planning and task repetition on accuracy, complexity, and fluency in the oral production of learners of English as a foreign language (EFL). The effects of four planning and task repetition conditions (i.e. careful online…

  13. Designing Spatial Visual Tasks for Research: The Case of the Filling Task

    Science.gov (United States)

    Sinclair, Margaret; Mamolo, Ami; Whiteley, Walter J.

    2011-01-01

    This article focuses on the development and problematization of a task designed to foster spatial visual sense in prospective and practicing elementary and middle school teachers. We describe and analyse the cyclical stages of developing, testing, and modifying several "task drafts" related to ideas around dilation and proportion. Challenged by…

  14. Effects of display curvature, display zone, and task duration on legibility and visual fatigue during visual search task.

    Science.gov (United States)

    Park, Sungryul; Choi, Donghee; Yi, Jihhyeon; Lee, Songil; Lee, Ja Eun; Choi, Byeonghwa; Lee, Seungbae; Kyung, Gyouhyung

    2017-04-01

    This study examined the effects of display curvature (400, 600, 1200 mm, and flat), display zone (5 zones), and task duration (15 and 30 min) on legibility and visual fatigue. Each participant completed two 15-min visual search task sets at each curvature setting. The 600-mm and 1200-mm settings yielded better results than the flat setting in terms of legibility and perceived visual fatigue. Relative to the corresponding centre zone, the outermost zones of the 1200-mm and flat settings showed a decrease of 8%-37% in legibility, whereas those of the flat setting showed an increase of 26%-45% in perceived visual fatigue. Across curvatures, legibility decreased by 2%-8%, whereas perceived visual fatigue increased by 22% during the second task set. The two task sets induced an increase of 102% in the eye complaint score and a decrease of 0.3 Hz in the critical fusion frequency, both of which indicated an increase in visual fatigue. In summary, a curvature of around 600 mm, central display zones, and frequent breaks are recommended to improve legibility and reduce visual fatigue.

  15. Performance of repetitive tasks induces decreased grip strength and increased fibrogenic proteins in skeletal muscle: role of force and inflammation.

    Directory of Open Access Journals (Sweden)

    Samir M Abdelmagid

    Full Text Available BACKGROUND: This study elucidates exposure-response relationships between performance of repetitive tasks, grip strength declines, and fibrogenic-related protein changes in muscles, and their link to inflammation. Specifically, we examined forearm flexor digitorum muscles for changes in connective tissue growth factor (CTGF; a matrix protein associated with fibrosis, collagen type I (Col1; a matrix component, and transforming growth factor beta 1 (TGFB1; an upstream modulator of CTGF and collagen, in rats performing one of two repetitive tasks, with or without anti-inflammatory drugs. METHODOLOGY/RESULTS: To examine the roles of force versus repetition, rats performed either a high repetition negligible force food retrieval task (HRNF, or a high repetition high force handle-pulling task (HRHF, for up to 9 weeks, with results compared to trained only (TR-NF or TR-HF and normal control rats. Grip strength declined with both tasks, with the greatest declines in 9-week HRHF rats. Quantitative PCR (qPCR analyses of HRNF muscles showed increased expression of Col1 in weeks 3-9, and CTGF in weeks 6 and 9. Immunohistochemistry confirmed PCR results, and also showed greater increases of CTGF and collagen matrix in 9-week HRHF rats than 9-week HRNF rats. ELISA, and immunohistochemistry revealed greater increases of TGFB1 in TR-HF and 6-week HRHF, compared to 6-week HRNF rats. To examine the role of inflammation, results from 6-week HRHF rats were compared to rats receiving ibuprofen or anti-TNF-α treatment in HRHF weeks 4-6. Both treatments attenuated HRHF-induced increases in CTGF and fibrosis by 6 weeks of task performance. Ibuprofen attenuated TGFB1 increases and grip strength declines, matching our prior results with anti-TNFα. CONCLUSIONS/SIGNIFICANCE: Performance of highly repetitive tasks was associated with force-dependent declines in grip strength and increased fibrogenic-related proteins in flexor digitorum muscles. These changes were

  16. Mixed Initiative Visual Analytics Using Task-Driven Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Kristin A.; Cramer, Nicholas O.; Israel, David; Wolverton, Michael J.; Bruce, Joseph R.; Burtner, Edwin R.; Endert, Alexander

    2015-12-07

    Visual data analysis is composed of a collection of cognitive actions and tasks to decompose, internalize, and recombine data to produce knowledge and insight. Visual analytic tools provide interactive visual interfaces to data to support tasks involved in discovery and sensemaking, including forming hypotheses, asking questions, and evaluating and organizing evidence. Myriad analytic models can be incorporated into visual analytic systems, at the cost of increasing complexity in the analytic discourse between user and system. Techniques exist to increase the usability of interacting with such analytic models, such as inferring data models from user interactions to steer the underlying models of the system via semantic interaction, shielding users from having to do so explicitly. Such approaches are often also referred to as mixed-initiative systems. Researchers studying the sensemaking process have called for development of tools that facilitate analytic sensemaking through a combination of human and automated activities. However, design guidelines do not exist for mixed-initiative visual analytic systems to support iterative sensemaking. In this paper, we present a candidate set of design guidelines and introduce the Active Data Environment (ADE) prototype, a spatial workspace supporting the analytic process via task recommendations invoked by inferences on user interactions within the workspace. ADE recommends data and relationships based on a task model, enabling users to co-reason with the system about their data in a single, spatial workspace. This paper provides an illustrative use case, a technical description of ADE, and a discussion of the strengths and limitations of the approach.

  17. Task-Dependent Masked Priming Effects in Visual Word Recognition

    OpenAIRE

    Sachiko eKinoshita; Dennis eNorris

    2012-01-01

    A method used widely to study the first 250 ms of visual word recognition is masked priming: These studies have yielded a rich set of data concerning the processes involved in recognizing letters and words. In these studies, there is an implicit assumption that the early processes in word recognition tapped by masked priming are automatic, and masked priming effects should therefore be invariant across tasks. Contrary to this assumption, masked priming effects are modulated by the task goal...

  18. Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury

    OpenAIRE

    Radouil Tzekov; Clint Dawson; Megan Orlando; Benoit Mouzon; Jon Reed; James Evans; Gogce Crynen; Michael Mullan; Fiona Crawford

    2016-01-01

    Repetitive mild traumatic brain injury (r-mTBI) results in neuropathological and biochemical consequences in the human visual system. Using a recently developed mouse model of r-mTBI, with control mice receiving repetitive anesthesia alone (r-sham) we assessed the effects on the retina and optic nerve using histology, immunohistochemistry, proteomic and lipidomic analyses at 3 weeks post injury. Retina tissue was used to determine retinal ganglion cell (RGC) number, while optic nerve tissue w...

  19. Iterative fragmentation of cognitive maps in a visual imagery task.

    Directory of Open Access Journals (Sweden)

    Maryam Fourtassi

    Full Text Available It remains unclear whether spontaneous eye movements during visual imagery reflect the mental generation of a visual image (i.e. the arrangement of the component parts of a mental representation. To address this specificity, we recorded eye movements in an imagery task and in a phonological fluency (non-imagery task, both consisting in naming French towns from long-term memory. Only in the condition of visual imagery the spontaneous eye positions reflected the geographic position of the towns evoked by the subjects. This demonstrates that eye positions closely reflect the mapping of mental images. Advanced analysis of gaze positions using the bi-dimensional regression model confirmed the spatial correlation of gaze and towns' locations in every single individual in the visual imagery task and in none of the individuals when no imagery accompanied memory retrieval. In addition, the evolution of the bi-dimensional regression's coefficient of determination revealed, in each individual, a process of generating several iterative series of a limited number of towns mapped with the same spatial distortion, despite different individual order of towns' evocation and different individual mappings. Such consistency across subjects revealed by gaze (the mind's eye gives empirical support to theories postulating that visual imagery, like visual sampling, is an iterative fragmented processing.

  20. The impact of task demand on visual word recognition.

    Science.gov (United States)

    Yang, J; Zevin, J

    2014-07-11

    The left occipitotemporal cortex has been found sensitive to the hierarchy of increasingly complex features in visually presented words, from individual letters to bigrams and morphemes. However, whether this sensitivity is a stable property of the brain regions engaged by word recognition is still unclear. To address the issue, the current study investigated whether different task demands modify this sensitivity. Participants viewed real English words and stimuli with hierarchical word-likeness while performing a lexical decision task (i.e., to decide whether each presented stimulus is a real word) and a symbol detection task. General linear model and independent component analysis indicated strong activation in the fronto-parietal and temporal regions during the two tasks. Furthermore, the bilateral inferior frontal gyrus and insula showed significant interaction effects between task demand and stimulus type in the pseudoword condition. The occipitotemporal cortex showed strong main effects for task demand and stimulus type, but no sensitivity to the hierarchical word-likeness was found. These results suggest that different task demands on semantic, phonological and orthographic processes can influence the involvement of the relevant regions during visual word recognition. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Concrete and Abstract Visualizations in History Learning Tasks

    Science.gov (United States)

    Prangsma, Maaike E.; van Boxtel, Carla A. M.; Kanselaar, Gellof; Kirschner, Paul A.

    2009-01-01

    Background: History learning requires that students understand historical phenomena, abstract concepts and the relations between them. Students have problems grasping, using and relating complex historical developments and structures. Aims: A study was conducted to determine the effects of tasks with abstract and/or concrete visualizations on the…

  2. pRB Takes an EZ Path to a Repetitive Task.

    Science.gov (United States)

    Sanidas, Ioannis; Dyson, Nicholas J

    2016-12-15

    Repetitive DNA elements are essential for genome function; in this issue of Molecular Cell, Ishak et al. (2016) describe a novel mechanism of epigenetic repression at these elements that requires pRB-dependent recruitment of EZH2.

  3. Visual Motor and Perceptual Task Performance in Astigmatic Students

    Directory of Open Access Journals (Sweden)

    Erin M. Harvey

    2017-01-01

    Full Text Available Purpose. To determine if spectacle corrected and uncorrected astigmats show reduced performance on visual motor and perceptual tasks. Methods. Third through 8th grade students were assigned to the low refractive error control group (astigmatism < 1.00 D, myopia < 0.75 D, hyperopia < 2.50 D, and anisometropia < 1.50 D or bilateral astigmatism group (right and left eye ≥ 1.00 D based on cycloplegic refraction. Students completed the Beery-Buktenica Developmental Test of Visual Motor Integration (VMI and Visual Perception (VMIp. Astigmats were randomly assigned to testing with/without correction and control group was tested uncorrected. Analyses compared VMI and VMIp scores for corrected and uncorrected astigmats to the control group. Results. The sample included 333 students (control group 170, astigmats tested with correction 75, and astigmats tested uncorrected 88. Mean VMI score in corrected astigmats did not differ from the control group (p=0.829. Uncorrected astigmats had lower VMI scores than the control group (p=0.038 and corrected astigmats (p=0.007. Mean VMIp scores for uncorrected (p=0.209 and corrected astigmats (p=0.124 did not differ from the control group. Uncorrected astigmats had lower mean scores than the corrected astigmats (p=0.003. Conclusions. Uncorrected astigmatism influences visual motor and perceptual task performance. Previously spectacle treated astigmats do not show developmental deficits on visual motor or perceptual tasks when tested with correction.

  4. Visual field and task influence illusory figure responses.

    Science.gov (United States)

    Abu Bakar, Afiza; Liu, Lichan; Conci, Markus; Elliott, Mark A; Ioannides, Andreas A

    2008-11-01

    In normal viewing conditions, many objects are often hidden or occluded by others, therefore restricting the information that enters the eye. One ability that the human visual system has developed to compensate for this visual limitation is to relate the surrounding elements to globally interpret the whole scene. The appearance of illusory figures (IF) based on surrounding elements also relies on this similar function. In the present study, we hypothesized that different mechanisms may be used by the brain to process IF from the center and periphery of the visual field. We compared magnetoencephalographic responses to IFs presented at different parts of the visual field under three task loads. For central presentation, IF specific responses peaked first in V1/V2 (96-101 ms), and then in the lateral occipital complex (LOC; 132-141 ms), independent of task. For peripheral presentation, the relative modulation towards IF was markedly reduced in V1/V2 and LOC while prominent activation peaks now shifted to the Fusiform Gyrus (from 200 ms onwards). Additionally, the type of task influenced processing at early stages beginning in V1/V2 (87 ms). Our results show that retinal eccentricity plays a crucial role in IF processing: figural completion at the center of the visual field is achieved in an 'automatic' and seemingly effortless fashion whereas peripheral stimulus locations necessitate higher-order object completion stages which rely more heavily on attentional demands.

  5. A systematic review of repetitive functional task practice with modelling of resource use, costs and effectiveness.

    Science.gov (United States)

    French, B; Leathley, M; Sutton, C; McAdam, J; Thomas, L; Forster, A; Langhorne, P; Price, C; Walker, A; Watkins, C

    2008-07-01

    To determine whether repetitive functional task practice (RFTP) after stroke improves limb-specific or global function or activities of daily living and whether treatment effects are dependent on the amount of practice, or the type or timing of the intervention. Also to provide estimates of the cost-effectiveness of RFTP. The main electronic databases were searched from inception to week 4, September 2006. Searches were also carried out on non-English-language databases and for unpublished trials up to May 2006. Standard quantitative methods were used to conduct the systematic review. The measures of efficacy of RFTP from the data synthesis were used to inform an economic model. The model used a pre-existing data set and tested the potential impact of RFTP on cost. An incremental cost per quality-adjusted life-year (QALY) gained for RFTP was estimated from the model. Sensitivity analyses around the assumptions made for the model were used to test the robustness of the estimates. Thirty-one trials with 34 intervention-control pairs and 1078 participants were included. Overall, it was found that some forms of RFTP resulted in improvement in global function, and in both arm and lower limb function. Overall standardised mean difference in data suitable for pooling was 0.38 [95% confidence interval (CI) 0.09 to 0.68] for global motor function, 0.24 (95% CI 0.06 to 0.42) for arm function and 0.28 (95% CI 0.05 to 0.51) for functional ambulation. Results suggest that training may be sufficient to have an impact on activities of daily living. Retention effects of training persist for up to 6 months, but whether they persist beyond this is unclear. There was little or no evidence that treatment effects overall were modified by time since stroke or dosage of task practice, but results for upper limb function were modified by type of intervention. The economic modelling suggested that RFTP was cost-effective. Given a threshold for cost-effectiveness of 20,000 pounds per QALY

  6. Effects of repetitive low-level blast exposure on visual systems and ocular structures

    Directory of Open Access Journals (Sweden)

    José E. Capó-Aponte, OD, PhD

    2015-06-01

    Full Text Available The purpose of this study was to determine whether repetitive exposure to low-level blasts during military breacher training produces acute and cumulative damage to the ocular tissues or visual system. The effects of low-level blast exposure on high-contrast visual acuity, contrast sensitivity, oculomotor function, color vision, visual field (VF, pupillary light reflex, corneal endothelial cell density (ECD, macular thickness, retinal nerve fiber layer thickness, and cup-to-disc ratio were assessed using a battery of standard clinical ophthalmic tests administered 10 times over a 2-year period. Data from nine male breacher instructors (Cadre were compared with data from four male breacher engineers (Control. The Cadre group showed higher vertical deviation at near than the Control group over time. The VF mean deviation on the left eye tended to be worse in the Cadre group throughout the study, suggesting a decrease in VF sensitivity (Cadre: –0.20 +/– 0.15 dB; Control: 1.05 +/– 0.15 dB; p = 0.03. The Cadre group had a reduced ECD (right eye: Cadre 2,478 cells/mm2 vs Control 2,808 cells/mm2, p = 0.02; left eye: Cadre 2,562 cells/mm2 vs Control 2,892 cells/mm2, p = 0.03. These results suggest that even low-level primary blast has the potential to produce occult eye injury.

  7. The impact of a concurrent motor task on auditory and visual temporal discrimination tasks.

    Science.gov (United States)

    Mioni, Giovanna; Grassi, Massimo; Tarantino, Vincenza; Stablum, Franca; Grondin, Simon; Bisiacchi, Patrizia S

    2016-04-01

    Previous studies have shown the presence of an interference effect on temporal perception when participants are required to simultaneously execute a nontemporal task. Such interference likely has an attentional source. In the present work, a temporal discrimination task was performed alone or together with a self-paced finger-tapping task used as concurrent, nontemporal task. Temporal durations were presented in either the visual or the auditory modality, and two standard durations (500 and 1,500 ms) were used. For each experimental condition, the participant's threshold was estimated and analyzed. The mean Weber fraction was higher in the visual than in the auditory modality, but only for the subsecond duration, and it was higher with the 500-ms than with the 1,500-ms standard duration. Interestingly, the Weber fraction was significantly higher in the dual-task condition, but only in the visual modality. The results suggest that the processing of time in the auditory modality is likely automatic, but not in the visual modality.

  8. Analyzing Web pages visual scanpaths: between and within tasks variability.

    Science.gov (United States)

    Drusch, Gautier; Bastien, J M Christian

    2012-01-01

    In this paper, we propose a new method for comparing scanpaths in a bottom-up approach, and a test of the scanpath theory. To do so, we conducted a laboratory experiment in which 113 participants were invited to accomplish a set of tasks on two different websites. For each site, they had to perform two tasks that had to be repeated ounce. The data were analyzed using a procedure similar to the one used by Duchowski et al. [8]. The first step was to automatically identify, then label, AOIs with the mean-shift clustering procedure [19]. Then, scanpaths were compared two by two with a modified version of the string-edit method, which take into account the order of AOIs visualizations [2]. Our results show that scanpaths variability between tasks but within participants seems to be lower than the variability within task for a given participant. In other words participants seem to be more coherent when they perform different tasks, than when they repeat the same tasks. In addition, participants view more of the same AOI when they perform a different task on the same Web page than when they repeated the same task. These results are quite different from what predicts the scanpath theory.

  9. Optimization of Visual Tasks for Detecting Visual Cortex Activity in fMRI Studies

    Directory of Open Access Journals (Sweden)

    "A. Mirzajani

    2005-08-01

    Full Text Available Introduction: functional magnetic resonance imaging is a useful non-invasive technique for the evaluation and mapping of human brain, especially the visual cortex. One of the most important subjects in this background is optimizing visual stimuli in various forms of visual tasks for acquiring significant and ro-bust signals. Materials and methods: The effects of physical pa-rameters of visual stimuli on 14 healthy volunteers for detecting visual cortical activity were evaluated by functional magnetic resonance imaging. These pa-rameters were temporal frequency (TF, different pat-terns of activation including, square wave and sine wave grating, and two different states of rest includ-ing black and white screens. Results: The results showed that BOLD signal will be maximally in the TF of 8 Hz, and use the black screen in the rest state. However there was not significant difference between square-¬wave and sine-wave grat-ings in producing visual activation in the cortex. Conclusion: Physical parameters of visual tasks are effective in detecting visual cortical activity, and it is necessary to pay attention to them in order to get sig-nificant and robust signal. Visual tasks with TF of 8 Hz and one pattern of square-wave or sine-wave in activation state, and black screen in rest state are op-timally suitable for fMRI studies.

  10. Visual Motor and Perceptual Task Performance in Astigmatic Students.

    Science.gov (United States)

    Harvey, Erin M; Twelker, J Daniel; Miller, Joseph M; Leonard-Green, Tina K; Mohan, Kathleen M; Davis, Amy L; Campus, Irene

    2017-01-01

    Purpose. To determine if spectacle corrected and uncorrected astigmats show reduced performance on visual motor and perceptual tasks. Methods. Third through 8th grade students were assigned to the low refractive error control group (astigmatism VMI) and Visual Perception (VMIp). Astigmats were randomly assigned to testing with/without correction and control group was tested uncorrected. Analyses compared VMI and VMIp scores for corrected and uncorrected astigmats to the control group. Results. The sample included 333 students (control group 170, astigmats tested with correction 75, and astigmats tested uncorrected 88). Mean VMI score in corrected astigmats did not differ from the control group (p = 0.829). Uncorrected astigmats had lower VMI scores than the control group (p = 0.038) and corrected astigmats (p = 0.007). Mean VMIp scores for uncorrected (p = 0.209) and corrected astigmats (p = 0.124) did not differ from the control group. Uncorrected astigmats had lower mean scores than the corrected astigmats (p = 0.003). Conclusions. Uncorrected astigmatism influences visual motor and perceptual task performance. Previously spectacle treated astigmats do not show developmental deficits on visual motor or perceptual tasks when tested with correction.

  11. Effects of Repetitive Transcranial Magnetic Stimulation in Performing Eye-Hand Integration Tasks: Four Preliminary Studies with Children Showing Low-Functioning Autism

    Science.gov (United States)

    Panerai, Simonetta; Tasca, Domenica; Lanuzza, Bartolo; Trubia, Grazia; Ferri, Raffaele; Musso, Sabrina; Alagona, Giovanna; Di Guardo, Giuseppe; Barone, Concetta; Gaglione, Maria P.; Elia, Maurizio

    2014-01-01

    This report, based on four studies with children with low-functioning autism, aimed at evaluating the effects of repetitive transcranial magnetic stimulation delivered on the left and right premotor cortices on eye-hand integration tasks; defining the long-lasting effects of high-frequency repetitive transcranial magnetic stimulation; and…

  12. Neural Correlates of Changes in a Visual Search Task due to Cognitive Training in Seniors

    Directory of Open Access Journals (Sweden)

    Nele Wild-Wall

    2012-01-01

    Full Text Available This study aimed to elucidate the underlying neural sources of near transfer after a multidomain cognitive training in older participants in a visual search task. Participants were randomly assigned to a social control, a no-contact control and a training group, receiving a 4-month paper-pencil and PC-based trainer guided cognitive intervention. All participants were tested in a before and after session with a conjunction visual search task. Performance and event-related potentials (ERPs suggest that the cognitive training improved feature processing of the stimuli which was expressed in an increased rate of target detection compared to the control groups. This was paralleled by enhanced amplitudes of the frontal P2 in the ERP and by higher activation in lingual and parahippocampal brain areas which are discussed to support visual feature processing. Enhanced N1 and N2 potentials in the ERP for nontarget stimuli after cognitive training additionally suggest improved attention and subsequent processing of arrays which were not immediately recognized as targets. Possible test repetition effects were confined to processes of stimulus categorisation as suggested by the P3b potential. The results show neurocognitive plasticity in aging after a broad cognitive training and allow pinpointing the functional loci of effects induced by cognitive training.

  13. Temporal strategy and performance during a fatiguing short-cycle repetitive task

    NARCIS (Netherlands)

    Bosch, T.; Mathiassen, S.E.; Hallman, D.; Looze, M.P. de; Lyskov, E.; Visser, B.; Dieën, J.H. van

    2012-01-01

    This study investigated temporal changes in movement strategy and performance during fatiguing short-cycle work. Eighteen participants performed six 7-min work blocks with repetitive reaching movements at 0.5 Hz, each followed by a 5.5-min rest break for a total duration of 1 h. Electromyography (EM

  14. Task centered visualization of Electronic Medical Record flow sheet.

    Science.gov (United States)

    Xie, Zhong; Gregg, Peggy; Zhang, Jiajie

    2003-01-01

    Usability problem of Electronic Medical Record (EMR) systems is a major hurdle for their acceptance. In this study we used the methodology of Human-Centered Distributed Information Design (HCDID) to compare and evaluate Flow Sheet module of two commercial EMR systems. After which we tried to develop usable interface of a flow sheet using visualization, focusing on task-representation mapping during design and development.

  15. Pharmacological Mechanisms of Cortical Enhancement Induced by the Repetitive Pairing of Visual/Cholinergic Stimulation.

    Directory of Open Access Journals (Sweden)

    Jun-Il Kang

    Full Text Available Repetitive visual training paired with electrical activation of cholinergic projections to the primary visual cortex (V1 induces long-term enhancement of cortical processing in response to the visual training stimulus. To better determine the receptor subtypes mediating this effect the selective pharmacological blockade of V1 nicotinic (nAChR, M1 and M2 muscarinic (mAChR or GABAergic A (GABAAR receptors was performed during the training session and visual evoked potentials (VEPs were recorded before and after training. The training session consisted of the exposure of awake, adult rats to an orientation-specific 0.12 CPD grating paired with an electrical stimulation of the basal forebrain for a duration of 1 week for 10 minutes per day. Pharmacological agents were infused intracortically during this period. The post-training VEP amplitude was significantly increased compared to the pre-training values for the trained spatial frequency and to adjacent spatial frequencies up to 0.3 CPD, suggesting a long-term increase of V1 sensitivity. This increase was totally blocked by the nAChR antagonist as well as by an M2 mAChR subtype and GABAAR antagonist. Moreover, administration of the M2 mAChR antagonist also significantly decreased the amplitude of the control VEPs, suggesting a suppressive effect on cortical responsiveness. However, the M1 mAChR antagonist blocked the increase of the VEP amplitude only for the high spatial frequency (0.3 CPD, suggesting that M1 role was limited to the spread of the enhancement effect to a higher spatial frequency. More generally, all the drugs used did block the VEP increase at 0.3 CPD. Further, use of each of the aforementioned receptor antagonists blocked training-induced changes in gamma and beta band oscillations. These findings demonstrate that visual training coupled with cholinergic stimulation improved perceptual sensitivity by enhancing cortical responsiveness in V1. This enhancement is mainly mediated by n

  16. Monkeys Rely on Recency of Stimulus Repetition When Solving Short-Term Memory Tasks

    Science.gov (United States)

    Wittig, John H., Jr.; Richmond, Barry J.

    2014-01-01

    Seven monkeys performed variants of two short-term memory tasks that others have used to differentiate between selective and nonselective memory mechanisms. The first task was to view a list of sequentially presented images and identify whether a test matched any image from the list, but not a distractor from a preceding list. Performance was best…

  17. Monkeys Rely on Recency of Stimulus Repetition When Solving Short-Term Memory Tasks

    Science.gov (United States)

    Wittig, John H., Jr.; Richmond, Barry J.

    2014-01-01

    Seven monkeys performed variants of two short-term memory tasks that others have used to differentiate between selective and nonselective memory mechanisms. The first task was to view a list of sequentially presented images and identify whether a test matched any image from the list, but not a distractor from a preceding list. Performance was best…

  18. Cross-task repetition amnesia : Impaired recall of RSVP targets held in memory for a secondary task

    NARCIS (Netherlands)

    Nieuwenstein, Mark R.; Johnson, Addie; Kanai, Ryota; Martens, Sander

    2007-01-01

    People often fail to select and encode the second of two targets presented within less than 500 ms in rapid serial visual presentation (RSVP), an effect known as the attentional blink. We investigated how report of the two targets is affected when one of them is maintained in working memory for a se

  19. Chronic stroke survivors achieve comparable outcomes following virtual task specific repetitive training guided by a wearable robotic orthosis (UL-EXO7) and actual task specific repetitive training guided by a physical therapist.

    Science.gov (United States)

    Byl, Nancy N; Abrams, Gary M; Pitsch, Erica; Fedulow, Irina; Kim, Hyunchul; Simkins, Matt; Nagarajan, Srikantan; Rosen, Jacob

    2013-01-01

    Survivors post stroke commonly have upper limb impairments. Patients can drive neural reorganization, brain recovery and return of function with task specific repetitive training (TSRT). Fifteen community independent stroke survivors (25-75 years, >6 months post stroke, Upper Limb Fugl Meyer [ULFM] scores 16-39) participated in this randomized feasibility study to compare outcomes of upper limb TSRT guided by a robotic orthosis (bilateral or unilateral) or a physical therapist. After 6 weeks of training (18 h), across all subjects, there were significant improvements in depression, flexibility, strength, tone, pain and voluntary movement (ULFM) (p physical therapist significantly reduced arm impairments around the shoulder and elbow without significant gains in fine motor hand control, activities of daily living or independence.

  20. Exploring Metacogntive Visual Literacy Tasks for Teaching Astronomy

    Science.gov (United States)

    Slater, Timothy F.; Slater, S.; Dwyer, W.

    2010-01-01

    Undoubtedly, astronomy is a scientific enterprise which often results in colorful and inspirational images of the cosmos that naturally capture our attention. Students encountering astronomy in the college classroom are often bombarded with images, movies, simulations, conceptual cartoons, graphs, and charts intended to convey the substance and technological advancement inherent in astronomy. For students who self-identify themselves as visual learners, this aspect can make the science of astronomy come alive. For students who naturally attend to visual aesthetics, this aspect can make astronomy seem relevant. In other words, the visual nature that accompanies much of the scientific realm of astronomy has the ability to connect a wide range of students to science, not just those few who have great abilities and inclinations toward the mathematical analysis world. Indeed, this is fortunate for teachers of astronomy, who actively try to find ways to connect and build astronomical understanding with a broad range of student interests, motivations, and abilities. In the context of learning science, metacognition describes students’ self-monitoring, -regulation, and -awareness when thinking about learning. As such, metacognition is one of the foundational pillars supporting what we know about how people learn. Yet, the astronomy teaching and learning community knows very little about how to operationalize and support students’ metacognition in the classroom. In response, the Conceptual Astronomy, Physics and Earth sciences Research (CAPER) Team is developing and pilot-testing metacogntive tasks in the context of astronomy that focus on visual literacy of astronomical phenomena. In the initial versions, students are presented with a scientifically inaccurate narrative supposedly describing visual information, including images and graphical information, and asked to assess and correct the narrative, in the form of peer evaluation. To guide student thinking, students

  1. Comparison of the distortion of probability information in decision under risk and an equivalent visual task.

    Science.gov (United States)

    Glaser, Craig; Trommershäuser, Julia; Mamassian, Pascal; Maloney, Laurence T

    2012-04-01

    Decision makers typically overweight small probabilities and underweight large probabilities. However, there are recent reports that when probability is presented in the form of relative frequencies, this typical pattern reverses. We tested this hypothesis by comparing decision making in two tasks: In one task, probability was stated numerically, and in the other task, it was conveyed through a visual representation. In the visual task, participants chose whether a "stochastic bullet" should be fired at either a large target for a small reward or a small target for a large reward. Participants' knowledge of probability in the visual task was the result of extensive practice firing bullets at targets. In the classical numerical task, participants chose between pairs of lotteries with probabilities and rewards matched to the probabilities and rewards in the visual task. We found that participants' probability-weighting functions were significantly different in the two tasks, but the pattern for the visual task was the typical, not the reversed, pattern.

  2. The Effect of Task Instructions on Students' Use of Repetition in Argumentative Discourse

    Science.gov (United States)

    Gilabert, Sandra; Garcia-Mila, Merce; Felton, Mark K.

    2013-01-01

    The reasoning belief of "argumentum ad nauseam" assumes that when someone repeats something often enough, he or she becomes more convincing. The present paper analyses the use of this strategy by seventh-grade students in an argumentation task. Sixty-five students (mean age: 12.2, SD?=?0.4) from a public school in a mid-sized urban…

  3. Visual-search models for location-known detection tasks

    Science.gov (United States)

    Gifford, H. C.; Karbaschi, Z.; Banerjee, K.; Das, M.

    2017-03-01

    Lesion-detection studies that analyze a fixed target position are generally considered predictive of studies involving lesion search, but the extent of the correlation often goes untested. The purpose of this work was to develop a visual-search (VS) model observer for location-known tasks that, coupled with previous work on localization tasks, would allow efficient same-observer assessments of how search and other task variations can alter study outcomes. The model observer featured adjustable parameters to control the search radius around the fixed lesion location and the minimum separation between suspicious locations. Comparisons were made against human observers, a channelized Hotelling observer and a nonprewhitening observer with eye filter in a two-alternative forced-choice study with simulated lumpy background images containing stationary anatomical and quantum noise. These images modeled single-pinhole nuclear medicine scans with different pinhole sizes. When the VS observer's search radius was optimized with training images, close agreement was obtained with human-observer results. Some performance differences between the humans could be explained by varying the model observer's separation parameter. The range of optimal pinhole sizes identified by the VS observer was in agreement with the range determined with the channelized Hotelling observer.

  4. Task-dependent engagements of the primary visual cortex during kinesthetic and visual motor imagery.

    Science.gov (United States)

    Mizuguchi, Nobuaki; Nakamura, Maiko; Kanosue, Kazuyuki

    2017-01-01

    Motor imagery can be divided into kinesthetic and visual aspects. In the present study, we investigated excitability in the corticospinal tract and primary visual cortex (V1) during kinesthetic and visual motor imagery. To accomplish this, we measured motor evoked potentials (MEPs) and probability of phosphene occurrence during the two types of motor imageries of finger tapping. The MEPs and phosphenes were induced by transcranial magnetic stimulation to the primary motor cortex and V1, respectively. The amplitudes of MEPs and probability of phosphene occurrence during motor imagery were normalized based on the values obtained at rest. Corticospinal excitability increased during both kinesthetic and visual motor imagery, while excitability in V1 was increased only during visual motor imagery. These results imply that modulation of cortical excitability during kinesthetic and visual motor imagery is task dependent. The present finding aids in the understanding of the neural mechanisms underlying motor imagery and provides useful information for the use of motor imagery in rehabilitation or motor imagery training.

  5. Hierarchical organization of brain functional network during visual task

    CERN Document Server

    Zhuo, Zhao; Fu, Zhong-Qian; Zhang, Jie

    2011-01-01

    In this paper, the brain functional networks derived from high-resolution synchronous EEG time series during visual task are generated by calculating the phase synchronization among the time series. The hierarchical modular organizations of these networks are systematically investigated by the fast Girvan-Newman algorithm. At the same time, the spatially adjacent electrodes (corresponding to EEG channels) are clustered into functional groups based on anatomical parcellation of brain cortex, and this clustering information are compared to that of the functional network. The results show that the modular architectures of brain functional network are in coincidence with that from the anatomical structures over different levels of hierarchy, which suggests that population of neurons performing the same function excite and inhibit in identical rhythms. The structure-function relationship further reveals that the correlations among EEG time series in the same functional group are much stronger than those in differe...

  6. Adaptive-Repetitive Visual-Servo Control of Low-Flying Aerial Robots via Uncalibrated High-Flying Cameras

    Science.gov (United States)

    Guo, Dejun; Bourne, Joseph R.; Wang, Hesheng; Yim, Woosoon; Leang, Kam K.

    2017-08-01

    This paper presents the design and implementation of an adaptive-repetitive visual-servo control system for a moving high-flying vehicle (HFV) with an uncalibrated camera to monitor, track, and precisely control the movements of a low-flying vehicle (LFV) or mobile ground robot. Applications of this control strategy include the use of high-flying unmanned aerial vehicles (UAVs) with computer vision for monitoring, controlling, and coordinating the movements of lower altitude agents in areas, for example, where GPS signals may be unreliable or nonexistent. When deployed, a remote operator of the HFV defines the desired trajectory for the LFV in the HFV's camera frame. Due to the circular motion of the HFV, the resulting motion trajectory of the LFV in the image frame can be periodic in time, thus an adaptive-repetitive control system is exploited for regulation and/or trajectory tracking. The adaptive control law is able to handle uncertainties in the camera's intrinsic and extrinsic parameters. The design and stability analysis of the closed-loop control system is presented, where Lyapunov stability is shown. Simulation and experimental results are presented to demonstrate the effectiveness of the method for controlling the movement of a low-flying quadcopter, demonstrating the capabilities of the visual-servo control system for localization (i.e.,, motion capturing) and trajectory tracking control. In fact, results show that the LFV can be commanded to hover in place as well as track a user-defined flower-shaped closed trajectory, while the HFV and camera system circulates above with constant angular velocity. On average, the proposed adaptive-repetitive visual-servo control system reduces the average RMS tracking error by over 77% in the image plane and over 71% in the world frame compared to using just the adaptive visual-servo control law.

  7. Words translated in sentence contexts produce repetition priming in visual word comprehension and spoken word production.

    Science.gov (United States)

    Francis, Wendy S; Camacho, Alejandra; Lara, Carolina

    2014-10-01

    Previous research with words read in context at encoding showed little if any long-term repetition priming. In Experiment 1, 96 Spanish-English bilinguals translated words in isolation or in sentence contexts at encoding. At test, they translated words or named pictures corresponding to words produced at encoding and control words not previously presented. Repetition priming was reliable in all conditions, but priming effects were generally smaller for contextualized than for isolated words. Repetition priming in picture naming indicated priming from production in context. A componential analysis indicated priming from comprehension in context, but only in the less fluent language. Experiment 2 was a replication of Experiment 1 with auditory presentation of the words and sentences to be translated. Repetition priming was reliable in all conditions, but priming effects were again smaller for contextualized than for isolated words. Priming in picture naming indicated priming from production in context, but the componential analysis indicated no detectable priming for auditory comprehension. The results of the two experiments taken together suggest that repetition priming reflects the long-term learning that occurs with comprehension and production exposures to words in the context of natural language.

  8. Time of day does not modulate improvements in motor performance following a repetitive ballistic motor training task.

    Science.gov (United States)

    Sale, Martin V; Ridding, Michael C; Nordstrom, Michael A

    2013-01-01

    Repetitive performance of a task can result in learning. The neural mechanisms underpinning such use-dependent plasticity are influenced by several neuromodulators. Variations in neuromodulator levels may contribute to the variability in performance outcomes following training. Circulating levels of the neuromodulator cortisol change throughout the day. High cortisol levels inhibit neuroplasticity induced with a transcranial magnetic stimulation (TMS) paradigm that has similarities to use-dependent plasticity. The present study investigated whether performance changes following a motor training task are modulated by time of day and/or changes in endogenous cortisol levels. Motor training involving 30 minutes of repeated maximum left thumb abduction was undertaken by twenty-two participants twice, once in the morning (8 AM) and once in the evening (8 PM) on separate occasions. Saliva was assayed for cortisol concentration. Motor performance, quantified by measuring maximum left thumb abduction acceleration, significantly increased by 28% following training. Neuroplastic changes in corticomotor excitability of abductor pollicis brevis, quantified with TMS, increased significantly by 23% following training. Training-related motor performance improvements and neuroplasticity were unaffected by time of day and salivary cortisol concentration. Although similar neural elements and processes contribute to motor learning, training-induced neuroplasticity, and TMS-induced neuroplasticity, our findings suggest that the influence of time of day and cortisol differs for these three interventions.

  9. Perception adapts via top-down regulation to task repetition: A Lotka-Volterra-Haken modeling analysis of experimental data.

    Science.gov (United States)

    Frank, T D

    2016-03-01

    Two experiments are reported in which participants perceived different physical quantities: size and speed. The perceptual tasks were performed in the context of motor performance problems. Participants perceived the size of objects in order to grasp the objects single handed or with both hands. Likewise, participants perceived the speed of a moving treadmill in order to control walking or running at that speed. In both experiments, the perceptual tasks were repeatedly performed by the participants while the to-be-perceived quantity was gradually varied from small to large objects (Experiment 1) and from low to high speeds (Experiment 2). Hysteresis with negative sign was found when participants were not allowed to execute the motor component, that is, when the execution stage was decoupled from the planning stage. No such effect was found in the control condition, when participants were allowed to execute the motor action. Using a Lotka-Volterra-Haken model for two competing neural populations, it is argued that the observations are consistent with the notion that the repetitions induce an adaptation effect of the perceptual system via top-down regulation. Moreover, the amount of synaptic modulation involved in the adaptation is estimated from participant data.

  10. Time of Day Does Not Modulate Improvements in Motor Performance following a Repetitive Ballistic Motor Training Task

    Directory of Open Access Journals (Sweden)

    Martin V. Sale

    2013-01-01

    Full Text Available Repetitive performance of a task can result in learning. The neural mechanisms underpinning such use-dependent plasticity are influenced by several neuromodulators. Variations in neuromodulator levels may contribute to the variability in performance outcomes following training. Circulating levels of the neuromodulator cortisol change throughout the day. High cortisol levels inhibit neuroplasticity induced with a transcranial magnetic stimulation (TMS paradigm that has similarities to use-dependent plasticity. The present study investigated whether performance changes following a motor training task are modulated by time of day and/or changes in endogenous cortisol levels. Motor training involving 30 minutes of repeated maximum left thumb abduction was undertaken by twenty-two participants twice, once in the morning (8 AM and once in the evening (8 PM on separate occasions. Saliva was assayed for cortisol concentration. Motor performance, quantified by measuring maximum left thumb abduction acceleration, significantly increased by 28% following training. Neuroplastic changes in corticomotor excitability of abductor pollicis brevis, quantified with TMS, increased significantly by 23% following training. Training-related motor performance improvements and neuroplasticity were unaffected by time of day and salivary cortisol concentration. Although similar neural elements and processes contribute to motor learning, training-induced neuroplasticity, and TMS-induced neuroplasticity, our findings suggest that the influence of time of day and cortisol differs for these three interventions.

  11. Saccade-vergence properties remain more stable over short-time repetition under overlap than under gap task: a preliminary study

    Directory of Open Access Journals (Sweden)

    Alexandre eLang

    2014-06-01

    Full Text Available Under natural circumstances, saccade-vergence eye movements are among the most frequently occurring. This study examines the properties of such movements focusing on short-term repetition effects. Are such movements robust over time or are they subject to tiredness ? Twelve healthy adults performed convergent and divergent combined eye movements either in a gap task (i.e., 200 ms between the end of the fixation stimulus and the beginning of the target stimulus or in an overlap task (i.e., the peripheral target begins 200 ms before the end of the fixation stimulus. Latencies were shorter in the gap task than in the overlap task for both saccade and vergence components. Repetition had no effect on latency, which is a novel result. In both tasks, saccades were initiated later and executed faster (mean and peak velocities than the vergence component. The mean and peak velocities of both components decreased over trials in the gap task but remained constant in the overlap task. This result is also novel and has some clinical implications. Another novel result concerns the accuracy of the saccade component that was better in the gap than in the overlap task. The accuracy also decreased over trials in the gap task but remained constant in the overlap task. The major result of this study is that under a controlled mode of initiation (overlap task properties of combined eye movements are more stable than under automatic triggering (gap task. These results are discussed in terms of saccade-vergence interactions, convergence-divergence specificities and repetition versus adaptation protocols.

  12. Comparison of Distortion of Probability information in Decision under Risk and an equivalent Visual Task

    Science.gov (United States)

    Glaser, Craig; Maloney, Laurence T.; Trommershäuser, Julia; Mamassian, Pascal

    2013-01-01

    Decision makers typically overweight small probabilities and underweight large. However, there are recent reports that, when probability is presented in relative frequency form, this typical pattern reverses. We tested this hypothesis, comparing decision making in two decision tasks, in which probability was either stated numerically or conveyed through a visual representation. In the visual task, participants chose between firing a ‘stochastic bullet’ at a large target for a small reward or at a small target for a large reward. Participants’ knowledge of probability in the visual task was the results of extensive practice firing bullets at targets. In the classical numerical task, they chose between pairs of lotteries with probabilities and rewards matched to those in the visual task. We found that participants had significantly different probability weight functions in the two tasks but the pattern for the visual task was the typical, not the reversed, pattern. PMID:22395127

  13. Hemispheric asymmetry of visual scene processing in the human brain: evidence from repetition priming and intrinsic activity.

    Science.gov (United States)

    Stevens, W Dale; Kahn, Itamar; Wig, Gagan S; Schacter, Daniel L

    2012-08-01

    Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes.

  14. Classification of visual and linguistic tasks using eye-movement features.

    Science.gov (United States)

    Coco, Moreno I; Keller, Frank

    2014-03-07

    The role of the task has received special attention in visual-cognition research because it can provide causal explanations of goal-directed eye-movement responses. The dependency between visual attention and task suggests that eye movements can be used to classify the task being performed. A recent study by Greene, Liu, and Wolfe (2012), however, fails to achieve accurate classification of visual tasks based on eye-movement features. In the present study, we hypothesize that tasks can be successfully classified when they differ with respect to the involvement of other cognitive domains, such as language processing. We extract the eye-movement features used by Greene et al. as well as additional features from the data of three different tasks: visual search, object naming, and scene description. First, we demonstrated that eye-movement responses make it possible to characterize the goals of these tasks. Then, we trained three different types of classifiers and predicted the task participants performed with an accuracy well above chance (a maximum of 88% for visual search). An analysis of the relative importance of features for classification accuracy reveals that just one feature, i.e., initiation time, is sufficient for above-chance performance (a maximum of 79% accuracy in object naming). Crucially, this feature is independent of task duration, which differs systematically across the three tasks we investigated. Overall, the best task classification performance was obtained with a set of seven features that included both spatial information (e.g., entropy of attention allocation) and temporal components (e.g., total fixation on objects) of the eye-movement record. This result confirms the task-dependent allocation of visual attention and extends previous work by showing that task classification is possible when tasks differ in the cognitive processes involved (purely visual tasks such as search vs. communicative tasks such as scene description).

  15. Measuring perceived ceiling height in a visual comparison task.

    Science.gov (United States)

    von Castell, Christoph; Hecht, Heiko; Oberfeld, Daniel

    2017-03-01

    When judging interior space, a dark ceiling is judged to be lower than a light ceiling. The method of metric judgments (e.g., on a centimetre scale) that has typically been used in such tasks may reflect a genuine perceptual effect or it may reflect a cognitively mediated impression. We employed a height-matching method in which perceived ceiling height had to be matched with an adjustable pillar, thus obtaining psychometric functions that allowed for an estimation of the point of subjective equality (PSE) and the difference limen (DL). The height-matching method developed in this paper allows for a direct visual match and does not require metric judgment. It has the added advantage of providing superior precision. Experiment 1 used ceiling heights between 2.90 m and 3.00 m. The PSE proved sensitive to slight changes in perceived ceiling height. The DL was about 3% of the physical ceiling height. Experiment 2 found similar results for lower (2.30 m to 2.50 m) and higher (3.30 m to 3.50 m) ceilings. In Experiment 3, we additionally varied ceiling lightness (light grey vs. dark grey). The height matches showed that the light ceiling appeared significantly higher than the darker ceiling. We therefore attribute the influence of ceiling lightness on perceived ceiling height to a direct perceptual rather than a cognitive effect.

  16. Task difficulty affects the predictive process indexed by visual mismatch negativity

    Directory of Open Access Journals (Sweden)

    Motohiro eKimura

    2013-06-01

    Full Text Available Visual mismatch negativity (MMN is an event-related brain potential (ERP component that is elicited by prediction-incongruent events in successive visual stimulation. Previous oddball studies have shown that visual MMN in response to task-irrelevant deviant stimuli is insensitive to the manipulation of task difficulty, which supports the notion that visual MMN reflects attention-independent predictive processes. In these studies, however, visual MMN was evaluated in deviant-minus-standard difference waves, which may lead to an underestimation of the effects of task difficulty due to the possible superposition of N1-difference reflecting refractory effects. In the present study, we investigated the effects of task difficulty on visual MMN, less contaminated by N1-difference. While the participant performed a size-change detection task regarding a continuously-presented central fixation circle, we presented oddball sequences consisting of deviant and standard bar stimuli with different orientations (9.1% and 90.9% and equiprobable sequences consisting of 11 types of control bar stimuli with different orientations (9.1% each at the surrounding visual fields. Task difficulty was manipulated by varying the magnitude of the size-change. We found that the peak latencies of visual MMN evaluated in the deviant-minus-control difference waves were delayed as a function of task difficulty. Therefore, in contrast to the previous understanding, the present findings support the notion that visual MMN is associated with attention-demanding predictive processes.

  17. Advert saliency distracts children's visual attention during task-oriented internet use

    Directory of Open Access Journals (Sweden)

    Nils eHolmberg

    2014-02-01

    Full Text Available The general research question of the present study was to assess the impact of visually salient online adverts on children's task-oriented internet use. In order to answer this question, an experimental study was constructed in which 9-year-old and 12-year-old Swedish children were asked to solve a number of tasks while interacting with a mockup website. In each trial, web adverts in several saliency conditions were presented. By both measuring children's task accuracy, as well as the visual processing involved in solving these tasks, this study allows us to infer how two types of visual saliency affect children's attentional behavior, and whether such behavioral effects also impacts their task performance. Analyses show that low-level visual features and task relevance in online adverts have different effects on performance measures and process measures respectively. Whereas task performance is stable with regard to several advert saliency conditions, a marked effect is seen on children's gaze behavior. On the other hand, task performance is shown to be more sensitive to individual differences such as age, gender and level of gaze control. The results provide evidence about cognitive and behavioral distraction effects in children's task-oriented internet use caused by visual saliency in online adverts. The experiment suggests that children to some extent are able to compensate for behavioral effects caused by distracting visual stimuli when solving prospective memory tasks. Suggestions are given for further research into the interdiciplinary area between media research and cognitive science.

  18. Advert saliency distracts children's visual attention during task-oriented internet use.

    Science.gov (United States)

    Holmberg, Nils; Sandberg, Helena; Holmqvist, Kenneth

    2014-01-01

    The general research question of the present study was to assess the impact of visually salient online adverts on children's task-oriented internet use. In order to answer this question, an experimental study was constructed in which 9- and 12-year-old Swedish children were asked to solve a number of tasks while interacting with a mockup website. In each trial, web adverts in several saliency conditions were presented. By both measuring children's task accuracy, as well as the visual processing involved in solving these tasks, this study allows us to infer how two types of visual saliency affect children's attentional behavior, and whether such behavioral effects also impacts their task performance. Analyses show that low-level visual features and task relevance in online adverts have different effects on performance measures and process measures respectively. Whereas task performance is stable with regard to several advert saliency conditions, a marked effect is seen on children's gaze behavior. On the other hand, task performance is shown to be more sensitive to individual differences such as age, gender and level of gaze control. The results provide evidence about cognitive and behavioral distraction effects in children's task-oriented internet use caused by visual saliency in online adverts. The experiment suggests that children to some extent are able to compensate for behavioral effects caused by distracting visual stimuli when solving prospective memory tasks. Suggestions are given for further research into the interdiciplinary area between media research and cognitive science.

  19. Task Repetition and Noticing as a Route to Semester-long Destabilization: A Cross-sectional Study of Iranian EFL Learners’ Oral Output

    Directory of Open Access Journals (Sweden)

    Ali Eliasi

    2013-05-01

    Full Text Available Tackling learners’ erroneous oral output has always been a substantial issue for both language teachers and researchers. Taking Swain’s output hypothesis and Schmidt’s noticing hypothesis into account, this study aims at investigating the effect of task- initiated noticing along with task repetition sessions as a route to destabilization of learner errors. The participants of the study were thirty two Iranian upper-intermediate learners.  The participants were divided into two groups, an experimental and a control group.  Both groups’ voices were recorded while delivering a prepared speech. The participants in experimental group were given the recorded presentation to be transcribed and compared with the original text they used while the control group didn’t receive feedback of any kind. The experimental group submitted a draft to their teacher who checked the papers and later asked them to prepare themselves for another prepared speech in the future. There was a pre-test, a treatment and a post-test. The comparison of the erroneous utterances in both groups lent support to the effectiveness of task repetition and noticing on destabilization of learners’ oral output. Keywords: fossilization, noticing, task repetition, output

  20. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state.

    Science.gov (United States)

    Yang, Yan-Li; Deng, Hong-Xia; Xing, Gui-Yang; Xia, Xiao-Luan; Li, Hai-Fang

    2015-02-01

    It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  1. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  2. The influence of different doses of caffeine on visual task performance

    NARCIS (Netherlands)

    Lorist, MM; Snel, J; Ruijter, J

    1999-01-01

    Tn this study the influence of caffeine as an energy-increasing substance on visual information processing was examined. Subjects were presented with a dual-task consisting of two choice reaction time tasks. In addition, one of the tasks was presented at two levels of difficulty, influencing the dec

  3. Priming T2 in a Visual and Auditory Attentional Blink Task

    NARCIS (Netherlands)

    Burg, E. van der; Olivers, C.N.L.; Bronkhorst, A.W.; Theeuwes, J.

    2008-01-01

    Participants performed an attentional blink (AB) task including digits as targets and letters as distractors within the visual and auditory domains. Prior to the rapid serial visual presentation, a visual or auditory prime was presented in the form of a digit that was identical to the second target

  4. University of Amsterdam at the visual concept detection and annotation tasks

    NARCIS (Netherlands)

    van de Sande, K.E.A.; Gevers, T.; Müller, H.; Clough, P.; Deselaers, T.; Caputo, B.

    2010-01-01

    Visual concept detection is important to access visual information on the level of objects and scene types. The current state-of-the-art in visual concept detection and annotation tasks is based on the bag-of-words model. Within the bag-of-words model, points are first sampled according to some stra

  5. Attentional capture by spoken language: effects on netballers' visual task performance.

    Science.gov (United States)

    Bishop, Daniel Tony; Moore, Sarah; Horne, Sara; Teszka, Robert

    2014-01-01

    In two experiments, participants performed visual detection, visual discrimination and decision-making tasks, in which a binary (left/right) response was required. In all experimental conditions, a spoken word ("left"/"right") was presented monaurally (left or right ear) at the onset of the visual stimulus. In Experiment 1, 26 non-athletes located a target amongst an array of distractors as quickly as possible, in both the presence and absence of spoken cues. Participants performed superiorly in the presence of valid cues, relative to invalid-cue and control conditions. In Experiment 2, 42 skilled netballers completed three tasks, in randomised order: a visual detection task, a visual discrimination task and a netball decision-making task - all in the presence of spoken cues. Our data showed that spoken auditory cues affected not only target detection, but also performance on more complex decision-making tasks: cues that were either spatially or semantically invalid slowed target detection time; spatially invalid cues impaired discrimination task accuracy; and cues that were either spatially or semantically valid improved accuracy and speeded decision-making time in the netball task. When studying visual perception and attention in sport, the impact of concomitant auditory information should be taken into account in order to achieve a more representative task design.

  6. Evaluation of Multivariate Visualization on a Multivariate Task

    Science.gov (United States)

    2012-10-14

    consider whether user experience and repetition were contributing factors to performance as independent variables. 3.3 Dependent Variables and Hypotheses...expected (based on our previous study) that user experience with the techniques would lead to faster response time. 3.4 Subjects and Procedures The...decreasing target size. 3.5.5 Effect of User Experience We expected (based on our past work) to see users who had partici- pated in previous studies

  7. Task- and age-dependent effects of visual stimulus properties on children's explicit numerosity judgments.

    Science.gov (United States)

    Defever, Emmy; Reynvoet, Bert; Gebuis, Titia

    2013-10-01

    Researchers investigating numerosity processing manipulate the visual stimulus properties (e.g., surface). This is done to control for the confound between numerosity and its visual properties and should allow the examination of pure number processes. Nevertheless, several studies have shown that, despite different visual controls, visual cues remained to exert their influence on numerosity judgments. This study, therefore, investigated whether the impact of the visual stimulus manipulations on numerosity judgments is dependent on the task at hand (comparison task vs. same-different task) and whether this impact changes throughout development. In addition, we examined whether the influence of visual stimulus manipulations on numerosity judgments plays a role in the relation between performance on numerosity tasks and mathematics achievement. Our findings confirmed that the visual stimulus manipulations affect numerosity judgments; more important, we found that these influences changed with increasing age and differed between the comparison and the same-different tasks. Consequently, direct comparisons between numerosity studies using different tasks and age groups are difficult. No meaningful relationship between the performance on the comparison and same-different tasks and mathematics achievement was found in typically developing children, nor did we find consistent differences between children with and without mathematical learning disability (MLD).

  8. Web Camera Based Eye Tracking to Assess Visual Memory on a Visual Paired Comparison Task.

    Science.gov (United States)

    Bott, Nicholas T; Lange, Alex; Rentz, Dorene; Buffalo, Elizabeth; Clopton, Paul; Zola, Stuart

    2017-01-01

    Background: Web cameras are increasingly part of the standard hardware of most smart devices. Eye movements can often provide a noninvasive "window on the brain," and the recording of eye movements using web cameras is a burgeoning area of research. Objective: This study investigated a novel methodology for administering a visual paired comparison (VPC) decisional task using a web camera.To further assess this method, we examined the correlation between a standard eye-tracking camera automated scoring procedure [obtaining images at 60 frames per second (FPS)] and a manually scored procedure using a built-in laptop web camera (obtaining images at 3 FPS). Methods: This was an observational study of 54 clinically normal older adults.Subjects completed three in-clinic visits with simultaneous recording of eye movements on a VPC decision task by a standard eye tracker camera and a built-in laptop-based web camera. Inter-rater reliability was analyzed using Siegel and Castellan's kappa formula. Pearson correlations were used to investigate the correlation between VPC performance using a standard eye tracker camera and a built-in web camera. Results: Strong associations were observed on VPC mean novelty preference score between the 60 FPS eye tracker and 3 FPS built-in web camera at each of the three visits (r = 0.88-0.92). Inter-rater agreement of web camera scoring at each time point was high (κ = 0.81-0.88). There were strong relationships on VPC mean novelty preference score between 10, 5, and 3 FPS training sets (r = 0.88-0.94). Significantly fewer data quality issues were encountered using the built-in web camera. Conclusions: Human scoring of a VPC decisional task using a built-in laptop web camera correlated strongly with automated scoring of the same task using a standard high frame rate eye tracker camera.While this method is not suitable for eye tracking paradigms requiring the collection and analysis of fine-grained metrics, such as fixation points, built

  9. PROLONGED PERFORMANCE OF A HIGH REPETITION LOW FORCE TASK INDUCES BONE ADAPTATION IN YOUNG ADULT RATS, BUT LOSS IN MATURE RATS

    Science.gov (United States)

    Massicotte, Vicky S; Frara, Nagat; Harris, Michele Y; Amin, Mamta; Wade, Christine K; Popoff, Steven N; Barbe, Mary F

    2015-01-01

    We have shown that prolonged repetitive reaching and grasping tasks lead to exposure-dependent changes in bone microarchitecture and inflammatory cytokines in young adult rats. Since aging mammals show increased tissue inflammatory cytokines, we sought here to determine if aging, combined with prolonged performance of a repetitive upper extremity task, enhances bone loss. We examined the radius, forearm flexor muscles, and serum from 16 mature (14–18 mo of age) and 14 young adult (2.5–6.5 mo of age) female rats after performance of a high repetition low force (HRLF) reaching and grasping task for 12 weeks. Young adult HRLF rats showed enhanced radial bone growth (e.g., increased trabecular bone volume, osteoblast numbers, bone formation rate, and mid-diaphyseal periosteal perimeter), compared to age-matched controls. Mature HRLF rats showed several indices of radial bone loss (e.g., decreased trabecular bone volume, and increased cortical bone thinning, porosity, resorptive spaces and woven bone formation), increased osteoclast numbers and inflammatory cytokines, compared to age-matched controls and young adult HRLF rats. Mature rats weighed more yet had lower maximum reflexive grip strength, than young adult rats, although each age group was able to pull at the required reach rate (4 reaches/min) and required submaximal pulling force (30 force-grams) for a food reward. Serum estrogen levels and flexor digitorum muscle size were similar in each age group. Thus, mature rats had increased bone degradative changes than in young adult rats performing the same repetitive task for 12 weeks, with increased inflammatory cytokine responses and osteoclast activity as possible causes. PMID:26517953

  10. Prolonged performance of a high repetition low force task induces bone adaptation in young adult rats, but loss in mature rats.

    Science.gov (United States)

    Massicotte, Vicky S; Frara, Nagat; Harris, Michele Y; Amin, Mamta; Wade, Christine K; Popoff, Steven N; Barbe, Mary F

    2015-12-01

    We have shown that prolonged repetitive reaching and grasping tasks lead to exposure-dependent changes in bone microarchitecture and inflammatory cytokines in young adult rats. Since aging mammals show increased tissue inflammatory cytokines, we sought here to determine if aging, combined with prolonged performance of a repetitive upper extremity task, enhances bone loss. We examined the radius, forearm flexor muscles, and serum from 16 mature (14-18 months of age) and 14 young adult (2.5-6.5 months of age) female rats after performance of a high repetition low force (HRLF) reaching and grasping task for 12 weeks. Young adult HRLF rats showed enhanced radial bone growth (e.g., increased trabecular bone volume, osteoblast numbers, bone formation rate, and mid-diaphyseal periosteal perimeter), compared to age-matched controls. Mature HRLF rats showed several indices of radial bone loss (e.g., decreased trabecular bone volume, and increased cortical bone thinning, porosity, resorptive spaces and woven bone formation), increased osteoclast numbers and inflammatory cytokines, compared to age-matched controls and young adult HRLF rats. Mature rats weighed more yet had lower maximum reflexive grip strength, than young adult rats, although each age group was able to pull at the required reach rate (4 reaches/min) and required submaximal pulling force (30 force-grams) for a food reward. Serum estrogen levels and flexor digitorum muscle size were similar in each age group. Thus, mature rats had increased bone degradative changes than in young adult rats performing the same repetitive task for 12 weeks, with increased inflammatory cytokine responses and osteoclast activity as possible causes.

  11. Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury.

    Directory of Open Access Journals (Sweden)

    Radouil Tzekov

    Full Text Available Repetitive mild traumatic brain injury (r-mTBI results in neuropathological and biochemical consequences in the human visual system. Using a recently developed mouse model of r-mTBI, with control mice receiving repetitive anesthesia alone (r-sham we assessed the effects on the retina and optic nerve using histology, immunohistochemistry, proteomic and lipidomic analyses at 3 weeks post injury. Retina tissue was used to determine retinal ganglion cell (RGC number, while optic nerve tissue was examined for cellularity, myelin content, protein and lipid changes. Increased cellularity and areas of demyelination were clearly detectable in optic nerves in r-mTBI, but not in r-sham. These changes were accompanied by a ~25% decrease in the total number of Brn3a-positive RGCs. Proteomic analysis of the optic nerves demonstrated various changes consistent with a negative effect of r-mTBI on major cellular processes like depolymerization of microtubules, disassembly of filaments and loss of neurons, manifested by decrease of several proteins, including neurofilaments (NEFH, NEFM, NEFL, tubulin (TUBB2A, TUBA4A, microtubule-associated proteins (MAP1A, MAP1B, collagen (COL6A1, COL6A3 and increased expression of other proteins, including heat shock proteins (HSP90B1, HSPB1, APOE and cathepsin D. Lipidomic analysis showed quantitative changes in a number of phospholipid species, including a significant increase in the total amount of lysophosphatidylcholine (LPC, including the molecular species 16:0, a known demyelinating agent. The overall amount of some ether phospholipids, like ether LPC, ether phosphatidylcholine and ether lysophosphatidylethanolamine were also increased, while the majority of individual molecular species of ester phospholipids, like phosphatidylcholine and phosphatidylethanolamine, were decreased. Results from the biochemical analysis correlate well with changes detected by histological and immunohistochemical methods and indicate the

  12. Sub-Chronic Neuropathological and Biochemical Changes in Mouse Visual System after Repetitive Mild Traumatic Brain Injury.

    Science.gov (United States)

    Tzekov, Radouil; Dawson, Clint; Orlando, Megan; Mouzon, Benoit; Reed, Jon; Evans, James; Crynen, Gogce; Mullan, Michael; Crawford, Fiona

    2016-01-01

    Repetitive mild traumatic brain injury (r-mTBI) results in neuropathological and biochemical consequences in the human visual system. Using a recently developed mouse model of r-mTBI, with control mice receiving repetitive anesthesia alone (r-sham) we assessed the effects on the retina and optic nerve using histology, immunohistochemistry, proteomic and lipidomic analyses at 3 weeks post injury. Retina tissue was used to determine retinal ganglion cell (RGC) number, while optic nerve tissue was examined for cellularity, myelin content, protein and lipid changes. Increased cellularity and areas of demyelination were clearly detectable in optic nerves in r-mTBI, but not in r-sham. These changes were accompanied by a ~25% decrease in the total number of Brn3a-positive RGCs. Proteomic analysis of the optic nerves demonstrated various changes consistent with a negative effect of r-mTBI on major cellular processes like depolymerization of microtubules, disassembly of filaments and loss of neurons, manifested by decrease of several proteins, including neurofilaments (NEFH, NEFM, NEFL), tubulin (TUBB2A, TUBA4A), microtubule-associated proteins (MAP1A, MAP1B), collagen (COL6A1, COL6A3) and increased expression of other proteins, including heat shock proteins (HSP90B1, HSPB1), APOE and cathepsin D. Lipidomic analysis showed quantitative changes in a number of phospholipid species, including a significant increase in the total amount of lysophosphatidylcholine (LPC), including the molecular species 16:0, a known demyelinating agent. The overall amount of some ether phospholipids, like ether LPC, ether phosphatidylcholine and ether lysophosphatidylethanolamine were also increased, while the majority of individual molecular species of ester phospholipids, like phosphatidylcholine and phosphatidylethanolamine, were decreased. Results from the biochemical analysis correlate well with changes detected by histological and immunohistochemical methods and indicate the involvement of

  13. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.

    Science.gov (United States)

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2013-02-16

    We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The brain as a flexible task machine: implications for visual rehabilitation using noninvasive vs. invasive approaches.

    Science.gov (United States)

    Reich, Lior; Maidenbaum, Shachar; Amedi, Amir

    2012-02-01

    The exciting view of our brain as highly flexible task-based and not sensory-based raises the chances for visual rehabilitation, long considered unachievable, given adequate training in teaching the brain how to see. Recent advances in rehabilitation approaches, both noninvasive, like sensory substitution devices (SSDs) which present visual information using sound or touch, and invasive, like visual prosthesis, may potentially be used to achieve this goal, each alone, and most preferably together. Visual impairments and said solutions are being used as a model for answering fundamental questions ranging from basic cognitive neuroscience, showing that several key visual brain areas are actually highly flexible, modality-independent and, as was recently shown, even visual experience-independent task machines, to technological and behavioral developments, allowing blind persons to 'see' using SSDs and other approaches. SSDs can be potentially used as a research tool for assessing the brain's functional organization; as an aid for the blind in daily visual tasks; to visually train the brain prior to invasive procedures, by taking advantage of the 'visual' cortex's flexibility and task specialization even in the absence of vision; and to augment postsurgery functional vision using a unique SSD-prostheses hybrid. Taken together the reviewed results suggest a brighter future for visual neuro-rehabilitation.

  15. Visualization design and verification of Ada tasking using timing diagrams

    Science.gov (United States)

    Vidale, R. F.; Szulewski, P. A.; Weiss, J. B.

    1986-01-01

    The use of timing diagrams is recommended in the design and testing of multi-task Ada programs. By displaying the task states vs. time, timing diagrams can portray the simultaneous threads of data flow and control which characterize tasking programs. This description of the system's dynamic behavior from conception to testing is a necessary adjunct to other graphical techniques, such as structure charts, which essentially give a static view of the system. A series of steps is recommended which incorporates timing diagrams into the design process. Finally, a description is provided of a prototype Ada Execution Analyzer (AEA) which automates the production of timing diagrams from VAX/Ada debugger output.

  16. Concrete and abstract visualizations in history learning tasks

    NARCIS (Netherlands)

    Prangsma, M.E.; van Boxtel, C.A.M.; Kanselaar, G.; Kirschner, P.A.

    2009-01-01

    Background: History learning requires that students understand historical phenomena, abstract concepts and the relations between them. Students have problems grasping, using and relating complex historical developments and structures. Aims: A study was conducted to determine the effects of tasks

  17. Visual Attention Allocation Between Robotic Arm and Environmental Process Control: Validating the STOM Task Switching Model

    Science.gov (United States)

    Wickens, Christopher; Vieanne, Alex; Clegg, Benjamin; Sebok, Angelia; Janes, Jessica

    2015-01-01

    Fifty six participants time shared a spacecraft environmental control system task with a realistic space robotic arm control task in either a manual or highly automated version. The former could suffer minor failures, whose diagnosis and repair were supported by a decision aid. At the end of the experiment this decision aid unexpectedly failed. We measured visual attention allocation and switching between the two tasks, in each of the eight conditions formed by manual-automated arm X expected-unexpected failure X monitoring- failure management. We also used our multi-attribute task switching model, based on task attributes of priority interest, difficulty and salience that were self-rated by participants, to predict allocation. An un-weighted model based on attributes of difficulty, interest and salience accounted for 96 percent of the task allocation variance across the 8 different conditions. Task difficulty served as an attractor, with more difficult tasks increasing the tendency to stay on task.

  18. The effect of haptic guidance and visual feedback on learning a complex tennis task.

    Science.gov (United States)

    Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert

    2013-11-01

    While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on

  19. Neural substrates of visual spatial coding and visual feedback control for hand movements in allocentric and target-directed tasks

    Directory of Open Access Journals (Sweden)

    Lore eThaler

    2011-08-01

    Full Text Available Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g. pointing or reaching, and movements that are based on allocentric visual information (e.g. drawing or copying. Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n=14 performed right-hand movements in either a target-directed task (moving a cursor to a target dot or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole-brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intraparietal sulcus (IPS, in posterior IPS, in bilateral dorsal premotor cortex (PMd, and in the Lateral Occipital Complex (LOC. Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal occipital cortex (SPOC and posterior IPS (all bilateral. In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, in particular in pre-supplementary motor area, PMd, IPS and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector-coding of movements.

  20. Influence of social presence on eye movements in visual search tasks.

    Science.gov (United States)

    Liu, Na; Yu, Ruifeng

    2017-06-22

    This study employed an eye-tracking technique to investigate the influence of social presence on eye movements in visual search tasks. A total of 20 male subjects performed visual search tasks in a 2 (target presence: present vs. absent) × 2 (task complexity: complex vs. simple) × 2 (social presence: alone vs. a human audience) within-subject experiment. Results indicated that the presence of an audience could evoke a social facilitation effect on response time in visual search tasks. Compared with working alone, the participants made fewer and shorter fixations, larger saccades and shorter scan path in simple search tasks and more and longer fixations, smaller saccades and longer scan path in complex search tasks when working with an audience. The saccade velocity and pupil diameter in the audience-present condition were larger than those in the working-alone condition. No significant change in target fixation number was observed between two social presence conditions. Practitioner Summary: This study employed an eye-tracking technique to examine the influence of social presence on eye movements in visual search tasks. Results clarified the variation mechanism and characteristics of oculomotor scanning induced by social presence in visual search.

  1. Robust visual tracking via structured multi-task sparse learning

    KAUST Repository

    Zhang, Tianzhu

    2012-11-09

    In this paper, we formulate object tracking in a particle filter framework as a structured multi-task sparse learning problem, which we denote as Structured Multi-Task Tracking (S-MTT). Since we model particles as linear combinations of dictionary templates that are updated dynamically, learning the representation of each particle is considered a single task in Multi-Task Tracking (MTT). By employing popular sparsity-inducing lp,q mixed norms (specifically p∈2,∞ and q=1), we regularize the representation problem to enforce joint sparsity and learn the particle representations together. As compared to previous methods that handle particles independently, our results demonstrate that mining the interdependencies between particles improves tracking performance and overall computational complexity. Interestingly, we show that the popular L1 tracker (Mei and Ling, IEEE Trans Pattern Anal Mach Intel 33(11):2259-2272, 2011) is a special case of our MTT formulation (denoted as the L11 tracker) when p=q=1. Under the MTT framework, some of the tasks (particle representations) are often more closely related and more likely to share common relevant covariates than other tasks. Therefore, we extend the MTT framework to take into account pairwise structural correlations between particles (e.g. spatial smoothness of representation) and denote the novel framework as S-MTT. The problem of learning the regularized sparse representation in MTT and S-MTT can be solved efficiently using an Accelerated Proximal Gradient (APG) method that yields a sequence of closed form updates. As such, S-MTT and MTT are computationally attractive. We test our proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that S-MTT is much better than MTT, and both methods consistently outperform state-of-the-art trackers. © 2012 Springer Science+Business Media New York.

  2. Problem Behavior and Developmental Tasks in Adolescents with Visual Impairment and Sighted Peers

    Science.gov (United States)

    Pfeiffer, Jens P.; Pinquart, Martin

    2013-01-01

    This longitudinal study analyzed associations of problem behavior with the attainment of developmental tasks in 133 adolescents with visual impairment and 449 sighted peers. Higher levels of initial problem behavior predicted less progress in the attainment of developmental tasks at the one-year follow-up only in sighted adolescents. This…

  3. Attentional Capture by Salient Distractors during Visual Search Is Determined by Temporal Task Demands

    DEFF Research Database (Denmark)

    Kiss, Monika; Grubert, Anna; Petersen, Anders

    2012-01-01

    The question whether attentional capture by salient but taskirrelevant visual stimuli is triggered in a bottom–up fashion or depends on top–down task settings is still unresolved. Strong support for bottom–up capture was obtained in the additional singleton task, in which search arrays were visib...

  4. Experimental study on the effects of visualized functionally abstracted information on process control tasks

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Dong-Han [School of Computing Science, Middlesex University, The Burroughs London, London NW4 4BT (United Kingdom)], E-mail: d.ham@mdx.ac.uk; Yoon, Wan Chul [Department of Industrial Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon 305-701 (Korea, Republic of); Han, Byoung-Tae [Global Consumer Group, Citibank Korea Inc., Shinmoon-ro, Chongro-gu, Seoul 110-762 (Korea, Republic of)

    2008-02-15

    Two distinct design problems of information display for process control are information content representation and visual form design. Regarding information content, we experimentally showed the effectiveness of functionally abstracted information without the benefits of sophisticated graphical presentation in various task situations. However, since it is obvious that the effects of the information display are also influenced by display formats (i.e., visual forms) as well as the information content, further research was required to investigate the effectiveness of visualized functionally abstracted information. For this purpose, this study conducted an experiment in complex process control tasks (operation and fault diagnosis). The experimental purposes were to confirm the effectiveness of the functionally abstracted information visualized with emergent features or peculiar geometric forms and to examine the additional effects of the visualization on task performance. The results showed that functionally abstracted information presented with sophisticated visual forms helped operators perform process control tasks in more efficient and safe way. The results also indicated the importance of explicit visualization of goal-means relation between higher and lower abstraction levels. Lastly, this study proposed a framework for designing visual forms for process control display.

  5. Screening for Impaired Visual Acuity in Older Adults : US Preventive Services Task Force Recommendation Statement

    NARCIS (Netherlands)

    Calonge, Ned; Petitti, Diana B.; DeWitt, Thomas G.; Dietrich, Allen J.; Gregory, Kimberly D.; Grossman, David; Isham, George; LeFevre, Michael L.; Leipzig, Rosanne M.; Marion, Lucy N.; Melnyk, Bernadette; Moyer, Virginia A.; Ockene, Judith K.; Sawaya, George F.; Schwartz, J. Sanford; Wilt, Timothy

    2009-01-01

    Description: Update of the 1996 U. S. Preventive Services Task Force (USPSTF) recommendation statement on screening for visual impairment. Methods: The USPSTF reviewed evidence published since its last review on screening adults 65 years or older in the primary care setting for visual acuity impairm

  6. Hand Movement Deviations in a Visual Search Task with Cross Modal Cuing

    Science.gov (United States)

    Aslan, Asli; Aslan, Hurol

    2007-01-01

    The purpose of this study is to demonstrate the cross-modal effects of an auditory organization on a visual search task and to investigate the influence of the level of detail in instructions describing or hinting at the associations between auditory stimuli and the possible locations of a visual target. In addition to measuring the participants'…

  7. Screening for Impaired Visual Acuity in Older Adults : US Preventive Services Task Force Recommendation Statement

    NARCIS (Netherlands)

    Calonge, Ned; Petitti, Diana B.; DeWitt, Thomas G.; Dietrich, Allen J.; Gregory, Kimberly D.; Grossman, David; Isham, George; LeFevre, Michael L.; Leipzig, Rosanne M.; Marion, Lucy N.; Melnyk, Bernadette; Moyer, Virginia A.; Ockene, Judith K.; Sawaya, George F.; Schwartz, J. Sanford; Wilt, Timothy

    2009-01-01

    Description: Update of the 1996 U. S. Preventive Services Task Force (USPSTF) recommendation statement on screening for visual impairment. Methods: The USPSTF reviewed evidence published since its last review on screening adults 65 years or older in the primary care setting for visual acuity impairm

  8. What Types of Visual Recognition Tasks Are Mediated by the Neural Subsystem that Subserves Face Recognition?

    Science.gov (United States)

    Brooks, Brian E.; Cooper, Eric E.

    2006-01-01

    Three divided visual field experiments tested current hypotheses about the types of visual shape representation tasks that recruit the cognitive and neural mechanisms underlying face recognition. Experiment 1 found a right hemisphere advantage for subordinate but not basic-level face recognition. Experiment 2 found a right hemisphere advantage for…

  9. Expectation Suppression in Early Visual Cortex Depends on Task Set

    NARCIS (Netherlands)

    St. John-Saaltink, E.C.; Utzerath, C.; Kok, P.; Lau, H.C.; Lange, F.P. de

    2015-01-01

    Stimulus expectation can modulate neural responses in early sensory cortical regions, with expected stimuli often leading to a reduced neural response. However, it is unclear whether this expectation suppression is an automatic phenomenon or is instead dependent on the type of task a subject is enga

  10. Using Visualization to Generalize on Quadratic Patterning Tasks

    Science.gov (United States)

    Kirwan, J. Vince

    2017-01-01

    Patterning tasks engage students in a core aspect of algebraic thinking-generalization (Kaput 2008). The National Council of Teachers of Mathematics (NCTM) Algebra Standard states that students in grades 9-12 should "generalize patterns using explicitly defined and recursively defined functions" (NCTM 2000, p. 296). Although educators…

  11. Communicating Visually: Incorporating Document Design in Writing Tasks

    Science.gov (United States)

    Campbell, Nittaya

    2006-01-01

    In communication courses, the focus has traditionally been on text: how to craft good news or bad news messages, proposals, reports, and so on. However, rapid developments in printing and computer technology have meant that communication has become more visual than ever before. Words alone are not enough; students need to be able to communicate…

  12. Reconfiguration of the Brain Functional Network Associated with Visual Task Demands.

    Science.gov (United States)

    Wen, Xue; Zhang, Delong; Liang, Bishan; Zhang, Ruibin; Wang, Zengjian; Wang, Junjing; Liu, Ming; Huang, Ruiwang

    2015-01-01

    Neuroimaging studies have demonstrated that the topological properties of resting-state brain functional networks are modulated through task performances. However, the reconfiguration of functional networks associated with distinct degrees of task demands is not well understood. In the present study, we acquired fMRI data from 18 healthy adult volunteers during resting-state (RS) and two visual tasks (i.e., visual stimulus watching, VSW; and visual stimulus decision, VSD). Subsequently, we constructed the functional brain networks associated with these three conditions and analyzed the changes in the topological properties (e.g., network efficiency, wiring-cost, modularity, and robustness) among them. Although the small-world attributes were preserved qualitatively across the functional networks of the three conditions, changes in the topological properties were also observed. Compared with the resting-state, the functional networks associated with the visual tasks exhibited significantly increased network efficiency and wiring-cost, but decreased modularity and network robustness. The changes in the task-related topological properties were modulated according to the task complexity (i.e., from RS to VSW and VSD). Moreover, at the regional level, we observed that the increased nodal efficiencies in the visual and working memory regions were positively associated with the increase in task complexity. Together, these results suggest that the increased efficiency of the functional brain network and higher wiring-cost were observed to afford the demands of visual tasks. These observations provide further insights into the mechanisms underlying the reconfiguration of the brain network during task performance.

  13. Slow frequency repetitive transcranial magnetic stimulation affects reaction times, but not priming effects, in a masked prime task

    NARCIS (Netherlands)

    Schlaghecken, F.; Munchau, A.; Bloem, B.R.; Rothwell, J.C.; Eimer, M.

    2003-01-01

    OBJECTIVE: Slow frequency repetitive transcranial magnetic stimulation (rTMS) reduces motor cortex excitability, but it is unclear whether this has behavioural consequences in healthy subjects. METHODS: We examined the effects of 1 Hz rTMS (train of 20 min; stimulus intensity 80% of active motor thr

  14. Repetition Priming Influences Distinct Brain Systems: Evidence From Task-Evoked Data and Resting-State Correlations

    Science.gov (United States)

    Wig, Gagan S.; Buckner, Randy L.; Schacter, Daniel L.

    2009-01-01

    Behavioral dissociations suggest that a single experience can separately influence multiple processing components. Here we used a repetition priming functional magnetic resonance imaging paradigm that directly contrasted the effects of stimulus and decision changes to identify the underlying brain systems. Direct repetition of stimulus features caused marked reductions in posterior regions of the inferior temporal lobe that were insensitive to whether the decision was held constant or changed between study and test. By contrast, prefrontal cortex showed repetition effects that were sensitive to the exact stimulus-to-decision mapping. Analysis of resting-state functional connectivity revealed that the dissociated repetition effects are embedded within distinct brain systems. Regions that were sensitive to changes in the stimulus correlated with perceptual cortices, whereas the decision changes attenuated activity in regions correlated with middle-temporal regions and a frontoparietal control system. These results thus explain the long-known dissociation between perceptual and conceptual components of priming by revealing how a single experience can separately influence distinct, concurrently active brain systems. PMID:19225167

  15. Choosing Your Poison: Optimizing Simulator Visual System Selection as a Function of Operational Tasks

    Science.gov (United States)

    Sweet, Barbara T.; Kaiser, Mary K.

    2013-01-01

    Although current technology simulator visual systems can achieve extremely realistic levels they do not completely replicate the experience of a pilot sitting in the cockpit, looking at the outside world. Some differences in experience are due to visual artifacts, or perceptual features that would not be present in a naturally viewed scene. Others are due to features that are missing from the simulated scene. In this paper, these differences will be defined and discussed. The significance of these differences will be examined as a function of several particular operational tasks. A framework to facilitate the choice of visual system characteristics based on operational task requirements will be proposed.

  16. Comparing capacity coefficient and dual task assessment of visual multitasking workload

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, Leslie M.

    2017-07-14

    Capacity coefficient analysis could offer a theoretically grounded alternative approach to subjective measures and dual task assessment of cognitive workload. Workload capacity or workload efficiency is a human information processing modeling construct defined as the amount of information that can be processed by the visual cognitive system given a specified of amount of time. In this paper, I explore the relationship between capacity coefficient analysis of workload efficiency and dual task response time measures. To capture multitasking performance, I examine how the relatively simple assumptions underlying the capacity construct generalize beyond the single visual decision making tasks. The fundamental tools for measuring workload efficiency are the integrated hazard and reverse hazard functions of response times, which are defined by log transforms of the response time distribution. These functions are used in the capacity coefficient analysis to provide a functional assessment of the amount of work completed by the cognitive system over the entire range of response times. For the study of visual multitasking, capacity coefficient analysis enables a comparison of visual information throughput as the number of tasks increases from one to two to any number of simultaneous tasks. I illustrate the use of capacity coefficients for visual multitasking on sample data from dynamic multitasking in the modified Multi-attribute Task Battery.

  17. Slushy weightings for the optimal pilot model. [considering visual tracking task

    Science.gov (United States)

    Dillow, J. D.; Picha, D. G.; Anderson, R. O.

    1975-01-01

    A pilot model is described which accounts for the effect of motion cues in a well defined visual tracking task. The effect of visual and motion cues are accounted for in the model in two ways. First, the observation matrix in the pilot model is structured to account for the visual and motion inputs presented to the pilot. Secondly, the weightings in the quadratic cost function associated with the pilot model are modified to account for the pilot's perception of the variables he considers important in the task. Analytic results obtained using the pilot model are compared to experimental results and in general good agreement is demonstrated. The analytic model yields small improvements in tracking performance with the addition of motion cues for easily controlled task dynamics and large improvements in tracking performance with the addition of motion cues for difficult task dynamics.

  18. PyVDT: A PsychoPy-Based Visual Sequence Detection Task

    Directory of Open Access Journals (Sweden)

    Mads Hansen

    2016-06-01

    Full Text Available PyVDT is a computerized test consisting of two brief visual sequence detection tasks in which participants watch single digits displayed on screen and respond whenever target digit sequences (even – odd – even are displayed. The total duration of the test is around five minutes. PyVDT is a reimplementation of the Visual Monitoring Task (VMT, a task thought to measure working memory. PyVDT uses the PsychoPy API to display digits, to plot diagnostic information, and to output log files and results. It is available for download on Figshare and GitHub. PyVDT is free software and has minimal software and hardware requirements. Thus, PyVDT provides a readily available visual monitoring task for use in experiments within cognitive science and related fields.

  19. Task specificity and the influence of memory on visual search: comment on Võ and Wolfe (2012).

    Science.gov (United States)

    Hollingworth, Andrew

    2012-12-01

    Recent results from Võ and Wolfe (2012b) suggest that the application of memory to visual search may be task specific: Previous experience searching for an object facilitated later search for that object, but object information acquired during a different task did not appear to transfer to search. The latter inference depended on evidence that a preview task did not improve later search, but Võ and Wolfe used a relatively insensitive, between-subjects design. Here, we replicated the Võ and Wolfe study using a within-subject manipulation of scene preview. A preview session (focused either on object location memory or on the assessment of object semantics) reliably facilitated later search. In addition, information acquired from distractors in a scene-facilitated search when the distractor later became the target. Instead of being strongly constrained by task, visual memory is applied flexibly to guide attention and gaze during visual search.

  20. Effects of targets embedded within words in a visual search task.

    Science.gov (United States)

    Grabbe, Jeremy W

    2014-01-01

    Visual search performance can be negatively affected when both targets and distracters share a dimension relevant to the task. This study examined if visual search performance would be influenced by distracters that affect a dimension irrelevant from the task. In Experiment 1 within the letter string of a letter search task, target letters were embedded within a word. Experiment 2 compared targets embedded in words to targets embedded in nonwords. Experiment 3 compared targets embedded in words to a condition in which a word was present in a letter string, but the target letter, although in the letter string, was not embedded within the word. The results showed that visual search performance was negatively affected when a target appeared within a high frequency word. These results suggest that the interaction and effectiveness of distracters is not merely dependent upon common features of the target and distracters, but can be affected by word frequency (a dimension not related to the task demands).

  1. Robust visual tracking via multi-task sparse learning

    KAUST Repository

    Zhang, Tianzhu

    2012-06-01

    In this paper, we formulate object tracking in a particle filter framework as a multi-task sparse learning problem, which we denote as Multi-Task Tracking (MTT). Since we model particles as linear combinations of dictionary templates that are updated dynamically, learning the representation of each particle is considered a single task in MTT. By employing popular sparsity-inducing p, q mixed norms (p D; 1), we regularize the representation problem to enforce joint sparsity and learn the particle representations together. As compared to previous methods that handle particles independently, our results demonstrate that mining the interdependencies between particles improves tracking performance and overall computational complexity. Interestingly, we show that the popular L 1 tracker [15] is a special case of our MTT formulation (denoted as the L 11 tracker) when p q 1. The learning problem can be efficiently solved using an Accelerated Proximal Gradient (APG) method that yields a sequence of closed form updates. As such, MTT is computationally attractive. We test our proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that MTT methods consistently outperform state-of-the-art trackers. © 2012 IEEE.

  2. Task-related Functional Connectivity Dynamics in a Block-designed Visual Experiment

    Directory of Open Access Journals (Sweden)

    Xin eDi

    2015-09-01

    Full Text Available Studying task modulations of brain connectivity using functional magnetic resonance imaging (fMRI is critical to understand brain functions that support cognitive and affective processes. Existing methods such as psychophysiological interaction (PPI and dynamic causal modelling (DCM usually implicitly assume that the connectivity patterns are stable over a block-designed task with identical stimuli. However, this assumption lacks empirical verification on high-temporal resolution fMRI data with reliable data-driven analysis methods. The present study performed a detailed examination of dynamic changes of functional connectivity (FC in a simple block-designed visual checkerboard experiment with a sub-second sampling rate (TR = 0.645 s by estimating time-varying correlation coefficient (TVCC between BOLD responses of different brain regions. We observed reliable task-related FC changes (i.e., FCs were transiently decreased after task onset and went back to the baseline afterward among several visual regions of the bilateral middle occipital gyrus (MOG and the bilateral fusiform gyrus (FuG. Importantly, only the FCs between higher visual regions (MOG and lower visual regions (FuG exhibited such dynamic patterns. The results suggested that simply assuming a sustained FC during a task block may be insufficient to capture distinct task-related FC changes. The investigation of FC dynamics in tasks could improve our understanding of condition shifts and the coordination between different activated brain regions.

  3. Neural Patterns of Reorganization after Intensive Robot-Assisted Virtual Reality Therapy and Repetitive Task Practice in Patients with Chronic Stroke.

    Science.gov (United States)

    Saleh, Soha; Fluet, Gerard; Qiu, Qinyin; Merians, Alma; Adamovich, Sergei V; Tunik, Eugene

    2017-01-01

    Several approaches to rehabilitation of the hand following a stroke have emerged over the last two decades. These treatments, including repetitive task practice (RTP), robotically assisted rehabilitation and virtual rehabilitation activities, produce improvements in hand function but have yet to reinstate function to pre-stroke levels-which likely depends on developing the therapies to impact cortical reorganization in a manner that favors or supports recovery. Understanding cortical reorganization that underlies the above interventions is therefore critical to inform how such therapies can be utilized and improved and is the focus of the current investigation. Specifically, we compare neural reorganization elicited in stroke patients participating in two interventions: a hybrid of robot-assisted virtual reality (RAVR) rehabilitation training and a program of RTP training. Ten chronic stroke subjects participated in eight 3-h sessions of RAVR therapy. Another group of nine stroke subjects participated in eight sessions of matched RTP therapy. Functional magnetic resonance imaging (fMRI) data were acquired during paretic hand movement, before and after training. We compared the difference between groups and sessions (before and after training) in terms of BOLD intensity, laterality index of activation in sensorimotor areas, and the effective connectivity between ipsilesional motor cortex (iMC), contralesional motor cortex, ipsilesional primary somatosensory cortex (iS1), ipsilesional ventral premotor area (iPMv), and ipsilesional supplementary motor area. Last, we analyzed the relationship between changes in fMRI data and functional improvement measured by the Jebsen Taylor Hand Function Test (JTHFT), in an attempt to identify how neurophysiological changes are related to motor improvement. Subjects in both groups demonstrated motor recovery after training, but fMRI data revealed RAVR-specific changes in neural reorganization patterns. First, BOLD signal in multiple

  4. Neural Patterns of Reorganization after Intensive Robot-Assisted Virtual Reality Therapy and Repetitive Task Practice in Patients with Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Soha Saleh

    2017-09-01

    Full Text Available Several approaches to rehabilitation of the hand following a stroke have emerged over the last two decades. These treatments, including repetitive task practice (RTP, robotically assisted rehabilitation and virtual rehabilitation activities, produce improvements in hand function but have yet to reinstate function to pre-stroke levels—which likely depends on developing the therapies to impact cortical reorganization in a manner that favors or supports recovery. Understanding cortical reorganization that underlies the above interventions is therefore critical to inform how such therapies can be utilized and improved and is the focus of the current investigation. Specifically, we compare neural reorganization elicited in stroke patients participating in two interventions: a hybrid of robot-assisted virtual reality (RAVR rehabilitation training and a program of RTP training. Ten chronic stroke subjects participated in eight 3-h sessions of RAVR therapy. Another group of nine stroke subjects participated in eight sessions of matched RTP therapy. Functional magnetic resonance imaging (fMRI data were acquired during paretic hand movement, before and after training. We compared the difference between groups and sessions (before and after training in terms of BOLD intensity, laterality index of activation in sensorimotor areas, and the effective connectivity between ipsilesional motor cortex (iMC, contralesional motor cortex, ipsilesional primary somatosensory cortex (iS1, ipsilesional ventral premotor area (iPMv, and ipsilesional supplementary motor area. Last, we analyzed the relationship between changes in fMRI data and functional improvement measured by the Jebsen Taylor Hand Function Test (JTHFT, in an attempt to identify how neurophysiological changes are related to motor improvement. Subjects in both groups demonstrated motor recovery after training, but fMRI data revealed RAVR-specific changes in neural reorganization patterns. First, BOLD

  5. Visuospatial attention deficits in developmental dyslexia: evidence from visual and mental number line bisection tasks.

    Science.gov (United States)

    Gabay, Yafit; Gabay, Shai; Schiff, Rachel; Ashkenazi, Sarit; Henik, Avishai

    2013-12-01

    Previous research has shown that individuals with DD (developmental dyslexia) demonstrated a left mini neglect on visual line (VL) bisection tasks, which has been commonly referred to as right parietal dysfunction. However, insufficient reading experience characterizes dyslexia and may call into question the validity of this interpretation, since the VL bisection task has been found to be influenced by reading habits. The current study investigated whether altered performance of individuals with DD on bisection tasks may be attributed to impaired attentional mechanisms or to insufficient reading exposure. DD and control groups performed visual and mental number line bisection tasks, which have been shown to be modulated differently by reading habits. In both tasks, the magnitude of left bisection errors was significantly larger in the DD group compared with controls. This finding suggests attentional mechanisms act differently in dyslexia and supports evidence linking dyslexia to decreased function of the left hemisphere.

  6. Perceptual learning of basic visual features remains task specific with Training-Plus-Exposure (TPE) training.

    Science.gov (United States)

    Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun

    2016-01-01

    Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer.

  7. Task relevance differentially shapes ventral visual stream sensitivity to visible and invisible faces

    DEFF Research Database (Denmark)

    Kouider, Sid; Barbot, Antoine; Madsen, Kristoffer Hougaard

    2016-01-01

    requires dissociating it from the top-down influences underlying conscious recognition. Here, using visual masking to abolish perceptual consciousness in humans, we report that functional magnetic resonance imaging (fMRI) responses to invisible faces in the fusiform gyrus are enhanced when they are task......-relevant, but suppressed when they are task-irrelevant compared to other object categories. Under conscious perceptual conditions, task-related modulations were also present but drastically reduced, with visible faces always eliciting greater activity in the fusiform gyrus compared to other object categories. Thus, task...

  8. Task-dependent calibration of auditory spatial perception through environmental visual observation.

    Science.gov (United States)

    Tonelli, Alessia; Brayda, Luca; Gori, Monica

    2015-01-01

    Visual information is paramount to space perception. Vision influences auditory space estimation. Many studies show that simultaneous visual and auditory cues improve precision of the final multisensory estimate. However, the amount or the temporal extent of visual information, that is sufficient to influence auditory perception, is still unknown. It is therefore interesting to know if vision can improve auditory precision through a short-term environmental observation preceding the audio task and whether this influence is task-specific or environment-specific or both. To test these issues we investigate possible improvements of acoustic precision with sighted blindfolded participants in two audio tasks [minimum audible angle (MAA) and space bisection] and two acoustically different environments (normal room and anechoic room). With respect to a baseline of auditory precision, we found an improvement of precision in the space bisection task but not in the MAA after the observation of a normal room. No improvement was found when performing the same task in an anechoic chamber. In addition, no difference was found between a condition of short environment observation and a condition of full vision during the whole experimental session. Our results suggest that even short-term environmental observation can calibrate auditory spatial performance. They also suggest that echoes can be the cue that underpins visual calibration. Echoes may mediate the transfer of information from the visual to the auditory system.

  9. HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.

    Science.gov (United States)

    Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye

    2017-02-09

    In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.

  10. A visual, position-independent instrumental reinforcer devaluation task for rats.

    Science.gov (United States)

    West, Elizabeth A; Forcelli, Patrick A; Murnen, Alice; Gale, Karen; Malkova, Ludise

    2011-01-15

    Flexible goal-directed behavior has been studied across species using reinforcer devaluation tasks, in which subjects form associations between specific stimuli (cues) and specific reinforcer(s). The reinforcer is subsequently devalued by selective satiation or taste aversion. Following devaluation, subjects adjust their responding to the cues reflecting the new value of the reinforcer. Tasks currently used in rats differ in several ways from tasks used in monkeys and this may explain contrasting results between the two species. To address one of the differences, we developed a rat task independent of spatial cues. It employs two visual cues presented simultaneously, changing left and right positions pseudorandomly. Each cue predicts one of two food reinforcers. Rats were trained to lever press in response to the two visual cues. Subsequently, they were satiated on one of the foods followed by an extinction test where in each trial they could choose to respond to one of the two cues, one predicting the devalued reinforcer and the other the non-devalued. This procedure was repeated later with the alternative food devalued. The rats adjusted their responding by choosing the cue predicting the devalued food significantly less (pdevalue two different foods by selective satiation, and transfer the new value to the visual cues. Discrimination of the visual cues is not aided by spatial cues, thereby eliminating a major difference between the instrumental tasks used in rats and the task used in monkeys.

  11. Performance of visual search tasks from various types of contour information.

    Science.gov (United States)

    Itan, Liron; Yitzhaky, Yitzhak

    2013-03-01

    A recently proposed visual aid for patients with a restricted visual field (tunnel vision) combines a see-through head-mounted display and a simultaneous minified contour view of the wide-field image of the environment. Such a widening of the effective visual field is helpful for tasks, such as visual search, mobility, and orientation. The sufficiency of image contours for performing everyday visual tasks is of major importance for this application, as well as for other applications, and for basic understanding of human vision. This research aims is to examine and compare the use of different types of automatically created contours, and contour representations, for practical everyday visual operations using commonly observed images. The visual operations include visual searching for items, such as cutlery, housewares, etc. Considering different recognition levels, identification of an object is distinguished from mere detection (when the object is not necessarily identified). Some nonconventional visual-based contour representations were developed for this purpose. Experiments were performed with normal-vision subjects by superposing contours of the wide field of the scene over a narrow field (see-through) background. From the results, it appears that about 85% success is obtained for searched object identification when the best contour versions are employed. Pilot experiments with video simulations are reported at the end of the paper.

  12. An electrophysiological assessment of distractor suppression in visual search tasks.

    Science.gov (United States)

    Mazza, Veronica; Turatto, Massimo; Caramazza, Alfonso

    2009-07-01

    We investigated whether the N2pc is unequivocally linked to distractor-suppression mechanisms, as is commonly assumed. According to the distractor-suppression account of the N2pc, no suppression, and thus no N2pc, should occur when homogeneous distractors help in selecting the target, such as when the target feature is unpredictable. Participants performed a simple detection or a finer discrimination on a singleton target, which had either a variable or a constant color. Contrary to the distractor-suppression account, an N2pc was present for both the variable and the constant conditions, and for both tasks. Additionally, target feature consistency correlated with earlier N2pc onsets relative to variable blocks. Both results indicate that the N2pc is not unequivocally linked to distractor-suppression mechanisms, but may index mechanisms involved in identifying and localizing relevant stimuli through enhancement of their features.

  13. Vigilance, visual search and attention in an agricultural task.

    Science.gov (United States)

    Hartley, L R; Arnold, P K; Kobryn, H; Macleod, C

    1989-03-01

    In a fragile agricultural environment, such as Western Australia (WA), introduced exotic plant species present a serious environmental and economic threat. Skeleton weed, centaurea juncea, a Mediterranean daisy, was accidentally introduced into WA in 1963. It competes with cash crops such as wheat. When observed in the fields, farms are quarantined and mechanised teams search for the infestations in order to destroy them. Since the search process requires attention, visual search and vigilance, the present investigators conducted a number of controlled field trials to identify the importance of these factors in detection of the weed. The paper describes the basic hit rate, vigilance decrement, effect of search party size, effect of target size, and some data on the effect of solar illumination of the target. Several recommendations have been made and incorporated in the search programme and some laboratory studies undertaken to answer questions arising.

  14. Integrating the Ergonomics Techniques with Multi Criteria Decision Making as a New Approach for Risk Management: An Assessment of Repetitive Tasks -Entropy Case Study.

    Science.gov (United States)

    Khandan, Mohammad; Nili, Majid; Koohpaei, Alireza; Mosaferchi, Saeedeh

    2016-01-01

    Nowadays, the health work decision makers need to analyze a huge amount of data and consider many conflicting evaluation criteria and sub-criteria. Therefore, an ergonomic evaluation in the work environment in order to the control occupational disorders is considered as the Multi Criteria Decision Making (MCDM) problem. In this study, the ergonomic risks factors, which may influence health, were evaluated in a manufacturing company in 2014. Then entropy method was applied to prioritize the different risk factors. This study was done with a descriptive-analytical approach and 13 tasks were included from total number of employees who were working in the seven halls of an ark opal manufacturing (240). Required information was gathered by the demographic questionnaire and Assessment of Repetitive Tasks (ART) method for repetitive task assessment. In addition, entropy was used to prioritize the risk factors based on the ergonomic control needs. The total exposure score based on the ART method calculated was equal to 30.07 ±12.43. Data analysis illustrated that 179 cases (74.6% of tasks) were in the high level of risk area and 13.8% were in the medium level of risk. ART- entropy results revealed that based on the weighted factors, higher value belongs to grip factor and the lowest value was related to neck and hand posture and duration. Based on the limited financial resources, it seems that MCDM in many challenging situations such as control procedures and priority approaches could be used successfully. Other MCDM methods for evaluating and prioritizing the ergonomic problems are recommended.

  15. A task-independent neural representation of subjective certainty in visual perception

    Science.gov (United States)

    Heereman, Johannes; Walter, Henrik; Heekeren, Hauke R.

    2015-01-01

    Am I really sure? This is a question not only scientists ask themselves but practically everybody every day. A recent study provides behavioral evidence supporting the view that one’s subjective confidence in a decision (i.e., feeling sure that a decision is correct) is represented in a task-independent format. Previous neuroimaging studies identified neural correlates of decision confidence but whether or not these are task-dependent remains unclear. Here, combining two perceptual decision tasks with functional magnetic resonance imaging (fMRI), we provide neural evidence for a task-independent representation of degrees of subjective certainty (i.e., a neural representation of subjective certainty that remains constant across two visual tasks). Importantly, due to the constant stimulus-intensity used this result is independent of task-difficulty and stimulus properties. Our data provide strong evidence for a generic mechanism underlying the computation of subjective perceptual certainty in vision. PMID:26500523

  16. Visual Search skills in Task of Spot Difference

    Directory of Open Access Journals (Sweden)

    Watanabe Takayuki

    2011-12-01

    Full Text Available There were few data for spot of the difference searching skilled on eye movement. Especially, it was unknown how to view and recognition of spot difference quickly. The purpose of this study was to investigate the behavior of spot the difference due to the time pressure tasks. Twelve students participated in this study (average 21years old. Every subject equipped eye movement apparatus recorder (NAC EMR-9, Tokyo Japan, it was displayed gaze point of spot the difference as the stimulus pictures. The attention stimuli was same two photos it’s has spot the difference. The device was measured the spot of the difference as x and y coordinated. It was within one minute to each one recorded searching behavior. After recording gaze and eye movement coordinate apparatus was analyzed it with analytical software (EMR-dFactory ver2.12b, Tokyo Japan. The results of this study was the findings of major two skilled patterns. They gaze tracking one side that was not easily to find out the spot of difference like as inattentional blindness. And it was too quickly eye gaze movement to detected difference. The other it was equal time and trajectory on right and left stimulus picture.

  17. Stereo visualization in the ground segment tasks of the science space missions

    Science.gov (United States)

    Korneva, Natalia; Nazarov, Vladimir; Mogilevsky, Mikhail; Nazirov, Ravil

    The ground segment is one of the key components of any science space mission. Its functionality substantially defines the scientific effectiveness of the experiment as a whole. And it should be noted that its outstanding feature (in contrast to the other information systems of the scientific space projects) is interaction between researcher and project information system in order to interpret data being obtained during experiments. Therefore the ability to visualize the data being processed is essential prerequisite for ground segment's software and the usage of modern technological solutions and approaches in this area will allow increasing science return in general and providing a framework for new experiments creation. Mostly for the visualization of data being processed 2D and 3D graphics are used that is caused by the traditional visualization tools capabilities. Besides that the stereo data visualization methods are used actively in solving some tasks. However their usage is usually limited to such tasks as visualization of virtual and augmented reality, remote sensing data processing and suchlike. Low prevalence of stereo visualization methods in solving science ground segment tasks is primarily explained by extremely high cost of the necessary hardware. But recently appeared low cost hardware solutions for stereo visualization based on the page-flip method of views separation. In this case it seems promising to use the stereo visualization as an instrument for investigation of a wide range of problems, mainly for stereo visualization of complex physical processes as well as mathematical abstractions and models. The article is concerned with an attempt to use this approach. It describes the details and problems of using stereo visualization (page-flip method based on NVIDIA 3D Vision Kit, graphic processor GeForce) for display of some datasets of magnetospheric satellite onboard measurements and also in development of the software for manual stereo matching.

  18. Visual scanning training for neglect after stroke with and without a computerized lane tracking dual task

    Directory of Open Access Journals (Sweden)

    M.E. eVan Kessel

    2013-07-01

    Full Text Available Neglect patients typically fail to explore the contralesional half-space. During visual scanning training, these patients learn to consciously pay attention to contralesional target stimuli. It has been suggested that combining scanning training with methods addressing non-spatial attention might enhance training results. In the present study, a dual task training component was added to a visual scanning training (i.e. Training di Scanning Visuospaziale – TSVS; Pizzamiglio et al., 1990. Twenty-nine subacute right hemisphere stroke patients were semi-randomly assigned to an experimental (N=14 or a control group (N=15. Patients received 30 training sessions during six weeks. TSVS consisted of four standardized tasks (digit detection, reading/copying, copying drawings and figure description. Moreover, a driving simulator task was integrated in the training procedure. Control patients practiced a single lane tracking task for two days a week during six weeks. The experimental group was administered the same training schedule, but in weeks 4-6 of the training, the TSVS digit detection task was combined with lane tracking on the same projection screen, so as to create a dual task (CVRT-TR. Various neglect tests and driving simulator tasks were administered before and after training. No significant group and interaction effects were found that might reflect additional positive effects of dual task training. Significant improvements after training were observed in both groups taken together on most assessment tasks. Ameliorations were generally not correlated to post onset time, but spontaneous recovery, test-retest variability and learning effects could not be ruled out completely, since these were not controlled for. Future research might focus on increasing the amount of dual task training, the implementation of progressive difficulty levels in the driving simulator tasks and further exploration of relationships between dual task training and daily

  19. Aging, visual information, and adaptation to task asymmetry in bimanual force coordination.

    Science.gov (United States)

    Hu, Xiaogang; Newell, Karl M

    2011-12-01

    This study investigated the coordination and control strategies that the elderly adopt during a redundant finger force coordination task and how the amount of visual information regulates the coordination patterns. Three age groups (20-24, 65-69, and 75-79 yr) performed a bimanual asymmetric force task. Task asymmetry was manipulated via imposing different coefficients on the finger forces such that the weighted sum of the two index finger forces equaled the total force. The amount of visual information was manipulated by changing the visual information gain of the total force output. Two hypotheses were tested: the reduced adaptability hypothesis predicts that the elderly show less degree of force asymmetry between hands compared with young adults in the asymmetric coefficient conditions, whereas the compensatory hypothesis predicts that the elderly exhibit more asymmetric force coordination patterns with asymmetric coefficients. Under the compensatory hypothesis, two contrasting directions of force sharing strategies (i.e., more efficient coordination strategy and minimum variance strategy) are expected. A deteriorated task performance (high performance error and force variability) was found in the two elderly groups, but enhanced visual information improved the task performance in all age groups. With low visual information gain, the elderly showed reduced adaptability (i.e., less asymmetric forces between hands) to the unequal weighting coefficients, which supported the reduced adaptability hypothesis; however, the elderly revealed the same degree of adaptation as the young group under high visual gain. The findings are consistent with the notion that the age-related reorganization of force coordination and control patterns is mediated by visual information and, more generally, the interactive influence of multiple categories of constraints.

  20. Processing of visual information compromises the ability of older adults to control novel fine motor tasks.

    Science.gov (United States)

    Baweja, Harsimran S; Kwon, MinHyuk; Onushko, Tanya; Wright, David L; Corcos, Daniel M; Christou, Evangelos A

    2015-12-01

    We performed two experiments to determine whether amplified motor output variability and compromised processing of visual information in older adults impair short-term adaptations when learning novel fine motor tasks. In Experiment 1, 12 young and 12 older adults underwent training to learn how to accurately trace a sinusoidal position target with abduction-adduction of their index finger. They performed 48 trials, which included 8 blocks of 6 trials (the last trial of each block was performed without visual feedback). Afterward, subjects received an interference task (watched a movie) for 60 min. We tested retention by asking subjects to perform the sinusoidal task (5 trials) with and without visual feedback. In Experiment 2, 12 young and 10 older adults traced the same sinusoidal position target with their index finger and ankle at three distinct visual angles (0.25°, 1° and 5.4°). In Experiment 1, the movement error and variability were greater for older adults during the visual feedback trials when compared with young adults. In contrast, during the no-vision trials, age-associated differences in movement error and variability were ameliorated. Short-term adaptations in learning the sinusoidal task were similar for young and older adults. In Experiment 2, lower amount of visual feedback minimized the age-associated differences in movement variability for both the index finger and ankle movements. We demonstrate that although short-term adaptations are similar for young and older adults, older adults do not process visual information as well as young adults and that compromises their ability to control novel fine motor tasks during acquisition, which could influence long-term retention and transfer.

  1. Competition between auditory and visual spatial cues during visual task performance

    NARCIS (Netherlands)

    Koelewijn, T.; Bronkhorst, A.; Theeuwes, J.

    2009-01-01

    There is debate in the crossmodal cueing literature as to whether capture of visual attention by means of sound is a fully automatic process. Recent studies show that when visual attention is endogenously focused sound still captures attention. The current study investigated whether there is interac

  2. Comparing two types of engineering visualizations: task-related manipulations matter.

    Science.gov (United States)

    Cölln, Martin C; Kusch, Kerstin; Helmert, Jens R; Kohler, Petra; Velichkovsky, Boris M; Pannasch, Sebastian

    2012-01-01

    This study focuses on the comparison of traditional engineering drawings with a CAD (computer aided design) visualization in terms of user performance and eye movements in an applied context. Twenty-five students of mechanical engineering completed search tasks for measures in two distinct depictions of a car engine component (engineering drawing vs. CAD model). Besides spatial dimensionality, the display types most notably differed in terms of information layout, access and interaction options. The CAD visualization yielded better performance, if users directly manipulated the object, but was inferior, if employed in a conventional static manner, i.e. inspecting only predefined views. An additional eye movement analysis revealed longer fixation durations and a stronger increase of task-relevant fixations over time when interacting with the CAD visualization. This suggests a more focused extraction and filtering of information. We conclude that the three-dimensional CAD visualization can be advantageous if its ability to manipulate is used.

  3. Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.

    Directory of Open Access Journals (Sweden)

    Anastasia Krasheninnikova

    Full Text Available String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla and the cockatiel (Nymphicus hollandicus, forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

  4. Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.

    Science.gov (United States)

    Krasheninnikova, Anastasia

    2013-01-01

    String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

  5. Task-switching effects for visual and auditory pro- and antisaccades: evidence for a task-set inertia.

    Science.gov (United States)

    Heath, Matthew; Starrs, Faryn; Macpherson, Ewan; Weiler, Jeffrey

    2015-01-01

    The completion of an antisaccade delays the reaction time (RT) of a subsequent prosaccade; however, the converse switch does not influence RT. In accounting for this result, the task-set inertia hypothesis contends that antisaccades engender a persistent nonstandard task-set that delays the planning of a subsequent prosaccade. In contrast, the coordinate system transformation hypothesis asserts that the transformation required to construct a mirror-symmetrical target representation persistently inhibits prosaccade planning. The authors tested the latter hypothesis by examining switch-costs for pro- and antisaccades directed to visual (i.e., the stimuli used in previous work) and auditory targets. Notably, auditory cues are specified in a head-centered frame of reference prior to their conversion into the retinocentric coordinates necessary for saccade output. Thus, if the coordinate system transformation hypothesis is correct then auditory pro- and antisaccades should elicit a bidirectional switch-cost because each requires a coordinate transformation. RTs for visual and auditory modalities showed a reliable--and equivalent magnitude--prosaccade switch-cost. Moreover, performance (e.g., movement time) and kinematic (e.g., velocity) variables indicated the switch-cost was restricted to response planning. As such, results are incompatible with the coordinate system transformation hypothesis and therefore provide convergent evidence that a task-set inertia contributes to the prosaccade switch-cost.

  6. Visual task performance using a monocular see-through head-mounted display (HMD) while walking.

    Science.gov (United States)

    Mustonen, Terhi; Berg, Mikko; Kaistinen, Jyrki; Kawai, Takashi; Häkkinen, Jukka

    2013-12-01

    A monocular see-through head-mounted display (HMD) allows the user to view displayed information while simultaneously interacting with the surrounding environment. This configuration lets people use HMDs while they are moving, such as while walking. However, sharing attention between the display and environment can compromise a person's performance in any ongoing task, and controlling one's gait may add further challenges. In this study, the authors investigated how the requirements of HMD-administered visual tasks altered users' performance while they were walking. Twenty-four university students completed 3 cognitive tasks (high- and low-working memory load, visual vigilance) on an HMD while seated and while simultaneously performing a paced walking task in a controlled environment. The results show that paced walking worsened performance (d', reaction time) in all HMD-administered tasks, but visual vigilance deteriorated more than memory performance. The HMD-administered tasks also worsened walking performance (speed, path overruns) in a manner that varied according to the overall demands of the task. These results suggest that people's ability to process information displayed on an HMD may worsen while they are in motion. Furthermore, the use of an HMD can critically alter a person's natural performance, such as their ability to guide and control their gait. In particular, visual tasks that involve constant monitoring of the HMD should be avoided. These findings highlight the need for careful consideration of the type and difficulty of information that can be presented through HMDs while still letting the user achieve an acceptable overall level of performance in various contexts of use. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  7. Hand movement deviations in a visual search task with cross modal cuing

    OpenAIRE

    Hürol Aslan; Asli Aslan

    2007-01-01

    The purpose of this study is to demonstrate the cross-modal effects of an auditory organization on a visual search task and to investigate the influence of the level of detail in instructions describing or hinting at the associations between auditory stimuli and the possible locations of a visual target. In addition to measuring the participants reaction times, we paid special attention to tracking the hand movements toward the target. According to the results, t...

  8. Consumer Perception of Online Advertising - The Effects of Animation, Ad Characteristics, Repetition and Task Relevancy on Attention and Memory

    OpenAIRE

    Kuisma, Jarmo

    2015-01-01

    Prior advertising research on advertising perception models has mainly focused on effects that occur after consumers have been exposed to advertising stimuli. Little research has examined how consumers are exposed to advertising and the quality of visual attention during advertising exposure. This doctoral dissertation examines how consumers allocate their visual attention to online ads and how consumers memorize ads in different viewing conditions. More precisely, the dissertation focuses on...

  9. Visual information gain and task asymmetry interact in bimanual force coordination and control.

    Science.gov (United States)

    Hu, Xiaogang; Newell, Karl M

    2011-08-01

    This study examined the question of whether and how the influence of visual information on force coordination patterns is dependent on the settings of a task asymmetry constraint. In a bimanual isometric force experiment, the task asymmetry was manipulated via imposing different coefficients on the index finger forces such that the weighted sum of the finger forces matched the target force. The environmental constraint was quantified by the visual performance error and was manipulated through the change of visual gain (number of pixels on the screen representing the unit of force). The constraint arising from the individual was quantified by the bilateral coupling effect (i.e., symmetric force production) between hands. The results revealed improved performance in terms of lower variability and performance error and more complex total force structure with higher visual gain. The influence of visual gain on the force coordination pattern, however, was found to be dependent on the task coefficients imposed on the finger forces. Namely, the force sharing between hands became more symmetric with high visual gain only when the right finger force had the higher coefficient, and an error-compensatory strategy was evident with high gain only when symmetric coefficients were imposed on the two fingers. The findings support the proposition that the motor coordination and control patterns are organized by the interactive influence of different categories of constraints where the functional influence of the information provided is dependent on the motor output.

  10. Task relevance of emotional information affects anxiety-linked attention bias in visual search.

    Science.gov (United States)

    Dodd, Helen F; Vogt, Julia; Turkileri, Nilgun; Notebaert, Lies

    2017-01-01

    Task relevance affects emotional attention in healthy individuals. Here, we investigate whether the association between anxiety and attention bias is affected by the task relevance of emotion during an attention task. Participants completed two visual search tasks. In the emotion-irrelevant task, participants were asked to indicate whether a discrepant face in a crowd of neutral, middle-aged faces was old or young. Irrelevant to the task, target faces displayed angry, happy, or neutral expressions. In the emotion-relevant task, participants were asked to indicate whether a discrepant face in a crowd of middle-aged neutral faces was happy or angry (target faces also varied in age). Trait anxiety was not associated with attention in the emotion-relevant task. However, in the emotion-irrelevant task, trait anxiety was associated with a bias for angry over happy faces. These findings demonstrate that the task relevance of emotional information affects conclusions about the presence of an anxiety-linked attention bias. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Variability in spatio-temporal pattern of trapezius activity and coordination of hand-arm muscles during a sustained repetitive dynamic task.

    Science.gov (United States)

    Samani, Afshin; Srinivasan, Divya; Mathiassen, Svend Erik; Madeleine, Pascal

    2017-02-01

    The spatio-temporal distribution of muscle activity has been suggested to be a determinant of fatigue development. Pursuing this hypothesis, we investigated the pattern of muscular activity in the shoulder and arm during a repetitive dynamic task performed until participants' rating of perceived exertion reached 8 on Borg's CR-10 scale. We collected high-density surface electromyogram (HD-EMG) over the upper trapezius, as well as bipolar EMG from biceps brachii, triceps brachii, deltoideus anterior, serratus anterior, upper and lower trapezius from 21 healthy women. Root-mean-square (RMS) and mean power frequency (MNF) were calculated for all EMG signals. The barycenter of RMS values over the HD-EMG grid was also determined, as well as normalized mutual information (NMI) for each pair of muscles. Cycle-to-cycle variability of these metrics was also assessed. With time, EMG RMS increased for most of the muscles, and MNF decreased. Trapezius activity became higher on the lateral side than on the medial side of the HD-EMG grid and the barycenter moved in a lateral direction. NMI between muscle pairs increased with time while its variability decreased. The variability of the metrics during the initial 10 % of task performance was not associated with the time to task termination. Our results suggest that the considerable variability in force and posture contained in the dynamic task per se masks any possible effects of differences between subjects in initial motor variability on the rate of fatigue development.

  12. Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation.

    Directory of Open Access Journals (Sweden)

    Tom A de Graaf

    Full Text Available Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8-12 Hz by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz, known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1 has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz, and 2 leads to alpha-band oscillations in visual performance measures, that 3 correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles.

  13. Priming effects of a peripheral visual stimulus in simple and go/no-go tasks

    Directory of Open Access Journals (Sweden)

    S.A.F. Squella

    2003-02-01

    Full Text Available The early facilitatory effect of a peripheral spatially visual prime stimulus described in the literature for simple reaction time tasks has been usually smaller than that described for complex (go/no-go, choice reaction time tasks. In the present study we investigated the reason for this difference. In a first and a second experiment we tested the participants in both a simple task and a go/no-go task, half of them beginning with one of these tasks and half with the other one. We observed that the prime stimulus had an early effect, inhibitory for the simple task and facilitatory for the go/no-go task, when the task was performed first. No early effect appeared when the task was performed second. In a third and a fourth experiment the participants were, respectively, tested in the simple task and in the go/no-go task for four sessions (the prime stimulus was presented in the second, third and fourth sessions. The early effects of the prime stimulus did not change across the sessions, suggesting that a habituatory process was not the cause for the disappearance of these effects in the first two experiments. Our findings are compatible with the idea that different attentional strategies are adopted in simple and complex reaction time tasks. In the former tasks the gain of automatic attention mechanisms may be adjusted to a low level and in the latter tasks, to a high level. The attentional influence of the prime stimulus may be antagonized by another influence, possibly a masking one.

  14. Priming effects of a peripheral visual stimulus in simple and go/no-go tasks.

    Science.gov (United States)

    Squella, S A F; Ribeiro-Do-Valle, L E

    2003-02-01

    The early facilitatory effect of a peripheral spatially visual prime stimulus described in the literature for simple reaction time tasks has been usually smaller than that described for complex (go/no-go, choice) reaction time tasks. In the present study we investigated the reason for this difference. In a first and a second experiment we tested the participants in both a simple task and a go/no-go task, half of them beginning with one of these tasks and half with the other one. We observed that the prime stimulus had an early effect, inhibitory for the simple task and facilitatory for the go/no-go task, when the task was performed first. No early effect appeared when the task was performed second. In a third and a fourth experiment the participants were, respectively, tested in the simple task and in the go/no-go task for four sessions (the prime stimulus was presented in the second, third and fourth sessions). The early effects of the prime stimulus did not change across the sessions, suggesting that a habituatory process was not the cause for the disappearance of these effects in the first two experiments. Our findings are compatible with the idea that different attentional strategies are adopted in simple and complex reaction time tasks. In the former tasks the gain of automatic attention mechanisms may be adjusted to a low level and in the latter tasks, to a high level. The attentional influence of the prime stimulus may be antagonized by another influence, possibly a masking one.

  15. Effects of aging and dual tasking on step adjustments to perturbations in visually cued walking.

    Science.gov (United States)

    Mazaheri, Masood; Hoogkamer, Wouter; Potocanac, Zrinka; Verschueren, Sabine; Roerdink, Melvyn; Beek, Peter J; Peper, C E; Duysens, Jacques

    2015-12-01

    Making step adjustments is an essential component of walking. However, the ability to make step adjustments may be compromised when the walker's attentional capacity is limited. This study compared the effects of aging and dual tasking on step adjustments in response to stepping-target perturbations during visually cued treadmill walking. Fifteen older adults (69.4 ± 5.0 years; mean ± SD) and fifteen young adults (25.4 ± 3.0 years) walked at a speed of 3 km/h on a treadmill. Both groups performed visually cued step adjustments in response to unpredictable shifts of projected stepping targets in forward (FW), backward (BW) or sideward (SW) directions, at different levels of task difficulty [which increased as the available response distance (ARD) decreased], and with and without dual tasking (auditory Stroop task). In both groups, step adjustments were smaller than required. For FW and BW shifts, older adults undershot more under dual-task conditions. For these shifts, ARD affected the age groups differentially. For SW shifts, larger errors were found for older adults, dual tasking and the most difficult ARD. Stroop task performance did not differ between groups in all conditions. Older adults have more difficulty than young adults to make corrective step adjustments while walking, especially under dual-tasking conditions. Furthermore, they seemed to prioritize the cognitive task over the step adjustment task, a strategy that may pose aging populations at a greater fall risk. For comparable task difficulty, the older adults performed considerably worse than the young adults, indicating a decreased ability to adjust steps under time pressure.

  16. Unintentional activation of translation equivalents in bilinguals leads to attention capture in a cross-modal visual task

    National Research Council Canada - National Science Library

    Singh, Niharika; Mishra, Ramesh Kumar

    2015-01-01

    Using a variant of the visual world eye tracking paradigm, we examined if language non-selective activation of translation equivalents leads to attention capture and distraction in a visual task in bilinguals...

  17. Unintentional Activation of Translation Equivalents in Bilinguals Leads to Attention Capture in a Cross-Modal Visual Task: e0120131

    National Research Council Canada - National Science Library

    Niharika Singh; Ramesh Kumar Mishra

    2015-01-01

      Using a variant of the visual world eye tracking paradigm, we examined if language non- selective activation of translation equivalents leads to attention capture and distraction in a visual task in bilinguals...

  18. Neural correlates of context-dependent feature conjunction learning in visual search tasks.

    Science.gov (United States)

    Reavis, Eric A; Frank, Sebastian M; Greenlee, Mark W; Tse, Peter U

    2016-06-01

    Many perceptual learning experiments show that repeated exposure to a basic visual feature such as a specific orientation or spatial frequency can modify perception of that feature, and that those perceptual changes are associated with changes in neural tuning early in visual processing. Such perceptual learning effects thus exert a bottom-up influence on subsequent stimulus processing, independent of task-demands or endogenous influences (e.g., volitional attention). However, it is unclear whether such bottom-up changes in perception can occur as more complex stimuli such as conjunctions of visual features are learned. It is not known whether changes in the efficiency with which people learn to process feature conjunctions in a task (e.g., visual search) reflect true bottom-up perceptual learning versus top-down, task-related learning (e.g., learning better control of endogenous attention). Here we show that feature conjunction learning in visual search leads to bottom-up changes in stimulus processing. First, using fMRI, we demonstrate that conjunction learning in visual search has a distinct neural signature: an increase in target-evoked activity relative to distractor-evoked activity (i.e., a relative increase in target salience). Second, we demonstrate that after learning, this neural signature is still evident even when participants passively view learned stimuli while performing an unrelated, attention-demanding task. This suggests that conjunction learning results in altered bottom-up perceptual processing of the learned conjunction stimuli (i.e., a perceptual change independent of the task). We further show that the acquired change in target-evoked activity is contextually dependent on the presence of distractors, suggesting that search array Gestalts are learned. Hum Brain Mapp 37:2319-2330, 2016. © 2016 Wiley Periodicals, Inc.

  19. The role of short-term memory impairment in nonword repetition, real word repetition, and nonword decoding: A case study.

    Science.gov (United States)

    Peter, Beate

    2017-09-21

    In a companion study, adults with dyslexia and adults with a probable history of childhood apraxia of speech showed evidence of difficulty with processing sequential information during nonword repetition, multisyllabic real word repetition and nonword decoding. Results suggested that some errors arose in visual encoding during nonword reading, all levels of processing but especially short-term memory storage/retrieval during nonword repetition, and motor planning and programming during complex real word repetition. To further investigate the role of short-term memory, a participant with short-term memory impairment (MI) was recruited. MI was confirmed with poor performance during a sentence repetition and three nonword repetition tasks, all of which have a high short-term memory load, whereas typical performance was observed during tests of reading, spelling, and static verbal knowledge, all with low short-term memory loads. Experimental results show error-free performance during multisyllabic real word repetition but high counts of sequence errors, especially migrations and assimilations, during nonword repetition, supporting short-term memory as a locus of sequential processing deficit during nonword repetition. Results are also consistent with the hypothesis that during complex real word repetition, short-term memory is bypassed as the word is recognized and retrieved from long-term memory prior to producing the word.

  20. Posture stress on firefighters and emergency medical technicians (EMTs) associated with repetitive reaching, bending, lifting, and pulling tasks.

    Science.gov (United States)

    Gentzler, Marc; Stader, Sally

    2010-01-01

    These ergonomic evaluations analyze the threat of musculoskeletal injuries primarily due to awkward and extreme postures across two post-fire tasks and a patient care task. The participants were firefighters and emergency medical technicians (EMTs) in an urban U.S. fire department. Ergonomic tools used for the evaluation included the National Institute of Occupational Safety Health (NIOSH) lifting equation, Rapid Entire Body Assessment (REBA), Rapid Upper Limb Assessment (RULA), and anthropometric measurements of equipment and persons. High to very high risks were found for lifting the hose above the shoulder to drain it of excess water and for rolling the hoses on the ground. Extreme risk was found for lifting the hose from chest height to above the shoulders during hose drainage. High risk was found for EMT patient care tasks that require reaching for overhead equipment or seated tasks that require horizontal bending and twisting. The risk was high enough for these tasks to warrant modification and changes. The recommendations given included creating new mechanical and technical devices, modifying existing devises, and making workers aware of associated risks to reduce the threat of injury.

  1. Comparison of Single and Dual Target Visual Attention Tasks in Children with down Syndrome

    Directory of Open Access Journals (Sweden)

    Melanie J. Murphy

    2011-05-01

    Full Text Available Understanding the nature of attentional processing in children with Down Syndrome (DS is imperative for developing effective education practices. The aim of the current study was to investigate whether children with DS exhibit impairment in sustained, transient, single-, or dual-target continuous performance tasks. Target detection time and accuracy was compared in children with DS to Typically Developing (TD children of similar nonverbal mental age (as measured by the Raven's Coloured Progressive Matrices, on single and dual- target continuous performance tasks measuring sustained attention, a visual change detection task measuring transient attention, and feature and conjunctive visual search tasks measuring both sustained and transient attention. Results showed that children with DS performed similarly to TD children on sustained and transient attention tasks that only required the detection of a single unique target, but were impaired in overall accuracy on tasks that required dual-target detection. Findings suggest a possible impairment in attention and working memory in children with DS. Error analysis of task responses revealed differences in problem solving strategy between children with DS and TD children, despite similar overall performance. Findings have implications for the education of children with DS and understanding of the nature of intellectual disability per se.

  2. Visual Attention During Brand Choice : The Impact of Time Pressure and Task Motivation

    NARCIS (Netherlands)

    Pieters, R.; Warlop, L.

    1998-01-01

    Measures derived from eye-movement data reveal that during brand choice consumers adapt to time pressure by accelerating the visual scanning sequence, by filtering information and by changing their scanning strategy. In addition, consumers with high task motivation filter brand information less and

  3. Visual Attention During Brand Choice : The Impact of Time Pressure and Task Motivation

    NARCIS (Netherlands)

    Pieters, R.; Warlop, L.

    1998-01-01

    Measures derived from eye-movement data reveal that during brand choice consumers adapt to time pressure by accelerating the visual scanning sequence, by filtering information and by changing their scanning strategy. In addition, consumers with high task motivation filter brand information less and

  4. Postural Responses to a Suprapostural Visual Task among Children with and without Developmental Coordination Disorder

    Science.gov (United States)

    Chen, F. C.; Tsai, C. L.; Stoffregen, T. A.; Wade, M. G.

    2011-01-01

    We sought to determine the effects of varying the perceptual demands of a suprapostural visual task on the postural activity of children with developmental coordination disorder (DCD), and typically developing children (TDC). Sixty-four (32 per group) children aged between 9 and 10 years participated. In a within-participants design, each child…

  5. Early auditory change detection implicitly facilitated by ignored concurrent visual change during a Braille reading task.

    Science.gov (United States)

    Aoyama, Atsushi; Haruyama, Tomohiro; Kuriki, Shinya

    2013-09-01

    Unconscious monitoring of multimodal stimulus changes enables humans to effectively sense the external environment. Such automatic change detection is thought to be reflected in auditory and visual mismatch negativity (MMN) and mismatch negativity fields (MMFs). These are event-related potentials and magnetic fields, respectively, evoked by deviant stimuli within a sequence of standard stimuli, and both are typically studied during irrelevant visual tasks that cause the stimuli to be ignored. Due to the sensitivity of MMN/MMF to potential effects of explicit attention to vision, however, it is unclear whether multisensory co-occurring changes can purely facilitate early sensory change detection reciprocally across modalities. We adopted a tactile task involving the reading of Braille patterns as a neutral ignore condition, while measuring magnetoencephalographic responses to concurrent audiovisual stimuli that were infrequently deviated either in auditory, visual, or audiovisual dimensions; 1000-Hz standard tones were switched to 1050-Hz deviant tones and/or two-by-two standard check patterns displayed on both sides of visual fields were switched to deviant reversed patterns. The check patterns were set to be faint enough so that the reversals could be easily ignored even during Braille reading. While visual MMFs were virtually undetectable even for visual and audiovisual deviants, significant auditory MMFs were observed for auditory and audiovisual deviants, originating from bilateral supratemporal auditory areas. Notably, auditory MMFs were significantly enhanced for audiovisual deviants from about 100 ms post-stimulus, as compared with the summation responses for auditory and visual deviants or for each of the unisensory deviants recorded in separate sessions. Evidenced by high tactile task performance with unawareness of visual changes, we conclude that Braille reading can successfully suppress explicit attention and that simultaneous multisensory changes can

  6. Cue integration in categorical tasks: insights from audio-visual speech perception.

    Directory of Open Access Journals (Sweden)

    Vikranth Rao Bejjanki

    Full Text Available Previous cue integration studies have examined continuous perceptual dimensions (e.g., size and have shown that human cue integration is well described by a normative model in which cues are weighted in proportion to their sensory reliability, as estimated from single-cue performance. However, this normative model may not be applicable to categorical perceptual dimensions (e.g., phonemes. In tasks defined over categorical perceptual dimensions, optimal cue weights should depend not only on the sensory variance affecting the perception of each cue but also on the environmental variance inherent in each task-relevant category. Here, we present a computational and experimental investigation of cue integration in a categorical audio-visual (articulatory speech perception task. Our results show that human performance during audio-visual phonemic labeling is qualitatively consistent with the behavior of a Bayes-optimal observer. Specifically, we show that the participants in our task are sensitive, on a trial-by-trial basis, to the sensory uncertainty associated with the auditory and visual cues, during phonemic categorization. In addition, we show that while sensory uncertainty is a significant factor in determining cue weights, it is not the only one and participants' performance is consistent with an optimal model in which environmental, within category variability also plays a role in determining cue weights. Furthermore, we show that in our task, the sensory variability affecting the visual modality during cue-combination is not well estimated from single-cue performance, but can be estimated from multi-cue performance. The findings and computational principles described here represent a principled first step towards characterizing the mechanisms underlying human cue integration in categorical tasks.

  7. Effects of a Visual Distracter Task on the Gait of Elderly versus Young Persons

    Directory of Open Access Journals (Sweden)

    Otmar Bock

    2011-01-01

    Full Text Available Seniors show deficits of dual-task walking when the second task has high visual-processing requirements. Here, we evaluate whether similar deficits emerge when the second task is discrete rather than continuous, as is often the case in everyday life. Subjects walked in a hallway, while foot proprioception was either perturbed by vibration or unperturbed. At unpredictable intervals, they were prompted to turn their head and perform a mental-rotation task. We found that locomotion of young subjects was not affected by this distracter task with or without vibration. In contrast, seniors moved their legs after the distraction at a slower pace through smaller angles and with a higher spatiotemporal variability; the magnitude of these changes was vibration independent. We conclude that the visual distracter task degraded the gait of elderly subjects but completely spared young ones, that this effect is not due to degraded proprioception, and that it rather might reflect the known decline of executive functions in the elderly.

  8. Are There Lower Repetition Priming Effects in Children with Developmental Dyslexia? Priming Effects in Spanish with the Masked Lexical Decision Task.

    Science.gov (United States)

    Nievas-Cazorla, Francisco; Soriano-Ferrer, Manuel; Sánchez-López, Pilar

    2016-01-01

    The aim of this study was to compare the reaction times and errors of Spanish children with developmental dyslexia to the reaction times and errors of readers without dyslexia on a masked lexical decision task with identity or repetition priming. A priming paradigm was used to study the role of the lexical deficit in dyslexic children, manipulating the frequency and length of the words, with a short Stimulus Onset Asynchrony (SOA = 150 ms) and degraded stimuli. The sample consisted of 80 participants from 9 to 14 years old, divided equally into a group with a developmental dyslexia diagnosis and a control group without dyslexia. Results show that identity priming is higher in control children (133 ms) than in dyslexic children (55 ms). Thus, the "frequency" and "word length" variables are not the source or origin of this reduction in identity priming reaction times in children with developmental dyslexia compared to control children.

  9. Variability in spatio-temporal pattern of trapezius activity and coordination of hand-arm muscles during a sustained repetitive dynamic task

    DEFF Research Database (Denmark)

    Samani, Afshin; Srinivasan, Divya; Mathiassen, Svend Erik;

    2016-01-01

    The spatio-temporal distribution of muscle activity has been suggested to be a determinant of fatigue development. Pursuing this hypothesis, we investigated the pattern of muscular activity in the shoulder and arm during a repetitive dynamic task performed until participants' rating of perceived...... power frequency (MNF) were calculated for all EMG signals. The barycenter of RMS values over the HD-EMG grid was also determined, as well as normalized mutual information (NMI) for each pair of muscles. Cycle-to-cycle variability of these metrics was also assessed. With time, EMG RMS increased for most...... of the muscles, and MNF decreased. Trapezius activity became higher on the lateral side than on the medial side of the HD-EMG grid and the barycenter moved in a lateral direction. NMI between muscle pairs increased with time while its variability decreased. The variability of the metrics during the initial 10...

  10. Task design, psycho-social work climate and upper extremity pain disorders--effects of an organisational redesign on manual repetitive assembly jobs.

    Science.gov (United States)

    Christmansson, M; Fridén, J; Sollerman, C

    1999-10-01

    A company redesign was carried out to improve production efficiency and minimise the prevalence of work-related musculoskeletal disorders and sick leave. The redesign was evaluated on the basis of studies of assembly workers before (17 workers) and after (12 workers) the redesign. The redesign resulted in more varied, less repetitive, and more autonomous assembly jobs. The psycho-social work climate was both improved and impaired. A medical examination showed that eight of 17 workers before and nine of 12 workers after the redesign suffered from upper extremity pain disorders. Neither the production goals nor the goals of the redesign were fulfilled. Our conclusion was that the increased task variation and impaired psycho-social work climate, combined with a lack of skill and competence, actually increased the physical stress, risk for disorders and difficulties in fulfilling the production goals.

  11. Increased Complexities in Visual Search Behavior in Skilled Players for a Self-Paced Aiming Task

    Directory of Open Access Journals (Sweden)

    Jingyi S. Chia

    2017-06-01

    Full Text Available The badminton serve is an important shot for winning a rally in a match. It combines good technique with the ability to accurately integrate visual information from the shuttle, racket, opponent, and intended landing point. Despite its importance and repercussive nature, to date no study has looked at the visual search behaviors during badminton service in the singles discipline. Unlike anticipatory tasks (e.g., shot returns, the serve presents an opportunity to explore the role of visual search behaviors in movement control for self-paced tasks. Accordingly, this study examined skill-related differences in visual behavior during the badminton singles serve. Skilled (n = 12 and less skilled (n = 12 participants performed 30 serves to a live opponent, while real-time eye movements were captured using a mobile gaze registration system. Frame-by-frame analyses of 662 serves were made and the skilled players took a longer preparatory time before serving. Visual behavior of the skilled players was characterized by significantly greater number of fixations on more areas of interest per trial than the less skilled. In addition, the skilled players spent a significantly longer time fixating on the court and net, whereas the less skilled players found the shuttle to be more informative. Quiet eye (QE duration (indicative of superior sports performance however, did not differ significantly between groups which has implications on the perceived importance of QE in the badminton serve. Moreover, while visual behavior differed by skill level, considerable individual differences were also observed especially within the skilled players. This augments the need for not just group-level analyses, but individualized analysis for a more accurate representation of visual behavior. Findings from this study thus provide an insight to the possible visual search strategies as players serve in net-barrier games. Moreover, this study highlighted an important aspect of

  12. Improvements in hand function in adults with chronic tetraplegia following a multi-day 10Hz rTMS intervention combined with repetitive task practice

    Science.gov (United States)

    Gomes-Osman, Joyce; Field-Fote, Edelle C.

    2014-01-01

    Background and Purpose Evidence suggests the use of stimulation to increase corticomotor excitability improves hand function in persons with cervical spinal cord injury (SCI). We assessed effects of multi-day application of 10Hz repetitive transcranial magnetic stimulation (rTMS) applied to the corticomotor hand area combined with repetitive task practice (RTP) in participants with tetraplegia and neurologically healthy participants. Methods Using a double-blind randomized crossover design, 11 participants with chronic tetraplegia and 10 neurologically healthy participants received 3 sessions of 10Hz rTMS+RTP and 3 sessions of sham-rTMS+RTP to the corticomotor hand region controlling the weaker hand. RTMS was interleaved with RTP of a skilled motor task between pulse trains. Hand function (Jebsen-Taylor Hand Function Test [JTT], pinch, and grasp strength) and corticomotor excitability (amplitude of motor-evoked potential) were assessed prior to and following the rTMS+RTP and sham-rTMS+RTP phases. We assessed significance using paired t-tests on pre-post differences and effect sizes using standardized response mean (SRM). Results RTMS+RTP was associated with larger effect sizes compared to sham-rTMS+RTP for improvement in JTT for both the trained hand (SRM=0.85 and 0.42, respectively), non-trained hand (0.55, 0.31, respectively), and for grasp strength of the trained hand in the SCI group (0.67, 0.39, respectively) alone. Effect sizes for all other measures were small and there were no statistical between-condition differences in the outcomes assessed. Discussion and Conclusions RTMS may be a valuable adjunct to RTP for improving hand function in persons with tetraplegia. Higher stimulation dose (frequency, intensity, number of sessions) may be associated with larger effects. Video Abstract available (See Supplemental Digital Conent 1) for more insights from the authors. PMID:25415549

  13. Inhibitory processes for critical situations – The role of n-2 task repetition costs in human multitasking situations

    Directory of Open Access Journals (Sweden)

    Miriam eGade

    2012-05-01

    Full Text Available The human cognitive system is equipped with various processes for dealing with everyday challenges. One of such processes is the inhibition of currently irrelevant goals or mental task sets, which can be seen as a response to the critical event of information overflow in the cognitive system and the cognitive system’s inability to keep track of ongoing demands. In two experiments, we investigate the flexibility of the inhibitory process by inserting rare non-critical events (25% of all trials, operationalized as univalent stimuli (i.e., unambiguous stimuli that call for only one specific task in a multitasking context, and by introducing the possibility to prepare for an upcoming task (Experiment 2. We found that the inhibitory process is not influenced by a cue informing subjects about the upcoming occurrence of a univalent stimulus. However, the introduction of univalent stimuli allowed preparatory processes to modify the impact of the inhibitory process. Therefore, our results suggest that inhibitory processes are engaged in a rather global manner, not taking into account variations in stimulus valence, which we took as operationalization of critical, conflict-inducing events in the ongoing stream of information processing. However, rare uncritical events, such as univalent stimuli that do not cause conflict and interference in the processing stream, appear to alter the way the cognitive system can take advantage of preparatory processes.

  14. Verbal vs. visual coding in modified mental imagery map exploration task

    Directory of Open Access Journals (Sweden)

    Ćirović Ivana

    2011-01-01

    Full Text Available We modified classical mental exploration task introducing verbal modality. Consequently, we could test robust effects from lexical processing in an attempt to understand whether the underlying mental representation is strictly propositional. In our three experiments, in addition to map modality (visual or verbal, lexical frequency, concreteness and visual frequency were also varied. The symbolic distance effect was replicated, regardless of map modality. Exploration of distances was regularly faster on pictorial maps. Effects of lexical frequency and concreteness were not significant for verbal maps. However, when visual frequency was introduced on pictorial maps both type of frequencies generated measurable effects. Our findings directly contradict the assumptions of propositional theories (1 subjects were faster in the visual modality, which would be difficult to explain if the perceptual code had to be transformed into propositional, (2 word frequency and concreteness did not contribute as would be expected if propositional code were a default.

  15. Posing for awareness: proprioception modulates access to visual consciousness in a continuous flash suppression task.

    Science.gov (United States)

    Salomon, Roy; Lim, Melanie; Herbelin, Bruno; Hesselmann, Guido; Blanke, Olaf

    2013-06-03

    The rules governing the selection of which sensory information reaches consciousness are yet unknown. Of our senses, vision is often considered to be the dominant sense, and the effects of bodily senses, such as proprioception, on visual consciousness are frequently overlooked. Here, we demonstrate that the position of the body influences visual consciousness. We induced perceptual suppression by using continuous flash suppression. Participants had to judge the orientation a target stimulus embedded in a task-irrelevant picture of a hand. The picture of the hand could either be congruent or incongruent with the participants' actual hand position. When the viewed and the real hand positions were congruent, perceptual suppression was broken more rapidly than during incongruent trials. Our findings provide the first evidence of a proprioceptive bias in visual consciousness, suggesting that proprioception not only influences the perception of one's own body and self-consciousness, but also visual consciousness.

  16. Multiple Electrophysiological Markers of Visual-Attentional Processing in a Novel Task Directed toward Clinical Use

    Directory of Open Access Journals (Sweden)

    Julie Bolduc-Teasdale

    2012-01-01

    Full Text Available Individuals who have sustained a mild brain injury (e.g., mild traumatic brain injury or mild cerebrovascular stroke are at risk to show persistent cognitive symptoms (attention and memory after the acute postinjury phase. Although studies have shown that those patients perform normally on neuropsychological tests, cognitive symptoms remain present, and there is a need for more precise diagnostic tools. The aim of this study was to develop precise and sensitive markers for the diagnosis of post brain injury deficits in visual and attentional functions which could be easily translated in a clinical setting. Using electrophysiology, we have developed a task that allows the tracking of the processes involved in the deployment of visual spatial attention from early stages of visual treatment (N1, P1, N2, and P2 to higher levels of cognitive processing (no-go N2, P3a, P3b, N2pc, SPCN. This study presents a description of this protocol and its validation in 19 normal participants. Results indicated the statistically significant presence of all ERPs aimed to be elicited by this novel task. This task could allow clinicians to track the recovery of the mechanisms involved in the deployment of visual-attentional processing, contributing to better diagnosis and treatment management for persons who suffer a brain injury.

  17. The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.

    Science.gov (United States)

    Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli

    2009-11-18

    We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.

  18. Spatial representations in dorsal hippocampal neurons during a tactile-visual conditional discrimination task.

    Science.gov (United States)

    Griffin, Amy L; Owens, Cullen B; Peters, Gregory J; Adelman, Peter C; Cline, Kathryn M

    2012-02-01

    Trajectory-dependent coding in dorsal CA1 of hippocampus has been evident in various spatial memory tasks aiming to model episodic memory. Hippocampal neurons are considered to be trajectory-dependent if the neuron has a place field located on an overlapping segment of two trajectories and exhibits a reliable difference in firing rate between the two trajectories. It is unclear whether trajectory-dependent coding in hippocampus is a mechanism used by the rat to solve spatial memory tasks. A first step in answering this question is to compare results between studies using tasks that require spatial working memory and those that do not. We recorded single units from dorsal CA1 of hippocampus during performance of a discrete-trial, tactile-visual conditional discrimination (CD) task in a T-maze. In this task, removable floor inserts that differ in texture and appearance cue the rat to visit either the left or right goal arm to receive a food reward. Our goal was to assess whether trajectory coding would be evident in the CD task. Our results show that trajectory coding was rare in the CD task, with only 12 of 71 cells with place fields on the maze stem showing a significant firing rate difference between left and right trials. For comparison, we recorded from dorsal CA1 during the acquisition and performance of a continuous spatial alternation task identical to that used in previous studies and found a proportion of trajectory coding neurons similar to what has been previously reported. Our data suggest that trajectory coding is not a universal mechanism used by the hippocampus to disambiguate similar trajectories, and instead may be more likely to appear in tasks that require the animal to retrieve information about a past trajectory, particularly in tasks that are continuous rather than discrete in nature.

  19. Marijuana effects on visual imagery in a paired-associate task.

    Science.gov (United States)

    Block, R I; Wittenborn, J R

    1984-06-01

    Marijuana effects on visual imagery, examined using a paired-associate learning task, differed from expectations based on previous subjective reports that marijuana enhances visual imagery. Subjects (48 men, mean age 22.4 yr.) were assigned to four groups (12 subjects per group) differing in (a) whether or not they received specific instructions to use imagery to facilitate learning and (b) whether they received marijuana or placebo. Imagery instructions improved recall, but marijuana did not influence the amount of this improvement. After the memory tests, subjects instructed to use imagery described their images. Marijuana decreased the rated vividness of these imagery descriptions.

  20. Task-Difficulty Homeostasis in Car Following Models: Experimental Validation Using Self-Paced Visual Occlusion.

    Science.gov (United States)

    Pekkanen, Jami; Lappi, Otto; Itkonen, Teemu H; Summala, Heikki

    2017-01-01

    Car following (CF) models used in traffic engineering are often criticized for not incorporating "human factors" well known to affect driving. Some recent work has addressed this by augmenting the CF models with the Task-Capability Interface (TCI) model, by dynamically changing driving parameters as function of driver capability. We examined assumptions of these models experimentally using a self-paced visual occlusion paradigm in a simulated car following task. The results show strong, approximately one-to-one, correspondence between occlusion duration and increase in time headway. The correspondence was found between subjects and within subjects, on aggregate and individual sample level. The long time scale aggregate results support TCI-CF models that assume a linear increase in time headway in response to increased distraction. The short time scale individual sample level results suggest that drivers also adapt their visual sampling in response to transient changes in time headway, a mechanism which isn't incorporated in the current models.

  1. Evaluation of a dichromatic color-appearance simulation by a visual search task

    Science.gov (United States)

    Sunaga, Shoji; Ogura, Tomomi; Seno, Takeharu

    2013-03-01

    We used a visual search task to investigate the validity of the dichromatic simulation model proposed by Brettel et al. Although the dichromatic simulation could qualitatively predict reaction times for color-defective observers, the reaction times for color-defective observers tended to be longer than those of the trichromatic observers in Experiment 1. In Experiment 2, we showed that a reduction of purity excitation of simulated colors can provide a good prediction. Further, we propose an adaptive dichromatic simulation model based on the color differences between a simulated target color and simulated distractor colors in order to obtain a better quantitative prediction of reaction times in the visual search task for color defects.

  2. Visual Scanning Patterns during the Dimensional Change Card Sorting Task in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Li Yi

    2012-01-01

    Full Text Available Impaired cognitive flexibility in children with autism spectrum disorder (ASD has been reported in previous literature. The present study explored ASD children’s visual scanning patterns during the Dimensional Change Card Sorting (DCCS task using eye-tracking technique. ASD and typical developing (TD children completed the standardized DCCS procedure on the computer while their eye movements were tracked. Behavioral results confirmed previous findings on ASD children’s deficits in executive function. ASD children’s visual scanning patterns also showed some specific underlying processes in the DCCS task compared to TD children. For example, ASD children looked shorter at the correct card in the postswitch phase and spent longer time at blank areas than TD children did. ASD children did not show a bias to the color dimension as TD children did. The correlations between the behavioral performance and eye moments were also discussed.

  3. Making sense of an unexpected detrimental effect of sign language use in a visual task.

    Science.gov (United States)

    Romero Lauro, Leonor J; Crespi, Marta; Papagno, Costanza; Cecchetto, Carlo

    2014-07-01

    What supports deaf signers advantage over nonsigners on visuospatial short-term memory (STM) tasks is still a matter of debate. We compared the performance of 18 deaf Italian Sign Language (LIS) users with that of a matched group of Italian hearing nonsigners in three different tasks: two versions of the Corsi Block test, namely span forward and span backward, and the Visual Pattern Test (VPT). Although the Corsi forward and backward are dynamic and mainly involve a spatial component, the VPT is static and taps primarily the visual component of STM. Signers significantly outperformed nonsigners on both versions of the Corsi Block test, whereas they performed significantly worse on the VPT. We suggest that the source of the different pattern lies in the static nature of the VPT versus the dynamic nature of the Corsi spans.

  4. Hand movement deviations in a visual search task with cross modal cuing

    Directory of Open Access Journals (Sweden)

    Hürol Aslan

    2007-01-01

    Full Text Available The purpose of this study is to demonstrate the cross-modal effects of an auditory organization on a visual search task and to investigate the influence of the level of detail in instructions describing or hinting at the associations between auditory stimuli and the possible locations of a visual target. In addition to measuring the participants’ reaction times, we paid special attention to tracking the hand movements toward the target. According to the results, the auditory stimuli unassociated with the target locations slightly –but significantly- increased the deviation of the hand movement from the path leading to the target location. The increase in the deviation depended on the degree of association between auditory stimuli and target locations, albeit not on the level of detail in the instructions about the task.

  5. A 2D flow visualization user study using explicit flow synthesis and implicit task design.

    Science.gov (United States)

    Liu, Zhanping; Cai, Shangshu; Swan, J Edward; Moorhead, Robert J; Martin, Joel P; Jankun-Kelly, T J

    2012-05-01

    This paper presents a 2D flow visualization user study that we conducted using new methodologies to increase the objectiveness. We evaluated grid-based variable-size arrows, evenly spaced streamlines, and line integral convolution (LIC) variants (basic, oriented, and enhanced versions) coupled with a colorwheel and/or rainbow color map, which are representative of many geometry-based and texture-based techniques. To reduce data-related bias, template-based explicit flow synthesis was used to create a wide variety of symmetric flows with similar topological complexity. To suppress task-related bias, pattern-based implicit task design was employed, addressing critical point recognition, critical point classification, and symmetric pattern categorization. In addition, variable-duration and fixed-duration measurement schemes were utilized for lightweight precision-critical and heavyweight judgment intensive flow analysis tasks, respectively, to record visualization effectiveness. We eliminated outliers and used the Ryan REGWQ post-hoc homogeneous subset tests in statistical analysis to obtain reliable findings. Our study shows that a texture-based dense representation with accentuated flow streaks, such as enhanced LIC, enables intuitive perception of the flow, while a geometry-based integral representation with uniform density control, such as evenly spaced streamlines, may exploit visual interpolation to facilitate mental reconstruction of the flow. It is also shown that inappropriate color mapping (e.g., colorwheel) may add distractions to a flow representation.

  6. The relationship between ERP components and EEG spatial complexity in a visual Go/Nogo task.

    Science.gov (United States)

    Jia, Huibin; Li, Huayun; Yu, Dongchuan

    2017-01-01

    The ERP components and variations of spatial complexity or functional connectivity are two distinct dimensions of neurophysiological events in the visual Go/Nogo task. Extensive studies have been conducted on these two distinct dimensions; however, no study has investigated whether these two neurophysiological events are linked to each other in the visual Go/Nogo task. The relationship between spatial complexity of electroencephalographic (EEG) data, quantified by the measure omega complexity, and event-related potential (ERP) components in a visual Go/Nogo task was studied. We found that with the increase of spatial complexity level, the latencies of N1 and N2 component were shortened and the amplitudes of N1, N2, and P3 components were decreased. The anterior Go/Nogo N2 effect and the Go/Nogo P3 effect were also found to be decreased with the increase of EEG spatial complexity. In addition, the reaction times in high spatial complexity trials were significantly shorter than those of medium and low spatial complexity trials when the time interval used to estimate the EEG spatial complexity was extended to 0∼1,000 ms after stimulus onset. These results suggest that high spatial complexity may be associated with faster cognitive processing and smaller postsynaptic potentials that occur simultaneously in large numbers of cortical pyramidal cells of certain brain regions. The EEG spatial complexity is closely related with demands of certain cognitive processes and the neural processing efficiency of human brain.

  7. The effect of an on-body personal lift assist device (PLAD) on fatigue during a repetitive lifting task.

    Science.gov (United States)

    Lotz, Christy A; Agnew, Michael J; Godwin, Alison A; Stevenson, Joan M

    2009-04-01

    Occupations demanding frequent and heavy lifting are associated with an increased risk of injury. A personal lift assist device (PLAD) was designed to assist human muscles through the use of elastic elements. This study was designed to determine if the PLAD could reduce the level of general and local back muscle fatigue during a cyclical lifting task. Electromyography of two erector spinae sites (T9 and L3) was recorded during a 45-min lifting session at six lifts/lowers per minute in which male participants (n=10) lifted a box scaled to represent 20% of their maximum back extensor strength. The PLAD device reduced the severity of muscular fatigue at both muscle sites. RMS amplitude increased minimally (22% and 26%) compared to the no-PLAD condition (104% and 88%). Minimal median frequency decreases (0.33% and 0.41%) were observed in the PLAD condition compared to drops of 12% and 20% in the no-PLAD condition. The PLAD had an additional benefit of minimizing pre-post changes in muscular strength and endurance. The PLAD also resulted in a significantly lower rate of perceived exertion across the lifting session. It was concluded that the PLAD was effective at decreasing the level of back muscular fatigue.

  8. Episodic multiregional cortical coherence at multiple frequencies during visual task performance

    Science.gov (United States)

    Bressler, Steven L.; Coppola, Richard; Nakamura, Richard

    1993-11-01

    THE way in which the brain integrates fragmentary neural events at multiple locations to produce unified perceptual experience and behaviour is called the binding problem1,2. Binding has been proposed to involve correlated activity at different cortical sites during perceptuomotor behaviour3& ndash;5, particularly by synchronization of narrow-band oscillations in the & gamma;-frequency range (30& ndash;80 Hz)6,7. In the rabbit olfactory system, inhalation induces increased & gamma;-cor-relation between sites in olfactory bulb and cortex8. In the cat visual system, coherent visual stimuli increase & gamma;-correlation between sites in both the same and different visual cortical areas9& ndash;12. In monkeys, some groups have found that & gamma;-oscillations transiently synchronize within striate cortex13, superior temporal sulcus14 and somatosensorimotor cortex15,16. Others have reported that visual stimuli produce increased broad-band power, but not & gamma;-oscillations, in several visual cortical areas17,18. But the absence of narrow-band oscillations in itself does not disprove interregional synchronization, which may be a broad-band phenomenon. We now describe episodes of increased broad-band coherence among local field potentials from sensory, motor and higher-order cortical sites of macaque monkeys performing a visual discrimination task. Widely distributed sites become coherent without involving other intervening sites. Spatially selective multiregional cortical binding, in the form of broad-band synchronization, may thus play a role in primate perceptuomotor behaviour.

  9. Sonification of reference markers for auditory graphs: effects on non-visual point estimation tasks

    Directory of Open Access Journals (Sweden)

    Oussama Metatla

    2016-04-01

    Full Text Available Research has suggested that adding contextual information such as reference markers to data sonification can improve interaction with auditory graphs. This paper presents results of an experiment that contributes to quantifying and analysing the extent of such benefits for an integral part of interacting with graphed data: point estimation tasks. We examine three pitch-based sonification mappings; pitch-only, one-reference, and multiple-references that we designed to provide information about distance from an origin. We assess the effects of these sonifications on users’ performances when completing point estimation tasks in a between-subject experimental design against visual and speech control conditions. Results showed that the addition of reference tones increases users accuracy with a trade-off for task completion times, and that the multiple-references mapping is particularly effective when dealing with points that are positioned at the midrange of a given axis.

  10. The Effect of Audio and Visual Aids on Task Performance in Distributed Collaborative Virtual Environments

    Science.gov (United States)

    Ullah, Sehat; Richard, Paul; Otman, Samir; Mallem, Malik

    2009-03-01

    Collaborative virtual environments (CVE) has recently gained the attention of many researchers due to its numerous potential application domains. Cooperative virtual environments, where users simultaneously manipulate objects, is one of the subfields of CVEs. In this paper we present a framework that enables two users to cooperatively manipulate objects in virtual environment, while setting on two separate machines connected through local network. In addition the article presents the use of sensory feedback (audio and visual) and investigates their effects on the cooperation and user's performance. Six volunteers subject had to cooperatively perform a peg-in-hole task. Results revealed that visual and auditory aid increase users' performance. However majority of the users preferred visual feedback to audio. We hope this framework will greatly help in the development of CAD systems that allow the designers to collaboratively design while being distant. Similarly other application domains may be cooperative assembly, surgical training and rehabilitation systems.

  11. Effects of task repetition on L2 oral performance Efeitos da repetição de tarefas na produção oral em L2

    Directory of Open Access Journals (Sweden)

    Kyria Rebeca Finardi

    2008-06-01

    Full Text Available This study departs from the assumption that speaking an L2 is a complex cognitive ability (FORTKAMP, 2000 whose execution seems to involve tradeoff effects among the different goals of speech production, mainly among fluency, accuracy and complexity (BYGATE, 1998, 1999, 2001b; FOSTER e SKEHAN, 1996; SKEHAN e FOSTER, 1995, 2001; SKEHAN, 1998. Bygate (2001b studied the effects of task familiarity on L2 speech performance. He found that in repeating a narrative task there were gains in terms of complexity of speech and these gains were achieved at the cost of a loss especially in accuracy. The present study investigated whether the results reported in Bygate (2001b would be similar in the case of a repetition of a picture description task. According to Robinson (2001, a description is less complex than a narrative task. Four measures of speech performance were calculated following Fortkamp (2000: fluency, accuracy, complexity and lexical density. Results indicate gains in complexity and these gains seem to have been paid, especially by gains in accuracy, thus corroborating Bygate´s (2001b findings for this task condition.Este estudo parte do pressuposto de que falar um segundo idioma (L2 é uma habilidade cognitiva complexa (FORTKAMP, 2000 cuja execução parece envolver uma compensação entre os diferentes objetivos da fala, principalmente entre a fluência, a acurácia e a complexidade (BYGATE, 1996, 1999, 2001b; FOSTER e SKEHAN, 1996; SKEHAN e FOSTER, 1995, 2001; SKEHAN, 1998. Bygate (2001b estudou os efeitos da familiaridade com a tarefa na produção oral em L2. Ele mostrou que na repetição de uma narrativa há ganhos, principalmente em termos de complexidade da fala, mas esse ganhos ocorrem em detrimento de outros aspectos, principalmente da perda na acurácia da fala. Este estudo investigou se os resultados reportados por Bygate (2001b seriam similares no caso da repetição de uma tarefa de descrição. Segundo Robinson (2001, a descri

  12. VGC analysis: application of the ROC methodology to visual grading tasks

    Science.gov (United States)

    Båth, Magnus; Zachrisson, Sara; Månsson, Lars Gunnar

    2008-03-01

    To determine clinical image quality in radiography, visual grading of the reproduction of important anatomical landmarks is often used. The rating data from the observers in a visual grading study with multiple scale steps is ordinal, meaning that non-parametric rank-invariant statistical methods are required. However, many visual grading methods incorrectly use parametric statistical methods. This work describes how the methodology developed in receiver operating characteristics (ROC) analysis for characterising the difference in the observer's response to the signal and no-signal distributions can be applied to visual grading data for characterising the difference in perceived image quality between two systems. The method is termed visual grading characteristics (VGC) analysis. In a VGC study, the task of the observer is to rate her confidence about the fulfilment of image quality criteria. Using ROC software, the given ratings for the two systems are then used to determine the VGC curve, which describes the relationship between the proportions of fulfilled image criteria for the two compared systems for all possible decision thresholds. As a single measure of the difference in image quality between the two compared systems, the area under the VGC curve can be used.

  13. An Open Source Software Platform for Visualizing and Teaching Conservation Tasks in Architectural Heritage Environments

    Science.gov (United States)

    San Jose, I. Ignacio; Martinez, J.; Alvarez, N.; Fernandez, J. J.; Delgado, F.; Martinez, R.; Puche, J. C.; Finat, J.

    2013-07-01

    In this work we present a new software platform for interactive volumetric visualization of complex architectural objects and their applications to teaching and training conservation interventions in Architectural Cultural Heritage. Photogrammetric surveying is performed by processing the information arising from image- and range-based devices. Our visualization application is based on an adaptation of WebGL open standard; the performed adaptation allows to import open standards and an interactive navigation of 3D models in ordinary web navigators with a good performance. The Visualization platform is scalable and can be applied to urban environments, provided open source files be used; CityGML is an open standard based on a geometry -driven Ontology which is compatible with this approach. We illustrate our results with examples concerning to very damaged churches and a urban district of Segovia (World Cultural Heritage). Their connection with appropriate database eases the building evolution and interventions tracking. We have incorporated some preliminary examples to illustrate Advanced Visualization Tools and architectural e-Learning software platform which have been created for assessing conservation and restoration tasks in very damaged buildings. First version of the Advanced Visualization application has been developed in the framework of ADISPA Spanish Project Results. Our results are illustrated with the application of these software applications to several very damaged cultural heritage buildings in rural zones of Castilla y Leon (Spain).

  14. Short-term visual deprivation reduces interference effects of task-irrelevant facial expressions on affective prosody judgments

    Directory of Open Access Journals (Sweden)

    Ineke eFengler

    2015-04-01

    Full Text Available Several studies have suggested that neuroplasticity can be triggered by short-term visual deprivation in healthy adults. Specifically, these studies have provided evidence that visual deprivation reversibly affects basic perceptual abilities. The present study investigated the long-lasting effects of short-term visual deprivation on emotion perception. To this aim, we visually deprived a group of young healthy adults, age-matched with a group of non-deprived controls, for 3 hours and tested them before and after visual deprivation (i.e., after 8 h on average and at 4 week follow-up on an audio-visual (i.e., faces and voices emotion discrimination task. To observe changes at the level of basic perceptual skills, we additionally employed a simple audio-visual (i.e., tone bursts and light flashes discrimination task and two unimodal (one auditory and one visual perceptual threshold measures. During the 3 h period, both groups performed a series of auditory tasks. To exclude the possibility that changes in emotion discrimination may emerge as a consequence of the exposure to auditory stimulation during the 3 h stay in the dark, we visually deprived an additional group of age-matched participants who concurrently performed unrelated (i.e., tactile tasks to the later tested abilities. The two visually deprived groups showed enhanced affective prosodic discrimination abilities in the context of incongruent facial expressions following the period of visual deprivation; this effect was partially maintained until follow-up. By contrast, no changes were observed in affective facial expression discrimination and in the basic perception tasks in any group. These findings suggest that short-term visual deprivation per se triggers a reweighting of visual and auditory emotional cues, which seem to possibly prevail for longer durations.

  15. Effect of low-frequency repetitive transcranial magnetic stimulation combining task-oriented training on upper limb motor function recovery after stroke

    Directory of Open Access Journals (Sweden)

    Hong-bin WANG

    2017-07-01

    Full Text Available Objective To investigate the effect of low-frequency repetitive transcranial magnetic stimulation (rTMS combined with task-oriented training on the recovery of upper limb motor function of stroke patients. Methods A total of 42 patients with hemiplegia after stroke were randomly divided into control group (N = 20 and treatment group (N = 22. Control group received routine rehabilitation training and task-oriented training, and treatment group received low-frequency (1 Hz rTMS over the contralesional cortex addition to routine rehabilitation and task-oriented training. Fugl-Meyer Assessment Scale for Upper Extremity (FMA-UE and Wolf Motor Function Test (WMFT were used to evaluate upper limb motor function of all patients before treatment, after 4-week treatment and 3 months after treatment. The latency and central motor conduction time (CMCT of motor-evoked potential (MEP in the contralesional cortex were recorded and analyzed. Results Compared with control group, FMA-UE score (P = 0.006 and WMFT score (P = 0.024 were significantly increased in treatment group. There was significant difference in FMA-AUE score (P = 0.000 and WMFT score (P = 0.000 at different time points. Compared with before treatment, FMA-UE score (P = 0.000, for all and WMFT score (P = 0.000, for all of patients in both groups were all significantly increased after 4-week treatment and 3 months after treatment. Besides, FMA-UE score (P = 0.000, for all and WMFT score (P = 0.000, for all 3 months after treatment were higher than those after 4-week treatment. There was no statistically significant difference between 2 groups on the latency (P = 0.979 and CMCT (P = 0.807 of MEP before and after treatment, and so was the difference on the latency (P = 0.085 and CMCT (P = 0.507 of MEP in the contralesional cortex at different time points (before treatment, after 4-week treatment and 3 months after treatment. Conclusions Low-frequency rTMS over the contralesional cortex combined

  16. Attentional costs of visually guided walking: effects of age, executive function and stepping-task demands.

    Science.gov (United States)

    Mazaheri, Masood; Roerdink, Melvyn; Bood, Robert Jan; Duysens, Jacques; Beek, Peter J; Peper, C Lieke E

    2014-01-01

    During walking, attention needs to be flexibly allocated to deal with varying environmental constraints. This ability may be affected by aging and lower overall executive function. The present study examined the influence of aging and executive function on the attentional costs of visually guided walking under different task demands. Three groups, young adults (n=15) and elderly adults with higher (n=16) and lower (n=10) executive function, walked on a treadmill in three conditions: uncued walking and walking with regular and irregular patterns of visual stepping targets projected onto the belt. Attentional costs were assessed using a secondary probe reaction time task and corrected by subtracting baseline single-task reaction time, yielding an estimate of the additional attentional costs of each walking condition. We found that uncued walking was more attentionally demanding for elderly than for young participants. In young participants, the attentional costs increased significantly from uncued to regularly cued to irregularly cued walking, whereas for the higher executive function group, attentional costs only increased significantly from regularly cued to irregularly cued walking. For the group with lower executive function, no significant differences were observed. The observed decreased flexibility of elderly, especially those with lower executive function, to allocate additional attentional resources to more challenging walking conditions may be attributed to the already increased attentional costs of uncued walking, presumably required for visuomotor and/or balance control of walking.

  17. Visual strategies for enhancing user perception of task relationships in emergency operations centers

    Science.gov (United States)

    Dudzic, Stephanie; Godwin, Alex; Kilgore, Ryan

    2010-04-01

    In time-sensitive environments, such as DHS emergency operations centers (EOCs), it is imperative for decision makers to rapidly understand and address key logical relationships that exist between tasks, entities, and events, even as conditions fluctuate. These relationships often have important temporal characteristics, such as tasks that must be completed before others can be started (e.g., buses must be transported to an area before an evacuation process can begin). Unfortunately, traditional temporal display methods, such as mission timelines, typically reveal only rudimentary event details and fail to support user understanding of and reasoning about critical temporal constraints and interrelationships across multiple mission components. To address these shortcomings, we developed a visual language to enhance temporal data displays by explicitly and intuitively conveying these constraints and relationships to decision makers. In this paper, we detail these design strategies and describe ongoing evaluation efforts to assess their usability and effectiveness to support decision-making tasks in complex, time-sensitive environments. We present a case study in which we applied our visual enhancements to a timeline display, improving the perception of logical relationships among events in a Master Scenario Event List (MSEL). These methods reduce the cognitive workload of decision makers and improve the efficacy of identification.

  18. Voluntary modulations of attention in a semantic auditory-visual matching task: an ERP study.

    Science.gov (United States)

    Ortega, Rodrigo; López, Vladimir; Aboitiz, Francisco

    2008-01-01

    The present study explores the neural correlates of voluntary modulations of attention in an auditory-visual matching task. Visual stimuli (a female or a male face) were preceded in close temporal proximity by auditory stimuli consisting of the Spanish word for "man" and "woman" ("hombre" or "mujer"). In 80% of the trials the gender of the two stimuli coincided. Participants were asked to mentally count the specific instances in which a female face appeared after hearing the word "man" (10 % of the trials). Our results show attention-related amplitude modulation of the early visual ERP components NI and anterior P2, but also amplitude modulations of (i) the N270 potential usually associated with conflict detection, (ii) a P300 wave related to infrequency, and (iii) an N400 potential related to semantic incongruence. The elicitation of these latter components varied according to task manipulations, evidencing the role of voluntary allocation of attention in fine-tuning cognitive processing, which includes basic processes like detection of infrequency or semantic incongruity often considered to be volition-independent.

  19. Age differences in visual-auditory self-motion perception during a simulated driving task

    Directory of Open Access Journals (Sweden)

    Robert eRamkhalawansingh

    2016-04-01

    Full Text Available Recent evidence suggests that visual-auditory cue integration may change as a function of age such that integration is heightened among older adults. Our goal was to determine whether these changes in multisensory integration are also observed in the context of self-motion perception under realistic task constraints. Thus, we developed a simulated driving paradigm in which we provided older and younger adults with visual motion cues (i.e. optic flow and systematically manipulated the presence or absence of congruent auditory cues to self-motion (i.e. engine, tire, and wind sounds. Results demonstrated that the presence or absence of congruent auditory input had different effects on older and younger adults. Both age groups demonstrated a reduction in speed variability when auditory cues were present compared to when they were absent, but older adults demonstrated a proportionally greater reduction in speed variability under combined sensory conditions. These results are consistent with evidence indicating that multisensory integration is heightened in older adults. Importantly, this study is the first to provide evidence to suggest that age differences in multisensory integration may generalize from simple stimulus detection tasks to the integration of the more complex and dynamic visual and auditory cues that are experienced during self-motion.

  20. Spatial Visualization Tasks To Support Students’ Spatial Structuring In Learning Volume Measurement

    Directory of Open Access Journals (Sweden)

    Shintia Revina

    2011-07-01

    Full Text Available Many prior researches found that most of students in grade five tended to have difficulty in fully grasping the concept of volume measurement because they have to build their competence in spatial structuring. The unit of volume “packing” measurement must be integrated and coordinated in three-dimension. On the other hand, it is revealed the errors that students made on the volume measurement tasks with threedimensional cube arrays are related to some aspects of spatial visualization, such as the skill to "read off" two-dimensional representation of solid objects. For those reasons, this research is aimed to develop classroom activities with the use of spatial visualization tasks to support students’ spatial structuring in learning volume measurement. Consequently, design research was chosen as an appropriate means to achieve this research goal. In this research, a sequence of instructional activities is designed and developed based on the hypothesis of students’ learning processes. This research was conducted in grade 5 of SD Pupuk Sriwijaya Palembang, Indonesia.Keywords: volume measurement, spatial structuring, spatial visualization, design research. DOI: http://dx.doi.org/10.22342/jme.2.2.745.127-146

  1. Shared Y chromosome repetitive DNA sequences in stallion and donkey as visualized using whole-genomic comparative hybridization

    Directory of Open Access Journals (Sweden)

    R. Mezzanotte

    2010-01-01

    Full Text Available The genome of stallion (Spanish breed and donkey (Spanish endemic Zamorano-Leonés were compared using whole comparative genomic in situ hybridization (W-CGH technique, with special reference to the variability observed in the Y chromosome. Results show that these diverging genomes still share some highly repetitive DNA families localized in pericentromeric regions and, in the particular case of the Y chromosome, a sub-family of highly repeated DNA sequences, greatly expanded in the donkey genome, accounts for a large part of the chromatin in the stallion Y chromosome.

  2. Shared Y chromosome repetitive DNA sequences in stallion and donkey as visualized using whole-genomic comparative hybridization

    Directory of Open Access Journals (Sweden)

    J. Gosalvez

    2010-01-01

    Full Text Available The genome of stallion (Spanish breed and donkey (Spanish endemic Zamorano-Leonés were compared using whole comparative genomic in situ hybridization (W-CGH technique, with special reference to the variability observed in the Y chromosome. Results show that these diverging genomes still share some highly repetitive DNA families localized in pericentromeric regions and, in the particular case of the Y chromosome, a sub-family of highly repeated DNA sequences, greatly expanded in the donkey genome, accounts for a large part of the chromatin in the stallion Y chromosome.

  3. CHARACTERIZATION OF THE EFFECTS OF INHALED PERCHLOROETHYLENE ON SUSTAINED ATTENTION IN RATS PERFORMING A VISUAL SIGNAL DETECTION TASK

    Science.gov (United States)

    The aliphatic hydrocarbon perchloroethyelene (PCE) has been associated with neurobehavioral dysfunction including reduced attention in humans. The current study sought to assess the effects of inhaled PCE on sustained attention in rats performing a visual signal detection task (S...

  4. The effect of stimulus duration and motor response in hemispatial neglect during a visual search task.

    Directory of Open Access Journals (Sweden)

    Laura M Jelsone-Swain

    Full Text Available Patients with hemispatial neglect exhibit a myriad of profound deficits. A hallmark of this syndrome is the patients' absence of awareness of items located in their contralesional space. Many studies, however, have demonstrated that neglect patients exhibit some level of processing of these neglected items. It has been suggested that unconscious processing of neglected information may manifest as a fast denial. This theory of fast denial proposes that neglected stimuli are detected in the same way as non-neglected stimuli, but without overt awareness. We evaluated the fast denial theory by conducting two separate visual search task experiments, each differing by the duration of stimulus presentation. Specifically, in Experiment 1 each stimulus remained in the participants' visual field until a response was made. In Experiment 2 each stimulus was presented for only a brief duration. We further evaluated the fast denial theory by comparing verbal to motor task responses in each experiment. Overall, our results from both experiments and tasks showed no evidence for the presence of implicit knowledge of neglected stimuli. Instead, patients with neglect responded the same when they neglected stimuli as when they correctly reported stimulus absence. These findings thus cast doubt on the concept of the fast denial theory and its consequent implications for non-conscious processing. Importantly, our study demonstrated that the only behavior affected was during conscious detection of ipsilesional stimuli. Specifically, patients were slower to detect stimuli in Experiment 1 compared to Experiment 2, suggesting a duration effect occurred during conscious processing of information. Additionally, reaction time and accuracy were similar when reporting verbally versus motorically. These results provide new insights into the perceptual deficits associated with neglect and further support other work that falsifies the fast denial account of non

  5. Development of a standard methodology for optimizing remote visual display for nuclear-maintenance tasks

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, M.M.; Garin, J.; Preston-Anderson, A.

    1981-01-01

    The aim of the present study is to develop a methodology for optimizing remote viewing systems for a fuel recycle facility (HEF) being designed at Oak Ridge National Laboratory (ORNL). An important feature of this design involves the Remotex concept: advanced servo-controlled master/slave manipulators, with remote television viewing, will totally replace direct human contact with the radioactive environment. Therefore, the design of optimal viewing conditions is a critical component of the overall man/machine system. A methodology has been developed for optimizing remote visual displays for nuclear maintenance tasks. The usefulness of this approach has been demonstrated by preliminary specification of optimal closed circuit TV systems for such tasks.

  6. Pathways to Identity. Using Visualization to Aid Law Enforcement in Identification Tasks

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, Joseph R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scholtz, Jean [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hodges, Duncan [Univ. of Oxford (United Kingdom); Emanuel, Lia [Univ. of Bath (United Kingdom); Stanton Fraser, Danae [Univ. of Bath (United Kingdom); Creese, Sadie [Univ. of Oxford (United Kingdom); Love, Oriana J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-18

    The nature of identity has changed dramatically in recent years and has grown in complexity. Identities are defined in multiple domains: biological and psychological elements strongly contribute, but biographical and cyber elements also are necessary to complete the picture. Law enforcement is beginning to adjust to these changes, recognizing identity’s importance in criminal justice. The SuperIdentity project seeks to aid law enforcement officials in their identification tasks through research of techniques for discovering identity traits, generation of statistical models of identity and analysis of identity traits through visualization. We present use cases compiled through user interviews in multiple fields, including law enforcement, and describe the modeling and visualization tools design to aid in those use cases.

  7. Pathways to Identity: Aiding Law Enforcement in Identification Tasks With Visual Analytics

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, Joseph R.; Scholtz, Jean; Hodges, Duncan; Emanuel, Lia; Stanton-Fraser, Danae; Creese, Sadie; Love, Oriana J.

    2014-09-18

    The nature of identity has changed dramatically in recent years, and has grown in complexity. Identities are defined in multiple domains: biological and psychological elements strongly contribute, but also biographical and cyber elements are necessary to complete the picture. Law enforcement is beginning to adjust to these changes, recognizing its importance in criminal justice. The SuperIdentity project seeks to aid law enforcement officials in their identification tasks through research of techniques for discovering identity traits, generation of statistical models of identity and analysis of identity traits through visualization. We present use cases compiled through user interviews in multiple fields, including law enforcement, as well as the modeling and visualization tools design to aid in those use cases.

  8. Theory of Visual Attention (TVA) applied to mice in the 5-choice serial reaction time task

    DEFF Research Database (Denmark)

    Fitzpatrick, Ciarán Martin; Woldbye, David Paul Drucker; Andreasen T., Jesper

    2017-01-01

    RATIONALE: The 5-choice serial reaction time task (5-CSRTT) is widely used to measure rodent attentional functions. In humans, many attention studies in healthy and clinical populations have used testing based on Bundesen's Theory of Visual Attention (TVA) to estimate visual processing speeds...... and other parameters of attentional capacity. OBJECTIVES: We aimed to bridge these research fields by modifying the 5-CSRTT's design and by mathematically modelling data to derive attentional parameters analogous to human TVA-based measures. METHODS: C57BL/6 mice were tested in two 1-h sessions...... thresholds and motor response baselines. CONCLUSIONS: This study shows for the first time how 5-CSRTT performance in mice can be mathematically modelled to yield estimates of attentional capacity that are directly comparable to estimates from human studies....

  9. Evaluation of monoscopic and stereoscopic displays for visual-spatial tasks in medical contexts.

    Science.gov (United States)

    Martinez Escobar, Marisol; Junke, Bethany; Holub, Joseph; Hisley, Kenneth; Eliot, David; Winer, Eliot

    2015-06-01

    In the medical field, digital images are present in diagnosis, pre-operative planning, minimally invasive surgery, instruction, and training. The use of medical digital imaging has afforded new ways to interact with a patient, such as seeing fine details inside a body. This increased usage also raises many basic research questions on human perception and performance when utilizing these images. The work presented here attempts to answer the question: How would adding the stereopsis depth cue affect relative position tasks in a medical context compared to a monoscopic view? By designing and conducting a study to isolate the benefits between monoscopic 3D and stereoscopic 3D displays in a relative position task, the following hypothesis was tested: stereoscopic 3D displays are beneficial over monoscopic 3D displays for relative position judgment tasks in a medical visualization setting. 44 medical students completed a series of relative position judgments tasks. The results show that stereoscopic condition yielded a higher score than the monoscopic condition with regard to the hypothesis.

  10. Combined effects of attention and motivation on visual task performance: transient and sustained motivational effects

    Directory of Open Access Journals (Sweden)

    Jan B Engelmann

    2009-03-01

    Full Text Available We investigated how the brain integrates motivational and attentional signals by using a neuroimaging paradigm that provided separate estimates for transient cue- and target-related signals, in addition to sustained block-related responses. Participants performed a Posner-type task in which an endogenous cue predicted target location on 70% of trials, while motivation was manipulated by varying magnitude and valence of a cash incentive linked to task performance. Our findings revealed increased detection performance (d’ as a function of incentive value. In parallel, brain signals revealed that increases in absolute incentive magnitude led to cue- and target-specific response modulations that were independent of sustained state effects across visual cortex, fronto-parietal regions, and subcortical regions. Interestingly, state-like effects of incentive were observed in several of these brain regions, too, suggesting that both transient and sustained fMRI signals may contribute to task performance. For both cue and block periods, the effects of administering incentives were correlated with individual trait measures of reward sensitivity. Taken together, our findings support the notion that motivation improves behavioral performance in a demanding attention task by enhancing evoked responses across a distributed set of anatomical sites, many of which have been previously implicated in attentional processing. However, the effect of motivation was not simply additive as the impact of absolute incentive was greater during invalid than valid trials in several brain regions, possibly because motivation had a larger effect on reorienting than orienting attentional mechanisms at these sites.

  11. How low can you go? Changing the resolution of novel complex objects in visual working memory according to task demands

    Directory of Open Access Journals (Sweden)

    Ayala S Allon

    2014-03-01

    Full Text Available In three experiments we manipulated the resolution of novel complex objects in visual working memory (WM by changing task demands. Previous studies that investigated the trade-off between quantity and resolution in visual WM yielded mixed results for simple familiar stimuli. We used the contralateral delay activity (the CDA as an electrophysiological marker to directly track the deployment of visual WM resources while participants preformed a change-detection task. Across 3 experiments we presented the same novel items but changed the task demands. In Experiment 1 we induced a medium resolution task by using change trials in which a random polygon changed to a different type of polygon and replicated previous findings showing that novel complex objects are represented with higher resolution relative to simple familiar objects. In Experiment 2 we induced a low resolution task that required distinguishing between polygons and other types of stimulus categories, but we failed in finding a corresponding decrease in the resolution of the represented item. Finally, in Experiment 3 we induced a high resolution task that required discriminating between highly similar polygons with somewhat different contours. This time, we observed an increase in the item’s resolution. Our findings indicate that the resolution for novel complex objects can be increased but not decreased according to task demands, suggesting that minimal resolution is required in order to maintain these items in visual WM. These findings support studies claiming that capacity and resolution in visual WM reflect different mechanisms.

  12. How low can you go? Changing the resolution of novel complex objects in visual working memory according to task demands.

    Science.gov (United States)

    Allon, Ayala S; Balaban, Halely; Luria, Roy

    2014-01-01

    In three experiments we manipulated the resolution of novel complex objects in visual working memory (WM) by changing task demands. Previous studies that investigated the trade-off between quantity and resolution in visual WM yielded mixed results for simple familiar stimuli. We used the contralateral delay activity as an electrophysiological marker to directly track the deployment of visual WM resources while participants preformed a change-detection task. Across three experiments we presented the same novel complex items but changed the task demands. In Experiment 1 we induced a medium resolution task by using change trials in which a random polygon changed to a different type of polygon and replicated previous findings showing that novel complex objects are represented with higher resolution relative to simple familiar objects. In Experiment 2 we induced a low resolution task that required distinguishing between polygons and other types of stimulus categories, but we failed in finding a corresponding decrease in the resolution of the represented item. Finally, in Experiment 3 we induced a high resolution task that required discriminating between highly similar polygons with somewhat different contours. This time, we observed an increase in the item's resolution. Our findings indicate that the resolution for novel complex objects can be increased but not decreased according to task demands, suggesting that minimal resolution is required in order to maintain these items in visual WM. These findings support studies claiming that capacity and resolution in visual WM reflect different mechanisms.

  13. Different levels of food restriction reveal genotype-specific differences in learning a visual discrimination task.

    Directory of Open Access Journals (Sweden)

    Kalina Makowiecki

    Full Text Available In behavioural experiments, motivation to learn can be achieved using food rewards as positive reinforcement in food-restricted animals. Previous studies reduce animal weights to 80-90% of free-feeding body weight as the criterion for food restriction. However, effects of different degrees of food restriction on task performance have not been assessed. We compared learning task performance in mice food-restricted to 80 or 90% body weight (BW. We used adult wildtype (WT; C57Bl/6j and knockout (ephrin-A2⁻/⁻ mice, previously shown to have a reverse learning deficit. Mice were trained in a two-choice visual discrimination task with food reward as positive reinforcement. When mice reached criterion for one visual stimulus (80% correct in three consecutive 10 trial sets they began the reverse learning phase, where the rewarded stimulus was switched to the previously incorrect stimulus. For the initial learning and reverse phase of the task, mice at 90%BW took almost twice as many trials to reach criterion as mice at 80%BW. Furthermore, WT 80 and 90%BW groups significantly differed in percentage correct responses and learning strategy in the reverse learning phase, whereas no differences between weight restriction groups were observed in ephrin-A2⁻/⁻ mice. Most importantly, genotype-specific differences in reverse learning strategy were only detected in the 80%BW groups. Our results indicate that increased food restriction not only results in better performance and a shorter training period, but may also be necessary for revealing behavioural differences between experimental groups. This has important ethical and animal welfare implications when deciding extent of diet restriction in behavioural studies.

  14. From foreground to background: how task-neutral context influences contextual cueing of visual search

    Directory of Open Access Journals (Sweden)

    Xuelian eZang

    2016-06-01

    Full Text Available Selective attention determines the effectiveness of implicit contextual learning (e.g., Jiang & Leung, 2005. Visual foreground-background segmentation, on the other hand, is a key process in the guidance of attention (Wolfe, 2003. In the present study, we examined the impact of foreground-background segmentation on contextual cueing of visual search in three experiments. A visual search display, consisting of distractor ‘L’s and a target ‘T’, was overlaid on a task-neutral cuboid on the same depth plane (Experiment 1, on stereoscopically separated depth planes (Experiment 2, or spread over the entire display on the same depth plane (Experiment 3. Half of the search displays contained repeated target-distractor arrangements, whereas the other half was always newly generated. The task-neutral cuboid was constant during an initial training session, but was either rotated by 90º or entirely removed in the subsequent test sessions. We found that the gains resulting from repeated presentation of display arrangements during training (i.e., contextual-cueing effects were diminished when the cuboid was changed or removed in Experiment 1, but remained intact in Experiments 2 and 3 when the cuboid was placed in a different depth plane, or when the items were randomly spread over the whole display but not on the edges of the cuboid. These findings suggest that foreground-background segmentation occurs prior to contextual learning, and only objects/arrangements that are grouped as foreground are learned over the course of repeated visual search.

  15. Relationship between reaction time, fine motor control, and visual-spatial perception on vigilance and visual-motor tasks in 22q11.2 Deletion Syndrome.

    LENUS (Irish Health Repository)

    Howley, Sarah A

    2012-10-15

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and that these individuals have specific deficits in visual-motor integration. However, the extent to which attentional deficits, such as vigilance, influence impairments on visual motor tasks in 22q11DS is unclear. This study examines visual-motor abilities and reaction time using a range of standardised tests in 35 children with 22q11DS, 26 age-matched typically developing (TD) sibling controls and 17 low-IQ community controls. Statistically significant deficits were observed in the 22q11DS group compared to both low-IQ and TD control groups on a timed fine motor control and accuracy task. The 22q11DS group performed significantly better than the low-IQ control group on an untimed drawing task and were equivalent to the TD control group on point accuracy and simple reaction time tests. Results suggest that visual motor deficits in 22q11DS are primarily attributable to deficits in psychomotor speed which becomes apparent when tasks are timed versus untimed. Moreover, the integration of visual and motor information may be intact and, indeed, represent a relative strength in 22q11DS when there are no time constraints imposed. While this may have significant implications for cognitive remediation strategies for children with 22q11DS, the relationship between reaction time, visual reasoning, cognitive complexity, fine motor speed and accuracy, and graphomotor ability on visual-motor tasks is still unclear.

  16. Brain functional network connectivity based on a visual task:visual information processing-related brain regions are signiifcantly activated in the task state

    Institute of Scientific and Technical Information of China (English)

    Yan-li Yang; Hong-xia Deng; Gui-yang Xing; Xiao-luan Xia; Hai-fang Li

    2015-01-01

    It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we inves-tigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state.Z-values in the vision-related brain regions were calculated, conifrming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental ifndings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  17. The Effects of Workload Presented via Visual and Auditory Displays on Soldier Shooting and Secondary Task Performance

    Science.gov (United States)

    2007-08-01

    ARMY RESEARCH LABORATORY The Effects of Workload Presented via Visual and Auditory Displays on Soldier Shooting and Secondary Task Performance by...Proving Ground, MD 21005-5425 ARL-TR-4224 August 2007 The Effects of Workload Presented via Visual and Auditory Displays on Soldier Shooting and...YYYY) August 2007 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE The Effects of Workload Presented via Visual and Auditory

  18. Effects on visual functions during tasks of object handling in virtual environment with a head mounted display.

    Science.gov (United States)

    Kawara, T; Ohmi, M; Yoshizawa, T

    1996-11-01

    This study examined the effects on visual functions of a prolonged handling task within the helmet-mounted display environment. Both version eye movement and accommodative response became gradually slower during the 40-min task. Although delayed presentation of display after head movement noticeably worsened both visual responses, presentation delay after hand movement did not significantly change the sluggishness of responses. Therefore it is suggested that decreasing time delay after head movement is a more important factor in order to improve human performance of handling tasks within the HMD environment.

  19. Attentional bias modification based on visual probe task: methodological issues, results and clinical relevance

    Directory of Open Access Journals (Sweden)

    Fernanda Machado Lopes

    2015-12-01

    Full Text Available Introduction: Attentional bias, the tendency that a person has to drive or maintain attention to a specific class of stimuli, may play an important role in the etiology and persistence of mental disorders. Attentional bias modification has been studied as a form of additional treatment related to automatic processing. Objectives: This systematic literature review compared and discussed methods, evidence of success and potential clinical applications of studies about attentional bias modification (ABM using a visual probe task. Methods: The Web of Knowledge, PubMed and PsycInfo were searched using the keywords attentional bias modification, attentional bias manipulation and attentional bias training. We selected empirical studies about ABM training using a visual probe task written in English and published between 2002 and 2014. Results: Fifty-seven studies met inclusion criteria. Most (78% succeeded in training attention in the predicted direction, and in 71% results were generalized to other measures correlated with the symptoms. Conclusions: ABM has potential clinical utility, but to standardize methods and maximize applicability, future studies should include clinical samples and be based on findings of studies about its effectiveness.

  20. Reduced plantar sole sensitivity facilitates early adaptation to a visual rotation pointing task when standing upright

    Directory of Open Access Journals (Sweden)

    Maxime Billot

    2016-09-01

    Full Text Available Humans are capable of pointing to a target with accuracy. However, when vision is distorted through a visual rotation or mirror-reversed vision, the performance is initially degraded and thereafter improves with practice. There are suggestions this gradual improvement results from a sensorimotor recalibration involving initial gating of the somatosensory information from the pointing hand. In the present experiment, we examined if this process interfered with balance control by asking participants to point to targets with a visual rotation from a standing posture. This duality in processing sensory information (i.e., gating sensory signals from the hand while processing those arising from the control of balance could generate initial interference leading to a degraded pointing performance. We hypothesized that if this is the case, the attenuation of plantar sole somatosensory information through cooling could reduce the sensorimotor interference, and facilitate the early adaptation (i.e. improvement in the pointing task. Results supported this hypothesis. These observations suggest that processing sensory information for balance control interferes with the sensorimotor recalibration process imposed by a pointing task when vision is rotated.

  1. The effects of visual realism on search tasks in mixed reality simulation.

    Science.gov (United States)

    Lee, Cha; Rincon, Gustavo A; Meyer, Greg; Höllerer, Tobias; Bowman, Doug A

    2013-04-01

    In this paper, we investigate the validity of Mixed Reality (MR) Simulation by conducting an experiment studying the effects of the visual realism of the simulated environment on various search tasks in Augmented Reality (AR). MR Simulation is a practical approach to conducting controlled and repeatable user experiments in MR, including AR. This approach uses a high-fidelity Virtual Reality (VR) display system to simulate a wide range of equal or lower fidelity displays from the MR continuum, for the express purpose of conducting user experiments. For the experiment, we created three virtual models of a real-world location, each with a different perceived level of visual realism. We designed and executed an AR experiment using the real-world location and repeated the experiment within VR using the three virtual models we created. The experiment looked into how fast users could search for both physical and virtual information that was present in the scene. Our experiment demonstrates the usefulness of MR Simulation and provides early evidence for the validity of MR Simulation with respect to AR search tasks performed in immersive VR.

  2. A comparison of kinesthetic-tactual and visual displays via a critical tracking task. [for aircraft control

    Science.gov (United States)

    Jagacinski, R. J.; Miller, D. P.; Gilson, R. D.

    1979-01-01

    The feasibility of using the critical tracking task to evaluate kinesthetic-tactual displays was examined. The test subjects were asked to control a first-order unstable system with a continuously decreasing time constant by using either visual or tactual unidimensional displays. The results indicate that the critical tracking task is both a feasible and a reliable methodology for assessing tactual tracking. Further, that the critical tracking methodology is as sensitive and valid a measure of tactual tracking as visual tracking is demonstrated by the approximately equal effects of quickening for the tactual and visual displays.

  3. The effect of repetition of infrequent familiar and unfamiliar visual patterns on components of the event-related brain potential.

    NARCIS (Netherlands)

    A. Kok; H. de Looren de Jong

    1980-01-01

    Examined changes in the waveforms of the event-related brain potential (ERP) during repeated presentations of infrequent-familiar and infrequent-unfamiliar visual patterns; Ss were 12 male university students. The EEG waveforms were averaged separately for each presentation of the 2 types of stimuli

  4. Object representations in visual working memory change according to the task context.

    Science.gov (United States)

    Balaban, Halely; Luria, Roy

    2016-08-01

    This study investigated whether an item's representation in visual working memory (VWM) can be updated according to changes in the global task context. We used a modified change detection paradigm, in which the items moved before the retention interval. In all of the experiments, we presented identical color-color conjunction items that were arranged to provide a common fate Gestalt grouping cue during their movement. Task context was manipulated by adding a condition highlighting either the integrated interpretation of the conjunction items or their individuated interpretation. We monitored the contralateral delay activity (CDA) as an online marker of VWM. Experiment 1 employed only a minimal global context; the conjunction items were integrated during their movement, but then were partially individuated, at a late stage of the retention interval. The same conjunction items were perfectly integrated in an integration context (Experiment 2). An individuation context successfully produced strong individuation, already during the movement, overriding Gestalt grouping cues (Experiment 3). In Experiment 4, a short priming of the individuation context managed to individuate the conjunction items immediately after the Gestalt cue was no longer available. Thus, the representations of identical items changed according to the task context, suggesting that VWM interprets incoming input according to global factors which can override perceptual cues.

  5. Developmental shifts in children’s sensitivity to visual speech: A new multimodal picture word task

    Science.gov (United States)

    Jerger, Susan; Damian, Markus F.; Spence, Melanie J.; Tye-Murray, Nancy; Abdi, Herve

    2008-01-01

    This research developed a Multimodal Picture Word Task for assessing the influence of visual speech on phonological processing by100 children between 4 - 14 yrs of age. We assessed how manipulation of seemingly to-be-ignored auditory (A) and audiovisual (AV) phonological distractors affected picture naming without participants consciously trying to respond to the manipulation. Results varied in complex ways as a function of age and type and modality of distractors. Results for congruent AV distractors yielded an inverted U-shaped function with a significant influence of visual speech in 4-yr-olds and 10-14-yr-olds, but not in 5-9-yr-olds. In concert with dynamic systems theory, we proposed that the temporary loss of sensitivity to visual speech was reflecting reorganization of relevant knowledge and processing sub-systems, particularly phonology. We speculated that reorganization may be associated with 1) formal literacy instruction and 2) developmental changes in multimodal processing and auditory perceptual, linguistic, and cognitive skills. PMID:18829049

  6. Assessment of image quality in soft tissue and bone visualization tasks for a dedicated extremity cone-beam CT system

    Energy Technology Data Exchange (ETDEWEB)

    Demehri, S. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Johns Hopkins Outpatient Center, JHOC 5168, Musculoskeletal Radiology, Baltimore, MD (United States); Muhit, A.; Zbijewski, W.; Stayman, J.W. [Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD (United States); Yorkston, J.; Packard, N.; Senn, R.; Yang, D.; Foos, D. [Carestream Health, Rochester, NY (United States); Thawait, G.K.; Fayad, L.M.; Chhabra, A.; Carrino, J.A. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Siewerdsen, J.H. [Johns Hopkins University, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Johns Hopkins University, Department of Biomedical Engineering, Baltimore, MD (United States)

    2015-06-01

    To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80kVp-108mAs for CBCT; 120kVp- 300mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated ''excellent'' or ''good'' (median scores 5 and 4) for ''bone'' and ''soft tissue'' visualization tasks. Hand CBCT images were rated ''excellent'' or ''adequate'' (median scores 5 and 3) for ''bone'' and ''soft tissue'' visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ∝ 0.26-0.92), and interobserver agreement was fair to moderate (κ ∝ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. (orig.)

  7. Divided visual attention: A comparison of patients with multiple sclerosis and controls, assessed with an optokinetic nystagmus suppression task.

    Science.gov (United States)

    Williams, Isla M; Schofield, Peter; Khade, Neha; Abel, Larry A

    2016-12-01

    Multiple sclerosis (MS) frequently causes impairment of cognitive function. We compared patients with MS with controls on divided visual attention tasks. The MS patients' and controls' stare optokinetic nystagmus (OKN) was recorded in response to a 24°/s full field stimulus. Suppression of the OKN response, judged by the gain, was measured during tasks dividing visual attention between the fixation target and a second stimulus, central or peripheral, static or dynamic. All participants completed the Audio Recorded Cognitive Screen. MS patients had lower gain on the baseline stare OKN. OKN suppression in divided attention tasks was the same in MS patients as in controls but in both groups was better maintained in static than in dynamic tasks. In only dynamic tasks, older age was associated with less effective OKN suppression. MS patients had lower scores on a timed attention task and on memory. There was no significant correlation between attention or memory and eye movement parameters. Attention, a complex multifaceted construct, has different neural combinations for each task. Despite impairments on some measures of attention, MS patients completed the divided visual attention tasks normally.

  8. Differential effects of parietal and frontal inactivations on reaction times distributions in a visual search task

    Directory of Open Access Journals (Sweden)

    Claire eWardak

    2012-06-01

    Full Text Available The posterior parietal cortex participates to numerous cognitive functions, from perceptual to attentional and decisional processes. However, the same functions have also been attributed to the frontal cortex. We previously conducted a series of reversible inactivations of the lateral intraparietal area (LIP and of the frontal eye field (FEF in the monkey which showed impairments in covert visual search performance, characterized mainly by an increase in the mean reaction time (RT necessary to detect a contralesional target. Only subtle differences were observed between the inactivation effects in both areas. In particular, the magnitude of the deficit was dependant of search task difficulty for LIP, but not for FEF.In the present study, we re-examine these data in order to try to dissociate the specific involvement of these two regions, by considering the entire RT distribution instead of mean RT. We use the LATER model to help us interpret the effects of the inactivations with regard to information accumulation rate and decision processes. We show that: 1 different search strategies can be used by monkeys to perform visual search, either by processing the visual scene in parallel, or by combining parallel and serial processes; 2 LIP and FEF inactivations have very different effects on the RT distributions in the two monkeys. Although our results are not conclusive with regards to the exact functional mechanisms affected by the inactivations, the effects we observe on RT distributions could be accounted by an involvement of LIP in saliency representation or decision-making, and an involvement of FEF in attentional shifts and perception. Finally, we observe that the use of the LATER model is limited in the context of a visual search as it cannot fit all the behavioural strategies encountered. We propose that the diversity in search strategies observed in our monkeys also exists in individual human subjects and should be considered in future

  9. Individual personality differences in goats predict their performance in visual learning and non-associative cognitive tasks.

    Science.gov (United States)

    Nawroth, Christian; Prentice, Pamela M; McElligott, Alan G

    2017-01-01

    Variation in common personality traits, such as boldness or exploration, is often associated with risk-reward trade-offs and behavioural flexibility. To date, only a few studies have examined the effects of consistent behavioural traits on both learning and cognition. We investigated whether certain personality traits ('exploration' and 'sociability') of individuals were related to cognitive performance, learning flexibility and learning style in a social ungulate species, the goat (Capra hircus). We also investigated whether a preference for feature cues rather than impaired learning abilities can explain performance variation in a visual discrimination task. We found that personality scores were consistent across time and context. Less explorative goats performed better in a non-associative cognitive task, in which subjects had to follow the trajectory of a hidden object (i.e. testing their ability for object permanence). We also found that less sociable subjects performed better compared to more sociable goats in a visual discrimination task. Good visual learning performance was associated with a preference for feature cues, indicating personality-dependent learning strategies in goats. Our results suggest that personality traits predict the outcome in visual discrimination and non-associative cognitive tasks in goats and that impaired performance in a visual discrimination tasks does not necessarily imply impaired learning capacities, but rather can be explained by a varying preference for feature cues. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Relative contributions of task-relevant and task-irrelevant dimensions in priming of pop-out.

    Science.gov (United States)

    Michal, Audrey L; Lleras, Alejandro; Beck, Diane M

    2014-10-13

    Intertrial effects such as priming of pop-out (PoP) often occur for task-irrelevant dimensions as well as task-relevant dimensions, though to a weaker extent. Here we test the hypothesis that increased priming for task-relevant dimensions is due to greater passive build-up of priming for the task-relevant dimension rather than to an active filtering of task-irrelevant dimensions; if this is the case, then we should observe a positive correlation between the magnitude of task-relevant and task-irrelevant priming. We tested this hypothesis using a pop-out search task in which the task-relevant dimension was orientation and the task-irrelevant dimension was color. We found a strong, positive association between task-relevant and task-irrelevant priming across a large group of participants (N = 100); additionally, we observed increased priming over consecutive repetitions for the task-relevant dimension, whereas task-irrelevant priming was constant across multiple repetitions. As further evidence against an active filtering account, task-irrelevant priming showed no systematic relationship with visual short-term memory capacity, which has been shown to correlate with filtering ability. Together, our results suggest that task-irrelevant dimensions are co-selected rather than filtered out during target search. Further, increased task-relevant priming may reflect an enhanced representation of the task-relevant dimension that is reinforced over consecutive repetitions. © 2014 ARVO.

  11. Anxiety impairs spontaneous perspective calculation: Evidence from a level-1 visual perspective-taking task.

    Science.gov (United States)

    Todd, Andrew R; Simpson, Austin J

    2016-11-01

    Reasoning about other people's mental states is central to social life. Yet, even neuro-typical adults sometimes have perspective-taking difficulties, particularly when another's perspective conflicts with their own. In two experiments, we examined the cognitive mechanisms underlying an affective factor known to hinder perspective taking in adults: anxiety. Using a level-1 visual perspective-taking task, we found that incidentally experiencing anxiety, relative to neutral feelings and anger, impaired the spontaneous calculation of what another social agent can see. Feeling anxious did not, however, impede perspective calculation with a non-social entity, suggesting that anxiety's disruptive effects may be particularly pronounced for social aspects of cognition. These findings help elucidate the mechanisms underlying the effects of incidental emotions on perspective taking and inform debates about "implicit" forms of mentalizing.

  12. Set as an instance of a real-world visual-cognitive task.

    Science.gov (United States)

    Nyamsuren, Enkhbold; Taatgen, Niels A

    2013-01-01

    Complex problem solving is often an integration of perceptual processing and deliberate planning. But what balances these two processes, and how do novices differ from experts? We investigate the interplay between these two in the game of SET. This article investigates how people combine bottom-up visual processes and top-down planning to succeed in this game. Using combinatorial and mixed-effect regression analysis of eye-movement protocols and a cognitive model of a human player, we show that SET players deploy both bottom-up and top-down processes in parallel to accomplish the same task. The combination of competition and cooperation of both types of processes is a major factor of success in the game. Finally, we explore strategies players use during the game. Our findings suggest that within-trial strategy shifts can occur without the need of explicit meta-cognitive control, but rather implicitly as a result of evolving memory activations.

  13. Between-object and within-object saccade programming in a visual search task.

    Science.gov (United States)

    Vergilino-Perez, Dorine; Findlay, John M

    2006-07-01

    The role of the perceptual organization of the visual display on eye movement control was examined in two experiments using a task where a two-saccade sequence was directed toward either a single elongated object or three separate shorter objects. In the first experiment, we examined the consequences for the second saccade of a small displacement of the whole display during the first saccade. We found that between-object saccades compensated for the displacement to aim for a target position on the new object whereas within-object saccades did not show compensation but were coded as a fixed motor vector applied irrespective of wherever the preceding saccade landed. In the second experiment, we extended the paradigm to examine saccades performed in different directions. The results suggest that the within-object and between-object saccade distinction is an essential feature of saccadic planning.

  14. High-performance execution of psychophysical tasks with complex visual stimuli in MATLAB

    Science.gov (United States)

    Asaad, Wael F.; Santhanam, Navaneethan; McClellan, Steven

    2013-01-01

    Behavioral, psychological, and physiological experiments often require the ability to present sensory stimuli, monitor and record subjects' responses, interface with a wide range of devices, and precisely control the timing of events within a behavioral task. Here, we describe our recent progress developing an accessible and full-featured software system for controlling such studies using the MATLAB environment. Compared with earlier reports on this software, key new features have been implemented to allow the presentation of more complex visual stimuli, increase temporal precision, and enhance user interaction. These features greatly improve the performance of the system and broaden its applicability to a wider range of possible experiments. This report describes these new features and improvements, current limitations, and quantifies the performance of the system in a real-world experimental setting. PMID:23034363

  15. Associated reactions during a visual pursuit position tracking task in hemiplegic and quadriplegic cerebral palsy.

    Science.gov (United States)

    Chiu, Hsiu-Ching; Halaki, Mark; O'Dwyer, Nicholas

    2013-04-30

    Most previous studies of associated reactions (ARs) in people with cerebral palsy have used observation scales, such as recording the degree of movement through observation. The sensitive quantitative method can detect ARs that are not amply visible. The aim of this study was to provide quantitative measures of ARs during a visual pursuit position tracking task. Twenty-three hemiplegia (H) (mean +/- SD: 21y 8m +/- 11y 10m), twelve quadriplegia (Q) (21y 5m +/- 10y 3m) and twenty-two subjects with normal development (N) (21y 2m +/- 10y 10m) participated in the study. An upper limb visual pursuit tracking task was used to study ARs. The participants were required to follow a moving target with a response cursor via elbow flexion and extension movements. The occurrence of ARs was quantified by the overall coherence between the movements of tracking and non-tracking limbs and the amount of movement due to ARs was quantified by the amplitude of movement the non-tracking limbs. The amplitude of movement of the non-tracking limb indicated that the amount of ARs was larger in the Q group than the H and N groups with no significant differences between the H and N groups. The amplitude of movement of the non-tracking limb was larger during non-dominant than dominant tracking in all three groups. Some movements in the non-tracking limb were correlated with the tracking limb (correlated ARs) and some movements that were not correlated with the tracking limb (uncorrelated ARs). The correlated ARs comprised less than 40% of the total ARs for all three groups. Correlated ARs were negatively associated with clinical evaluations, but not the uncorrelated ARs. The correlated and uncorrelated ARs appear to have different relationships with clinical evaluations, implying the effect of ARs on upper limb activities could be varied.

  16. Place field repetition and spatial learning in a multicompartment environment.

    Science.gov (United States)

    Grieves, Roddy M; Jenkins, Bryan W; Harland, Bruce C; Wood, Emma R; Dudchenko, Paul A

    2016-01-01

    Recent studies have shown that place cells in the hippocampus possess firing fields that repeat in physically similar, parallel environments. These results imply that it should be difficult for animals to distinguish parallel environments at a behavioral level. To test this, we trained rats on a novel odor-location task in an environment with four parallel compartments which had previously been shown to yield place field repetition. A second group of animals was trained on the same task, but with the compartments arranged in different directions, an arrangement we hypothesised would yield less place field repetition. Learning of the odor-location task in the parallel compartments was significantly impaired relative to learning in the radially arranged compartments. Fewer animals acquired the full discrimination in the parallel compartments compared to those trained in the radial compartments, and the former also required many more sessions to reach criterion compared to the latter. To confirm that the arrangement of compartments yielded differences in place cell repetition, in a separate group of animals we recorded from CA1 place cells in both environments. We found that CA1 place cells exhibited repeated fields across four parallel local compartments, but did not do so when the same compartments were arranged radially. To confirm that the differences in place field repetition across the parallel and radial compartments depended on their angular arrangement, and not incidental differences in access to an extra-maze visual landmark, we repeated the recordings in a second set of rats in the absence of the orientation landmark. We found, once again, that place fields showed repetition in parallel compartments, and did not do so in radially arranged compartments. Thus place field repetition, or lack thereof, in these compartments was not dependent on extra-maze cues. Together, these results imply that place field repetition constrains spatial learning.

  17. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease.

    Science.gov (United States)

    Boggio, P S; Khoury, L P; Martins, D C S; Martins, O E M S; de Macedo, E C; Fregni, F

    2009-04-01

    Several studies have reported that transcranial direct current stimulation (tDCS), a non-invasive method of neuromodulation, enhances some aspects of working memory in healthy and Parkinson disease subjects. The aim of this study was to investigate the impact of anodal tDCS on recognition memory, working memory and selective attention in Alzheimer disease (AD). Ten patients with diagnosis of AD received three sessions of anodal tDCS (left dorsolateral prefrontal cortex, left temporal cortex and sham stimulation) with an intensity of 2 mA for 30 min. Sessions were performed in different days in a randomised order. The following tests were assessed during stimulation: Stroop, Digit Span and a Visual Recognition Memory task (VRM). The results showed a significant effect of stimulation condition on VRM (p = 0.0085), and post hoc analysis showed an improvement after temporal (p = 0.01) and prefrontal (p = 0.01) tDCS as compared with sham stimulation. There were no significant changes in attention as indexed by Stroop task performance. As far as is known, this is the first trial showing that tDCS can enhance a component of recognition memory. The potential mechanisms of action and the implications of these results are discussed.

  18. Spatial Visualization Tasks To Support Students’ Spatial Structuring In Learning Volume Measurement

    Directory of Open Access Journals (Sweden)

    Shintia Revina

    2011-07-01

    Full Text Available Many prior researches found that most of students in grade five tendedto have difficulty in fully grasping the concept of volume measurementbecause they have to build their competence in spatial structuring. The unit of volume “packing” measurement must be integrated andcoordinated in three-dimension. On the other hand, it is revealed theerrors that students made on the volume measurement tasks with threedimensional cube arrays are related to some aspects of spatialvisualization, such as the skill to "read off" two-dimensionalrepresentation of solid objects. For those reasons, this research is aimed to develop classroom activities with the use of spatial visualization tasks to support students’ spatial structuring in learning volume measurement. Consequently, design research was chosen as an appropriate means to achieve this research goal. In this research, a sequence of instructional activities is designed and developed based on the hypothesis of students’ learning processes. This research was conducted in grade 5 of SD Pupuk Sriwijaya Palembang, Indonesia

  19. A Multi-Area Stochastic Model for a Covert Visual Search Task.

    Directory of Open Access Journals (Sweden)

    Michael A Schwemmer

    Full Text Available Decisions typically comprise several elements. For example, attention must be directed towards specific objects, their identities recognized, and a choice made among alternatives. Pairs of competing accumulators and drift-diffusion processes provide good models of evidence integration in two-alternative perceptual choices, but more complex tasks requiring the coordination of attention and decision making involve multistage processing and multiple brain areas. Here we consider a task in which a target is located among distractors and its identity reported by lever release. The data comprise reaction times, accuracies, and single unit recordings from two monkeys' lateral interparietal area (LIP neurons. LIP firing rates distinguish between targets and distractors, exhibit stimulus set size effects, and show response-hemifield congruence effects. These data motivate our model, which uses coupled sets of leaky competing accumulators to represent processes hypothesized to occur in feature-selective areas and limb motor and pre-motor areas, together with the visual selection process occurring in LIP. Model simulations capture the electrophysiological and behavioral data, and fitted parameters suggest that different connection weights between LIP and the other cortical areas may account for the observed behavioral differences between the animals.

  20. An event-related visual occlusion method for examining anticipatory skill in natural interceptive tasks.

    Science.gov (United States)

    Mann, David L; Abernethy, Bruce; Farrow, Damian; Davis, Mark; Spratford, Wayne

    2010-05-01

    This article describes a new automated method for the controlled occlusion of vision during natural tasks. The method permits the time course of the presence or absence of visual information to be linked to identifiable events within the task of interest. An example application is presented in which the method is used to examine the ability of cricket batsmen to pick up useful information from the prerelease movement patterns of the opposing bowler. Two key events, separated by a consistent within-action time lag, were identified in the cricket bowling action sequence-namely, the penultimate foot strike prior to ball release (Event 1), and the subsequent moment of ball release (Event 2). Force-plate registration of Event 1 was then used as a trigger to facilitate automated occlusion of vision using liquid crystal occlusion goggles at time points relative to Event 2. Validation demonstrated that, compared with existing approaches that are based on manual triggering, this method of occlusion permitted considerable gains in temporal precision and a reduction in the number of unusable trials. A more efficient and accurate protocol to examine anticipation is produced, while preserving the important natural coupling between perception and action.

  1. The modulation of visual and task characteristics of a writing system on hemispheric lateralization in visual word recognition-a computational exploration.

    Science.gov (United States)

    Hsiao, Janet H; Lam, Sze Man

    2013-07-01

    Through computational modeling, here we examine whether visual and task characteristics of writing systems alone can account for lateralization differences in visual word recognition between different languages without assuming influence from left hemisphere (LH) lateralized language processes. We apply a hemispheric processing model of face recognition to visual word recognition; the model implements a theory of hemispheric asymmetry in perception that posits low spatial frequency biases in the right hemisphere and high spatial frequency (HSF) biases in the LH. We show two factors that can influence lateralization: (a) Visual similarity among words: The more similar the words in the lexicon look visually, the more HSF/LH processing is required to distinguish them, and (b) Requirement to decompose words into graphemes for grapheme-phoneme mapping: Alphabetic reading (involving grapheme-phoneme conversion) requires more HSF/LH processing than logographic reading (no grapheme-phoneme mapping). These factors may explain the difference in lateralization between English and Chinese orthographic processing.

  2. Intrinsic motivation and attentional capture from gamelike features in a visual search task.

    Science.gov (United States)

    Miranda, Andrew T; Palmer, Evan M

    2014-03-01

    In psychology research studies, the goals of the experimenter and the goals of the participants often do not align. Researchers are interested in having participants who take the experimental task seriously, whereas participants are interested in earning their incentive (e.g., money or course credit) as quickly as possible. Creating experimental methods that are pleasant for participants and that reward them for effortful and accurate data generation, while not compromising the scientific integrity of the experiment, would benefit both experimenters and participants alike. Here, we explored a gamelike system of points and sound effects that rewarded participants for fast and accurate responses. We measured participant engagement at both cognitive and perceptual levels and found that the point system (which invoked subtle, anonymous social competition between participants) led to positive intrinsic motivation, while the sound effects (which were pleasant and arousing) led to attentional capture for rewarded colors. In a visual search task, points were awarded after each trial for fast and accurate responses, accompanied by short, pleasant sound effects. We adapted a paradigm from Anderson, Laurent, and Yantis (Proceedings of the National Academy of Sciences 108(25):10367-10371, 2011b), in which participants completed a training phase during which red and green targets were probabilistically associated with reward (a point bonus multiplier). During a test phase, no points or sounds were delivered, color was irrelevant to the task, and previously rewarded targets were sometimes presented as distractors. Significantly longer response times on trials in which previously rewarded colors were present demonstrated attentional capture, and positive responses to a five-question intrinsic-motivation scale demonstrated participant engagement.

  3. A visual processing advantage for young-adolescent deaf observers: Evidence from face and object matching tasks

    Science.gov (United States)

    Megreya, Ahmed M.; Bindemann, Markus

    2017-01-01

    It is unresolved whether the permanent auditory deprivation that deaf people experience leads to the enhanced visual processing of faces. The current study explored this question with a matching task in which observers searched for a target face among a concurrent lineup of ten faces. This was compared with a control task in which the same stimuli were presented upside down, to disrupt typical face processing, and an object matching task. A sample of young-adolescent deaf observers performed with higher accuracy than hearing controls across all of these tasks. These results clarify previous findings and provide evidence for a general visual processing advantage in deaf observers rather than a face-specific effect. PMID:28117407

  4. A visual processing advantage for young-adolescent deaf observers: Evidence from face and object matching tasks.

    Science.gov (United States)

    Megreya, Ahmed M; Bindemann, Markus

    2017-01-24

    It is unresolved whether the permanent auditory deprivation that deaf people experience leads to the enhanced visual processing of faces. The current study explored this question with a matching task in which observers searched for a target face among a concurrent lineup of ten faces. This was compared with a control task in which the same stimuli were presented upside down, to disrupt typical face processing, and an object matching task. A sample of young-adolescent deaf observers performed with higher accuracy than hearing controls across all of these tasks. These results clarify previous findings and provide evidence for a general visual processing advantage in deaf observers rather than a face-specific effect.

  5. Neural compensation in adulthood following very preterm birth demonstrated during a visual paired associates learning task

    Directory of Open Access Journals (Sweden)

    Philip J. Brittain

    2014-01-01

    Full Text Available Very preterm birth (VPT; < 33 weeks of gestation is associated with an increased risk of learning disability, which contributes to more VPT-born children repeating grades and underachieving in school. Learning problems associated with VPT birth may be caused by pathophysiological alterations in neurodevelopment resulting from perinatal brain insult; however, adaptive neuroplastic processes may subsequently occur in the developing preterm brain which ameliorate, to an extent, the potential sequelae of altered neurophysiology. Here, we used functional magnetic resonance imaging (fMRI to compare neuronal activation in 24 VPT individuals and 22 controls (CT in young adulthood during a learning task consisting of the encoding and subsequent recognition of repeated visual paired associates. Structural MRI data were also collected and analysed in order to explore possible structure-function associations. Whilst the two groups did not differ in their learning ability, as demonstrated by their capacity to recognize previously-seen and previously–unseen visual pairs, between-group differences in linear patterns of Blood Oxygenation Level Dependant (BOLD activity were observed across the four repeated blocks of the task for both the encoding and recognition conditions, suggesting that the way learning takes place differs between the two groups. During encoding, significant between-group differences in patterns of BOLD activity were seen in clusters centred on the cerebellum, the anterior cingulate gyrus, the midbrain/substantia nigra, medial temporal (including parahippocampal gyrus and inferior and superior frontal gyri. During the recognition condition, significant between-group differences in patterns of BOLD activity were seen in clusters centred on the claustrum and the posterior cerebellum. Structural analysis revealed smaller grey matter volume in right middle temporal gyrus in VPT individuals compared to controls, however volume in this region

  6. Patients with central visual field loss adopt a cautious gait strategy during tasks that present a high risk of falling.

    Science.gov (United States)

    Timmis, Matthew A; Pardhan, Shahina

    2012-06-26

    To investigate how patients with central visual field loss (CFL) complete adaptive gait tasks when compared to visual normals and determine whether task difficulty significantly affects movement control. Ten patients with CFL and 12 visual normals negotiated a floor-based obstacle (of different heights, 5 and 10 cm) and also walked across an unobstructed laboratory (no obstacle present). Analysis assessed the kinematics of human movement for each task. During obstacle crossing, compared to visual normals, patients with CFL lifted their lead and trail foot significantly higher to avoid the obstacle, reduced horizontal crossing velocity (only significant at low obstacle height), and increased head flexion to look down at more immediate areas of the ground (P walking only trials there was no significant difference between the two groups in any of the kinematic measures. CONCLUSIONS; Compared to visual normals, patients with CFL adopt a cautious gait strategy during tasks that present a high risk of falling, such as obstacle crossing. However, under conditions that present a low risk of tripping or falling, such as level walking, differences appear minimal.

  7. The effects of brief visual interruption tasks on drivers' ability to resume their visual search for a pre-cued hazard.

    Science.gov (United States)

    Borowsky, Avinoam; Horrey, William J; Liang, Yulan; Garabet, Angela; Simmons, Lucinda; Fisher, Donald L

    2016-08-01

    Driver visual distraction is known to increase the likelihood of being involved in a crash, especially for long glances inside the vehicle. The detrimental impact of these in-vehicle glances may carry over and disrupt the ongoing processing of information after the driver glances back up on the road. This study explored the effect of different types of visual tasks inside the vehicle on the top-down processes that guide the detection and monitoring of road hazards after the driver glances back towards the road. Using a driving simulator, 56 participants were monitored with an eye tracking system while they navigated various hazardous scenarios in one of four experimental conditions. In all conditions, a potential hazard was visible 4-5s before the driver could strike the potential hazard were it to materialize. All interruptions were exactly two seconds in length. After the interruption the potential hazard again became visible for about a half-second after which the driver passed by the hazard. The nature of the in-vehicle visual interruption presented to the participants was varied across conditions: (1) Visual interruptions comprised of spatial, driving unrelated, tasks; (2) visual interruptions comprised of non-spatial, driving unrelated, tasks; (3) visual interruptions with no tasks added; and (4) no visual interruptions. In the first three conditions drivers glancing on the forward roadway was momentarily interrupted (either with or without a task) just after the potential hazard first became visible by the occurrence of an in-vehicle task lasting two seconds. In the last condition (no interruptions) the driver could not see the potential hazard after it just became visible because of obstructions in the built or natural environment. The obstruction (like the interruption) lasted for two seconds. In other words, across all conditions the hazard was visible, then became invisible, and finally became visible again. Importantly, the results show that the

  8. Task variation during simulated, repetitive, lowintensity work – influence on manifestation of shoulder muscle fatigue, perceived discomfort and upper-body postures

    NARCIS (Netherlands)

    Luger, T.; Bosch, T.; Hoozemans, M.J.M.; Looze, de M.P.; Veeger, H.E.J.

    2015-01-01

    Work-related musculoskeletal disorders are increasing due to industrialisation of work processes. Task variation has been suggested as potential intervention. The objectives of this study were to investigate, first, the influence of task variation on electromyographic (EMG) manifestations of

  9. 3D Visual Tracking of an Articulated Robot in Precision Automated Tasks

    Directory of Open Access Journals (Sweden)

    Hamza Alzarok

    2017-01-01

    Full Text Available The most compelling requirements for visual tracking systems are a high detection accuracy and an adequate processing speed. However, the combination between the two requirements in real world applications is very challenging due to the fact that more accurate tracking tasks often require longer processing times, while quicker responses for the tracking system are more prone to errors, therefore a trade-off between accuracy and speed, and vice versa is required. This paper aims to achieve the two requirements together by implementing an accurate and time efficient tracking system. In this paper, an eye-to-hand visual system that has the ability to automatically track a moving target is introduced. An enhanced Circular Hough Transform (CHT is employed for estimating the trajectory of a spherical target in three dimensions, the colour feature of the target was carefully selected by using a new colour selection process, the process relies on the use of a colour segmentation method (Delta E with the CHT algorithm for finding the proper colour of the tracked target, the target was attached to the six degree of freedom (DOF robot end-effector that performs a pick-and-place task. A cooperation of two Eye-to Hand cameras with their image Averaging filters are used for obtaining clear and steady images. This paper also examines a new technique for generating and controlling the observation search window in order to increase the computational speed of the tracking system, the techniques is named Controllable Region of interest based on Circular Hough Transform (CRCHT. Moreover, a new mathematical formula is introduced for updating the depth information of the vision system during the object tracking process. For more reliable and accurate tracking, a simplex optimization technique was employed for the calculation of the parameters for camera to robotic transformation matrix. The results obtained show the applicability of the proposed approach to track the

  10. Spatiotemporal oscillatory dynamics during the encoding and maintenance phases of a visual working memory task.

    Science.gov (United States)

    Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2015-08-01

    Many electrophysiology studies have examined neural oscillatory activity during the encoding, maintenance, and/or retrieval phases of various working memory tasks. Together, these studies have helped illuminate the underlying neural dynamics, although much remains to be discovered and some findings have not replicated in subsequent work. In this study, we examined the oscillatory dynamics that serve visual working memory operations using high-density magnetoencephalography (MEG) and advanced time-frequency and beamforming methodology. Specifically, we recorded healthy adults while they performed a high-load, Sternberg-type working memory task, and focused on the encoding and maintenance phases. We found significant 9-16 Hz desynchronizations in the bilateral occipital cortices, left dorsolateral prefrontal cortex (DLPFC), and left superior temporal areas throughout the encoding phase. Our analysis of the dynamics showed that the left DLPFC and superior temporal desynchronization became stronger as a function of time during the encoding period, and was sustained throughout most of the maintenance phase until sharply decreasing in the milliseconds preceding retrieval. In contrast, desynchronization in occipital areas became weaker as a function of time during encoding and eventually evolved into a strong synchronization during the maintenance period, consistent with previous studies. These results provide clear evidence of dynamic network-level processes during the encoding and maintenance phases of working memory, and support the notion of a dynamic pattern of functionally-discrete subprocesses within each working memory phase. The presence of such dynamic oscillatory networks may be a potential source of inconsistent findings in this literature, as neural activity within these networks changes dramatically with time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.

    Science.gov (United States)

    Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Uluğ, Aziz M; Eidelberg, David

    2015-12-01

    Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P perception of unnatural (versus natural) motion (P perception is disrupted in DYT1

  12. Food's visually perceived fat content affects discrimination speed in an orthogonal spatial task.

    Science.gov (United States)

    Harrar, Vanessa; Toepel, Ulrike; Murray, Micah M; Spence, Charles

    2011-10-01

    Choosing what to eat is a complex activity for humans. Determining a food's pleasantness requires us to combine information about what is available at a given time with knowledge of the food's palatability, texture, fat content, and other nutritional information. It has been suggested that humans may have an implicit knowledge of a food's fat content based on its appearance; Toepel et al. (Neuroimage 44:967-974, 2009) reported visual-evoked potential modulations after participants viewed images of high-energy, high-fat food (HF), as compared to viewing low-fat food (LF). In the present study, we investigated whether there are any immediate behavioural consequences of these modulations for human performance. HF, LF, or non-food (NF) images were used to exogenously direct participants' attention to either the left or the right. Next, participants made speeded elevation discrimination responses (up vs. down) to visual targets presented either above or below the midline (and at one of three stimulus onset asynchronies: 150, 300, or 450 ms). Participants responded significantly more rapidly following the presentation of a HF image than following the presentation of either LF or NF images, despite the fact that the identity of the images was entirely task-irrelevant. Similar results were found when comparing response speeds following images of high-carbohydrate (HC) food items to low-carbohydrate (LC) food items. These results support the view that people rapidly process (i.e. within a few hundred milliseconds) the fat/carbohydrate/energy value or, perhaps more generally, the pleasantness of food. Potentially as a result of HF/HC food items being more pleasant and thus having a higher incentive value, it seems as though seeing these foods results in a response readiness, or an overall alerting effect, in the human brain.

  13. A neural network approach to fMRI binocular visual rivalry task analysis.

    Directory of Open Access Journals (Sweden)

    Nicola Bertolino

    Full Text Available The purpose of this study was to investigate whether artificial neural networks (ANN are able to decode participants' conscious experience perception from brain activity alone, using complex and ecological stimuli. To reach the aim we conducted pattern recognition data analysis on fMRI data acquired during the execution of a binocular visual rivalry paradigm (BR. Twelve healthy participants were submitted to fMRI during the execution of a binocular non-rivalry (BNR and a BR paradigm in which two classes of stimuli (faces and houses were presented. During the binocular rivalry paradigm, behavioral responses related to the switching between consciously perceived stimuli were also collected. First, we used the BNR paradigm as a functional localizer to identify the brain areas involved the processing of the stimuli. Second, we trained the ANN on the BNR fMRI data restricted to these regions of interest. Third, we applied the trained ANN to the BR data as a 'brain reading' tool to discriminate the pattern of neural activity between the two stimuli. Fourth, we verified the consistency of the ANN outputs with the collected behavioral indicators of which stimulus was consciously perceived by the participants. Our main results showed that the trained ANN was able to generalize across the two different tasks (i.e. BNR and BR and to identify with high accuracy the cognitive state of the participants (i.e. which stimulus was consciously perceived during the BR condition. The behavioral response, employed as control parameter, was compared with the network output and a statistically significant percentage of correspondences (p-value <0.05 were obtained for all subjects. In conclusion the present study provides a method based on multivariate pattern analysis to investigate the neural basis of visual consciousness during the BR phenomenon when behavioral indicators lack or are inconsistent, like in disorders of consciousness or sedated patients.

  14. Flexible attention allocation to visual and auditory working memory tasks : manipulating reward induces a trade-off

    NARCIS (Netherlands)

    Morey, Candice Coker; Cowan, Nelson; Morey, Richard D.; Rouder, Jeffery N.

    2011-01-01

    Prominent roles for general attention resources are posited in many models of working memory, but the manner in which these can be allocated differs between models or is not sufficiently specified. We varied the payoffs for correct responses in two temporally-overlapping recognition tasks, a visual

  15. Expertise development for a visual task: Eye movements, verbal reports, and spatial abilities in air traffic control

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Jarodzka, Halszka; Brand-Gruwel, Saskia; Kirschner, Paul A.; De Bock, Jeano; Van Merriënboer, Jeroen

    2011-01-01

    Van Meeuwen, L. W., Jarodzka, H., Brand-Gruwel, S., Kirschner, P. A., De Bock, J. J. P. R., & Van Merriënboer, J. J. G. (2011, August). Expertise development for a visual task: Eye movements, verbal reports, and spatial abilities in air traffic control. Poster presented at the 16th European Conferen

  16. Comparison of sustained attention assessed by auditory and visual psychomotor vigilance tasks prior to and during sleep deprivation.

    Science.gov (United States)

    Jung, Christopher M; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P

    2011-06-01

    To date, no detailed examination of the pattern of change in reaction time performance for different sensory modalities has been conducted across the circadian cycle during sleep deprivation. Therefore, we compared sustained auditory and visual attention performance during 40h of sleep deprivation assessing multiple metrics of auditory and visual psychomotor vigilance tasks (PVT). Forty healthy participants (14 women) aged 30.8±8.6years were studied. Subjects were scheduled for an ∼8h sleep schedule at home prior to three-six laboratory baseline days with an 8 h sleep schedule followed by 40h sleep deprivation. Visual and auditory PVTs were 10min in duration, and were administered every 2h during sleep deprivation. Data were analysed with mixed-model anova. Sleep deprivation and circadian phase increased response time, lapses, anticipations, standard deviation of response times and time on task decrements for visual and auditory PVTs. In general, auditory vigilance was faster and less variable than visual vigilance, with larger differences between auditory and visual PVT during sleep deprivation versus baseline. Failures to respond to stimuli within 10s were four times more likely to occur to visual versus auditory stimuli. Our findings highlight that lapses during sleep deprivation are more than just long responses due to eye closure or visual distraction. Furthermore, our findings imply that the general pattern of change in attention during sleep deprivation (e.g. circadian variation, response slowing, lapsing and anticipations, time on task decrements and state instability) is similar among sensory-motor behavioral response modalities.

  17. Visual dependence and BPPV.

    Science.gov (United States)

    Agarwal, K; Bronstein, A M; Faldon, M E; Mandalà, M; Murray, K; Silove, Y

    2012-06-01

    The increased visual dependence noted in some vestibular patients may be secondary to their vertigo. We examine whether a single, brief vertigo attack, such as in benign paroxysmal positional vertigo (BPPV), modifies visual dependency. Visual dependency was measured before and after the Hallpike manoeuvre with (a) the Rod and Frame and the Rod and Disc techniques whilst seated and (b) the postural sway induced by visual roll-motion stimulation. Three subject groups were studied: 20 patients with BPPV (history and positive Hallpike manoeuvre; PosH group), 20 control patients (history of BPPV but negative Hallpike manoeuvre; NegH group) and 20 normal controls. Our findings show that while both patient groups showed enhanced visual dependency, the PosH and the normal control group decreased visual dependency on repetition of the visual tasks after the Hallpike manoeuvre. NegH patients differed from PosH patients in that their high visual dependency did not diminish on repetition of the visual stimuli; they scored higher on the situational characteristic questionnaire ('visual vertigo' symptoms) and showed higher incidence of migraine. We conclude that long term vestibular symptoms increase visual dependence but a single BPPV attack does not increase it further. Repetitive visual motion stimulation induces adaptation in visual dependence in peripheral vestibular disorders such as BPPV. A positional form of vestibular migraine may underlie the symptoms of some patients with a history of BPPV but negative Hallpike manoeuvre. The finding that they have non adaptable increased visual dependency may explain visuo-vestibular symptoms in this group and, perhaps more widely, in patients with migraine.

  18. The nature of impulsivity: visual exposure to natural environments decreases impulsive decision-making in a delay discounting task.

    Science.gov (United States)

    Berry, Meredith S; Sweeney, Mary M; Morath, Justice; Odum, Amy L; Jordan, Kerry E

    2014-01-01

    The benefits of visual exposure to natural environments for human well-being in areas of stress reduction, mood improvement, and attention restoration are well documented, but the effects of natural environments on impulsive decision-making remain unknown. Impulsive decision-making in delay discounting offers generality, predictive validity, and insight into decision-making related to unhealthy behaviors. The present experiment evaluated differences in such decision-making in humans experiencing visual exposure to one of the following conditions: natural (e.g., mountains), built (e.g., buildings), or control (e.g., triangles) using a delay discounting task that required participants to choose between immediate and delayed hypothetical monetary outcomes. Participants viewed the images before and during the delay discounting task. Participants were less impulsive in the condition providing visual exposure to natural scenes compared to built and geometric scenes. Results suggest that exposure to natural environments results in decreased impulsive decision-making relative to built environments.

  19. Do dyslexic individuals present a reduced visual attention span? Evidence from visual recognition tasks of non-verbal multi-character arrays.

    Science.gov (United States)

    Yeari, Menahem; Isser, Michal; Schiff, Rachel

    2016-06-21

    A controversy has recently developed regarding the hypothesis that developmental dyslexia may be caused, in some cases, by a reduced visual attention span (VAS). To examine this hypothesis, independent of phonological abilities, researchers tested the ability of dyslexic participants to recognize arrays of unfamiliar visual characters. Employing this test, findings were rather equivocal: dyslexic participants exhibited poor performance in some studies but normal performance in others. The present study explored four methodological differences revealed between the two sets of studies that might underlie their conflicting results. Specifically, in two experiments we examined whether a VAS deficit is (a) specific to recognition of multi-character arrays as wholes rather than of individual characters within arrays, (b) specific to characters' position within arrays rather than to characters' identity, or revealed only under a higher attention load due to (c) low-discriminable characters, and/or (d) characters' short exposure. Furthermore, in this study we examined whether pure dyslexic participants who do not have attention disorder exhibit a reduced VAS. Although comorbidity of dyslexia and attention disorder is common and the ability to sustain attention for a long time plays a major rule in the visual recognition task, the presence of attention disorder was neither evaluated nor ruled out in previous studies. Findings did not reveal any differences between the performance of dyslexic and control participants on eight versions of the visual recognition task. These findings suggest that pure dyslexic individuals do not present a reduced visual attention span.

  20. Genetic effects on source level evoked and induced oscillatory brain responses in a visual oddball task.

    Science.gov (United States)

    Antonakakis, Marios; Zervakis, Michalis; van Beijsterveldt, Catharina E M; Boomsma, Dorret I; De Geus, Eco J C; Micheloyannis, Sifis; Smit, Dirk J A

    2016-02-01

    Stimuli in simple oddball target detection paradigms cause evoked responses in brain potential. These responses are heritable traits, and potential endophenotypes for clinical phenotypes. These stimuli also cause responses in oscillatory activity, both evoked responses phase-locked to stimulus presentation and phase-independent induced responses. Here, we investigate whether phase-locked and phase-independent oscillatory responses are heritable traits. Oscillatory responses were examined in EEG recordings from 213 twin pairs (91 monozygotic and 122 dizygotic twins) performing a visual oddball task. After group Independent Component Analysis (group-ICA) and time-frequency decomposition, individual differences in evoked and induced oscillatory responses were compared between MZ and DZ twin pairs. Induced (phase-independent) oscillatory responses consistently showed the highest heritability (24-55%) compared to evoked (phase-locked) oscillatory responses and spectral energy, which revealed lower heritability at 1-35.6% and 4.5-32.3%, respectively. Since the phase-independent induced response encodes functional aspects of the brain response to target stimuli different from evoked responses, we conclude that the modulation of ongoing oscillatory activity may serve as an additional endophenotype for behavioral phenotypes and psychiatric genetics.

  1. Manipulation gesture effect in visual and auditory presentations: the link between tools in perceptual and motor tasks.

    Directory of Open Access Journals (Sweden)

    Amandine E Rey

    2015-07-01

    Full Text Available There is much behavioral and neurophysiological evidence in support of the idea that seeing a tool activates motor components of action related to the perceived object (e.g., grasping, use manipulation. However, the question remains as to whether the processing of the motor components associated with the tool is automatic or depends on the situation, including the task and the modality of tool presentation. The present study investigated whether the activation of motor components involved in tool use in response to the simple perception of a tool is influenced by the link between prime and target tools, as well as by the modality of presentation, in perceptual or motor tasks. To explore this issue, we manipulated the similarity of gesture involved in the use of the prime and target (identical, similar, different with two tool presentation modalities of the presentation tool (visual or auditory in perceptual and motor tasks. Across the experiments, we also manipulated the relevance of the prime (i.e., associated or not with the current task. The participants saw a first tool (or heard the sound it makes, which was immediately followed by a second tool on which they had to perform a perceptual task (i.e., indicate whether the second tool was identical to or different from the first tool or a motor task (i.e., manipulate the second tool as if it were the first tool. In both tasks, the similarity between the gestures employed for the first and the second tool was manipulated (Identical, Similar or Different gestures. The results showed that responses were faster when the manipulation gestures for the two tools were identical or similar, but only in the motor task. This effect was observed irrespective of the modality of presentation of the first tool, i.e. visual or auditory. We suggest that the influence of manipulation gesture on response time depends on the relevance of the first tool in motor tasks.

  2. Task-irrelevant visual letters interact with the processing of speech sounds in heteromodal and unimodal cortex.

    Science.gov (United States)

    Blau, Vera; van Atteveldt, Nienke; Formisano, Elia; Goebel, Rainer; Blomert, Leo

    2008-08-01

    Letters and speech sounds are the basic units of correspondence between spoken and written language. Associating auditory information of speech sounds with visual information of letters is critical for learning to read; however, the neural mechanisms underlying this association remain poorly understood. The present functional magnetic resonance imaging study investigates the automaticity and behavioral relevance of integrating letters and speech sounds. Within a unimodal auditory identification task, speech sounds were presented in isolation (unimodally) or bimodally in congruent and incongruent combinations with visual letters. Furthermore, the quality of the visual letters was manipulated parametrically. Our analyses revealed that the presentation of congruent visual letters led to a behavioral improvement in identifying speech sounds, which was paralleled by a similar modulation of cortical responses in the left superior temporal sulcus. Under low visual noise, cortical responses in superior temporal and occipito-temporal cortex were further modulated by the congruency between auditory and visual stimuli. These cross-modal modulations of performance and cortical responses during an unimodal auditory task (speech identification) indicate the existence of a strong and automatic functional coupling between processing of letters (orthography) and speech (phonology) in the literate adult brain.

  3. Adapting the Crossmodal Congruency Task for Measuring the Limits of Visual-Tactile Interactions Within and Between Groups.

    Science.gov (United States)

    Poole, Daniel; Couth, Samuel; Gowen, Emma; Warren, Paul A; Poliakoff, Ellen

    2015-01-01

    The crossmodal congruency task (CCT) is a commonly used paradigm for measuring visual-tactile interactions and how these may be influenced by discrepancies in space and time between the tactile target and visual distractors. The majority of studies which have used this paradigm have neither measured, nor attempted to control, individual variability in unisensory (tactile) performance. We have developed a version of the CCT in which unisensory baseline performance is constrained to enable comparisons within and between participant groups. Participants were instructed to discriminate between single and double tactile pulses presented to their dominant hand, at their own approximate threshold level. In Experiment 1, visual distractors were presented at -30 ms, 100 ms, 200 ms and 400 ms stimulus onset asynchronies. In Experiment 2, ipsilateral visual distractors were presented 0 cm, 21 cm, and 42 cm vertically from the target hand, and 42 cm in a symmetrical, contralateral position. Distractors presented -30 ms and 0 cm from the target produced a significantly larger congruency effect than at other time points and spatial locations. Thus, the typical limits of visual-tactile interactions were replicated using a version of the task in which baseline performance can be constrained. The usefulness of this approach is supported by the observation that tactile thresholds correlated with self-reported autistic traits in this non-clinical sample. We discuss the suitability of this adapted version of the CCT for measuring visual-tactile interactions in populations where unisensory tactile ability may differ within and between groups.

  4. Psychophysical testing of visual prosthetic devices: a call to establish a multi-national joint task force

    Science.gov (United States)

    Rizzo, Joseph F., III; Ayton, Lauren N.

    2014-04-01

    Recent advances in the field of visual prostheses, as showcased in this special feature of Journal of Neural Engineering , have led to promising results from clinical trials of a number of devices. However, as noted by these groups there are many challenges involved in assessing vision of people with profound vision loss. As such, it is important that there is consistency in the methodology and reporting standards for clinical trials of visual prostheses and, indeed, the broader vision restoration research field. Two visual prosthesis research groups, the Boston Retinal Implant Project (BRIP) and Bionic Vision Australia (BVA), have agreed to work cooperatively to establish a multi-national Joint Task Force. The aim of this Task Force will be to develop a consensus statement to guide the methods used to conduct and report psychophysical and clinical results of humans who receive visual prosthetic devices. The overarching goal is to ensure maximum benefit to the implant recipients, not only in the outcomes of the visual prosthesis itself, but also in enabling them to obtain accurate information about this research with ease. The aspiration to develop a Joint Task Force was first promulgated at the inaugural 'The Eye and the Chip' meeting in September 2000. This meeting was established to promote the development of the visual prosthetic field by applying the principles of inclusiveness, openness, and collegiality among the growing body of researchers in this field. These same principles underlie the intent of this Joint Task Force to enhance the quality of psychophysical research within our community. Despite prior efforts, a critical mass of interested parties could not congeal. Renewed interest for developing joint guidelines has developed recently because of a growing awareness of the challenges of obtaining reliable measurements of visual function in patients who are severely visually impaired (in whom testing is inherently noisy), and of the importance of

  5. Understanding communicative actions: a repetitive TMS study.

    Science.gov (United States)

    Stolk, Arjen; Noordzij, Matthijs L; Volman, Inge; Verhagen, Lennart; Overeem, Sebastiaan; van Elswijk, Gijs; Bloem, Bas; Hagoort, Peter; Toni, Ivan

    2014-02-01

    Despite the ambiguity inherent in human communication, people are remarkably efficient in establishing mutual understanding. Studying how people communicate in novel settings provides a window into the mechanisms supporting the human competence to rapidly generate and understand novel shared symbols, a fundamental property of human communication. Previous work indicates that the right posterior superior temporal sulcus (pSTS) is involved when people understand the intended meaning of novel communicative actions. Here, we set out to test whether normal functioning of this cerebral structure is required for understanding novel communicative actions using inhibitory low-frequency repetitive transcranial magnetic stimulation (rTMS). A factorial experimental design contrasted two tightly matched stimulation sites (right pSTS vs left MT+, i.e., a contiguous homotopic task-relevant region) and tasks (a communicative task vs a visual tracking task that used the same sequences of stimuli). Overall task performance was not affected by rTMS, whereas changes in task performance over time were disrupted according to TMS site and task combinations. Namely, rTMS over pSTS led to a diminished ability to improve action understanding on the basis of recent communicative history, while rTMS over MT+ perturbed improvement in visual tracking over trials. These findings qualify the contributions of the right pSTS to human communicative abilities, showing that this region might be necessary for incorporating previous knowledge, accumulated during interactions with a communicative partner, to constrain the inferential process that leads to action understanding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Redefining the L2 Listening Construct within an Integrated Writing Task: Considering the Impacts of Visual-Cue Interpretation and Note-Taking

    Science.gov (United States)

    Cubilo, Justin; Winke, Paula

    2013-01-01

    Researchers debate whether listening tasks should be supported by visuals. Most empirical research in this area has been conducted on the effects of visual support on listening comprehension tasks employing multiple-choice questions. The present study seeks to expand this research by investigating the effects of video listening passages (vs.…

  7. Competition for attentional resources between low spatial frequency content of emotional images and a foreground task in early visual cortex.

    Science.gov (United States)

    Müller, Matthias M; Gundlach, Christopher

    2017-03-01

    Low spatial frequency (LSF) image content has been proposed to play a superior functional role in emotional content extraction via the magnocellular pathway biasing attentional resources toward emotional content in visual cortex. We investigated whether emotionally unpleasant complex images that were presented either unfiltered or with LSF content only in the background while subjects performed a foreground task will withdraw more attentional resources from the task compared to unemotional, neutral images (distraction paradigm). We measured steady-state visual evoked potentials (SSVEPs) driven by flickering stimuli of a foreground task. Unfiltered unpleasant images resulted in a significant reduction of SSVEP amplitude compared to neutral images. No statistically significant differences were found with LSF background images. In a behavioral control experiment, we found no significant differences for complexity ratings between unfiltered and LSF pictures. Content identification was possible for unfiltered and LSF picture (correct responses > 74%). An additional EEG study examined typical emotion-related components for complex images presented either as unfiltered, LSF, or high spatial frequency (HSF, as an additional control) filtered, unpleasant, and neutral images. We found a significant main effect of emotional valence in the early posterior negativity. Late positive potential differences were only found for unfiltered and HSF images. Results suggest that, while LSF content is sufficient to allow for content and emotional cue extraction when images were presented alone, LSF content is not salient enough to serve as emotional distractor that withdraws attentional resources from a foreground task in early visual cortex. © 2016 Society for Psychophysiological Research.

  8. Stability of right visual field advantage in an international lateralized lexical decision task irrespective of participants' sex, handedness or bilingualism.

    Science.gov (United States)

    Willemin, Julie; Hausmann, Markus; Brysbaert, Marc; Dael, Nele; Chmetz, Florian; Fioravera, Asia; Gieruc, Kamila; Mohr, Christine

    2016-01-18

    In lateralized lexical decision tasks (LDTs), accuracy is higher and reaction times (RTs) are faster for right visual field (RVF) than left visual field (LVF) presentations. Visual field differences are thought to demonstrate the left hemisphere's (LH) dominance for language. The use of different tasks and words between studies and languages make direct comparisons difficult. We performed a lateralized LDT for which we selected four to six letter words that are used in three languages of Switzerland (French, German, and Italian) and English and Dutch. We accounted for the potential moderating roles of sex, handedness and multilingualism (early acquisition versus late acquisition of at least one second language). One hundred participants were tested at a French-speaking University in Switzerland. All performed a French vocabulary knowledge task [Brysbaert ( 2013 ). Lextale_FR a fast, free, and efficient test to measure language proficiency in French. Psychologica Belgica, 53(1), 23-27. Retrieved from http://hdl.handle.net/1854/LU-4373981]. Results showed a RVF over LVF advantage (accuracy, RTs and signal detection theory measures) for all groups, that is, irrespective of participants' sex, handedness and how many languages they spoke. We observed, however, that enhanced vocabulary knowledge related to a right hemisphere shift in early bilinguals and a LH shift in late bilinguals. We discuss how the current observations can inform future studies suitable for the validation of the current task using an "international" vocabulary.

  9. The relation of object naming and other visual speech production tasks:A large scale voxel-based morphometric study

    Directory of Open Access Journals (Sweden)

    Johnny King L. Lau

    2015-01-01

    Full Text Available We report a lesion–symptom mapping analysis of visual speech production deficits in a large group (280 of stroke patients at the sub-acute stage (<120 days post-stroke. Performance on object naming was evaluated alongside three other tests of visual speech production, namely sentence production to a picture, sentence reading and nonword reading. A principal component analysis was performed on all these tests' scores and revealed a ‘shared’ component that loaded across all the visual speech production tasks and a ‘unique’ component that isolated object naming from the other three tasks. Regions for the shared component were observed in the left fronto-temporal cortices, fusiform gyrus and bilateral visual cortices. Lesions in these regions linked to both poor object naming and impairment in general visual–speech production. On the other hand, the unique naming component was potentially associated with the bilateral anterior temporal poles, hippocampus and cerebellar areas. This is in line with the models proposing that object naming relies on a left-lateralised language dominant system that interacts with a bilateral anterior temporal network. Neuropsychological deficits in object naming can reflect both the increased demands specific to the task and the more general difficulties in language processing.

  10. Active listening impairs visual perception and selectivity: an ERP study of auditory dual-task costs on visual attention.

    Science.gov (United States)

    Gherri, Elena; Eimer, Martin

    2011-04-01

    The ability to drive safely is disrupted by cell phone conversations, and this has been attributed to a diversion of attention from the visual environment. We employed behavioral and ERP measures to study whether the attentive processing of spoken messages is, in itself, sufficient to produce visual-attentional deficits. Participants searched for visual targets defined by a unique feature (Experiment 1) or feature conjunction (Experiment 2), and simultaneously listened to narrated text passages that had to be recalled later (encoding condition), or heard backward-played speech sounds that could be ignored (control condition). Responses to targets were slower in the encoding condition, and ERPs revealed that the visual processing of search arrays and the attentional selection of target stimuli were less efficient in the encoding relative to the control condition. Results demonstrate that the attentional processing of visual information is impaired when concurrent spoken messages are encoded and maintained, in line with cross-modal links in selective attention, but inconsistent with the view that attentional resources are modality-specific. The distraction of visual attention by active listening could contribute to the adverse effects of cell phone use on driving performance.

  11. Task variation during simulated, repetitive, lowintensity work – influence on manifestation of shoulder muscle fatigue, perceived discomfort and upper-body postures

    NARCIS (Netherlands)

    Luger, T.; Bosch, T.; Hoozemans, M.J.M.; Looze, de M.P.; Veeger, H.E.J.

    2015-01-01

    Work-related musculoskeletal disorders are increasing due to industrialisation of work processes. Task variation has been suggested as potential intervention. The objectives of this study were to investigate, first, the influence of task variation on electromyographic (EMG) manifestations of shoulde

  12. Short-interval intracortical inhibition is not affected by varying visual feedback in an isometric task in biceps brachii muscle

    Directory of Open Access Journals (Sweden)

    Timo eRantalainen

    2013-03-01

    Full Text Available Short-interval intracortical inhibition (SICI of the primary motor cortex (M1 appears to play a significant role in skill acquisition. Consequently, it is of interest to find out which factors cause modulation of SICI. Purpose: To establish if visual feedback and force requirements influence SICI. Methods: SICI was assessed from 10 healthy adults (5 males and 5 females aged between 21 and 35 years in three submaximal isometric elbow flexion torque levels (5%, 20% and 40% of maximal voluntary contraction [MVC] and with two tasks differing in terms of visual feedback. Single-pulse and paired-pulse motor evoked potentials (MEPs, supramaximal M-wave and background surface electromyogram (sEMG were recorded from the biceps brachii muscle. Results: Repeated measures MANOVA was used for statistical analyses. Background sEMG did not differ between tasks (F = 0.4, P = 0.68 nor was task × torque level interaction observed (F = 1.2, P = 0.32, whereas background sEMG increased with increasing torque levels (P = 0.001. SICI did not differ between tasks (F = 0.9, P = 0.43 and no task × torque level interaction was observed (F = 2.3, P = 0.08. However, less SICI was observed at 40% MVC compared to the 5% and 20% MVC torque levels (P = 0.01 to 0.001. Conclusion: SICI was not altered by performing the same task with differing visual feedback. However, SICI decreased with increasing submaximal torque providing further evidence that SICI is one mechanism of modulating cortical excitability and plays a role in force gradation.

  13. Vanishing point attracts gaze in free-viewing and visual search tasks.

    Science.gov (United States)

    Borji, Ali; Feng, Mengyang; Lu, Huchuan

    2016-11-01

    Several structural scene cues such as gist, layout, horizontal line, openness, and depth have been shown to guide scene perception (e.g., Oliva & Torralba, 2001); Ross & Oliva, 2009). Here, to investigate whether vanishing point (VP) plays a significant role in gaze guidance, we ran two experiments. In the first one, we recorded fixations of 10 observers (six male, four female; mean age 22; SD = 0.84) freely viewing 532 images, out of which 319 had a VP (shuffled presentation; each image for 4 s). We found that the average number of fixations at a local region (80 × 80 pixels) centered at the VP is significantly higher than the average fixations at random locations (t test; n = 319; p search for a target character (T or L) placed randomly on a 3 × 3 imaginary grid overlaid on top of an image. Subjects reported their answers by pressing one of the two keys. Stimuli consisted of 270 color images (180 with a single VP, 90 without). The target happened with equal probability inside each cell (15 times L, 15 times T). We found that subjects were significantly faster (and more accurate) when the target appeared inside the cell containing the VP compared to cells without the VP (median across 14 subjects 1.34 s vs. 1.96 s; Wilcoxon rank-sum test; p = 0.0014). These findings support the hypothesis that vanishing point, similar to face, text (Cerf, Frady, & Koch, 2009), and gaze direction Borji, Parks, & Itti, 2014) guides attention in free-viewing and visual search tasks.

  14. Simulator study of the effect of visual-motion time delays on pilot tracking performance with an audio side task

    Science.gov (United States)

    Riley, D. R.; Miller, G. K., Jr.

    1978-01-01

    The effect of time delay was determined in the visual and motion cues in a flight simulator on pilot performance in tracking a target aircraft that was oscillating sinusoidally in altitude only. An audio side task was used to assure the subject was fully occupied at all times. The results indicate that, within the test grid employed, about the same acceptable time delay (250 msec) was obtained for a single aircraft (fighter type) by each of two subjects for both fixed-base and motion-base conditions. Acceptable time delay is defined as the largest amount of delay that can be inserted simultaneously into the visual and motion cues before performance degradation occurs. A statistical analysis of the data was made to establish this value of time delay. Audio side task provided quantitative data that documented the subject's work level.

  15. Forward Models Applied in Visual Servoing for a Reaching Task in the iCub Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Daniel Fernando Tello Gamarra

    2009-01-01

    Full Text Available This paper details the application of a forward model to improve a reaching task. The reaching task must be accomplished by a humanoid robot with 53 degrees of freedom (d.o.f. and a stereo-vision system. We have explored via simulations a new way of constructing and utilizing a forward model that encodes eye–hand relationships. We constructed a forward model using the data obtained from only a single reaching attempt. ANFIS neural networks are used to construct the forward model, but the forward model is updated online with new information that comes from each reaching attempt. Using the obtained forward model, an initial image Jacobian is estimated and is used with a visual servoing controller. Simulation results demonstrate that errors are lower when the initial image Jacobian is derived from the forward model. This paper is one of the few attempts at applying visual servoing in a complete humanoid robot.

  16. Effects of task repetition on L2 oral performance Efeitos da repetição de tarefas na produção oral em L2

    OpenAIRE

    Kyria Rebeca Finardi

    2008-01-01

    This study departs from the assumption that speaking an L2 is a complex cognitive ability (FORTKAMP, 2000) whose execution seems to involve tradeoff effects among the different goals of speech production, mainly among fluency, accuracy and complexity (BYGATE, 1998, 1999, 2001b; FOSTER e SKEHAN, 1996; SKEHAN e FOSTER, 1995, 2001; SKEHAN, 1998). Bygate (2001b) studied the effects of task familiarity on L2 speech performance. He found that in repeating a narrative task there were gains in terms ...

  17. Precision markedly attenuates repetitive lift capacity.

    Science.gov (United States)

    Collier, Brooke R; Holland, Laura; McGhee, Deirdre; Sampson, John A; Bell, Alison; Stapley, Paul J; Groeller, Herbert

    2014-01-01

    This study investigated the effect of precision on time to task failure in a repetitive whole-body manual handling task. Twelve participants were required to repetitively lift a box weighing 65% of their single repetition maximum to shoulder height using either precise or unconstrained box placement. Muscle activity, forces exerted at the ground, 2D body kinematics, box acceleration and psychophysical measures of performance were recorded until task failure was reached. With precision, time to task failure for repetitive lifting was reduced by 72%, whereas the duration taken to complete a single lift and anterior deltoid muscle activation increased by 39% and 25%, respectively. Yet, no significant difference was observed in ratings of perceived exertion or heart rate at task failure. In conclusion, our results suggest that when accuracy is a characteristic of a repetitive manual handling task, physical work capacity will decline markedly. The capacity to lift repetitively to shoulder height was reduced by 72% when increased accuracy was required to place a box upon a shelf. Lifting strategy and muscle activity were also modified, confirming practitioners should take into consideration movement precision when evaluating the demands of repetitive manual handling tasks.

  18. Functional relationships between the hippocampus and dorsomedial striatum in learning a visual scene-based memory task in rats.

    Science.gov (United States)

    Delcasso, Sébastien; Huh, Namjung; Byeon, Jung Seop; Lee, Jihyun; Jung, Min Whan; Lee, Inah

    2014-11-19

    The hippocampus is important for contextual behavior, and the striatum plays key roles in decision making. When studying the functional relationships with the hippocampus, prior studies have focused mostly on the dorsolateral striatum (DLS), emphasizing the antagonistic relationships between the hippocampus and DLS in spatial versus response learning. By contrast, the functional relationships between the dorsomedial striatum (DMS) and hippocampus are relatively unknown. The current study reports that lesions to both the hippocampus and DMS profoundly impaired performance of rats in a visual scene-based memory task in which the animals were required to make a choice response by using visual scenes displayed in the background. Analysis of simultaneous recordings of local field potentials revealed that the gamma oscillatory power was higher in the DMS, but not in CA1, when the rat performed the task using familiar scenes than novel ones. In addition, the CA1-DMS networks increased coherence at γ, but not at θ, rhythm as the rat mastered the task. At the single-unit level, the neuronal populations in CA1 and DMS showed differential firing patterns when responses were made using familiar visual scenes than novel ones. Such learning-dependent firing patterns were observed earlier in the DMS than in CA1 before the rat made choice responses. The present findings suggest that both the hippocampus and DMS process memory representations for visual scenes in parallel with different time courses and that flexible choice action using background visual scenes requires coordinated operations of the hippocampus and DMS at γ frequencies. Copyright © 2014 the authors 0270-6474/14/3415534-14$15.00/0.

  19. Effect of Task Specific Exercises, Gait Training, and Visual Biofeedback on Equinovarus Gait among Individuals with Stroke: Randomized Controlled Study

    Directory of Open Access Journals (Sweden)

    Mohamed Elsayed Khallaf

    2014-01-01

    Full Text Available Background and Purpose. Equinovarus foot is a common sign after stroke. The aim of this study is to investigate the effect of task specific exercises, gait training, and visual biofeedback on correcting equinovarus gait among individuals with stroke. Subjects and Methods. Sixteen subjects with ischemic stroke were randomly assigned to two equal groups (G1 and G2. All the patients were at stage 4 of motor recovery of foot according to Chedoke-McMaster Stroke Assessment without any cognitive dysfunction. E-med pedography was used to measure contact time, as well as force underneath hind and forefoot during walking. Outcome measures were collected before randomization, one week after the last session, and four weeks later. Participants in G1 received task specific exercises, gait training, and visual biofeedback and a traditional physical therapy program was applied for participants in G2 for 8 weeks. Results. Significant improvement was observed among G1 patients (P≤0.05 which lasts one month after therapy termination. On the other hand, there were no significant differences between measurements of the participants in G2. Between groups comparison also revealed a significant improvement in G1 with long lasting effect. Conclusion. The results of this study showed a positive long lasting effect of the task specific exercises, gait training, and visual biofeedback on equinovarus gait pattern among individuals with stroke.

  20. Internal reliability of the alcohol-related visual probe task is increased by utilising personalised stimuli and eye-tracking.

    Science.gov (United States)

    Christiansen, Paul; Mansfield, Rosie; Duckworth, Jay; Field, Matt; Jones, Andrew

    2015-10-01

    In the current study, we investigated whether the internal reliability of the visual probe task measure of attentional bias for substance-related cues could be improved by incorporating eye-tracking methods and personalised stimuli. Sixty social drinkers completed two visual probe tasks: one with a broad range of different alcohol pictures, the other containing only images of the participants' preferred drink. Attentional bias was inferred from manual reaction times to probes replacing the pictures, and from the duration of eye movement fixations towards the pictures (gaze dwell time). Internal reliability was highest for personalised (versus general) alcohol stimuli, and for eye-tracking (versus manual reaction time) measures of attentional bias. The internal reliability of both reaction time (α=.73) and gaze dwell time measures (α=.76) of attentional bias for personalised alcohol stimuli was acceptable. Internal reliability of indices of attentional bias for general alcohol stimuli was inferior, although better for the gaze dwell time (α=.51) compared to the reaction time measure (α=.19). Attentional bias towards personalised stimuli was larger than bias to general stimuli, but only for the reaction time measure. There were no statistically significant associations between measures of attentional bias and alcohol consumption or craving. Adopting personalised stimuli and eye movement monitoring significantly improves the internal reliability of the alcohol-related visual probe task. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Task-irrelevant distractors in the delay period interfere selectively with visual short-term memory for spatial locations.

    Science.gov (United States)

    Marini, Francesco; Scott, Jerry; Aron, Adam R; Ester, Edward F

    2017-07-01

    Visual short-term memory (VSTM) enables the representation of information in a readily accessible state. VSTM is typically conceptualized as a form of "active" storage that is resistant to interference or disruption, yet several recent studies have shown that under some circumstances task-irrelevant distractors may indeed disrupt performance. Here, we investigated how task-irrelevant visual distractors affected VSTM by asking whether distractors induce a general loss of remembered information or selectively interfere with memory representations. In a VSTM task, participants recalled the spatial location of a target visual stimulus after a delay in which distractors were presented on 75% of trials. Notably, the distractor's eccentricity always matched the eccentricity of the target, while in the critical conditions the distractor's angular position was shifted either clockwise or counterclockwise relative to the target. We then computed estimates of recall error for both eccentricity and polar angle. A general interference model would predict an effect of distractors on both polar angle and eccentricity errors, while a selective interference model would predict effects of distractors on angle but not on eccentricity errors. Results showed that for stimulus angle there was an increase in the magnitude and variability of recall errors. However, distractors had no effect on estimates of stimulus eccentricity. Our results suggest that distractors selectively interfere with VSTM for spatial locations.

  2. STATIC AND DYNAMIC POSTURE CONTROL IN POSTLINGUAL COCHLEAR IMPLANTED PATIENTS: Effects of dual-tasking, visual and auditory inputs suppression

    Directory of Open Access Journals (Sweden)

    BERNARD DEMANZE eLaurence

    2014-01-01

    Full Text Available Posture control is based on central integration of multisensory inputs, and on internal representation of body orientation in space. This multisensory feedback regulates posture control and continuously updates the internal model of body’s position which in turn forwards motor commands adapted to the environmental context and constraints. The peripheral localization of the vestibular system, close to the cochlea, makes vestibular damage possible following cochlear implant (CI surgery. Impaired vestibular function in CI patients, if any, may have a strong impact on posture stability. The simple postural task of quiet standing is generally paired with cognitive activity in most day life conditions, leading therefore to competition for attentional resources in dual-tasking, and increased risk of fall particularly in patients with impaired vestibular function. This study was aimed at evaluating the effects of post-lingual cochlear implantation on posture control in adult deaf patients. Possible impairment of vestibular function was assessed by comparing the postural performance of patients to that of age-matched healthy subjects during a simple postural task performed in static and dynamic conditions, and during dual-tasking with a visual or auditory memory task. Postural tests were done in eyes open (EO and eyes closed (EC conditions, with the cochlear implant activated (ON or not (OFF. Results showed that the CI patients significantly reduced limits of stability and increased postural instability in static conditions. In dynamic conditions, they spent considerably more energy to maintain equilibrium, and their head was stabilized neither in space nor on trunk while the controls showed a whole body rigidification strategy. Hearing (prosthesis on as well as dual-tasking did not really improve the dynamic postural performance of the CI patients. We conclude that CI patients become strongly visual dependent mainly in challenging postural conditions.

  3. Direct and indirect effects of attention and visual function on gait impairment in Parkinson's disease: influence of task and turning.

    Science.gov (United States)

    Stuart, Samuel; Galna, Brook; Delicato, Louise S; Lord, Sue; Rochester, Lynn

    2017-07-01

    Gait impairment is a core feature of Parkinson's disease (PD) which has been linked to cognitive and visual deficits, but interactions between these features are poorly understood. Monitoring saccades allows investigation of real-time cognitive and visual processes and their impact on gait when walking. This study explored: (i) saccade frequency when walking under different attentional manipulations of turning and dual-task; and (ii) direct and indirect relationships between saccades, gait impairment, vision and attention. Saccade frequency (number of fast eye movements per-second) was measured during gait in 60 PD and 40 age-matched control participants using a mobile eye-tracker. Saccade frequency was significantly reduced in PD compared to controls during all conditions. However, saccade frequency increased with a turn and decreased under dual-task for both groups. Poorer attention directly related to saccade frequency, visual function and gait impairment in PD, but not controls. Saccade frequency did not directly relate to gait in PD, but did in controls. Instead, saccade frequency and visual function deficit indirectly impacted gait impairment in PD, which was underpinned by their relationship with attention. In conclusion, our results suggest a vital role for attention with direct and indirect influences on gait impairment in PD. Attention directly impacted saccade frequency, visual function and gait impairment in PD, with connotations for falls. It also underpinned indirect impact of visual and saccadic impairment on gait. Attention therefore represents a key therapeutic target that should be considered in future research. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Interferência mútua entre atividade visual e atividade motora em jovens e idosos Mutual interference between a visual and a motor task in young and elderly subjects

    Directory of Open Access Journals (Sweden)

    Patrícia Pereira dos Santos Teixeira

    2008-01-01

    Full Text Available Como o envelhecimento provoca dificuldade na capacidade de dividir a atenção, este estudo visou verificar, em jovens e idosos: (1 a eventual interferência entre uma tarefa visual e uma motora; (2 se essa interferência (caso exista ocorre de forma diferente no desempenho de jovens e idosos; (3 se as tarefas propostas têm correlação com testes validados, de seqüência alfanumérica (TMT e de levantar e caminhar cronometrado (TLCC. A tarefa visual consistiu na verbalização do reconhecimento de duas figuras iguais ou diferentes apresentadas rapidamente. A tarefa motora consistiu na alternância de passos do chão a uma plataforma fixa de 10 cm de altura. As tarefas foram avaliadas isoladas (tarefa-simples e associadas (tarefa-dupla em dois grupos: 10 jovens (23±2,8 anos e 10 idosos (68,8±8,6 anos. Na tarefa visual, os jovens fizeram menos erros que os idosos (pSince aging brings about difficulty in dividing attention, this study aimed at verifying, in youth and aged: (1 the possible interference between a visual and a motor task; (2 whether such interference varies between young and elderly subjects; (3 whether there is correlation between the proposed tasks and the trail making test (TMT and the timed up-and-go test (TUGT. The visual task measured the ability to state whether two quickly presented figures were same or different. The motor task consisted on alternating steps from the ground to a 10 cm-high platform. Tasks were assessed both as single-task (isolated and dual-task (simultaneous in two groups: 10 young people (aged 23±2.8 and 10 elderly (aged 68.8±8.6. In the visual task, young volunteers presented less errors than the elderly (p<0.001; in both groups no increase in the number of errors was detected at dual-task when compared to the single-task. At the motor task the elderly presented lower speed in dual-task as compared to the single-task (p=0.009. TMT correlated positively to the number of alternations of step (p<0

  5. Preoperational Graphic Representation: From Intellectual Realism to Visual Realism in Draw a House-Tree Task.

    Science.gov (United States)

    Kalyan-Masih, Violet

    In a pilot study of children's drawings of "a house with a tree behind it," Piagetian sequence (scribbling, fortuitous realism, failed realism, intellectual realism, and visual realism) was tentatively supported. Children's strategies in decentering from intellectual to visual realism were noted. The study reported in this paper was…

  6. Relationship of stimulus and examinee variables to performance on analogous visual and tactile block construction tasks.

    Science.gov (United States)

    Miller, Joseph C; Skillman, Gemma D

    2008-01-01

    Nonverbal/spatial tests are unavailable for persons with visual impairments, despite decades of documented need and developmental effort. Because past tactile analogs of block design (BD) tests have not been widely accepted, known BD test parameters were compared across visual and tactile designs to assess the applicability of the test across modalities. Contrary to expectations, edge-cueing of designs with no perceptual cohesiveness (PC) improved tactile and visual performance. The expected PC by cueing and field independence (FI) by PC interactions were found for visual, but not tactile, BD. Uncued tactile designs elicited more errors, tending to occur closer to the center of the designs. These data suggest that visual and tactile BD performance cannot be interpreted similarly. Differences may be due to to modality-specific demand for various encoding and recoding abilities. The standing model is expanded to account for cross-modality differences in BD performance by including both rotation and block segregation.

  7. Toward the influence of temporal attention on the selection of targets in a visual search task: An ERP study.

    Science.gov (United States)

    Rolke, Bettina; Festl, Freya; Seibold, Verena C

    2016-11-01

    We used ERPs to investigate whether temporal attention interacts with spatial attention and feature-based attention to enhance visual processing. We presented a visual search display containing one singleton stimulus among a set of homogenous distractors. Participants were asked to respond only to target singletons of a particular color and shape that were presented in an attended spatial position. We manipulated temporal attention by presenting a warning signal before each search display and varying the foreperiod (FP) between the warning signal and the search display in a blocked manner. We observed distinctive ERP effects of both spatial and temporal attention. The amplitudes for the N2pc, SPCN, and P3 were enhanced by spatial attention indicating a processing benefit of relevant stimulus features at the attended side. Temporal attention accelerated stimulus processing; this was indexed by an earlier onset of the N2pc component and a reduction in reaction times to targets. Most importantly, temporal attention did not interact with spatial attention or stimulus features to influence visual processing. Taken together, the results suggest that temporal attention fosters visual perceptual processing in a visual search task independently from spatial attention and feature-based attention; this provides support for the nonspecific enhancement hypothesis of temporal attention.

  8. Effect of repetition proportion on language-driven anticipatory eye movements

    Science.gov (United States)

    Britt, Allison E.; Mirman, Daniel; Kornilov, Sergey A.; Magnuson, James S.

    2014-01-01

    Previous masked priming research in word recognition has demonstrated that repetition priming is influenced by experiment-wise information structure, such as proportion of target repetition. Research using naturalistic tasks and eye-tracking has shown that people use linguistic knowledge to anticipate upcoming words. We examined whether the proportion of target repetition within an experiment can have a similar effect on anticipatory eye movements. We used a word-to-picture matching task (i.e., the visual world paradigm) with target repetition proportion carefully controlled. Participants’ eye movements were tracked starting when the pictures appeared, one second prior to the onset of the target word. Targets repeated from the previous trial were fixated more than other items during this preview period when target repetition proportion was high and less than other items when target repetition proportion was low. These results indicate that linguistic anticipation can be driven by short-term within-experiment trial structure, with implications for the generalization of priming effects, the bases of anticipatory eye movements, and experiment design. PMID:24345674

  9. Motivational salience modulates hippocampal repetition suppression and functional connectivity in humans

    Directory of Open Access Journals (Sweden)

    Sarah eZweynert

    2011-11-01

    Full Text Available Repetition suppression (RS is a rapid decrease of stimulus-related neuronal responses upon repeated presentation of a stimulus. Previous studies have demonstrated that negative emotional salience of stimuli enhances RS. It is, however, unclear how motivational salience of stimuli, such as reward-predicting value, influences RS for complex visual stimuli, and which brain regions might show differences in RS for reward-predicting and neutral stimuli. Here we investigated the influence of motivational salience on RS of complex scenes using event-related fMRI. Thirty young healthy volunteers performed a monetary incentive delay (MID task with complex scenes (indoor vs. outdoor serving as neutral or reward-predicting cue pictures. Each cue picture was presented three times. In line with previous findings, reward anticipation was associated with activations in the ventral striatum, midbrain, and orbitofrontal cortex (OFC. Stimulus repetition was associated with pronounced repetition suppression in ventral visual stream areas like the parahippocampal place area (PPA. An interaction of reward anticipation and repetition suppression was specifically observed in the anterior hippocampus, where a response decrease across repetitions was observed for the reward-predicting scenes only. Functional connectivity analysis further revealed specific activity-dependent connectivity increases of the hippocampus and the PPA and OFC. Our results suggest that hippocampal repetition suppression is sensitive to reward-predicting properties of stimuli and might therefore reflect a rapid, adaptive neural response mechanism for motivationally salient information.

  10. Cortical configuration by stimulus onset visual evoked potentials (SO-VEPs) predicts performance on a motion direction discrimination task.

    Science.gov (United States)

    Zalar, Bojan; Martin, Tim; Kavcic, Voyko

    2015-06-01

    The slowing of information processing, a hallmark of cognitive aging, has several origins. Previously we reported that in a motion direction discrimination task, older as compared to younger participants showed prolonged non-decision time, an index of an early perceptual stage, while in motion onset visual evoked potentials (MO-VEPs) the P1 component was enhanced and N2 was diminished. We did not find any significant correlations between behavioral and MO-VEP measures. Here, we investigated the role of age in encoding and perceptual processing of stimulus onset visually evoked potentials (SO-VEPs). Twelve healthy adults (age55years) performed a motion direction discrimination task during EEG recording. Prior to motion, the stimulus consisted of a static cloud of white dots on a black background. As expected, SO-VEPs evoked well defined P1, N1, and P2 components. Elderly participants as compared to young participants showed increased P1 amplitude while their P2 amplitude was reduced. In addition elderly participants showed increased latencies for P1 and N1 components. Contrary to the findings with MO-VEPs, SO-VEP parameters were significant predictors of average response times and diffusion model parameters. Our electrophysiological results support the notion that slowing of information processing in older adults starts at the very beginning of encoding in visual cortical processing, most likely in striate and extrastriate visual cortices. More importantly, the earliest SO-VEP components, possibly reflecting configuration of visual cortices and encoding processes, predict subsequent prolonging and tardiness of perceptual and higher-level cognitive processes.

  11. Adults with dyslexia demonstrate large effects of crowding and detrimental effects of distractors in a visual tilt discrimination task.

    Directory of Open Access Journals (Sweden)

    Rizan Cassim

    Full Text Available Previous research has shown that adults with dyslexia (AwD are disproportionately impacted by close spacing of stimuli and increased numbers of distractors in a visual search task compared to controls [1]. Using an orientation discrimination task, the present study extended these findings to show that even in conditions where target search was not required: (i AwD had detrimental effects of both crowding and increased numbers of distractors; (ii AwD had more pronounced difficulty with distractor exclusion in the left visual field and (iii measures of crowding and distractor exclusion correlated significantly with literacy measures. Furthermore, such difficulties were not accounted for by the presence of covarying symptoms of ADHD in the participant groups. These findings provide further evidence to suggest that the ability to exclude distracting stimuli likely contributes to the reported visual attention difficulties in AwD and to the aetiology of literacy difficulties. The pattern of results is consistent with weaker and asymmetric attention in AwD.

  12. Adults with dyslexia demonstrate large effects of crowding and detrimental effects of distractors in a visual tilt discrimination task.

    Science.gov (United States)

    Cassim, Rizan; Talcott, Joel B; Moores, Elisabeth

    2014-01-01

    Previous research has shown that adults with dyslexia (AwD) are disproportionately impacted by close spacing of stimuli and increased numbers of distractors in a visual search task compared to controls [1]. Using an orientation discrimination task, the present study extended these findings to show that even in conditions where target search was not required: (i) AwD had detrimental effects of both crowding and increased numbers of distractors; (ii) AwD had more pronounced difficulty with distractor exclusion in the left visual field and (iii) measures of crowding and distractor exclusion correlated significantly with literacy measures. Furthermore, such difficulties were not accounted for by the presence of covarying symptoms of ADHD in the participant groups. These findings provide further evidence to suggest that the ability to exclude distracting stimuli likely contributes to the reported visual attention difficulties in AwD and to the aetiology of literacy difficulties. The pattern of results is consistent with weaker and asymmetric attention in AwD.

  13. The nature of impulsivity: visual exposure to natural environments decreases impulsive decision-making in a delay discounting task.

    Directory of Open Access Journals (Sweden)

    Meredith S Berry

    Full Text Available The benefits of visual exposure to natural environments for human well-being in areas of stress reduction, mood improvement, and attention restoration are well documented, but the effects of natural environments on impulsive decision-making remain unknown. Impulsive decision-making in delay discounting offers generality, predictive validity, and insight into decision-making related to unhealthy behaviors. The present experiment evaluated differences in such decision-making in humans experiencing visual exposure to one of the following conditions: natural (e.g., mountains, built (e.g., buildings, or control (e.g., triangles using a delay discounting task that required participants to choose between immediate and delayed hypothetical monetary outcomes. Participants viewed the images before and during the delay discounting task. Participants were less impulsive in the condition providing visual exposure to natural scenes compared to built and geometric scenes. Results suggest that exposure to natural environments results in decreased impulsive decision-making relative to built environments.

  14. Visual task complexity modulates the brain's response to unattended auditory novelty.

    Science.gov (United States)

    Yucel, Gunes; Petty, Christopher; McCarthy, Gregory; Belger, Aysenil

    2005-07-13

    New, unusual, and changing events are important environmental cues, and the ability to detect these types of stimuli in the environment constitutes a biologically significant survival skill. We used event-related potentials to examine whether sensory and cognitive neural responses to unattended novel events are modulated by the complexity of a primary visuomotor task. Event-related potentials were elicited by unattended task-irrelevant pitch-deviant tones and novel environmental sounds while study participants performed a continuous visuomotor tracking task at two levels of difficulty, achieved by manipulating the control dynamics of a joystick. The results revealed that increased task complexity modulated evoked sensory and cognitive event-related potential components, indicating that detection of change and novelty in the unattended auditory channel is resource-limited.

  15. Visualization

    OpenAIRE

    Balon, Andreja

    1990-01-01

    The present thesis entails the field of visualization which is divided into visualization along traditional lines and visualization in computer science. As the psychological aspect of image is of vital importance for visualization, it is shortly described in the beginning. Visualization in computer science is divided into three main fields: scientific visualization, program visualization and visual programming. An explanation and examples of approach to applications are given for each field....

  16. Tarefas repetitivas sob pressão temporal: os distúrbios musculoesqueléticos e o trabalho industrial Repetitive tasks under time pressure: the musculoskeletal disorders and the industrial work

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Pereira Fernandes

    2010-05-01

    Full Text Available Realizou-se estudo ergonômico a fim de caracterizar as tarefas repetitivas e as demandas psicossociais no trabalho industrial em empresa do ramo plástico da Região Metropolitana de Salvador (BA. Realizaram-se observações globais das tarefas nas primeiras visitas à empresa, visando conhecer a organização geral, o funcionamento da produção e os determinantes das tarefas. Observaram-se nesta etapa que as exigências temporais na execução das tarefas implicavam demandas psicossociais e demandas físicas, em especial, os movimentos repetitivos. Na segunda etapa, realizaram-se observações sistemáticas, com entrevistas simultâneas. Mediu-se a duração dos ciclos básicos das tarefas na moldagem/acabamento das embalagens e registrou-se a ocorrência de perturbações que exigiam das trabalhadoras sua regulação. Identificaram-se variabilidades do trabalho, evidenciando como são geradas as demandas extras e como as exigências cognitivas e físicas podem ser exacerbadas pela pressão temporal. A insuficiência dos meios de trabalho, as exigências temporais da gestão da produção e uma organização do trabalho caracterizada pelo baixo controle conformam uma situação em que a continuidade da produção apenas é possível à custa de hipersolicitação do corpo das trabalhadoras.An ergonomic study was carried out to characterize repetitive work and psychosocial demands at work in a plastic industry in The Greater Salvador, State of Bahia, Brazil. Global observations of tasks were preliminary carried out to investigate work organization, production organization and tasks determinants. Time requirements in tasks development involved psychosocial demands and physical demands, particularly when the latter implied very fast repetitive work. Secondly, those findings led to systematic observations with simultaneous interviews of workers. Work cycles in each task of molding/finishing plastic bags were measured by video analysis. All

  17. Dot Enumeration Perceptual Organization Task (DEPOT): evidence for a short-term visual memory deficit in schizophrenia.

    Science.gov (United States)

    Rabinowicz, E F; Opler, L A; Owen, D R; Knight, R A

    1996-08-01

    The Dot Enumeration Perceptual Organization Task (DEPOT) evaluates the validity of 2 specific competing cognitive models of early input dysfunction in schizophrenic individuals: a primary Stage 1, sensory store, perceptual organization deficit vs. a Stage 2, short-term visual memory (STVM) deficit. DEPOT was also designed to assess the hypothesis that schizophrenic individuals tend to perform poorly on all cognitive tasks. In DEPOT both number and form judgments are made about the same dot patterns. A response delay manipulation assesses the persistence and operation of STVM. The study included 41 psychotic inpatients (8 with acute and 16 with chronic schizophrenia and 7 with bipolar and 10 with nonbipolar affective disorder) and 38 controls (22 college students and 16 hospital personnel). Although the pattern of results was consistent with neither the Stage 1 deficit nor the general deficit hypotheses, a Stage 2, STVM deficit hypothesis could account parsimoniously for the data.

  18. Keeping an eye on the violinist: motor experts show superior timing consistency in a visual perception task.

    Science.gov (United States)

    Wöllner, Clemens; Cañal-Bruland, Rouwen

    2010-11-01

    Common coding theory states that perception and action may reciprocally induce each other. Consequently, motor expertise should map onto perceptual consistency in specific tasks such as predicting the exact timing of a musical entry. To test this hypothesis, ten string musicians (motor experts), ten non-string musicians (visual experts), and ten non-musicians were asked to watch progressively occluded video recordings of a first violinist indicating entries to fellow members of a string quartet. Participants synchronised with the perceived timing of the musical entries. Results revealed significant effects of motor expertise on perception. Compared to visual experts and non-musicians, string players not only responded more accurately, but also with less timing variability. These findings provide evidence that motor experts' consistency in movement execution-a key characteristic of expert motor performance-is mirrored in lower variability in perceptual judgements, indicating close links between action competence and perception.

  19. Design considerations for remotely operated welding in space: Task definition and visual weld monitoring experiment

    Science.gov (United States)

    Reynerson, Charles M.

    1993-05-01

    This thesis explores the concept of welding in a space environment with the use of automation. Since the amount of time astronauts can work outside a spacecraft is limited, future construction and repair tasks will likely be assisted by automation. It is also likely that remote space welding will be needed for the construction of large-scale space structures in earth orbit as well as for lunar and Martian ground-based structures. Due to the complex nature of the tasks to be accomplished, the equipment will probably not be fully autonomous but instead supervised by a human operator. The welding fabrication problem in space is examined in a broad sense including some of the considerations for designing a human supervisory remote welding system. The history of space welding processes is examined, as well as current research in the field. A task definition and functional analysis is provided to assist future designers in outlining typical operational sequences for such a remote welding system. Such analysis is important when deciding whether the human operator should perform certain tasks or if the operator should supervise the automated system while it performs the tasks.

  20. Task-Dependent Changes in Frontal-Parietal Activation and Connectivity During Visual Search.

    Science.gov (United States)

    Maximo, Jose O; Neupane, Ajaya; Saxena, Nitesh; Joseph, Robert M; Kana, Rajesh K

    2016-05-01

    Visual search is an important skill in navigating and locating objects (a target) among distractors in our environment. Efficient and faster target detection involves reciprocal interaction between a viewer's attentional resources as well as salient target characteristics. The neural correlates of visual search have been extensively investigated over the last decades, suggesting the involvement of a frontal-parietal network comprising the frontal eye fields (FEFs) and intraparietal sulcus (IPS). In addition, activity and connectivity of these network changes as the visual search become complex and more demanding. The current functional magnetic resonance imaging study examined the modulation of the frontal-parietal network in response to cognitive demand in 22 healthy adult participants. In addition to brain activity, changes in functional connectivity and effective connectivity in this network were examined in response to easy and difficult visual search. Results revealed significantly increased activation in FEF, IPS, and supplementary motor area, more so in difficult search than in easy search. Functional and effective connectivity analyses showed enhanced connectivity in the frontal-parietal network during difficult search and enhanced information transfer from left to right hemisphere during the difficult search process. Our overall findings suggest that cognitive demand significantly increases brain resources across all three measures of brain processing. In sum, we found that goal-directed visual search engages a network of frontal-parietal areas that are modulated in relation to cognitive demand.

  1. Penetrating the fog of the decoupled mind: the effects of visual salience in the sustained attention to response task.

    Science.gov (United States)

    Smallwood, Jonathan

    2013-03-01

    An absence of coupling between cognition and perception can mean that the mind neglects the careful processing of information relevant to the task at hand and errors can ensue. Given that highly salient perceptual events can automatically capture attention, the current study explored whether the same neglect of task-relevant information was possible for stimuli with high levels of perceptual saliency (e.g., identifiable by colour). In four experiments, participants performed a go/no-go task with a low frequency of no-go events. Across all experiments, response inhibition was more successful for coloured no-go targets than for stimuli that shared the same colour as the go targets. In addition, the response time (reaction time [RT]) for rare, coloured go targets was slower than when the same events were noncolored. Together, these results suggest that in relatively simple go/no-go tasks, highly salient perceptual events capture attention in an automatic fashion. Increased visual salience is argued to be beneficial when associated with no-go targets because it momentarily enforces coupling between attention and perception, disrupting ongoing behaviour at the precise moment when not responding is the correct action to take. These results suggest that although the mind may at times neglect events in the environment, salient perceptual events cannot be ignored in the same way.

  2. Transient and linearly graded deactivation of the human default-mode network by a visual detection task.

    Science.gov (United States)

    Singh, K D; Fawcett, I P

    2008-05-15

    In this fMRI study, we show that an extended network of brain areas, previously described as the default-mode network, is suppressed during the performance of a global visual motion discrimination task. For the first time, we demonstrate that this network is transiently suppressed in an event-related fashion, reflecting a true negative activation compared to baseline, and that this deactivation occurs in a strongly graded fashion depending on the strength of the global motion signal. Deactivation across the network varied in an inverse linear relationship with motion coherency, demonstrating that the strongest suppression occurs for the most error-prone tasks. Deactivations were absent for the easiest of the tasks (100% coherence). We also show that the magnitude of task-related activation of the individual sub-components of the default-mode network are strongly correlated, indicating a highly integrated system. The results offer a striking indication of a rapid, highly reactive and tunable system within the brain for active suppression of this network of brain areas.

  3. Behavioral evidence for inter-hemispheric cooperation during a lexical decision task: a divided visual field experiment.

    Science.gov (United States)

    Perrone-Bertolotti, Marcela; Lemonnier, Sophie; Baciu, Monica

    2013-01-01

    HIGHLIGHTSThe redundant bilateral visual presentation of verbal stimuli decreases asymmetry and increases the cooperation between the two hemispheres.The increased cooperation between the hemispheres is related to semantic information during lexical processing.The inter-hemispheric interaction is represented by both inhibition and cooperation. This study explores inter-hemispheric interaction (IHI) during a lexical decision task by using a behavioral approach, the bilateral presentation of stimuli within a divided visual field experiment. Previous studies have shown that compared to unilateral presentation, the bilateral redundant (BR) presentation decreases the inter-hemispheric asymmetry and facilitates the cooperation between hemispheres. However, it is still poorly understood which type of information facilitates this cooperation. In the present study, verbal stimuli were presented unilaterally (left or right visual hemi-field successively) and bilaterally (left and right visual hemi-field simultaneously). Moreover, during the bilateral presentation of stimuli, we manipulated the relationship between target and distractors in order to specify the type of information which modulates the IHI. Thus, three types of information were manipulated: perceptual, semantic, and decisional, respectively named pre-lexical, lexical and post-lexical processing. Our results revealed left hemisphere (LH) lateralization during the lexical decision task. In terms of inter-hemisphere interaction, the perceptual and decision-making information increased the inter-hemispheric asymmetry, suggesting the inhibition of one hemisphere upon the other. In contrast, semantic information decreased the inter-hemispheric asymmetry, suggesting cooperation between the hemispheres. We discussed our results according to current models of IHI and concluded that cerebral hemispheres interact and communicate according to various excitatory and inhibitory mechanisms, all which depend on specific

  4. The impact of ageing and gender on visual mental imagery processes: A study of performance on tasks from the Complete Visual Mental Imagery Battery (CVMIB).

    Science.gov (United States)

    Palermo, Liana; Piccardi, Laura; Nori, Raffaella; Giusberti, Fiorella; Guariglia, Cecilia

    2016-09-01

    In this study we aim to evaluate the impact of ageing and gender on different visual mental imagery processes. Two hundred and fifty-one participants (130 women and 121 men; age range = 18-77 years) were given an extensive neuropsychological battery including tasks probing the generation, maintenance, inspection, and transformation of visual mental images (Complete Visual Mental Imagery Battery, CVMIB). Our results show that all mental imagery processes with the exception of the maintenance are affected by ageing, suggesting that other deficits, such as working memory deficits, could account for this effect. However, the analysis of the transformation process, investigated in terms of mental rotation and mental folding skills, shows a steeper decline in mental rotation, suggesting that age could affect rigid transformations of objects and spare non-rigid transformations. Our study also adds to previous ones in showing gender differences favoring men across the lifespan in the transformation process, and, interestingly, it shows a steeper decline in men than in women in inspecting mental images, which could partially account for the mixed results about the effect of ageing on this specific process. We also discuss the possibility to introduce the CVMIB in clinical assessment in the context of theoretical models of mental imagery.

  5. Implicit phonetic symbolism in voicing of consonants and visual lightness using Garner's speeded classification task.

    Science.gov (United States)

    Hirata, Sachiko; Ukita, Jun; Kita, Shinichi

    2011-12-01

    The present study examines implicit phonetic symbolism which posits that arbitrary linguistic sound is related to certain aspects of characteristics of other modalities, such as color, touch, or emotion. In consonant discrimination and lightness discrimination using Garner's speeded classification paradigm, spoken sounds (voiced/voiceless consonants) and lightness of visual stimuli (black/white squares) were systematically varied to assess cross-modal interactions. Congruent audio-visual pairs (voiced consonants and black, and between voiceless consonants and white) facilitated consonant discrimination. In lightness discrimination, no congruent facilitation or congruence effect was observed. These results indicated that cross-modal interactions in implicit phonetic symbolism can be found in correlations between linguistic spoken sounds and visual lightness.

  6. Trunk coordination in healthy and chronic nonspecific low back pain subjects during repetitive flexion-extension tasks: Effects of movement asymmetry, velocity and load.

    Science.gov (United States)

    Mokhtarinia, Hamid Reza; Sanjari, Mohammad Ali; Chehrehrazi, Mahshid; Kahrizi, Sedigheh; Parnianpour, Mohamad

    2016-02-01

    Multiple joint interactions are critical to produce stable coordinated movements and can be influenced by low back pain and task conditions. Inter-segmental coordination pattern and variability were assessed in subjects with and without chronic nonspecific low back pain (CNSLBP). Kinematic data were collected from 22 CNSLBP and 22 healthy volunteers during repeated trunk flexion-extension in various conditions of symmetry, velocity, and loading; each at two levels. Sagittal plane angular data were time normalized and used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify lumbar-pelvis and pelvis-thigh coordination patterns and variability. Statistical analysis revealed more in-phase coordination pattern in CNSLBP (p=0.005). There was less adaptation in the DP for the CNSLBP group, as shown by interactions of Group by Load (p=.008) and Group by Symmetry by Velocity (p=.03) for the DP of pelvis-thigh and lumbar-pelvis couplings, respectively. Asymmetric (pvelocity conditions (p<0.001). In conclusion, coordination pattern and variability could be influenced by trunk flexion-extension conditions. CNSLBP subjects demonstrated less adaptability of movement pattern to the demands of the flexion-extension task.

  7. The cerebellum and visual perceptual learning: evidence from a motion extrapolation task.

    Science.gov (United States)

    Deluca, Cristina; Golzar, Ashkan; Santandrea, Elisa; Lo Gerfo, Emanuele; Eštočinová, Jana; Moretto, Giuseppe; Fiaschi, Antonio; Panzeri, Marta; Mariotti, Caterina; Tinazzi, Michele; Chelazzi, Leonardo

    2014-09-01

    Visual perceptual learning is widely assumed to reflect plastic changes occurring along the cerebro-cortical visual pathways, including at the earliest stages of processing, though increasing evidence indicates that higher-level brain areas are also involved. Here we addressed the possibility that the cerebellum plays an important role in visual perceptual learning. Within the realm of motor control, the cerebellum supports learning of new skills and recalibration of motor commands when movement execution is consistently perturbed (adaptation). Growing evidence indicates that the cerebellum is also involved in cognition and mediates forms of cognitive learning. Therefore, the obvious question arises whether the cerebellum might play a similar role in learning and adaptation within the perceptual domain. We explored a possible deficit in visual perceptual learning (and adaptation) in patients with cerebellar damage using variants of a novel motion extrapolation, psychophysical paradigm. Compared to their age- and gender-matched controls, patients with focal damage to the posterior (but not the anterior) cerebellum showed strongly diminished learning, in terms of both rate and amount of improvement over time. Consistent with a double-dissociation pattern, patients with focal damage to the anterior cerebellum instead showed more severe clinical motor deficits, indicative of a distinct role of the anterior cerebellum in the motor domain. The collected evidence demonstrates that a pure form of slow-incremental visual perceptual learning is crucially dependent on the intact cerebellum, bearing the notion that the human cerebellum acts as a learning device for motor, cognitive and perceptual functions. We interpret the deficit in terms of an inability to fine-tune predictive models of the incoming flow of visual perceptual input over time. Moreover, our results suggest a strong dissociation between the role of different portions of the cerebellum in motor versus

  8. What Top-Down Task Sets Do for Us: An ERP Study on the Benefits of Advance Preparation in Visual Search

    Science.gov (United States)

    Eimer, Martin; Kiss, Monika; Nicholas, Susan

    2011-01-01

    When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features.…

  9. Working Memory Inefficiency: Minimal Information Is Utilized in Visual Recognition Tasks

    Science.gov (United States)

    Chen, Zhijian; Cowan, Nelson

    2013-01-01

    Can people make perfect use of task-relevant information in working memory (WM)? Specifically, when questioned about an item in an array that does not happen to be in WM, can participants take into account other items that are in WM, eliminating them as response candidates? To address this question, an ideal-responder model that assumes perfect…

  10. Learner Perspectives on Task Design for Oral-Visual eTandem Language Learning

    Science.gov (United States)

    El-Hariri, Yasmin

    2016-01-01

    Constituting a more specific form of online collaboration, eTandem Language Learning (eTLL) shows great potential for non-formal, self-directed language learning. Research in this field, particularly regarding task design, is still scarce. Focusing on their beliefs and attitudes, this article examines what learners think about how…

  11. Graphic Representation: From Intellectual Realism to Visual Realism in Draw-a-House-Tree Task

    Science.gov (United States)

    Kalyan-Masih, Violet

    1976-01-01

    This study was undertaken to investigate (1) the findings of an exploratory study in which the Luquet-Piaget sequence of drawing was tentatively confirmed in children's drawings of a house with a tree behind it, (2) the relationship of house-tree task with selected Piagetian and two psychometric measures, and (3) synchronous development among…

  12. Animate and Inanimate Objects in Human Visual Cortex: Evidence for Task-Independent Category Effects

    Science.gov (United States)

    Wiggett, Alison J.; Pritchard, Iwan C.; Downing, Paul E.

    2009-01-01

    Evidence from neuropsychology suggests that the distinction between animate and inanimate kinds is fundamental to human cognition. Previous neuroimaging studies have reported that viewing animate objects activates ventrolateral visual brain regions, whereas inanimate objects activate ventromedial regions. However, these studies have typically…

  13. First-Year Engineering Students' Difficulties in Visualization and Drawing Tasks

    Science.gov (United States)

    Garmendia, Mikel; Guisasola, Jenaro; Sierra, Egoitz

    2007-01-01

    Visualizing parts, meaning interpreting the views of an object which has been represented in a drawing, is a fundamental skill in engineering. However, learning deficiencies and difficulties have been observed among engineering undergraduates, and there is a high failure rate in drawing courses. In order to determine the origin of these…

  14. The deaf utilize phonological representations in visually presented verbal memory tasks.

    Science.gov (United States)

    Okada, Rieko; Nakagawa, Jun; Takahashi, Muneyoshi; Kanaka, Noriko; Fukamauchi, Fumihiko; Watanabe, Katsumi; Namatame, Miki; Matsuda, Tetsuya

    2015-01-01

    The phonological abilities of congenitally deaf individuals are inferior to those of people who can hear. However, deaf individuals can acquire spoken languages by utilizing orthography and lip-reading. The present study used functional magnetic resonance imaging (fMRI) to show that deaf individuals utilize phonological representations via a mnemonic process. We compared the brain activation of deaf and hearing participants while they memorized serially visually presented Japanese kana letters (Kana), finger alphabets (Finger), and Arabic letters (Arabic). Hearing participants did not know which finger alphabets corresponded to which language sounds, whereas deaf participants did. All of the participants understood the correspondence between Kana and their language sounds. None of the participants knew the correspondence between Arabic and their language sounds, so this condition was used as a baseline. We found that the left superior temporal gyrus (STG) was activated by phonological representations in the deaf group when memorizing both Kana and Finger. Additionally, the brain areas associated with phonological representations for Finger in the deaf group were the same as the areas for Kana in the hearing group. Overall, despite the fact that they are superior in visual information processing, deaf individuals utilize phonological rather than visual representations in visually presented verbal memory.

  15. Visual Object Detection, Categorization, and Identification Tasks Are Associated with Different Time Courses and Sensitivities

    Science.gov (United States)

    de la Rosa, Stephan; Choudhery, Rabia N.; Chatziastros, Astros

    2011-01-01

    Recent evidence suggests that the recognition of an object's presence and its explicit recognition are temporally closely related. Here we re-examined the time course (using a fine and a coarse temporal resolution) and the sensitivity of three possible component processes of visual object recognition. In particular, participants saw briefly…

  16. Using frequency tagging to quantify attentional deployment in a visual divided attention task

    NARCIS (Netherlands)

    Toffanin, Paolo; de Jong, Ritske; Johnson, Addie; Martens, Sander

    Frequency tagging is an EEG method based on the quantification of the steady state visual evoked potential (SSVEP) elicited from stimuli which flicker with a distinctive frequency. Because the amplitude of the SSVEP is modulated by attention such that attended stimuli elicit higher SSVEP amplitudes

  17. Visual scanning training for neglect after stroke with and without a computerized lane tracking dual task

    NARCIS (Netherlands)

    van Kessel, M. E.; Geurts, A. C. H.; Brouwer, W. H.; Fasotti, L.

    2013-01-01

    Neglect patients typically fail to explore the contralesional half-space. During visual scanning training, these patients learn to consciously pay attention to contralesional target stimuli. It has been suggested that combining scanning training with methods addressing non-spatial attention might en

  18. Priming from Distractors in Rapid Serial Visual Presentation Is Modulated by Image Properties and Attention

    Science.gov (United States)

    Harris, Irina M.; Benito, Claire T.; Dux, Paul E.

    2010-01-01

    We investigated distractor processing in a dual-target rapid serial visual presentation (RSVP) task containing familiar objects, by measuring repetition priming from a priming distractor (PD) to Target 2 (T2). Priming from a visually identical PD was contrasted with priming from a PD in a different orientation from T2. We also tested the effect of…

  19. Priming from Distractors in Rapid Serial Visual Presentation Is Modulated by Image Properties and Attention

    Science.gov (United States)

    Harris, Irina M.; Benito, Claire T.; Dux, Paul E.

    2010-01-01

    We investigated distractor processing in a dual-target rapid serial visual presentation (RSVP) task containing familiar objects, by measuring repetition priming from a priming distractor (PD) to Target 2 (T2). Priming from a visually identical PD was contrasted with priming from a PD in a different orientation from T2. We also tested the effect of…

  20. Impact of Learning Styles on Air Force Technical Training: Multiple and Linear Imagery in the Presentation of a Comparative Visual Location Task to Visual and Haptic Subjects. Interim Report for Period January 1977-January 1978.

    Science.gov (United States)

    Ausburn, Floyd B.

    A U.S. Air Force study was designed to develop instruction based on the supplantation theory, in which tasks are performed (supplanted) for individuals who are unable to perform them due to their cognitive style. The study examined the effects of linear and multiple imagery in presenting a task requiring visual comparison and location to…

  1. Time-frequency distribution properties of event-related potentials in mental fatigue induced by visual memory tasks.

    Science.gov (United States)

    Liu, Xinyang; Liu, Juntao; Gai, Shuping; Meyer, Kristina; Xu, Shengwei; Cai, Xinxia

    2016-09-28

    Prolonged periods of demanding cognitive tasks lead to an exhausted feeling known as mental fatigue. The neural underpinnings of mental fatigue are still under exploration. In the present study, we aimed to identify neurophysiological indicators of mental fatigue by studying the time-frequency distribution of the event-related potentials (ERPs) measured in N=26 adults in nonfatigued versus fatigued states. We were interested in the frontal theta and occipital alpha variations, which have shown consistent relationships with mental fatigue in previous studies. Furthermore, we expected differential changes in left and right electrodes, in line with previously detected lateralization effects in cognitive tasks. Mental fatigue was induced by a sustained two-back verbal visual memory task for 125 min and assessed using the Chalder Fatigue Scale. We applied a high-resolution time-frequency analysis method called smoothed pseudo Wigner Ville distribution and used regional integrals as indicators for changing trends of signal energy. Results showed an increase in ERP frontal theta energy (P=0.03) and a decrease in occipital alpha energy (P=0.028) when participants became mentally fatigued. The change in frontal theta was more pronounced in left electrode sites (P=0.032), hinting toward a differential fatigue effect in the two hemispheres. The results were discussed on the basis of previous lateralization studies with memory tasks and interpreted as an indicator of a causal relationship between the sustained task execution and the physiological changes. Our findings also suggest that the ERP signal energy variations in frontal theta and occipital alpha might be used as neural biomarkers to assess mental fatigue.

  2. Dynamic spatiotemporal brain analyses of the visual checkerboard task: Similarities and differences between passive and active viewing conditions.

    Science.gov (United States)

    Cacioppo, Stephanie; Weiss, Robin M; Cacioppo, John T

    2016-10-01

    We introduce a new analytic technique for the microsegmentation of high-density EEG to identify the discrete brain microstates evoked by the visual reversal checkerboard task. To test the sensitivity of the present analytic approach to differences in evoked brain microstates across experimental conditions, subjects were instructed to (a) passively view the reversals of the checkerboard (passive viewing condition), or (b) actively search for a target stimulus that may appear at the fixation point, and they were offered a monetary reward if they correctly detected the stimulus (active viewing condition). Results revealed that, within the first 168 ms of a checkerboard presentation, the same four brain microstates were evoked in the passive and active viewing conditions, whereas the brain microstates evoked after 168 ms differed between these two conditions, with more brain microstates elicited in the active than in the passive viewing condition. Additionally, distinctions were found in the active condition between a change in a scalp configuration that reflects a change in microstate and a change in scalp configuration that reflects a change in the level of activation of the same microstate. Finally, the bootstrapping procedure identified that two microstates lacked robustness even though statistical significance thresholds were met, suggesting these microstates should be replicated prior to placing weight on their generalizability across individuals. These results illustrate the utility of the analytic approach and provide new information about the spatiotemporal dynamics of the brain states underlying passive and active viewing in the visual checkerboard task. © 2016 Society for Psychophysiological Research.

  3. Volatiles emitted from the roots of Vetiveria zizanioides suppress the decline in attention during a visual display terminal task.

    Science.gov (United States)

    Matsubara, Eri; Shimizu, Kuniyoshi; Fukagawa, Mio; Ishizi, Yuka; Kakoi, Chikako; Hatayama, Tomoko; Nagano, Jun; Okamoto, Tsuyoshi; Ohnuki, Koichiro; Kondo, Ryuichiro

    2012-01-01

    The perennial grass Vetiveria zizanioides (vetiver) is mainly cultivated for its fragrant essential oil. Although the components of the oil and their biological activities have been studied extensively, the effect of the volatiles emitted from the roots of V. zizanioides on humans has so far remained unexplored. We investigated the effects of volatile compounds emitted from the cut roots of V. zizanioides (1.0 g, low-dose conditions; 30 g, high-dose conditions) on individuals during a visual display terminal task. Participants who breathed the volatile compounds emitted under low-dose conditions showed faster reaction times and stimulation of sympathetic nerve activity as measured by electrocardiography. These effects were not observed under high-dose conditions. The total amounnt of volatiles emitted during the experiment was 0.25 μg under low-dose conditions and 1.35 μg under high-dose conditions. These findings indicate that volatile compounds emitted from the roots of V. zizanioides under low-dose conditions may have helped subjects to maintain performance in visual discrimination tasks while maintaining high sympathetic nerve system activity.

  4. Lower-right and upper-left biases within upper and lower visual fields in a circular array task.

    Science.gov (United States)

    Szelest, Izabela; Elias, Lorin J

    2014-12-01

    Visuospatial performance varies along the horizontal and vertical dimensions, resulting in behavioral biases such as pseudoneglect. The interaction between the horizontal and vertical attentional biases was investigated using a novel circular array task capable of conveying relative brightness information across vertical and horizontal dimensions simultaneously. In a novel circular array task comprised of six discs, the grayscale gradient was disrupted by switching two grayscale values within the array. Leftward biases were observed in the lower visual fields and rightward biases in the upper visual fields. More importantly, the magnitude of bias within the upper/lower horizontal dimension altered depending on the relative position of the stimuli along horizontal and vertical axes within each dimension. Manipulating the upper-most and leftward discs yield stronger biases than manipulating rightward discs. Furthermore, stronger biases were observed during bottom and rightward disc manipulation. The upper-left and lower-right biases within the horizontal dimension indicate that the interactions between the horizontal and vertical biases may not rely simply on the dichotomy within the horizontal and vertical dimensions, but also on the relative spatial distribution of stimuli within these dimensions.

  5. Varianish: Jamming with Pattern Repetition

    Directory of Open Access Journals (Sweden)

    Jort Band

    2014-10-01

    Full Text Available In music, patterns and pattern repetition are often regarded as a machine-like task, indeed often delegated to drum Machines and sequencers. Nevertheless, human players add subtle differences and variations to repeated patterns that are musically interesting and often unique. Especially when looking at minimal music, pattern repetitions create hypnotic effects and the human mind blends out the actual pattern to focus on variation and tiny differences over time. Varianish is a musical instrument that aims at turning this phenomenon into a new musical experience for musician and audience: Musical pattern repetitions are found in live music and Varianish generates additional (musical output accordingly that adds substantially to the overall musical expression. Apart from the theory behind the pattern finding and matching and the conceptual design, a demonstrator implementation of Varianish is presented and evaluated.

  6. Visual phonology: the effects of orthographic consistency on different auditory word recognition tasks.

    Science.gov (United States)

    Ziegler, Johannes C; Ferrand, Ludovic; Montant, Marie

    2004-07-01

    In this study, we investigated orthographic influences on spoken word recognition. The degree of spelling inconsistency was manipulated while rime phonology was held constant. Inconsistent words with subdominant spellings were processed more slowly than inconsistent words with dominant spellings. This graded consistency effect was obtained in three experiments. However, the effect was strongest in lexical decision, intermediate in rime detection, and weakest in auditory naming. We conclude that (1) orthographic consistency effects are not artifacts of phonological, phonetic, or phonotactic properties of the stimulus material; (2) orthographic effects can be found even when the error rate is extremely low, which rules out the possibility that they result from strategies used to reduce task difficulty; and (3) orthographic effects are not restricted to lexical decision. However, they are stronger in lexical decision than in other tasks. Overall, the study shows that learning about orthography alters the way we process spoken language.

  7. Direction of magnetoencephalography sources associated with feedback and feedforward contributions in a visual object recognition task.

    Science.gov (United States)

    Ahlfors, Seppo P; Jones, Stephanie R; Ahveninen, Jyrki; Hämäläinen, Matti S; Belliveau, John W; Bar, Moshe

    2015-01-12

    Identifying inter-area communication in terms of the hierarchical organization of functional brain areas is of considerable interest in human neuroimaging. Previous studies have suggested that the direction of magneto- and electroencephalography (MEG, EEG) source currents depend on the layer-specific input patterns into a cortical area. We examined the direction in MEG source currents in a visual object recognition experiment in which there were specific expectations of activation in the fusiform region being driven by either feedforward or feedback inputs. The source for the early non-specific visual evoked response, presumably corresponding to feedforward driven activity, pointed outward, i.e., away from the white matter. In contrast, the source for the later, object-recognition related signals, expected to be driven by feedback inputs, pointed inward, toward the white matter. Associating specific features of the MEG/EEG source waveforms to feedforward and feedback inputs could provide unique information about the activation patterns within hierarchically organized cortical areas.

  8. A Task-Based Evaluation of Combined Set and Network Visualization

    OpenAIRE

    Rodgers, Peter; Stapleton, Gem; Alsallakh, Bilal; Micallef, Luana; Baker, Robert; Thompson, Simon

    2016-01-01

    This paper addresses the problem of how best to visualize network data grouped into overlapping sets. We address it by evaluating various existing techniques alongside a new technique. Such data arise in many areas, including social network analysis, gene expression data, and crime analysis. We begin by investigating the strengths and weakness of four existing techniques, namely Bubble Sets, EulerView, KelpFusion, and LineSets, using principles from psychology and known layout guides. Using i...

  9. Lingual Kinematics during Rapid Syllable Repetition in Parkinson's Disease

    Science.gov (United States)

    Wong, Min Ney; Murdoch, Bruce E.; Whelan, Brooke-Mai

    2012-01-01

    Background: Rapid syllable repetition tasks are commonly used in the assessment of motor speech disorders. However, little is known about the articulatory kinematics during rapid syllable repetition in individuals with Parkinson's disease (PD). Aims: To investigate and compare lingual kinematics during rapid syllable repetition in dysarthric…

  10. Autistic fluid intelligence: Increased reliance on visual functional connectivity with diminished modulation of coupling by task difficulty.

    Science.gov (United States)

    Simard, Isabelle; Luck, David; Mottron, Laurent; Zeffiro, Thomas A; Soulières, Isabelle

    2015-01-01

    Different test types lead to different intelligence estimates in autism, as illustrated by the fact that autistic individuals obtain higher scores on the Raven's Progressive Matrices (RSPM) test than they do on the Wechsler IQ, in contrast to relatively similar performance on both tests in non-autistic individuals. However, the cerebral processes underlying these differences are not well understood. This study investigated whether activity in the fluid "reasoning" network, which includes frontal, parietal, temporal and occipital regions, is differently modulated by task complexity in autistic and non-autistic individuals during the RSPM. In this purpose, we used fMRI to study autistic and non-autistic participants solving the 60 RSPM problems focussing on regions and networks involved in reasoning complexity. As complexity increased, activity in the left superior occipital gyrus and the left middle occipital gyrus increased for autistic participants, whereas non-autistic participants showed increased activity in the left middle frontal gyrus and bilateral precuneus. Using psychophysiological interaction analyses (PPI), we then verified in which regions did functional connectivity increase as a function of reasoning complexity. PPI analyses revealed greater connectivity in autistic, compared to non-autistic participants, between the left inferior occipital gyrus and areas in the left superior frontal gyrus, right superior parietal lobe, right middle occipital gyrus and right inferior temporal gyrus. We also observed generally less modulation of the reasoning network as complexity increased in autistic participants. These results suggest that autistic individuals, when confronted with increasing task complexity, rely mainly on visuospatial processes when solving more complex matrices. In addition to the now well-established enhanced activity observed in visual areas in a range of tasks, these results suggest that the enhanced reliance on visual perception has a

  11. Autistic fluid intelligence: Increased reliance on visual functional connectivity with diminished modulation of coupling by task difficulty

    Directory of Open Access Journals (Sweden)

    Isabelle Simard

    2015-01-01

    Full Text Available Different test types lead to different intelligence estimates in autism, as illustrated by the fact that autistic individuals obtain higher scores on the Raven's Progressive Matrices (RSPM test than they do on the Wechsler IQ, in contrast to relatively similar performance on both tests in non-autistic individuals. However, the cerebral processes underlying these differences are not well understood. This study investigated whether activity in the fluid “reasoning” network, which includes frontal, parietal, temporal and occipital regions, is differently modulated by task complexity in autistic and non-autistic individuals during the RSPM. In this purpose, we used fMRI to study autistic and non-autistic participants solving the 60 RSPM problems focussing on regions and networks involved in reasoning complexity. As complexity increased, activity in the left superior occipital gyrus and the left middle occipital gyrus increased for autistic participants, whereas non-autistic participants showed increased activity in the left middle frontal gyrus and bilateral precuneus. Using psychophysiological interaction analyses (PPI, we then verified in which regions did functional connectivity increase as a function of reasoning complexity. PPI analyses revealed greater connectivity in autistic, compared to non-autistic participants, between the left inferior occipital gyrus and areas in the left superior frontal gyrus, right superior parietal lobe, right middle occipital gyrus and right inferior temporal gyrus. We also observed generally less modulation of the reasoning network as complexity increased in autistic participants. These results suggest that autistic individuals, when confronted with increasing task complexity, rely mainly on visuospatial processes when solving more complex matrices. In addition to the now well-established enhanced activity observed in visual areas in a range of tasks, these results suggest that the enhanced reliance on visual

  12. Designing and Evaluation of Reliability and Validity of Visual Cue-Induced Craving Assessment Task for Methamphetamine Smokers

    Directory of Open Access Journals (Sweden)

    Hamed Ekhtiari

    2010-08-01

    Full Text Available A B S T R A C TIntroduction: Craving to methamphetamine is a significant health concern and exposure to methamphetamine cues in laboratory can induce craving. In this study, a task designing procedure for evaluating methamphetamine cue-induced craving in laboratory conditions is examined. Methods: First a series of visual cues which could induce craving was identified by 5 discussion sessions between expert clinicians and 10 methamphetamine smokers. Cues were categorized in 4 main clusters and photos were taken for each cue in studio, then 60 most evocative photos were selected and 10 neutral photos were added. In this phase, 50 subjects with methamphetamine dependence, had exposure to cues and rated craving intensity induced by the 72 cues (60 active evocative photos + 10 neutral photos on self report Visual Analogue Scale (ranging from 0-100. In this way, 50 photos with high levels of evocative potency (CICT 50 and 10 photos with the most evocative potency (CICT 10 were obtained and subsequently, the task was designed. Results: The task reliability (internal consistency was measured by Cronbach’s alpha which was 91% for (CICT 50 and 71% for (CICT 10. The most craving induced was reported for category Drug use procedure (66.27±30.32 and least report for category Cues associated with drug use (31.38±32.96. Difference in cue-induced craving in (CICT 50 and (CICT 10 were not associated with age, education, income, marital status, employment and sexual activity in the past 30 days prior to study entry. Family living condition was marginally correlated with higher scores in (CICT 50. Age of onset for (opioids, cocaine and methamphetamine was negatively correlated with (CICT 50 and (CICT 10 and age of first opiate use was negatively correlated with (CICT 50. Discussion: Cue-induced craving for methamphetamine may be reliably measured by tasks designed in laboratory and designed assessment tasks can be used in cue reactivity paradigm, and

  13. The effects of visual discriminability and rotation angle on 30-month-olds’ search performance in spatial rotation tasks

    Directory of Open Access Journals (Sweden)

    Mirjam Ebersbach

    2016-10-01

    Full Text Available Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds’ success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children (N = 29 performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children.

  14. The Effects of Visual Discriminability and Rotation Angle on 30-Month-Olds’ Search Performance in Spatial Rotation Tasks

    Science.gov (United States)

    Ebersbach, Mirjam; Nawroth, Christian

    2016-01-01

    Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds’ success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children (N = 29) performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children. PMID:27812346

  15. Impact of target probability on single-trial EEG target detection in a difficult rapid serial visual presentation task.

    Science.gov (United States)

    Cecotti, Hubert; Sato-Reinhold, Joyce; Sy, Jocelyn L; Elliott, James C; Eckstein, Miguel P; Giesbrecht, Barry

    2011-01-01

    In non-invasive brain-computer interface (BCI), the analysis of event-related potentials (ERP) has typically focused on averaged trials, a current trend is to analyze single-trial evoked response individually with new approaches in pattern recognition and signal processing. Such single trial detection requires a robust response that can be detected in a variety task conditions. Here, we investigated the influence of target probability, a key factor known to influence the amplitude of the evoked response, on single trial target classification in a difficult rapid serial visual presentation (RSVP) task. Our classification approach for detecting target vs. non target responses, considers spatial filters obtained through the maximization of the signal to signal-plus-noise ratio, and then uses the resulting information as inputs to a Bayesian discriminant analysis. The method is evaluated across eight healthy subjects, on four probability conditions (P=0.05, 0.10, 0.25, 0.50). We show that the target probability has a statistically significant effect on both the behavioral performance and the target detection. The best mean area under the ROC curve is achieved with P=0.10, AUC=0.82. These results suggest that optimal performance of ERP detection in RSVP tasks is critically dependent on target probability.

  16. Computer vision enhances mobile eye-tracking to expose expert cognition in natural-scene visual-search tasks

    Science.gov (United States)

    Keane, Tommy P.; Cahill, Nathan D.; Tarduno, John A.; Jacobs, Robert A.; Pelz, Jeff B.

    2014-02-01

    Mobile eye-tracking provides the fairly unique opportunity to record and elucidate cognition in action. In our research, we are searching for patterns in, and distinctions between, the visual-search performance of experts and novices in the geo-sciences. Traveling to regions resultant from various geological processes as part of an introductory field studies course in geology, we record the prima facie gaze patterns of experts and novices when they are asked to determine the modes of geological activity that have formed the scene-view presented to them. Recording eye video and scene video in natural settings generates complex imagery that requires advanced applications of computer vision research to generate registrations and mappings between the views of separate observers. By developing such mappings, we could then place many observers into a single mathematical space where we can spatio-temporally analyze inter- and intra-subject fixations, saccades, and head motions. While working towards perfecting these mappings, we developed an updated experiment setup that allowed us to statistically analyze intra-subject eye-movement events without the need for a common domain. Through such analyses we are finding statistical differences between novices and experts in these visual-search tasks. In the course of this research we have developed a unified, open-source, software framework for processing, visualization, and interaction of mobile eye-tracking and high-resolution panoramic imagery.

  17. Subliminal repetition primes help detection of phonemes in a picture: Evidence for a phonological level of the priming effects.

    Science.gov (United States)

    Manoiloff, Laura; Segui, Juan; Hallé, Pierre

    2016-01-01

    In this research, we combine a cross-form word-picture visual masked priming procedure with an internal phoneme monitoring task to examine repetition priming effects. In this paradigm, participants have to respond to pictures whose names begin with a prespecified target phoneme. This task unambiguously requires retrieving the word-form of the target picture's name and implicitly orients participants' attention towards a phonological level of representation. The experiments were conducted within Spanish, whose highly transparent orthography presumably promotes fast and automatic phonological recoding of subliminal, masked visual word primes. Experiments 1 and 2 show that repetition primes speed up internal phoneme monitoring in the target, compared to primes beginning with a different phoneme from the target, or sharing only their first phoneme with the target. This suggests that repetition primes preactivate the phonological code of the entire target picture's name, hereby speeding up internal monitoring, which is necessarily based on such a code. To further qualify the nature of the phonological code underlying internal phoneme monitoring, a concurrent articulation task was used in Experiment 3. This task did not affect the repetition priming effect. We propose that internal phoneme monitoring is based on an abstract phonological code, prior to its translation into articulation.

  18. Executive function deficits in team sport athletes with a history of concussion revealed by a visual-auditory dual task paradigm.

    Science.gov (United States)

    Tapper, Anthony; Gonzalez, Dave; Roy, Eric; Niechwiej-Szwedo, Ewa

    2017-02-01

    The purpose of this study was to examine executive functions in team sport athletes with and without a history of concussion. Executive functions comprise many cognitive processes including, working memory, attention and multi-tasking. Past research has shown that concussions cause difficulties in vestibular-visual and vestibular-auditory dual-tasking, however, visual-auditory tasks have been examined rarely. Twenty-nine intercollegiate varsity ice hockey athletes (age = 19.13, SD = 1.56; 15 females) performed an experimental dual-task paradigm that required simultaneously processing visual and auditory information. A brief interview, event description and self-report questionnaires were used to assign participants to each group (concussion, no-concussion). Eighteen athletes had a history of concussion and 11 had no concussion history. The two tests involved visuospatial working memory (i.e., Corsi block test) and auditory tone discrimination. Participants completed both tasks individually, then simultaneously. Two outcome variables were measured, Corsi block memory span and auditory tone discrimination accuracy. No differences were shown when each task was performed alone; however, athletes with a history of concussion had a significantly worse performance on the tone discrimination task in the dual-task condition. In conclusion, long-term deficits in executive functions were associated with a prior history of concussion when cognitive resources were stressed. Evaluations of executive functions and divided attention appear to be helpful in discriminating participants with and without a history concussion.

  19. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis

    Directory of Open Access Journals (Sweden)

    Yi-Tzu Chang

    2017-06-01

    Full Text Available Subjective visual vertical (SVV judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS. Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs, the present study examined the effect of postural control demands (PDs on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group and 13 age-matched adolescents (control group aged 12–18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion, SVV (accuracy and reaction time, and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1 during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2 the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for

  20. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis.

    Science.gov (United States)

    Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh

    2017-01-01

    Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12-18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central

  1. Assessing the accommodation response after near visual tasks using different handheld electronic devices

    Directory of Open Access Journals (Sweden)

    Aikaterini I. Moulakaki

    Full Text Available ABSTRACT Purpose: To assess the accommodation response after short reading periods using a tablet and a smartphone as well as determine potential differences in the accommodation response at various stimulus vergences using a Hartmann- Shack aberrometer. Methods: Eighteen healthy subjects with astigmatism of less than 1 D, corrected visual acuity of 20/20 or better, and normal findings in an ophthalmic examination were enrolled. Accommodation responses were obtained under three different conditions: accommodation system of the eye relaxed and visually stressed with a tablet and an smartphone for 10 min, at a distance of 0.25 m from the subject's eyes. Three measurements of accommodation response were monocularly acquired at stimulus vergences ranging from 0 to 4 D (1-D step. Results: No statistically significant differences were found in the accommodation responses among the conditions. A moderate but gradually increasing root mean square, coma-like aberration was found for every condition. Conversely, the spherical aberration decreased as stimulus vergences increased. These outcomes were identified in comparison to the one-to-one ideal accommodation response, implying that a certain lag value was present in all stimulus vergences different from 0 D. Conclusions: The results support the hypothesis that the difference between the ideal and real accommodation responses is mainly attributed to parameters associated with the accommodation process, such as the near visual acuity, depth of focus, pupil diameter, and wavefront aberrations. The wavefront aberrations were dependent on the 3-mm pupil size selected in this study. The accommoda tion response was not dependent on the electronic device employed in each condition, and it was mainly associated with young age and level of amplitude of accommodation of the subjects.

  2. Hemispatial neglect evaluated by visual line bisection task in schizophrenic patients and their unaffected siblings.

    Science.gov (United States)

    Ozel-Kizil, Erguvan Tugba; Baskak, Bora; Gunes, Emel; Cicek, Metehan; Atbasoglu, Esref Cem

    2012-12-30

    Visuospatial attentional asymmetry has been investigated by the line bisection task in patients with schizophrenia, however, those studies are in small number and the results are controversial. The present study aimed to investigate hemispatial neglect in patients with schizophrenia (n=30), their healthy siblings (n=30) and healthy individuals (n=24) by a computerized version of the line bisection task. Deviation from the midline for both hemispaces (mean bisection error-MBE) were calculated and the effects of both hand and line length were controlled. Repeated measures ANOVA yielded a significant hemispace effect for the MBE scores, but no group or group×hemispace interaction effect, i.e., all three groups were inclined to a leftward bias in the left and a rightward bias in the right hemispace. MBEs were significantly different from "zero" only for the right hemispace in siblings and for the left hemispace in controls. Negative symptoms were significantly correlated with the bisection errors in the right hemispace. The results of the present study do not support aberrant hemispheric asymmetry, but bigger bisection errors in schizophrenia.

  3. Human alpha rhythms during visual delayed choice reaction time tasks: a magnetoencephalography study.

    Science.gov (United States)

    Babiloni, Claudio; Babiloni, Fabio; Carducci, Filippo; Cincotti, Febo; Del Percio, Claudio; Della Penna, Stefania; Franciotti, Raffaella; Pignotti, Sandro; Pizzella, Vittorio; Rossini, Paolo Maria; Sabatini, Elisabetta; Torquati, Kathya; Romani, Gian Luca

    2005-03-01

    Magnetoencephalography (MEG) includes fast and comfortable recording procedures very suitable for the neurophysiological study of cognitive functions in aged people. In this exploratory MEG study in normal young adults, we tested whether very simple short-term memory (STM) demands induce visible changes in amplitude and latency of surface alpha rhythms. Two delayed response tasks were used. In the STM condition, a simple cue stimulus (one bit) was memorized along a brief delay period (3.5-5.5 s). In the control (no short-term memory; NSTM) condition, the cue stimulus remained available along the delay period. To make extremely simple the tasks, the explicit demand was visuospatial but the retention could be also based on phonological and somatomotor coding. Compared to the control condition, the amplitude of the alpha 1 (6-8 Hz) ERD decreased in the left hemisphere, whereas the amplitude of the alpha 2 (8-10 Hz) and alpha 3 (10-12 Hz) event-related desynchronization (ERD) increased in right and left parietal areas, respectively. Furthermore, the latency of the alpha ERD peak was slightly but significantly (P rhythms in normal young adults. Copyright 2004 Wiley-Liss, Inc.

  4. Responding by exclusion in Wistar rats in a simultaneous visual discrimination task.

    Science.gov (United States)

    Felipe de Souza, Matheus; Schmidt, Andréia

    2014-11-01

    Responding by exclusion is to select a correct alternative by rejecting other potential alternatives. Studies describe this ability in some mammals and birds. However, this type of performance has not been reported in rodents. The aim of this study was to verify the occurrence of responding by exclusion in Wistar rats after a baseline of simple simultaneous visual discrimination. Six male Wistar learned nose-poking tunnels displaying visual stimuli (projected geometric shapes) in an operant chamber. After establishing the simultaneous discrimination baseline, three probe sessions were conducted. In each session, there was a novelty-control probe (a new stimulus was presented together with a stimulus trained as the S(+)) and an exclusion probe (a second new stimulus was presented simultaneously with a stimulus trained as the S(-)). Only one rat responded to the new stimulus in one of the three novelty probe trials. Four rats responded to the three new stimuli and one responded to the new stimulus in two of the three exclusion probes. One subject responded to the S(-) in all the exclusion probes. Five of the six subjects were therefore able to choose the new stimulus, rejecting stimuli trained as the S(-). This is the first experimental evidence for performance by exclusion in rats.

  5. Performance of a cognitive, but not visual, secondary task interacts with alcohol-induced balance impairment in novice and experienced motorcycle riders.

    Science.gov (United States)

    Rudin-Brown, Christina M; Filtness, Ashleigh J; Allen, Amy R; Mulvihill, Christine M

    2013-01-01

    The appropriateness of applying drink driving legislation to motorcycle riding has been questioned as there may be fundamental differences in the effects of alcohol on driving and motorcycling. It has been suggested that alcohol may redirect riders' focus from higher-order cognitive skills such as cornering, judgement and hazard perception, to more physical skills such as maintaining balance. To test this hypothesis, the effects of low doses of alcohol on balance ability were investigated in a laboratory setting. The static balance of twenty experienced and twenty novice riders was measured while they performed either no secondary task, a visual (search) task, or a cognitive (arithmetic) task following the administration of alcohol (0%, 0.02%, and 0.05% BAC). Subjective ratings of intoxication and balance impairment increased in a dose-dependent manner in both novice and experienced motorcycle riders, while a BAC of 0.05%, but not 0.02%, was associated with impairments in static balance ability. This balance impairment was exacerbated when riders performed a cognitive, but not a visual, secondary task. Likewise, 0.05% BAC was associated with impairments in novice and experienced riders' performance of a cognitive, but not a visual, secondary task, suggesting that interactive processes underlie balance and cognitive task performance. There were no observed differences between novice vs. experienced riders on static balance and secondary task performance, either alone or in combination. Implications for road safety and future 'drink riding' policy considerations are discussed.

  6. Task-switching cost and repetition priming: two overlooked confounds in the first-set procedure of the Sternberg paradigm and how they affect memory set-size effects.

    Science.gov (United States)

    Jou, Jerwen

    2014-10-01

    Subjects performed Sternberg-type memory recognition tasks (Sternberg paradigm) in four experiments. Category-instance names were used as learning and testing materials. Sternberg's original experiments demonstrated a linear relation between reaction time (RT) and memory-set size (MSS). A few later studies found no relation, and other studies found a nonlinear relation (logarithmic) between the two variables. These deviations were used as evidence undermining Sternberg's serial scan theory. This study identified two confounding variables in the fixed-set procedure of the paradigm (where multiple probes are presented at test for a learned memory set) that could generate a MSS RT function that was either flat or logarithmic rather than linearly increasing. These two confounding variables were task-switching cost and repetition priming. The former factor worked against smaller memory sets and in favour of larger sets whereas the latter factor worked in the opposite way. Results demonstrated that a null or a logarithmic RT-to-MSS relation could be the artefact of the combined effects of these two variables. The Sternberg paradigm has been used widely in memory research, and a thorough understanding of the subtle methodological pitfalls is crucial. It is suggested that a varied-set procedure (where only one probe is presented at test for a learned memory set) is a more contamination-free procedure for measuring the MSS effects, and that if a fixed-set procedure is used, it is worthwhile examining the RT function of the very first trials across the MSSs, which are presumably relatively free of contamination by the subsequent trials.

  7. Posture-cognitive dual-tasking: A relevant marker of depression-related psychomotor retardation. An illustration of the positive impact of repetitive transcranial magnetic stimulation in patients with major depressive disorder.

    Science.gov (United States)

    Deschamps, Thibault; Sauvaget, Anne; Pichot, Anne; Valrivière, Pierre; Maroulidès, Maxime; Bois, Aurore; Bulteau, Samuel; Thomas-Ollivier, Véronique

    2016-12-01

    This study examined whether postural control variables, particularly the center-of-pressure (COP) velocity-based parameters, could be a relevant hallmark of depression-related psychomotor retardation (PMR). We first aimed at investigating the interplay between the PMR scores and the COP performance in patients with major depressive disorder (MDD), as compared to age-matched healthy controls; secondly, we focused on the impact of a repetitive transcranial magnetic stimulation (rTMS) treatment on depression, PMR scores and postural performance. 16 MDD patients, and a control group of 16 healthy adults, were asked to maintain quiet standing balance during two trials with or without vision, and while backward counting (dual task). All the position and velocity-based COP variables were computed. Before and after the rTMS session (n eligible MDD = 10), we assessed the depression level with the Montgomery-Asberg Depression Rating Scale (MADRS), the PMR scores with the French Retardation Rating Scale for Depression (ERD), and postural performance. Before the treatment, significant positive partial correlations were found between the pre-ERD scores and the velocity-based COP variables, especially in the dual-task conditions (p < 0.05). In contrast, there was no significant correlation between the post-ERD scores and any postural parameter after the treatment. The MADRS and ERD scores showed a significant decrease between before and after the rTMS intervention. For the first time, the findings clearly validated the view that the assessment of postural performance - easy to envisage in clinical settings-constitutes a reliable and objective marker of PMR in MDD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Eye exercises enhance accuracy and letter recognition, but not reaction time, in a modified rapid serial visual presentation task.

    Directory of Open Access Journals (Sweden)

    Paula Di Noto

    Full Text Available Eye exercises have been prescribed to resolve a multitude of eye-related problems. However, studies on the efficacy of eye exercises are lacking, mainly due to the absence of simple assessment tools in the clinic. Because similar regions of the brain are responsible for eye movements and visual attention, we used a modified rapid serial visual presentation (RSVP to assess any measurable effect of short-term eye exercise in improvements within these domains. In the present study, twenty subjects were equally divided into control and experimental groups, each of which performed a pre-training RSVP assessment where target letters, to which subjects were asked to respond to by pressing a spacebar, were serially and rapidly presented. Response time to target letters, accuracy of correctly responding to target letters, and correct identification of target letters in each of 12 sessions was measured. The experimental group then performed active eye exercises, while the control group performed a task that minimized eye movements for 18.5 minutes. A final post-training RSVP assessment was performed by both groups and response time, accuracy, and letter identification were compared between and within subject groups both pre- and post-training. Subjects who performed eye exercises were more accurate in responding to target letters separated by one distractor and in letter identification in the post-training RSVP assessment, while latency of responses were unchanged between and within groups. This suggests that eye exercises may prove useful in enhancing cognitive performance on tasks related to attention and memory over a very brief course of training, and RSVP may be a useful measure of this efficacy. Further research is needed on eye exercises to determine whether they are an effective treatment for patients with cognitive and eye-related disorders.

  9. Eye exercises enhance accuracy and letter recognition, but not reaction time, in a modified rapid serial visual presentation task.

    Science.gov (United States)

    Di Noto, Paula; Uta, Sorin; DeSouza, Joseph F X

    2013-01-01

    Eye exercises have been prescribed to resolve a multitude of eye-related problems. However, studies on the efficacy of eye exercises are lacking, mainly due to the absence of simple assessment tools in the clinic. Because similar regions of the brain are responsible for eye movements and visual attention, we used a modified rapid serial visual presentation (RSVP) to assess any measurable effect of short-term eye exercise in improvements within these domains. In the present study, twenty subjects were equally divided into control and experimental groups, each of which performed a pre-training RSVP assessment where target letters, to which subjects were asked to respond to by pressing a spacebar, were serially and rapidly presented. Response time to target letters, accuracy of correctly responding to target letters, and correct identification of target letters in each of 12 sessions was measured. The experimental group then performed active eye exercises, while the control group performed a task that minimized eye movements for 18.5 minutes. A final post-training RSVP assessment was performed by both groups and response time, accuracy, and letter identification were compared between and within subject groups both pre- and post-training. Subjects who performed eye exercises were more accurate in responding to target letters separated by one distractor and in letter identification in the post-training RSVP assessment, while latency of responses were unchanged between and within groups. This suggests that eye exercises may prove useful in enhancing cognitive performance on tasks related to attention and memory over a very brief course of training, and RSVP may be a useful measure of this efficacy. Further research is needed on eye exercises to determine whether they are an effective treatment for patients with cognitive and eye-related disorders.

  10. Os componentes motor e visual de uma tarefa-dupla devem ser associados ou isolados durante o treinamento? Should motor and visual components of a dual-task be associated or separated during training?

    Directory of Open Access Journals (Sweden)

    Mariana Callil Voos

    2008-01-01

    Full Text Available As atividades diárias requerem o desempenho simultâneo de tarefas (tarefa-dupla, não estando claro se seu treino deve ser realizado com tarefas isoladas ou associadas. Este estudo visou verificar se a aquisição de uma tarefa-dupla ocorre por meio do treinamento de tarefas isoladas ou associadas. Vinte voluntárias foram submetidas a avaliação inicial, treinamento e avaliação final. Dez treinaram as tarefas associadas (TA e as demais, isoladas (TI. A tarefa motora consistia na alternância de passos do chão a uma plataforma. A tarefa visual consistia na nomeação de dois estímulos (ônibus ou caminhão, um no centro e outro na periferia da tela do computador. O número de passos por segundo na ausência e na presença da tarefa visual, e o número de erros na tarefa visual na ausência e na presença da tarefa motora, foram contados e comparados estatisticamente. O grupo TA apresentou melhora tanto no desempenho motor (inicial 1,10 alternâncias/s, final 1,25 alternâncias/s, p=0,028, quanto no desempenho visual (inicial 9,3 erros, final: 6,9 erros, p=0,039. O mesmo não ocorreu com o grupo TI: a melhora motora não atingiu nível significativo, provavelmente devido à maior variabilidade no número de alternâncias de passo por segundo durante o treinamento, e não houve melhora visual significativa (p=0,844. Portanto, o tipo de treinamento interferiu no desempenho. O melhor desempenho ocorreu após o treinamento da tarefa-dupla.The association of tasks (dual-task has functional importance in daily activities; people usually have to learn new tasks. It is unclear whether tasks should be trained isolated or associated. This experiment aimed at verifying whether the best dual-task performance occurs after training isolated or associated tasks. Twenty volunteers underwent initial assessment, training, and final assessment; ten trained associated tasks (AT and the others trained tasks separately (IT. The motor task consisted of

  11. Mirror Visual Feedback Training Improves Intermanual Transfer in a Sport-Specific Task: A Comparison between Different Skill Levels

    Directory of Open Access Journals (Sweden)

    Fabian Steinberg

    2016-01-01

    Full Text Available Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals’ skill level, a factor that might be considered in mirror therapy research.

  12. Mirror Visual Feedback Training Improves Intermanual Transfer in a Sport-Specific Task: A Comparison between Different Skill Levels

    Science.gov (United States)

    Pixa, Nils Henrik; Doppelmayr, Michael

    2016-01-01

    Mirror training therapy is a promising tool to initiate neural plasticity and facilitate the recovery process of motor skills after diseases such as stroke or hemiparesis by improving the intermanual transfer of fine motor skills in healthy people as well as in patients. This study evaluated whether these augmented performance improvements by mirror visual feedback (MVF) could be used for learning a sport-specific skill and if the effects are modulated by skill level. A sample of 39 young, healthy, and experienced basketball and handball players and 41 novices performed a stationary basketball dribble task at a mirror box in a standing position and received either MVF or direct feedback. After four training days using only the right hand, performance of both hands improved from pre- to posttest measurements. Only the left hand (untrained) performance of the experienced participants receiving MVF was more pronounced than for the control group. This indicates that intermanual motor transfer can be improved by MVF in a sport-specific task. However, this effect cannot be generalized to motor learning per se since it is modulated by individuals' skill level, a factor that might be considered in mirror therapy research. PMID:27642526

  13. Eye tracking reveals the cost of switching between self and other perspectives in a visual perspective-taking task.

    Science.gov (United States)

    Ferguson, Heather J; Apperly, Ian; Cane, James E

    2017-08-01

    Previous studies have shown that while people can rapidly and accurately compute their own and other people's visual perspectives, they experience difficulty ignoring the irrelevant perspective when the two perspectives differ. We used the "avatar" perspective-taking task to examine the mechanisms that underlie these egocentric (i.e., interference from their own perspective) and altercentric (i.e., interference from the other person's perspective) tendencies. Participants were eye-tracked as they verified the number of discs in a visual scene according to either their own or an on-screen avatar's perspective. Crucially in some trials the two perspectives were inconsistent (i.e., each saw a different number of discs), while in others they were consistent. To examine the effect of perspective switching, performance was compared for trials that were preceded with the same versus a different perspective cue. We found that altercentric interference can be reduced or eliminated when participants stick with their own perspective across consecutive trials. Our eye-tracking analyses revealed distinct fixation patterns for self and other perspective taking, suggesting that consistency effects in this paradigm are driven by implicit mentalizing of what others can see, and not automatic directional cues from the avatar.

  14. Target enhancement and distractor inhibition affect transitory surround suppression in dual tasks using multiple rapid serial visual presentation streams.

    Science.gov (United States)

    Wu, Xia; Greenwood, Pamela; Fu, Shimin

    2016-01-01

    Few studies have investigated the interaction between temporal and spatial dimensions on selective attention using dual tasks in the multiple rapid serial visual presentation (RSVP) paradigm. A phenomenon that the surround suppression in space changes over time (termed transitory surround suppression, TSS, in the present study) has been observed, suggesting the existence of this time-space interaction. However, it is still unclear whether target enhancement or distractor inhibition modulates TSS. Four behavioural experiments were conducted to investigate the mechanism of TSS by manipulating the temporal lag and spatial distance factors between two targets embedded in six RSVP streams. The TSS effect was replicated in a study that eliminated confounds of perceptual effects and attentional switch (Experiment 1). However, the TSS disappeared when two targets shared the same colour in a between-subjects design (Experiment 2a) and a within-subject design (Experiment 2b), suggesting the impact of target enhancement on TSS. Moreover, the TSS was larger for within-category than for between-category distractors (Experiment 3), indicating the impact of distractor inhibition on TSS. These two influences on TSS under different processing demands of target and distractor processing were further confirmed in a skeletal design (Experiment 4). Overall, combinative effects of target enhancement and distractor suppression contribute to the mechanisms of time-space interaction in selective attention during visual search.

  15. Effects of a mirror-induced visual illusion on a reaching task in stroke patients: implications for mirror therapy training.

    Science.gov (United States)

    Selles, Ruud W; Michielsen, Marian E; Bussmann, Johannes B J; Stam, Henk J; Hurkmans, Henri L; Heijnen, Iris; de Groot, Danielle; Ribbers, Gerard M

    2014-09-01

    Although most mirror therapy studies have shown improved motor performance in stroke patients, the optimal mirror training protocol still remains unclear. To study the relative contribution of a mirror in training a reaching task and of unilateral and bimanual training with a mirror. A total of 93 stroke patients at least 6 months poststroke were instructed to perform a reaching task as fast and as fluently as possible. They performed 70 practice trials after being randomly allocated to 1 of 5 experimental groups: training with (1) the paretic arm with direct view (Paretic-No Mirror), (2) the nonparetic arm with direct view (Nonparetic-No Mirror), (3) the nonparetic arm with mirror reflection (Nonparetic Mirror), (4) both sides and with a nontransparent screen preventing visual control of paretic side (Bilateral-Screen), and (5) both sides with mirror reflection of the nonparetic arm (Bilateral-Mirror). As baseline and follow-up, patients performed 6 trials using only their paretic side. Primary outcome measure was the movement time. We found the largest intervention effect in the Paretic-No Mirror condition. However, the Nonparetic-Mirror condition was not significantly different from the Paretic-No Mirror condition, while the Unaffected-No Mirror condition had significantly less improvement than the Paretic-No Mirror condition. In addition, movement time improved significantly less in the bimanual conditions and there was no difference between both bimanual conditions or between both mirror conditions. The present study confirms that using a mirror reflection can facilitate motor learning. In this task, bimanual movement using mirror training was less effective than unilateral training. © The Author(s) 2014.

  16. Lexical and phonological processes in dyslexic readers: evidence from a visual lexical decision task.

    Science.gov (United States)

    Araújo, Susana; Faísca, Luís; Bramão, Inês; Petersson, Karl Magnus; Reis, Alexandra

    2014-02-01

    The aim of the present study was to investigate whether reading failure in the context of an orthography of intermediate consistency is linked to inefficient use of the lexical orthographic reading procedure. The performance of typically developing and dyslexic Portuguese-speaking children was examined in a lexical decision task, where the stimulus lexicality, word frequency and length were manipulated. Both lexicality and length effects were larger in the dyslexic group than in controls, although the interaction between group and frequency disappeared when the data were transformed to control for general performance factors. Children with dyslexia were influenced in lexical decision making by the stimulus length of words and pseudowords, whereas age-matched controls were influenced by the length of pseudowords only. These findings suggest that non-impaired readers rely mainly on lexical orthographic information, but children with dyslexia preferentially use the phonological decoding procedure--albeit poorly--most likely because they struggle to process orthographic inputs as a whole such as controls do. Accordingly, dyslexic children showed significantly poorer performance than controls for all types of stimuli, including words that could be considered over-learned, such as high-frequency words. This suggests that their orthographic lexical entries are less established in the orthographic lexicon.

  17. Saccades to the seeing visual hemifield in hemidecorticate patients exhibit task-dependent reaction times and hypometria.

    Science.gov (United States)

    Herter, Troy M; Guitton, Daniel

    2007-09-01

    In three patients who had one cortical hemisphere removed surgically (hemidecortication), we studied visually-triggered saccades directed contralateral to the intact cortical hemisphere (i.e., ipsilesional saccades). Both saccade reaction times (SRTs) and accuracy of these saccades have been reported as abnormal in hemidecorticate patients, but not monkeys. One explanation for this difference is that deficits in hemidecorticate patients may not have been directly caused by removal of cortical oculomotor structures themselves, but may have been a manifestation of compensatory strategies used to cope with contralesional hemianopia. We hypothesized that deficits in saccade performance to the ipsilesional (seeing) visual hemifield would be directly linked to how easily patients could localize targets in their blind hemifield with searching saccades. To test this hypothesis, we examined how deficits in our patients varied when targets were: (1) randomly presented to either the seeing or blind hemifield for long durations thereby permitting searching saccades in the blind hemifield; (2) presented as in Experiment 1, but briefly flashed thereby removing visual feedback prior to saccade onset thereby rendering searching saccades useless; (3) briefly flashed as in Experiment 2, but at random locations in only the seeing hemifield (blind hemifield irrelevant). Mean SRTs to the seeing hemifield were 165 ms longer than normal in Experiment 2, but only about 40 ms longer in Experiments 1 and 3. Saccade accuracy was characterized by task-dependent hypometria in all three experiments with a mean undershoot of about twice the amplitude variance. The largest undershoots were in Experiments 2 and 3. Our data suggest that deficits resulted from the direct effects of the lesions themselves coupled with context-dependent strategies used to cope with contralesional hemianopia.

  18. Temporal Oculomotor Inhibition of Return and Spatial Facilitation of Return in a Visual Encoding Task

    Directory of Open Access Journals (Sweden)

    Steven G Luke

    2013-07-01

    Full Text Available Oculomotor inhibition of return (O-IOR is an increase in saccade latency prior to an eye movement to a recently fixated location compared to other locations. It has been proposed that this temporal O-IOR may have spatial consequences, facilitating foraging by inhibiting return to previously attended regions. In order to test this possibility, participants viewed arrays of objects and of words while their eye movements were recorded. Temporal O-IOR was observed, with equivalent effects for object and word arrays, indicating that temporal O-IOR is an oculomotor phenomenon independent of array content. There was no evidence for spatial inhibition of return. Instead, spatial facilitation of return was observed: Participants were significantly more likely than chance to make return saccades and to refixate just-visited locations. Further, the likelihood of making a return saccade to an object or word was contingent on the amount of time spent viewing that object or word before leaving it. This suggests that, unlike temporal O-IOR, return probability is influenced by cognitive processing. Taken together, these results are inconsistent with the hypothesis that inhibition of return functions as a foraging facilitator. The results also provide strong evidence for a different oculomotor bias that could serve as a foraging facilitator: saccadic momentum, a tendency to repeat the most recently executed saccade program. We suggest that models of visual attention could incorporate saccadic momentum in place of inhibition of return.

  19. Neural correlates of emotional intelligence in a visual emotional oddball task: an ERP study.

    Science.gov (United States)

    Raz, Sivan; Dan, Orrie; Zysberg, Leehu

    2014-11-01

    The present study was aimed at identifying potential behavioral and neural correlates of Emotional Intelligence (EI) by using scalp-recorded Event-Related Potentials (ERPs). EI levels were defined according to both self-report questionnaire and a performance-based ability test. We identified ERP correlates of emotional processing by using a visual-emotional oddball paradigm, in which subjects were confronted with one frequent standard stimulus (a neutral face) and two deviant stimuli (a happy and an angry face). The effects of these faces were then compared across groups with low and high EI levels. The ERP results indicate that participants with high EI exhibited significantly greater mean amplitudes of the P1, P2, N2, and P3 ERP components in response to emotional and neutral faces, at frontal, posterior-parietal and occipital scalp locations. P1, P2 and N2 are considered indexes of attention-related processes and have been associated with early attention to emotional stimuli. The later P3 component has been thought to reflect more elaborative, top-down, emotional information processing including emotional evaluation and memory encoding and formation. These results may suggest greater recruitment of resources to process all emotional and non-emotional faces at early and late processing stages among individuals with higher EI. The present study underscores the usefulness of ERP methodology as a sensitive measure for the study of emotional stimuli processing in the research field of EI.

  20. Brain cortical organization in entrepreneurs during a visual Stroop decision task

    Directory of Open Access Journals (Sweden)

    Ortiz-Terán E

    2013-11-01

    Full Text Available Elena Ortiz-Terán,1,4 Agustín Turrero,2 Juan M Santos,3 Peter T Bryant,1 Tomás Ortiz4 1IE Business School, 2Department of Statistics, Universidad Complutense, Madrid, Spain; 3Fundación J Robert Cade and Department of Psychiatry, Universidad Católica de Córdoba, Córdoba, Argentina; 4Department of Psychiatry, Universidad Complutense, Madrid, Spain Abstract: Decision-making in entrepreneurs is a key aspect of their skills, but much about these processes remains unexplained. During a Stroop task, concomitant N200, P300, and N450 event-related potentials were measured in 25 founder entrepreneurs and in age-matched and gender-matched nonfounders/nonentrepreneurs (NFNE. Reaction times were shorter among founder entrepreneurs. The N200 was shorter and N450 larger in founder entrepreneurs. The personalities of both groups were measured using the Temperament and Character Inventory-Revised. Founder entrepreneurs scored significantly higher in novelty-seeking and self-directedness dimensions, as well as in exploratory excitability, impulsiveness, optimism, eagerness, and responsibility subdimensions. Possible interactions among candidate variables to differentiate between founder entrepreneurs versus NFNE were also addressed, and the model including impulsivity, N450 latency, and impulsivity*N450 interaction came up as the best model for discrimination between founder entrepreneurs and NFNE. A shorter N200, mostly associated with bilateral supplementary motor area activation, revealed a faster capability to make decisions when information was noncongruent or blurred. However, the larger N450 revealed a more intense post-evaluation cognitive process happening in founder entrepreneurs and was accompanied by a greater activation of anterior frontal regions. The whole decision-making process consumed more time and resources in founder entrepreneurs, even if its closure was faster. Attention, memory, and alertness, among other factors, have been invoked

  1. Dexterity: A MATLAB-based analysis software suite for processing and visualizing data from tasks that measure arm or forelimb function.

    Science.gov (United States)

    Butensky, Samuel D; Sloan, Andrew P; Meyers, Eric; Carmel, Jason B

    2017-07-15

    Hand function is critical for independence, and neurological injury often impairs dexterity. To measure hand function in people or forelimb function in animals, sensors are employed to quantify manipulation. These sensors make assessment easier and more quantitative and allow automation of these tasks. While automated tasks improve objectivity and throughput, they also produce large amounts of data that can be burdensome to analyze. We created software called Dexterity that simplifies data analysis of automated reaching tasks. Dexterity is MATLAB software that enables quick analysis of data from forelimb tasks. Through a graphical user interface, files are loaded and data are identified and analyzed. These data can be annotated or graphed directly. Analysis is saved, and the graph and corresponding data can be exported. For additional analysis, Dexterity provides access to custom scripts created by other users. To determine the utility of Dexterity, we performed a study to evaluate the effects of task difficulty on the degree of impairment after injury. Dexterity analyzed two months of data and allowed new users to annotate the experiment, visualize results, and save and export data easily. Previous analysis of tasks was performed with custom data analysis, requiring expertise with analysis software. Dexterity made the tools required to analyze, visualize and annotate data easy to use by investigators without data science experience. Dexterity increases accessibility to automated tasks that measure dexterity by making analysis of large data intuitive, robust, and efficient. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Multisensory interactions elicited by audiovisual stimuli presented peripherally in a visual attention task: a behavioral and event-related potential study in humans.

    Science.gov (United States)

    Wu, Jinglong; Li, Qi; Bai, Ou; Touge, Tetsuo

    2009-12-01

    We applied behavioral and event-related potential measurements to study human multisensory interactions induced by audiovisual (AV) stimuli presented peripherally in a visual attention task in which an irrelevant auditory stimulus occasionally accompanied the visual stimulus. A stream of visual, auditory, and AV stimuli was randomly presented to the left or right side of the subjects; subjects covertly attended to the visual stimuli on either the left or right side and promptly responded to visual targets on that side. Behavioral results showed that responses to AV stimuli were faster and more accurate than those to visual stimuli only. Three event-related potential components related to AV interactions were identified: (1) over the right temporal area, approximately 200 to 220 milliseconds; (2) over the centromedial area, approximately 290 to 310 milliseconds; and (3) over the left and right ventral temporal area, approximately 290 to 310 milliseconds. We found that these interaction effects occurred slightly later than those reported in previously published AV interaction studies in which AV stimuli were presented centrally. Our results suggest that the retinotopic location of stimuli affects AV interactions occurring at later stages of cognitive processing in response to a visual attention task.

  3. Leftward bias in orienting to and disengaging attention from salient task-irrelevant events in rapid serial visual presentation.

    Science.gov (United States)

    Śmigasiewicz, Kamila; Westphal, Nicole; Verleger, Rolf

    2017-01-08

    When embedded in the left or right stream of rapidly changing distractors, the second target (T2) is systematically better identified on the left than on the right. This left visual field advantage (LVFA) was recently attributed to better abilities of the right hemisphere in stimulus-driven orienting of attention: it was almost absent when salient uninformative cues were valid (presented in the T2 stream), and increased with invalid (different-stream) cues. However, cue-evoked negativity of event related potentials being earlier at the right than at the left hemisphere suggested that cues also are unequally processed, thereby possibly contributing to increased LVFA after invalid cues. This might occur through easier directing of attention toward left than right cues and/or through harder disengaging of attention from left than right cues. Alternatively, the increase in the LVFA could be caused by larger spatial distance between cues and T2 with invalid cues than with neutral cues presented at fixation. In order to test these hypotheses, an additional stream of stimuli at the vertical midline was used to separate the processing of lateral cues from the processing of lateral T2. If left cues increase the LVFA then this bias should be larger after invalid lateral than invalid midline cues and also midline T2 should be more impaired after left than right cues. These expectations were confirmed. Furthermore, increased negative amplitudes evoked by right cues suggest that orienting was more difficult toward right than left cues, and increased amplitudes of a following positivity suggest that disengaging attention was more difficult from left than right cues. Overall, these results suggest asymmetric abilities of the hemispheres in attentional processing of both task-relevant and salient task-irrelevant events. Copyright © 2016. Published by Elsevier Ltd.

  4. Behavioral, Cognitive, and Motor Preparation Deficits in a Visual Cued Spatial Attention Task in Autism Spectrum Disorder.

    Science.gov (United States)

    Sokhadze, Estate M; Tasman, Allan; Sokhadze, Guela E; El-Baz, Ayman S; Casanova, Manuel F

    2016-03-01

    Abnormalities in motor skills have been regarded as part of the symptomatology characterizing autism spectrum disorder (ASD). It has been estimated that 80 % of subjects with autism display "motor dyspraxia" or clumsiness that are not readily identified in a routine neurological examination. In this study we used behavioral measures, event-related potentials (ERP), and lateralized readiness potential (LRP) to study cognitive and motor preparation deficits contributing to the dyspraxia of autism. A modified Posner cueing task was used to analyze motor preparation abnormalities in children with autism and in typically developing children (N = 30/per group). In this task, subjects engage in preparing motor response based on a visual cue, and then execute a motor movement based on the subsequent imperative stimulus. The experimental conditions, such as the validity of the cue and the spatial location of the target stimuli were manipulated to influence motor response selection, preparation, and execution. Reaction time and accuracy benefited from validly cued targets in both groups, while main effects of target spatial position were more obvious in the autism group. The main ERP findings were prolonged and more negative early frontal potentials in the ASD in incongruent trials in both types of spatial location. The LRP amplitude was larger in incongruent trials and had stronger effect in the children with ASD. These effects were better expressed at the earlier stages of LRP, specifically those related to response selection, and showed difficulties at the cognitive phase of stimulus processing rather that at the motor execution stage. The LRP measures at different stages reflect the chronology of cognitive aspects of movement preparation and are sensitive to manipulations of cue correctness, thus representing very useful biomarker in autism dyspraxia research. Future studies may use more advance and diverse manipulations of movement preparation demands in testing more

  5. Effects of degradation of visual stimuli on components of the event-related potential (ERP) in go/nogo reaction tasks.

    NARCIS (Netherlands)

    A. Kok

    1986-01-01

    Investigated the effects of perceptual difficulty on ERP components in visual go/no-go discrimination tasks in 2 experiments with 19 dextral males (aged 17-28 yrs). ERPs were measured to randomly presented letters, requiring either a right-hand button-press response (go), or requiring no response (n

  6. Functional interaction between right parietal and bilateral frontal cortices during visual search tasks revealed using functional magnetic imaging and transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Amanda Ellison

    Full Text Available The existence of a network of brain regions which are activated when one undertakes a difficult visual search task is well established. Two primary nodes on this network are right posterior parietal cortex (rPPC and right frontal eye fields. Both have been shown to be involved in the orientation of attention, but the contingency that the activity of one of these areas has on the other is less clear. We sought to investigate this question by using transcranial direct current stimulation (tDCS to selectively decrease activity in rPPC and then asking participants to perform a visual search task whilst undergoing functional magnetic resonance imaging. Comparison with a condition in which sham tDCS was applied revealed that cathodal tDCS over rPPC causes a selective bilateral decrease in frontal activity when performing a visual search task. This result demonstrates for the first time that premotor regions within the frontal lobe and rPPC are not only necessary to carry out a visual search task, but that they work together to bring about normal function.

  7. Task-Irrelevant Expectation Violations in Sequential Manual Actions: Evidence for a "Check-after-Surprise" Mode of Visual Attention and Eye-Hand Decoupling.

    Science.gov (United States)

    Foerster, Rebecca M

    2016-01-01

    When performing sequential manual actions (e.g., cooking), visual information is prioritized according to the task determining where and when to attend, look, and act. In well-practiced sequential actions, long-term memory (LTM)-based expectations specify which action targets might be found where and when. We have previously demonstrated (Foerster and Schneider, 2015b) that violations of such expectations that are task-relevant (e.g., target location change) cause a regression from a memory-based mode of attentional selection to visual search. How might task-irrelevant expectation violations in such well-practiced sequential manual actions modify attentional selection? This question was investigated by a computerized version of the number-connection test. Participants clicked on nine spatially distributed numbered target circles in ascending order while eye movements were recorded as proxy for covert attention. Target's visual features and locations stayed constant for 65 prechange-trials, allowing practicing the manual action sequence. Consecutively, a task-irrelevant expectation violation occurred and stayed for 20 change-trials. Specifically, action target number 4 appeared in a different font. In 15 reversion-trials, number 4 returned to the original font. During the first task-irrelevant change trial, manual clicking was slower and eye scanpaths were larger and contained more fixations. The additional fixations were mainly checking fixations on the changed target while acting on later targets. Whereas the eyes repeatedly revisited the task-irrelevant change, cursor-paths remained completely unaffected. Effects lasted for 2-3 change trials and did not reappear during reversion. In conclusion, an unexpected task-irrelevant change on a task-defining feature of a well-practiced manual sequence leads to eye-hand decoupling and a "check-after-surprise" mode of attentional selection.

  8. Task-irrelevant expectation violations in sequential manual actions: Evidence for a “check-after-surprise” mode of visual attention and eye-hand decoupling

    Directory of Open Access Journals (Sweden)

    Rebecca Martina Foerster

    2016-11-01

    Full Text Available When performing sequential manual actions (e.g., cooking, visual information is prioritized according to the task determining where and when to attend, look, and act. In well-practiced sequential actions, long-term memory (LTM-based expectations specify which action targets might be found where and when. We have previously demonstrated (Foerster and Schneider, 2015b that violations of such expectations that are task-relevant (e.g., target location change cause a regression from a memory-based mode of attentional selection to visual search. How might task-irrelevant expectation violations in such well-practiced sequential manual actions modify attentional selection? This question was investigated by a computerized version of the number-connection test. Participants clicked on nine spatially-distributed numbered target circles in ascending order while eye movements were recorded as proxy for covert attention. Target’s visual features and locations stayed constant for 65 prechange-trials, allowing practicing the manual action sequence. Consecutively, a task-irrelevant expectation violation occurred and stayed for 20 change-trials. Specifically, action target number 4 appeared in a different font. In 15 reversion-trials, number 4 returned to the original font. During the first task-irrelevant change trial, manual clicking was slower and eye scanpaths were larger and contained more fixations. The additional fixations were mainly checking fixations on the changed target while acting on later targets. Whereas the eyes repeatedly revisited the task-irrelevant change, cursor-paths remained completely unaffected. Effects lasted for 2-3 change trials and did not reappear during reversion. In conclusion, an unexpected task-irrelevant change on a task-defining feature of a well-practiced manual sequence leads to eye-hand decoupling and a check-after-surprise mode of attentional selection.

  9. Reduced visual processing capacity in sleep deprived persons.

    Science.gov (United States)

    Kong, Danyang; Soon, Chun Siong; Chee, Michael W L

    2011-03-15

    Multiple experiments have found sleep deprivation to lower task-related parietal and extrastriate visual activation, suggesting a reduction of visual processing capacity in this state. The perceptual load theory of attention (Lavie, 1995) predicts that our capacity to process unattended distractors will be reduced by increasing perceptual difficulty of task-relevant stimuli. Here, we evaluated the effects of sleep deprivation and perceptual load on visual processing capacity by measuring neural repetition-suppression to unattended scenes while healthy volunteers attended to faces embedded in face-scene pictures. Perceptual load did not affect repetition suppression after a normal night of sleep. Sleep deprivation reduced repetition suppression in the parahippocampal place area (PPA) in the high but not low perceptual load condition. Additionally, the extent to which task-related fusiform face area (FFA) activation was reduced after sleep deprivation correlated with behavioral performance and lowered repetition suppression in the PPA. The findings concerning correct responses indicate that a portion of stimulus related activation following a normal night of sleep contributes to potentially useful visual processing capacity that is attenuated following sleep deprivation. Finally, when unattended stimuli are not highly intrusive, sleep deprivation does not appear to increase distractibility.

  10. Self-ordered pointing and visual conditional associative learning tasks in drug-free schizophrenia spectrum disorder patients

    Directory of Open Access Journals (Sweden)

    Galluzzo Alessandro

    2008-01-01

    Full Text Available Abstract Background There is evidence of a link between schizophrenia and a deficit of working memory, but this has been derived from tasks not specifically developed to probe working memory per se. Our aim was to investigate whether working memory deficits may be detected across different paradigms using the self-ordered pointing task (SOPT and the visual conditional associative learning task (VCALT in patients with schizophrenia spectrum disorders and healthy controls. The current literature suggests deficits in schizophrenia spectrum disorder patients versus healthy controls but these studies frequently involved small samples, broad diagnostic criteria, inclusion of patients on antipsychotic medications, and were not controlled for symptom domains, severity of the disorder, etc. To overcome some of these limitations, we investigated the self-monitoring and conditional associative learning abilities of a numerically representative sample of healthy controls and a group of non-deteriorated, drug-free patients hospitalized for a schizophrenia spectrum disorder with florid, mainly positive psychotic symptoms. Methods Eighty-five patients with a schizophrenia spectrum disorder (DSM-IV-TR diagnosis of schizophrenia (n = 71 or schizophreniform disorder (n = 14 and 80 healthy controls entered the study. The clinical picture was dominated by positive symptoms. The healthy control group had a negative personal and family history of schizophrenia or mood disorder and satisfied all the inclusion and exclusion criteria other than variables related to schizophrenia spectrum disorders. Results Compared to controls, patients had worse performances on SOPT, VCALT and higher SOPT/VCALT ratios, not affected by demographic or clinical variables. ROC curves showed that SOPT, VCALT, and SOPT/VCALT ratio had good accuracy in discriminating patients from controls. The SOPT and VCALT scores were inter-correlated in controls but not in patients. Conclusion The

  11. Chronic cannabis use and ERP correlates of visual selective attention during the performance of a flanker go/nogo task.

    Science.gov (United States)

    Nicholls, Clare; Bruno, Raimondo; Matthews, Allison

    2015-09-01

    The aim of the study was to investigate the relationship between chronic cannabis use and visual selective attention by examining event-related potentials (ERPs) during the performance of a flanker go/nogo task. Male participants were 15 chronic cannabis users (minimum two years use, at least once per week) and 15 drug naive controls. Cannabis users showed longer reaction times compared to controls with equivalent accuracy. Cannabis users also showed a reduction in the N2 'nogo effect' at frontal sites, particularly for incongruent stimuli, and particularly in the right hemisphere. This suggests differences between chronic cannabis users and controls in terms of inhibitory processing within the executive control network, and may implicate the right inferior frontal cortex. There was also preliminary evidence for differences in early selective attention, with controls but not cannabis users showing modulation of N1 amplitude by flanker congruency. Further investigation is required to examine the potential reversibility of these residual effects after long-term abstinence and to examine the role of early selective attention mechanisms in more detail.

  12. Looking for a face in the crowd: fixation-related potentials in an eye-movement visual search task.

    Science.gov (United States)

    Kaunitz, Lisandro N; Kamienkowski, Juan E; Varatharajah, Alexander; Sigman, Mariano; Quiroga, Rodrigo Quian; Ison, Matias J

    2014-04-01

    Despite the compelling contribution of the study of event related potentials (ERPs) and eye movements to cognitive neuroscience, these two approaches have largely evolved independently. We designed an eye-movement visual search paradigm that allowed us to concurrently record EEG and eye movements while subjects were asked to find a hidden target face in a crowded scene with distractor faces. Fixation event-related potentials (fERPs) to target and distractor stimuli showed the emergence of robust sensory components associated with the perception of stimuli and cognitive components associated with the detection of target faces. We compared those components with the ones obtained in a control task at fixation: qualitative similarities as well as differences in terms of scalp topography and latency emerged between the two. By using single trial analyses, fixations to target and distractors could be decoded from the EEG signals above chance level in 11 out of 12 subjects. Our results show that EEG signatures related to cognitive behavior develop across spatially unconstrained exploration of natural scenes and provide a first step towards understanding the mechanisms of target detection during natural search.

  13. Optogenetics in Mice Performing a Visual Discrimination Task: Measurement and Suppression of Retinal Activation and the Resulting Behavioral Artifact.

    Science.gov (United States)

    Danskin, Bethanny; Denman, Daniel; Valley, Matthew; Ollerenshaw, Douglas; Williams, Derric; Groblewski, Peter; Reid, Clay; Olsen, Shawn; Blanche, Timothy; Waters, Jack

    2015-01-01

    Optogenetic techniques are used widely to perturb and interrogate neural circuits in behaving animals, but illumination can have additional effects, such as the activation of endogenous opsins in the retina. We found that illumination, delivered deep into the brain via an optical fiber, evoked a behavioral artifact in mice performing a visually guided discrimination task. Compared with blue (473 nm) and yellow (589 nm) illumination, red (640 nm) illumination evoked a greater behavioral artifact and more activity in the retina, the latter measured with electrical recordings. In the mouse, the sensitivity of retinal opsins declines steeply with wavelength across the visible spectrum, but propagation of light through brain tissue increases with wavelength. Our results suggest that poor retinal sensitivity to red light was overcome by relatively robust propagation of red light through brain tissue and stronger illumination of the retina by red than by blue or yellow light. Light adaptation of the retina, via an external source of illumination, suppressed retinal activation and the behavioral artifact without otherwise impacting behavioral performance. In summary, long wavelength optogenetic stimuli are particularly prone to evoke behavioral artifacts via activation of retinal opsins in the mouse, but light adaptation of the retina can provide a simple and effective mitigation of the artifact.

  14. Visually guided auditory attention in a dynamic "cocktail-party" speech perception task: ERP evidence for age-related differences.

    Science.gov (United States)

    Getzmann, Stephan; Wascher, Edmund

    2017-02-01

    Speech understanding in the presence of concurring sound is a major challenge especially for older persons. In particular, conversational turn-takings usually result in switch costs, as indicated by declined speech perception after changes in the relevant target talker. Here, we investigated whether visual cues indicating the future position of a target talker may reduce the costs of switching in younger and older adults. We employed a speech perception task, in which sequences of short words were simultaneously presented by three talkers, and analysed behavioural measures and event-related potentials (ERPs). Informative cues resulted in increased performance after a spatial change in target talker compared to uninformative cues, not indicating the future target position. Especially the older participants benefited from knowing the future target position in advance, indicated by reduced response times after informative cues. The ERP analysis revealed an overall reduced N2, and a reduced P3b to changes in the target talker location in older participants, suggesting reduced inhibitory control and context updating. On the other hand, a pronounced frontal late positive complex (f-LPC) to the informative cues indicated increased allocation of attentional resources to changes in target talker in the older group, in line with the decline-compensation hypothesis. Thus, knowing where to listen has the potential to compensate for age-related decline in attentional switching in a highly variable cocktail-party environment.

  15. Perceptual Repetition Blindness Effects

    Science.gov (United States)

    Hochhaus, Larry; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    The phenomenon of repetition blindness (RB) may reveal a new limitation on human perceptual processing. Recently, however, researchers have attributed RB to post-perceptual processes such as memory retrieval and/or reporting biases. The standard rapid serial visual presentation (RSVP) paradigm used in most RB studies is, indeed, open to such objections. Here we investigate RB using a "single-frame" paradigm introduced by Johnston and Hale (1984) in which memory demands are minimal. Subjects made only a single judgement about whether one masked target word was the same or different than a post-target probe. Confidence ratings permitted use of signal detection methods to assess sensitivity and bias effects. In the critical condition for RB a precue of the post-target word was provided prior to the target stimulus (identity precue), so that the required judgement amounted to whether the target did or did not repeat the precue word. In control treatments, the precue was either an unrelated word or a dummy.

  16. A Comparison of the Visual Attention Patterns of People with Aphasia and Adults without Neurological Conditions for Camera-Engaged and Task-Engaged Visual Scenes

    Science.gov (United States)

    Thiessen, Amber; Beukelman, David; Hux, Karen; Longenecker, Maria

    2016-01-01

    Purpose: The purpose of the study was to compare the visual attention patterns of adults with aphasia and adults without neurological conditions when viewing visual scenes with 2 types of engagement. Method: Eye-tracking technology was used to measure the visual attention patterns of 10 adults with aphasia and 10 adults without neurological…

  17. No Evidence for a Saccadic Range Effect for Visually Guided and Memory-Guided Saccades in Simple Saccade-Targeting Tasks

    Science.gov (United States)

    Vitu, Françoise; Engbert, Ralf; Kliegl, Reinhold

    2016-01-01

    Saccades to single targets in peripheral vision are typically characterized by an undershoot bias. Putting this bias to a test, Kapoula [1] used a paradigm in which observers were presented with two different sets of target eccentricities that partially overlapped each other. Her data were suggestive of a saccadic range effect (SRE): There was a tendency for saccades to overshoot close targets and undershoot far targets in a block, suggesting that there was a response bias towards the center of eccentricities in a given block. Our Experiment 1 was a close replication of the original study by Kapoula [1]. In addition, we tested whether the SRE is sensitive to top-down requirements associated with the task, and we also varied the target presentation duration. In Experiments 1 and 2, we expected to replicate the SRE for a visual discrimination task. The simple visual saccade-targeting task in Experiment 3, entailing minimal top-down influence, was expected to elicit a weaker SRE. Voluntary saccades to remembered target locations in Experiment 3 were expected to elicit the strongest SRE. Contrary to these predictions, we did not observe a SRE in any of the tasks. Our findings complement the results reported by Gillen et al. [2] who failed to find the effect in a saccade-targeting task with a very brief target presentation. Together, these results suggest that unlike arm movements, saccadic eye movements are not biased towards making saccades of a constant, optimal amplitude for the task. PMID:27658191

  18. Repetitive maladaptive behavior: beyond repetition compulsion.

    Science.gov (United States)

    Bowins, Brad

    2010-09-01

    Maladaptive behavior that repeats, typically known as repetition compulsion, is one of the primary reasons that people seek psychotherapy. However, even with psychotherapeutic advances it continues to be extremely difficult to treat. Despite wishes and efforts to the contrary repetition compulsion does not actually achieve mastery, as evidenced by the problem rarely resolving without therapeutic intervention, and the difficulty involved in producing treatment gains. A new framework is proposed, whereby such behavior is divided into behavior of non-traumatic origin and traumatic origin with some overlap occurring. Repetitive maladaptive behavior of non-traumatic origin arises from an evolutionary-based process whereby patterns of behavior frequently displayed by caregivers and compatible with a child's temperament are acquired and repeated. It has a familiarity and ego-syntonic aspect that strongly motivates the person to retain the behavior. Repetitive maladaptive behavior of traumatic origin is characterized by defensive dissociation of the cognitive and emotional components of trauma, making it very difficult for the person to integrate the experience. The strong resistance of repetitive maladaptive behavior to change is based on the influence of both types on personality, and also factors specific to each. Psychotherapy, although very challenging at the best of times, can achieve the mastery wished and strived for, with the aid of several suggestions provided.

  19. Effects of nicotine and mecamylamine on choice accuracy in an operant visual signal detection task in female rats.

    Science.gov (United States)

    Rezvani, Amir H; Bushnell, Philip J; Levin, Edward D

    2002-12-01

    During the past decade, central nicotinic systems have been shown in both experimental animals and humans to play an important role in cognitive function. However, the way in which specific aspects of cognitive function are affected by nicotinic systems has remained unclear. In humans, the most pronounced action of nicotine is to improve attention, but in rats, memory improvement is more easily seen. This may be due to differences in methods for assessing attention in rats and humans or to species differences in the roles of nicotinic systems in cognitive function. In the current study, we explored the effects of nicotine and mecamylamine using an operant visual signal detection task designed to model sustained attention processes common to rats and humans. Adult female rats ( n=35) were trained to perform the signal detection task to a stable baseline of about 75% accuracy. The rats were then assigned to two subgroups of high and low accuracy based on overall accuracy (hits and correct rejections) at the end of training. All rats were then injected (SC, 10 min before testing) with saline or different doses of nicotine (0.0125, 0.025, 0.05, 0.1, 0.2 and 0.4 mg/kg) or the nicotinic antagonist mecamylamine (1, 2 and 4 mg/kg). A low dose range of nicotine (0.0125, 0.025, and 0.05 mg/kg) caused a dose-related increase in percent correct rejection. This dose range did not affect correct detections of the signal (percent hit). Higher doses of nicotine (0.1, 0.2 and 0.4 mg/kg) did not affect percent correct rejection, but did have a time-dependent effect on percent hit. Early in the session, the higher doses of nicotine reduced percent hit, whereas during the later part of the session higher doses of nicotine increased percent hit. Effects of nicotine did not differ between the high- and low-accuracy rats. Mecamylamine decreased choice accuracy, reducing both percent hit and percent correct rejection. Mecamylamine reduced percent hit in the low-accuracy rats at a lower

  20. Posterior medial frontal cortex activity predicts post-error adaptations in task-related visual and motor areas

    NARCIS (Netherlands)

    Danielmeier, C.; Eichele, T.; Forstmann, B.U.; Tittgemeyer, M.; Ullsperger, M.

    2011-01-01

    As Seneca the Younger put it, "To err is human, but to persist is diabolical." To prevent repetition of errors, human performance monitoring often triggers adaptations such as general slowing and/or attentional focusing. The posterior medial frontal cortex (pMFC) is assumed to monitor performance pr

  1. How does aging affect the types of error made in a visual short-term memory 'object-recall' task?

    Science.gov (United States)

    Sapkota, Raju P; van der Linde, Ian; Pardhan, Shahina

    2014-01-01

    This study examines how normal aging affects the occurrence of different types of incorrect responses in a visual short-term memory (VSTM) object-recall task. Seventeen young (Mean = 23.3 years, SD = 3.76), and 17 normally aging older (Mean = 66.5 years, SD = 6.30) adults participated. Memory stimuli comprised two or four real world objects (the memory load) presented sequentially, each for 650 ms, at random locations on a computer screen. After a 1000 ms retention interval, a test display was presented, comprising an empty box at one of the previously presented two or four memory stimulus locations. Participants were asked to report the name of the object presented at the cued location. Errors rates wherein participants reported the names of objects that had been presented in the memory display but not at the cued location (non-target errors) vs. objects that had not been presented at all in the memory display (non-memory errors) were compared. Significant effects of aging, memory load and target recency on error type and absolute error rates were found. Non-target error rate was higher than non-memory error rate in both age groups, indicating that VSTM may have been more often than not populated with partial traces of previously presented items. At high memory load, non-memory error rate was higher in young participants (compared to older participants) when the memory target had been presented at the earliest temporal position. However, non-target error rates exhibited a reversed trend, i.e., greater error rates were found in older participants when the memory target had been presented at the two most recent temporal positions. Data are interpreted in terms of proactive interference (earlier examined non-target items interfering with more recent items), false memories (non-memory items which have a categorical relationship to presented items, interfering with memory targets), slot and flexible resource models, and spatial coding deficits.

  2. Grammatical Change through Repetition.

    Science.gov (United States)

    Arevart, Supot

    1989-01-01

    The effect of repetition on grammatical change in an unrehearsed talk is examined based on a case study of a single learner. It was found that repetition allows for accuracy monitoring in that errors committed in repeated contexts undergo correction. Implications for teaching are discussed. (23 references) (LB)

  3. The Negative Repetition Effect

    Science.gov (United States)

    Mulligan, Neil W.; Peterson, Daniel J.

    2013-01-01

    A fundamental property of human memory is that repetition enhances memory. Peterson and Mulligan (2012) recently documented a surprising "negative repetition effect," in which participants who studied a list of cue-target pairs twice recalled fewer targets than a group who studied the pairs only once. Words within a pair rhymed, and…

  4. Classification of dual language audio-visual content: Introduction to the VideoCLEF 2008 pilot benchmark evaluation task

    NARCIS (Netherlands)

    Larson, M.; Newman, E.; Jones, G.J.F.; Köhler, J.; Larson, M.; de Jong, F.M.G.; Kraaij, W.; Ordelman, R.J.F.

    2008-01-01

    VideoCLEF is a new track for the CLEF 2008 campaign. This track aims to develop and evaluate tasks in analyzing multilingual video content. A pilot of a Vid2RSS task involving assigning thematic class labels to video kicks off the VideoCLEF track in 2008. Task participants deliver classification res

  5. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  6. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  7. Effect of Task Information Accessibility on Visual Imagery Eye-movement%任务信息通达对视觉表象眼动的影响

    Institute of Scientific and Technical Information of China (English)

    何立国; 周爱保; 郭田友; 鲍旭辉

    2012-01-01

    those of perception of the same visual scene and eye movements during mental imagery are not epiphenomenal but assist the process of image generation (Brandt & Stark, 1997; Laeng & Teodorescu, 2002). Actually, whether regular eye movements promote the representation processing relies on the level of eye movement regularity of change that regular change task information accessibility of visual imagery would cause. If task information accessibility level change inevitably leads to eye movement regularity changes, it can be inferred that eye movements play a functional role in visual imagery. Forty postgraduates, from 25 to 30 years old, attended two experiments respectively. All participants didn't know the purpose of the experiment and had normal or corrected-to-normal vision. Stimulus presentation and data collection were controlled by two microcomputers. Eye movements were recorded by means of the Eye Tracking Device made by ASL with a sample frequency of 256Hz. Referencing Brandt & Stark (1997) and Laeng & Teodorescu (2002) study, the "perception-imagery" dual task experimental paradigm was applied to compare the change of eye-movement parameters in different task information accessibility level in Experiment 1. In Experiment 2, task information accessibility effect was dissociated from eye controlling in order to see how task information accessibility levels influence visual imagery eye movements. The results revealed that under the low task information accessibility, the eye movements in visual imagery duplicate the pattern in perception, and eye-movement parameters, such as average fixation, saccade duration, saccade distance, will change in accordance with task information accessibility levels. The second experiment replicated successfully the findings of the first experiment. Eye-movement control and task information accessibility has different influence on visual imagery processing. The eye movements in visual imagery not only duplicate the pattern in perception

  8. Relationship between Reaction Time, Fine Motor Control, and Visual-Spatial Perception on Vigilance and Visual-Motor Tasks in 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Howley, Sarah A.; Prasad, Sarah E.; Pender, Niall P.; Murphy, Kieran C.

    2012-01-01

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and…

  9. Relationship between Reaction Time, Fine Motor Control, and Visual-Spatial Perception on Vigilance and Visual-Motor Tasks in 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Howley, Sarah A.; Prasad, Sarah E.; Pender, Niall P.; Murphy, Kieran C.

    2012-01-01

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and…

  10. (-)-Bornyl acetate induces autonomic relaxation and reduces arousal level after visual display terminal work without any influences of task performance in low-dose condition.

    Science.gov (United States)

    Matsubara, Eri; Fukagawa, Mio; Okamoto, Tsuyoshi; Ohnuki, Koichiro; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2011-04-01

    (-)-Bornyl acetate is the main volatile constituent in numerous conifer oils and has a camphoraceous, pine-needle-like odor. It is frequently used as the conifer needle composition in soap, bath products, room sprays, and pharmaceutical products. However, the psychophysiological effects of (-)-bornyl acetate remained unclear. We investigated the effects of breathing air mixed with (-)-bornyl acetate at different doses (low-dose and high-dose conditions) on the individuals during and after VDT (visual display terminal) work using a visual discrimination task. The amounts of (-)-bornyl acetate through our odorant delivery system for 40 min were 279.4 µg in the low-dose and 716.3 µg in the high-dose (-)-bornyl acetate condition. (-)-Bornyl acetate induced changes of autonomic nervous system for relaxation and reduced arousal level after VDT work without any influences of task performance in low-dose condition, but not in high-dose condition.

  11. Repetition priming in selective attention: A TVA analysis.

    Science.gov (United States)

    Ásgeirsson, Árni Gunnar; Kristjánsson, Árni; Bundesen, Claus

    2015-09-01

    Current behavior is influenced by events in the recent past. In visual attention, this is expressed in many variations of priming effects. Here, we investigate color priming in a brief exposure digit-recognition task. Observers performed a masked odd-one-out singleton recognition task where the target-color either repeated or changed between subsequent trials. Performance was measured by recognition accuracy over exposure durations. The purpose of the study was to replicate earlier findings of perceptual priming in brief displays and to model those results based on a Theory of Visual Attention (TVA; Bundesen, 1990). We tested 4 different definitions of a generic TVA-model and assessed their explanatory power. Our hypothesis was that priming effects could be explained by selective mechanisms, and that target-color repetitions would only affect the selectivity parameter (α) of our models. Repeating target colors enhanced performance for all 12 observers. As predicted, this was only true under conditions that required selection of a target among distractors, but not when a target was presented alone. Model fits by TVA were obtained with a trial-by-trial maximum likelihood estimation procedure that estimated 4-15 free parameters, depending on the particular model. We draw two main conclusions. Color priming can be modeled simply as a change in selectivity between conditions of repetition or swap of target color. Depending on the desired resolution of analysis; priming can accurately be modeled by a simple four parameter model, where VSTM capacity and spatial biases of attention are ignored, or more fine-grained by a 10 parameter model that takes these aspects into account. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Repetition and Translation Shifts

    Directory of Open Access Journals (Sweden)

    Simon Zupan

    2006-06-01

    Full Text Available Repetition manifests itself in different ways and at different levels of the text. The first basic type of repetition involves complete recurrences; in which a particular textual feature repeats in its entirety. The second type involves partial recurrences; in which the second repetition of the same textual feature includes certain modifications to the first occurrence. In the article; repetitive patterns in Edgar Allan Poe’s short story “The Fall of the House of Usher” and its Slovene translation; “Konec Usherjeve hiše”; are compared. The author examines different kinds of repetitive patterns. Repetitions are compared at both the micro- and macrostructural levels. As detailed analyses have shown; considerable microstructural translation shifts occur in certain types of repetitive patterns. Since these are not only occasional; sporadic phenomena; but are of a relatively high frequency; they reduce the translated text’s potential for achieving some of the gothic effects. The macrostructural textual property particularly affected by these shifts is the narrator’s experience as described by the narrative; which suffers a reduction in intensity.

  13. Effects of nicotine on electroencephalographic (EEG) and behavioural measures of visual working memory in non-smokers during a dual-task paradigm.

    Science.gov (United States)

    Fisher, Derek J; Knobelsdorf, Amy; Jaworska, Natalia; Daniels, Richelle; Knott, Verner J

    2013-01-01

    Research in smokers has shown that nicotine may have the ability to improve certain aspects of cognitive performance, including working memory and attention, processes which implicate frontal and frontal-parietal brain networks. There is limited research on the cognitive effects of nicotine and their associated neural underpinnings in non-smokers. This study examined the effects of acute nicotine on a working memory task alone or combined with a visual detection task (single- and dual-task conditions) using electroencephalographic (EEG) recordings and behavioural performance measures. Twenty non-smokers (13 females; 7 males) received nicotine gum (6 mg) in a double-blind, randomized, placebo-controlled, repeated measures design. Spectral EEG, together with response speed and accuracy measures, were obtained while participants completed a series of N-Back tasks under single- and dual-task conditions. Nicotine failed to exert any significant effects on performance measures, however, EEG changes were observed, primarily in frontal recordings, which varied with memory load, task condition and hemisphere. These findings, discussed in relation to previous studies in smokers, support the notion that nicotine may modulate central executive systems and contribute to smoking behaviour.

  14. The visual encoding of purely proprioceptive intermanual tasks is due to the need of transforming joint signals, not to their interhemispheric transfer.

    Science.gov (United States)

    Arnoux, Léo; Fromentin, Sebastien; Farotto, Dario; Beraneck, Mathieu; McIntyre, Joseph; Tagliabue, Michele

    2017-09-01

    To perform goal-oriented hand movement, humans combine multiple sensory signals (e.g., vision and proprioception) that can be encoded in various reference frames (body centered and/or exo-centered). In a previous study (Tagliabue M, McIntyre J. PLoS One 8: e68438, 2013), we showed that, when aligning a hand to a remembered target orientation, the brain encodes both target and response in visual space when the target is sensed by one hand and the response is performed by the other, even though both are sensed only through proprioception. Here we ask whether such visual encoding is due 1) to the necessity of transferring sensory information across the brain hemispheres, or 2) to the necessity, due to the arms' anatomical mirror symmetry, of transforming the joint signals of one limb into the reference frame of the other. To answer this question, we asked subjects to perform purely proprioceptive tasks in different conditions: Intra, the same arm sensing the target and performing the movement; Inter/Parallel, one arm sensing the target and the other reproducing its orientation; and Inter/Mirror, one arm sensing the target and the other mirroring its orientation. Performance was very similar between Intra and Inter/Mirror (conditions not requiring joint-signal transformations), while both differed from Inter/Parallel. Manipulation of the visual scene in a virtual reality paradigm showed visual encoding of proprioceptive information only in the latter condition. These results suggest that the visual encoding of purely proprioceptive tasks is not due to interhemispheric transfer of the proprioceptive information per se, but to the necessity of transforming joint signals between mirror-symmetric limbs.NEW & NOTEWORTHY Why does the brain encode goal-oriented, intermanual tasks in a visual space, even in the absence of visual feedback about the target and the hand? We show that the visual encoding is not due to the transfer of proprioceptive signals between brain

  15. Functional roles of 10 Hz alpha-band power modulating engagement and disengagement of cortical networks in a complex visual motion task.

    Directory of Open Access Journals (Sweden)

    Kunjan D Rana

    Full Text Available Alpha band power, particularly at the 10 Hz frequency, is significantly involved in sensory inhibition, attention modulation, and working memory. However, the interactions between cortical areas and their relationship to the different functional roles of the alpha band oscillations are still poorly understood. Here we examined alpha band power and the cortico-cortical interregional phase synchrony in a psychophysical task involving the detection of an object moving in depth by an observer in forward self-motion. Wavelet filtering at the 10 Hz frequency revealed differences in the profile of cortical activation in the visual processing regions (occipital and parietal lobes and in the frontoparietal regions. The alpha rhythm driving the visual processing areas was found to be asynchronous with the frontoparietal regions. These findings suggest a decoupling of the 10 Hz frequency into separate functional roles: sensory inhibition in the visual processing regions and spatial attention in the frontoparietal regions.

  16. Functional roles of 10 Hz alpha-band power modulating engagement and disengagement of cortical networks in a complex visual motion task.

    Science.gov (United States)

    Rana, Kunjan D; Vaina, Lucia M

    2014-01-01

    Alpha band power, particularly at the 10 Hz frequency, is significantly involved in sensory inhibition, attention modulation, and working memory. However, the interactions between cortical areas and their relationship to the different functional roles of the alpha band oscillations are still poorly understood. Here we examined alpha band power and the cortico-cortical interregional phase synchrony in a psychophysical task involving the detection of an object moving in depth by an observer in forward self-motion. Wavelet filtering at the 10 Hz frequency revealed differences in the profile of cortical activation in the visual processing regions (occipital and parietal lobes) and in the frontoparietal regions. The alpha rhythm driving the visual processing areas was found to be asynchronous with the frontoparietal regions. These findings suggest a decoupling of the 10 Hz frequency into separate functional roles: sensory inhibition in the visual processing regions and spatial attention in the frontoparietal regions.

  17. UNDERSTANDING PROSE THROUGH TASK ORIENTED AUDIO-VISUAL ACTIVITY: AN AMERICAN MODERN PROSE COURSE AT THE FACULTY OF LETTERS, PETRA CHRISTIAN UNIVERSITY

    Directory of Open Access Journals (Sweden)

    Sarah Prasasti

    2001-01-01

    Full Text Available The method presented here provides the basis for a course in American prose for EFL students. Understanding and appreciation of American prose is a difficult task for the students because they come into contact with works that are full of cultural baggage and far apart from their own world. The audio visual aid is one of the alternatives to sensitize the students to the topic and the cultural background. Instead of proving the ready-made audio visual aids, teachers can involve students to actively engage in a more task oriented audiovisual project. Here, the teachers encourage their students to create their own audio visual aids using colors, pictures, sound and gestures as a point of initiation for further discussion. The students can use color that has become a strong element of fiction to help them calling up a forceful visual representation. Pictures can also stimulate the students to build their mental image. Sound and silence, which are a part of the fabric of literature, may also help them to increase the emotional impact.

  18. fMRI repetition suppression: neuronal adaptation or stimulus expectation?

    Science.gov (United States)

    Larsson, Jonas; Smith, Andrew T

    2012-03-01

    Measurements of repetition suppression with functional magnetic resonance imaging (fMRI adaptation) have been used widely to probe neuronal population response properties in human cerebral cortex. fMRI adaptation techniques assume that fMRI repetition suppression reflects neuronal adaptation, an assumption that has been challenged on the basis of evidence that repetition-related response changes may reflect unrelated factors, such as attention and stimulus expectation. Specifically, Summerfield et al. (Summerfield C, Trittschuh EH, Monti JM, Mesulam MM, Egner T. 2008. Neural repetition suppression reflects fulfilled perceptual expectations. Nat Neurosci. 11:1004-1006) reported that the relative frequency of stimulus repetitions and non-repetitions influenced the magnitude of repetition suppression in the fusiform face area, suggesting that stimulus expectation accounted for most of the effect of repetition. We confirm that stimulus expectation can significantly influence fMRI repetition suppression throughout visual cortex and show that it occurs with long as well as short adaptation durations. However, the effect was attention dependent: When attention was diverted away from the stimuli, the effects of stimulus expectation completely disappeared. Nonetheless, robust and significant repetition suppression was still evident. These results suggest that fMRI repetition suppression reflects a combination of neuronal adaptation and attention-dependent expectation effects that can be experimentally dissociated. This implies that with an appropriate experimental design, fMRI adaptation can provide valid measures of neuronal adaptation and hence response specificity.

  19. Trialogue: Preparation, Repetition and...

    Science.gov (United States)

    Oberg, Antoinette; And Others

    1996-01-01

    This paper interrogates both curriculum theory and the limits and potentials of textual forms. A set of overlapping discourses (a trialogue) focuses on inquiring into the roles of obsession and repetition in creating deeply interpretive locations for understanding. (SM)

  20. Visuo-postural adaptation during the acquisition of a visually guided weight-shifting task: age-related differences in global and local dynamics.

    Science.gov (United States)

    Hatzitaki, Vassilia; Konstadakos, Stylianos

    2007-10-01

    The effects of aging on the acquisition of a novel visuo-postural coordination task were addressed at two levels: (a) changes in the intersegmental coordination (local dynamics) (b) changes in the coupling of postural sway to the visual driving stimulus (global dynamics). Twelve elderly (age: 71.2 +/- 6.4 years; height: 169.3 +/- 3.8 cm; mass: 72.4 +/- 6.1 kg) and 12 young women (age: 27.1 +/- 4.9 years; height: 178.3 +/- 2.9 cm; mass: 56.7 +/- 4.1 kg) practiced a visually guided Weight-Shifting (WS) task while standing on a dual force platform. The participants were asked to keep the vertical force applied by each limb within a +/-30% force boundary that was visually specified by a target sine-wave signal. Practice consisted of three blocks of five trials performed in 1-day, followed by a block of five trials performed 24 h later. Ground reaction forces and segment (shank, pelvis, and upper trunk) angular kinematics were synchronously sampled through an A/D acquisition board and further analyzed employing spectral and coherence analysis. Elderly women had longer WS cycles, lower response gain, and higher within-trial variability, suggesting a weaker coupling between the visual stimulus and the response force. Spectral analysis of the ground reaction forces confirmed that regardless of age, visuo-postural coupling improved with practice. However, the recruitment of local degrees of freedom was different between the two age groups. With practice, young performers increased peak coherence between the pelvis and the upper trunk and reduced peak power of segment oscillations in the pitch direction. On the other hand, elderly women decreased active upper trunk rotation while shifting control to the lower limb. It is suggested that different functional coordination solutions are possible for attaining the same overall task goal. These solutions are determined by age-related constraints in the physiological systems supporting postural control.

  1. Repetition suppression to faces in the fusiform face area: A personal and dynamic journey.

    Science.gov (United States)

    Henson, Richard N

    2016-07-01

    I review a number of fMRI studies that investigate the effects of repeating faces on responses in the fusiform face area (FFA). These studies show that repetition suppression (RS), as well as repetition enhancement (RE), are sensitive to multiple factors, including pre-existing stimulus representations, cognitive task, lag between repetitions and spatial attention. Parallel EEG studies provide additional constraints on the timing of these repetition effects. Together, the results suggest that RS is not a unitary phenomenon, but likely subsumes multiple mechanisms that operate under different conditions. These mechanisms of course need to relate to single-cell data and known physiological mechanisms; but to make further progress, I believe we need dynamical neural network models that relate these mechanisms to the properties of neural populations that are measured by fMRI and EEG data. One example model is sketched, in which RS reflects an acceleration of neural dynamics, owing to reduced prediction error within a recurrent visual processing hierarchy.

  2. Spatial and temporal dynamics of visual search tasks distinguish subtypes of unilateral spatial neglect: Comparison of two cases with viewer-centered and stimulus-centered neglect.

    Science.gov (United States)

    Mizuno, Katsuhiro; Kato, Kenji; Tsuji, Tetsuya; Shindo, Keiichiro; Kobayashi, Yukiko; Liu, Meigen

    2016-08-01

    We developed a computerised test to evaluate unilateral spatial neglect (USN) using a touchscreen display, and estimated the spatial and temporal patterns of visual search in USN patients. The results between a viewer-centered USN patient and a stimulus-centered USN patient were compared. Two right-brain-damaged patients with USN, a patient without USN, and 16 healthy subjects performed a simple cancellation test, the circle test, a visuomotor search test, and a visual search test. According to the results of the circle test, one USN patient had stimulus-centered neglect and a one had viewer-centered neglect. The spatial and temporal patterns of these two USN patients were compared. The spatial and temporal patterns of cancellation were different in the stimulus-centered USN patient and the viewer-centered USN patient. The viewer-centered USN patient completed the simple cancellation task, but paused when transferring from the right side to the left side of the display. Unexpectedly, this patient did not exhibit rightward attention bias on the visuomotor and visual search tests, but the stimulus-centered USN patient did. The computer-based assessment system provided information on the dynamic visual search strategy of patients with USN. The spatial and temporal pattern of cancellation and visual search were different across the two patients with different subtypes of neglect.

  3. Intertrial priming due to distractor repetition is eliminated in homogeneous contexts.

    Science.gov (United States)

    Feldmann-Wüstefeld, Tobias; Schubö, Anna

    2016-10-01

    Targets are found more easily in a visual search task when their feature is repeatedly presented, an effect known as intertrial priming. Recent findings suggest that priming of distractors can also improve search performance by facilitated suppression of repeated distractor features. The efficacy of intertrial priming for targets can be potentiated by the expectancy of a specific target feature; systematic repetition shows larger intertrial priming than random repetition. For distractors, the underlying mechanism is less clear. We used the systematic lateralization approach to disentangle target- and distractor-related processing with subcomponents of the N2pc. We found no modulation of the NT component, which reflects prioritization of target processing. The ND component, which reflects attentional capture by irrelevant stimuli, however, showed intertrial priming: ND monotonically decreased with repetition of a distractor color, but only if a specific distractor feature was expected, and if the context induced a search that was vulnerable to attentional capture. These observations suggest that distractor priming only improves visual search if volitional control is relatively high. The results also suggest that intertrial priming for distractors is due to decreased attentional capture by repeatedly presented distractors, whereas target processing remains unaffected.

  4. This is your brain on Scrabble: Neural correlates of visual word recognition in competitive Scrabble players as measured during task and resting-state.

    Science.gov (United States)

    Protzner, Andrea B; Hargreaves, Ian S; Campbell, James A; Myers-Stewart, Kaia; van Hees, Sophia; Goodyear, Bradley G; Sargious, Peter; Pexman, Penny M

    2016-02-01

    Competitive Scrabble players devote considerable time to studying words and practicing Scrabble-related skills (e.g., anagramming). This training is associated with extraordinary performance in lexical decision, the standard visual word recognition task (Hargreaves, Pexman, Zdrazilova & Sargious, 2012). In the present study we investigated the neural consequences of this lexical expertise. Using both event-related and resting-state fMRI, we compared brain activity and connectivity in 12 competitive Scrabble experts with 12 matched non-expert controls. Results showed that when engaged in the lexical decision task (LDT), Scrabble experts made use of brain regions not generally associated with meaning retrieval in visual word recognition, but rather those associated with working memory and visual perception. The analysis of resting-state data also showed group differences, such that a different network of brain regions was associated with higher levels of Scrabble-related skill in experts than in controls. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Efficiency of visual feedback integration differs between dominant and non-dominant arms during a reaching task.

    Science.gov (United States)

    Apker, Gregory A; Dyson, Keith; Frantz, Garrett; Buneo, Christopher A

    2015-01-01

    Recent studies have shown that patterns of endpoint variability following double-step reach sequences reflect the influence of both planning and execution-related processes, but are strongly dominated by noise associated with the online updating of movement plans based on visual feedback. However, it is currently unclear whether these results reflect the dominant arm/hemisphere's postulated specialization for visual feedback processing, or whether these effects reflect a more general "arm/hemisphere independent" preference for visual feedback in the control of reaching. To explore this, twelve subjects performed double-step reach sequences with their dominant and non-dominant arms to targets in 3D space with and without visual feedback of the arm. Variability was quantified using the volumes, aspect ratios, and orientations of 95% confidence ellipsoids fit to the distributions of reach endpoints. In consonance with previous findings, the availability of visual feedback resulted in ellipsoids that were significantly smaller, had greater aspect ratios, and were more aligned with the depth axis than those performed without visual feedback. Moreover, the effects of vision on aspect ratio and orientation were similar in magnitude for the dominant and non-dominant arms, suggesting that noise associated with planning and execution-related processes is managed in a similar way by the sensorimotor systems of each arm. However, the degree to which vision decreased ellipsoid volume was found to be significantly greater for the dominant arm. This suggests that the feedback control system of the dominant arm uses visual information more efficiently to control reaches to visual targets.

  6. Human cortical rhythms during visual delayed choice reaction time tasks. A high-resolution EEG study on normal aging.

    Science.gov (United States)

    Babiloni, Claudio; Babiloni, Fabio; Carducci, Filippo; Cappa, Stefano F; Cincotti, Febo; Del Percio, Claudio; Miniussi, Carlo; Vito Moretti, Davide; Rossi, Simone; Sosta, Katiuscia; Rossini, Paolo Maria

    2004-08-12

    Neuroimaging cognitive study of aging requires simple tasks ensuring a high rate of correct performances even in stressful neurophysiological settings. Here two simple delayed choice reaction time tasks were used to unveil event-related desynchronization (ERD) of theta (4-6 Hz) and alpha (6-12 Hz) electroencephalographic rhythms across normal aging. In the first condition, a cue stimulus (one bit) was memorized along a brief delay period (3.5-5.5 s). The explicit demand was visuo-spatial, but the retention could be also based on phonological and somatomotor coding. In the second condition, the cue stimulus remained available along the delay period. Correct performances were higher than 95% in both groups and tasks, although they were significantly better in young than elderly subjects (P < 0.03). During the delay period, theta and alpha ERD accompanying correct responses were recognized in the two groups, the alpha ERD being stronger and prolonged during the memory than non-memory task. On the other hand, the fronto-parietal theta and parietal alpha ERD were stronger in young than elderly subjects during both tasks. Notably, the frontal alpha ERD was negligible in elderly subjects. In conclusion, the present simple tasks unveiled in elderly compared to young subjects (i) a weaker involvement of (para)hippocampal-cortical circuits as revealed by theta ERD and (ii) a weaker involvement of "executive" thalamo-cortical circuits as revealed by frontal alpha ERD. These effects might worsen behavioral performances to the simple cognitive tasks with age. The present protocol is promising for the neuroimaging study of pathological aging.

  7. Domestic pigs' (Sus scrofa domestica) use of direct and indirect visual and auditory cues in an object choice task.

    Science.gov (United States)

    Nawroth, Christian; von Borell, Eberhard

    2015-05-01

    Recently, foraging strategies have been linked to the ability to use indirect visual information. More selective feeders should express a higher aversion against losses compared to non-selective feeders and should therefore be more prone to avoid empty food locations. To extend these findings, in this study, we present a series of studies investigating the use of direct and indirect visual and auditory information by an omnivorous but selective feeder-the domestic pig. Subjects had to choose between two buckets, with only one containing a reward. Before making a choice, the subjects in Experiment 1 (N = 8) received full information regarding both the baited and non-baited location, either in a visual or auditory domain. In this experiment, the subjects were able to use visual but not auditory cues to infer the location of the reward spontaneously. Additionally, four individuals learned to use auditory cues after a period of training. In Experiment 2 (N = 8), the pigs were given different amounts of visual information about the content of the buckets-lifting either both of the buckets (full information), the baited bucket (direct information), the empty bucket (indirect information) or no bucket at all (no information). The subjects as a group were able to use direct and indirect visual cues. However, over the course of the experiment, the performance dropped to chance level when indirect information was provided. A final experiment (N = 3) provided preliminary results for pigs' use of indirect auditory information to infer the location of a reward. We conclude that pigs at a very young age are able to make decisions based on indirect information in the visual domain, whereas their performance in the use of indirect auditory information warrants further investigation.

  8. Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task

    Directory of Open Access Journals (Sweden)

    Marcel eMertes

    2014-09-01

    Full Text Available Bees use visual memories to find the spatial location of previously learnt food sites. Characteristic learning flights help acquiring these memories at newly discovered foraging locations where landmarks - salient objects in the vicinity of the goal location - can play an important role in guiding the animal’s homing behavior. Although behavioral experiments have shown that bees can use a variety of visual cues to distinguish objects as landmarks, the question of how landmark features are encoded by the visual system is still open. Recently, it could be shown that motion cues are sufficient to allow bees localizing their goal using landmarks that can hardly be discriminated from the background texture. Here, we tested the hypothesis that motion sensitive neurons in the bee’s visual pathway provide information about such landmarks during a learning flight and might, thus, play a role for goal localization. We tracked learning flights of free-flying bumblebees (Bombus terrestris in an arena with distinct visual landmarks, reconstructed the visual input during these flights, and replayed ego-perspective movies to tethered bumblebees while recording the activity of direction-selective wide-field neurons in their optic lobe. By comparing neuronal responses during a typical learning flight and targeted modifications of landmark properties in this movie we demonstrate that these objects are indeed represented in the bee’s visual motion pathway. We find that object-induced responses vary little with object texture, which is in agreement with behavioral evidence. These neurons thus convey information about landmark properties that are useful for view-based homing.

  9. Advanced Visualization and Interactive Display Rapid Innovation and Discovery Evaluation Research (VISRIDER) Program Task 6: Point Cloud Visualization Techniques for Desktop and Web Platforms

    Science.gov (United States)

    2017-04-01

    for Public Release; Distribution Unlimited. 2 The computer has two main processors: the Central Processing Unit (CPU) and the Graphics Processing ...AIR FORCE RESEARCH LABORATORY INFORMATION DIRECTORATE AFRL-RI-RS-TR-2017-086  UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND...A 5c. PROGRAM ELEMENT NUMBER 62788F / 625318 6. AUTHOR(S) David E. Kaveney 5d. PROJECT NUMBER PAVZ 5e. TASK NUMBER IH 5f. WORK UNIT NUMBER

  10. Prefrontal cortex lesions and scopolamine impair attention performance of C57BL/6 mice in a novel 2-choice visual discrimination task.

    Science.gov (United States)

    Dillon, Gregory M; Shelton, Delia; McKinney, A P; Caniga, Michael; Marcus, Jacob N; Ferguson, Mitchell T; Kornecook, Thomas J; Dodart, Jean-Cosme

    2009-12-01

    Sustained attention is defined as the ability or capacity to remain focused on the occurrence of rare events over long periods of time. We describe here the development of a novel, operant-based attention task that can be learned by mice in 8-10 days. Mice were trained on a 2-choice visual discrimination task in an operant chamber, wherein the correct response on any given trial was a lever-press cued by a stimulus light. Upon reaching a criterion of greater than 80% correct responses, all subjects were tested in a mixed-trial attention paradigm combining four different stimulus durations within a single session (0.5, 1, 2, or 10 s). During attention testing, the percentage of correct responses decreased as a function of stimulus duration, indicating a performance decrement which parallels increasing attentional demand within the task. Pretreatment with the muscarinic-receptor antagonist scopolamine yielded a reliable, dose-dependent performance deficit whereas nicotine treatment improved the percentage of correct responses during trials with the greatest attentional demand. Moreover, medial prefrontal cortex lesions impaired attention performance without affecting acquisition or retention of the discrimination rule. These results underscore the utility of this task as a novel means of assessing attentional processes in mice in a relatively high-throughput manner.

  11. Dissecting the functional anatomy of auditory word repetition

    Directory of Open Access Journals (Sweden)

    Thomas Matthew Hadley Hope

    2014-05-01

    Full Text Available Auditory word repetition involves many different brain regions, whose functions are still far from fully understood. Here, we use a single, multi-factorial, within-subjects fMRI design to identify those regions, and to functionally distinguish the multiple linguistic and non-linguistic processing areas that are all involved in repeating back heard words. The study compared: (1 auditory to visual inputs; (2 phonological to non-phonological inputs; (3 semantic to non-semantic inputs; and (4 speech production to finger-press responses. The stimuli included words (semantic and phonological inputs, pseudowords (phonological input, pictures and sounds of animals or objects (semantic input, and coloured patterns and hums (non-semantic and non-phonological. The speech production tasks involved auditory repetition, reading and naming while the finger press tasks involved one-back matching.The results from the main effects and interactions were compared to predictions from a previously reported functional anatomical model of language based on a meta-analysis of many different neuroimaging experiments. Although many findings from the current experiment replicated those predicted, our within-subject design also revealed novel results by providing sufficient anatomical precision to distinguish several different regions within: (1 the anterior insula (a dorsal region involved in both covert and overt speech production, and a more ventral region involved in overt speech only; (2 the pars orbitalis (with distinct sub-regions responding to phonological and semantic processing; (3 the anterior cingulate and SMA (whose subregions show differential sensitivity to speech and finger press responses; and (4 the cerebellum (with distinct regions for semantic processing, speech production and domain general processing. We also dissociated four different types of phonological effects in, respectively, the left superior temporal sulcus, left putamen, left ventral premoto

  12. Task-Based Assessment of Students' Computational Thinking Skills Developed through Visual Programming or Tangible Coding Environments

    Science.gov (United States)

    Djambong, Takam; Freiman, Viktor

    2016-01-01

    While today's schools in several countries, like Canada, are about to bring back programming to their curricula, a new conceptual angle, namely one of computational thinking, draws attention of researchers. In order to understand the articulation between computational thinking tasks in one side, student's targeted skills, and the types of problems…

  13. Tinnitus-related abnormalities in visual and salience networks during a one-back task with distractors

    NARCIS (Netherlands)

    Amaral, Ana A.; Langers, Dave R. M.

    2015-01-01

    Tinnitus is highly prevalent in the general population. Tinnitus sufferers often report having difficulties focusing on a task at hand and ignoring the tinnitus percept. Behavioral studies have shown evidence for impairments in attention, interference inhibition, and various other executive function

  14. Reading Guided by Automated Graphical Representations: How Model-Based Text Visualizations Facilitate Learning in Reading Comprehension Tasks

    Science.gov (United States)

    Pirnay-Dummer, Pablo; Ifenthaler, Dirk

    2011-01-01

    Our study integrates automated natural language-oriented assessment and analysis methodologies into feasible reading comprehension tasks. With the newly developed T-MITOCAR toolset, prose text can be automatically converted into an association net which has similarities to a concept map. The "text to graph" feature of the software is based on…

  15. Achievement of Specificational Information Usage with True and False Feedback in Learning a Visual Relative-Mass Discrimination Task

    Science.gov (United States)

    Runeson, Sverker; Andersson, Isabell E. K.

    2007-01-01

    Participants' usage of informational variables in learning visual relative-mass discrimination in collisions was tracked by means of PROBIT correlations. Four groups received feedback that was true or accorded with either of three nonspecificational cue variables. A majority in each group adopted the feedback, but several participants defied the…

  16. Information Provision to the Visually Impaired in Alternative Formats in Nigeria: Are Public Libraries Up to the Task?

    Directory of Open Access Journals (Sweden)

    Adetoro, 'Niran

    2014-06-01

    Full Text Available Public libraries provide information to all persons and its users are the inhabitants of the community it serves. This may not be the reality in some cases as some category of persons may not be properly served by the public library. This study assesses the provision of information materials in alternative format, in terms of its availability, access and level of use by the visually impaired in public libraries in southwestern Nigeria. The study adopted survey research design. Four (4 public libraries in four states were purposively selected because they are the ones that provide alternative format for the use of a sizable number of the visually impaired. Complete enumeration was used to capture all the 166 registered users of the libraries through the use of observations checklist and interview schedule. Data from 69.2% of the 166 visually impaired persons that were interviewed, and the observations made were analyzed. The result reveals that alternative formats availability were inadequate and, e-resources were not available while access to formats and information desired by the users were limited. Braille is the most utilized format; audio materials and large prints were seldom used. The demand for alternative formats is high but it is not related to level of use of materials. Provision of information materials in alternative formats for the visually impaired in public libraries cannot support the needs of the visually impaired; it requires intervention from all stakeholders. The study recommends improved investment and funding for public libraries and services to persons with disabilities.

  17. Novel porcine repetitive elements

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-12-01

    Full Text Available Abstract Background Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. Results We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI. These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute, covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. Conclusion The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics.

  18. History effects in visual search for monsters: search times, choice biases, and liking.

    Science.gov (United States)

    Chetverikov, Andrey; Kristjansson, Árni

    2015-02-01

    Repeating targets and distractors on consecutive visual search trials facilitates search performance, whereas switching targets and distractors harms search. In addition, search repetition leads to biases in free choice tasks, in that previously attended targets are more likely to be chosen than distractors. Another line of research has shown that attended items receive high liking ratings, whereas ignored distractors are rated negatively. Potential relations between the three effects are unclear, however. Here we simultaneously measured repetition benefits and switching costs for search times, choice biases, and liking ratings in color singleton visual search for "monster" shapes. We showed that if expectations from search repetition are violated, targets are liked to be less attended than otherwise. Choice biases were, on the other hand, affected by distractor repetition, but not by target/distractor switches. Target repetition speeded search times but had little influence on choice or liking. Our findings suggest that choice biases reflect distractor inhibition, and liking reflects the conflict associated with attending to previously inhibited stimuli, while speeded search follows both target and distractor repetition. Our results support the newly proposed affective-feedback-of-hypothesis-testing account of cognition, and additionally, shed new light on the priming of visual search.

  19. Nonword Repetition and Phoneme Elision in Adults Who Do and Do Not Stutter

    Science.gov (United States)

    Byrd, Courtney T.; Vallely, Megann; Anderson, Julie D.; Sussman, Harvey

    2012-01-01

    The purpose of the present study was to explore the phonological working memory of adults who stutter through the use of a non-word repetition and a phoneme elision task. Participants were 14 adults who stutter (M = 28 years) and 14 age/gender matched adults who do not stutter (M = 28 years). For the non-word repetition task, the participants had…

  20. Functional dissociations in top-down control dependent neural repetition priming.

    NARCIS (Netherlands)

    Klaver, P.; Schnaidt, M.; Fell, J.; Ruhlmann, J.; Elger, C.E.; Fernandez, G.

    2007-01-01

    Little is known about the neural mechanisms underlying top-down control of repetition priming. Here, we use functional brain imaging to investigate these mechanisms. Study and repetition tasks used a natural/man-made forced choice task. In the study phase subjects were required to respond to either

  1. rTMS of the occipital cortex abolishes Braille reading and repetition priming in blind subjects.

    Science.gov (United States)

    Kupers, R; Pappens, M; de Noordhout, A Maertens; Schoenen, J; Ptito, M; Fumal, A

    2007-02-27

    To study the functional involvement of the visual cortex in Braille reading, we applied repetitive transcranial magnetic stimulation (rTMS) over midoccipital (MOC) and primary somatosensory (SI) cortex in blind subjects. After rTMS of MOC, but not SI, subjects made significantly more errors and showed an abolishment of the improvement in reading speed following repetitive presentation of the same word list, suggesting a role of the visual cortex in repetition priming in the blind.

  2. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.

    Science.gov (United States)

    Whitwell, Robert L; Ganel, Tzvi; Byrne, Caitlin M; Goodale, Melvyn A

    2015-01-01

    Investigators study the kinematics of grasping movements (prehension) under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. "Natural" prehensile acts are directed at the goal object and are executed using real-time vision. Typically, they also entail the use of tactile, proprioceptive, and kinesthetic sources of haptic feedback about the object ("haptics-based object information") once contact with the object has been made. Natural and simulated (pantomimed) forms of prehension are thought to recruit different cortical structures: patient DF, who has visual form agnosia following bilateral damage to her temporal-occipital cortex, loses her ability to scale her grasp aperture to the size of targets ("grip scaling") when her prehensile movements are based on a memory of a target previewed 2 s before the cue to respond or when her grasps are directed towards a visible virtual target but she is denied haptics-based information about the target. In the first of two experiments, we show that when DF performs real-time pantomimed grasps towards a 7.5 cm displaced imagined copy of a visible object such that her fingers make contact with the surface of the table, her grip scaling is in fact quite normal. This finding suggests that real-time vision and terminal tactile feedback are sufficient to preserve DF's grip scaling slopes. In the second experiment, we examined an "unnatural" grasping task variant in which a tangible target (along with any proxy such as the surface of the table) is denied (i.e., no terminal tactile feedback). To do this, we used a mirror-apparatus to present virtual targets with and without a spatially coincident copy for the participants to grasp. We compared the grasp kinematics from trials with and without terminal tactile feedback to a real-time-pantomimed grasping task (one without tactile feedback) in which participants visualized a copy of the visible target as instructed in our laboratory in the

  3. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a “natural” grasping task induces pantomime-like grasps

    Science.gov (United States)

    Whitwell, Robert L.; Ganel, Tzvi; Byrne, Caitlin M.; Goodale, Melvyn A.

    2015-01-01

    Investigators study the kinematics of grasping movements (prehension) under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. “Natural” prehensile acts are directed at the goal object and are executed using real-time vision. Typically, they also entail the use of tactile, proprioceptive, and kinesthetic sources of haptic feedback about the object (“haptics-based object information”) once contact with the object has been made. Natural and simulated (pantomimed) forms of prehension are thought to recruit different cortical structures: patient DF, who has visual form agnosia following bilateral damage to her temporal-occipital cortex, loses her ability to scale her grasp aperture to the size of targets (“grip scaling”) when her prehensile movements are based on a memory of a target previewed 2 s before the cue to respond or when her grasps are directed towards a visible virtual target but she is denied haptics-based information about the target. In the first of two experiments, we show that when DF performs real-time pantomimed grasps towards a 7.5 cm displaced imagined copy of a visible object such that her fingers make contact with the surface of the table, her grip scaling is in fact quite normal. This finding suggests that real-time vision and terminal tactile feedback are sufficient to preserve DF’s grip scaling slopes. In the second experiment, we examined an “unnatural” grasping task variant in which a tangible target (along with any proxy such as the surface of the table) is denied (i.e., no terminal tactile feedback). To do this, we used a mirror-apparatus to present virtual targets with and without a spatially coincident copy for the participants to grasp. We compared the grasp kinematics from trials with and without terminal tactile feedback to a real-time-pantomimed grasping task (one without tactile feedback) in which participants visualized a copy of the visible target as instructed in our

  4. The visual properties of proximal and remote distractors differentially influence reaching planning times: evidence from pro- and antipointing tasks.

    Science.gov (United States)

    Heath, Matthew; DeSimone, Jesse C

    2016-11-01

    The saccade literature has consistently reported that the presentation of a distractor remote to a target increases reaction time (i.e., the remote distractor effect: RDE). As well, some studies have shown that a proximal distractor facilitates saccade reaction time. The lateral inhibition hypothesis attributes the aforementioned findings to the inhibition/facilitation of target selection mechanisms operating in the intermediate layers of the superior colliculus (SC). Although the impact of remote and proximal distractors has been extensively examined in the saccade literature, a paucity of work has examined whether such findings generalize to reaching responses, and to our knowledge, no work has directly contrasted reaching RTs for remote and proximal distractors. To that end, the present investigation had participants complete reaches in target only trials (i.e., TO) and when distractors were presented at "remote" (i.e., the opposite visual field) and "proximal" (i.e., the same visual field) locations along the same horizontal meridian as the target. As well, participants reached to the target's veridical (i.e., propointing) and mirror-symmetrical (i.e., antipointing) location. The basis for contrasting pro- and antipointing was to determine whether the distractor's visual- or motor-related activity influence reaching RTs. Results demonstrated that remote and proximal distractors, respectively, increased and decreased reaching RTs and the effect was consistent for pro- and antipointing. Accordingly, results evince that the RDE and the facilitatory effects of a proximal distractor are effector independent and provide behavioral support for the contention that the SC serves as a general target selection mechanism. As well, the comparable distractor-related effects for pro- and antipointing trials indicate that the visual properties of remote and proximal distractors respectively inhibit and facilitate target selection.

  5. Predictive information speeds up visual awareness in an individuation task by modulating threshold setting, not processing efficiency.

    Science.gov (United States)

    De Loof, Esther; Van Opstal, Filip; Verguts, Tom

    2016-04-01

    Theories on visual awareness claim that predicted stimuli reach awareness faster than unpredicted ones. In the current study, we disentangle whether prior information about the upcoming stimulus affects visual awareness of stimulus location (i.e., individuation) by modulating processing efficiency or threshold setting. Analogous research on stimulus identification revealed that prior information modulates threshold setting. However, as identification and individuation are two functionally and neurally distinct processes, the mechanisms underlying identification cannot simply be extrapolated directly to individuation. The goal of this study was therefore to investigate how individuation is influenced by prior information about the upcoming stimulus. To do so, a drift diffusion model was fitted to estimate the processing efficiency and threshold setting for predicted versus unpredicted stimuli in a cued individuation paradigm. Participants were asked to locate a picture, following a cue that was congruent, incongruent or neutral with respect to the picture's identity. Pictures were individuated faster in the congruent and neutral condition compared to the incongruent condition. In the diffusion model analysis, the processing efficiency was not significantly different across conditions. However, the threshold setting was significantly higher following an incongruent cue compared to both congruent and neutral cues. Our results indicate that predictive information about the upcoming stimulus influences visual awareness by shifting the threshold for individuation rather than by enhancing processing efficiency.

  6. Visual agnosia.

    Science.gov (United States)

    Álvarez, R; Masjuan, J

    2016-03-01

    Visual agnosia is defined as an impairment of object recognition, in the absence of visual acuity or cognitive dysfunction that would explain this impairment. This condition is caused by lesions in the visual association cortex, sparing primary visual cortex. There are 2 main pathways that process visual information: the ventral stream, tasked with object recognition, and the dorsal stream, in charge of locating objects in space. Visual agnosia can therefore be divided into 2 major groups depending on which of the two streams is damaged. The aim of this article is to conduct a narrative review of the various visual agnosia syndromes, including recent developments in a number of these syndromes.

  7. The role of visual awareness for conflict adaptation in the masked priming task: Comparing block-wise adaptation with trial-by-trial adaptation

    Directory of Open Access Journals (Sweden)

    Kunihiro eHasegawa

    2014-11-01

    Full Text Available This study investigated the role of participants’ visual awareness in the block-wise and the trial-by-trial adaptations. We employed a subliminal response compatibility task in which a prime arrow was briefly presented before the target arrow, and the participants were requested to indicate the direction of the target arrow. The direction of the prime and direction of the target were either the same (compatible trial or different (incompatible trial. To examine block-wise adaptation, two blocks were conducted, i.e., the Neutral block (50% compatible and 50% incompatible trials and the Incompatible block (10% compatible and 90% incompatible trials. The results showed the existence of the block-wise adaptation without participants’ visual awareness. The compatibility effect on both response time and error rate was smaller in the Incompatible block than in the Neutral block. Moreover, a separate data analysis based on the preceding trial type revealed that the trial-by-trial adaptation of cognitive control was observed only in the error rate. These results suggest the different role of visual awareness in the block-wise and trial-by-trial adaptations.

  8. Dissociable effects of AMPA-induced lesions of the vertical limb diagonal band of Broca on performance of the 5-choice serial reaction time task and on acquisition of a conditional visual discrimination.

    Science.gov (United States)

    Muir, J L; Bussey, T J; Everitt, B J; Robbins, T W

    1996-12-01

    The aim of the present study was to investigate the role of the cholinergic innervation of the cingulate cortex in visual attentional function and acquisition of a visual conditional discrimination task. Following AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) lesions of the vertical limb diagonal band of Broca (VDB) which provides the main cholinergic projection to cingulate cortex, animals were not significantly impaired on the 5-choice serial reaction time task. This task, which provides a continuous performance test of visual attention, has previously been shown to be sensitive to AMPA lesions of the nucleus basalis magnocellularis (nbM). In contrast to the results obtained for visual attentional function, lesions of the VDB did significantly affect the acquisition of a visual conditional discrimination. While showing a significant facilitation in the early learning stage of acquiring this task animals with lesions of the VDB were significantly impaired during the late stages of learning this task. This late learning deficit was not the result of the animals being unable to learn the task due to the presence of the lesion throughout task acquisition as the results of a second experiment revealed that when animals were pre-trained to 70% accuracy on the task and then lesioned, the impairment in late learning was still apparent. In light of the results presented in the accompanying paper (Bussey et al., Behav. Brain Res., 1996), these results suggest that the early learning effects may be due to cholinergic denervation of the anterior cingulate cortex while the late learning effects may be due to denervation of the posterior cingulate cortex. Taken together with previous work indicating a role for the nbM cholinergic system in visual attentional function, these results suggest a role for the cholinergic innervation of the cingulate cortex in conditional learning but not for continuous attentional performance.

  9. Self-controlled KR schedules: does repetition order matter?

    Science.gov (United States)

    Patterson, Jae T; Carter, Michael J; Hansen, Steve

    2013-08-01

    The impact of an experimenter-defined repetition schedule on the utility of a self-controlled KR context during motor skill acquisition was examined. Participants were required to learn three novel spatial-temporal tasks in either a random or blocked repetition schedule with or without the opportunity to control their KR. Results from the retention period showed that participants provided control over their KR schedule in a random repetition schedule demonstrated superior learning. However, performance measures from the transfer test showed that, independent of repetition schedule, learners provided the opportunity to control their KR schedule demonstrated superior transfer performance compared to their yoked counterparts. The dissociated impact of repetition schedule and self-controlled KR schedules on retention and transfer is discussed.

  10. 大型荧幕作业下工作绩效与视觉不适之研究%Task Performance and Visual Discomfort While Working with a Large Visual Display Unit

    Institute of Scientific and Technical Information of China (English)

    林久翔; 谢尧宏; 黄琪雯

    2008-01-01

    With the advancement in display technology, large displays have become available and more af-fordable. The study investigated the effect of large displays on visual and work performance and associated muscular discomfort. Four sizes (15, 17, 19, and 21-inch) of displays were compared on the subjective preference, task performance, visual strain, neck and shoulder posture and muscle activity. The subjective evaluation results showed that the 19-inch display was preferred by most subjects, compared to the smaller displays. The effect of display size on ocular surface area was significant. There was a tendency that ocular surface increased linearly with the display size, which implied possible visual fatigue for larger displays. Blink rates increased rapidly after one hour of task operation, also indicating visual fatigue. The postural analysis revealed that the display size had no significant influence on the neck angle. Finally, the display size had a significant effect on the average task completion time. In conclusion, the 19 inch display was rec-omrnended for use in extended duration of VDT operation, based on an overall evaluation of the variables investigated.%伴随今日荧幕技术进步,大型荧幕已经成为一种流行趋势.本研究希望得知大型荧幕对视觉、工作绩效之影响,并了解肌肉不适之情形.比较四种荧幕尺寸(15、17、19和21英时)以主观评量、工作绩效、视觉压力、颈肩姿势与肌肉活动之影响.由主观评量得知,19时工作绩效是最好的,荧幕大小对视觉表面积的影响是显著的,在工作超过一小时候,眨眼率与视觉疲劳也大幅增加,颈肩姿势对荧幕大小无显著的,最后,荧幕大小对平均作业时间有显著的影响.结论,19 英时萤幕是我们推荐适用于长时间的作业平台.

  11. Practicing novel, praxis-like movements: physiological effects of repetition

    Directory of Open Access Journals (Sweden)

    Joshua Benjamin Ewen

    2016-02-01

    Full Text Available Our primary goal was to develop and validate a task that could provide evidence about how humans learn praxis gestures, such as those involving the use of tools. To that end, we created a video-based task in which subjects view a model performing novel, meaningless one-handed actions with kinematics similar to praxis gestures. Subjects then imitated the movements with their right hand. Trials were repeated 6 times to examine practice effects. EEG was recorded during the task. As a control, subjects watched videos of a model performing a well-established (over learned tool-use gesture. These gestures were also imitated 6 times. Demonstrating convergent validity, EEG measures of task-related cortical activation were similar in topography and frequency between the novel gesture task and the overlearned, praxis gesture task. As in studies assessing motor skill learning with simpler tasks, cortical activation during novel gesture learning decreased as the same gestures were repeated. In the control condition, repetition of overlearned tool-use gestures were also associated with reductions in activation, though to a lesser degree. Given that even overlearned, praxis gestures show constriction of EEG activity with repetition, it is possible that that attentional effects drive some of the repetition effects seen in EEG measures of activation during novel gesture repetition.

  12. Modality-specific spectral dynamics in response to visual and tactile sequential shape information processing tasks: An MEG study using multivariate pattern classification analysis.

    Science.gov (United States)

    Gohel, Bakul; Lee, Peter; Jeong, Yong

    2016-08-01

    Brain regions that respond to more than one sensory modality are characterized as multisensory regions. Studies on the processing of shape or object information have revealed recruitment of the lateral occipital cortex, posterior parietal cortex, and other regions regardless of input sensory modalities. However, it remains unknown whether such regions show similar (modality-invariant) or different (modality-specific) neural oscillatory dynamics, as recorded using magnetoencephalography (MEG), in response to identical shape information processing tasks delivered to different sensory modalities. Modality-invariant or modality-specific neural oscillatory dynamics indirectly suggest modality-independent or modality-dependent participation of particular brain regions, respectively. Therefore, this study investigated the modality-specificity of neural oscillatory dynamics in the form of spectral power modulation patterns in response to visual and tactile sequential shape-processing tasks that are well-matched in terms of speed and content between the sensory modalities. Task-related changes in spectral power modulation and differences in spectral power modulation between sensory modalities were investigated at source-space (voxel) level, using a multivariate pattern classification (MVPC) approach. Additionally, whole analyses were extended from the voxel level to the independent-component level to take account of signal leakage effects caused by inverse solution. The modality-specific spectral dynamics in multisensory and higher-order brain regions, such as the lateral occipital cortex, posterior parietal cortex, inferior temporal cortex, and other brain regions, showed task-related modulation in response to both sensory modalities. This suggests modality-dependency of such brain regions on the input sensory modality for sequential shape-information processing.

  13. The enhanced processing of visual novel events in females: ERP correlates from two modified three-stimulus oddball tasks.

    Science.gov (United States)

    Yuan, Jiajin; Xu, Shuang; Li, Chengqiang; Yang, Jiemin; Li, Hong; Yuan, Yin; Huang, Yu

    2012-02-09

    The ability to detect and cope with unpredictable novel events is fundamental for adapting to a rapidly changing environment and ensuring the survival of the organism. Despite knowledge of gender differences in emotional processing, little is currently known about the impact of gender on neural processing of emotion-irrelevant, novel stimuli. Using two modified three-stimulus oddball tasks and event-related potentials (ERPs), the present study investigated the impact of sex on brain processing of novel events and the associated neurophysiological correlates. With novel and non-novel control stimuli used as task-irrelevant distracters, Experiment 1 showed higher novelty rating scores and larger size of novelty effects in brain potentials at 200-300 ms and 300-430 ms time intervals in females compared to males. After excluding the contribution of stimulus probability, Experiment 2 continued to display significant novelty effects in the response times and the amplitudes of the 130-500 ms time windows. Most importantly, females displayed a sustained novelty effect in the late positive component (LPC) amplitudes of the 500-600 ms interval, which was not observed in males. Therefore, Experiment 1 and 2 demonstrated that females are equipped with enhanced brain processing of emotion-irrelevant, novel stimuli. This phenomenon is independent of the established gender difference in infrequent stimulus processing. We suggest that our findings reflect the differential adaptive demands on females and males during evolution.

  14. Near-infrared spectroscopy assessment of divided visual attention task-invoked cerebral hemodynamics during prolonged true driving

    Science.gov (United States)

    Li, Ting; Zhao, Yue; Sun, Yunlong; Gao, Yuan; Su, Yu; Hetian, Yiyi; Chen, Min

    2015-03-01

    Driver fatigue is one of the leading causes of traffic accidents. It is imperative to develop a technique to monitor fatigue of drivers in real situation. Near-infrared spectroscopy (fNIRS) is now capable of measuring brain functional activity noninvasively in terms of hemodynamic responses sensitively, which shed a light to us that it may be possible to detect fatigue-specified brain functional activity signal. We developed a sensitive, portable and absolute-measure fNIRS, and utilized it to monitor cerebral hemodynamics on car drivers during prolonged true driving. An odd-ball protocol was employed to trigger the drivers' visual divided attention, which is a critical function in safe driving. We found that oxyhemoglobin concentration and blood volume in prefrontal lobe dramatically increased with driving duration (stand for fatigue degree; 2-10 hours), while deoxyhemoglobin concentration increased to the top at 4 hours then decreased slowly. The behavior performance showed clear decrement only after 6 hours. Our study showed the strong potential of fNIRS combined with divided visual attention protocol in driving fatigue degree monitoring. Our findings indicated the fNIRS-measured hemodynamic parameters were more sensitive than behavior performance evaluation.

  15. A novel test for evaluating horses' spontaneous visual attention is predictive of attention in operant learning tasks

    Science.gov (United States)

    Rochais, C.; Sébilleau, M.; Houdebine, M.; Bec, P.; Hausberger, M.; Henry, S.

    2017-08-01

    Attention is described as the ability to process selectively one aspect of the environment over others. In this study, we characterized horses' spontaneous attention by designing a novel visual attention test (VAT) that is easy to apply in the animal's home environment. The test was repeated over three consecutive days and repeated again 6 months later in order to assess inter-individual variations and intra-individual stability. Different patterns of attention have been revealed: `overall' attention when the horse merely gazed at the stimulus and `fixed' attention characterized by fixity and orientation of at least the visual and auditory organs towards the stimulus. The individual attention characteristics remained consistent over time (after 6 months, Spearman correlation test, P work situation (lunge working context). Our results revealed that (i) individual variations remained consistent across tests and (ii) the VAT attention measures were not only predictive of attentional skills but also of learning abilities. Differences appeared however between the first day of testing and the following test days: attention structure on the second day was predictive of learning abilities, attention performances in the 5-CSRRT and at work. The VAT appears as a promising easy-to-use tool to assess animals' attention characteristics and the impact of different factors of variation on attention.

  16. Skill learning in mirror reading: how repetition determines acquisition.

    Science.gov (United States)

    Ofen-Noy, N; Dudai, Y; Karni, A

    2003-07-01

    Practice makes perfect, but the role of repetitions in skill learning is not yet fully understood. For example, given a similar number of trials on a given task, it is debated whether repeating and non-repeating items are learned by the same neural process. When one is given training with both types of items--does one learn two separate skills, or only one? Here we show, using a mirror reading task, that practice trials with trial-unique words, and practice trials with repeated words, count towards learning to a different degree. There was no interaction between the time-course of learning repeated and unique words even within the same individuals given mixed training. While repeated words were learned faster than unique words, the repetitions-dependent gains diminished with training beyond a small number of repetitions. Moreover, the gains in performance could not be accounted for solely by the number of repetitions, as assumed by power-law models of learning; rather, the passage of time was a critical factor. Finally, our results suggest that although both repeated and new words were learned by both declarative and procedural memory mechanisms, even a single repetition of specific words could lead to the establishment of a selective differential representation in memory. The results are compatible with the notion of a repetition-sensitive process, triggered by specific repeating events. This 'repetition counter' may be a critical trigger for the effective formation of procedural as well as some type of declarative memory.

  17. Responding to emotional scenes: effects of response outcome and picture repetition on reaction times and the late positive potential.

    Science.gov (United States)

    Thigpen, Nina N; Keil, Andreas; Freund, Alexandra M

    2016-12-06

    Processing the motivational relevance of a visual scene and reacting accordingly is crucial for survival. Previous work suggests the emotional content of naturalistic scenes affects response speed, such that unpleasant content slows responses whereas pleasant content accelerates responses. It is unclear whether these effects reflect motor-cognitive processes, such as attentional orienting, or vary with the function/outcome of the motor response itself. Four experiments manipulated participants' ability to terminate the picture (offset control) and, thereby, the response's function and motivational value. Attentive orienting was manipulated via picture repetition, which diminishes orienting. A total of N = 81 participants completed versions of a go/no-go task, discriminating between distorted versus intact pictures drawn from six content categories varying in positive, negative, or neutral valence. While all participants responded faster with repetition, only participants without offset control exhibited slower responses to unpleasant and accelerated responses to pleasant content. Emotional engagement, measured by the late positive potential, was not modulated by attentional orienting (repetition), suggesting that the interaction between repetition and offset control is not due to altered emotional engagement. Together, results suggest that response time changes as a function of emotional content and sensitivity to attention orienting depends on the motivational function of the motor response.

  18. Seleção e análise de estímulos na tarefa de busca visual Stimuli selection and analysis in the visual search task

    Directory of Open Access Journals (Sweden)

    Joaquim Carlos Rossini

    2008-01-01

    Full Text Available A capacidade de processar simultaneamente vários estágios cognitivos ainda é motivo de discordância entre os modelos que tentam compreender o processamento da informação visual. Muitos resultados experimentais apontam basicamente duas maneiras possíveis de fluxo da informação entre estágios de processamento: uma discreta e outra contínua. No presente estudo, dois experimentos foram delineados para investigar se a informação inicialmente descartada, em um estágio pré-atentivo, pode influenciar o processamento atentivo da informação selecionada em uma tarefa de busca visual. De maneira geral, os resultados observados nestes experimentos mostram que os estímulos inicialmente descartados em um processo automático de seleção não interferem no processamento atentivo dos estímulos na tarefa de busca visual. Este resultado apóia os modelos que predizem uma seleção precoce dos elementos relevantes para o processamento atentivo e uma transmissão discreta da informação entre os estágios cognitivos de processamento.The capacity of processing several cognitive stages simultaneously still generates a considerable disagreement among models that try to understand the processing of visual information. Many experimental results suggest two main possibilities for the information flow between information processing stages: a discrete or a continuous flow. Two experiments have in the present study to investigate were designed attentional processing whether the information at first discarded in a pre-attentive state can influence the of selected information in a visual search task. The results show that the stimuli initially discarded in an automatic process of selection do not interfere in the attention all processing of stimuli in a visual search. The results support the models that predict an early selection of the relevant stimuli and a discrete transmission of the information between the cognitive processing stages.

  19. CATIA V5 macro programming with Visual Basic Script

    CERN Document Server

    Ziethen, Dieter R

    2013-01-01

    CATIA V5 Macro Programming with Visual Basic Script shows you, step by step, how to create your own macros that automate repetitive tasks, accelerate design procedures, and automatically generate complex geometries. Filled with full-color screenshots and illustrations, this practical guide walks you through the entire process of writing, storing, and executing reusable macros for CATIA® V5. Sample Visual Basic Script code accompanies the book’s hands-on exercises and real-world case studies demonstrate key concepts and best practices.

  20. MIMICRY, DIFFERENCE AND REPETITION

    Directory of Open Access Journals (Sweden)

    Marcelo Mendes de Souza

    2008-07-01

    Full Text Available This article addresses Homi K. Bhabha’s concept of mimicry in a broader context, other than that of cultural studies and post-colonial studies, bringing together other concepts, such as that of Gilles Deleuze in Difference and repetition, among other texts, and other names, such as Silviano Santiago, Jorge Luís Borges, Franz Kafka and Giorgio Agamben. As a partial conclusion, the article intends to oppose Bhabha’s freudian-marxist view to Five propositions on Psychoanalysis (1973, Gilles Deleuze’s text about Psychoanalysis published right after his book The Anti-Oedipus.

  1. Imagery May Arise from Associations Formed through Sensory Experience: A Network of Spiking Neurons Controlling a Robot Learns Visual Sequences in Order to Perform a Mental Rotation Task

    Science.gov (United States)

    McKinstry, Jeffrey L.; Fleischer, Jason G.; Chen, Yanqing; Gall, W. Einar; Edelman, Gerald M.

    2016-01-01

    Mental imagery occurs “when a representation of the type created during the initial phases of perception is present but the stimulus is not actually being perceived.” How does the capability to perform mental imagery arise? Extending the idea that imagery arises from learned associations, we propose that mental rotation, a specific form of imagery, could arise through the mechanism of sequence learning–that is, by learning to regenerate the sequence of mental images perceived while passively observing a rotating object. To demonstrate the feasibility of this proposal, we constructed a simulated nervous system and embedded it within a behaving humanoid robot. By observing a rotating object, the system learns the sequence of neural activity patterns generated by the visual system in response to the object. After learning, it can internally regenerate a similar sequence of neural activations upon briefly viewing the static object. This system learns to perform a mental rotation task in which the subject must determine whether two objects are identical despite differences in orientation. As with human subjects, the time taken to respond is proportional to the angular difference between the two stimuli. Moreover, as reported in humans, the system fills in intermediate angles during the task, and this putative mental rotation activates the same pathways that are activated when the system views physical rotation. This work supports the proposal that mental rotation arises through sequence learning and the idea that mental imagery aids perception through learned associations, and suggests testable predictions for biological experiments. PMID:27653977

  2. Robust Repetitive Controller for Fast AFM Imaging

    CERN Document Server

    Necipoglu, Serkan; Has, Yunus; Guvenc, Levent; Basdogan, Cagatay

    2012-01-01

    Currently, Atomic Force Microscopy (AFM) is the most preferred Scanning Probe Microscopy (SPM) method due to its numerous advantages. However, increasing the scanning speed and reducing the interaction forces between the probe's tip and the sample surface are still the two main challenges in AFM. To meet these challenges, we take advantage of the fact that the lateral movements performed during an AFM scan is a repetitive motion and propose a Repetitive Controller (RC) for the z-axis movements of the piezo-scanner. The RC utilizes the profile of the previous scan line while scanning the current line to achieve a better scan performance. The results of the scanning experiments performed with our AFM set-up show that the proposed RC significantly outperforms a conventional PI controller that is typically used for the same task. The scan error and the average tapping forces are reduced by 66% and 58%, respectively when the scan speed is increased by 7-fold.

  3. Visualization Design of Mathematical Experiment for Task Assignments Problem Based on Internet%网上任务分派问题数学实验的可视化设计

    Institute of Scientific and Technical Information of China (English)

    石彤菊

    2012-01-01

    Visualizing design of mathematical experiment for task assignments problem is studied in this paper. For task assignments problem with as well as without constraints, the study completed the design of algorithm by making use of Microsoft visual J++6.0 as experimental development platform. Java language and applet embeded in Web page are employed to realize the development of visualization. The software can display the optimal task assignments and the satisfaction rate according to the user's input. The developed system can provide a study platform with functions of visualization and interaction for user to study the task assignments problem.%研究了各种任务分派问题算法,对一般任务分派和有约束任务分配的求解方法进行算法设计,以Microsoft Visual J++ 6.0作为实验开发平台,采用Java语言及Applet嵌入网页技术,实现了网上任务分派问题数学实验的可视化.用户可由可视化界面,输入任意任务分配问题,得到最佳的分配结果及满意率.为学生学习掌握相关知识,提供了具有可视化和交互性功能的学习使用平台

  4. Prefrontal and parietal cortex in human episodic memory: an interference study by repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Rossi, Simone; Pasqualetti, Patrizio; Zito, Giancarlo; Vecchio, Fabrizio; Cappa, Stefano F; Miniussi, Carlo; Babiloni, Claudio; Rossini, Paolo M

    2006-02-01

    Neuroimaging findings, including repetitive transcranial magnetic stimulation (rTMS) interference, point to an engagement of prefrontal cortex (PFC) in learning and memory. Whether parietal cortex (PC) activity is causally linked to successful episodic encoding and retrieval is still uncertain. We compared the effects of event-related active or sham rTMS (a rapid-rate train coincident to the very first phases of memoranda presentation) to the left or right intraparietal sulcus, during a standardized episodic memory task of visual scenes, with those obtained in a fully matched sample of subjects who received rTMS on left or right dorsolateral PFC during the same task. In these subjects, specific hemispheric effects of rTMS included interference with encoding after left stimulation and disruption of retrieval after right stimulation. The interference of PC-rTMS on encoding/retrieval performance was negligible, lacking specificity even when higher intensities of stimulation were applied. However, right PC-rTMS of the same intensity lengthened reaction times in the context of a purely attentive visuospatial task. These results suggest that the activity of intraparietal sulci shown in several functional magnetic resonance studies on memory, unlike that of the dorsolateral PFC, is not causally engaged to a useful degree in memory encoding and retrieval of visual scenes. The parietal activations accompanying the memorization processes could reflect the engagement of a widespread brain attentional network, in which interference on a single 'node' is insufficient for an overt disruption of memory performance.

  5. Physiological responses to four hours of low-level repetitive work.

    Science.gov (United States)

    Garde, A Helene; Hansen, Ase M; Jensen, Bente R

    2003-12-01

    The study investigated physiological responses to 4 hours of standardized low-level repetitive work. It was hypothesized that accumulative effects not observed after 1 hour could be found after 4 hours of repetitive work. Ten healthy women performed intermittent (5 seconds + 5 seconds) handgrip contractions at 10% of the maximal voluntary contraction combined with mental demands for concentration and attention. Muscle activity in the working forearm muscles, cardiovascular responses, and concentrations of biomarkers in biological fluids were recorded along with exerted force, performance, and ratings of perceived physical exertion (RPE), and perceived mental exertion. The urinary epinephrine, norepinephrine, and cortisol concentrations were higher during the repetitive task than on a reference day, but only the norepinephrine concentrations increased progressively during the 4 hours. In accordance, the RPE recorded for the hand, forearm, and shoulder regions increased progressively. For the remaining physiological measures, no accumulative changes were found. Forearm muscle activity was higher during a mental reference task with lower exerted force than during the repetitive task. The variation in exerted force was higher during the repetitive task than during a force reference task