WorldWideScience

Sample records for repetitive sequence pcr

  1. Directed PCR-free engineering of highly repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Preissler Steffen

    2011-09-01

    Full Text Available Abstract Background Highly repetitive nucleotide sequences are commonly found in nature e.g. in telomeres, microsatellite DNA, polyadenine (poly(A tails of eukaryotic messenger RNA as well as in several inherited human disorders linked to trinucleotide repeat expansions in the genome. Therefore, studying repetitive sequences is of biological, biotechnological and medical relevance. However, cloning of such repetitive DNA sequences is challenging because specific PCR-based amplification is hampered by the lack of unique primer binding sites resulting in unspecific products. Results For the PCR-free generation of repetitive DNA sequences we used antiparallel oligonucleotides flanked by restriction sites of Type IIS endonucleases. The arrangement of recognition sites allowed for stepwise and seamless elongation of repetitive sequences. This facilitated the assembly of repetitive DNA segments and open reading frames encoding polypeptides with periodic amino acid sequences of any desired length. By this strategy we cloned a series of polyglutamine encoding sequences as well as highly repetitive polyadenine tracts. Such repetitive sequences can be used for diverse biotechnological applications. As an example, the polyglutamine sequences were expressed as His6-SUMO fusion proteins in Escherichia coli cells to study their aggregation behavior in vitro. The His6-SUMO moiety enabled affinity purification of the polyglutamine proteins, increased their solubility, and allowed controlled induction of the aggregation process. We successfully purified the fusions proteins and provide an example for their applicability in filter retardation assays. Conclusion Our seamless cloning strategy is PCR-free and allows the directed and efficient generation of highly repetitive DNA sequences of defined lengths by simple standard cloning procedures.

  2. PCR amplification of repetitive sequences as a possible approach in relative species quantification

    DEFF Research Database (Denmark)

    Ballin, Nicolai Zederkopff; Vogensen, Finn Kvist; Karlsson, Anders H

    2012-01-01

    Abstract Both relative and absolute quantifications are possible in species quantification when single copy genomic DNA is used. However, amplification of single copy genomic DNA does not allow a limit of detection as low as one obtained from amplification of repetitive sequences. Amplification...... of repetitive sequences is therefore frequently used in absolute quantification but problems occur in relative quantification as the number of repetitive sequences is unknown. A promising approach was developed where data from amplification of repetitive sequences were used in relative quantification of species...... to relatively quantify the amount of chicken DNA in a binary mixture of chicken DNA and pig DNA. However, the designed PCR primers lack the specificity required for regulatory species control....

  3. Roles of repetitive sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.

    1991-12-31

    The DNA of higher eukaryotes contains many repetitive sequences. The study of repetitive sequences is important, not only because many have important biological function, but also because they provide information on genome organization, evolution and dynamics. In this paper, I will first discuss some generic effects that repetitive sequences will have upon genome dynamics and evolution. In particular, it will be shown that repetitive sequences foster recombination among, and turnover of, the elements of a genome. I will then consider some examples of repetitive sequences, notably minisatellite sequences and telomere sequences as examples of tandem repeats, without and with respectively known function, and Alu sequences as an example of interspersed repeats. Some other examples will also be considered in less detail.

  4. Genomic Variability of Haemophilus influenzae Isolated from Mexican Children Determined by Using Enterobacterial Repetitive Intergenic Consensus Sequences and PCR

    OpenAIRE

    Gomez-De-Leon, Patricia; Santos, Jose I.; Caballero, Javier; Gomez, Demostenes; Espinosa, Luz E.; Moreno, Isabel; Piñero, Daniel; Cravioto, Alejandro

    2000-01-01

    Genomic fingerprints from 92 capsulated and noncapsulated strains of Haemophilus influenzae from Mexican children with different diseases and healthy carriers were generated by PCR using the enterobacterial repetitive intergenic consensus (ERIC) sequences. A cluster analysis by the unweighted pair-group method with arithmetic averages based on the overall similarity as estimated from the characteristics of the genomic fingerprints, was conducted to group the strains. A total of 69 fingerprint...

  5. DNA Fingerprinting of Lactobacillus crispatus Strain CTV-05 by Repetitive Element Sequence-Based PCR Analysis in a Pilot Study of Vaginal Colonization

    OpenAIRE

    Antonio, May A. D.; Hillier, Sharon L.

    2003-01-01

    Lactobacillus crispatus is one of the predominant hydrogen peroxide (H2O2)-producing species found in the vagina and is under development as a probiotic for the treatment of bacterial vaginosis. In this study, we assessed whether DNA fingerprinting by repetitive element sequence-based PCR (rep-PCR) can be used to distinguish the capsule strain of L. crispatus (CTV-05) from other endogenous strains as well as other species of vaginal lactobacilli. Vaginal and rectal lactobacilli were identifie...

  6. Efficacy of Pulsed-Field Gel Electrophoresis and Repetitive Element Sequence-Based PCR in Typing of Salmonella Isolates from Assam, India.

    Science.gov (United States)

    Gogoi, Purnima; Borah, Probodh; Hussain, Iftikar; Das, Leena; Hazarika, Girin; Tamuly, Shantanu; Barkalita, Luit Moni

    2018-05-01

    A total of 12 Salmonella isolates belonging to different serovars, viz , Salmonella enterica serovar Enteritidis ( n = 4), Salmonella enterica serovar Weltevreden ( n = 4), Salmonella enterica serovar Newport ( n = 1), Salmonella enterica serovar Litchifield ( n = 1), and untypeable strains ( n = 2) were isolated from 332 diarrheic fecal samples collected from animals, birds, and humans. Of the two molecular typing methods applied, viz , repetitive element sequence-based PCR (REP-PCR) and pulsed-field gel electrophoresis (PFGE), PFGE could clearly differentiate the strains belonging to different serovars as well as differentiate between strains of the same serovar with respect to their source of isolation, whereas REP-PCR could not differentiate between strains of the same serovar. Thus, it can be suggested that PFGE is more useful and appropriate for molecular typing of Salmonella isolates during epidemiological investigations than REP-PCR. Copyright © 2018 American Society for Microbiology.

  7. Optimization of analytical parameters for inferring relationships among Escherichia coli isolates from repetitive-element PCR by maximizing correspondence with multilocus sequence typing data.

    Science.gov (United States)

    Goldberg, Tony L; Gillespie, Thomas R; Singer, Randall S

    2006-09-01

    Repetitive-element PCR (rep-PCR) is a method for genotyping bacteria based on the selective amplification of repetitive genetic elements dispersed throughout bacterial chromosomes. The method has great potential for large-scale epidemiological studies because of its speed and simplicity; however, objective guidelines for inferring relationships among bacterial isolates from rep-PCR data are lacking. We used multilocus sequence typing (MLST) as a "gold standard" to optimize the analytical parameters for inferring relationships among Escherichia coli isolates from rep-PCR data. We chose 12 isolates from a large database to represent a wide range of pairwise genetic distances, based on the initial evaluation of their rep-PCR fingerprints. We conducted MLST with these same isolates and systematically varied the analytical parameters to maximize the correspondence between the relationships inferred from rep-PCR and those inferred from MLST. Methods that compared the shapes of densitometric profiles ("curve-based" methods) yielded consistently higher correspondence values between data types than did methods that calculated indices of similarity based on shared and different bands (maximum correspondences of 84.5% and 80.3%, respectively). Curve-based methods were also markedly more robust in accommodating variations in user-specified analytical parameter values than were "band-sharing coefficient" methods, and they enhanced the reproducibility of rep-PCR. Phylogenetic analyses of rep-PCR data yielded trees with high topological correspondence to trees based on MLST and high statistical support for major clades. These results indicate that rep-PCR yields accurate information for inferring relationships among E. coli isolates and that accuracy can be enhanced with the use of analytical methods that consider the shapes of densitometric profiles.

  8. Identification and molecular epidemiology of dermatophyte isolates by repetitive-sequence-PCR-based DNA fingerprinting using the DiversiLab system in Turkey.

    Science.gov (United States)

    Koc, A Nedret; Atalay, Mustafa A; Inci, Melek; Sariguzel, Fatma M; Sav, Hafize

    2017-05-01

    Dermatophyte species, isolation and identification in clinical samples are still difficult and take a long time. The identification and molecular epidemiology of dermatophytes commonly isolated in a clinical laboratory in Turkey by repetitive sequence-based PCR (rep-PCR) were assessed by comparing the results with those of reference identification. A total of 44 dermatophytes isolated from various clinical specimens of 20 patients with superficial mycoses in Kayseri and 24 patients in Hatay were studied. The identification of dermatophyte isolates was based on the reference identification and rep-PCR using the DiversiLab System (BioMerieux). The genotyping of dermatophyte isolates from different patients was determined by rep-PCR. In the identification of dermatophyte isolates, agreement between rep-PCR and conventional methods was 87.8 % ( 36 of 41). The dermatophyte strains belonged to four clones (A -D) which were determined by the use of rep-PCR. The dermatophyte strains in Clone B, D showed identical patterns with respect to the region. In conclusion, rep-PCR appears to be useful for evaluation of the identification and clonal relationships between Trichophyton rubrum species complex and Trichophyton mentagrophytes species complex isolates. The similarity and diversity of these isolates may be assessed according to different regions by rep-PCR. © 2017 Blackwell Verlag GmbH.

  9. IS1111 insertion sequences of Coxiella burnetii: characterization and use for repetitive element PCR-based differentiation of Coxiella burnetii isolates

    Directory of Open Access Journals (Sweden)

    Massung Robert F

    2007-10-01

    Full Text Available Abstract Background Coxiella burnetii contains the IS1111 transposase which is present 20 times in the Nine Mile phase I (9Mi/I genome. A single PCR primer that binds to each IS element, and primers specific to a region ~500-bp upstream of each of the 20 IS1111 elements were designed. The amplified products were characterized and used to develop a repetitive element PCR genotyping method. Results Isolates Nine Mile phase II, Nine Mile RSA 514, Nine Mile Baca, Scottish, Ohio, Australian QD, Henzerling phase I, Henzerling phase II, M44, KAV, PAV, Q238, Q195 and WAV were tested by PCR and compared to 9Mi/I. Sequencing was used to determine the exact differences in isolates which lacked specific IS elements or produced PCR products of differing size. From this data, an algorithm was created utilizing four primer pairs that allows for differentiation of unknown isolates into five genomic groups. Additional isolates (Priscilla Q177, Idaho Q, Qiyi, Poker Cat, Q229 and Q172 and nine veterinary samples were characterized using the algorithm which resulted in their placement into three distinct genomic groups. Conclusion Through this study significant differences, including missing elements and sequence alterations within and near IS element coding regions, were found between the isolates tested. Further, a method for differentiation of C. burnetii isolates into one of five genomic groups was created. This algorithm may ultimately help to determine the relatedness between known and unknown isolates of C. burnetii.

  10. A Comparison of Molecular Typing Methods Applied to Enterobacter cloacae complex: hsp60 Sequencing, Rep-PCR, and MLST

    Directory of Open Access Journals (Sweden)

    Roberto Viau

    2017-02-01

    Full Text Available Molecular typing using repetitive sequenced-based PCR (rep-PCR and hsp60 sequencing were applied to a collection of diverse Enterobacter cloacae complex isolates. To determine the most practical method for reference laboratories, we analyzed 71 E. cloacae complex isolates from sporadic and outbreak occurrences originating from 4 geographic areas. While rep-PCR was more discriminating, hsp60 sequencing provided a broader and a more objective geographical tracking method similar to multilocus sequence typing (MLST. In addition, we suggest that MLST may have higher discriminative power compared to hsp60 sequencing, although rep-PCR remains the most discriminative method for local outbreak investigations. In addition, rep-PCR can be an effective and inexpensive method for local outbreak investigation.

  11. Enterobacterial repetitive intergenic consensus sequences and the PCR to generate fingerprints of genomic DNAs from Vibrio cholerae O1, O139, and non-O1 strains.

    OpenAIRE

    Rivera, I G; Chowdhury, M A; Huq, A; Jacobs, D; Martins, M T; Colwell, R R

    1995-01-01

    Enterobacterial repetitive intergenic consensus (ERIC) sequence polymorphism was studied in Vibrio Cholerae strains isolated before and after the cholera epidemic in Brazil (in 1991), along with epidemic strains from Peru, Mexico, and India, by PCR. A total of 17 fingerprint patterns (FPs) were detected in the V. cholerae strains examined; 96.7% of the toxigenic V. cholerae O1 strains and 100% of the O139 serogroup strains were found to belong to the same FP group comprising four fragments (F...

  12. Characterization of Erwinia amylovora strains from different host plants using repetitive-sequences PCR analysis, and restriction fragment length polymorphism and short-sequence DNA repeats of plasmid pEA29.

    Science.gov (United States)

    Barionovi, D; Giorgi, S; Stoeger, A R; Ruppitsch, W; Scortichini, M

    2006-05-01

    The three main aims of the study were the assessment of the genetic relationship between a deviating Erwinia amylovora strain isolated from Amelanchier sp. (Maloideae) grown in Canada and other strains from Maloideae and Rosoideae, the investigation of the variability of the PstI fragment of the pEA29 plasmid using restriction fragment length polymorphism (RFLP) analysis and the determination of the number of short-sequence DNA repeats (SSR) by DNA sequence analysis in representative strains. Ninety-three strains obtained from 12 plant genera and different geographical locations were examined by repetitive-sequences PCR using Enterobacterial Repetitive Intergenic Consensus, BOX and Repetitive Extragenic Palindromic primer sets. Upon the unweighted pair group method with arithmetic mean analysis, a deviating strain from Amelanchier sp. was analysed using amplified ribosomal DNA restriction analysis (ARDRA) analysis and the sequencing of the 16S rDNA gene. This strain showed 99% similarity to other E. amylovora strains in the 16S gene and the same banding pattern with ARDRA. The RFLP analysis of pEA29 plasmid using MspI and Sau3A restriction enzymes showed a higher variability than that previously observed and no clear-cut grouping of the strains was possible. The number of SSR units reiterated two to 12 times. The strains obtained from pear orchards showing for the first time symptoms of fire blight had a low number of SSR units. The strains from Maloideae exhibit a wider genetic variability than previously thought. The RFLP analysis of a fragment of the pEA29 plasmid would not seem a reliable method for typing E. amylovora strains. A low number of SSR units was observed with first epidemics of fire blight. The current detection techniques are mainly based on the genetic similarities observed within the strains from the cultivated tree-fruit crops. For a more reliable detection of the fire blight pathogen also in wild and ornamentals Rosaceous plants the genetic

  13. ReRep: Computational detection of repetitive sequences in genome survey sequences (GSS

    Directory of Open Access Journals (Sweden)

    Alves-Ferreira Marcelo

    2008-09-01

    Full Text Available Abstract Background Genome survey sequences (GSS offer a preliminary global view of a genome since, unlike ESTs, they cover coding as well as non-coding DNA and include repetitive regions of the genome. A more precise estimation of the nature, quantity and variability of repetitive sequences very early in a genome sequencing project is of considerable importance, as such data strongly influence the estimation of genome coverage, library quality and progress in scaffold construction. Also, the elimination of repetitive sequences from the initial assembly process is important to avoid errors and unnecessary complexity. Repetitive sequences are also of interest in a variety of other studies, for instance as molecular markers. Results We designed and implemented a straightforward pipeline called ReRep, which combines bioinformatics tools for identifying repetitive structures in a GSS dataset. In a case study, we first applied the pipeline to a set of 970 GSSs, sequenced in our laboratory from the human pathogen Leishmania braziliensis, the causative agent of leishmaniosis, an important public health problem in Brazil. We also verified the applicability of ReRep to new sequencing technologies using a set of 454-reads of an Escheria coli. The behaviour of several parameters in the algorithm is evaluated and suggestions are made for tuning of the analysis. Conclusion The ReRep approach for identification of repetitive elements in GSS datasets proved to be straightforward and efficient. Several potential repetitive sequences were found in a L. braziliensis GSS dataset generated in our laboratory, and further validated by the analysis of a more complete genomic dataset from the EMBL and Sanger Centre databases. ReRep also identified most of the E. coli K12 repeats prior to assembly in an example dataset obtained by automated sequencing using 454 technology. The parameters controlling the algorithm behaved consistently and may be tuned to the properties

  14. Location analysis for the estrogen receptor-α reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements

    Science.gov (United States)

    Mason, Christopher E.; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M.; Kallen, Roland G.; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B.

    2010-01-01

    Location analysis for estrogen receptor-α (ERα)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERα-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: ERE sequence. We demonstrate that ∼50% of all ERα-bound loci do not have a discernable ERE and show that most ERα-bound EREs are not perfect consensus EREs. Approximately one-third of all ERα-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERα-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERα binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers. PMID:20047966

  15. Location analysis for the estrogen receptor-alpha reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements.

    Science.gov (United States)

    Mason, Christopher E; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M; Kallen, Roland G; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B

    2010-04-01

    Location analysis for estrogen receptor-alpha (ERalpha)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERalpha-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: ERE sequence. We demonstrate that approximately 50% of all ERalpha-bound loci do not have a discernable ERE and show that most ERalpha-bound EREs are not perfect consensus EREs. Approximately one-third of all ERalpha-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERalpha-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERalpha binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers.

  16. Comparison of a Commercially Available Repetitive-Element PCR System (DiversiLab) with PCR Ribotyping for Typing of Clostridium difficile Strains ▿

    OpenAIRE

    Eckert, C.; Van Broeck, J.; Spigaglia, P.; Burghoffer, B.; Delmée, M.; Mastrantonio, P.; Barbut, F.

    2011-01-01

    This study compared a repetitive-element PCR (rep-PCR) method (DiversiLab system) to PCR ribotyping. The discriminatory power of rep-PCR was 0.997. Among the PCR ribotype 027 isolates tested, different rep types could be distinguished. rep-PCR showed a higher discriminatory power than PCR ribotyping. Nevertheless, this method requires technical skill, and visual interpretation of rep-PCR fingerprint patterns may be difficult.

  17. The impact of targeting repetitive BamHI-W sequences on the sensitivity and precision of EBV DNA quantification.

    Directory of Open Access Journals (Sweden)

    Armen Sanosyan

    Full Text Available Viral load monitoring and early Epstein-Barr virus (EBV DNA detection are essential in routine laboratory testing, especially in preemptive management of Post-transplant Lymphoproliferative Disorder. Targeting the repetitive BamHI-W sequence was shown to increase the sensitivity of EBV DNA quantification, but the variability of BamHI-W reiterations was suggested to be a source of quantification bias. We aimed to assess the extent of variability associated with BamHI-W PCR and its impact on the sensitivity of EBV DNA quantification using the 1st WHO international standard, EBV strains and clinical samples.Repetitive BamHI-W- and LMP2 single- sequences were amplified by in-house qPCRs and BXLF-1 sequence by a commercial assay (EBV R-gene™, BioMerieux. Linearity and limits of detection of in-house methods were assessed. The impact of repeated versus single target sequences on EBV DNA quantification precision was tested on B95.8 and Raji cell lines, possessing 11 and 7 copies of the BamHI-W sequence, respectively, and on clinical samples.BamHI-W qPCR demonstrated a lower limit of detection compared to LMP2 qPCR (2.33 log10 versus 3.08 log10 IU/mL; P = 0.0002. BamHI-W qPCR underestimated the EBV DNA load on Raji strain which contained fewer BamHI-W copies than the WHO standard derived from the B95.8 EBV strain (mean bias: - 0.21 log10; 95% CI, -0.54 to 0.12. Comparison of BamHI-W qPCR versus LMP2 and BXLF-1 qPCR showed an acceptable variability between EBV DNA levels in clinical samples with the mean bias being within 0.5 log10 IU/mL EBV DNA, whereas a better quantitative concordance was observed between LMP2 and BXLF-1 assays.Targeting BamHI-W resulted to a higher sensitivity compared to LMP2 but the variable reiterations of BamHI-W segment are associated with higher quantification variability. BamHI-W can be considered for clinical and therapeutic monitoring to detect an early EBV DNA and a dynamic change in viral load.

  18. The impact of targeting repetitive BamHI-W sequences on the sensitivity and precision of EBV DNA quantification.

    Science.gov (United States)

    Sanosyan, Armen; Fayd'herbe de Maudave, Alexis; Bollore, Karine; Zimmermann, Valérie; Foulongne, Vincent; Van de Perre, Philippe; Tuaillon, Edouard

    2017-01-01

    Viral load monitoring and early Epstein-Barr virus (EBV) DNA detection are essential in routine laboratory testing, especially in preemptive management of Post-transplant Lymphoproliferative Disorder. Targeting the repetitive BamHI-W sequence was shown to increase the sensitivity of EBV DNA quantification, but the variability of BamHI-W reiterations was suggested to be a source of quantification bias. We aimed to assess the extent of variability associated with BamHI-W PCR and its impact on the sensitivity of EBV DNA quantification using the 1st WHO international standard, EBV strains and clinical samples. Repetitive BamHI-W- and LMP2 single- sequences were amplified by in-house qPCRs and BXLF-1 sequence by a commercial assay (EBV R-gene™, BioMerieux). Linearity and limits of detection of in-house methods were assessed. The impact of repeated versus single target sequences on EBV DNA quantification precision was tested on B95.8 and Raji cell lines, possessing 11 and 7 copies of the BamHI-W sequence, respectively, and on clinical samples. BamHI-W qPCR demonstrated a lower limit of detection compared to LMP2 qPCR (2.33 log10 versus 3.08 log10 IU/mL; P = 0.0002). BamHI-W qPCR underestimated the EBV DNA load on Raji strain which contained fewer BamHI-W copies than the WHO standard derived from the B95.8 EBV strain (mean bias: - 0.21 log10; 95% CI, -0.54 to 0.12). Comparison of BamHI-W qPCR versus LMP2 and BXLF-1 qPCR showed an acceptable variability between EBV DNA levels in clinical samples with the mean bias being within 0.5 log10 IU/mL EBV DNA, whereas a better quantitative concordance was observed between LMP2 and BXLF-1 assays. Targeting BamHI-W resulted to a higher sensitivity compared to LMP2 but the variable reiterations of BamHI-W segment are associated with higher quantification variability. BamHI-W can be considered for clinical and therapeutic monitoring to detect an early EBV DNA and a dynamic change in viral load.

  19. Variation in extragenic repetitive DNA sequences in Pseudomonas syringae and potential use of modified REP primers in the identification of closely related isolates

    Directory of Open Access Journals (Sweden)

    Elif Çepni

    2012-01-01

    Full Text Available In this study, Pseudomonas syringe pathovars isolated from olive, tomato and bean were identified by species-specific PCR and their genetic diversity was assessed by repetitive extragenic palindromic (REP-PCR. Reverse universal primers for REP-PCR were designed by using the bases of A, T, G or C at the positions of 1, 4 and 11 to identify additional polymorphism in the banding patterns. Binding of the primers to different annealing sites in the genome revealed additional fingerprint patterns in eight isolates of P. savastanoi pv. savastanoi and two isolates of P. syringae pv. tomato. The use of four different bases in the primer sequences did not affect the PCR reproducibility and was very efficient in revealing intra-pathovar diversity, particularly in P. savastanoi pv. savastanoi. At the pathovar level, the primer BOX1AR yielded shared fragments, in addition to five bands that discriminated among the pathovars P. syringae pv. phaseolicola, P. savastanoi pv. savastanoi and P. syringae pv. tomato. REP-PCR with a modified primer containing C produced identical bands among the isolates in a pathovar but separated three pathovars more distinctly than four other primers. Although REP-and BOX-PCRs have been successfully used in the molecular identification of Pseudomonas isolates from Turkish flora, a PCR based on inter-enterobacterial repetitive intergenic concensus (ERIC sequences failed to produce clear banding patterns in this study.

  20. Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution.

    Science.gov (United States)

    Ishii, Satoshi; Sadowsky, Michael J

    2009-04-01

    A large number of repetitive DNA sequences are found in multiple sites in the genomes of numerous bacteria, archaea and eukarya. While the functions of many of these repetitive sequence elements are unknown, they have proven to be useful as the basis of several powerful tools for use in molecular diagnostics, medical microbiology, epidemiological analyses and environmental microbiology. The repetitive sequence-based PCR or rep-PCR DNA fingerprint technique uses primers targeting several of these repetitive elements and PCR to generate unique DNA profiles or 'fingerprints' of individual microbial strains. Although this technique has been extensively used to examine diversity among variety of prokaryotic microorganisms, rep-PCR DNA fingerprinting can also be applied to microbial ecology and microbial evolution studies since it has the power to distinguish microbes at the strain or isolate level. Recent advancement in rep-PCR methodology has resulted in increased accuracy, reproducibility and throughput. In this minireview, we summarize recent improvements in rep-PCR DNA fingerprinting methodology, and discuss its applications to address fundamentally important questions in microbial ecology and evolution.

  1. Repetitive sequences: the hidden diversity of heterochromatin in prochilodontid fish

    Directory of Open Access Journals (Sweden)

    Maria L. Terencio

    2015-08-01

    Full Text Available The structure and organization of repetitive elements in fish genomes are still relatively poorly understood, although most of these elements are believed to be located in heterochromatic regions. Repetitive elements are considered essential in evolutionary processes as hotspots for mutations and chromosomal rearrangements, among other functions – thus providing new genomic alternatives and regulatory sites for gene expression. The present study sought to characterize repetitive DNA sequences in the genomes of Semaprochilodus insignis (Jardine & Schomburgk, 1841 and Semaprochilodus taeniurus (Valenciennes, 1817 and identify regions of conserved syntenic blocks in this genome fraction of three species of Prochilodontidae (S. insignis, S. taeniurus, and Prochilodus lineatus (Valenciennes, 1836 by cross-FISH using Cot-1 DNA (renaturation kinetics probes. We found that the repetitive fractions of the genomes of S. insignis and S. taeniurus have significant amounts of conserved syntenic blocks in hybridization sites, but with low degrees of similarity between them and the genome of P. lineatus, especially in relation to B chromosomes. The cloning and sequencing of the repetitive genomic elements of S. insignis and S. taeniurus using Cot-1 DNA identified 48 fragments that displayed high similarity with repetitive sequences deposited in public DNA databases and classified as microsatellites, transposons, and retrotransposons. The repetitive fractions of the S. insignis and S. taeniurus genomes exhibited high degrees of conserved syntenic blocks in terms of both the structures and locations of hybridization sites, but a low degree of similarity with the syntenic blocks of the P. lineatus genome. Future comparative analyses of other prochilodontidae species will be needed to advance our understanding of the organization and evolution of the genomes in this group of fish.

  2. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus.

    OpenAIRE

    Sanford, J; Forrester, L; Chapman, V; Chandley, A; Hastie, N

    1984-01-01

    The major and the minor satellite sequences of Mus musculus were undermethylated in both sperm and oocyte DNAs relative to the amount of undermethylation observed in adult somatic tissue DNA. This hypomethylation was specific for satellite sequences in sperm DNA. Dispersed repetitive and low copy sequences show a high degree of methylation in sperm DNA; however, a dispersed repetitive sequence was undermethylated in oocyte DNA. This finding suggests a difference in the amount of total genomic...

  3. Involvement of Disperse Repetitive Sequences in Wheat/Rye Genome Adjustment

    Directory of Open Access Journals (Sweden)

    Manuela Silva

    2012-07-01

    Full Text Available The union of different genomes in the same nucleus frequently results in hybrid genotypes with improved genome plasticity related to both genome remodeling events and changes in gene expression. Most modern cereal crops are polyploid species. Triticale, synthesized by the cross between wheat and rye, constitutes an excellent model to study polyploidization functional implications. We intend to attain a deeper knowledge of dispersed repetitive sequence involvement in parental genome reshuffle in triticale and in wheat-rye addition lines that have the entire wheat genome plus each rye chromosome pair. Through Random Amplified Polymorphic DNA (RAPD analysis with OPH20 10-mer primer we unraveled clear alterations corresponding to the loss of specific bands from both parental genomes. Moreover, the sequential nature of those events was revealed by the increased absence of rye-origin bands in wheat-rye addition lines in comparison with triticale. Remodeled band sequencing revealed that both repetitive and coding genome domains are affected in wheat-rye hybrid genotypes. Additionally, the amplification and sequencing of pSc20H internal segments showed that the disappearance of parental bands may result from restricted sequence alterations and unraveled the involvement of wheat/rye related repetitive sequences in genome adjustment needed for hybrid plant stabilization.

  4. [Identification of a repetitive sequence element for DNA fingerprinting in Phytophthora sojae].

    Science.gov (United States)

    Yin, Lihua; Wang, Qinhu; Ning, Feng; Zhu, Xiaoying; Zuo, Yuhu; Shan, Weixing

    2010-04-01

    Establishment of DNA fingerprinting in Phytophthora sojae and an analysis of genetic relationship of Heilongjiang and Xinjiang populations. Bioinformatics tools were used to search repetitive sequences in P. sojae and Southern blot analysis was employed for DNA fingerprinting analysis of P. sojae populations from Heilongjiang and Xinjiang using the identified repetitive sequence. A moderately repetitive sequence was identified and designated as PS1227. Southern blot analysis indicated 34 distinct bands ranging in size from 1.5 kb-23 kb, of which 21 were polymorphic among 49 isolates examined. Analysis of single-zoospore progenies showed that the PS1227 fingerprint pattern was mitotically stable. DNA fingerprinting showed that the P. sojae isolates HP4002, SY6 and GJ0105 of Heilongjiang are genetically identical to DW303, 71228 and 71222 of Xinjiang, respectively. A moderately repetitive sequence designated PS1227 which will be useful for epidemiology and population biology studies of P. sojae was obtained, and a PS1227-based DNA fingerprinting analysis provided molecular evidence that P. sojae in Xinjiang was likely introduced from Heilongjiang.

  5. Functional role of a highly repetitive DNA sequence in anchorage of the mouse genome.

    Science.gov (United States)

    Neuer-Nitsche, B; Lu, X N; Werner, D

    1988-09-12

    The major portion of the eukaryotic genome consists of various categories of repetitive DNA sequences which have been studied with respect to their base compositions, organizations, copy numbers, transcription and species specificities; their biological roles, however, are still unclear. A novel quality of a highly repetitive mouse DNA sequence is described which points to a functional role: All copies (approximately 50,000 per haploid genome) of this DNA sequence reside on genomic Alu I DNA fragments each associated with nuclear polypeptides that are not released from DNA by proteinase K, SDS and phenol extraction. By this quality the repetitive DNA sequence is classified as a member of the sub-set of DNA sequences involved in tight DNA-polypeptide complexes which have been previously shown to be components of the subnuclear structure termed 'nuclear matrix'. From these results it has to be concluded that the repetitive DNA sequence characterized in this report represents or comprises a signal for a large number of site specific attachment points of the mouse genome in the nuclear matrix.

  6. Phylogenetic analysis of the genus Hordeum using repetitive DNA sequences

    DEFF Research Database (Denmark)

    Svitashev, S.; Bryngelsson, T.; Vershinin, A.

    1994-01-01

    A set of six cloned barley (Hordeum vulgare) repetitive DNA sequences was used for the analysis of phylogenetic relationships among 31 species (46 taxa) of the genus Hordeum, using molecular hybridization techniques. In situ hybridization experiments showed dispersed organization of the sequences...

  7. New tool to assemble repetitive regions using next-generation sequencing data

    Science.gov (United States)

    Kuśmirek, Wiktor; Nowak, Robert M.; Neumann, Łukasz

    2017-08-01

    The next generation sequencing techniques produce a large amount of sequencing data. Some part of the genome are composed of repetitive DNA sequences, which are very problematic for the existing genome assemblers. We propose a modification of the algorithm for a DNA assembly, which uses the relative frequency of reads to properly reconstruct repetitive sequences. The new approach was implemented and tested, as a demonstration of the capability of our software we present some results for model organisms. The new implementation, using a three-layer software architecture was selected, where the presentation layer, data processing layer, and data storage layer were kept separate. Source code as well as demo application with web interface and the additional data are available at project web-page: http://dnaasm.sourceforge.net.

  8. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus.

    Science.gov (United States)

    Sanford, J; Forrester, L; Chapman, V; Chandley, A; Hastie, N

    1984-03-26

    The major and the minor satellite sequences of Mus musculus were undermethylated in both sperm and oocyte DNAs relative to the amount of undermethylation observed in adult somatic tissue DNA. This hypomethylation was specific for satellite sequences in sperm DNA. Dispersed repetitive and low copy sequences show a high degree of methylation in sperm DNA; however, a dispersed repetitive sequence was undermethylated in oocyte DNA. This finding suggests a difference in the amount of total genomic DNA methylation between sperm and oocyte DNA. The methylation levels of the minor satellite sequences did not change during spermiogenesis, and were not associated with the onset of meiosis or a specific stage in sperm development.

  9. A dispersion-balanced Discrete Fourier Transform of repetitive pulse sequences using temporal Talbot effect

    Science.gov (United States)

    Fernández-Pousa, Carlos R.

    2017-11-01

    We propose a processor based on the concatenation of two fractional temporal Talbot dispersive lines with balanced dispersion to perform the DFT of a repetitive electrical sequence, for its use as a controlled source of optical pulse sequences. The electrical sequence is used to impart the amplitude and phase of a coherent train of optical pulses by use of a modulator placed between the two Talbot lines. The proposal has been built on a representation of the action of fractional Talbot effect on repetitive pulse sequences and a comparison with related results and proposals. It is shown that the proposed system is reconfigurable within a few repetition periods, has the same processing rate as the input optical pulse train, and requires the same technical complexity in terms of dispersion and pulse width as the standard, passive pulse-repetition rate multipliers based on fractional Talbot effect.

  10. Sources of PCR-induced distortions in high-throughput sequencing data sets

    Science.gov (United States)

    Kebschull, Justus M.; Zador, Anthony M.

    2015-01-01

    PCR permits the exponential and sequence-specific amplification of DNA, even from minute starting quantities. PCR is a fundamental step in preparing DNA samples for high-throughput sequencing. However, there are errors associated with PCR-mediated amplification. Here we examine the effects of four important sources of error—bias, stochasticity, template switches and polymerase errors—on sequence representation in low-input next-generation sequencing libraries. We designed a pool of diverse PCR amplicons with a defined structure, and then used Illumina sequencing to search for signatures of each process. We further developed quantitative models for each process, and compared predictions of these models to our experimental data. We find that PCR stochasticity is the major force skewing sequence representation after amplification of a pool of unique DNA amplicons. Polymerase errors become very common in later cycles of PCR but have little impact on the overall sequence distribution as they are confined to small copy numbers. PCR template switches are rare and confined to low copy numbers. Our results provide a theoretical basis for removing distortions from high-throughput sequencing data. In addition, our findings on PCR stochasticity will have particular relevance to quantification of results from single cell sequencing, in which sequences are represented by only one or a few molecules. PMID:26187991

  11. Mycobacterial Interspersed Repetitive-Unit–Variable-Number Tandem-Repeat (MIRU-VNTR) Genotyping of Mycobacterium intracellulare for Strain Comparison with Establishment of a PCR-Based Database

    Science.gov (United States)

    Iakhiaeva, Elena; McNulty, Steven; Brown Elliott, Barbara A.; Falkinham, Joseph O.; Williams, Myra D.; Vasireddy, Ravikiran; Wilson, Rebecca W.; Turenne, Christine

    2013-01-01

    Strain comparison is important to population genetics and to evaluate relapses in patients with Mycobacterium avium complex (MAC) lung disease, but the “gold standard” of pulsed-field gel electrophoresis (PFGE) is time-consuming and complex. We used variable-number tandem repeats (VNTR) for fingerprinting of respiratory isolates of M. intracellulare from patients with underlying bronchiectasis, to establish a nonsequence-based database for population analysis. Different genotypes identified by PFGE underwent species identification using a 16S rRNA gene multiplex PCR. Genotypes of M. intracellulare were confirmed by internal transcribed spacer 1 (ITS1) sequencing and characterized using seven VNTR primers. The pattern of VNTR amplicon sizes and repeat number defined each specific VNTR type. Forty-two VNTR types were identified among 84 genotypes. PFGE revealed most isolates with the same VNTR type to be clonal or exhibit similar grouping of bands. Repetitive sequence-based PCR (rep-PCR) showed minimal pattern diversity between VNTR types compared to PFGE. Fingerprinting of relapse isolates from 31 treated patients using VNTR combined with 16S multiplex PCR unambiguously and reliably distinguished different genotypes from the same patient, with results comparable to those of PFGE. VNTR for strain comparison is easier and faster than PFGE, is as accurate as PFGE, and does not require sequencing. Starting with a collection of 167 M. intracellulare isolates, VNTR distinguished M. intracellulare into 42 clonal groups. Comparison of isolates from different geographic areas, habitats, and clinical settings is now possible. PMID:23175249

  12. Mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping of mycobacterium intracellulare for strain comparison with establishment of a PCR-based database.

    Science.gov (United States)

    Iakhiaeva, Elena; McNulty, Steven; Brown Elliott, Barbara A; Falkinham, Joseph O; Williams, Myra D; Vasireddy, Ravikiran; Wilson, Rebecca W; Turenne, Christine; Wallace, Richard J

    2013-02-01

    Strain comparison is important to population genetics and to evaluate relapses in patients with Mycobacterium avium complex (MAC) lung disease, but the "gold standard" of pulsed-field gel electrophoresis (PFGE) is time-consuming and complex. We used variable-number tandem repeats (VNTR) for fingerprinting of respiratory isolates of M. intracellulare from patients with underlying bronchiectasis, to establish a nonsequence-based database for population analysis. Different genotypes identified by PFGE underwent species identification using a 16S rRNA gene multiplex PCR. Genotypes of M. intracellulare were confirmed by internal transcribed spacer 1 (ITS1) sequencing and characterized using seven VNTR primers. The pattern of VNTR amplicon sizes and repeat number defined each specific VNTR type. Forty-two VNTR types were identified among 84 genotypes. PFGE revealed most isolates with the same VNTR type to be clonal or exhibit similar grouping of bands. Repetitive sequence-based PCR (rep-PCR) showed minimal pattern diversity between VNTR types compared to PFGE. Fingerprinting of relapse isolates from 31 treated patients using VNTR combined with 16S multiplex PCR unambiguously and reliably distinguished different genotypes from the same patient, with results comparable to those of PFGE. VNTR for strain comparison is easier and faster than PFGE, is as accurate as PFGE, and does not require sequencing. Starting with a collection of 167 M. intracellulare isolates, VNTR distinguished M. intracellulare into 42 clonal groups. Comparison of isolates from different geographic areas, habitats, and clinical settings is now possible.

  13. Quantification of integrated HIV DNA by repetitive-sampling Alu-HIV PCR on the basis of poisson statistics.

    Science.gov (United States)

    De Spiegelaere, Ward; Malatinkova, Eva; Lynch, Lindsay; Van Nieuwerburgh, Filip; Messiaen, Peter; O'Doherty, Una; Vandekerckhove, Linos

    2014-06-01

    Quantification of integrated proviral HIV DNA by repetitive-sampling Alu-HIV PCR is a candidate virological tool to monitor the HIV reservoir in patients. However, the experimental procedures and data analysis of the assay are complex and hinder its widespread use. Here, we provide an improved and simplified data analysis method by adopting binomial and Poisson statistics. A modified analysis method on the basis of Poisson statistics was used to analyze the binomial data of positive and negative reactions from a 42-replicate Alu-HIV PCR by use of dilutions of an integration standard and on samples of 57 HIV-infected patients. Results were compared with the quantitative output of the previously described Alu-HIV PCR method. Poisson-based quantification of the Alu-HIV PCR was linearly correlated with the standard dilution series, indicating that absolute quantification with the Poisson method is a valid alternative for data analysis of repetitive-sampling Alu-HIV PCR data. Quantitative outputs of patient samples assessed by the Poisson method correlated with the previously described Alu-HIV PCR analysis, indicating that this method is a valid alternative for quantifying integrated HIV DNA. Poisson-based analysis of the Alu-HIV PCR data enables absolute quantification without the need of a standard dilution curve. Implementation of the CI estimation permits improved qualitative analysis of the data and provides a statistical basis for the required minimal number of technical replicates. © 2014 The American Association for Clinical Chemistry.

  14. Diversity in non-repetitive human sequences not found in the reference genome.

    Science.gov (United States)

    Kehr, Birte; Helgadottir, Anna; Melsted, Pall; Jonsson, Hakon; Helgason, Hannes; Jonasdottir, Adalbjörg; Jonasdottir, Aslaug; Sigurdsson, Asgeir; Gylfason, Arnaldur; Halldorsson, Gisli H; Kristmundsdottir, Snaedis; Thorgeirsson, Gudmundur; Olafsson, Isleifur; Holm, Hilma; Thorsteinsdottir, Unnur; Sulem, Patrick; Helgason, Agnar; Gudbjartsson, Daniel F; Halldorsson, Bjarni V; Stefansson, Kari

    2017-04-01

    Genomes usually contain some non-repetitive sequences that are missing from the reference genome and occur only in a population subset. Such non-repetitive, non-reference (NRNR) sequences have remained largely unexplored in terms of their characterization and downstream analyses. Here we describe 3,791 breakpoint-resolved NRNR sequence variants called using PopIns from whole-genome sequence data of 15,219 Icelanders. We found that over 95% of the 244 NRNR sequences that are 200 bp or longer are present in chimpanzees, indicating that they are ancestral. Furthermore, 149 variant loci are in linkage disequilibrium (r 2 > 0.8) with a genome-wide association study (GWAS) catalog marker, suggesting disease relevance. Additionally, we report an association (P = 3.8 × 10 -8 , odds ratio (OR) = 0.92) with myocardial infarction (23,360 cases, 300,771 controls) for a 766-bp NRNR sequence variant. Our results underline the importance of including variation of all complexity levels when searching for variants that associate with disease.

  15. Local repeat sequence organization of an intergenic spacer

    Indian Academy of Sciences (India)

    The amplification yielded the same uniquely ``sequence-scrambled” product, whether the template used for PCR was total cellular DNA, chloroplast DNA or a plasmid clone DNA corresponding to that region. The PCR product, a ``unique” new sequence, had lost the repetitive organization of the template genome where it ...

  16. Automated degenerate PCR primer design for high-throughput sequencing improves efficiency of viral sequencing

    Directory of Open Access Journals (Sweden)

    Li Kelvin

    2012-11-01

    Full Text Available Abstract Background In a high-throughput environment, to PCR amplify and sequence a large set of viral isolates from populations that are potentially heterogeneous and continuously evolving, the use of degenerate PCR primers is an important strategy. Degenerate primers allow for the PCR amplification of a wider range of viral isolates with only one set of pre-mixed primers, thus increasing amplification success rates and minimizing the necessity for genome finishing activities. To successfully select a large set of degenerate PCR primers necessary to tile across an entire viral genome and maximize their success, this process is best performed computationally. Results We have developed a fully automated degenerate PCR primer design system that plays a key role in the J. Craig Venter Institute’s (JCVI high-throughput viral sequencing pipeline. A consensus viral genome, or a set of consensus segment sequences in the case of a segmented virus, is specified using IUPAC ambiguity codes in the consensus template sequence to represent the allelic diversity of the target population. PCR primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the full length of the specified target region. As part of the tiling process, primer pairs are computationally screened to meet the criteria for successful PCR with one of two described amplification protocols. The actual sequencing success rates for designed primers for measles virus, mumps virus, human parainfluenza virus 1 and 3, human respiratory syncytial virus A and B and human metapneumovirus are described, where >90% of designed primer pairs were able to consistently successfully amplify >75% of the isolates. Conclusions Augmenting our previously developed and published JCVI Primer Design Pipeline, we achieved similarly high sequencing success rates with only minor software modifications. The recommended methodology for the construction of the consensus

  17. Sequence characterisation of deletion breakpoints in the dystrophin gene by PCR

    Energy Technology Data Exchange (ETDEWEB)

    Abbs, S.; Sandhu, S.; Bobrow, M. [Guy`s Hospital, London (United Kingdom)

    1994-09-01

    Partial deletions of the dystrophin gene account for 65% of cases of Duchenne muscular dystrophy. A high proportion of these structural changes are generated by new mutational events, and lie predominantly within two `hotspot` regions, yet the underlying reasons for this are not known. We are characterizing and sequencing the regions surrounding deletion breakpoints in order to: (i) investigate the mechanisms of deletion mutation, and (ii) enable the design of PCR assays to specifically amplify mutant and normal sequences, allowing us to search for the presence of somatic mosaicism in appropriate family members. Using this approach we have been able to demonstrate the presence of somatic mosaicism in a maternal grandfather of a DMD-affected male, deleted for exons 49-50. Three deletions, namely of exons 48-49, 49-50, and 50, have been characterized using a PCR approach that avoids any cloning procedures. Breakpoints were initially localized to within regions of a few kilobases using Southern blot restriction analyses with exon-specific probes and PCR amplification of exonic and intronic loci. Sequencing was performed directly on PCR products: (i) mutant sequences were obtained from long-range or inverse-PCR across the deletion junction fragments, and (ii) normal sequences were obtained from the products of standard PCR, vectorette PCR, or inverse-PCR performed on YACs. Further characterization of intronic sequences will allow us to amplify and sequence across other deletion breakpoints and increase our knowledge of the mechanisms of mutation in the dystophin gene.

  18. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr; Neumann, Pavel; Macas, Jiří

    2010-01-01

    Roč. 11, č. 1 (2010), s. 378-389 ISSN 1471-2105 R&D Projects: GA MŠk(CZ) OC10037; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50510513 Keywords : repetitive DNA * plant genome * next generation sequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.028, year: 2010

  19. Multiplex Amplification Refractory Mutation System PCR (ARMS-PCR) provides sequencing independent typing of canine parvovirus.

    Science.gov (United States)

    Chander, Vishal; Chakravarti, Soumendu; Gupta, Vikas; Nandi, Sukdeb; Singh, Mithilesh; Badasara, Surendra Kumar; Sharma, Chhavi; Mittal, Mitesh; Dandapat, S; Gupta, V K

    2016-12-01

    Canine parvovirus-2 antigenic variants (CPV-2a, CPV-2b and CPV-2c) ubiquitously distributed worldwide in canine population causes severe fatal gastroenteritis. Antigenic typing of CPV-2 remains a prime focus of research groups worldwide in understanding the disease epidemiology and virus evolution. The present study was thus envisioned to provide a simple sequencing independent, rapid, robust, specific, user-friendly technique for detecting and typing of presently circulating CPV-2 antigenic variants. ARMS-PCR strategy was employed using specific primers for CPV-2a, CPV-2b and CPV-2c to differentiate these antigenic types. ARMS-PCR was initially optimized with reference positive controls in two steps; where first reaction was used to differentiate CPV-2a from CPV-2b/CPV-2c. The second reaction was carried out with CPV-2c specific primers to confirm the presence of CPV-2c. Initial validation of the ARMS-PCR was carried out with 24 sequenced samples and the results were matched with the sequencing results. ARMS-PCR technique was further used to screen and type 90 suspected clinical samples. Randomly selected 15 suspected clinical samples that were typed with this technique were sequenced. The results of ARMS-PCR and the sequencing matched exactly with each other. The developed technique has a potential to become a sequencing independent method for simultaneous detection and typing of CPV-2 antigenic variants in veterinary disease diagnostic laboratories globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparison of three human papillomavirus DNA detection methods: Next generation sequencing, multiplex-PCR and nested-PCR followed by Sanger based sequencing.

    Science.gov (United States)

    da Fonseca, Allex Jardim; Galvão, Renata Silva; Miranda, Angelica Espinosa; Ferreira, Luiz Carlos de Lima; Chen, Zigui

    2016-05-01

    To compare the diagnostic performance for HPV infection using three laboratorial techniques. Ninty-five cervicovaginal samples were randomly selected; each was tested for HPV DNA and genotypes using 3 methods in parallel: Multiplex-PCR, the Nested PCR followed by Sanger sequencing, and the Next_Gen Sequencing (NGS) with two assays (NGS-A1, NGS-A2). The study was approved by the Brazilian National IRB (CONEP protocol 16,800). The prevalence of HPV by the NGS assays was higher than that using the Multiplex-PCR (64.2% vs. 45.2%, respectively; P = 0.001) and the Nested-PCR (64.2% vs. 49.5%, respectively; P = 0.003). NGS also showed better performance in detecting high-risk HPV (HR-HPV) and HPV16. There was a weak interobservers agreement between the results of Multiplex-PCR and Nested-PCR in relation to NGS for the diagnosis of HPV infection, and a moderate correlation for HR-HPV detection. Both NGS assays showed a strong correlation for detection of HPVs (k = 0.86), HR-HPVs (k = 0.91), HPV16 (k = 0.92) and HPV18 (k = 0.91). NGS is more sensitive than the traditional Sanger sequencing and the Multiplex PCR to genotype HPVs, with promising ability to detect multiple infections, and may have the potential to establish an alternative method for the diagnosis and genotyping of HPV. © 2015 Wiley Periodicals, Inc.

  1. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences

    Directory of Open Access Journals (Sweden)

    Yandell Mark

    2010-07-01

    Full Text Available Abstract Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24. The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity elsewhere in the genome, but only 23% have identical copies (99% identity. The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is

  2. Droplet Digital™ PCR Next-Generation Sequencing Library QC Assay.

    Science.gov (United States)

    Heredia, Nicholas J

    2018-01-01

    Digital PCR is a valuable tool to quantify next-generation sequencing (NGS) libraries precisely and accurately. Accurately quantifying NGS libraries enable accurate loading of the libraries on to the sequencer and thus improve sequencing performance by reducing under and overloading error. Accurate quantification also benefits users by enabling uniform loading of indexed/barcoded libraries which in turn greatly improves sequencing uniformity of the indexed/barcoded samples. The advantages gained by employing the Droplet Digital PCR (ddPCR™) library QC assay includes the precise and accurate quantification in addition to size quality assessment, enabling users to QC their sequencing libraries with confidence.

  3. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Directory of Open Access Journals (Sweden)

    Amanda Malvessi Cattani

    Full Text Available Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  4. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation.

    Science.gov (United States)

    Cattani, Amanda Malvessi; Siqueira, Franciele Maboni; Guedes, Rafael Lucas Muniz; Schrank, Irene Silveira

    2016-01-01

    Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.

  5. Detection of Mycobacterium Tuberculosis by using PCR

    International Nuclear Information System (INIS)

    Suhadi, F; Dadang-Sudrajat; Maria-Lina, R.

    1996-01-01

    Polymerase Chain Reaction (PCR) procedure using three primary set derived from repetitive DNA sequence specific to mycobacteria was used to diagnose pathogenic Mycobacterium tuberculosis. The assay was specific for M. tuberculosis and could be used to detect the amount DNA less than 10 -9 g

  6. Genotypic Characterization of Bradyrhizobium Strains Nodulating Endemic Woody Legumes of the Canary Islands by PCR-Restriction Fragment Length Polymorphism Analysis of Genes Encoding 16S rRNA (16S rDNA) and 16S-23S rDNA Intergenic Spacers, Repetitive Extragenic Palindromic PCR Genomic Fingerprinting, and Partial 16S rDNA Sequencing

    Science.gov (United States)

    Vinuesa, Pablo; Rademaker, Jan L. W.; de Bruijn, Frans J.; Werner, Dietrich

    1998-01-01

    We present a phylogenetic analysis of nine strains of symbiotic nitrogen-fixing bacteria isolated from nodules of tagasaste (Chamaecytisus proliferus) and other endemic woody legumes of the Canary Islands, Spain. These and several reference strains were characterized genotypically at different levels of taxonomic resolution by computer-assisted analysis of 16S ribosomal DNA (rDNA) PCR-restriction fragment length polymorphisms (PCR-RFLPs), 16S-23S rDNA intergenic spacer (IGS) RFLPs, and repetitive extragenic palindromic PCR (rep-PCR) genomic fingerprints with BOX, ERIC, and REP primers. Cluster analysis of 16S rDNA restriction patterns with four tetrameric endonucleases grouped the Canarian isolates with the two reference strains, Bradyrhizobium japonicum USDA 110spc4 and Bradyrhizobium sp. strain (Centrosema) CIAT 3101, resolving three genotypes within these bradyrhizobia. In the analysis of IGS RFLPs with three enzymes, six groups were found, whereas rep-PCR fingerprinting revealed an even greater genotypic diversity, with only two of the Canarian strains having similar fingerprints. Furthermore, we show that IGS RFLPs and even very dissimilar rep-PCR fingerprints can be clustered into phylogenetically sound groupings by combining them with 16S rDNA RFLPs in computer-assisted cluster analysis of electrophoretic patterns. The DNA sequence analysis of a highly variable 264-bp segment of the 16S rRNA genes of these strains was found to be consistent with the fingerprint-based classification. Three different DNA sequences were obtained, one of which was not previously described, and all belonged to the B. japonicum/Rhodopseudomonas rDNA cluster. Nodulation assays revealed that none of the Canarian isolates nodulated Glycine max or Leucaena leucocephala, but all nodulated Acacia pendula, C. proliferus, Macroptilium atropurpureum, and Vigna unguiculata. PMID:9603820

  7. Comparative molecular cytogenetics of major repetitive sequence families of three Dendrobium species (Orchidaceae) from Bangladesh

    Science.gov (United States)

    Begum, Rabeya; Alam, Sheikh Shamimul; Menzel, Gerhard; Schmidt, Thomas

    2009-01-01

    Background and Aims Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera. Methods In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH). Key Results Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species. Conclusions The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal

  8. Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes.

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2016-05-01

    The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution. Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.

  9. The Effects of Delayed Reinforcement on Variability and Repetition of Response Sequences

    Science.gov (United States)

    Odum, Amy L.; Ward, Ryan D.; Burke, K. Anne; Barnes, Christopher A.

    2006-01-01

    Four experiments examined the effects of delays to reinforcement on key peck sequences of pigeons maintained under multiple schedules of contingencies that produced variable or repetitive behavior. In Experiments 1, 2, and 4, in the repeat component only the sequence right-right-left-left earned food, and in the vary component four-response…

  10. Identification of new isolates of Bacillus thuringiensis using rep-PCR products and delta-endotoxin electron microscopy

    Directory of Open Access Journals (Sweden)

    A.S.G. Lima

    2002-01-01

    Full Text Available PCR has been used to analyze the distribution of REP (Repetitive Extragenic Palindromic and ERIC (Enterobacterial Repetitive Intergenic Consensus sequences (rep-PCR found within the genome of the bacterium Bacillus thuringiensis, with the purpose to analyze the genetic similarities among 56 subspecies samples and 95 field isolates. The PCR products were analyzed by EB-AGE (ethidium bromide-agarose electrophoresis and then submitted to banding comparisons, based on the Phyllip software algorithm. When the banding similarities were considered for comparison purposes among all the strains, the phylogenic tree patterns varied according to the rep-PCR primers considered, but, from a broader point of view, the ERIC sequences produced better results, which, together with electron microscopy analysis of the released parasporal bodies and colony morphology characteristics, allowed to detect two possible new subspecies of B. thuringiensis.

  11. An enhanced method for sequence walking and paralog mining: TOPO® Vector-Ligation PCR

    Directory of Open Access Journals (Sweden)

    Davis Thomas M

    2010-03-01

    Full Text Available Abstract Background Although technological advances allow for the economical acquisition of whole genome sequences, many organisms' genomes remain unsequenced, and fully sequenced genomes may contain gaps. Researchers reliant upon partial genomic or heterologous sequence information require methods for obtaining unknown sequences from loci of interest. Various PCR based techniques are available for sequence walking - i.e., the acquisition of unknown DNA sequence adjacent to known sequence. Many such methods require rigid, elaborate protocols and/or impose narrowly confined options in the choice of restriction enzymes for necessary genomic digests. We describe a new method, TOPO® Vector-Ligation PCR (or TVL-PCR that innovatively integrates available tools and familiar concepts to offer advantages as a means of both targeted sequence walking and paralog mining. Findings TVL-PCR exploits the ligation efficiency of the pCR®4-TOPO® (Invitrogen, Carlsbad, California vector system to capture fragments of unknown sequence by creating chimeric molecules containing defined priming sites at both ends. Initially, restriction enzyme-digested genomic DNA is end-repaired to create 3' adenosine overhangs and is then ligated to pCR4-TOPO vectors. The ligation product pool is used directly as a template for nested PCR, using specific primers to target orthologous sequences, or degenerate primers to enable capture of paralogous gene family members. We demonstrated the efficacy of this method by capturing entire coding and partial promoter sequences of several strawberry Superman-like genes. Conclusions TVL-PCR is a convenient and efficient method for DNA sequence walking and paralog mining that is applicable to any organism for which relevant DNA sequence is available as a basis for primer design.

  12. Enterobacterial repetitive intergenic consensus sequences and the PCR to generate fingerprints of genomic DNAs from Vibrio cholerae O1, O139, and non-O1 strains.

    Science.gov (United States)

    Rivera, I G; Chowdhury, M A; Huq, A; Jacobs, D; Martins, M T; Colwell, R R

    1995-08-01

    Enterobacterial repetitive intergenic consensus (ERIC) sequence polymorphism was studied in Vibrio Cholerae strains isolated before and after the cholera epidemic in Brazil (in 1991), along with epidemic strains from Peru, Mexico, and India, by PCR. A total of 17 fingerprint patterns (FPs) were detected in the V. cholerae strains examined; 96.7% of the toxigenic V. cholerae O1 strains and 100% of the O139 serogroup strains were found to belong to the same FP group comprising four fragments (FP1). The nontoxigenic V. cholerae O1 also yielded four fragments but constituted a different FP group (FP2). A total of 15 different patterns were observed among the V. cholerae non-O1 strains. Two patterns were observed most frequently for V. cholerae non-01 strains, 25% of which have FP3, with five fragments, and 16.7% of which have FP4, with two fragments. Three fragments, 1.75, 0.79, and 0.5 kb, were found to be common to both toxigenic and nontoxigenic V. cholerae O1 strains as well as to group FP3, containing V. cholerae non-O1 strains. Two fragments of group FP3, 1.3 and 1.0 kb, were present in FP1 and FP2 respectively. The 0.5-kb fragment was common to all strains and serogroups of V. cholerae analyzed. It is concluded from the results of this study, based on DNA FPs of environmental isolates, that it is possible to detect an emerging virulent strain in a cholera-endemic region. ERIC-PCR constitutes a powerful tool for determination of the virulence potential of V. cholerae O1 strains isolated in surveillance programs and for molecular epidemiological investigations.

  13. Detection and Resolution of Cryptosporidium Species and Species Mixtures by Genus-Specific Nested PCR-Restriction Fragment Length Polymorphism Analysis, Direct Sequencing, and Cloning ▿

    Science.gov (United States)

    Ruecker, Norma J.; Hoffman, Rebecca M.; Chalmers, Rachel M.; Neumann, Norman F.

    2011-01-01

    Molecular methods incorporating nested PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene of Cryptosporidium species were validated to assess performance based on limit of detection (LoD) and for detecting and resolving mixtures of species and genotypes within a single sample. The 95% LoD was determined for seven species (Cryptosporidium hominis, C. parvum, C. felis, C. meleagridis, C. ubiquitum, C. muris, and C. andersoni) and ranged from 7 to 11 plasmid template copies with overlapping 95% confidence limits. The LoD values for genomic DNA from oocysts on microscope slides were 7 and 10 template copies for C. andersoni and C. parvum, respectively. The repetitive nested PCR-RFLP slide protocol had an LoD of 4 oocysts per slide. When templates of two species were mixed in equal ratios in the nested PCR-RFLP reaction mixture, there was no amplification bias toward one species over another. At high ratios of template mixtures (>1:10), there was a reduction or loss of detection of the less abundant species by RFLP analysis, most likely due to heteroduplex formation in the later cycles of the PCR. Replicate nested PCR was successful at resolving many mixtures of Cryptosporidium at template concentrations near or below the LoD. The cloning of nested PCR products resulted in 17% of the cloned sequences being recombinants of the two original templates. Limiting-dilution nested PCR followed by the sequencing of PCR products resulted in no sequence anomalies, suggesting that this method is an effective and accurate way to study the species diversity of Cryptosporidium, particularly for environmental water samples, in which mixtures of parasites are common. PMID:21498746

  14. Fusion primer and nested integrated PCR (FPNI-PCR: a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning

    Directory of Open Access Journals (Sweden)

    Wang Zhen

    2011-11-01

    Full Text Available Abstract Background The advent of genomics-based technologies has revolutionized many fields of biological enquiry. However, chromosome walking or flanking sequence cloning is still a necessary and important procedure to determining gene structure. Such methods are used to identify T-DNA insertion sites and so are especially relevant for organisms where large T-DNA insertion libraries have been created, such as rice and Arabidopsis. The currently available methods for flanking sequence cloning, including the popular TAIL-PCR technique, are relatively laborious and slow. Results Here, we report a simple and effective fusion primer and nested integrated PCR method (FPNI-PCR for the identification and cloning of unknown genomic regions flanked known sequences. In brief, a set of universal primers was designed that consisted of various 15-16 base arbitrary degenerate oligonucleotides. These arbitrary degenerate primers were fused to the 3' end of an adaptor oligonucleotide which provided a known sequence without degenerate nucleotides, thereby forming the fusion primers (FPs. These fusion primers are employed in the first step of an integrated nested PCR strategy which defines the overall FPNI-PCR protocol. In order to demonstrate the efficacy of this novel strategy, we have successfully used it to isolate multiple genomic sequences namely, 21 orthologs of genes in various species of Rosaceace, 4 MYB genes of Rosa rugosa, 3 promoters of transcription factors of Petunia hybrida, and 4 flanking sequences of T-DNA insertion sites in transgenic tobacco lines and 6 specific genes from sequenced genome of rice and Arabidopsis. Conclusions The successful amplification of target products through FPNI-PCR verified that this novel strategy is an effective, low cost and simple procedure. Furthermore, FPNI-PCR represents a more sensitive, rapid and accurate technique than the established TAIL-PCR and hiTAIL-PCR procedures.

  15. Whole-genome in-silico subtractive hybridization (WISH - using massive sequencing for the identification of unique and repetitive sex-specific sequences: the example of Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Parrinello Hugues

    2010-06-01

    Full Text Available Abstract Background Emerging methods of massive sequencing that allow for rapid re-sequencing of entire genomes at comparably low cost are changing the way biological questions are addressed in many domains. Here we propose a novel method to compare two genomes (genome-to-genome comparison. We used this method to identify sex-specific sequences of the human blood fluke Schistosoma mansoni. Results Genomic DNA was extracted from male and female (heterogametic S. mansoni adults and sequenced with a Genome Analyzer (Illumina. Sequences are available at the NCBI sequence read archive http://www.ncbi.nlm.nih.gov/Traces/sra/ under study accession number SRA012151.6. Sequencing reads were aligned to the genome, and a pseudogenome composed of known repeats. Straightforward comparative bioinformatics analysis was performed to compare male and female schistosome genomes and identify female-specific sequences. We found that the S. mansoni female W chromosome contains only few specific unique sequences (950 Kb i.e. about 0.2% of the genome. The majority of W-specific sequences are repeats (10.5 Mb i.e. about 2.5% of the genome. Arbitrarily selected W-specific sequences were confirmed by PCR. Primers designed for unique and repetitive sequences allowed to reliably identify the sex of both larval and adult stages of the parasite. Conclusion Our genome-to-genome comparison method that we call "whole-genome in-silico subtractive hybridization" (WISH allows for rapid identification of sequences that are specific for a certain genotype (e.g. the heterogametic sex. It can in principle be used for the detection of any sequence differences between isolates (e.g. strains, pathovars or even closely related species.

  16. Dispersed repetitive sequences in eukaryotic genomes and their possible biological significance

    International Nuclear Information System (INIS)

    Georgiev, G.P.; Kramerov, D.A.; Ryskov, A.P.; Skryabin, K.G.; Lukanidin, E.M.

    1983-01-01

    In this paper is described the properties of a novel mouse mdg-like element, the A2 sequence, which is the most abundant repetitive sequence. We also characterized an ubiquitous B2 sequence that represents, after B1, the dominant family among the short interspersed repeats of the mouse genome. The existence of some putative transposition intermediates was shown for repeats of both A and B types of the mouse genome. These are closed circular DNA of the A type and small polyadenylated B + RNAs. The fundamental question that arises is whether these sequences are simply selfish DNA capable of transpositions or do they fulfill some useful biological functions within the genome. 66 references, 11 figures, 1 table

  17. Digital PCR provides sensitive and absolute calibration for high throughput sequencing

    Directory of Open Access Journals (Sweden)

    Fan H Christina

    2009-03-01

    Full Text Available Abstract Background Next-generation DNA sequencing on the 454, Solexa, and SOLiD platforms requires absolute calibration of the number of molecules to be sequenced. This requirement has two unfavorable consequences. First, large amounts of sample-typically micrograms-are needed for library preparation, thereby limiting the scope of samples which can be sequenced. For many applications, including metagenomics and the sequencing of ancient, forensic, and clinical samples, the quantity of input DNA can be critically limiting. Second, each library requires a titration sequencing run, thereby increasing the cost and lowering the throughput of sequencing. Results We demonstrate the use of digital PCR to accurately quantify 454 and Solexa sequencing libraries, enabling the preparation of sequencing libraries from nanogram quantities of input material while eliminating costly and time-consuming titration runs of the sequencer. We successfully sequenced low-nanogram scale bacterial and mammalian DNA samples on the 454 FLX and Solexa DNA sequencing platforms. This study is the first to definitively demonstrate the successful sequencing of picogram quantities of input DNA on the 454 platform, reducing the sample requirement more than 1000-fold without pre-amplification and the associated bias and reduction in library depth. Conclusion The digital PCR assay allows absolute quantification of sequencing libraries, eliminates uncertainties associated with the construction and application of standard curves to PCR-based quantification, and with a coefficient of variation close to 10%, is sufficiently precise to enable direct sequencing without titration runs.

  18. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid strain typing of Bacillus coagulans.

    Science.gov (United States)

    Sato, Jun; Nakayama, Motokazu; Tomita, Ayumi; Sonoda, Takumi; Hasumi, Motomitsu; Miyamoto, Takahisa

    2017-01-01

    In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high-heat resistance of the spores and high tolerance of the vegetative cells to catechins and chemicals, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and repetitive-PCR (rep-PCR) were evaluated. For this purpose, 28 strains of B. coagulans obtained from various culture collections were tested. DNA sequence analyses of the genes encoding 16S rRNA and DNA gyrase classified the test strains into two and three groups, respectively, regardless of their phenotypes. Both MALDI-TOF MS and rep-PCR methods classified the test strains in great detail. Strains classified in each group showed similar phenotypes, such as carbohydrate utilization determined using API 50CH. In particular, the respective two pairs of strains which showed the same metabolic characteristic were classified into the same group by both MALDI-TOF MS and rep-PCR methods separating from the other strains. On the other hand, the other strains which have the different profiles of carbohydrate utilization were separated into different groups by these methods. These results suggested that the combination of MALDI-TOF MS and rep-PCR analyses was advantageous for the rapid and detailed typing of bacterial strains in respect to both phenotype and genotype.

  19. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing.

    Directory of Open Access Journals (Sweden)

    Jonas Binladen

    2007-02-01

    Full Text Available The invention of the Genome Sequence 20 DNA Sequencing System (454 parallel sequencing platform has enabled the rapid and high-volume production of sequence data. Until now, however, individual emulsion PCR (emPCR reactions and subsequent sequencing runs have been unable to combine template DNA from multiple individuals, as homologous sequences cannot be subsequently assigned to their original sources.We use conventional PCR with 5'-nucleotide tagged primers to generate homologous DNA amplification products from multiple specimens, followed by sequencing through the high-throughput Genome Sequence 20 DNA Sequencing System (GS20, Roche/454 Life Sciences. Each DNA sequence is subsequently traced back to its individual source through 5'tag-analysis.We demonstrate that this new approach enables the assignment of virtually all the generated DNA sequences to the correct source once sequencing anomalies are accounted for (miss-assignment rate<0.4%. Therefore, the method enables accurate sequencing and assignment of homologous DNA sequences from multiple sources in single high-throughput GS20 run. We observe a bias in the distribution of the differently tagged primers that is dependent on the 5' nucleotide of the tag. In particular, primers 5' labelled with a cytosine are heavily overrepresented among the final sequences, while those 5' labelled with a thymine are strongly underrepresented. A weaker bias also exists with regards to the distribution of the sequences as sorted by the second nucleotide of the dinucleotide tags. As the results are based on a single GS20 run, the general applicability of the approach requires confirmation. However, our experiments demonstrate that 5'primer tagging is a useful method in which the sequencing power of the GS20 can be applied to PCR-based assays of multiple homologous PCR products. The new approach will be of value to a broad range of research areas, such as those of comparative genomics, complete mitochondrial

  20. Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. genome.

    Science.gov (United States)

    Kolano, B; Gardunia, B W; Michalska, M; Bonifacio, A; Fairbanks, D; Maughan, P J; Coleman, C E; Stevens, M R; Jellen, E N; Maluszynska, J

    2011-09-01

    The chromosomal organization of two novel repetitive DNA sequences isolated from the Chenopodium quinoa Willd. genome was analyzed across the genomes of selected Chenopodium species. Fluorescence in situ hybridization (FISH) analysis with the repetitive DNA clone 18-24J in the closely related allotetraploids C. quinoa and Chenopodium berlandieri Moq. (2n = 4x = 36) evidenced hybridization signals that were mainly present on 18 chromosomes; however, in the allohexaploid Chenopodium album L. (2n = 6x = 54), cross-hybridization was observed on all of the chromosomes. In situ hybridization with rRNA gene probes indicated that during the evolution of polyploidy, the chenopods lost some of their rDNA loci. Reprobing with rDNA indicated that in the subgenome labeled with 18-24J, one 35S rRNA locus and at least half of the 5S rDNA loci were present. A second analyzed sequence, 12-13P, localized exclusively in pericentromeric regions of each chromosome of C. quinoa and related species. The intensity of the FISH signals differed considerably among chromosomes. The pattern observed on C. quinoa chromosomes after FISH with 12-13P was very similar to GISH results, suggesting that the 12-13P sequence constitutes a major part of the repetitive DNA of C. quinoa.

  1. RUCS: Rapid identification of PCR primers for unique core sequences

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Hasman, Henrik; Westh, Henrik

    2017-01-01

    Designing PCR primers to target a specific selection of whole genome sequenced strains can be a long, arduous, and sometimes impractical task. Such tasks would benefit greatly from an automated tool to both identify unique targets, and to validate the vast number of potential primer pairs...... for the targets in silico . Here we present RUCS, a program that will find PCR primer pairs and probes for the unique core sequences of a positive genome dataset complement to a negative genome dataset. The resulting primer pairs and probes are in addition to simple selection also validated through a complex...... in silico PCR simulation. We compared our method, which identifies the unique core sequences, against an existing tool called ssGeneFinder, and found that our method was 6.5-20 times more sensitive. We used RUCS to design primer pairs that would target a set of genomes known to contain the mcr-1 colistin...

  2. The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing

    DEFF Research Database (Denmark)

    Binladen, Jonas; Gilbert, M Thomas P; Bollback, Jonathan P

    2007-01-01

    BACKGROUND: The invention of the Genome Sequence 20 DNA Sequencing System (454 parallel sequencing platform) has enabled the rapid and high-volume production of sequence data. Until now, however, individual emulsion PCR (emPCR) reactions and subsequent sequencing runs have been unable to combine...... primers that is dependent on the 5' nucleotide of the tag. In particular, primers 5' labelled with a cytosine are heavily overrepresented among the final sequences, while those 5' labelled with a thymine are strongly underrepresented. A weaker bias also exists with regards to the distribution...

  3. Microbial expression of proteins containing long repetitive Arg-Gly-Asp cell adhesive motifs created by overlap elongation PCR

    International Nuclear Information System (INIS)

    Kurihara, Hiroyuki; Shinkai, Masashige; Nagamune, Teruyuki

    2004-01-01

    We developed a novel method for creating repetitive DNA libraries using overlap elongation PCR, and prepared a DNA library encoding repetitive Arg-Gly-Asp (RGD) cell adhesive motifs. We obtained various length DNAs encoding repetitive RGD from a short monomer DNA (18 bp) after a thermal cyclic reaction without a DNA template for amplification, and isolated DNAs encoding 2, 21, and 43 repeats of the RGD motif. We cloned these DNAs into a protein expression vector and overexpressed them as thioredoxin fusion proteins: RGD2, RGD21, and RGD43, respectively. The solubility of RGD43 in water was low and it formed a fibrous precipitate in water. Scanning electron microscopy revealed that RGD43 formed a branched 3D-network structure in the solid state. To evaluate the function of the cell adhesive motifs in RGD43, mouse fibroblast cells were cultivated on the RGD43 scaffold. The fibroblast cells adhered to the RGD43 scaffold and extended long filopodia

  4. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS for rapid strain typing of Bacillus coagulans.

    Directory of Open Access Journals (Sweden)

    Jun Sato

    Full Text Available In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high-heat resistance of the spores and high tolerance of the vegetative cells to catechins and chemicals, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS and repetitive-PCR (rep-PCR were evaluated. For this purpose, 28 strains of B. coagulans obtained from various culture collections were tested. DNA sequence analyses of the genes encoding 16S rRNA and DNA gyrase classified the test strains into two and three groups, respectively, regardless of their phenotypes. Both MALDI-TOF MS and rep-PCR methods classified the test strains in great detail. Strains classified in each group showed similar phenotypes, such as carbohydrate utilization determined using API 50CH. In particular, the respective two pairs of strains which showed the same metabolic characteristic were classified into the same group by both MALDI-TOF MS and rep-PCR methods separating from the other strains. On the other hand, the other strains which have the different profiles of carbohydrate utilization were separated into different groups by these methods. These results suggested that the combination of MALDI-TOF MS and rep-PCR analyses was advantageous for the rapid and detailed typing of bacterial strains in respect to both phenotype and genotype.

  5. One-Step PCR Sequencing. Final Technical Progress Report for February 15, 1997 - November 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, B. R.

    2004-04-16

    We investigated new chemistries and alternate approaches for direct gene sequencing and detection based on the properties of boron-substituted nucleotides as chain delimiters in lieu of conventional chain terminators. Chain terminators, such as the widely used Sanger dideoxynucleotide truncators, stop DNA synthesis during replication and hence are incompatible with further PCR amplification. Chain delimiters, on the other hand, are chemically-modified, ''stealth'' nucleotides that act like normal nucleotides in DNA synthesis and PCR amplification, but can be unmasked following chain extension and exponential amplification. Specifically, chain delimiters give rise to an alternative sequencing strategy based on selective degradation of DNA chains generated by PCR amplification with modified nucleotides. The method as originally devised employed template-directed enzymatic, random incorporation of small amounts of boron-modified nucleotides (e.g., 2'-deoxynucleoside 5'-alpha-[P-borano]- triphosphates) during PCR amplification. Rather than incorporation of dideoxy chain terminators, which are less efficiently incorporated in PCR-based amplification than natural deoxynucleotides, our method is based on selective incorporation and exonuclease degradation of DNA chains generated by efficient PCR amplification of chemically-modified ''stealth'' nucleotides. The stealth nucleotides have a boranophosphate group instead of a normal phosphate, yet behave like normal nucleotides during PCR-amplification. The unique feature of our method is that the position of the stealth nucleotide, and hence DNA sequencing fragments, are revealed at the desired, appropriate moment following PCR amplification. During the current grant period, a variety of new boron-modified nucleotides were synthesized, and new chemistries and enzymatic methods and combinations thereof were explored to improve the method and study the effects of borane modified

  6. A novel PCR-based marker for identifying Ns chromosomes in wheat-Psathyrostachys huashanica Keng derivative lines

    Directory of Open Access Journals (Sweden)

    J. Wang

    2013-10-01

    Full Text Available Psathyrostachys huashanica Keng is an endangered species that is endemic to China, which provides an important gene pool for wheat improvement. We developed a quick and reliable PCR-based diagnostic assay to accurately and efficiently detect P. huashanica DNA sequences from introgression lines, which was based on a species-specific marker derived from genomic DNA. The 900-bp PCR-amplified band used as a P. huashanica-specific RAPD marker was tested with 21 different plant species and was converted into a sequence-characterized amplified region (SCAR marker by cloning and sequencing the selected fragments (pHs11. This SCAR marker, which was designated as RHS23, could clearly distinguish the presence of P. huashanica DNA repetitive sequences in wheat-P. huashanica derivative lines. The specificity of the marker was validated using 21 different plant species and a complete set of wheat-P. huashanica disomic addition lines (1Ns–7Ns, 2n=44=22II. This specific sequence targeted the Ns genome of P. huashanica and it was present in all the seven P. huashanica chromosomes. Therefore, this SCAR marker is specific for P. huashanica chromosomes and may be used in the identification of alien repetitive sequences in large gene pools. This diagnostic PCR assay for screening the target genetic material may play a key role in marker-assisted selective breeding programs.

  7. Next-generation sequencing can reveal in vitro-generated PCR crossover products: some artifactual sequences correspond to HLA alleles in the IMGT/HLA database.

    Science.gov (United States)

    Holcomb, C L; Rastrou, M; Williams, T C; Goodridge, D; Lazaro, A M; Tilanus, M; Erlich, H A

    2014-01-01

    The high-resolution human leukocyte antigen (HLA) genotyping assay that we developed using 454 sequencing and Conexio software uses generic polymerase chain reaction (PCR) primers for DRB exon 2. Occasionally, we observed low abundance DRB amplicon sequences that resulted from in vitro PCR 'crossing over' between DRB1 and DRB3/4/5. These hybrid sequences, revealed by the clonal sequencing property of the 454 system, were generally observed at a read depth of 5%-10% of the true alleles. They usually contained at least one mismatch with the IMGT/HLA database, and consequently, were easily recognizable and did not cause a problem for HLA genotyping. Sometimes, however, these artifactual sequences matched a rare allele and the automatic genotype assignment was incorrect. These observations raised two issues: (1) could PCR conditions be modified to reduce such artifacts? and (2) could some of the rare alleles listed in the IMGT/HLA database be artifacts rather than true alleles? Because PCR crossing over occurs during late cycles of PCR, we compared DRB genotypes resulting from 28 and (our standard) 35 cycles of PCR. For all 21 cell line DNAs amplified for 35 cycles, crossover products were detected. In 33% of the cases, these hybrid sequences corresponded to named alleles. With amplification for only 28 cycles, these artifactual sequences were not detectable. To investigate whether some rare alleles in the IMGT/HLA database might be due to PCR artifacts, we analyzed four samples obtained from the investigators who submitted the sequences. In three cases, the sequences were generated from true alleles. In one case, our 454 sequencing revealed an error in the previously submitted sequence. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Comparison of ELISA, nested PCR and sequencing and a novel qPCR for detection of Giardia isolates from Jordan.

    Science.gov (United States)

    Hijjawi, Nawal; Yang, Rongchang; Hatmal, Ma'mon; Yassin, Yasmeen; Mharib, Taghrid; Mukbel, Rami; Mahmoud, Sameer Alhaj; Al-Shudifat, Abdel-Ellah; Ryan, Una

    2018-02-01

    Little is known about the prevalence of Giardia duodenalis in human patients in Jordan and all previous studies have used direct microscopy, which lacks sensitivity. The present study developed a novel quantitative PCR (qPCR) assay at the β-giardin (bg) locus and evaluated its use as a frontline test for the diagnosis of giardiasis in comparison with a commercially available ELISA using nested PCR and sequencing of the glutamate dehydrogenase (gdh) locus (gdh nPCR) as the gold standard. A total of 96 human faecal samples were collected from 96 patients suffering from diarrhoea from 5 regions of Jordan and were screened using the ELISA and qPCR. The analytical specificity of the bg qPCR assay revealed no cross-reactions with other genera and detected all the Giardia isolates tested. Analytical sensitivity was 1 Giardia cyst per μl of DNA extract. The overall prevalence of Giardia was 64.6%. The clinical sensitivity and specificity of the bg qPCR was 89.9% and 82.9% respectively compared to 76.5 and 68.0% for the ELISA. This study is the first to compare three different methods (ELISA, bg qPCR, nested PCR and sequencing at the gdh locus) to diagnose Jordanian patients suffering from giardiasis and to analyze their demographic data. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Ribosomal PCR and DNA sequencing for detection and identification of bacteria

    DEFF Research Database (Denmark)

    Jensen, Kristine Helander; Dargis, Rimtas; Christensen, Jens Jørgen

    2014-01-01

    -haemolytic streptococci, especially within the mitis group. The data show that ribosomal PCR with subsequent DNA sequencing of the PCR product is a most valuable supplement to culture for identifying bacterial agents of both acute and prolonged infections. However, some bacteria, including non-haemolytic streptococci...

  10. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR

    Energy Technology Data Exchange (ETDEWEB)

    D`Souza, T.M.; Boominathan, K.; Reddy, C.A. [Michigan State Univ., East Lansing, MI (United States)

    1996-10-01

    Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequences of each of the PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR products of the white rot fungi Ganoderma lucidum, Phlebia brevispora, and Trametes versicolor showed 65 to 74% nucleotide sequence similarity to each other; the similarity in deduced amino acid sequences was 83 to 91%. The PCR products of Lentinula edodes and Lentinus tigrinus, on the other hand, showed relatively low nucleotide and amino acid similarities (58 to 64 and 62 to 81%, respectively); however, these similarities were still much higher than when compared with the corresponding regions in the laccases of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. A few of the white rot fungi, as well as Gloeophyllum trabeum, a brown rot fungus, gave a 144-bp PCR fragment which had a nucleotide sequence similarity of 60 to 71%. Demonstration of laccase activity in G. trabeum and several other brown rot fungi was of particular interest because these organisms were not previously shown to produce laccases. 36 refs., 6 figs., 2 tabs.

  11. Use of amplicon sequencing to improve sensitivity in PCR-based detection of microbial pathogen in environmental samples.

    Science.gov (United States)

    Saingam, Prakit; Li, Bo; Yan, Tao

    2018-06-01

    DNA-based molecular detection of microbial pathogens in complex environments is still plagued by sensitivity, specificity and robustness issues. We propose to address these issues by viewing them as inadvertent consequences of requiring specific and adequate amplification (SAA) of target DNA molecules by current PCR methods. Using the invA gene of Salmonella as the model system, we investigated if next generation sequencing (NGS) can be used to directly detect target sequences in false-negative PCR reaction (PCR-NGS) in order to remove the SAA requirement from PCR. False-negative PCR and qPCR reactions were first created using serial dilutions of laboratory-prepared Salmonella genomic DNA and then analyzed directly by NGS. Target invA sequences were detected in all false-negative PCR and qPCR reactions, which lowered the method detection limits near the theoretical minimum of single gene copy detection. The capability of the PCR-NGS approach in correcting false negativity was further tested and confirmed under more environmentally relevant conditions using Salmonella-spiked stream water and sediment samples. Finally, the PCR-NGS approach was applied to ten urban stream water samples and detected invA sequences in eight samples that would be otherwise deemed Salmonella negative. Analysis of the non-target sequences in the false-negative reactions helped to identify primer dime-like short sequences as the main cause of the false negativity. Together, the results demonstrated that the PCR-NGS approach can significantly improve method sensitivity, correct false-negative detections, and enable sequence-based analysis for failure diagnostics in complex environmental samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with tomato but divergence in repetitive sequence composition

    Directory of Open Access Journals (Sweden)

    O'Brien Kimberly

    2008-06-01

    Full Text Available Abstract Background The Solanaceae family contains a number of important crop species including potato (Solanum tuberosum which is grown for its underground storage organ known as a tuber. Albeit the 4th most important food crop in the world, other than a collection of ~220,000 Expressed Sequence Tags, limited genomic sequence information is currently available for potato and advances in potato yield and nutrition content would be greatly assisted through access to a complete genome sequence. While morphologically diverse, Solanaceae species such as potato, tomato, pepper, and eggplant share not only genes but also gene order thereby permitting highly informative comparative genomic analyses. Results In this study, we report on analysis 89.9 Mb of potato genomic sequence representing 10.2% of the genome generated through end sequencing of a potato bacterial artificial chromosome (BAC clone library (87 Mb and sequencing of 22 potato BAC clones (2.9 Mb. The GC content of potato is very similar to Solanum lycopersicon (tomato and other dicotyledonous species yet distinct from the monocotyledonous grass species, Oryza sativa. Parallel analyses of repetitive sequences in potato and tomato revealed substantial differences in their abundance, 34.2% in potato versus 46.3% in tomato, which is consistent with the increased genome size per haploid genome of these two Solanum species. Specific classes and types of repetitive sequences were also differentially represented between these two species including a telomeric-related repetitive sequence, ribosomal DNA, and a number of unclassified repetitive sequences. Comparative analyses between tomato and potato at the gene level revealed a high level of conservation of gene content, genic feature, and gene order although discordances in synteny were observed. Conclusion Genomic level analyses of potato and tomato confirm that gene sequence and gene order are conserved between these solanaceous species and that

  13. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR.

    Science.gov (United States)

    D'Souza, T M; Boominathan, K; Reddy, C A

    1996-01-01

    Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR products of the white rot fungi Ganoderma lucidum, Phlebia brevispora, and Trametes versicolor showed 65 to 74% nucleotide sequence similarity to each other; the similarity in deduced amino acid sequences was 83 to 91%. The PCR products of Lentinula edodes and Lentinus tigrinus, on the other hand, showed relatively low nucleotide and amino acid similarities (58 to 64 and 62 to 81%, respectively); however, these similarities were still much higher than when compared with the corresponding regions in the laccases of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. A few of the white rot fungi, as well as Gloeophyllum trabeum, a brown rot fungus, gave a 144-bp PCR fragment which had a nucleotide sequence similarity of 60 to 71%. Demonstration of laccase activity in G. trabeum and several other brown rot fungi was of particular interest because these organisms were not previously shown to produce laccases. PMID:8837429

  14. Using BOX-PCR to exclude a clonal outbreak of melioidosis

    Directory of Open Access Journals (Sweden)

    Ward Linda

    2007-06-01

    Full Text Available Abstract Background Although melioidosis in endemic regions is usually caused by a diverse range of Burkholderia pseudomallei strains, clonal outbreaks from contaminated potable water have been described. Furthermore B. pseudomallei is classified as a CDC Group B bioterrorism agent. Ribotyping, pulsed-field gel electrophoresis (PFGE and multilocus sequence typing (MLST have been used to identify genetically related B. pseudomallei isolates, but they are time consuming and technically challenging for many laboratories. Methods We have adapted repetitive sequence typing using a BOX A1R primer for typing B. pseudomallei and compared BOX-PCR fingerprinting results on a wide range of well-characterized B. pseudomallei isolates with MLST and PFGE performed on the same isolates. Results BOX-PCR typing compared favourably with MLST and PFGE performed on the same isolates, both discriminating between the majority of multilocus sequence types and showing relatedness between epidemiologically linked isolates from various outbreak clusters. Conclusion Our results suggest that BOX-PCR can be used to exclude a clonal outbreak of melioidosis within 10 hours of receiving the bacterial strains.

  15. Polyadenylated Sequencing Primers Enable Complete Readability of PCR Amplicons Analyzed by Dideoxynucleotide Sequencing

    Directory of Open Access Journals (Sweden)

    Martin Beránek

    2012-01-01

    Full Text Available Dideoxynucleotide DNA sequencing is one of the principal procedures in molecular biology. Loss of an initial part of nucleotides behind the 3' end of the sequencing primer limits the readability of sequenced amplicons. We present a method which extends the readability by using sequencing primers modified by polyadenylated tails attached to their 5' ends. Performing a polymerase chain reaction, we amplified eight amplicons of six human genes (AMELX, APOE, HFE, MBL2, SERPINA1 and TGFB1 ranging from 106 bp to 680 bp. Polyadenylation of the sequencing primers minimized the loss of bases in all amplicons. Complete sequences of shorter products (AMELX 106 bp, SERPINA1 121 bp, HFE 208 bp, APOE 244 bp, MBL2 317 bp were obtained. In addition, in the case of TGFB1 products (366 bp, 432 bp, and 680 bp, respectively, the lengths of sequencing readings were significantly longer if adenylated primers were used. Thus, single strand dideoxynucleotide sequencing with adenylated primers enables complete or near complete readability of short PCR amplicons.

  16. Molecular Properties of Poliovirus Isolates: Nucleotide Sequence Analysis, Typing by PCR and Real-Time RT-PCR.

    Science.gov (United States)

    Burns, Cara C; Kilpatrick, David R; Iber, Jane C; Chen, Qi; Kew, Olen M

    2016-01-01

    Virologic surveillance is essential to the success of the World Health Organization initiative to eradicate poliomyelitis. Molecular methods have been used to detect polioviruses in tissue culture isolates derived from stool samples obtained through surveillance for acute flaccid paralysis. This chapter describes the use of realtime PCR assays to identify and serotype polioviruses. In particular, a degenerate, inosine-containing, panpoliovirus (panPV) PCR primer set is used to distinguish polioviruses from NPEVs. The high degree of nucleotide sequence diversity among polioviruses presents a challenge to the systematic design of nucleic acid-based reagents. To accommodate the wide variability and rapid evolution of poliovirus genomes, degenerate codon positions on the template were matched to mixed-base or deoxyinosine residues on both the primers and the TaqMan™ probes. Additional assays distinguish between Sabin vaccine strains and non-Sabin strains. This chapter also describes the use of generic poliovirus specific primers, along with degenerate and inosine-containing primers, for routine VP1 sequencing of poliovirus isolates. These primers, along with nondegenerate serotype-specific Sabin primers, can also be used to sequence individual polioviruses in mixtures.

  17. Data Analysis of Sequences and qPCR for Microbial Communities during Algal Blooms

    Science.gov (United States)

    A training opportunity is open to a highly microbial-research-motivated student to conduct sequence analysis, explore novel genes and metabolic pathways, validate resultant findings using qPCR/RT-qPCR and summarize the findings

  18. Interactions of rat repetitive sequence MspI8 with nuclear matrix proteins during spermatogenesis

    International Nuclear Information System (INIS)

    Rogolinski, J.; Widlak, P.; Rzeszowska-Wolny, J.

    1996-01-01

    Using the Southwestern blot analysis we have studied the interactions between rat repetitive sequence MspI8 and the nuclear matrix proteins of rats testis cells. Starting from 2 weeks the young to adult animal showed differences in type of testis nuclear matrix proteins recognizing the MspI8 sequence. The same sets of nuclear matrix proteins were detected in some enriched in spermatocytes and spermatids and obtained after fractionation of cells of adult animal by the velocity sedimentation technique. (author). 21 refs, 5 figs

  19. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping.

    Science.gov (United States)

    Zhang, Yunxia; Cheng, Chunyan; Li, Ji; Yang, Shuqiong; Wang, Yunzhu; Li, Ziang; Chen, Jinfeng; Lou, Qunfeng

    2015-09-25

    Differentiation and copy number of repetitive sequences affect directly chromosome structure which contributes to reproductive isolation and speciation. Comparative cytogenetic mapping has been verified an efficient tool to elucidate the differentiation and distribution of repetitive sequences in genome. In present study, the distinct chromosomal structures of five Cucumis species were revealed through genomic in situ hybridization (GISH) technique and comparative cytogenetic mapping of major satellite repeats. Chromosome structures of five Cucumis species were investigated using GISH and comparative mapping of specific satellites. Southern hybridization was employed to study the proliferation of satellites, whose structural characteristics were helpful for analyzing chromosome evolution. Preferential distribution of repetitive DNAs at the subtelomeric regions was found in C. sativus, C hystrix and C. metuliferus, while majority was positioned at the pericentromeric heterochromatin regions in C. melo and C. anguria. Further, comparative GISH (cGISH) through using genomic DNA of other species as probes revealed high homology of repeats between C. sativus and C. hystrix. Specific satellites including 45S rDNA, Type I/II, Type III, Type IV, CentM and telomeric repeat were then comparatively mapped in these species. Type I/II and Type IV produced bright signals at the subtelomeric regions of C. sativus and C. hystrix simultaneously, which might explain the significance of their amplification in the divergence of Cucumis subgenus from the ancient ancestor. Unique positioning of Type III and CentM only at the centromeric domains of C. sativus and C. melo, respectively, combining with unique southern bands, revealed rapid evolutionary patterns of centromeric DNA in Cucumis. Obvious interstitial telomeric repeats were observed in chromosomes 1 and 2 of C. sativus, which might provide evidence of the fusion hypothesis of chromosome evolution from x = 12 to x = 7 in

  20. Next-Generation Sequencing Reveals the Impact of Repetitive DNA Across Phylogenetically Closely Related Genomes of Orobanchaceae

    Science.gov (United States)

    Piednoël, Mathieu; Aberer, Andre J.; Schneeweiss, Gerald M.; Macas, Jiri; Novak, Petr; Gundlach, Heidrun; Temsch, Eva M.; Renner, Susanne S.

    2013-01-01

    We used next-generation sequencing to characterize the genomes of nine species of Orobanchaceae of known phylogenetic relationships, different life forms, and including a polyploid species. The study species are the autotrophic, nonparasitic Lindenbergia philippensis, the hemiparasitic Schwalbea americana, and seven nonphotosynthetic parasitic species of Orobanche (Orobanche crenata, Orobanche cumana, Orobanche gracilis (tetraploid), and Orobanche pancicii) and Phelipanche (Phelipanche lavandulacea, Phelipanche purpurea, and Phelipanche ramosa). Ty3/Gypsy elements comprise 1.93%–28.34% of the nine genomes and Ty1/Copia elements comprise 8.09%–22.83%. When compared with L. philippensis and S. americana, the nonphotosynthetic species contain higher proportions of repetitive DNA sequences, perhaps reflecting relaxed selection on genome size in parasitic organisms. Among the parasitic species, those in the genus Orobanche have smaller genomes but higher proportions of repetitive DNA than those in Phelipanche, mostly due to a diversification of repeats and an accumulation of Ty3/Gypsy elements. Genome downsizing in the tetraploid O. gracilis probably led to sequence loss across most repeat types. PMID:22723303

  1. Clinical and epidemiological use of nested PCR targeting the repetitive element IS1111 associated with the transposase gene from Coxiella burnetii.

    Science.gov (United States)

    Mares-Guia, Maria Angélica M M; Guterres, Alexandro; Rozental, Tatiana; Ferreira, Michelle Dos Santos; Lemos, Elba R S

    Q fever is a worldwide zoonosis caused by Coxiella burnetii-a small obligate intracellular Gram-negative bacterium found in a variety of animals. It is transmitted to humans by inhalation of contaminated aerosols from urine, feces, milk, amniotic fluid, placenta, abortion products, wool, and rarely by ingestion of raw milk from infected animals. Nested PCR can improve the sensitivity and specificity of testing while offering a suitable amplicon size for sequencing. Serial dilutions were performed tenfold to test the limit of detection, and the result was 10× detection of C. burnetti DNA with internal nested PCR primers relative to trans-PCR. Different biological samples were tested and identified only in nested PCR. This demonstrates the efficiency and effectiveness of the primers. Of the 19 samples, which amplify the partial sequence of C. burnetii, 12 were positive by conventional PCR and nested PCR. Seven samples-five spleen tissue samples from rodents and two tick samples-were only positive in nested PCR. With these new internal primers for trans-PCR, we demonstrate that our nested PCR assay for C. burnetii can achieve better results than conventional PCR. Published by Elsevier Editora Ltda.

  2. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development.

    Science.gov (United States)

    Sun, Cheng; Wyngaard, Grace; Walton, D Brian; Wichman, Holly A; Mueller, Rachel Lockridge

    2014-03-11

    Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution--some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 - 75 Gb, 12-74 Gb of which are lost from pre-somatic cell lineages at germline--soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms.

  3. A new trilocus sequence-based multiplex-PCR to detect major Acinetobacter baumannii clones.

    Science.gov (United States)

    Martins, Natacha; Picão, Renata Cristina; Cerqueira-Alves, Morgana; Uehara, Aline; Barbosa, Lívia Carvalho; Riley, Lee W; Moreira, Beatriz Meurer

    2016-08-01

    A collection of 163 Acinetobacter baumannii isolates detected in a large Brazilian hospital, was potentially related with the dissemination of four clonal complexes (CC): 113/79, 103/15, 109/1 and 110/25, defined by University of Oxford/Institut Pasteur multilocus sequence typing (MLST) schemes. The urge of a simple multiplex-PCR scheme to specify these clones has motivated the present study. The established trilocus sequence-based typing (3LST, for ompA, csuE and blaOXA-51-like genes) multiplex-PCR rapidly identifies international clones I (CC109/1), II (CC118/2) and III (CC187/3). Thus, the system detects only one (CC109/1) out of four main CC in Brazil. We aimed to develop an alternative multiplex-PCR scheme to detect these clones, known to be present additionally in Africa, Asia, Europe, USA and South America. MLST, performed in the present study to complement typing our whole collection of isolates, confirmed that all isolates belonged to the same four CC detected previously. When typed by 3LST-based multiplex-PCR, only 12% of the 163 isolates were classified into groups. By comparative sequence analysis of ompA, csuE and blaOXA-51-like genes, a set of eight primers was designed for an alternative multiplex-PCR to distinguish the five CC 113/79, 103/15, 109/1, 110/25 and 118/2. Study isolates and one CC118/2 isolate were blind-tested with the new alternative PCR scheme; all were correctly clustered in groups of the corresponding CC. The new multiplex-PCR, with the advantage of fitting in a single reaction, detects five leading A. baumannii clones and could help preventing the spread in healthcare settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. [Influence of PCR cycle number on microbial diversity analysis through next generation sequencing].

    Science.gov (United States)

    An, Yunhe; Gao, Lijuan; Li, Junbo; Tian, Yanjie; Wang, Jinlong; Zheng, Xuejuan; Wu, Huijuan

    2016-08-25

    Using of high throughput sequencing technology to study the microbial diversity in complex samples has become one of the hottest issues in the field of microbial diversity research. In this study, the soil and sheep rumen chyme samples were used to extract DNA, respectively. Then the 25 ng total DNA was used to amplify the 16S rRNA V3 region with 20, 25, 30 PCR cycles, and the final sequencing library was constructed by mixing equal amounts of purified PCR products. Finally, the operational taxonomic unit (OUT) amount, rarefaction curve, microbial number and species were compared through data analysis. It was found that at the same amount of DNA template, the proportion of the community composition was not the best with more numbers of PCR cycle, although the species number was much more. In all, when the PCR cycle number is 25, the number of species and proportion of the community composition were the most optimal both in soil or chyme samples.

  5. Human CST Facilitates Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication Stress.

    Science.gov (United States)

    Chastain, Megan; Zhou, Qing; Shiva, Olga; Fadri-Moskwik, Maria; Whitmore, Leanne; Jia, Pingping; Dai, Xueyu; Huang, Chenhui; Ye, Ping; Chai, Weihang

    2016-08-02

    The telomeric CTC1/STN1/TEN1 (CST) complex has been implicated in promoting replication recovery under replication stress at genomic regions, yet its precise role is unclear. Here, we report that STN1 is enriched at GC-rich repetitive sequences genome-wide in response to hydroxyurea (HU)-induced replication stress. STN1 deficiency exacerbates the fragility of these sequences under replication stress, resulting in chromosome fragmentation. We find that upon fork stalling, CST proteins form distinct nuclear foci that colocalize with RAD51. Furthermore, replication stress induces physical association of CST with RAD51 in an ATR-dependent manner. Strikingly, CST deficiency diminishes HU-induced RAD51 foci formation and reduces RAD51 recruitment to telomeres and non-telomeric GC-rich fragile sequences. Collectively, our findings establish that CST promotes RAD51 recruitment to GC-rich repetitive sequences in response to replication stress to facilitate replication restart, thereby providing insights into the mechanism underlying genome stability maintenance. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. By-product formation in repetitive PCR amplification of DNA libraries during SELEX.

    Science.gov (United States)

    Tolle, Fabian; Wilke, Julian; Wengel, Jesper; Mayer, Günter

    2014-01-01

    The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments. Based on sequence information and the amplification behaviour of defined enriched nucleic acid molecules we suppose a molecular mechanism through which these amplification by-products are built. Better understanding of these mechanisms might help to find solutions minimizing by-product formation and improving the success rate of aptamer selection.

  7. Automated purification of Borrelia burgdorferi s.l. PCR products with KingFisherTM magnetic particle processor prior to genome sequencing

    International Nuclear Information System (INIS)

    Maekinen, Johanna; Marttila, Harri; Viljanen, Matti K.

    2001-01-01

    Borrelia burgdorferi sensu lato genospecies were differentiated by PCR-based sequencing of the borrelial flagellin gene. To evaluate the usefulness of KingFisher TM magnetic particle processor in PCR product purification, borrelia PCR products were purified with KingFisher TM magnetic particle processor prior to cycle sequencing and the quality of the sequence data received was analyzed. KingFisher was found to offer a rapid and reliable alternative for borrelial PCR product purification

  8. A comparison of EGFR mutation testing methods in lung carcinoma: direct sequencing, real-time PCR and immunohistochemistry.

    Directory of Open Access Journals (Sweden)

    Bárbara Angulo

    Full Text Available The objective of this study is to compare two EGFR testing methodologies (a commercial real-time PCR kit and a specific EGFR mutant immunohistochemistry, with direct sequencing and to investigate the limit of detection (LOD of both PCR-based methods. We identified EGFR mutations in 21 (16% of the 136 tumours analyzed by direct sequencing. Interestingly, the Therascreen EGFR Mutation Test kit was able to characterize as wild-type one tumour that could not be analyzed by direct sequencing of the PCR product. We then compared the LOD of the kit and that of direct sequencing using the available mutant tumours. The kit was able to detect the presence of a mutation in a 1% dilution of the total DNA in nine of the 18 tumours (50%, which tested positive with the real-time quantitative PCR method. In all cases, EGFR mutation was identified at a dilution of 5%. Where the mutant DNA represented 30% of the total DNA, sequencing was able to detect mutations in 12 out of 19 cases (63%. Additional experiments with genetically defined standards (EGFR ΔE746-A750/+ and EGFR L858R/+ yielded similar results. Immunohistochemistry (IHC staining with exon 19-specific antibody was seen in eight out of nine cases with E746-A750del detected by direct sequencing. Neither of the two tumours with complex deletions were positive. Of the five L858R-mutated tumours detected by the PCR methods, only two were positive for the exon 21-specific antibody. The specificity was 100% for both antibodies. The LOD of the real-time PCR method was lower than that of direct sequencing. The mutation specific IHC produced excellent specificity.

  9. Next-generation sequencing detects repetitive elements expansion in giant genomes of annual killifish genus Austrolebias (Cyprinodontiformes, Rivulidae).

    Science.gov (United States)

    García, G; Ríos, N; Gutiérrez, V

    2015-06-01

    Among Neotropical fish fauna, the South American killifish genus Austrolebias (Cyprinodontiformes: Rivulidae) constitutes an excellent model to study the genomic evolutionary processes underlying speciation events. Recently, unusually large genome size has been described in 16 species of this genus, with an average DNA content of about 5.95 ± 0.45 pg per diploid cell (mean C-value of about 2.98 pg). In the present paper we explore the possible origin of this unparallel genomic increase by means of comparative analysis of the repetitive components using NGS (454-Roche) technology in the lowest and highest Rivulidae genomes. Here, we provide the first annotated Rivulidae-repeated sequences composition and their relative repetitive fraction in both genomes. Remarkably, the genomic proportion of the moderately repetitive DNA in Austrolebias charrua genome represents approximately twice (45%) of the repetitive components of the highly related rivulinae taxon Cynopoecilus melanotaenia (25%). Present work provides evidence about the impact of the repeat families that could be distinctly proliferated among sublineages within Rivulidae fish group, explaining the great genome size differences encompassing the differentiation and speciation events in this family.

  10. Yeast identification by sequencing, biochemical kits, MALDI-TOF MS and rep-PCR DNA fingerprinting.

    Science.gov (United States)

    Zhao, Ying; Tsang, Chi-Ching; Xiao, Meng; Chan, Jasper F W; Lau, Susanna K P; Kong, Fanrong; Xu, Yingchun; Woo, Patrick C Y

    2017-12-08

    No study has comprehensively evaluated the performance of 28S nrDNA and ITS sequencing, commercial biochemical test kits, MALDI-TOF MS platforms, and the emerging rep-PCR DNA fingerprinting technology using a cohort of yeast strains collected from a clinical microbiology laboratory. In this study, using 71 clinically important yeast isolates (excluding Candida albicans) collected from a single centre, we determined the concordance of 28S nrDNA and ITS sequencing and evaluated the performance of two commercial test kits, two MALDI-TOF MS platforms, and rep-PCR DNA fingerprinting. 28S nrDNA and ITS sequencing showed complete agreement on the identities of the 71 isolates. Using sequencing results as the standard, 78.9% and 71.8% isolates were correctly identified using the API 20C AUX and Vitek 2 YST ID Card systems, respectively; and 90.1% and 80.3% isolates were correctly identified using the Bruker and Vitek MALDI-TOF MS platforms, respectively. Of the 18 strains belonging to the Candida parapsilosis species complex tested by DiversiLab automated rep-PCR DNA fingerprinting, all were identified only as Candida parapsilosis with similarities ≥93.2%, indicating the misidentification of Candida metapsilosis and Candida orthopsilosis. However, hierarchical cluster analysis of the rep-PCR DNA fingerprints of these three species within this species complex formed three different discrete clusters, indicating that this technology can potentially differentiate the three species. To achieve higher accuracies of identification, the databases of commercial biochemical test kits, MALDI-TOF MS platforms, and DiversiLab automated rep-PCR DNA fingerprinting needs further enrichment, particularly for uncommonly encountered yeast species. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. International Interlaboratory Digital PCR Study Demonstrating High Reproducibility for the Measurement of a Rare Sequence Variant.

    Science.gov (United States)

    Whale, Alexandra S; Devonshire, Alison S; Karlin-Neumann, George; Regan, Jack; Javier, Leanne; Cowen, Simon; Fernandez-Gonzalez, Ana; Jones, Gerwyn M; Redshaw, Nicholas; Beck, Julia; Berger, Andreas W; Combaret, Valérie; Dahl Kjersgaard, Nina; Davis, Lisa; Fina, Frederic; Forshew, Tim; Fredslund Andersen, Rikke; Galbiati, Silvia; González Hernández, Álvaro; Haynes, Charles A; Janku, Filip; Lacave, Roger; Lee, Justin; Mistry, Vilas; Pender, Alexandra; Pradines, Anne; Proudhon, Charlotte; Saal, Lao H; Stieglitz, Elliot; Ulrich, Bryan; Foy, Carole A; Parkes, Helen; Tzonev, Svilen; Huggett, Jim F

    2017-02-07

    This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate laboratories. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using quantitative PCR (qPCR) or next generation sequencing (NGS) due to the presence of competing wild type sequences and the need for calibration. Using dPCR, 18 laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration. This could enable the reproducible application of molecular stratification to guide therapy and, potentially, for molecular diagnostics.

  12. Identification of two new repetitive elements and chromosomal mapping of repetitive DNA sequences in the fish Gymnothorax unicolor (Anguilliformes: Muraenidae

    Directory of Open Access Journals (Sweden)

    E. Coluccia

    2011-05-01

    Full Text Available Muraenidae is a species-rich family, with relationships among genera and species and taxonomy that have not been completely clarified. Few cytogenetic studies have been conducted on this family, and all of them showed the same diploid chromosome number (2n=42 but with conspicuous karyotypic variation among species. The Mediterranean moray eel Gymnothorax unicolor was previously cytogenetically studied using classical techniques that allowed the characterization of its karyotype structure and the constitutive heterochromatin and argyrophilic nucleolar organizer regions (Ag-NORs distribution pattern. In the present study, we describe two new repetitive elements (called GuMboI and GuDdeI obtained from restricted genomic DNA of G. unicolor that were characterized by Southern blot and physically localized by in situ hybridization on metaphase chromosomes. As they are highly repetitive DNA sequences, they map in heterochromatic regions. However, while GuDdeI was localized in the centromeric regions, the GuMboI fraction was distributed on some centromeres and was co-localized with the nucleolus organizer region (NOR. Comparative analysis with other Mediterranean species such as Muraena helena pointed out that these DNA fractions are species-specific and could potentially be used for species discrimination. As a new contribution to the karyotype of this species, we found that the major ribosomal genes are localized on acrocentric chromosome 9 and that the telomeres of each chromosome are composed of a tandem repeat derived from a poly-TTAGGG DNA sequence, as it occurs in most vertebrate species. The results obtained add new information useful in comparative genomics at the chromosomal level and contribute to the cytogenetic knowledge regarding this fish family, which has not been extensively studied.

  13. Advantages and Limitations of Ribosomal RNA PCR and DNA Sequencing for Identification of Bacteria in Cardiac Valves of Danish Patients

    DEFF Research Database (Denmark)

    Kemp, Michael; Bangsborg, Jette; Kjerulf, Anne

    2013-01-01

    of direct molecular identification should also address weaknesses, their relevance in the given setting, and possible improvements. In this study cardiac valves from 56 Danish patients referred for surgery for infective endocarditis were analysed by microscopy and culture as well as by PCR targeting part...... of the bacterial 16S rRNA gene followed by DNA sequencing of the PCR product. PCR and DNA sequencing identified significant bacteria in 49 samples from 43 patients, including five out of 13 culture-negative cases. No rare, exotic, or intracellular bacteria were identified. There was a general agreement between...... bacterial identity obtained by ribosomal PCR and DNA sequencing from the valves and bacterial isolates from blood culture. However, DNA sequencing of the 16S rRNA gene did not discriminate well among non-haemolytic streptococci, especially within the Streptococcus mitis group. Ribosomal PCR with subsequent...

  14. Flanking sequence determination and specific PCR identification of transgenic wheat B102-1-2.

    Science.gov (United States)

    Cao, Jijuan; Xu, Junyi; Zhao, Tongtong; Cao, Dongmei; Huang, Xin; Zhang, Piqiao; Luan, Fengxia

    2014-01-01

    The exogenous fragment sequence and flanking sequence between the exogenous fragment and recombinant chromosome of transgenic wheat B102-1-2 were successfully acquired using genome walking technology. The newly acquired exogenous fragment encoded the full-length sequence of transformed genes with transformed plasmid and corresponding functional genes including ubi, vector pBANF-bar, vector pUbiGUSPlus, vector HSP, reporter vector pUbiGUSPlus, promoter ubiquitin, and coli DH1. A specific polymerase chain reaction (PCR) identification method for transgenic wheat B102-1-2 was established on the basis of designed primers according to flanking sequence. This established specific PCR strategy was validated by using transgenic wheat, transgenic corn, transgenic soybean, transgenic rice, and non-transgenic wheat. A specifically amplified target band was observed only in transgenic wheat B102-1-2. Therefore, this method is characterized by high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of transgenic wheat B102-1-2.

  15. Quantitation of next generation sequencing library preparation protocol efficiencies using droplet digital PCR assays - a systematic comparison of DNA library preparation kits for Illumina sequencing.

    Science.gov (United States)

    Aigrain, Louise; Gu, Yong; Quail, Michael A

    2016-06-13

    The emergence of next-generation sequencing (NGS) technologies in the past decade has allowed the democratization of DNA sequencing both in terms of price per sequenced bases and ease to produce DNA libraries. When it comes to preparing DNA sequencing libraries for Illumina, the current market leader, a plethora of kits are available and it can be difficult for the users to determine which kit is the most appropriate and efficient for their applications; the main concerns being not only cost but also minimal bias, yield and time efficiency. We compared 9 commercially available library preparation kits in a systematic manner using the same DNA sample by probing the amount of DNA remaining after each protocol steps using a new droplet digital PCR (ddPCR) assay. This method allows the precise quantification of fragments bearing either adaptors or P5/P7 sequences on both ends just after ligation or PCR enrichment. We also investigated the potential influence of DNA input and DNA fragment size on the final library preparation efficiency. The overall library preparations efficiencies of the libraries show important variations between the different kits with the ones combining several steps into a single one exhibiting some final yields 4 to 7 times higher than the other kits. Detailed ddPCR data also reveal that the adaptor ligation yield itself varies by more than a factor of 10 between kits, certain ligation efficiencies being so low that it could impair the original library complexity and impoverish the sequencing results. When a PCR enrichment step is necessary, lower adaptor-ligated DNA inputs leads to greater amplification yields, hiding the latent disparity between kits. We describe a ddPCR assay that allows us to probe the efficiency of the most critical step in the library preparation, ligation, and to draw conclusion on which kits is more likely to preserve the sample heterogeneity and reduce the need of amplification.

  16. Synthetic internal control sequences to increase negative call veracity in multiplexed, quantitative PCR assays for Phakopsora pachyrhizi

    Science.gov (United States)

    Quantitative PCR (Q-PCR) utilizing specific primer sequences and a fluorogenic, 5’-exonuclease linear hydrolysis probe is well established as a detection and identification method for Phakopsora pachyrhizi, the soybean rust pathogen. Because of the extreme sensitivity of Q-PCR, the DNA of a single u...

  17. Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals

    Directory of Open Access Journals (Sweden)

    Reneker Jeff

    2005-05-01

    Full Text Available Abstract Background Searching for small tandem/disperse repetitive DNA sequences streamlines many biomedical research processes. For instance, whole genomic array analysis in yeast has revealed 22 PHO-regulated genes. The promoter regions of all but one of them contain at least one of the two core Pho4p binding sites, CACGTG and CACGTT. In humans, microsatellites play a role in a number of rare neurodegenerative diseases such as spinocerebellar ataxia type 1 (SCA1. SCA1 is a hereditary neurodegenerative disease caused by an expanded CAG repeat in the coding sequence of the gene. In bacterial pathogens, microsatellites are proposed to regulate expression of some virulence factors. For example, bacteria commonly generate intra-strain diversity through phase variation which is strongly associated with virulence determinants. A recent analysis of the complete sequences of the Helicobacter pylori strains 26695 and J99 has identified 46 putative phase-variable genes among the two genomes through their association with homopolymeric tracts and dinucleotide repeats. Life scientists are increasingly interested in studying the function of small sequences of DNA. However, current search algorithms often generate thousands of matches – most of which are irrelevant to the researcher. Results We present our hash function as well as our search algorithm to locate small sequences of DNA within multiple genomes. Our system applies information retrieval algorithms to discover knowledge of cross-species conservation of repeat sequences. We discuss our incorporation of the Gene Ontology (GO database into these algorithms. We conduct an exhaustive time analysis of our system for various repetitive sequence lengths. For instance, a search for eight bases of sequence within 3.224 GBases on 49 different chromosomes takes 1.147 seconds on average. To illustrate the relevance of the search results, we conduct a search with and without added annotation terms for the

  18. A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies.

    Science.gov (United States)

    Utturkar, Sagar M; Klingeman, Dawn M; Hurt, Richard A; Brown, Steven D

    2017-01-01

    This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.

  19. Detection of Bordetella pertussis from Clinical Samples by Culture and End-Point PCR in Malaysian Patients.

    Science.gov (United States)

    Ting, Tan Xue; Hashim, Rohaidah; Ahmad, Norazah; Abdullah, Khairul Hafizi

    2013-01-01

    Pertussis or whooping cough is a highly infectious respiratory disease caused by Bordetella pertussis. In vaccinating countries, infants, adolescents, and adults are relevant patients groups. A total of 707 clinical specimens were received from major hospitals in Malaysia in year 2011. These specimens were cultured on Regan-Lowe charcoal agar and subjected to end-point PCR, which amplified the repetitive insertion sequence IS481 and pertussis toxin promoter gene. Out of these specimens, 275 were positive: 4 by culture only, 6 by both end-point PCR and culture, and 265 by end-point PCR only. The majority of the positive cases were from ≤3 months old patients (77.1%) (P 0.05). Our study showed that the end-point PCR technique was able to pick up more positive cases compared to culture method.

  20. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates

    DEFF Research Database (Denmark)

    Kalle, Elena; Gulevich, Alexander; Rensing, Christopher Günther T

    2013-01-01

    as an acceptable alternative. In order to evaluate the effects of inhibitors, a model multi-template mix was amplified in a mixture with DNAse-treated sample. Semi-internal control allowed establishment of intervals for robust PCR performance for different samples, thus enabling correct comparison of the samples......In a mixed template, the presence of homologous target DNA sequences creates environments that almost inevitably give rise to artifacts and biases during PCR. Heteroduplexes, chimeras, and skewed template-to-product ratios are the exclusive attributes of mixed template PCR and never occur....... This study demonstrated the efficiency of a model mixed template as an adequate external amplification control for a particular PCR application. The conditions of multi-template PCR do not allow implementation of a classic internal control; therefore we developed a convenient semi-internal control...

  1. Nested PCR Biases in Interpreting Microbial Community Structure in 16S rRNA Gene Sequence Datasets.

    Science.gov (United States)

    Yu, Guoqin; Fadrosh, Doug; Goedert, James J; Ravel, Jacques; Goldstein, Alisa M

    2015-01-01

    Sequencing of the PCR-amplified 16S rRNA gene has become a common approach to microbial community investigations in the fields of human health and environmental sciences. This approach, however, is difficult when the amount of DNA is too low to be amplified by standard PCR. Nested PCR can be employed as it can amplify samples with DNA concentration several-fold lower than standard PCR. However, potential biases with nested PCRs that could affect measurement of community structure have received little attention. In this study, we used 17 DNAs extracted from vaginal swabs and 12 DNAs extracted from stool samples to study the influence of nested PCR amplification of the 16S rRNA gene on the estimation of microbial community structure using Illumina MiSeq sequencing. Nested and standard PCR methods were compared on alpha- and beta-diversity metrics and relative abundances of bacterial genera. The effects of number of cycles in the first round of PCR (10 vs. 20) and microbial diversity (relatively low in vagina vs. high in stool) were also investigated. Vaginal swab samples showed no significant difference in alpha diversity or community structure between nested PCR and standard PCR (one round of 40 cycles). Stool samples showed significant differences in alpha diversity (except Shannon's index) and relative abundance of 13 genera between nested PCR with 20 cycles in the first round and standard PCR (Pnested PCR with 10 cycles in the first round and standard PCR. Operational taxonomic units (OTUs) that had low relative abundance (sum of relative abundance 27% of total OTUs in stool). Nested PCR introduced bias in estimated diversity and community structure. The bias was more significant for communities with relatively higher diversity and when more cycles were applied in the first round of PCR. We conclude that nested PCR could be used when standard PCR does not work. However, rare taxa detected by nested PCR should be validated by other technologies.

  2. The use of mycobacterial interspersed repetitive unit typing and whole genome sequencing to inform tuberculosis prevention and control activities.

    Science.gov (United States)

    Gilbert, Gwendolyn L; Sintchenko, Vitali

    2013-07-01

    Molecular strain typing of Mycobacterium tuberculosis has been possible for only about 20 years; it has significantly improved our understanding of the evolution and epidemiology of Mycobacterium tuberculosis and tuberculosis disease. Mycobacterial interspersed repetitive unit typing, based on 24 variable number tandem repeat unit loci, is highly discriminatory, relatively easy to perform and interpret and is currently the most widely used molecular typing system for tuberculosis surveillance. Nevertheless, clusters identified by mycobacterial interspersed repetitive unit typing sometimes cannot be confirmed or adequately defined by contact tracing and additional methods are needed. Recently, whole genome sequencing has been used to identify single nucleotide polymorphisms and other mutations, between genotypically indistinguishable isolates from the same cluster, to more accurately trace transmission pathways. Rapidly increasing speed and quality and reduced costs will soon make large scale whole genome sequencing feasible, combined with the use of sophisticated bioinformatics tools, for epidemiological surveillance of tuberculosis.

  3. By-Product Formation in Repetitive PCR Amplification of DNA Libraries during SELEX

    DEFF Research Database (Denmark)

    Tolle, Fabian; Wilke, Julian; Wengel, Jesper

    2014-01-01

    The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recogniz......The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target......-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments....... Based on sequence information and the amplification behaviour of defined enriched nucleic acid molecules we suppose a molecular mechanism through which these amplification by-products are built. Better understanding of these mechanisms might help to find solutions minimizing by-product formation...

  4. Development of a real-time PCR for detection of Staphylococcus pseudintermedius using a novel automated comparison of whole-genome sequences.

    Directory of Open Access Journals (Sweden)

    Koen M Verstappen

    Full Text Available Staphylococcus pseudintermedius is an opportunistic pathogen in dogs and cats and occasionally causes infections in humans. S. pseudintermedius is often resistant to multiple classes of antimicrobials. It requires a reliable detection so that it is not misidentified as S. aureus. Phenotypic and currently-used molecular-based diagnostic assays lack specificity or are labour-intensive using multiplex PCR or nucleic acid sequencing. The aim of this study was to identify a specific target for real-time PCR by comparing whole genome sequences of S. pseudintermedius and non-pseudintermedius.Genome sequences were downloaded from public repositories and supplemented by isolates that were sequenced in this study. A Perl-script was written that analysed 300-nt fragments from a reference genome sequence of S. pseudintermedius and checked if this sequence was present in other S. pseudintermedius genomes (n = 74 and non-pseudintermedius genomes (n = 138. Six sequences specific for S. pseudintermedius were identified (sequence length between 300-500 nt. One sequence, which was located in the spsJ gene, was used to develop primers and a probe. The real-time PCR showed 100% specificity when testing for S. pseudintermedius isolates (n = 54, and eight other staphylococcal species (n = 43. In conclusion, a novel approach by comparing whole genome sequences identified a sequence that is specific for S. pseudintermedius and provided a real-time PCR target for rapid and reliable detection of S. pseudintermedius.

  5. Sequence polymorphism can produce serious artefacts in real-time PCR assays: hard lessons from Pacific oysters

    Directory of Open Access Journals (Sweden)

    Camara Mark D

    2008-05-01

    Full Text Available Abstract Background Since it was first described in the mid-1990s, quantitative real time PCR (Q-PCR has been widely used in many fields of biomedical research and molecular diagnostics. This method is routinely used to validate whole transcriptome analyses such as DNA microarrays, suppressive subtractive hybridization (SSH or differential display techniques such as cDNA-AFLP (Amplification Fragment Length Polymorphism. Despite efforts to optimize the methodology, misleading results are still possible, even when standard optimization approaches are followed. Results As part of a larger project aimed at elucidating transcriptome-level responses of Pacific oysters (Crassostrea gigas to various environmental stressors, we used microarrays and cDNA-AFLP to identify Expressed Sequence Tag (EST fragments that are differentially expressed in response to bacterial challenge in two heat shock tolerant and two heat shock sensitive full-sib oyster families. We then designed primers for these differentially expressed ESTs in order to validate the results using Q-PCR. For two of these ESTs we tested fourteen primer pairs each and using standard optimization methods (i.e. melt-curve analysis to ensure amplification of a single product, determined that of the fourteen primer pairs tested, six and nine pairs respectively amplified a single product and were thus acceptable for further testing. However, when we used these primers, we obtained different statistical outcomes among primer pairs, raising unexpected but serious questions about their reliability. We hypothesize that as a consequence of high levels of sequence polymorphism in Pacific oysters, Q-PCR amplification is sub-optimal in some individuals because sequence variants in priming sites results in poor primer binding and amplification in some individuals. This issue is similar to the high frequency of null alleles observed for microsatellite markers in Pacific oysters. Conclusion This study highlights

  6. Determination of haplotypes at structurally complex regions using emulsion haplotype fusion PCR.

    Science.gov (United States)

    Tyson, Jess; Armour, John A L

    2012-12-11

    Genotyping and massively-parallel sequencing projects result in a vast amount of diploid data that is only rarely resolved into its constituent haplotypes. It is nevertheless this phased information that is transmitted from one generation to the next and is most directly associated with biological function and the genetic causes of biological effects. Despite progress made in genome-wide sequencing and phasing algorithms and methods, problems assembling (and reconstructing linear haplotypes in) regions of repetitive DNA and structural variation remain. These dynamic and structurally complex regions are often poorly understood from a sequence point of view. Regions such as these that are highly similar in their sequence tend to be collapsed onto the genome assembly. This is turn means downstream determination of the true sequence haplotype in these regions poses a particular challenge. For structurally complex regions, a more focussed approach to assembling haplotypes may be required. In order to investigate reconstruction of spatial information at structurally complex regions, we have used an emulsion haplotype fusion PCR approach to reproducibly link sequences of up to 1kb in length to allow phasing of multiple variants from neighbouring loci, using allele-specific PCR and sequencing to detect the phase. By using emulsion systems linking flanking regions to amplicons within the CNV, this led to the reconstruction of a 59kb haplotype across the DEFA1A3 CNV in HapMap individuals. This study has demonstrated a novel use for emulsion haplotype fusion PCR in addressing the issue of reconstructing structural haplotypes at multiallelic copy variable regions, using the DEFA1A3 locus as an example.

  7. Determination of haplotypes at structurally complex regions using emulsion haplotype fusion PCR

    Directory of Open Access Journals (Sweden)

    Tyson Jess

    2012-12-01

    Full Text Available Abstract Background Genotyping and massively-parallel sequencing projects result in a vast amount of diploid data that is only rarely resolved into its constituent haplotypes. It is nevertheless this phased information that is transmitted from one generation to the next and is most directly associated with biological function and the genetic causes of biological effects. Despite progress made in genome-wide sequencing and phasing algorithms and methods, problems assembling (and reconstructing linear haplotypes in regions of repetitive DNA and structural variation remain. These dynamic and structurally complex regions are often poorly understood from a sequence point of view. Regions such as these that are highly similar in their sequence tend to be collapsed onto the genome assembly. This is turn means downstream determination of the true sequence haplotype in these regions poses a particular challenge. For structurally complex regions, a more focussed approach to assembling haplotypes may be required. Results In order to investigate reconstruction of spatial information at structurally complex regions, we have used an emulsion haplotype fusion PCR approach to reproducibly link sequences of up to 1kb in length to allow phasing of multiple variants from neighbouring loci, using allele-specific PCR and sequencing to detect the phase. By using emulsion systems linking flanking regions to amplicons within the CNV, this led to the reconstruction of a 59kb haplotype across the DEFA1A3 CNV in HapMap individuals. Conclusion This study has demonstrated a novel use for emulsion haplotype fusion PCR in addressing the issue of reconstructing structural haplotypes at multiallelic copy variable regions, using the DEFA1A3 locus as an example.

  8. Comparison of Pulsed-Gel Electrophoresis and a Commercial Repetitive-Element PCR Method for Assessment of Methicillin-Resistant Staphylococcus aureus Clustering in Different Health Care Facilities

    Science.gov (United States)

    Duster, Megan; Warrack, Simone; Maki, Dennis; Safdar, Nasia

    2014-01-01

    Pulsed-field gel electrophoresis (PFGE) is a common method used to type methicillin-resistant Staphylococcus aureus (MRSA) in nosocomial investigations and epidemiological studies but is time-consuming and methodologically challenging. We compared typing results obtained using a commercial repetitive-element PCR (rep-PCR) system with PFGE in a sample of 86 unique MRSA isolates recovered from subjects in an academic referral hospital and two nursing homes in the same geographic region. Both methods reliably assigned isolates to the same Centers for Disease Control and Prevention (CDC) pulsotype. PFGE was significantly more discriminatory (Simpson's index of diversity, 0.92 at the 95% strain similarity threshold) than the commercial rep-PCR system (Simpson's index of diversity, 0.58). The global (adjusted Rand coefficient, 0.10) and directional congruence (adjusted Wallace coefficientrepPCR→PFGE = 0.06; adjusted Wallace coefficientPFGE→repPCR = 0.52) between the two methods was low. MRSA strains recovered from study nursing homes that were clonal when typed by the commercial rep-PCR method were frequently noted to be genetically distinct when typed using PFGE. These data suggest that the commercial rep-PCR has less utility than PFGE in small-scale epidemiological assessments of MRSA in health care settings. PMID:24671801

  9. Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis.

    Science.gov (United States)

    Li, Meiju; Zhou, Mi; Adamowicz, Elizabeth; Basarab, John A; Guan, Le Luo

    2012-02-24

    Currently, knowledge regarding the ecology and function of bacteria attached to the epithelial tissue of the rumen wall is limited. In this study, the diversity of the bacterial community attached to the rumen epithelial tissue was compared to the rumen content bacterial community using 16S rRNA gene sequencing, PCR-DGGE, and qRT-PCR analysis. Sequence analysis of 2785 randomly selected clones from six 16S rDNA (∼1.4kb) libraries showed that the community structures of three rumen content libraries clustered together and were separated from the rumen tissue libraries. The diversity index of each library revealed that ruminal content bacterial communities (4.12/4.42/4.88) were higher than ruminal tissue communities (2.90/2.73/3.23), based on 97% similarity. The phylum Firmicutes was predominant in the ruminal tissue communities, while the phylum Bacteroidetes was predominant in the ruminal content communities. The phyla Fibrobacteres, Planctomycetes, and Verrucomicrobia were only detected in the ruminal content communities. PCR-DGGE analysis of the bacterial profiles of the rumen content and ruminal epithelial tissue samples from 22 steers further confirmed that there is a distinct bacterial community that inhibits the rumen epithelium. The distinctive epimural bacterial communities suggest that Firmicutes, together with other epithelial-specific species, may have additional functions other than food digestion. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Dog Y chromosomal DNA sequence: identification, sequencing and SNP discovery

    Directory of Open Access Journals (Sweden)

    Kirkness Ewen

    2006-10-01

    Full Text Available Abstract Background Population genetic studies of dogs have so far mainly been based on analysis of mitochondrial DNA, describing only the history of female dogs. To get a picture of the male history, as well as a second independent marker, there is a need for studies of biallelic Y-chromosome polymorphisms. However, there are no biallelic polymorphisms reported, and only 3200 bp of non-repetitive dog Y-chromosome sequence deposited in GenBank, necessitating the identification of dog Y chromosome sequence and the search for polymorphisms therein. The genome has been only partially sequenced for one male dog, disallowing mapping of the sequence into specific chromosomes. However, by comparing the male genome sequence to the complete female dog genome sequence, candidate Y-chromosome sequence may be identified by exclusion. Results The male dog genome sequence was analysed by Blast search against the human genome to identify sequences with a best match to the human Y chromosome and to the female dog genome to identify those absent in the female genome. Candidate sequences were then tested for male specificity by PCR of five male and five female dogs. 32 sequences from the male genome, with a total length of 24 kbp, were identified as male specific, based on a match to the human Y chromosome, absence in the female dog genome and male specific PCR results. 14437 bp were then sequenced for 10 male dogs originating from Europe, Southwest Asia, Siberia, East Asia, Africa and America. Nine haplotypes were found, which were defined by 14 substitutions. The genetic distance between the haplotypes indicates that they originate from at least five wolf haplotypes. There was no obvious trend in the geographic distribution of the haplotypes. Conclusion We have identified 24159 bp of dog Y-chromosome sequence to be used for population genetic studies. We sequenced 14437 bp in a worldwide collection of dogs, identifying 14 SNPs for future SNP analyses, and

  11. Next Generation Sequencing-Based Analysis of Repetitive DNA in the Model Dioceous Plant Silene latifolia

    Czech Academy of Sciences Publication Activity Database

    Macas, Jiří; Kejnovský, Eduard; Neumann, Pavel; Novák, Petr; Koblížková, Andrea; Vyskot, Boris

    2011-01-01

    Roč. 6, č. 11 (2011), e27335 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) OC10037; GA MŠk(CZ) LC06004; GA MŠk(CZ) LH11058; GA ČR(CZ) GAP501/10/0102; GA ČR(CZ) GAP305/10/0930 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z50040702 Keywords : Plant genome * Sequencing-Based Analyses * Repetitive DNA * Silene latifolia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.092, year: 2011

  12. Improvement of methods for large scale sequencing; application to human Xq28

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, R.A.; Andersson, B.; Wentland, M.A. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Sequencing of a one-metabase region of Xq28, spanning the FRAXA and IDS loci has been undertaken in order to investigate the practicality of the shotgun approach for large scale sequencing and as a platform to develop improved methods. The efficiency of several steps in the shotgun sequencing strategy has been increased using PCR-based approaches. An improved method for preparation of M13 libraries has been developed. This protocol combines a previously described adaptor-based protocol with the uracil DNA glycosylase (UDG)-cloning procedure. The efficiency of this procedure has been found to be up to 100-fold higher than that of previously used protocols. In addition the novel protocol is more reliable and thus easy to establish in a laboratory. The method has also been adapted for the simultaneous shotgun sequencing of multiple short fragments by concentrating them before library construction is presented. This protocol is suitable for rapid characterization of cDNA clones. A library was constructed from 15 PCR-amplified and concentrated human cDNA inserts, and the insert sequences could easily be identified as separate contigs during the assembly process and the sequence coverage was even along each fragment. Using this strategy, the fine structures of the FraxA and IDS loci have been revealed and several EST homologies indicating novel expressed sequences have been identified. Use of PCR to close repetitive regions that are difficult to clone was tested by determination of the sequence of a cosmid mapping DXS455 in Xq28, containing a polymorphic VNTR. The region containing the VNTR was not represented in the shotgun library, but by designing PCR primers in the sequences flanking the gap and by cloning and sequencing the PCR product, the fine structure of the VNTR has been determined. It was found to be an AT-rich VNTR with a repeated 25-mer at the center.

  13. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons

    Science.gov (United States)

    Haas, Brian J.; Gevers, Dirk; Earl, Ashlee M.; Feldgarden, Mike; Ward, Doyle V.; Giannoukos, Georgia; Ciulla, Dawn; Tabbaa, Diana; Highlander, Sarah K.; Sodergren, Erica; Methé, Barbara; DeSantis, Todd Z.; Petrosino, Joseph F.; Knight, Rob; Birren, Bruce W.

    2011-01-01

    Bacterial diversity among environmental samples is commonly assessed with PCR-amplified 16S rRNA gene (16S) sequences. Perceived diversity, however, can be influenced by sample preparation, primer selection, and formation of chimeric 16S amplification products. Chimeras are hybrid products between multiple parent sequences that can be falsely interpreted as novel organisms, thus inflating apparent diversity. We developed a new chimera detection tool called Chimera Slayer (CS). CS detects chimeras with greater sensitivity than previous methods, performs well on short sequences such as those produced by the 454 Life Sciences (Roche) Genome Sequencer, and can scale to large data sets. By benchmarking CS performance against sequences derived from a controlled DNA mixture of known organisms and a simulated chimera set, we provide insights into the factors that affect chimera formation such as sequence abundance, the extent of similarity between 16S genes, and PCR conditions. Chimeras were found to reproducibly form among independent amplifications and contributed to false perceptions of sample diversity and the false identification of novel taxa, with less-abundant species exhibiting chimera rates exceeding 70%. Shotgun metagenomic sequences of our mock community appear to be devoid of 16S chimeras, supporting a role for shotgun metagenomics in validating novel organisms discovered in targeted sequence surveys. PMID:21212162

  14. Identification of rat genes by TWINSCAN gene prediction, RT-PCR, and direct sequencing

    DEFF Research Database (Denmark)

    Wu, Jia Qian; Shteynberg, David; Arumugam, Manimozhiyan

    2004-01-01

    an alternative approach: reverse transcription-polymerase chain reaction (RT-PCR) and direct sequencing based on dual-genome de novo predictions from TWINSCAN. We tested 444 TWINSCAN-predicted rat genes that showed significant homology to known human genes implicated in disease but that were partially...... in the single-intron experiment. Spliced sequences were amplified in 46 cases (34%). We conclude that this procedure for elucidating gene structures with native cDNA sequences is cost-effective and will become even more so as it is further optimized.......The publication of a draft sequence of a third mammalian genome--that of the rat--suggests a need to rethink genome annotation. New mammalian sequences will not receive the kind of labor-intensive annotation efforts that are currently being devoted to human. In this paper, we demonstrate...

  15. Non PCR-amplified Transcripts and AFLP fragments as reduced representations of the quail genome for 454 Titanium sequencing

    Directory of Open Access Journals (Sweden)

    Leterrier Christine

    2010-07-01

    Full Text Available Abstract Background SNP (Single Nucleotide Polymorphism discovery is now routinely performed using high-throughput sequencing of reduced representation libraries. Our objective was to adapt 454 GS FLX based sequencing methodologies in order to obtain the largest possible dataset from two reduced representations libraries, produced by AFLP (Amplified Fragment Length Polymorphism for genomic DNA, and EST (Expressed Sequence Tag for the transcribed fraction of the genome. Findings The expressed fraction was obtained by preparing cDNA libraries without PCR amplification from quail embryo and brain. To optimize the information content for SNP analyses, libraries were prepared from individuals selected in three quail lines and each individual in the AFLP library was tagged. Sequencing runs produced 399,189 sequence reads from cDNA and 373,484 from genomic fragments, covering close to 250 Mb of sequence in total. Conclusions Both methods used to obtain reduced representations for high-throughput sequencing were successful after several improvements. The protocols may be used for several sequencing applications, such as de novo sequencing, tagged PCR fragments or long fragment sequencing of cDNA.

  16. Application of PCR-based DNA sequencing technique for the detection of Leptospira in peripheral blood of septicemia patients

    Directory of Open Access Journals (Sweden)

    Ram, S.

    2012-01-01

    Full Text Available Aim: Isolation, dark field detection and microscopic agglutination test (MAT are considered ―gold standard‖ tests for diagnosis of Leptospirosis. Several PCR assays are reported but very few have been evaluated for detection of Leptospirosis. Therefore, this study was undertaken. This study aims to design and standardize polymerase chain reaction (PCR - based DNA sequencing technique for the detection of pathogenic Leptospira from peripheral blood of patients clinically diagnosed with septicemia. Methodology and Results: Two hundred and seven (207 blood samples from patients were diagnosed with septicemia which includes 100 bacterial (other than Leptospira culture positive and 107 bacterial culture negative samples were studied. Primers for Nested PCR targeting LipL32 gene of Leptospira interrogans were designed and the specificity of primers was tested against serum samples positive/negative by either MAT or dark field microscopy. PCR amplified products were further confirmed by DNA sequencing. The standardized nPCR was sensitive and specific to Leptospira interrogans. Twenty-one (21% out of 100 culture positive blood samples, three (2.8% out of 107 culture negative samples showed nPCR positivity and were confirmed as Leptospira interrogans by DNA sequencing (p<0.001. A sensitive nPCR specific to Leptospira interrogans was developed. Conclusion, significance and impact of study: The p value (<0.001 signifies that Leptospira is commonly associated with other bacteria circulating in blood indicating that a decreased immune status is created primarily by a bacterium with enhanced possibility of development of Leptospiral infection probably be of an endogenous origin.

  17. Linear and exponential TAIL-PCR: a method for efficient and quick amplification of flanking sequences adjacent to Tn5 transposon insertion sites.

    Science.gov (United States)

    Jia, Xianbo; Lin, Xinjian; Chen, Jichen

    2017-11-02

    Current genome walking methods are very time consuming, and many produce non-specific amplification products. To amplify the flanking sequences that are adjacent to Tn5 transposon insertion sites in Serratia marcescens FZSF02, we developed a genome walking method based on TAIL-PCR. This PCR method added a 20-cycle linear amplification step before the exponential amplification step to increase the concentration of the target sequences. Products of the linear amplification and the exponential amplification were diluted 100-fold to decrease the concentration of the templates that cause non-specific amplification. Fast DNA polymerase with a high extension speed was used in this method, and an amplification program was used to rapidly amplify long specific sequences. With this linear and exponential TAIL-PCR (LETAIL-PCR), we successfully obtained products larger than 2 kb from Tn5 transposon insertion mutant strains within 3 h. This method can be widely used in genome walking studies to amplify unknown sequences that are adjacent to known sequences.

  18. Exponential Megapriming PCR (EMP) Cloning—Seamless DNA Insertion into Any Target Plasmid without Sequence Constraints

    Science.gov (United States)

    Ulrich, Alexander; Andersen, Kasper R.; Schwartz, Thomas U.

    2012-01-01

    We present a fast, reliable and inexpensive restriction-free cloning method for seamless DNA insertion into any plasmid without sequence limitation. Exponential megapriming PCR (EMP) cloning requires two consecutive PCR steps and can be carried out in one day. We show that EMP cloning has a higher efficiency than restriction-free (RF) cloning, especially for long inserts above 2.5 kb. EMP further enables simultaneous cloning of multiple inserts. PMID:23300917

  19. PCR amplification and DNA sequencing of Demodex injai from otic secretions of a dog.

    Science.gov (United States)

    Milosevic, Milivoj A; Frank, Linda A; Brahmbhatt, Rupal A; Kania, Stephen A

    2013-04-01

    The identification of Demodex mites from dogs is usually based on morphology and location. Mites with uncharacteristic features or from unusual locations, hosts or disease manifestations could represent new species not previously described; however, this is difficult to determine based on morphology alone. The goal of this study was to identify and confirm Demodex injai in association with otitis externa in a dog using PCR amplification and DNA sequencing. Otic samples were obtained from a beagle in which a long-bodied Demodex mite was identified. For comparison, Demodex mite samples were collected from a swab and scraping of the dorsal skin of a wire-haired fox terrier and an otic sample from a dog with generalized and otic demodicosis. To identify the Demodex mite, DNA was extracted, and 16S rRNA was amplified by PCR, sequenced and compared with Demodex sequences available in public databases and from separate samples morphologically diagnosed as D. injai and Demodex canis. PCR amplification of the long-bodied mite rRNA DNA obtained from otic samples was approximately 330 bp and was identical to that from the mite morphologically identified as D. injai obtained from the dorsal skin of a dog. Furthermore, the examined mite did not have any significant homology to any of the reported genes from Demodex spp. These results confirmed that the demodex mites in this case were D. injai. © 2013 The Authors. Veterinary Dermatology © 2013 ESVD and ACVD.

  20. PCR for diagnosis of male Trichomonas vaginalis infection with chronic prostatitis and urethritis.

    Science.gov (United States)

    Lee, Jong Jin; Moon, Hong Sang; Lee, Tchun Yong; Hwang, Hwan Sik; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2012-06-01

    The aim of this study was to assess the usefulness of PCR for diagnosis of Trichomonas vaginalis infection among male patients with chronic recurrent prostatitis and urethritis. Between June 2001 and December 2003, a total of 33 patients visited the Department of Urology, Hanyang University Guri Hospital and were examined for T. vaginalis infection by PCR and culture in TYM medium. For the PCR, we used primers based on a repetitive sequence cloned from T. vaginalis (TV-E650). Voided bladder urine (VB1 and VB3) was sampled from 33 men with symptoms of lower urinary tract infection (urethral charge, residual urine sensation, and frequency). Culture failed to detect any T. vaginalis infection whereas PCR identified 7 cases of trichomoniasis (21.2%). Five of the 7 cases had been diagnosed with prostatitis and 2 with urethritis. PCR for the 5 prostatitis cases yielded a positive 330 bp band from bothVB1 and VB3, whereas positive results were only obtained from VB1 for the 2 urethritis patients. We showed that the PCR method could detect T. vaginalis when there was only 1 T. vaginalis cell per PCR mixture. Our results strongly support the usefulness of PCR on urine samples for detecting T. vaginalis in chronic prostatitis and urethritis patients.

  1. The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome.

    Science.gov (United States)

    Barghini, Elena; Natali, Lucia; Cossu, Rosa Maria; Giordani, Tommaso; Pindo, Massimo; Cattonaro, Federica; Scalabrin, Simone; Velasco, Riccardo; Morgante, Michele; Cavallini, Andrea

    2014-04-01

    Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome.

  2. Generic detection of poleroviruses using an RT-PCR assay targeting the RdRp coding sequence.

    Science.gov (United States)

    Lotos, Leonidas; Efthimiou, Konstantinos; Maliogka, Varvara I; Katis, Nikolaos I

    2014-03-01

    In this study a two-step RT-PCR assay was developed for the generic detection of poleroviruses. The RdRp coding region was selected as the primers' target, since it differs significantly from that of other members in the family Luteoviridae and its sequence can be more informative than other regions in the viral genome. Species specific RT-PCR assays targeting the same region were also developed for the detection of the six most widespread poleroviral species (Beet mild yellowing virus, Beet western yellows virus, Cucurbit aphid-borne virus, Carrot red leaf virus, Potato leafroll virus and Turnip yellows virus) in Greece and the collection of isolates. These isolates along with other characterized ones were used for the evaluation of the generic PCR's detection range. The developed assay efficiently amplified a 593bp RdRp fragment from 46 isolates of 10 different Polerovirus species. Phylogenetic analysis using the generic PCR's amplicon sequence showed that although it cannot accurately infer evolutionary relationships within the genus it can differentiate poleroviruses at the species level. Overall, the described generic assay could be applied for the reliable detection of Polerovirus infections and, in combination with the specific PCRs, for the identification of new and uncharacterized species in the genus. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments

    Energy Technology Data Exchange (ETDEWEB)

    Motackova, Veronika; Novacek, Jiri [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic); Zawadzka-Kazimierczuk, Anna; Kazimierczuk, Krzysztof [University of Warsaw, Faculty of Chemistry (Poland); Zidek, Lukas, E-mail: lzidek@chemi.muni.c [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic); Sanderova, Hana; Krasny, Libor [Academy of Sciences of the Czech Republic, Laboratory of Molecular Genetics of Bacteria and Department of Bacteriology, Institute of Microbiology (Czech Republic); Kozminski, Wiktor [University of Warsaw, Faculty of Chemistry (Poland); Sklenar, Vladimir [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic)

    2010-11-15

    A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The protocol is based on three resolution-enhanced NMR experiments: 5D HN(CA)CONH provides sequential connectivity, 5D HabCabCONH is utilized to identify amino acid types, and 5D HC(CC-TOCSY)CONH is used to assign the side-chain resonances. The improved resolution was achieved by a combination of high dimensionality and long evolution times, allowed by non-uniform sampling in the indirect dimensions. Random distribution of the data points and Sparse Multidimensional Fourier Transform processing were used. Successful application of the assignment procedure to a particularly difficult protein, {delta} subunit of RNA polymerase from Bacillus subtilis, is shown to prove the efficiency of the strategy. The studied protein contains a disordered C-terminal region of 81 amino acids with a highly repetitive sequence. While the conventional assignment methods completely failed due to a very small differences in chemical shifts, the presented strategy provided a complete backbone and side-chain assignment.

  4. Detection of Lymnaea columella infection by Fasciola hepatica through Multiplex-PCR

    Directory of Open Access Journals (Sweden)

    Kelly Grace Magalhães

    2004-06-01

    Full Text Available From complete mitochondrial DNA sequence of Fasciola hepatica available in Genbank, specific primers were designed for a conserved and repetitive region of this trematode. A pair of primers was used for diagnosis of infected Lymnaea columella by F. hepatica during the pre-patent period simultaneously with another pair of primers which amplified the internal transcribed spacer (ITS region of rDNA from L. columella in a single Multiplex-PCR. The amplification generated a ladder band profile specific for F. hepatica. This profile was observed in positive molluscs at different times of infection, including adult worms from the trematode. The Multiplex-PCR technique showed to be a fast and safe tool for fascioliasis diagnosis, enabling the detection of F. hepatica miracidia in L. columella during the pre-patent period and identification of transmission areas.

  5. Exponential megapriming PCR (EMP cloning--seamless DNA insertion into any target plasmid without sequence constraints.

    Directory of Open Access Journals (Sweden)

    Alexander Ulrich

    Full Text Available We present a fast, reliable and inexpensive restriction-free cloning method for seamless DNA insertion into any plasmid without sequence limitation. Exponential megapriming PCR (EMP cloning requires two consecutive PCR steps and can be carried out in one day. We show that EMP cloning has a higher efficiency than restriction-free (RF cloning, especially for long inserts above 2.5 kb. EMP further enables simultaneous cloning of multiple inserts.

  6. Molecular Analysis of Mycobacterium avium Isolates by Using Pulsed-Field Gel Electrophoresis and PCR

    Science.gov (United States)

    Pestel-Caron, Martine; Graff, Gabriel; Berthelot, Gilles; Pons, Jean-Louis; Lemeland, Jean-François

    1999-01-01

    Genetic relationships among 46 isolates of Mycobacterium avium recovered from 37 patients in a 2,500-bed hospital from 1993 to 1998 were assessed by pulsed-field gel electrophoresis (PFGE) and PCR amplification of genomic sequences located between the repetitive elements IS1245 and IS1311. Each technique enabled the identification of 27 to 32 different patterns among the 46 isolates, confirming that the genetic heterogeneity of M. avium strains is high in a given community. Furthermore, this retrospective analysis of sporadic isolates allowed us (i) to suggest the existence of two remanent strains in our region, (ii) to raise the question of the possibility of nosocomial acquisition of M. avium strains, and (iii) to document laboratory contamination. The methods applied in the present study were found to be useful for the typing of M. avium isolates. In general, both methods yielded similar results for both related and unrelated isolates. However, the isolates in five of the six PCR clusters were distributed among two to three PFGE patterns, suggesting that this PCR-based method may have limitations for the analysis of strains with low insertion sequence copy numbers or for resolution of extended epidemiologic relationships. PMID:10405383

  7. FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method

    Directory of Open Access Journals (Sweden)

    Lu Jia

    2011-10-01

    Full Text Available Abstract Background Although a variety of methods and expensive kits are available, molecular cloning can be a time-consuming and frustrating process. Results Here we report a highly simplified, reliable, and efficient PCR-based cloning technique to insert any DNA fragment into a plasmid vector or into a gene (cDNA in a vector at any desired position. With this method, the vector and insert are PCR amplified separately, with only 18 cycles, using a high fidelity DNA polymerase. The amplified insert has the ends with ~16-base overlapping with the ends of the amplified vector. After DpnI digestion of the mixture of the amplified vector and insert to eliminate the DNA templates used in PCR reactions, the mixture is directly transformed into competent E. coli cells to obtain the desired clones. This technique has many advantages over other cloning methods. First, it does not need gel purification of the PCR product or linearized vector. Second, there is no need of any cloning kit or specialized enzyme for cloning. Furthermore, with reduced number of PCR cycles, it also decreases the chance of random mutations. In addition, this method is highly effective and reproducible. Finally, since this cloning method is also sequence independent, we demonstrated that it can be used for chimera construction, insertion, and multiple mutations spanning a stretch of DNA up to 120 bp. Conclusion Our FastCloning technique provides a very simple, effective, reliable, and versatile tool for molecular cloning, chimera construction, insertion of any DNA sequences of interest and also for multiple mutations in a short stretch of a cDNA.

  8. Stored word sequences in language learning: the effect of familiarity on children's repetition of four-word combinations.

    Science.gov (United States)

    Bannard, Colin; Matthews, Danielle

    2008-03-01

    Recent accounts of the development of grammar propose that children remember utterances they hear and draw generalizations over these stored exemplars. This study tested these accounts' assumption that children store utterances as wholes by testing memory for familiar sequences of words. Using a newly available, dense corpus of child-directed speech, we identified frequently occurring chunks in the input (e.g., sit in your chair) and matched them to infrequent sequences (e.g., sit in your truck). We tested young children's ability to produce these sequences in a sentence-repetition test. Three-year-olds (n= 21) and 2-year-olds (n= 17) were significantly more likely to repeat frequent sequences correctly than to repeat infrequent sequences correctly. Moreover, the 3-year-olds were significantly faster to repeat the first three words of an item if they formed part of a chunk (e.g., they were quicker to say sit in your when the following word was chair than when it was truck). We discuss the implications of these results for theories of language development and processing.

  9. Novel porcine repetitive elements

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-12-01

    Full Text Available Abstract Background Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. Results We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI. These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute, covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. Conclusion The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics.

  10. Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR.

    Science.gov (United States)

    Osimani, Andrea; Milanović, Vesna; Garofalo, Cristiana; Cardinali, Federica; Roncolini, Andrea; Sabbatini, Riccardo; De Filippis, Francesca; Ercolini, Danilo; Gabucci, Claudia; Petruzzelli, Annalisa; Tonucci, Franco; Clementi, Francesca; Aquilanti, Lucia

    2018-07-02

    The present study aimed to identify the microbiota present in six species of processed edible insects produced in Thailand and marketed worldwide via the internet, namely, giant water bugs (Belostoma lutarium), black ants (Polyrhachis), winged termites (alates, Termitoidae), rhino beetles (Hyboschema contractum), mole crickets (Gryllotalpidae), and silkworm pupae (Bombyx mori). For each species, two samples of boiled, dried and salted insects were purchased. The microbial DNA was extracted from the insect samples and subjected to polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), high-throughput sequencing and qualitative real-time PCR assays. The microbiota of the analyzed samples were widely characterized by the presence of spore-forming bacteria mainly represented by the genera Bacillus and Clostridium. Moreover, the genera Anaerobacillus, Paenibacillus, Geobacillus, Pseudomonas, Stenotrophomonas, Massilia, Delftia, Lactobacillus, Staphylococcus, Streptococcus, Vagococcus, and Vibrio were also detected. Real-time PCR allowed for ascertainment of the absence of Coxiella burnetii, Shiga toxin-producing E. coli (STEC), and Pseudomonas aeruginosa in all samples. The results of this study confirm the importance of combining different molecular techniques to characterize the biodiversity of complex ecosystems such as edible insects. The presence of potential human pathogens suggests the need for a careful application of good manufacturing practices during insect processing. This study provides further data that will be useful in risk analyses of edible insects as a novel food source. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr; Neumann, Pavel; Pech, Jiří; Steinhaisl, J.; Macas, Jiří

    2013-01-01

    Roč. 29, č. 6 (2013), s. 792-793 ISSN 1367-4803 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) OC10037 Institutional support: RVO:60077344 Keywords : repetitiveDNA * computational analysis * next generation sequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.621, year: 2013

  12. Application of Ammonium Persulfate for Selective Oxidation of Guanines for Nucleic Acid Sequencing

    Directory of Open Access Journals (Sweden)

    Yafen Wang

    2017-07-01

    Full Text Available Nucleic acids can be sequenced by a chemical procedure that partially damages the nucleotide positions at their base repetition. Many methods have been reported for the selective recognition of guanine. The accurate identification of guanine in both single and double regions of DNA and RNA remains a challenging task. Herein, we present a new, non-toxic and simple method for the selective recognition of guanine in both DNA and RNA sequences via ammonium persulfate modification. This strategy can be further successfully applied to the detection of 5-methylcytosine by using PCR.

  13. Phylogenetic analysis of Fusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation.

    Science.gov (United States)

    Wang, R F; Cao, W W; Cerniglia, C E

    1996-01-01

    In order to develop a PCR method to detect Fusobacterium prausnitzii in human feces and to clarify the phylogenetic position of this species, its 16S rRNA gene sequence was determined. The sequence described in this paper is different from the 16S rRNA gene sequence is specific for F. prausnitzii, and the results of this assay confirmed that F. prausnitzii is the most common species in human feces. However, a PCR assay based on the original GenBank sequence was negative when it was performed with two strains of F. prausnitzii obtained from the American Type Culture Collection. A phylogenetic tree based on the new 16S rRNA gene sequence was constructed. On this tree F. prausnitzii was not a member of the Fusobacterium group but was closer to some Eubacterium spp. and located between Clostridium "clusters III and IV" (M.D. Collins, P.A. Lawson, A. Willems, J.J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J.A.E. Farrow, Int. J. Syst. Bacteriol. 44:812-826, 1994).

  14. Sequence diversity in haloalkane dehalogenases, as revealed by PCR using family-specific primers

    Czech Academy of Sciences Publication Activity Database

    Kotík, Michael; Faměrová, Veronika

    2012-01-01

    Roč. 88, č. 2 (2012), s. 212-217 ISSN 0167-7012 R&D Projects: GA ČR GAP504/10/0137; GA ČR GAP207/10/0135 Institutional research plan: CEZ:AV0Z50200510 Keywords : Dehalogenation * Consensus sequence * Degenerate PCR primer Subject RIV: EE - Microbiology, Virology Impact factor: 2.161, year: 2012

  15. Comparison of Direct Sequencing, Real-Time PCR-High Resolution Melt (PCR-HRM) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) Analysis for Genotyping of Common Thiopurine Intolerant Variant Alleles NUDT15 c.415C>T and TPMT c.719A>G (TPMT*3C).

    Science.gov (United States)

    Fong, Wai-Ying; Ho, Chi-Chun; Poon, Wing-Tat

    2017-05-12

    Thiopurine intolerance and treatment-related toxicity, such as fatal myelosuppression, is related to non-function genetic variants encoding thiopurine S-methyltransferase (TPMT) and Nudix hydrolase 15 (NUDT15). Genetic testing of the common variants NUDT15:NM_018283.2:c.415C>T (Arg139Cys, dbSNP rs116855232 T allele) and TPMT: NM_000367.4:c.719A>G (TPMT*3C, dbSNP rs1142345 G allele) in East Asians including Chinese can potentially prevent treatment-related complications. Two complementary genotyping approaches, real-time PCR-high resolution melt (PCR-HRM) and PCR-restriction fragment length morphism (PCR-RFLP) analysis were evaluated using conventional PCR and Sanger sequencing genotyping as the gold standard. Sixty patient samples were tested, revealing seven patients (11.7%) heterozygous for NUDT15 c.415C>T, one patient homozygous for the variant and one patient heterozygous for the TPMT*3C non-function allele. No patient was found to harbor both variants. In total, nine out of 60 (15%) patients tested had genotypic evidence of thiopurine intolerance, which may require dosage adjustment or alternative medication should they be started on azathioprine, mercaptopurine or thioguanine. The two newly developed assays were more efficient and showed complete concordance (60/60, 100%) compared to the Sanger sequencing results. Accurate and cost-effective genotyping assays by real-time PCR-HRM and PCR-RFLP for NUDT15 c.415C>T and TPMT*3C were successfully developed. Further studies may establish their roles in genotype-informed clinical decision-making in the prevention of morbidity and mortality due to thiopurine intolerance.

  16. Nonlinear analysis of sequence repeats of multi-domain proteins

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yanzhao [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Li Mingfeng [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiao Yi [Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China)]. E-mail: lmf_bill@sina.com

    2007-11-15

    Many multi-domain proteins have repetitive three-dimensional structures but nearly-random amino acid sequences. In the present paper, by using a modified recurrence plot proposed by us previously, we show that these amino acid sequences have hidden repetitions in fact. These results indicate that the repetitive domain structures are encoded by the repetitive sequences. This also gives a method to detect the repetitive domain structures directly from amino acid sequences.

  17. Tactile Ranschburg effects: facilitation and inhibitory repetition effects analogous to verbal memory.

    Science.gov (United States)

    Roe, Daisy; Miles, Christopher; Johnson, Andrew J

    2017-07-01

    The present paper examines the effect of within-sequence item repetitions in tactile order memory. Employing an immediate serial recall procedure, participants reconstructed a six-item sequence tapped upon their fingers by moving those fingers in the order of original stimulation. In Experiment 1a, within-sequence repetition of an item separated by two-intervening items resulted in a significant reduction in recall accuracy for that repeated item (i.e., the Ranschburg effect). In Experiment 1b, within-sequence repetition of an adjacent item resulted in significant recall facilitation for that repeated item. These effects mirror those reported for verbal stimuli (e.g., Henson, 1998a . Item repetition in short-term memory: Ranschburg repeated. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(5), 1162-1181. doi:doi.org/10.1037/0278-7393.24.5.1162). These data are the first to demonstrate the Ranschburg effect with non-verbal stimuli and suggest further cross-modal similarities in order memory.

  18. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates.

    Science.gov (United States)

    Kalle, Elena; Gulevich, Alexander; Rensing, Christopher

    2013-11-01

    In a mixed template, the presence of homologous target DNA sequences creates environments that almost inevitably give rise to artifacts and biases during PCR. Heteroduplexes, chimeras, and skewed template-to-product ratios are the exclusive attributes of mixed template PCR and never occur in a single template assay. Yet, multi-template PCR has been used without appropriate attention to quality control and assay validation, in spite of the fact that such practice diminishes the reliability of results. External and internal amplification controls became obligatory elements of good laboratory practice in different PCR assays. We propose the inclusion of an analogous approach as a quality control system for multi-template PCR applications. The amplification controls must take into account the characteristics of multi-template PCR and be able to effectively monitor particular assay performance. This study demonstrated the efficiency of a model mixed template as an adequate external amplification control for a particular PCR application. The conditions of multi-template PCR do not allow implementation of a classic internal control; therefore we developed a convenient semi-internal control as an acceptable alternative. In order to evaluate the effects of inhibitors, a model multi-template mix was amplified in a mixture with DNAse-treated sample. Semi-internal control allowed establishment of intervals for robust PCR performance for different samples, thus enabling correct comparison of the samples. The complexity of the external and semi-internal amplification controls must be comparable with the assumed complexity of the samples. We also emphasize that amplification controls should be applied in multi-template PCR regardless of the post-assay method used to analyze products. © 2013 Elsevier B.V. All rights reserved.

  19. A dual PCR-based sequencing approach for the identification and discrimination of Echinococcus and Taenia taxa.

    Science.gov (United States)

    Boubaker, Ghalia; Marinova, Irina; Gori, Francesca; Hizem, Amani; Müller, Norbert; Casulli, Adriano; Jerez Puebla, Luis Enrique; Babba, Hamouda; Gottstein, Bruno; Spiliotis, Markus

    2016-08-01

    Reliable and rapid molecular tools for the genetic identification and differentiation of Echinococcus species and/or genotypes are crucial for studying spatial and temporal transmission dynamics. Here, we describe a novel dual PCR targeting regions in the small (rrnS) and large (rrnL) subunits of mitochondrial ribosomal RNA (rRNA) genes, which enables (i) the specific identification of species and genotypes of Echinococcus (rrnS + L-PCR) and/or (ii) the identification of a range of taeniid cestodes, including different species of Echinococcus, Taenia and some others (17 species of diphyllidean helminths). This dual PCR approach was highly sensitive, with an analytical detection limit of 1 pg for genomic DNA of Echinococcus. Using concatenated sequence data derived from the two gene markers (1225 bp), we identified five unique and geographically informative single nucleotide polymorphisms (SNPs) that allowed genotypes (G1 and G3) of Echinococcus granulosus sensu stricto to be distinguished, and 25 SNPs that allowed differentiation within Echinococcus canadensis (G6/7/8/10). In conclusion, we propose that this dual PCR-based sequencing approach can be used for molecular epidemiological studies of Echinococcus and other taeniid cestodes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Genomic GC-content affects the accuracy of 16S rRNA gene sequencing bsed microbial profiling due to PCR bias

    DEFF Research Database (Denmark)

    Laursen, Martin F.; Dalgaard, Marlene Danner; Bahl, Martin Iain

    2017-01-01

    Profiling of microbial community composition is frequently performed by partial 16S rRNA gene sequencing on benchtop platforms following PCR amplification of specific hypervariable regions within this gene. Accuracy and reproducibility of this strategy are two key parameters to consider, which may...... be influenced during all processes from sample collection and storage, through DNA extraction and PCR based library preparation to the final sequencing. In order to evaluate both the reproducibility and accuracy of 16S rRNA gene based microbial profiling using the Ion Torrent PGM platform, we prepared libraries...... be explained partly by premature read truncation, but to larger degree their genomic GC-content, which correlated negatively with the observed relative abundances, suggesting a PCR bias against GC-rich species during library preparation. Increasing the initial denaturation time during the PCR amplification...

  1. Application of the inter-line PCR for the analyse of genomic rearrangements in radiation-transformed mammalian cell lines; Anwendung der Inter-Line PCR zur Analyse von genomischen Veraenderungen in strahlentransformierten Saeugerzellinien

    Energy Technology Data Exchange (ETDEWEB)

    Leibhard, S.; Smida, J. [Muenchen Univ. (Germany). Strahlenbiologisches Inst.; Eckardt-Schupp, F.; Hieber, L. [GSF-Inst. fuer Strahlenbiologie, Oberschleissheim (Germany)

    1996-12-31

    Repetitive DNA sequences of the LINE-family (long interspersed elements) that are widely distributed among the mammalian genome can be activated or altered by the exposure to ionizing radiation [1]. By the integration at new sites in the genome alterations in the expression of genes that are involved in cell transformation and/or carcinogenesis may occur [2, 3]. A new technique - the inter-LINE PCR - has been developed in order to detect and analyse such genomic rearrangements in radiation-transformed cell lines. From the sites of transformation- or tumour-specific changes in the genome it might be possible to develop new tumour markers for diagnostic purpose. (orig.) [Deutsch] Repetitive DNA-Sequenzen der LINE-Familie, die weit verbreitet im Genom von Saeugerzellen vorkommen, koennen durch Exposition mit ionisierender Strahlung aktiviert und veraendert werden [1]. Durch eine Neu- bzw. Reintegration an anderen Positionen im Genom kann es zu bedeutenden Veraenderungen im Genom der Zelle kommen. Die Expression von Genen, die bei den Prozessen der Zelltransformation bzw. der Karzinogenese beteiligt sind, kann dadurch veraendert werden [2, 3]. Mithilfe der von uns entwickelten Inter-LINE PCR und der anschliessenden Analyse der veraenderten Produktmuster nach gelelektrophoretischer Auftrennung koennen solche `genomic rearrangements` unter Beteiligung von LINE-Elementen untersucht und naeher charakterisiert werden. Durch Klonierung und Sequenzierung transformations- bzw. tumorspezifischer PCR-Produkte sollte es moeglich sein Tumormarker fuer diagnostische Zwecke zu entwickeln. Die Methode wurde fuer die Analyse von Zellen des Syrischen Hamster aufgebaut, sie ist jedoch universell fuer alle Saeuger anwendbar. (orig.)

  2. Sequencing of BAC pools by different next generation sequencing platforms and strategies

    Directory of Open Access Journals (Sweden)

    Scholz Uwe

    2011-10-01

    Full Text Available Abstract Background Next generation sequencing of BACs is a viable option for deciphering the sequence of even large and highly repetitive genomes. In order to optimize this strategy, we examined the influence of read length on the quality of Roche/454 sequence assemblies, to what extent Illumina/Solexa mate pairs (MPs improve the assemblies by scaffolding and whether barcoding of BACs is dispensable. Results Sequencing four BACs with both FLX and Titanium technologies revealed similar sequencing accuracy, but showed that the longer Titanium reads produce considerably less misassemblies and gaps. The 454 assemblies of 96 barcoded BACs were improved by scaffolding 79% of the total contig length with MPs from a non-barcoded library. Assembly of the unmasked 454 sequences without separation by barcodes revealed chimeric contig formation to be a major problem, encompassing 47% of the total contig length. Masking the sequences reduced this fraction to 24%. Conclusion Optimal BAC pool sequencing should be based on the longest available reads, with barcoding essential for a comprehensive assessment of both repetitive and non-repetitive sequence information. When interest is restricted to non-repetitive regions and repeats are masked prior to assembly, barcoding is non-essential. In any case, the assemblies can be improved considerably by scaffolding with non-barcoded BAC pool MPs.

  3. Combined use of real-time PCR and nested sequence-based typing in survey of human Legionella infection.

    Science.gov (United States)

    Qin, T; Zhou, H; Ren, H; Shi, W; Jin, H; Jiang, X; Xu, Y; Zhou, M; Li, J; Wang, J; Shao, Z; Xu, X

    2016-07-01

    Legionnaires' disease (LD) is a globally distributed systemic infectious disease. The burden of LD in many regions is still unclear, especially in Asian countries including China. A survey of Legionella infection using real-time PCR and nested sequence-based typing (SBT) was performed in two hospitals in Shanghai, China. A total of 265 bronchoalveolar lavage fluid (BALF) specimens were collected from hospital A between January 2012 and December 2013, and 359 sputum specimens were collected from hospital B throughout 2012. A total of 71 specimens were positive for Legionella according to real-time PCR focusing on the 5S rRNA gene. Seventy of these specimens were identified as Legionella pneumophila as a result of real-time PCR amplification of the dotA gene. Results of nested SBT revealed high genetic polymorphism in these L. pneumophila and ST1 was the predominant sequence type. These data revealed that the burden of LD in China is much greater than that recognized previously, and real-time PCR may be a suitable monitoring technology for LD in large sample surveys in regions lacking the economic and technical resources to perform other methods, such as urinary antigen tests and culture methods.

  4. Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing.

    Science.gov (United States)

    Hribová, Eva; Neumann, Pavel; Matsumoto, Takashi; Roux, Nicolas; Macas, Jirí; Dolezel, Jaroslav

    2010-09-16

    Bananas and plantains (Musa spp.) are grown in more than a hundred tropical and subtropical countries and provide staple food for hundreds of millions of people. They are seed-sterile crops propagated clonally and this makes them vulnerable to a rapid spread of devastating diseases and at the same time hampers breeding improved cultivars. Although the socio-economic importance of bananas and plantains cannot be overestimated, they remain outside the focus of major research programs. This slows down the study of nuclear genome and the development of molecular tools to facilitate banana improvement. In this work, we report on the first thorough characterization of the repeat component of the banana (M. acuminata cv. 'Calcutta 4') genome. Analysis of almost 100 Mb of sequence data (0.15× genome coverage) permitted partial sequence reconstruction and characterization of repetitive DNA, making up about 30% of the genome. The results showed that the banana repeats are predominantly made of various types of Ty1/copia and Ty3/gypsy retroelements representing 16 and 7% of the genome respectively. On the other hand, DNA transposons were found to be rare. In addition to new families of transposable elements, two new satellite repeats were discovered and found useful as cytogenetic markers. To help in banana sequence annotation, a specific Musa repeat database was created, and its utility was demonstrated by analyzing the repeat composition of 62 genomic BAC clones. A low-depth 454 sequencing of banana nuclear genome provided the largest amount of DNA sequence data available until now for Musa and permitted reconstruction of most of the major types of DNA repeats. The information obtained in this study improves the knowledge of the long-range organization of banana chromosomes, and provides sequence resources needed for repeat masking and annotation during the Musa genome sequencing project. It also provides sequence data for isolation of DNA markers to be used in genetic

  5. The role of short-term memory impairment in nonword repetition, real word repetition, and nonword decoding: A case study.

    Science.gov (United States)

    Peter, Beate

    2018-01-01

    In a companion study, adults with dyslexia and adults with a probable history of childhood apraxia of speech showed evidence of difficulty with processing sequential information during nonword repetition, multisyllabic real word repetition and nonword decoding. Results suggested that some errors arose in visual encoding during nonword reading, all levels of processing but especially short-term memory storage/retrieval during nonword repetition, and motor planning and programming during complex real word repetition. To further investigate the role of short-term memory, a participant with short-term memory impairment (MI) was recruited. MI was confirmed with poor performance during a sentence repetition and three nonword repetition tasks, all of which have a high short-term memory load, whereas typical performance was observed during tests of reading, spelling, and static verbal knowledge, all with low short-term memory loads. Experimental results show error-free performance during multisyllabic real word repetition but high counts of sequence errors, especially migrations and assimilations, during nonword repetition, supporting short-term memory as a locus of sequential processing deficit during nonword repetition. Results are also consistent with the hypothesis that during complex real word repetition, short-term memory is bypassed as the word is recognized and retrieved from long-term memory prior to producing the word.

  6. An investigation of the subtype diversity of clinical isolates of Irish Clostridium difficile ribotypes 027 and 078 by repetitive-extragenic palindromic PCR.

    LENUS (Irish Health Repository)

    Solomon, K

    2011-08-01

    A repetitive-extragenic palindromic PCR (rep-PCR) subtyping method (DiversiLab) in conjunction with ribotyping, toxinotyping and antimicrobial-susceptibility testing was used to detect subtypes within Clostridium difficile ribotypes 027 and 078. Clinical isolates of ribotypes 027 (toxinotype III) (n = 30) and 078 (toxinotype V) (n = 23) were provided by health-care facilities across the Republic of Ireland over 2 months in 2006 and 1 month in 2009. Ribotype 027 isolates were significantly more related to each other (9 different subtype profiles) when compared to ribotype 078 isolates (14 different profiles) (P = 0.001; cut-off >90 % similarity). Almost half of ribotype 078 isolates (45.5 %) showed no relationship to each other. The clonality of ribotype 027 isolates suggests effective adaptation to the human niche, whereas the considerable genetic diversity within ribotype 078 isolates suggests that they may have originated from a variety of sources. Subtyping correlated well with antimicrobial susceptibility, in particular clindamycin susceptibility for ribotype 027, but diverse antimicrobial-susceptibility profiles were seen in ribotype 078 isolates, even within a single health-care facility. Between 2006 and 2009, a change in the predominant subtype of ribotype 027 was seen, with the recent clone representing half of all ribotype 027 isolates studied. This strain exhibited 89 % similarity to a rep-PCR profile of the North American NAP-1 strain.

  7. Prevalence of Trichomoniasis by PCR in Women Attending Health Screening in Korea.

    Science.gov (United States)

    Kim, Seung-Ryong; Kim, Jung-Hyun; Gu, Na-Yeong; Kim, Yong-Suk; Hong, Yeon-Chul; Ryu, Jae-Sook

    2016-04-01

    Trichomoniasis is the most common curable sexually-transmitted infection (STI) worldwide. There are few reports on the prevalence of Trichomonas vaginalis in Korea. The purpose of this study was to examine the prevalence of trichomoniasis by PCR in Guri city, Korea. All adult women who visited Hanyang University Guri Hospital for health screening within the National Health Care Service were invited to participate in the study, and 424 women were enrolled between March and June 2011. PCR was used to detect Trichomonas vaginalis using primers based on a repetitive sequence cloned from T. vaginalis (TV-E650). Fourteen women (3.3%) were found to have T. vaginalis. All were over 50, and they were significantly older on average than the 410 Trichomonas-negative women (mean ages 63.4 vs 55.3 years). It seems that T. vaginalis infection is not rare in women receiving health screening, especially among those over 50.

  8. Comparison of PCR-RFLP pattern with sequencing analysis of the ITS region of Hyrcanain\\'s Tilia

    Directory of Open Access Journals (Sweden)

    Hamed Yousefzadeh

    2014-01-01

    T. hyrcana and T. rubra from Hyrcanian's origin, but it could not separate T. begonifloia from the other hyrcanian species. In this respect, derived results were similar to sequencing one. In conclusion, with regard to less expensive and less time consuming PCR-RFLP technique and high similarity between its result with sequencing, we recommend this method as a simple and economical method with relatively high efficiency studding plant phylogeny.

  9. Repetitive DNA in the pea (Pisum sativum L. genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Navrátilová Alice

    2007-11-01

    Full Text Available Abstract Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum. Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data

  10. Comparison of semi-automated commercial rep-PCR fingerprinting, spoligotyping, 12-locus MIRU-VNTR typing and single nucleotide polymorphism analysis of the embB gene as molecular typing tools for Mycobacterium bovis.

    Science.gov (United States)

    Armas, Federica; Camperio, Cristina; Coltella, Luana; Selvaggini, Serena; Boniotti, Maria Beatrice; Pacciarini, Maria Lodovica; Di Marco Lo Presti, Vincenzo; Marianelli, Cinzia

    2017-08-04

    Highly discriminatory genotyping strategies are essential in molecular epidemiological studies of tuberculosis. In this study we evaluated, for the first time, the efficacy of the repetitive sequence-based PCR (rep-PCR) DiversiLab Mycobacterium typing kit over spoligotyping, 12-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and embB single nucleotide polymorphism (SNP) analysis for Mycobacterium bovis typing. A total of 49 M. bovis animal isolates were used. DNA was extracted and genomic DNA was amplified using the DiversiLab Mycobacterium typing kit. The amplified fragments were separated and detected using a microfluidics chip with Agilent 2100. The resulting rep-PCR-based DNA fingerprints were uploaded to and analysed using web-based DiversiLab software through Pearson's correlation coefficient. Rep-PCR DiversiLab grouped M. bovis isolates into ten different clusters. Most isolates sharing identical spoligotype, MIRU-VNTR profile or embB gene polymorphism were grouped into different rep-PCR clusters. Rep-PCR DiversiLab displayed greater discriminatory power than spoligotyping and embB SNP analysis but a lower resolution power than the 12-locus MIRU-VNTR analysis. MIRU-VNTR confirmed that it is superior to the other PCR-based methods tested here. In combination with spoligotyping and 12-locus MIRU-VNTR analysis, rep-PCR improved the discriminatory power for M. bovis typing.

  11. Conventional Morphology Versus PCR Sequencing, rep-PCR, and MALDI-TOF-MS for Identification of Clinical Aspergillus Isolates Collected Over a 2-Year Period in a University Hospital at Kayseri, Turkey.

    Science.gov (United States)

    Atalay, Altay; Koc, Ayse Nedret; Suel, Ahmet; Sav, Hafize; Demir, Gonca; Elmali, Ferhan; Cakir, Nuri; Seyedmousavi, Seyedmojtaba

    2016-09-01

    Aspergillus species cause a wide range of diseases in humans, including allergies, localized infections, or fatal disseminated diseases. Rapid detection and identification of Aspergillus spp. facilitate effective patient management. In the current study we compared conventional morphological methods with PCR sequencing, rep-PCR, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the identification of Aspergillus strains. A total of 24 consecutive clinical isolates of Aspergillus were collected during 2012-2014. Conventional morphology and rep-PCR were performed in our Mycology Laboratory. The identification, evaluation, and reporting of strains using MALDI-TOF-MS were performed by BioMérieux Diagnostic, Inc. in Istanbul. DNA sequence analysis of the clinical isolates was performed by the BMLabosis laboratory in Ankara. Samples consisted of 18 (75%) lower respiratory tract specimens, 3 otomycosis (12.5%) ear tissues, 1 sample from keratitis, and 1 sample from a cutaneous wound. According to DNA sequence analysis, 12 (50%) specimens were identified as A. fumigatus, 8 (33.3%) as A. flavus, 3 (12.5%) as A. niger, and 1 (4.2%) as A. terreus. Statistically, there was good agreement between the conventional morphology and rep-PCR and MALDI-TOF methods; kappa values were κ = 0.869, 0.871, and 0.916, respectively (P < 0.001). The good level of agreement between the methods included in the present study and sequence method could be due to the identification of Aspergillus strains that were commonly encountered. Therefore, it was concluded that studies conducted with a higher number of isolates, which include other Aspergillus strains, are required. © 2016 Wiley Periodicals, Inc.

  12. Simultaneous discrimination of species and strains in Lactobacillus rhamnosus using species-specific PCR combined with multiplex mini-sequencing technology.

    Science.gov (United States)

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Lina; Chu, Wen-Shen

    2015-12-01

    This study described the use of species-specific PCR in combination with SNaPshot mini-sequencing to achieve species identification and strain differentiation in Lactobacillus rhamnosus. To develop species-specific PCR and strain subtyping primers, the dnaJ gene was used as a target, and its corresponding sequences were analyzed both in Lb. rhamnosus and in a subset of its phylogenetically closest species. The results indicated that the species-specific primer pair was indeed specific for Lb. rhamnosus, and the mini-sequencing assay was able to unambiguously distinguish Lb. rhamnosus strains into different haplotypes. In conclusion, we have successfully developed a rapid, accurate and cost-effective assay for inter- and intraspecies discrimination of Lb. rhamnosus, which can be applied to achieve efficient quality control of probiotic products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Genetic Diversity and Phylogenetic Analysis of the Iranian Leishmania Parasites Based on HSP70 Gene PCR-RFLP and Sequence Analysis.

    Science.gov (United States)

    Nemati, Sara; Fazaeli, Asghar; Hajjaran, Homa; Khamesipour, Ali; Anbaran, Mohsen Falahati; Bozorgomid, Arezoo; Zarei, Fatah

    2017-08-01

    Despite the broad distribution of leishmaniasis among Iranians and animals across the country, little is known about the genetic characteristics of the causative agents. Applying both HSP70 PCR-RFLP and sequence analyses, this study aimed to evaluate the genetic diversity and phylogenetic relationships among Leishmania spp. isolated from Iranian endemic foci and available reference strains. A total of 36 Leishmania isolates from almost all districts across the country were genetically analyzed for the HSP70 gene using both PCR-RFLP and sequence analysis. The original HSP70 gene sequences were aligned along with homologous Leishmania sequences retrieved from NCBI, and subjected to the phylogenetic analysis. Basic parameters of genetic diversity were also estimated. The HSP70 PCR-RFLP presented 3 different electrophoretic patterns, with no further intraspecific variation, corresponding to 3 Leishmania species available in the country, L. tropica, L. major, and L. infantum. Phylogenetic analyses presented 5 major clades, corresponding to 5 species complexes. Iranian lineages, including L. major, L. tropica, and L. infantum, were distributed among 3 complexes L. major, L. tropica, and L. donovani. However, within the L. major and L. donovani species complexes, the HSP70 phylogeny was not able to distinguish clearly between the L. major and L. turanica isolates, and between the L. infantum, L. donovani, and L. chagasi isolates, respectively. Our results indicated that both HSP70 PCR-RFLP and sequence analyses are medically applicable tools for identification of Leishmania species in Iranian patients. However, the reduced genetic diversity of the target gene makes it inevitable that its phylogeny only resolves the major groups, namely, the species complexes.

  14. Detection of Toxoplasma gondii oocysts in soils in northwestern China using a new semi-nested PCR assay.

    Science.gov (United States)

    Wang, Meng; Meng, Peng; Ye, Qiang; Pu, Yuan-Hua; Yang, Xiao-Yu; Luo, Jian-Xun; Zhang, Nian-Zhang; Zhang, De-Lin

    2014-09-28

    Toxoplasma gondii is a zoonotic pathogen that can infect a range of animals and humans. Ingestion of T. gondii oocysts in soil is a significant transmission route for humans and animals acquiring toxoplasmosis. In the present study, we developed a new semi-nested PCR method to determine T. gondii oocysts distribution in soils in northwestern China. The one tube semi-nested PCR assay was developed to detect the oocysts of T. gondii in soil, targeting the repetitive 529 bp fragment of T. gondii genomic DNA. Then a total of 268 soil samples, including 148 samples from Gansu Province and 120 samples from Qinghai Province, northwestern China, were examined by the semi-nested PCR method. One third of the positive samples were sequenced. The sensitivity of the semi-nested PCR assay was 10(2)  T. gondii oocysts in 5 g soil sample. Investigation of soil samples from northwestern China showed that 34 out of 268 soil samples (12.69%) were T. gondii positive. Sequences of the partial 529 bp fragments varied from 0-1.2% among the sequenced samples. The prevalence of T. gondii oocysts in soil from cities (24/163) was slightly higher than that in soils from pasturing areas (10/105) (P = 0.21). Among the different regions in cities, the prevalence of T. gondii oocysts in soils from parks was 14.15%, whereas that in soils from schools was 19.05%. The present study firstly reported the prevalence of T. gondii oocysts in soils in northwest China using a novel semi-nested PCR assay, which provided baseline data for the effective prevention and control of toxoplasmosis in this region.

  15. Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing.

    Science.gov (United States)

    Liang, Chanjuan; van Dijk, Jeroen P; Scholtens, Ingrid M J; Staats, Martijn; Prins, Theo W; Voorhuijzen, Marleen M; da Silva, Andrea M; Arisi, Ana Carolina Maisonnave; den Dunnen, Johan T; Kok, Esther J

    2014-04-01

    The growing number of biotech crops with novel genetic elements increasingly complicates the detection of genetically modified organisms (GMOs) in food and feed samples using conventional screening methods. Unauthorized GMOs (UGMOs) in food and feed are currently identified through combining GMO element screening with sequencing the DNA flanking these elements. In this study, a specific and sensitive qPCR assay was developed for vip3A element detection based on the vip3Aa20 coding sequences of the recently marketed MIR162 maize and COT102 cotton. Furthermore, SiteFinding-PCR in combination with Sanger, Illumina or Pacific BioSciences (PacBio) sequencing was performed targeting the flanking DNA of the vip3Aa20 element in MIR162. De novo assembly and Basic Local Alignment Search Tool searches were used to mimic UGMO identification. PacBio data resulted in relatively long contigs in the upstream (1,326 nucleotides (nt); 95 % identity) and downstream (1,135 nt; 92 % identity) regions, whereas Illumina data resulted in two smaller contigs of 858 and 1,038 nt with higher sequence identity (>99 % identity). Both approaches outperformed Sanger sequencing, underlining the potential for next-generation sequencing in UGMO identification.

  16. ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts.

    Science.gov (United States)

    Wei, Guifang; Pan, Li; Du, Huimin; Chen, Junyi; Zhao, Liping

    2004-10-01

    Bacterial populations common to healthy human guts may play important roles in human health. A new strategy for discovering genomic sequences as markers for these bacteria was developed using Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR fingerprinting. Structural features within microbial communities are compared with ERIC-PCR followed by DNA hybridization to identify genomic fragments shared by samples from healthy human individuals. ERIC-PCR profiles of fecal samples from 12 diseased or healthy human and piglet subjects demonstrated stable, unique banding patterns for each individual tested. Sequence homology of DNA fragments in bands of identical size was examined between samples by hybridization under high stringency conditions with DIG-labeled ERIC-PCR products derived from the fecal sample of one healthy child. Comparative analysis of the hybridization profiles with the original agarose fingerprints identified three predominant bands as signatures for populations associated with healthy human guts with sizes of 500, 800 and 1000 bp. Clone library profiling of the three bands produced 17 genome fragments, three of which showed high similarity only with regions of the Bacteroides thetaiotaomicron genome, while the remainder were orphan sequences. Association of these sequences with healthy guts was validated by sequence-selective PCR experiments, which showed that a single fragment was present in all 32 healthy humans and 13 healthy piglets tested. Two fragments were present in the healthy human group and in 18 children with non-infectious diarrhea but not in eight children with infectious diarrhea. Genome fragments identified with this novel strategy may be used as genome-specific markers for dynamic monitoring and sequence-guided isolation of functionally important bacterial populations in complex communities such as human gut microflora.

  17. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    Science.gov (United States)

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.

  18. A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites

    DEFF Research Database (Denmark)

    Uren, Anthony G; Mikkers, Harald; Kool, Jaap

    2009-01-01

    sites has been a major limitation to performing screens on this scale. Here we present a method for the high-throughput isolation of insertion sites using a highly efficient splinkerette-PCR method coupled with capillary or 454 sequencing. This protocol includes a description of the procedure for DNA......Insertional mutagens such as viruses and transposons are a useful tool for performing forward genetic screens in mice to discover cancer genes. These screens are most effective when performed using hundreds of mice; however, until recently, the cost-effective isolation and sequencing of insertion...

  19. Repetition and the Concept of Repetition

    Directory of Open Access Journals (Sweden)

    Arne Grøn

    2013-11-01

    Full Text Available This paper offers a description of the meaning of the category of repetition. Firstly, it is pointed out that Constantin uses repetition as a concept that means the creation of epochs; the passing from Greece to Modernity is accomplished distinguishing between recollection, a concept that looks back to the past, and repetition, a concept that looks forward to future. Secondly, it is showed that the category of repetition, as a religious category, relates with what Climacus calls “ethic despair” and with what Vigilius calls “second ethics”; it is through repetition that it can be understood that sin finds its place in ethics and these shows the tension between it and dogmatics. And thirdly, it is showed that the descovery of the new category of repetition is a rediscovery of what Kierkegaard calls category of spirit; repetition has for its object the individuality, and coming to be oneself is what Kierkegaard undertands as liberty. At the end of the paper it is questioned if the category of repetition is inconsistent with the book Repetition.

  20. Bioinformatic tools for PCR Primer design

    African Journals Online (AJOL)

    ES

    reaction (PCR), oligo hybridization and DNA sequencing. Proper primer design is actually one of the most important factors/steps in successful DNA sequencing. Various bioinformatics programs are available for selection of primer pairs from a template sequence. The plethora programs for PCR primer design reflects the.

  1. Eliminating PCR contamination

    International Nuclear Information System (INIS)

    Fox, J.C.; Ait-Khaled, Mounir; Webster, Alison; Emery, V.C.

    1991-01-01

    The sensitivity of polymerase chain reaction (PCR) can mean that even very low levels of contamination with the target DNA will result in a positive signal. At present this aspect is a major limitation in the use of PCR as a routine diagnostic method. By exposing PCR reagents to UV light, contaminating DNA can be inactivated, thus providing an opportunity to eradicate false positive reactions. UV irradiation was applied to PCR systems used for detection of human cytomegalovirus CMV and human immunodeficiency virus (HIV) and shown to be effective in eradicating both laboratory encountered contamination and plasmid DNA (below 100 pg) added to PCR systems prior to UV exposure. Sensitivity of a PCR system to amplify the long terminal repeat (LTR) sequence of HIV-1 was not affected by the irradiation procedure; however, ultimate sensitivity of a PCR system for the amplification of an early gene pro-motor sequence of the CMV genome was reduced 1000-fold. UV irradiation did not affect the size of the PCR product as determined by strand separating polyacrylamide gel electrophoresis of a 32 P-labelled amplimer. Thus, a simple pre-exposure to UV light would seem a worth-wile step to incorporate into PCR protocols provided that the effects on sensitivity have been determined empirically for each PCR system. (author). 11 refs.; 3 figs

  2. Pseudogene of dihydrolipoyl succinyltransferase (E2k) found by PCR amplification and direct sequencing of rodent-human cell hybrid DNAs

    Energy Technology Data Exchange (ETDEWEB)

    Cai, X.; Ali, G.; Blass, J.P. [Cornell Univ. Medical College, White Plains, NY (United States); Szabo, P. [Cornell Univ. Medical College, New York, NY (United States); Tanzi, R.E. [Massachusetts General Hospital, Boston, MA (United States)

    1994-07-01

    Previous studies have indicated that the cDNA for the E2k component of the human {alpha}-ketoglutarate dehydrogenase complex (KGDHC) hybridized not only to a major locus on chromosome 14q24.3 in a region associated with familial Alzheimer`s disease and with Joseph-Machado disease, but also to another locus on chromosome 1p31. The authors now report that PCR of genomic DNA and direct sequencing indicated that the chromosome 1 locus is an intronless pseudogene. PCR of genomic DNA amplified E2k fragments from mouse-human cell hybrids containing human chromosome 1 DNA but not from hybrids containing human chromosome 14 DNA. The resulting amplicons were of comparable sizes to those when the cDNA was used to template. The direct sequencing of these amplicons confirmed the lack of introns and indicated a frame shift, which led to the presence of four termination codons early in the coding region. PCR followed by direct sequencing of the amplicons appears to be a convenient method for identifying intronless pseudogenes.

  3. Application of PCR-based DNA sequencing technique for the detection of Leptospira in peripheral blood of septicemia patients

    OpenAIRE

    Ram, S.; Vimalin, J.M.; Jambulingam, M.; Tiru, V.; Gopalakrishnan, R.K.; Madhavan, H.N.

    2012-01-01

    Aim: Isolation, dark field detection and microscopic agglutination test (MAT) are considered ―gold standard‖ tests for diagnosis of Leptospirosis. Several PCR assays are reported but very few have been evaluated for detection of Leptospirosis. Therefore, this study was undertaken. This study aims to design and standardize polymerase chain reaction (PCR) - based DNA sequencing technique for the detection of pathogenic Leptospira from peripheral blood of patients clinically diagnosed with septi...

  4. Development of Prevotella intermedia-specific PCR primers based on the nucleotide sequences of a DNA probe Pig27.

    Science.gov (United States)

    Kim, Min Jung; Hwang, Kyung Hwan; Lee, Young-Seok; Park, Jae-Yoon; Kook, Joong-Ki

    2011-03-01

    The aim of this study was to develop Prevotella intermedia-specific PCR primers based on the P. intermedia-specific DNA probe. The P. intermedia-specific DNA probe was screened by inverted dot blot hybridization and confirmed by Southern blot hybridization. The nucleotide sequences of the species-specific DNA probes were determined using a chain termination method. Southern blot analysis showed that the DNA probe, Pig27, detected only the genomic DNA of P. intermedia strains. PCR showed that the PCR primers, Pin-F1/Pin-R1, had species-specificity for P. intermedia. The detection limits of the PCR primer sets were 0.4pg of the purified genomic DNA of P. intermedia ATCC 49046. These results suggest that the PCR primers, Pin-F1/Pin-R1, could be useful in the detection of P. intermedia as well as in the development of a PCR kit in epidemiological studies related to periodontal diseases. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  5. A Bac Library and Paired-PCR Approach to Mapping and Completing the Genome Sequence of Sulfolobus Solfataricus P2

    DEFF Research Database (Denmark)

    She, Qunxin; Confalonieri, F.; Zivanovic, Y.

    2000-01-01

    The original strategy used in the Sulfolobus solfatnricus genome project was to sequence non overlapping, or minimally overlapping, cosmid or lambda inserts without constructing a physical map. However, after only about two thirds of the genome sequence was completed, this approach became counter......-productive because there was a high sequence bias in the cosmid and lambda libraries. Therefore, a new approach was devised for linking the sequenced regions which may be generally applicable. BAC libraries were constructed and terminal sequences of the clones were determined and used for both end mapping and PCR...

  6. The soybean-Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding-leucine rich repeat-like genes and repetitive sequences

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Madan K

    2008-03-01

    Full Text Available Abstract Background A series of Rps (resistance to Pytophthora sojae genes have been protecting soybean from the root and stem rot disease caused by the Oomycete pathogen, Phytophthora sojae. Five Rps genes were mapped to the Rps1 locus located near the 28 cM map position on molecular linkage group N of the composite genetic soybean map. Among these five genes, Rps1-k was introgressed from the cultivar, Kingwa. Rps1-k has been providing stable and broad-spectrum Phytophthora resistance in the major soybean-producing regions of the United States. Rps1-k has been mapped and isolated. More than one functional Rps1-k gene was identified from the Rps1-k locus. The clustering feature at the Rps1-k locus might have facilitated the expansion of Rps1-k gene numbers and the generation of new recognition specificities. The Rps1-k region was sequenced to understand the possible evolutionary steps that shaped the generation of Phytophthora resistance genes in soybean. Results Here the analyses of sequences of three overlapping BAC clones containing the 184,111 bp Rps1-k region are reported. A shotgun sequencing strategy was applied in sequencing the BAC contig. Sequence analysis predicted a few full-length genes including two Rps1-k genes, Rps1-k-1 and Rps1-k-2. Previously reported Rps1-k-3 from this genomic region 1 was evolved through intramolecular recombination between Rps1-k-1 and Rps1-k-2 in Escherichia coli. The majority of the predicted genes are truncated and therefore most likely they are nonfunctional. A member of a highly abundant retroelement, SIRE1, was identified from the Rps1-k region. The Rps1-k region is primarily composed of repetitive sequences. Sixteen simple repeat and 63 tandem repeat sequences were identified from the locus. Conclusion These data indicate that the Rps1 locus is located in a gene-poor region. The abundance of repetitive sequences in the Rps1-k region suggested that the location of this locus is in or near a

  7. Karyotypic evolution and organization of the highly repetitive DNA sequences in the Japanese shrew-moles, Dymecodon pilirostris and Urotrichus talpoides.

    Science.gov (United States)

    Nakata, A; Yoshimura, A; Kuro-o, M; Obara, Y

    2005-01-01

    The karyological relationship and organization of highly repetitive DNA sequences in Japanese shrew-moles were studied by zoo-blot hybridization and fluorescence in situ hybridization (FISH). When the genomic DNA of the eastern race of Urotrichus talpoides was digested with PstI, three fragments of highly repetitive DNA sequences, approximately 0.7, 0.9, and 1.4 kb in length, were observed as distinct bands. The results of FISH in the eastern race of U. talpoides using these three fragments separately as probes showed that the 0.7-kb PstI fragment was distributed in the centromeric regions of most chromosomes, and that the 0.9- and 1.4-kb fragments were predominantly located in the C-heterochromatin region of chromosome 13p. Although the western race of U. talpoides also had three PstI fragments, 0.9- and 1.4-kb PstI fragments were more ambiguous than those of the eastern race. The PstI- digested genomic DNA in Dymecodonpilirostris produced only a faint 0.9-kb band, and its signal patterns obtained by zoo-blot hybridization were clearly different from those of U. talpoides. The 0.7-kb fragment of U. talpoides hybridized strongly with the 0.9-kb fragment of D. pilirostris. In a FISH analysis, the 0.9-kb fragment of D. pilirostris hybridized with highly repetitive DNA in the centromeric regions of most chromosomes from both D. pilirostris and U. talpoides. Zoo-blot hybridization and FISH analyses suggest that the 0.9- and 1.4-kb PstI fragments were generated specifically in the genome of U. talpoides after the common ancestor differentiated into two extant shrew-mole species. A difference in the length of the centromeric elements between U. talpoides and D. pilirostris might be observed due to certain modifications of the repeating unit.

  8. Genomic Organization and Physical Mapping of Tandemly Arranged Repetitive DNAs in Sterlet (Acipenser ruthenus).

    Science.gov (United States)

    Biltueva, Larisa S; Prokopov, Dimitry Y; Makunin, Alexey I; Komissarov, Alexey S; Kudryavtseva, Anna V; Lemskaya, Natalya A; Vorobieva, Nadezhda V; Serdyukova, Natalia A; Romanenko, Svetlana A; Gladkikh, Olga L; Graphodatsky, Alexander S; Trifonov, Vladimir A

    2017-01-01

    Acipenseriformes represent a phylogenetically basal clade of ray-finned fish characterized by unusual genomic traits, including paleopolyploid states of extant genomes with high chromosome numbers and slow rates of molecular evolution. Despite a high interest in this fish group, only a limited number of studies have been accomplished on the isolation and characterization of repetitive DNA, karyotype standardization is not yet complete, and sex chromosomes are still to be identified. Here, we applied next-generation sequencing and cluster analysis to characterize major fractions of sterlet (Acipenser ruthenus) repetitive DNA. Using FISH, we mapped 16 tandemly arranged sequences on sterlet chromosomes and found them to be unevenly distributed in the genome with a tendency to cluster in particular regions. Some of the satellite DNAs might be used as specific markers to identify individual chromosomes and their paralogs, resulting in the unequivocal identification of at least 18 chromosome pairs. Our results provide an insight into the characteristic genomic distribution of the most common sterlet repetitive sequences. Biased accumulation of repetitive DNAs in particular chromosomes makes them especially interesting for further search for cryptic sex chromosomes. Future studies of these sequences in other acipenserid species will provide new perspectives regarding the evolution of repetitive DNA within the genomes of this fish order. © 2017 S. Karger AG, Basel.

  9. Modeling repetitive motions using structured light.

    Science.gov (United States)

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  10. Event-specific qualitative and quantitative PCR detection of the GMO carnation (Dianthus caryophyllus) variety Moonlite based upon the 5'-transgene integration sequence.

    Science.gov (United States)

    Li, P; Jia, J W; Jiang, L X; Zhu, H; Bai, L; Wang, J B; Tang, X M; Pan, A H

    2012-04-27

    To ensure the implementation of genetically modified organism (GMO)-labeling regulations, an event-specific detection method was developed based on the junction sequence of an exogenous integrant in the transgenic carnation variety Moonlite. The 5'-transgene integration sequence was isolated by thermal asymmetric interlaced PCR. Based upon the 5'-transgene integration sequence, the event-specific primers and TaqMan probe were designed to amplify the fragments, which spanned the exogenous DNA and carnation genomic DNA. Qualitative and quantitative PCR assays were developed employing the designed primers and probe. The detection limit of the qualitative PCR assay was 0.05% for Moonlite in 100 ng total carnation genomic DNA, corresponding to about 79 copies of the carnation haploid genome; the limit of detection and quantification of the quantitative PCR assay were estimated to be 38 and 190 copies of haploid carnation genomic DNA, respectively. Carnation samples with different contents of genetically modified components were quantified and the bias between the observed and true values of three samples were lower than the acceptance criterion (GMO detection method. These results indicated that these event-specific methods would be useful for the identification and quantification of the GMO carnation Moonlite.

  11. Identification of a novel Plasmopara halstedii elicitor protein combining de novo peptide sequencing algorithms and RACE-PCR

    Directory of Open Access Journals (Sweden)

    Madlung Johannes

    2010-05-01

    Full Text Available Abstract Background Often high-quality MS/MS spectra of tryptic peptides do not match to any database entry because of only partially sequenced genomes and therefore, protein identification requires de novo peptide sequencing. To achieve protein identification of the economically important but still unsequenced plant pathogenic oomycete Plasmopara halstedii, we first evaluated the performance of three different de novo peptide sequencing algorithms applied to a protein digests of standard proteins using a quadrupole TOF (QStar Pulsar i. Results The performance order of the algorithms was PEAKS online > PepNovo > CompNovo. In summary, PEAKS online correctly predicted 45% of measured peptides for a protein test data set. All three de novo peptide sequencing algorithms were used to identify MS/MS spectra of tryptic peptides of an unknown 57 kDa protein of P. halstedii. We found ten de novo sequenced peptides that showed homology to a Phytophthora infestans protein, a closely related organism of P. halstedii. Employing a second complementary approach, verification of peptide prediction and protein identification was performed by creation of degenerate primers for RACE-PCR and led to an ORF of 1,589 bp for a hypothetical phosphoenolpyruvate carboxykinase. Conclusions Our study demonstrated that identification of proteins within minute amounts of sample material improved significantly by combining sensitive LC-MS methods with different de novo peptide sequencing algorithms. In addition, this is the first study that verified protein prediction from MS data by also employing a second complementary approach, in which RACE-PCR led to identification of a novel elicitor protein in P. halstedii.

  12. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Brusetti, Lorenzo; Quaglino, Fabio; Brasca, Milena; Daffonchio, Daniele; Bianco, Piero Attilio

    2009-08-01

    Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with gamma-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.

  13. Legionella confirmation in cooling tower water. Comparison of culture, real-time PCR and next generation sequencing.

    Science.gov (United States)

    Farhat, Maha; Shaheed, Raja A; Al-Ali, Haider H; Al-Ghamdi, Abdullah S; Al-Hamaqi, Ghadeer M; Maan, Hawraa S; Al-Mahfoodh, Zainab A; Al-Seba, Hussain Z

    2018-02-01

    To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires' disease. Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods.

  14. Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats

    Directory of Open Access Journals (Sweden)

    Graner Andreas

    2008-10-01

    Full Text Available Abstract Background Barley has one of the largest and most complex genomes of all economically important food crops. The rise of new short read sequencing technologies such as Illumina/Solexa permits such large genomes to be effectively sampled at relatively low cost. Based on the corresponding sequence reads a Mathematically Defined Repeat (MDR index can be generated to map repetitive regions in genomic sequences. Results We have generated 574 Mbp of Illumina/Solexa sequences from barley total genomic DNA, representing about 10% of a genome equivalent. From these sequences we generated an MDR index which was then used to identify and mark repetitive regions in the barley genome. Comparison of the MDR plots with expert repeat annotation drawing on the information already available for known repetitive elements revealed a significant correspondence between the two methods. MDR-based annotation allowed for the identification of dozens of novel repeat sequences, though, which were not recognised by hand-annotation. The MDR data was also used to identify gene-containing regions by masking of repetitive sequences in eight de-novo sequenced bacterial artificial chromosome (BAC clones. For half of the identified candidate gene islands indeed gene sequences could be identified. MDR data were only of limited use, when mapped on genomic sequences from the closely related species Triticum monococcum as only a fraction of the repetitive sequences was recognised. Conclusion An MDR index for barley, which was obtained by whole-genome Illumina/Solexa sequencing, proved as efficient in repeat identification as manual expert annotation. Circumventing the labour-intensive step of producing a specific repeat library for expert annotation, an MDR index provides an elegant and efficient resource for the identification of repetitive and low-copy (i.e. potentially gene-containing sequences regions in uncharacterised genomic sequences. The restriction that a particular

  15. N-2 repetition leads to a cost within working memory and a benefit outside it.

    Science.gov (United States)

    Kessler, Yoav

    2018-03-15

    Removal has been suggested to play a key role in controlling the contents of working memory. The present study examined the aftereffects of removal in a working memory updating task. Participants performed the reference-back paradigm, a version of the n-back task that is composed of two trial types: reference trials that required working memory updating and comparison trials that did not require updating. N-2 repetition effects-the difference in performance between trials that presented the same stimulus as the one presented two trials before (ABA sequences) and trials in which the stimulus differed from the two previous stimuli (ABC sequences)-were examined. In two experiments, n-2 repetition costs were observed within sequences of reference trials, while n-2 repetition benefits were observed within sequences of comparison trials. This pattern suggests that removal takes place during working memory updating. Furthermore, automatic formation and updating of representation outside working memory, which takes place in comparison trials and gives rise to n-2 repetition benefits, does not involve removal. Removal, demonstrated by phenomena such as n-2 repetition costs, is therefore proposed to be a marker for the utilization of working memory within a given task. © 2018 New York Academy of Sciences.

  16. High Throughput Sample Preparation and Analysis for DNA Sequencing, PCR and Combinatorial Screening of Catalysis Based on Capillary Array Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yonghua [Iowa State Univ., Ames, IA (United States)

    2000-01-01

    Sample preparation has been one of the major bottlenecks for many high throughput analyses. The purpose of this research was to develop new sample preparation and integration approach for DNA sequencing, PCR based DNA analysis and combinatorial screening of homogeneous catalysis based on multiplexed capillary electrophoresis with laser induced fluorescence or imaging UV absorption detection. The author first introduced a method to integrate the front-end tasks to DNA capillary-array sequencers. protocols for directly sequencing the plasmids from a single bacterial colony in fused-silica capillaries were developed. After the colony was picked, lysis was accomplished in situ in the plastic sample tube using either a thermocycler or heating block. Upon heating, the plasmids were released while chromsomal DNA and membrane proteins were denatured and precipitated to the bottom of the tube. After adding enzyme and Sanger reagents, the resulting solution was aspirated into the reaction capillaries by a syringe pump, and cycle sequencing was initiated. No deleterious effect upon the reaction efficiency, the on-line purification system, or the capillary electrophoresis separation was observed, even though the crude lysate was used as the template. Multiplexed on-line DNA sequencing data from 8 parallel channels allowed base calling up to 620 bp with an accuracy of 98%. The entire system can be automatically regenerated for repeated operation. For PCR based DNA analysis, they demonstrated that capillary electrophoresis with UV detection can be used for DNA analysis starting from clinical sample without purification. After PCR reaction using cheek cell, blood or HIV-1 gag DNA, the reaction mixtures was injected into the capillary either on-line or off-line by base stacking. The protocol was also applied to capillary array electrophoresis. The use of cheaper detection, and the elimination of purification of DNA sample before or after PCR reaction, will make this approach an

  17. Conserved PCR primer set designing for closely-related species to complete mitochondrial genome sequencing using a sliding window-based PSO algorithm.

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    Full Text Available BACKGROUND: Complete mitochondrial (mt genome sequencing is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. For long template sequencing, i.e., like the entire mtDNA, it is essential to design primers for Polymerase Chain Reaction (PCR amplicons which are partly overlapping each other. The presented chromosome walking strategy provides the overlapping design to solve the problem for unreliable sequencing data at the 5' end and provides the effective sequencing. However, current algorithms and tools are mostly focused on the primer design for a local region in the genomic sequence. Accordingly, it is still challenging to provide the primer sets for the entire mtDNA. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this study is to develop an integrated primer design algorithm for entire mt genome in general, and for the common primer sets for closely-related species in particular. We introduce ClustalW to generate the multiple sequence alignment needed to find the conserved sequences in closely-related species. These conserved sequences are suitable for designing the common primers for the entire mtDNA. Using a heuristic algorithm particle swarm optimization (PSO, all the designed primers were computationally validated to fit the common primer design constraints, such as the melting temperature, primer length and GC content, PCR product length, secondary structure, specificity, and terminal limitation. The overlap requirement for PCR amplicons in the entire mtDNA is satisfied by defining the overlapping region with the sliding window technology. Finally, primer sets were designed within the overlapping region. The primer sets for the entire mtDNA sequences were successfully demonstrated in the example of two closely-related fish species. The pseudo code for the primer design algorithm is provided. CONCLUSIONS/SIGNIFICANCE: In conclusion, it can be said that our proposed sliding window-based PSO

  18. Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptile-oriented primers and novel gene rearrangements.

    Science.gov (United States)

    Kumazawa, Yoshinori; Endo, Hideki

    2004-04-30

    The mitochondrial genome of the Komodo dragon (Varanus komodoensis) was nearly completely sequenced, except for two highly repetitive noncoding regions. An efficient sequencing method for squamate mitochondrial genomes was established by combining the long polymerase chain reaction (PCR) technology and a set of reptile-oriented primers designed for nested PCR amplifications. It was found that the mitochondrial genome had novel gene arrangements in which genes from NADH dehydrogenase subunit 6 to proline tRNA were extensively shuffled with duplicate control regions. These control regions had 99% sequence similarity over 700 bp. Although snake mitochondrial genomes are also known to possess duplicate control regions with nearly identical sequences, the location of the second control region suggested independent occurrence of the duplication on lineages leading to snakes and the Komodo dragon. Another feature of the mitochondrial genome of the Komodo dragon was the considerable number of tandem repeats, including sequences with a strong secondary structure, as a possible site for the slipped-strand mispairing in replication. These observations are consistent with hypotheses that tandem duplications via the slipped-strand mispairing may induce mitochondrial gene rearrangements and may serve to maintain similar copies of the control region.

  19. Initiation of the microgene polymerization reaction with non-repetitive homo-duplexes

    International Nuclear Information System (INIS)

    Itsko, Mark; Zaritsky, Arieh; Rabinovitch, Avinoam; Ben-Dov, Eitan

    2008-01-01

    Microgene Polymerization Reaction (MPR) is used as an experimental system to artificially simulate evolution of short, non-repetitive homo-duplex DNA into multiply-repetitive products that can code for functional proteins. Blunt-end ligation by DNA polymerase is crucial in expansion of homo-duplexes (HDs) into head-to-tail multiple repeats in MPR. The propagation mechanism is known, but formation of the initial doublet (ID) by juxtaposing two HDs and polymerization through the gap has been ambiguous. Initiation events with pairs of HDs using Real-Time PCR were more frequent at higher HD concentrations and slightly below the melting temperature. A process molecularity of about 3.1, calculated from the amplification efficiency and the difference in PCR cycles at which propagation was detected at varying HD concentrations, led to a simple mechanism for ID formation: the gap between two HDs is bridged by a third. Considering thermodynamic aspects of the presumed intermediate 'nucleation complex' can predict relative propensity for the process with other HDs

  20. Long-PCR based next generation sequencing of the whole mitochondrial genome of the peacock skate Pavoraja nitida (Elasmobranchii: Arhynchobatidae).

    Science.gov (United States)

    Yang, Lei; Naylor, Gavin J P

    2016-01-01

    We determined the complete mitochondrial genome sequence (16,760 bp) of the peacock skate Pavoraja nitida using a long-PCR based next generation sequencing method. It has 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region in the typical vertebrate arrangement. Primers, protocols, and procedures used to obtain this mitogenome are provided. We anticipate that this approach will facilitate rapid collection of mitogenome sequences for studies on phylogenetic relationships, population genetics, and conservation of cartilaginous fishes.

  1. Introduction on Using the FastPCR Software and the Related Java Web Tools for PCR and Oligonucleotide Assembly and Analysis.

    Science.gov (United States)

    Kalendar, Ruslan; Tselykh, Timofey V; Khassenov, Bekbolat; Ramanculov, Erlan M

    2017-01-01

    This chapter introduces the FastPCR software as an integrated tool environment for PCR primer and probe design, which predicts properties of oligonucleotides based on experimental studies of the PCR efficiency. The software provides comprehensive facilities for designing primers for most PCR applications and their combinations. These include the standard PCR as well as the multiplex, long-distance, inverse, real-time, group-specific, unique, overlap extension PCR for multi-fragments assembling cloning and loop-mediated isothermal amplification (LAMP). It also contains a built-in program to design oligonucleotide sets both for long sequence assembly by ligase chain reaction and for design of amplicons that tile across a region(s) of interest. The software calculates the melting temperature for the standard and degenerate oligonucleotides including locked nucleic acid (LNA) and other modifications. It also provides analyses for a set of primers with the prediction of oligonucleotide properties, dimer and G/C-quadruplex detection, linguistic complexity as well as a primer dilution and resuspension calculator. The program consists of various bioinformatical tools for analysis of sequences with the GC or AT skew, CG% and GA% content, and the purine-pyrimidine skew. It also analyzes the linguistic sequence complexity and performs generation of random DNA sequence as well as restriction endonucleases analysis. The program allows to find or create restriction enzyme recognition sites for coding sequences and supports the clustering of sequences. It performs efficient and complete detection of various repeat types with visual display. The FastPCR software allows the sequence file batch processing that is essential for automation. The program is available for download at http://primerdigital.com/fastpcr.html , and its online version is located at http://primerdigital.com/tools/pcr.html .

  2. PCR Assays for Identification of Coccidioides posadasii Based on the Nucleotide Sequence of the Antigen 2/Proline-Rich Antigen

    Science.gov (United States)

    Bialek, Ralf; Kern, Jan; Herrmann, Tanja; Tijerina, Rolando; Ceceñas, Luis; Reischl, Udo; González, Gloria M.

    2004-01-01

    A conventional nested PCR and a real-time LightCycler PCR assay for detection of Coccidioides posadasii DNA were designed and tested in 120 clinical strains. These had been isolated from 114 patients within 10 years in Monterrey, Nuevo Leon, Mexico, known to be endemic for coccidioidomycosis. The gene encoding the specific antigen 2/proline-rich antigen (Ag2/PRA) was used as a target. All strains were correctly identified, whereas DNA from related members of the family Onygenaceae remained negative. Melting curve analysis by LightCycler and sequencing of the 526-bp product of the first PCR demonstrated either 100% identity to the GenBank sequence of the Silveira strain, now known to be C. posadasii (accession number AF013256), or a single silent mutation at position 1228. Length determination of two microsatellite-containing loci (GAC and 621) identified all 120 isolates as C. posadasii. Specific DNA was amplified by conventional nested PCR from three microscopically spherule-positive paraffin-embedded tissue samples, whereas 20 human tissue samples positive for other dimorphic fungi remained negative. Additionally, the safety of each step of a modified commercially available DNA extraction procedure was evaluated by using 10 strains. At least three steps of the protocol were demonstrated to sufficiently kill arthroconidia. This safe procedure is applicable to cultures and to clinical specimens. PMID:14766853

  3. Human β satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA

    International Nuclear Information System (INIS)

    Waye, J.S.; Willard, H.F.

    1989-01-01

    The authors describe a class of human repetitive DNA, called β satellite, that, at a most fundamental level, exists as tandem arrays of diverged ∼68-base-pair monomer repeat units. The monomer units are organized as distinct subsets, each characterized by a multimeric higher-order repeat unit that is tandemly reiterated and represents a recent unit of amplification. They have cloned, characterized, and determined the sequence of two β satellite higher-order repeat units: one located on chromosome 9, the other on the acrocentric chromosomes (13, 14, 15, 21, and 22) and perhaps other sites in the genome. Analysis by pulsed-field gel electrophoresis reveals that these tandem arrays are localized in large domains that are marked by restriction fragment length polymorphisms. In total, β-satellite sequences comprise several million base pairs of DNA in the human genome. Analysis of this DNA family should permit insights into the nature of chromosome-specific and nonspecific modes of satellite DNA evolution and provide useful tools for probing the molecular organization and concerted evolution of the acrocentric chromosomes

  4. Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus

    NARCIS (Netherlands)

    Foulongne-Oriol, M.; Murat, C.; Castanera, R.; Ramírez, L.; Sonnenberg, A.S.M.

    2013-01-01

    Repetitive DNA elements are ubiquitous constituents of eukaryotic genomes. The biological roles of these repetitive elements, supposed to impact genome organization and evolution, are not completely elucidated yet. The availability of whole genome sequence offers the opportunity to draw a picture of

  5. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature

    DEFF Research Database (Denmark)

    Guðnason, Haukur; Dufva, Hans Martin; Bang, Dang Duong

    2007-01-01

    investigate 15 different intercalating DNA dyes for their inhibitory effects on PCR, effects on DNA melting temperature and possible preferential binding to GC-rich sequences. Our results demonstrated that in contrast to the results of SYBR Green I, two intercalating dyes SYTO-13 and SYTO-82 do not inhibit......The importance of real-time polymerase chain reaction (PCR) has increased steadily in clinical applications over the last decade. Many applications utilize SYBR Green I dye to follow the accumulation of amplicons in real time. SYBR Green I has, however, a number of limitations that include...... the inhibition of PCR, preferential binding to GC-rich sequences and effects on melting curve analysis. Although a few alternative dyes without some of these limitations have been recently proposed, no large-scale investigation into the properties of intercalating dyes has been performed. In this study, we...

  6. Use of PCR with Sequence-specific Primers for High-Resolution Human Leukocyte Antigen Typing of Patients with Narcolepsy

    Science.gov (United States)

    Woo, Hye In; Joo, Eun Yeon; Lee, Kyung Wha

    2012-01-01

    Background Narcolepsy is a neurologic disorder characterized by excessive daytime sleepiness, symptoms of abnormal rapid eye movement (REM) sleep, and a strong association with HLA-DRB1*1501, -DQA1*0102, and -DQB1*0602. Here, we investigated the clinico-physical characteristics of Korean patients with narcolepsy, their HLA types, and the clinical utility of high-resolution PCR with sequence-specific primers (PCR-SSP) as a simple typing method for identifying DRB1*15/16, DQA1, and DQB1 alleles. Methods The study population consisted of 67 consecutively enrolled patients having unexplained daytime sleepiness and diagnosed narcolepsy based on clinical and neurological findings. Clinical data and the results of the multiple sleep latency test and polysomnography were reviewed, and HLA typing was performed using both high-resolution PCR-SSP and sequence-based typing (SBT). Results The 44 narcolepsy patients with cataplexy displayed significantly higher frequencies of DRB1*1501 (Pc= 0.003), DQA1*0102 (Pc=0.001), and DQB1*0602 (Pc=0.014) than the patients without cataplexy. Among patients carrying DRB1*1501-DQB1*0602 or DQA1*0102, the frequencies of a mean REM sleep latency of less than 20 min in nocturnal polysomnography and clinical findings, including sleep paralysis and hypnagogic hallucination were significantly higher. SBT and PCR-SSP showed 100% concordance for high-resolution typing of DRB1*15/16 alleles and DQA1 and DQB1 loci. Conclusions The clinical characteristics and somnographic findings of narcolepsy patients were associated with specific HLA alleles, including DRB1*1501, DQA1*0102, and DQB1*0602. Application of high-resolution PCR-SSP, a reliable and simple method, for both allele- and locus-specific HLA typing of DRB1*15/16, DQA1, and DQB1 would be useful for characterizing clinical status among subjects with narcolepsy. PMID:22259780

  7. PCR-based isolation and identification of full-length low-molecular-weight glutenin subunit genes in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Xiaofei; Liu, Dongcheng; Jiang, Wei; Guo, Xiaoli; Yang, Wenlong; Sun, Jiazhu; Ling, Hongqing; Zhang, Aimin

    2011-12-01

    Low-molecular-weight glutenin subunits (LMW-GSs) are encoded by a multi-gene family and are essential for determining the quality of wheat flour products, such as bread and noodles. However, the exact role or contribution of individual LMW-GS genes to wheat quality remains unclear. This is, at least in part, due to the difficulty in characterizing complete sequences of all LMW-GS gene family members in bread wheat. To identify full-length LMW-GS genes, a polymerase chain reaction (PCR)-based method was established, consisting of newly designed conserved primers and the previously developed LMW-GS gene molecular marker system. Using the PCR-based method, 17 LMW-GS genes were identified and characterized in Xiaoyan 54, of which 12 contained full-length sequences. Sequence alignments showed that 13 LMW-GS genes were identical to those found in Xiaoyan 54 using the genomic DNA library screening, and the other four full-length LMW-GS genes were first isolated from Xiaoyan 54. In Chinese Spring, 16 unique LMW-GS genes were isolated, and 13 of them contained full-length coding sequences. Additionally, 16 and 17 LMW-GS genes in Dongnong 101 and Lvhan 328 (chosen from the micro-core collections of Chinese germplasm), respectively, were also identified. Sequence alignments revealed that at least 15 LMW-GS genes were common in the four wheat varieties, and allelic variants of each gene shared high sequence identities (>95%) but exhibited length polymorphism in repetitive regions. This study provides a PCR-based method for efficiently identifying LMW-GS genes in bread wheat, which will improve the characterization of complex members of the LMW-GS gene family and facilitate the understanding of their contributions to wheat quality.

  8. Molecular characterization of Salmonella isolates by REP-PCR and RAPD analysis.

    Science.gov (United States)

    Albufera, U; Bhugaloo-Vial, P; Issack, M I; Jaufeerally-Fakim, Y

    2009-05-01

    Eighteen Salmonella isolates from both human and food (non-human) sources (fish, meat, and poultry) were characterized using conventional culture methods, biochemical, serological, and molecular analyses. REP-PCR and RAPD produced DNA profiles for differentiation purposes. Enterobacterial repetitive intergenic consensus (ERIC), repetitive extragenic palindronic (REP) and BOXAIR primers were selected for REP-PCR and two arbitrary primers, namely OPP-16 and OPS-11 were used for RAPD to generate DNA fingerprints from the Salmonella isolates. REP-PCR method showed greater discriminatory power in differentiating closely related strains of the related strains of Salmonella and produced more complex banding patterns as compared with RAPD. A dendogram was constructed with both sets of profiles using SPSS Version 13.0 computer software and showed that most human isolates were separately clustered from the non-human isolates. Two of the human isolates were closely related to some of the non-human isolates. A good correlation was also observed between the serogrouping of the O antigen and the molecular profiles obtained from REP-PCR and RAPD data of the Salmonella isolates. The results of a principal coordinate analysis (PCA) corresponded to the clustering in the dendrogram.

  9. Two unusual hepatitis C virus subtypes, 2j and 2q, in Spain: Identification by nested-PCR and sequencing of a NS5B region.

    Science.gov (United States)

    Margall, N; March, F; Español, M; Torras, X; Gallego, A; Coll, P

    2015-10-01

    Many studies have reported the use of the NS5B gene to subtype hepatitis C virus (HCV). Other HCV genes, such as HCV-5' UTR, Core (C) and E1, have also been used. In some studies, NS5B have been used together with 5'-UTR or C genes to improve genotyping results obtained using commercial procedures. Only two studies in Spain have compared molecular techniques versus commercial procedures regarding the efficacy of HCV subtyping. The aim of this study was to determine whether nested PCR and sequencing of a NS5B region was more reliable than commercial procedures to subtype HCV. We analyzed the results of HCV genotyping in [726] serum specimens collected from 2001 to 2013. From 2001 to 2011, we used PCR and INNO-LiPA hybridization or its new version Versant HCV Genotype 2.0 assay (471 samples). From 2012 to 2013, we used nested PCR and sequencing of a NS5B region (255 cases). This method used two pairs of primers to amplify the RNA of the sample converted to DNA by retrotranscription. The amplification product of 270 base pairs was further sequenced. To identify the subtype, the sequences obtained were compared to those in the international database: http://hcv.lanl.gov./content/sequence/, HCV/ToolsOutline.html and Geno2pheno[hcv] http://hcv.bioinf.mpi-inf.mpg.de/index.php. Nested PCR of a NS5B region and sequencing identified all but one subtype (0.4%, 1/255), differentiated all 1a subtypes from 1b subtypes, and characterized all HCV 2-4 subtypes. This approach also distinguished two subtypes, 2j and 2q, that had rarely been detected previously in Spain. However, commercial procedures failed to subtype 12.7% (60/471) of samples and to genotype 0.6% of specimens (3/471). Nested PCR and sequencing of a NS5B region improved the subtyping of HCV in comparison with classical procedures and identified two rare subtypes in Spain: 2j and 2q. However, full length genome sequencing is recommended to confirm HCV 2j and 2q subtypes. Copyright © 2015. Published by Elsevier B.V.

  10. A thaumatin-like genomic sequence identification in Vitis vinifera l., stormy wines and musts based on direct pcr

    Directory of Open Access Journals (Sweden)

    Jana Žiarovská

    2018-03-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 Direct polymerase chain reaction method was use to amplify a thaumatin-like sequence of Vitis vinifera L. in grapes as well as in stormy wines and musts. Thaumatin-like proteins (TLPs of Vitis vinifera possess beside its function in abiotic and biotic stress response another one - they are able to cause protein haze in wine unless removed prior to bottling. Direct PCR is an approach where omission of DNA extraction is typical prior the amplification of the target site of plant genome. Crude extract or small pieces of plant tissues are used in the analysis directly without steps of extraction and purification of gDNA. The biological material that was used in analysis was collected during August - October 2017 in local stores and winery Sabo and comprises from cultivars Iršai, Muškát, Savignon Blanc, Svätovavrinecké, Dornfelder and Pálava. Direct PCR was performed by a cutted piece of grape tissue and a dilution buffer was use in 1:2 for stormy wine or must, respectively. Direct amplification of thaumatin-like protein sequence of Vitis vinifera was performed along with the control reactions with the primers for conserved region of plant chloroplast. Possitive amplification of thaumatin-like allergen sequence resulted in 570 bp amplicon. The most abundant amplicons were amplified in stormy wines, followed by musts and the amplicons from grapes were weaker when comparing them to others. The amplicon specificity checking of obtained PCR product of thaumatin-like allergen was performed by restriction cleavage by Psi I and resulted in restriction amplicons of the 80 bp, 81 bp, 94 bp and 315 bp in length. Confirmation of the amplicon specificity by restriction cleavage support the potential of direct PCR to become a reproducible method that will be fully applicable in routine analysis of not only plant genomes in the future, but it was demonstrated, that it works in liquids, too.  

  11. Genetic diversity of Nostoc microsymbionts from Gunnera tinctoria revealed by PCR-STRR fingerprinting.

    Science.gov (United States)

    Guevara, R; Armesto, J J; Caru, M

    2002-08-01

    The cyanobacteria belonging to the genus Nostoc fix atmospheric nitrogen, both as free-living organisms and in symbiotic associations with a wide range of hosts, including bryophytes, gymnosperms (cycads), the small water fern Azolla (Pteridophyte), the angiosperm genus Gunnera, and fungi (lichens). The Gunnera-Nostoc symbiosis is the only one that involves a flowering plant. In Chile, 12 species of Gunnera have been described with a broad distribution in the temperate region. We examined the genetic diversity of Nostoc symbionts from three populations of Gunnera tinctoria from Abtao, Chiloé Island, southern Chile, and microsymbionts from other two species of Gunnera from southern Chile, using PCR amplification of STRR (short tandemly repeated repetitive) sequences of the Nostoc infected tissue. To our knowledge, this is the first report of PCR fingerprinting obtained directly from symbiotic tissue of Gunnera. Genetic analyses revealed that Nostoc symbionts exhibit important genetic diversity among host plants, both within and between Gunnera populations. It was also found that only one Nostoc strain, or closely related strains, established symbiosis with an individual plant host.

  12. PCR-Free Enrichment of Mitochondrial DNA from Human Blood and Cell Lines for High Quality Next-Generation DNA Sequencing.

    Directory of Open Access Journals (Sweden)

    Meetha P Gould

    Full Text Available Recent advances in sequencing technology allow for accurate detection of mitochondrial sequence variants, even those in low abundance at heteroplasmic sites. Considerable sequencing cost savings can be achieved by enriching samples for mitochondrial (relative to nuclear DNA. Reduction in nuclear DNA (nDNA content can also help to avoid false positive variants resulting from nuclear mitochondrial sequences (numts. We isolate intact mitochondrial organelles from both human cell lines and blood components using two separate methods: a magnetic bead binding protocol and differential centrifugation. DNA is extracted and further enriched for mitochondrial DNA (mtDNA by an enzyme digest. Only 1 ng of the purified DNA is necessary for library preparation and next generation sequence (NGS analysis. Enrichment methods are assessed and compared using mtDNA (versus nDNA content as a metric, measured by using real-time quantitative PCR and NGS read analysis. Among the various strategies examined, the optimal is differential centrifugation isolation followed by exonuclease digest. This strategy yields >35% mtDNA reads in blood and cell lines, which corresponds to hundreds-fold enrichment over baseline. The strategy also avoids false variant calls that, as we show, can be induced by the long-range PCR approaches that are the current standard in enrichment procedures. This optimization procedure allows mtDNA enrichment for efficient and accurate massively parallel sequencing, enabling NGS from samples with small amounts of starting material. This will decrease costs by increasing the number of samples that may be multiplexed, ultimately facilitating efforts to better understand mitochondria-related diseases.

  13. Hemispheric Asymmetries in Repetition Enhancement and Suppression Effects in the Newborn Brain.

    Science.gov (United States)

    Bouchon, Camillia; Nazzi, Thierry; Gervain, Judit

    2015-01-01

    The repeated presentation of stimuli typically attenuates neural responses (repetition suppression) or, less commonly, increases them (repetition enhancement) when stimuli are highly complex, degraded or presented under noisy conditions. In adult functional neuroimaging research, these repetition effects are considered as neural correlates of habituation. The development and respective functional significance of these effects in infancy remain largely unknown. This study investigates repetition effects in newborns using functional near-infrared spectroscopy, and specifically the role of stimulus complexity in evoking a repetition enhancement vs. a repetition suppression response, following up on Gervain et al. (2008). In that study, abstract rule-learning was found at birth in cortical areas specific to speech processing, as evidenced by a left-lateralized repetition enhancement of the hemodynamic response to highly variable speech sequences conforming to a repetition-based ABB artificial grammar, but not to a random ABC grammar. Here, the same paradigm was used to investigate how simpler stimuli (12 different sequences per condition as opposed to 140), and simpler presentation conditions (blocked rather than interleaved) would influence repetition effects at birth. Results revealed that the two grammars elicited different dynamics in the two hemispheres. In left fronto-temporal areas, we reproduce the early perceptual discrimination of the two grammars, with ABB giving rise to a greater response at the beginning of the experiment than ABC. In addition, the ABC grammar evoked a repetition enhancement effect over time, whereas a stable response was found for the ABB grammar. Right fronto-temporal areas showed neither initial discrimination, nor change over time to either pattern. Taken together with Gervain et al. (2008), this is the first evidence that manipulating methodological factors influences the presence or absence of neural repetition enhancement effects in

  14. Hemispheric Asymmetries in Repetition Enhancement and Suppression Effects in the Newborn Brain.

    Directory of Open Access Journals (Sweden)

    Camillia Bouchon

    Full Text Available The repeated presentation of stimuli typically attenuates neural responses (repetition suppression or, less commonly, increases them (repetition enhancement when stimuli are highly complex, degraded or presented under noisy conditions. In adult functional neuroimaging research, these repetition effects are considered as neural correlates of habituation. The development and respective functional significance of these effects in infancy remain largely unknown.This study investigates repetition effects in newborns using functional near-infrared spectroscopy, and specifically the role of stimulus complexity in evoking a repetition enhancement vs. a repetition suppression response, following up on Gervain et al. (2008. In that study, abstract rule-learning was found at birth in cortical areas specific to speech processing, as evidenced by a left-lateralized repetition enhancement of the hemodynamic response to highly variable speech sequences conforming to a repetition-based ABB artificial grammar, but not to a random ABC grammar.Here, the same paradigm was used to investigate how simpler stimuli (12 different sequences per condition as opposed to 140, and simpler presentation conditions (blocked rather than interleaved would influence repetition effects at birth.Results revealed that the two grammars elicited different dynamics in the two hemispheres. In left fronto-temporal areas, we reproduce the early perceptual discrimination of the two grammars, with ABB giving rise to a greater response at the beginning of the experiment than ABC. In addition, the ABC grammar evoked a repetition enhancement effect over time, whereas a stable response was found for the ABB grammar. Right fronto-temporal areas showed neither initial discrimination, nor change over time to either pattern.Taken together with Gervain et al. (2008, this is the first evidence that manipulating methodological factors influences the presence or absence of neural repetition enhancement

  15. Comparison of DNA Microarray, Loop-Mediated Isothermal Amplification (LAMP) and Real-Time PCR with DNA Sequencing for Identification of Fusarium spp. Obtained from Patients with Hematologic Malignancies.

    Science.gov (United States)

    de Souza, Marcela; Matsuzawa, Tetsuhiro; Sakai, Kanae; Muraosa, Yasunori; Lyra, Luzia; Busso-Lopes, Ariane Fidelis; Levin, Anna Sara Shafferman; Schreiber, Angélica Zaninelli; Mikami, Yuzuru; Gonoi, Tohoru; Kamei, Katsuhiko; Moretti, Maria Luiza; Trabasso, Plínio

    2017-08-01

    The performance of three molecular biology techniques, i.e., DNA microarray, loop-mediated isothermal amplification (LAMP), and real-time PCR were compared with DNA sequencing for properly identification of 20 isolates of Fusarium spp. obtained from blood stream as etiologic agent of invasive infections in patients with hematologic malignancies. DNA microarray, LAMP and real-time PCR identified 16 (80%) out of 20 samples as Fusarium solani species complex (FSSC) and four (20%) as Fusarium spp. The agreement among the techniques was 100%. LAMP exhibited 100% specificity, while DNA microarray, LAMP and real-time PCR showed 100% sensitivity. The three techniques had 100% agreement with DNA sequencing. Sixteen isolates were identified as FSSC by sequencing, being five Fusarium keratoplasticum, nine Fusarium petroliphilum and two Fusarium solani. On the other hand, sequencing identified four isolates as Fusarium non-solani species complex (FNSSC), being three isolates as Fusarium napiforme and one isolate as Fusarium oxysporum. Finally, LAMP proved to be faster and more accessible than DNA microarray and real-time PCR, since it does not require a thermocycler. Therefore, LAMP signalizes as emerging and promising methodology to be used in routine identification of Fusarium spp. among cases of invasive fungal infections.

  16. Transcription of repetitive DNA in Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S K; Chaudhuri, R K

    1975-01-01

    Repeated DNA sequences of Neurospora crassa were isolated and characterized. Approximately 10 to 12 percent of N. crassa DNA sequence were repeated, of which 7.3 percent were found to be transcribed in mid-log phase of mycelial growth as measured by DNA:RNA hybridization. It is suggested that part of repetitive DNA transcripts in N. crassa were mitochondrial and part were nuclear DNA. Most of the nuclear repeated DNAs, however, code for rRNA and tRNA in N. crassa. (auth)

  17. Comparison of Four Human Papillomavirus Genotyping Methods: Next-generation Sequencing, INNO-LiPA, Electrochemical DNA Chip, and Nested-PCR.

    Science.gov (United States)

    Nilyanimit, Pornjarim; Chansaenroj, Jira; Poomipak, Witthaya; Praianantathavorn, Kesmanee; Payungporn, Sunchai; Poovorawan, Yong

    2018-03-01

    Human papillomavirus (HPV) infection causes cervical cancer, thus necessitating early detection by screening. Rapid and accurate HPV genotyping is crucial both for the assessment of patients with HPV infection and for surveillance studies. Fifty-eight cervicovaginal samples were tested for HPV genotypes using four methods in parallel: nested-PCR followed by conventional sequencing, INNO-LiPA, electrochemical DNA chip, and next-generation sequencing (NGS). Seven HPV genotypes (16, 18, 31, 33, 45, 56, and 58) were identified by all four methods. Nineteen HPV genotypes were detected by NGS, but not by nested-PCR, INNO-LiPA, or electrochemical DNA chip. Although NGS is relatively expensive and complex, it may serve as a sensitive HPV genotyping method. Because of its highly sensitive detection of multiple HPV genotypes, NGS may serve as an alternative for diagnostic HPV genotyping in certain situations. © The Korean Society for Laboratory Medicine

  18. Structurally Complex Organization of Repetitive DNAs in the Genome of Cobia (Rachycentron canadum).

    Science.gov (United States)

    Costa, Gideão W W F; Cioffi, Marcelo de B; Bertollo, Luiz A C; Molina, Wagner F

    2015-06-01

    Repetitive DNAs comprise the largest fraction of the eukaryotic genome. They include microsatellites or simple sequence repeats (SSRs), which play an important role in the chromosome differentiation among fishes. Rachycentron canadum is the only representative of the family Rachycentridae. This species has been focused on several multidisciplinary studies in view of its important potential for marine fish farming. In the present study, distinct classes of repetitive DNAs, with emphasis on SSRs, were mapped in the chromosomes of this species to improve the knowledge of its genome organization. Microsatellites exhibited a diversified distribution, both dispersed in euchromatin and clustered in the heterochromatin. The multilocus location of SSRs strengthened the heterochromatin heterogeneity in this species, as suggested by some previous studies. The colocalization of SSRs with retrotransposons and transposons pointed to a close evolutionary relationship between these repetitive sequences. A number of heterochromatic regions highlighted a greater complex organization than previously supposed, harboring a diversity of repetitive elements. In this sense, there was also evidence of colocalization of active genetic regions and different classes of repetitive DNAs in a common heterochromatic region, which offers a potential opportunity for further researches regarding the interaction of these distinct fractions in fish genomes.

  19. Application of the inter-line PCR for the analyse of genomic rearrangements in radiation-transformed mammalian cell lines

    International Nuclear Information System (INIS)

    Leibhard, S.; Smida, J.

    1996-01-01

    Repetitive DNA sequences of the LINE-family (long interspersed elements) that are widely distributed among the mammalian genome can be activated or altered by the exposure to ionizing radiation [1]. By the integration at new sites in the genome alterations in the expression of genes that are involved in cell transformation and/or carcinogenesis may occur [2, 3]. A new technique -the inter-LINE PCR - has been developed in order to detect and analyse such genomic rearrangements in radiation-transformed cell lines. From the sites of transformation- or tumour-specific changes in the genome it might be possible to develop new tumour markers for diagnostic purpose. (orig.) [de

  20. Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

    Directory of Open Access Journals (Sweden)

    Chang-Gi Back

    2015-09-01

    Full Text Available In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP, X. hyacinthi (XH and X. campestris pv. zantedeschiae (XCZ, based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of 1 pg/μl per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases.

  1. Inverse PCR-based method for isolating novel SINEs from genome.

    Science.gov (United States)

    Han, Yawei; Chen, Liping; Guan, Lihong; He, Shunping

    2014-04-01

    Short interspersed elements (SINEs) are moderately repetitive DNA sequences in eukaryotic genomes. Although eukaryotic genomes contain numerous SINEs copy, it is very difficult and laborious to isolate and identify them by the reported methods. In this study, the inverse PCR was successfully applied to isolate SINEs from Opsariichthys bidens genome in Eastern Asian Cyprinid. A group of SINEs derived from tRNA(Ala) molecular had been identified, which were named Opsar according to Opsariichthys. SINEs characteristics were exhibited in Opsar, which contained a tRNA(Ala)-derived region at the 5' end, a tRNA-unrelated region, and AT-rich region at the 3' end. The tRNA-derived region of Opsar shared 76 % sequence similarity with tRNA(Ala) gene. This result indicated that Opsar could derive from the inactive or pseudogene of tRNA(Ala). The reliability of method was tested by obtaining C-SINE, Ct-SINE, and M-SINEs from Ctenopharyngodon idellus, Megalobrama amblycephala, and Cyprinus carpio genomes. This method is simpler than the previously reported, which successfully omitted many steps, such as preparation of probes, construction of genomic libraries, and hybridization.

  2. Evaluation of Polymerase Chain Reaction (PCR with Slit Skin Smear Examination (SSS to Confirm Clinical Diagnosis of Leprosy in Eastern Nepal.

    Directory of Open Access Journals (Sweden)

    Shraddha Siwakoti

    2016-12-01

    Full Text Available Detection of Mycobacterium leprae in slit skin smear (SSS is a gold standard technique for the leprosy diagnosis. Over recent years, molecular diagnosis by using PCR has been increasingly used as an alternative for its diagnosis due to its higher sensitivity. This study was carried out for comparative evaluation of PCR and SSS microscopy in a cohort of new leprosy cases diagnosed in B. P. Koirala Institute of health Sciences, Dharan, Nepal.In this prospective crossectional study, 50 new clinically diagnosed cases of leprosy were included. DNA was extracted from SSS and PCR was carried out to amplify 129 bp sequence of M. leprae repetitive element. Sensitivity of SSS and PCR was 18% and 72% respectively. Improvement of 54% case detection by PCR clearly showed its advantage over SSS. Furthermore, PCR could confirm the leprosy diagnosis in 66% of AFB negative cases indicating its superiority over SSS. In the paucibacillary (PB patients, whose BI was zero; sensitivity of PCR was 44%, whereas it was 78% in the multibacillary patients.Our study showed PCR to be more sensitive than SSS microscopy in diagnosing leprosy. Moreover, it explored the characteristic feature of PCR which detected higher level of early stage(PB cases tested negative by SSS. Being an expensive technique, PCR may not be feasible in all the cases, however, it would be useful in diagnosis of early cases of leprosy as opposed to SSS.

  3. Evaluation of Polymerase Chain Reaction (PCR) with Slit Skin Smear Examination (SSS) to Confirm Clinical Diagnosis of Leprosy in Eastern Nepal.

    Science.gov (United States)

    Siwakoti, Shraddha; Rai, Keshav; Bhattarai, Narayan Raj; Agarwal, Sudha; Khanal, Basudha

    2016-12-01

    Detection of Mycobacterium leprae in slit skin smear (SSS) is a gold standard technique for the leprosy diagnosis. Over recent years, molecular diagnosis by using PCR has been increasingly used as an alternative for its diagnosis due to its higher sensitivity. This study was carried out for comparative evaluation of PCR and SSS microscopy in a cohort of new leprosy cases diagnosed in B. P. Koirala Institute of health Sciences, Dharan, Nepal. In this prospective crossectional study, 50 new clinically diagnosed cases of leprosy were included. DNA was extracted from SSS and PCR was carried out to amplify 129 bp sequence of M. leprae repetitive element. Sensitivity of SSS and PCR was 18% and 72% respectively. Improvement of 54% case detection by PCR clearly showed its advantage over SSS. Furthermore, PCR could confirm the leprosy diagnosis in 66% of AFB negative cases indicating its superiority over SSS. In the paucibacillary (PB) patients, whose BI was zero; sensitivity of PCR was 44%, whereas it was 78% in the multibacillary patients. Our study showed PCR to be more sensitive than SSS microscopy in diagnosing leprosy. Moreover, it explored the characteristic feature of PCR which detected higher level of early stage(PB) cases tested negative by SSS. Being an expensive technique, PCR may not be feasible in all the cases, however, it would be useful in diagnosis of early cases of leprosy as opposed to SSS.

  4. Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231.

    Science.gov (United States)

    Baptista, Rodrigo P; Reis-Cunha, Joao Luis; DeBarry, Jeremy D; Chiari, Egler; Kissinger, Jessica C; Bartholomeu, Daniella C; Macedo, Andrea M

    2018-02-14

    Next-generation sequencing (NGS) methods are low-cost high-throughput technologies that produce thousands to millions of sequence reads. Despite the high number of raw sequence reads, their short length, relative to Sanger, PacBio or Nanopore reads, complicates the assembly of genomic repeats. Many genome tools are available, but the assembly of highly repetitive genome sequences using only NGS short reads remains challenging. Genome assembly of organisms responsible for important neglected diseases such as Trypanosoma cruzi, the aetiological agent of Chagas disease, is known to be challenging because of their repetitive nature. Only three of six recognized discrete typing units (DTUs) of the parasite have their draft genomes published and therefore genome evolution analyses in the taxon are limited. In this study, we developed a computational workflow to assemble highly repetitive genomes via a combination of de novo and reference-based assembly strategies to better overcome the intrinsic limitations of each, based on Illumina reads. The highly repetitive genome of the human-infecting parasite T. cruzi 231 strain was used as a test subject. The combined-assembly approach shown in this study benefits from the reference-based assembly ability to resolve highly repetitive sequences and from the de novo capacity to assemble genome-specific regions, improving the quality of the assembly. The acceptable confidence obtained by analyzing our results showed that our combined approach is an attractive option to assemble highly repetitive genomes with NGS short reads. Phylogenomic analysis including the 231 strain, the first representative of DTU III whose genome was sequenced, was also performed and provides new insights into T. cruzi genome evolution.

  5. An integrated PCR colony hybridization approach to screen cDNA libraries for full-length coding sequences.

    Science.gov (United States)

    Pollier, Jacob; González-Guzmán, Miguel; Ardiles-Diaz, Wilson; Geelen, Danny; Goossens, Alain

    2011-01-01

    cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) is a commonly used technique for genome-wide expression analysis that does not require prior sequence knowledge. Typically, quantitative expression data and sequence information are obtained for a large number of differentially expressed gene tags. However, most of the gene tags do not correspond to full-length (FL) coding sequences, which is a prerequisite for subsequent functional analysis. A medium-throughput screening strategy, based on integration of polymerase chain reaction (PCR) and colony hybridization, was developed that allows in parallel screening of a cDNA library for FL clones corresponding to incomplete cDNAs. The method was applied to screen for the FL open reading frames of a selection of 163 cDNA-AFLP tags from three different medicinal plants, leading to the identification of 109 (67%) FL clones. Furthermore, the protocol allows for the use of multiple probes in a single hybridization event, thus significantly increasing the throughput when screening for rare transcripts. The presented strategy offers an efficient method for the conversion of incomplete expressed sequence tags (ESTs), such as cDNA-AFLP tags, to FL-coding sequences.

  6. A Simple Method for the Extraction, PCR-amplification, Cloning, and Sequencing of Pasteuria 16S rDNA from Small Numbers of Endospores.

    Science.gov (United States)

    Atibalentja, N; Noel, G R; Ciancio, A

    2004-03-01

    For many years the taxonomy of the genus Pasteuria has been marred with confusion because the bacterium could not be cultured in vitro and, therefore, descriptions were based solely on morphological, developmental, and pathological characteristics. The current study sought to devise a simple method for PCR-amplification, cloning, and sequencing of Pasteuria 16S rDNA from small numbers of endospores, with no need for prior DNA purification. Results show that DNA extracts from plain glass bead-beating of crude suspensions containing 10,000 endospores at 0.2 x 10 endospores ml(-1) were sufficient for PCR-amplification of Pasteuria 16S rDNA, when used in conjunction with specific primers. These results imply that for P. penetrans and P. nishizawae only one parasitized female of Meloidogyne spp. and Heterodera glycines, respectively, should be sufficient, and as few as eight cadavers of Belonolaimus longicaudatus with an average number of 1,250 endospores of "Candidatus Pasteuria usgae" are needed for PCR-amplification of Pasteuria 16S rDNA. The method described in this paper should facilitate the sequencing of the 16S rDNA of the many Pasteuria isolates that have been reported on nematodes and, consequently, expedite the classification of those isolates through comparative sequence analysis.

  7. Repetitive elements may comprise over two-thirds of the human genome.

    Directory of Open Access Journals (Sweden)

    A P Jason de Koning

    2011-12-01

    Full Text Available Transposable elements (TEs are conventionally identified in eukaryotic genomes by alignment to consensus element sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of high-abundance oligonucleotides that are related in sequence space (oligo "clouds". We show here that P-clouds predicts >840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%-69% of the human genome is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of both P-clouds and a commonly used conventional approach, RepeatMasker (RM, to detect different sized fragments of the highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in contrast to P-clouds, which has good sensitivity down to small fragment sizes (∼25 bp. Although short fragments have a high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further developed "element-specific" P-clouds (ESPs to identify novel Alu and MIR SINE elements, and using it we identified ∼100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than previously believed.

  8. Development and Evaluation of a PCR and Mass Spectroscopy-based (PCR-MS) Method for Quantitative, Type-specific Detection of Human Papillomavirus

    Science.gov (United States)

    Patel, Divya A.; Shih, Yang-Jen; Newton, Duane W.; Michael, Claire W.; Oeth, Paul A.; Kane, Michael D.; Opipari, Anthony W.; Ruffin, Mack T.; Kalikin, Linda M.; Kurnit, David M.

    2010-01-01

    Knowledge of the central role of high-risk human papillomavirus (HPV) in cervical carcinogenesis, coupled with an emerging need to monitor the efficacy of newly introduced HPV vaccines, warrant development and evaluation of type-specific, quantitative HPV detection methods. In the present study, a prototype PCR and mass spectroscopy (PCR-MS)-based method to detect and quantitate 13 high-risk HPV types is compared to the Hybrid Capture 2 High Risk HPV DNA test (HC2; Digene Corp., Gaithersburg, MD) in 199 cervical scraping samples and to DNA sequencing in 77 cervical tumor samples. High-risk HPV types were detected in 76/77 (98.7%) cervical tumor samples by PCR-MS. Degenerate and type-specific sequencing confirmed the types detected by PCR-MS. In 199 cervical scraping samples, all 13 HPV types were detected by PCR-MS. Eighteen (14.5%) of 124 cervical scraping samples that were positive for high-risk HPV by HC2 were negative by PCR-MS. In all these cases, degenerate DNA sequencing failed to detect any of the 13 high-risk HPV types. Nearly half (46.7%) of the 75 cervical scraping samples that were negative for high-risk HPV by the HC2 assay were positive by PCR-MS. Type-specific sequencing in a subset of these samples confirmed the HPV type detected by PCR-MS. Quantitative PCR-MS results demonstrated that 11/75 (14.7%) samples contained as much HPV copies/cell as HC2-positive samples. These findings suggest that this prototype PCR-MS assay performs at least as well as HC2 for HPV detection, while offering the additional, unique advantages of type-specific identification and quantitation. Further validation work is underway to define clinically meaningful HPV detection thresholds and to evaluate the potential clinical application of future generations of the PCR-MS assay. PMID:19410602

  9. Development and evaluation of a PCR and mass spectroscopy (PCR-MS)-based method for quantitative, type-specific detection of human papillomavirus.

    Science.gov (United States)

    Patel, Divya A; Shih, Yang-Jen; Newton, Duane W; Michael, Claire W; Oeth, Paul A; Kane, Michael D; Opipari, Anthony W; Ruffin, Mack T; Kalikin, Linda M; Kurnit, David M

    2009-09-01

    Knowledge of the central role of high-risk human papillomavirus (HPV) in cervical carcinogenesis, coupled with an emerging need to monitor the efficacy of newly introduced HPV vaccines, warrant development and evaluation of type-specific, quantitative HPV detection methods. In the present study, a prototype PCR and mass spectroscopy (PCR-MS)-based method to detect and quantitate 13 high-risk HPV types is compared to the Hybrid Capture 2 High-Risk HPV DNA test (HC2; Digene Corp., Gaithersburg, MD) in 199 cervical scraping samples and to DNA sequencing in 77 cervical tumor samples. High-risk HPV types were detected in 76/77 (98.7%) cervical tumor samples by PCR-MS. Degenerate and type-specific sequencing confirmed the types detected by PCR-MS. In 199 cervical scraping samples, all 13 HPV types were detected by PCR-MS. Eighteen (14.5%) of 124 cervical scraping samples that were positive for high-risk HPV by HC2 were negative by PCR-MS. In all these cases, degenerate DNA sequencing failed to detect any of the 13 high-risk HPV types. Nearly half (46.7%) of the 75 cervical scraping samples that were negative for high-risk HPV by the HC2 assay were positive by PCR-MS. Type-specific sequencing in a subset of these samples confirmed the HPV type detected by PCR-MS. Quantitative PCR-MS results demonstrated that 11/75 (14.7%) samples contained as much HPV copies/cell as HC2-positive samples. These findings suggest that this prototype PCR-MS assay performs at least as well as HC2 for HPV detection, while offering the additional, unique advantages of type-specific identification and quantitation. Further validation work is underway to define clinically meaningful HPV detection thresholds and to evaluate the potential clinical application of future generations of the PCR-MS assay.

  10. Establishment of screening technique for mutant cell and analysis of base sequence in the mutation

    International Nuclear Information System (INIS)

    Sofuni, Toshio; Nomi, Takehiko; Yamada, Masami; Masumura, Kenichi

    2000-01-01

    This research project aimed to establish an easy and quick detection method for radiation-induced mutation using molecular-biological techniques and an effective analyzing method for the molecular changes in base sequence. In this year, Spi mutants derived from γ-radiation exposed mouse were analyzed by PCR method and DNA sequence method. Male transgenic mice were exposed to γ-ray at 5,10, 50 Gy and the transgene was taken out from the genome DNA from the spleen in vivo packaging method. Spi mutant plaques were obtained by infecting the recovered phage to E. coli. Sequence analysis for the mutants was made using ALFred DNA sequencer and SequiTherm TM Long-Red Cycle sequencing kit. Sequence analysis was carried out for 41 of 50 independent Spi mutants obtained. The deletions were classified into 4 groups; Group 1 included 15 mutants that were characterized with a large deletion (43 bp-10 kb) with a short homologous sequence. Group 2 included 11 mutants of a large deletion having no homologous sequence at the connecting region. Group 3 included 11 mutants having a short deletion of less than 20 bp, which occurred in the non-repetitive sequence of gam gene and possibly caused by oxidative breakage of DNA or recombination of DNA fragment produced by the breakage. Group 4 included 4 mutants having deletions as short as 20 bp or less in the repetitive sequence of gam gene, resulting in an alteration of the reading frame. Thus, the synthesis of Gam protein was terminated by the appearance of TGA between code 13 and 14 of redB gene, leading to inactivation of gam gene and redBA gene. These results indicated that most of Spi mutants had a deletion in red/gam region and the deletions in more than half mutants occurred in homologous sequences as short as 8 bp. (M.N.)

  11. Interspersion of highly repetitive DNA with single copy DNA in the genome of the red crab, Geryon quinquedens

    Energy Technology Data Exchange (ETDEWEB)

    Christie, N.T. (Univ. of Tennessee, Oak Ridge); Skinner, D.M.

    1979-02-01

    Kinetic analysis of the reassociation of 420 nucleotide (NT) long fragments has shown that essentially all of the repetitive sequences of the DNA of the red crab Geryon quinquedens are highly repetitive. There are negligible amounts of low and intermediate repetitive DNAs. Though atypical of most eukaryotes, this pattern has been observed in al other brachyurans (true crabs) studied. The major repetitive component is subdivided into short runs of 300 NT and longer runs of greater than 1200 NT while the minor component has an average sequence length of 400 NT. Both components reassociate at rates commonly observed for satellite DNAs. Unique among eukaryotes the organization of the genome includes single copy DNA contiguous to short runs (300 NT) of both repetitive components. Although patent satellites are not present, subsets of the repetitive DNA have been isolated by either restriction endonuclease digestion or by centrifugation in Ag/sup +/ or Hg/sup 2 +//Cs/sub 2/SO/sub 4/ density gradients.

  12. Verification of Frequency in Species of Nontuberculous Mycobacteria in Kermanshah Drinking Water Supplies Using the PCR-Sequencing Method.

    Science.gov (United States)

    Mohajeri, Parviz; Yazdani, Laya; Shahraki, Abdolrazagh Hashemi; Alvandi, Amirhoshang; Atashi, Sara; Farahani, Abbas; Almasi, Ali; Rezaei, Mansour

    2017-04-01

    Nontuberculous mycobacteria are habitants of environment, especially in aquatic systems. Some of them cause problems in immunodeficient patients. Over the last decade, 16S rRNA gene sequencing was established in 45 novel species of nontuberculous mycobacteria. Experiences revealed that this method underestimates the diversity, but does not distinguish between some of mycobacterium subsp. To recognize emerging rapidly growing mycobacteria and identify their subsp, rpoB gene sequencing has been developed. To better understand the transmission of nontuberculous mycobacterial species from drinking water and preventing the spread of illness with these bacteria, the aim of this study was to detect the presence of bacteria by PCR-sequencing techniques. Drinking water samples were collected from different areas of Kermanshah city in west of IRAN. After decontamination with cetylpyridinium chloride, samples were filtered with 0.45-micron filters, the filter transferred directly on growth medium waiting to appear in colonies, then DNA extraction and PCR were performed, and products were sent to sequencing. We found 35/110 (32%) nontuberculous mycobacterial species in drinking water samples, isolates included Mycobacterium goodii, Mycobacterium aurum, and Mycobacterium gastri with the most abundance (11.5%), followed by Mycobacterium smegmatis, Mycobacterium porcinum, Mycobacterium peregrinum, Mycobacterium mucogenicum, and Mycobacterium chelonae (8%). In this study, we recognized the evidence of contamination by nontuberculous mycobacteria in corroded water pipes. As a result of the high prevalence of these bacteria in drinking water in Kermanshah, this is important evidence of transmission through drinking water. This finding can also help public health policy makers control these isolates in drinking water supplies in Kermanshah.

  13. Reduced representation approaches to interrogate genome diversity in large repetitive plant genomes.

    Science.gov (United States)

    Hirsch, Cory D; Evans, Joseph; Buell, C Robin; Hirsch, Candice N

    2014-07-01

    Technology and software improvements in the last decade now provide methodologies to access the genome sequence of not only a single accession, but also multiple accessions of plant species. This provides a means to interrogate species diversity at the genome level. Ample diversity among accessions in a collection of species can be found, including single-nucleotide polymorphisms, insertions and deletions, copy number variation and presence/absence variation. For species with small, non-repetitive rich genomes, re-sequencing of query accessions is robust, highly informative, and economically feasible. However, for species with moderate to large sized repetitive-rich genomes, technical and economic barriers prevent en masse genome re-sequencing of accessions. Multiple approaches to access a focused subset of loci in species with larger genomes have been developed, including reduced representation sequencing, exome capture and transcriptome sequencing. Collectively, these approaches have enabled interrogation of diversity on a genome scale for large plant genomes, including crop species important to worldwide food security. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Analysis of repetitive DNA in chromosomes by flow cytometry

    NARCIS (Netherlands)

    Brind'Amour, Julie; Lansdorp, Peter M.

    We developed a flow cytometry method, chromosome flow fluorescence in situ hybridization (FISH), called CFF, to analyze repetitive DNA in chromosomes using FISH with directly labeled peptide nucleic acid (PNA) probes. We used CFF to measure the abundance of interstitial telomeric sequences in

  15. Molecular discrimination of Echinococcus granulosus and Echinococcus multilocularis by sequencing and a new PCR-RFLP method with the potential use for other Echinococcus species.

    Science.gov (United States)

    Şakalar, Çağrı; Kuk, Salih; Erensoy, Ahmet; Dağli, Adile Ferda; Özercan, İbrahim Hanifi; Çetınkaya, Ülfet; Yazar, Süleyman

    2014-01-01

    To develop a novel polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) protocol using a new genomic marker sequence and a novel set of restriction enzymes in order to detect and discriminate 2 Echinococcus species, E. granulosus and E. multilocularis, found in formalin-fixed paraffin-embedded (FFPE) human tissues. DNA was isolated from 11 FFPE human tissue samples positive for cystic echinococcosis or alveolar echinococcosis. A mitochondrial genomic marker region was amplified and sequenced using a novel primer pair and a new PCR-RFLP protocol was developed for the detection and discrimination of E. granulosus and E. multilocularis using a set of restriction enzymes including AccI, MboI, MboII, and TsoI. The selected marker region was amplified using DNA isolated from FFPE human tissue samples positive for cystic echinococcosis or alveolar echinococcosis and the discrimination of E. granulosus and E. multilocularis was accomplished by use of the novel PCR-RFLP method. In this PCR-RFLP protocol, use of any single restriction enzyme is enough for the discrimination of E. granulosus and E. multilocularis. The PCR-RFLP protocol can be potentially used for the discrimination of 5 other Echinococcus species: E. oligarthus, E. shiquicus, E. ortleppi, E. canadensis, and E. vogeli.

  16. Repetitive Stress Injuries

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Repetitive Stress Injuries KidsHealth / For Teens / Repetitive Stress Injuries What's ... t had any problems since. What Are Repetitive Stress Injuries? Repetitive stress injuries (RSIs) are injuries that ...

  17. Lactobacillus strain diversity based on partial hsp60 gene sequences and design of PCR-restriction fragment length polymorphism assays for species identification and differentiation.

    Science.gov (United States)

    Blaiotta, Giuseppe; Fusco, Vincenzina; Ercolini, Danilo; Aponte, Maria; Pepe, Olimpia; Villani, Francesco

    2008-01-01

    A phylogenetic tree showing diversities among 116 partial (499-bp) Lactobacillus hsp60 (groEL, encoding a 60-kDa heat shock protein) nucleotide sequences was obtained and compared to those previously described for 16S rRNA and tuf gene sequences. The topology of the tree produced in this study showed a Lactobacillus species distribution similar, but not identical, to those previously reported. However, according to the most recent systematic studies, a clear differentiation of 43 single-species clusters was detected/identified among the sequences analyzed. The slightly higher variability of the hsp60 nucleotide sequences than of the 16S rRNA sequences offers better opportunities to design or develop molecular assays allowing identification and differentiation of either distant or very closely related Lactobacillus species. Therefore, our results suggest that hsp60 can be considered an excellent molecular marker for inferring the taxonomy and phylogeny of members of the genus Lactobacillus and that the chosen primers can be used in a simple PCR procedure allowing the direct sequencing of the hsp60 fragments. Moreover, in this study we performed a computer-aided restriction endonuclease analysis of all 499-bp hsp60 partial sequences and we showed that the PCR-restriction fragment length polymorphism (RFLP) patterns obtainable by using both endonucleases AluI and TacI (in separate reactions) can allow identification and differentiation of all 43 Lactobacillus species considered, with the exception of the pair L. plantarum/L. pentosus. However, the latter species can be differentiated by further analysis with Sau3AI or MseI. The hsp60 PCR-RFLP approach was efficiently applied to identify and to differentiate a total of 110 wild Lactobacillus strains (including closely related species, such as L. casei and L. rhamnosus or L. plantarum and L. pentosus) isolated from cheese and dry-fermented sausages.

  18. SBH and the integration of complementary approaches in the mapping, sequencing, and understanding of complex genomes

    Energy Technology Data Exchange (ETDEWEB)

    Drmanac, R.; Drmanac, S.; Labat, I.; Vicentic, A.; Gemmell, A.; Stavropoulos, N.; Jarvis, J.

    1992-01-01

    A variant of sequencing by hybridization (SBH) is being developed with a potential to inexpensively determine up to 100 million base pairs per year. The method comprises (1) arraying short clones in 864-well plates; (2) growth of the M13 clones or PCR of the inserts; (3) automated spotting of DNAs by corresponding pin-arrays; (4) hybridization of dotted samples with 200-3000 [sup 32]P- or [sup 33]P-labeled 6- to 8-mer probes; and (5) scoring hybridization signals using storage phosphor plates. Some 200 7- to 8-mers can provide an inventory of the genes if CDNA clones are hybridized, or can define the order of 2-kb genomic clones, creating physical and structural maps with 100-bp resolution; the distribution of G+C, LINEs, SINEs, and gene families would be revealed. cDNAs that represent new genes and genomic clones in regions of interest selected by SBH can be sequenced by a gel method. Uniformly distributed clones from the previous step will be hybridized with 2000--3000 6- to 8-mers. As a result, approximately 50--60% of the genomic regions containing members of large repetitive and gene families and those families represented in GenBank would be completely sequenced. In the less redundant regions, every base pair is expected to be read with 3-4 probes, but the complete sequence can not be reconstructed. Such partial sequences allow the inference of similarity and the recognition of coding, regulatory, and repetitive sequences, as well as study of the evolutionary processes all the way up to the species delineation.

  19. SBH and the integration of complementary approaches in the mapping, sequencing, and understanding of complex genomes

    Energy Technology Data Exchange (ETDEWEB)

    Drmanac, R.; Drmanac, S.; Labat, I.; Vicentic, A.; Gemmell, A.; Stavropoulos, N.; Jarvis, J.

    1992-12-01

    A variant of sequencing by hybridization (SBH) is being developed with a potential to inexpensively determine up to 100 million base pairs per year. The method comprises (1) arraying short clones in 864-well plates; (2) growth of the M13 clones or PCR of the inserts; (3) automated spotting of DNAs by corresponding pin-arrays; (4) hybridization of dotted samples with 200-3000 {sup 32}P- or {sup 33}P-labeled 6- to 8-mer probes; and (5) scoring hybridization signals using storage phosphor plates. Some 200 7- to 8-mers can provide an inventory of the genes if CDNA clones are hybridized, or can define the order of 2-kb genomic clones, creating physical and structural maps with 100-bp resolution; the distribution of G+C, LINEs, SINEs, and gene families would be revealed. cDNAs that represent new genes and genomic clones in regions of interest selected by SBH can be sequenced by a gel method. Uniformly distributed clones from the previous step will be hybridized with 2000--3000 6- to 8-mers. As a result, approximately 50--60% of the genomic regions containing members of large repetitive and gene families and those families represented in GenBank would be completely sequenced. In the less redundant regions, every base pair is expected to be read with 3-4 probes, but the complete sequence can not be reconstructed. Such partial sequences allow the inference of similarity and the recognition of coding, regulatory, and repetitive sequences, as well as study of the evolutionary processes all the way up to the species delineation.

  20. SBH and the integration of complementary approaches in the mapping, sequencing, and understanding of complex genomes

    International Nuclear Information System (INIS)

    Drmanac, R.; Drmanac, S.; Labat, I.; Vicentic, A.; Gemmell, A.; Stavropoulos, N.; Jarvis, J.

    1992-01-01

    A variant of sequencing by hybridization (SBH) is being developed with a potential to inexpensively determine up to 100 million base pairs per year. The method comprises (1) arraying short clones in 864-well plates; (2) growth of the M13 clones or PCR of the inserts; (3) automated spotting of DNAs by corresponding pin-arrays; (4) hybridization of dotted samples with 200-3000 32 P- or 33 P-labeled 6- to 8-mer probes; and (5) scoring hybridization signals using storage phosphor plates. Some 200 7- to 8-mers can provide an inventory of the genes if CDNA clones are hybridized, or can define the order of 2-kb genomic clones, creating physical and structural maps with 100-bp resolution; the distribution of G+C, LINEs, SINEs, and gene families would be revealed. cDNAs that represent new genes and genomic clones in regions of interest selected by SBH can be sequenced by a gel method. Uniformly distributed clones from the previous step will be hybridized with 2000--3000 6- to 8-mers. As a result, approximately 50--60% of the genomic regions containing members of large repetitive and gene families and those families represented in GenBank would be completely sequenced. In the less redundant regions, every base pair is expected to be read with 3-4 probes, but the complete sequence can not be reconstructed. Such partial sequences allow the inference of similarity and the recognition of coding, regulatory, and repetitive sequences, as well as study of the evolutionary processes all the way up to the species delineation

  1. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations

    Science.gov (United States)

    Dannemiller, Karen C.; Lang-Yona, Naama; Yamamoto, Naomichi; Rudich, Yinon; Peccia, Jordan

    2014-02-01

    We examined fungal communities associated with the PM10 mass of Rehovot, Israel outdoor air samples collected in the spring and fall seasons. Fungal communities were described by 454 pyrosequencing of the internal transcribed spacer (ITS) region of the fungal ribosomal RNA encoding gene. To allow for a more quantitative comparison of fungal exposure in humans, the relative abundance values of specific taxa were transformed to absolute concentrations through multiplying these values by the sample's total fungal spore concentration (derived from universal fungal qPCR). Next, the sequencing-based absolute concentrations for Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, and Penicillium/Aspergillus spp. were compared to taxon-specific qPCR concentrations for A. alternata, C. cladosporioides, E. nigrum, and Penicillium/Aspergillus spp. derived from the same spring and fall aerosol samples. Results of these comparisons showed that the absolute concentration values generated from pyrosequencing were strongly associated with the concentration values derived from taxon-specific qPCR (for all four species, p 0.70). The correlation coefficients were greater for species present in higher concentrations. Our microbial aerosol population analyses demonstrated that fungal diversity (number of fungal operational taxonomic units) was higher in the spring compared to the fall (p = 0.02), and principal coordinate analysis showed distinct seasonal differences in taxa distribution (ANOSIM p = 0.004). Among genera containing allergenic and/or pathogenic species, the absolute concentrations of Alternaria, Aspergillus, Fusarium, and Cladosporium were greater in the fall, while Cryptococcus, Penicillium, and Ulocladium concentrations were greater in the spring. The transformation of pyrosequencing fungal population relative abundance data to absolute concentrations can improve next-generation DNA sequencing-based quantitative aerosol exposure assessment.

  2. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    Science.gov (United States)

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  3. Detection of Mycobacterium tuberculosis in extrapulmonary biopsy samples using PCR targeting IS6110, rpoB, and nested-rpoB PCR Cloning.

    Science.gov (United States)

    Meghdadi, Hossein; Khosravi, Azar D; Ghadiri, Ata A; Sina, Amir H; Alami, Ameneh

    2015-01-01

    Present study was aimed to examine the diagnostic utility of polymerase chain reaction (PCR) and nested PCR techniques for the detection of Mycobacterium tuberculosis (MTB) DNA in samples from patients with extra pulmonary tuberculosis (EPTB). In total 80 formalin-fixed, paraffin-embedded (FFPE) samples comprising 70 samples with definite diagnosis of EPTB and 10 samples from known non- EPTB on the basis of histopathology examination, were included in the study. PCR amplification targeting IS6110, rpoB gene and nested PCR targeting the rpoB gene were performed on the extracted DNAs from 80 FFPE samples. The strong positive samples were directly sequenced. For negative samples and those with weak band in nested-rpoB PCR, TA cloning was performed by cloning the products into the plasmid vector with subsequent sequencing. The 95% confidence intervals (CI) for the estimates of sensitivity and specificity were calculated for each method. Fourteen (20%), 34 (48.6%), and 60 (85.7%) of the 70 positive samples confirmed by histopathology, were positive by rpoB-PCR, IS6110-PCR, and nested-rpoB PCR, respectively. By performing TA cloning on samples that yielded weak (n = 8) or negative results (n = 10) in the PCR methods, we were able to improve their quality for later sequencing. All samples with weak band and 7 out of 10 negative samples, showed strong positive results after cloning. So nested-rpoB PCR cloning revealed positivity in 67 out of 70 confirmed samples (95.7%). The sensitivity of these combination methods was calculated as 95.7% in comparison with histopathology examination. The CI for sensitivity of the PCR methods were calculated as 11.39-31.27% for rpoB-PCR, 36.44-60.83% for IS6110- PCR, 75.29-92.93% for nested-rpoB PCR, and 87.98-99.11% for nested-rpoB PCR cloning. The 10 true EPTB negative samples by histopathology, were negative by all tested methods including cloning and were used to calculate the specificity of the applied methods. The CI for 100

  4. Characterization and distribution of repetitive elements in association with genes in the human genome.

    Science.gov (United States)

    Liang, Kai-Chiang; Tseng, Joseph T; Tsai, Shaw-Jenq; Sun, H Sunny

    2015-08-01

    Repetitive elements constitute more than 50% of the human genome. Recent studies implied that the complexity of living organisms is not just a direct outcome of a number of coding sequences; the repetitive elements, which do not encode proteins, may also play a significant role. Though scattered studies showed that repetitive elements in the regulatory regions of a gene control gene expression, no systematic survey has been done to report the characterization and distribution of various types of these repetitive elements in the human genome. Sequences from 5' and 3' untranslated regions and upstream and downstream of a gene were downloaded from the Ensembl database. The repetitive elements in the neighboring of each gene were identified and classified using cross-matching implemented in the RepeatMasker. The annotation and distribution of distinct classes of repetitive elements associated with individual gene were collected to characterize genes in association with different types of repetitive elements using systems biology program. We identified a total of 1,068,400 repetitive elements which belong to 37-class families and 1235 subclasses that are associated with 33,761 genes and 57,365 transcripts. In addition, we found that the tandem repeats preferentially locate proximal to the transcription start site (TSS) of genes and the major function of these genes are involved in developmental processes. On the other hand, interspersed repetitive elements showed a tendency to be accumulated at distal region from the TSS and the function of interspersed repeat-containing genes took part in the catabolic/metabolic processes. Results from the distribution analysis were collected and used to construct a gene-based repetitive element database (GBRED; http://www.binfo.ncku.edu.tw/GBRED/index.html). A user-friendly web interface was designed to provide the information of repetitive elements associated with any particular gene(s). This is the first study focusing on the gene

  5. Clinical Application of Picodroplet Digital PCR Technology for Rapid Detection of EGFR T790M in Next-Generation Sequencing Libraries and DNA from Limited Tumor Samples.

    Science.gov (United States)

    Borsu, Laetitia; Intrieri, Julie; Thampi, Linta; Yu, Helena; Riely, Gregory; Nafa, Khedoudja; Chandramohan, Raghu; Ladanyi, Marc; Arcila, Maria E

    2016-11-01

    Although next-generation sequencing (NGS) is a robust technology for comprehensive assessment of EGFR-mutant lung adenocarcinomas with acquired resistance to tyrosine kinase inhibitors, it may not provide sufficiently rapid and sensitive detection of the EGFR T790M mutation, the most clinically relevant resistance biomarker. Here, we describe a digital PCR (dPCR) assay for rapid T790M detection on aliquots of NGS libraries prepared for comprehensive profiling, fully maximizing broad genomic analysis on limited samples. Tumor DNAs from patients with EGFR-mutant lung adenocarcinomas and acquired resistance to epidermal growth factor receptor inhibitors were prepared for Memorial Sloan-Kettering-Integrated Mutation Profiling of Actionable Cancer Targets sequencing, a hybrid capture-based assay interrogating 410 cancer-related genes. Precapture library aliquots were used for rapid EGFR T790M testing by dPCR, and results were compared with NGS and locked nucleic acid-PCR Sanger sequencing (reference high sensitivity method). Seventy resistance samples showed 99% concordance with the reference high sensitivity method in accuracy studies. Input as low as 2.5 ng provided a sensitivity of 1% and improved further with increasing DNA input. dPCR on libraries required less DNA and showed better performance than direct genomic DNA. dPCR on NGS libraries is a robust and rapid approach to EGFR T790M testing, allowing most economical utilization of limited material for comprehensive assessment. The same assay can also be performed directly on any limited DNA source and cell-free DNA. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Use of next generation sequencing data to develop a qPCR method for specific detection of EU-unauthorized genetically modified Bacillus subtilis overproducing riboflavin.

    Science.gov (United States)

    Barbau-Piednoir, Elodie; De Keersmaecker, Sigrid C J; Delvoye, Maud; Gau, Céline; Philipp, Patrick; Roosens, Nancy H

    2015-11-11

    Recently, the presence of an unauthorized genetically modified (GM) Bacillus subtilis bacterium overproducing vitamin B2 in a feed additive was notified by the Rapid Alert System for Food and Feed (RASFF). This has demonstrated that a contamination by a GM micro-organism (GMM) may occur in feed additives and has confronted for the first time,the enforcement laboratories with this type of RASFF. As no sequence information of this GMM nor any specific detection or identification method was available, Next GenerationSequencing (NGS) was used to generate sequence information. However, NGS data analysis often requires appropriate tools, involving bioinformatics expertise which is not alwayspresent in the average enforcement laboratory. This hampers the use of this technology to rapidly obtain critical sequence information in order to be able to develop a specific qPCRdetection method. Data generated by NGS were exploited using a simple BLAST approach. A TaqMan® qPCR method was developed and tested on isolated bacterial strains and on the feed additive directly. In this study, a very simple strategy based on the common BLAST tools that can be used by any enforcement lab without profound bioinformatics expertise, was successfully used toanalyse the B. subtilis data generated by NGS. The results were used to design and assess a new TaqMan® qPCR method, specifically detecting this GM vitamin B2 overproducing bacterium. The method complies with EU critical performance parameters for specificity, sensitivity, PCR efficiency and repeatability. The VitB2-UGM method also could detect the B. subtilis strain in genomic DNA extracted from the feed additive, without prior culturing step. The proposed method, provides a crucial tool for specifically and rapidly identifying this unauthorized GM bacterium in food and feed additives by enforcement laboratories. Moreover, this work can be seen as a case study to substantiate how the use of NGS data can offer an added value to easily

  7. Differentiation of sheep pox and goat poxviruses by sequence analysis and PCR-RFLP of P32 gene.

    Science.gov (United States)

    Hosamani, Madhusudan; Mondal, Bimalendu; Tembhurne, Prabhakar A; Bandyopadhyay, Santanu Kumar; Singh, Raj Kumar; Rasool, Thaha Jamal

    2004-08-01

    Sheep pox and Goat pox are highly contagious viral diseases of small ruminants. These diseases were earlier thought to be caused by a single species of virus, as they are serologically indistinguishable. P32, one of the major immunogenic genes of Capripoxvirus, was isolated and Sequenced from two Indian isolates of goat poxvirus (GPV) and a vaccine strain of sheep poxvirus (SPV). The sequences were compared with other P32 sequences of capripoxviruses available in the database. Sequence analysis revealed that sheep pox and goat poxviruses share 97.5 and 94.7% homology at nucleotide and amino acid level, respectively. A major difference between them is the presence of an additional aspartic acid at 55th position of P32 of sheep poxvirus that is absent in both goat poxvirus and lumpy skin disease virus. Further, six unique neutral nucleotide substitutions were observed at positions 77, 275, 403, 552, 867 and 964 in the sequence of goat poxvirus, which can be taken as GPV signature residues. Similar unique nucleotide signatures could be identified in SPV and LSDV sequences also. Phylogenetic analysis showed that members of the Capripoxvirus could be delineated into three distinct clusters of GPV, SPV and LSDV based on the P32 genomic sequence. Using this information, a PCR-RFLP method has been developed for unequivocal genomic differentiation of SPV and GPV.

  8. Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients.

    Science.gov (United States)

    Prudencio, Mercedes; Gonzales, Patrick K; Cook, Casey N; Gendron, Tania F; Daughrity, Lillian M; Song, Yuping; Ebbert, Mark T W; van Blitterswijk, Marka; Zhang, Yong-Jie; Jansen-West, Karen; Baker, Matthew C; DeTure, Michael; Rademakers, Rosa; Boylan, Kevin B; Dickson, Dennis W; Petrucelli, Leonard; Link, Christopher D

    2017-09-01

    Significant transcriptome alterations are detected in the brain of patients with amyotrophic lateral sclerosis (ALS), including carriers of the C9orf72 repeat expansion and C9orf72-negative sporadic cases. Recently, the expression of repetitive element transcripts has been associated with toxicity and, while increased repetitive element expression has been observed in several neurodegenerative diseases, little is known about their contribution to ALS. To assess whether aberrant expression of repetitive element sequences are observed in ALS, we analysed RNA sequencing data from C9orf72-positive and sporadic ALS cases, as well as healthy controls. Transcripts from multiple classes and subclasses of repetitive elements (LINEs, endogenous retroviruses, DNA transposons, simple repeats, etc.) were significantly increased in the frontal cortex of C9orf72 ALS patients. A large collection of patient samples, representing both C9orf72 positive and negative ALS, ALS/FTLD, and FTLD cases, was used to validate the levels of several repetitive element transcripts. These analyses confirmed that repetitive element expression was significantly increased in C9orf72-positive compared to C9orf72-negative or control cases. While previous studies suggest an important link between TDP-43 and repetitive element biology, our data indicate that TDP-43 pathology alone is insufficient to account for the observed changes in repetitive elements in ALS/FTLD. Instead, we found that repetitive element expression positively correlated with RNA polymerase II activity in postmortem brain, and pharmacologic modulation of RNA polymerase II activity altered repetitive element expression in vitro. We conclude that increased RNA polymerase II activity in ALS/FTLD may lead to increased repetitive element transcript expression, a novel pathological feature of ALS/FTLD. © The Author 2017. Published by Oxford University Press.

  9. Performance of repetitive tasks induces decreased grip strength and increased fibrogenic proteins in skeletal muscle: role of force and inflammation.

    Directory of Open Access Journals (Sweden)

    Samir M Abdelmagid

    Full Text Available This study elucidates exposure-response relationships between performance of repetitive tasks, grip strength declines, and fibrogenic-related protein changes in muscles, and their link to inflammation. Specifically, we examined forearm flexor digitorum muscles for changes in connective tissue growth factor (CTGF; a matrix protein associated with fibrosis, collagen type I (Col1; a matrix component, and transforming growth factor beta 1 (TGFB1; an upstream modulator of CTGF and collagen, in rats performing one of two repetitive tasks, with or without anti-inflammatory drugs.To examine the roles of force versus repetition, rats performed either a high repetition negligible force food retrieval task (HRNF, or a high repetition high force handle-pulling task (HRHF, for up to 9 weeks, with results compared to trained only (TR-NF or TR-HF and normal control rats. Grip strength declined with both tasks, with the greatest declines in 9-week HRHF rats. Quantitative PCR (qPCR analyses of HRNF muscles showed increased expression of Col1 in weeks 3-9, and CTGF in weeks 6 and 9. Immunohistochemistry confirmed PCR results, and also showed greater increases of CTGF and collagen matrix in 9-week HRHF rats than 9-week HRNF rats. ELISA, and immunohistochemistry revealed greater increases of TGFB1 in TR-HF and 6-week HRHF, compared to 6-week HRNF rats. To examine the role of inflammation, results from 6-week HRHF rats were compared to rats receiving ibuprofen or anti-TNF-α treatment in HRHF weeks 4-6. Both treatments attenuated HRHF-induced increases in CTGF and fibrosis by 6 weeks of task performance. Ibuprofen attenuated TGFB1 increases and grip strength declines, matching our prior results with anti-TNFα.Performance of highly repetitive tasks was associated with force-dependent declines in grip strength and increased fibrogenic-related proteins in flexor digitorum muscles. These changes were attenuated, at least short-term, by anti-inflammatory treatments.

  10. Analysis of Multiallelic CNVs by Emulsion Haplotype Fusion PCR.

    Science.gov (United States)

    Tyson, Jess; Armour, John A L

    2017-01-01

    Emulsion-fusion PCR recovers long-range sequence information by combining products in cis from individual genomic DNA molecules. Emulsion droplets act as very numerous small reaction chambers in which different PCR products from a single genomic DNA molecule are condensed into short joint products, to unite sequences in cis from widely separated genomic sites. These products can therefore provide information about the arrangement of sequences and variants at a larger scale than established long-read sequencing methods. The method has been useful in defining the phase of variants in haplotypes, the typing of inversions, and determining the configuration of sequence variants in multiallelic CNVs. In this description we outline the rationale for the application of emulsion-fusion PCR methods to the analysis of multiallelic CNVs, and give practical details for our own implementation of the method in that context.

  11. PCR-SSCP analysis and its application to human genome study

    International Nuclear Information System (INIS)

    Hayashi, Kenshi

    1994-01-01

    A large amount of DNA sequence data are now available owing to the development of the human genome project. These data are deposited in public databases, e.g. DDBJ, GebBank and EMBL, and freely accessible to scientific community. One of the major advantages of having these databases is that we can now detect sequence differences between individuals in a large scale. Using the sequence informations, we can design primer sequences, amplify various target regions of the sample DNA's by PCR and detect abnormal sequence changes from reference, or normal sequences. Detecting sequence changes, or mutations, are essential part of searching genes responsible for hereditary diseases and also DNA diagnosis of hereditary diseases or cancer. We can also measure mutation frequency of the human genome by knowing its variability. Our group has developed and been improving a method, PCR-SSCP analysis, as an extremely rapid and easy technique for detection of sequence differences between sample DNA's. Knowing the sensitivity (percentage detection of mutations) of this technique is important in evaluating usefulness of it for the purposes stated above. Considerable number of experiences on PCR-SSCP analysis of fragments shorter than 300 b.p. are accumulating. We summarize here the sensitivity of PCR-SSCP analysis for various sequence context of this size range examined in various electrophoretic conditions conducted in many laboratories. Data on mutation detection by this technique for longer fragments are limited. We also present oue effort for defining electrophoretic conditions of PCR-SSCP analysis when examining longer (350 to 600 b.p.) fragments. (author)

  12. A Short Interspersed Nuclear Element (SINE)-Based Real-Time PCR Approach to Detect and Quantify Porcine Component in Meat Products.

    Science.gov (United States)

    Zhang, Chi; Fang, Xin; Qiu, Haopu; Li, Ning

    2015-01-01

    Real-time PCR amplification of mitochondria gene could not be used for DNA quantification, and that of single copy DNA did not allow an ideal sensitivity. Moreover, cross-reactions among similar species were commonly observed in the published methods amplifying repetitive sequence, which hindered their further application. The purpose of this study was to establish a short interspersed nuclear element (SINE)-based real-time PCR approach having high specificity for species detection that could be used in DNA quantification. After massive screening of candidate Sus scrofa SINEs, one optimal combination of primers and probe was selected, which had no cross-reaction with other common meat species. LOD of the method was 44 fg DNA/reaction. Further, quantification tests showed this approach was practical in DNA estimation without tissue variance. Thus, this study provided a new tool for qualitative detection of porcine component, which could be promising in the QC of meat products.

  13. PCR amplification and sequences of cDNA clones for the small and large subunits of ADP-glucose pyrophosphorylase from barley tissues.

    Science.gov (United States)

    Villand, P; Aalen, R; Olsen, O A; Lüthi, E; Lönneborg, A; Kleczkowski, L A

    1992-06-01

    Several cDNAs encoding the small and large subunit of ADP-glucose pyrophosphorylase (AGP) were isolated from total RNA of the starchy endosperm, roots and leaves of barley by polymerase chain reaction (PCR). Sets of degenerate oligonucleotide primers, based on previously published conserved amino acid sequences of plant AGP, were used for synthesis and amplification of the cDNAs. For either the endosperm, roots and leaves, the restriction analysis of PCR products (ca. 550 nucleotides each) has revealed heterogeneity, suggesting presence of three transcripts for AGP in the endosperm and roots, and up to two AGP transcripts in the leaf tissue. Based on the derived amino acid sequences, two clones from the endosperm, beps and bepl, were identified as coding for the small and large subunit of AGP, respectively, while a leaf transcript (blpl) encoded the putative large subunit of AGP. There was about 50% identity between the endosperm clones, and both of them were about 60% identical to the leaf cDNA. Northern blot analysis has indicated that beps and bepl are expressed in both the endosperm and roots, while blpl is detectable only in leaves. Application of the PCR technique in studies on gene structure and gene expression of plant AGP is discussed.

  14. [Complete genome sequencing and sequence analysis of BCG Tice].

    Science.gov (United States)

    Wang, Zhiming; Pan, Yuanlong; Wu, Jun; Zhu, Baoli

    2012-10-04

    The objective of this study is to obtain the complete genome sequence of Bacillus Calmette-Guerin Tice (BCG Tice), in order to provide more information about the molecular biology of BCG Tice and design more reasonable vaccines to prevent tuberculosis. We assembled the data from high-throughput sequencing with SOAPdenovo software, with many contigs and scaffolds obtained. There are many sequence gaps and physical gaps remained as a result of regional low coverage and low quality. We designed primers at the end of contigs and performed PCR amplification in order to link these contigs and scaffolds. With various enzymes to perform PCR amplification, adjustment of PCR reaction conditions, and combined with clone construction to sequence, all the gaps were finished. We obtained the complete genome sequence of BCG Tice and submitted it to GenBank of National Center for Biotechnology Information (NCBI). The genome of BCG Tice is 4334064 base pairs in length, with GC content 65.65%. The problems and strategies during the finishing step of BCG Tice sequencing are illuminated here, with the hope of affording some experience to those who are involved in the finishing step of genome sequencing. The microarray data were verified by our results.

  15. Microfluidic PCR Amplification and MiSeq Amplicon Sequencing Techniques for High-Throughput Detection and Genotyping of Human Pathogenic RNA Viruses in Human Feces, Sewage, and Oysters

    Directory of Open Access Journals (Sweden)

    Mamoru Oshiki

    2018-04-01

    Full Text Available Detection and genotyping of pathogenic RNA viruses in human and environmental samples are useful for monitoring the circulation and prevalence of these pathogens, whereas a conventional PCR assay followed by Sanger sequencing is time-consuming and laborious. The present study aimed to develop a high-throughput detection-and-genotyping tool for 11 human RNA viruses [Aichi virus; astrovirus; enterovirus; norovirus genogroup I (GI, GII, and GIV; hepatitis A virus; hepatitis E virus; rotavirus; sapovirus; and human parechovirus] using a microfluidic device and next-generation sequencer. Microfluidic nested PCR was carried out on a 48.48 Access Array chip, and the amplicons were recovered and used for MiSeq sequencing (Illumina, Tokyo, Japan; genotyping was conducted by homology searching and phylogenetic analysis of the obtained sequence reads. The detection limit of the 11 tested viruses ranged from 100 to 103 copies/μL in cDNA sample, corresponding to 101–104 copies/mL-sewage, 105–108 copies/g-human feces, and 102–105 copies/g-digestive tissues of oyster. The developed assay was successfully applied for simultaneous detection and genotyping of RNA viruses to samples of human feces, sewage, and artificially contaminated oysters. Microfluidic nested PCR followed by MiSeq sequencing enables efficient tracking of the fate of multiple RNA viruses in various environments, which is essential for a better understanding of the circulation of human pathogenic RNA viruses in the human population.

  16. Comparison of the performance in detection of HPV infections between the high-risk HPV genotyping real time PCR and the PCR-reverse dot blot assays.

    Science.gov (United States)

    Zhang, Lahong; Dai, Yibei; Chen, Jiahuan; Hong, Liquan; Liu, Yuhua; Ke, Qiang; Chen, Yiwen; Cai, Chengsong; Liu, Xia; Chen, Zhaojun

    2018-01-01

    A new multiplex real-time PCR assay, the high-risk HPV genotyping real time PCR assay (HR HPV RT-PCR), has been developed to detect 15 high-risk HPV types with respective viral loads. In this report, a total of 684 cervical specimens from women diagnosed with vaginitis were assessed by the HR HPV RT-PCR and the PCR reaction and reverse dot blot (PCR-RDB) assays, using a PCR-sequencing method as a reference standard. A total coincidence of 97.7% between the HR HPV RT PCR and the PCR-RDB assays was determined with a Kappa value of 0.953. The HR HPV RT PCR assay had sensitivity, specificity, and concordance rates (accuracy) of 99.7%, 99.7%, and 99.7%, respectively, as confirmed by PCR-sequencing, while the PCR-RDB assay had respective rates of 98.8%, 97.1%, and 98.0%. The overall rate of HPV infection, determined by PCR-sequencing, in women diagnosed with vaginitis was 49.85%, including 36.26% of single infection and 13.6% of multiple infections. The most common infections among the 15 high-risk HPV types in women diagnosed with vaginitis were HPV-52, HPV-16, and HPV-58, with a total detection rate of 10.23%, 7.75%, and 5.85%, respectively. We conclude that the HR HPV RT PCR assay exhibits better clinical performance than the PCR-RDB assay, and is an ideal alternative method for HPV genotyping. In addition, the HR HPV RT PCR assay provides HPV DNA viral loads, and could serve as a quantitative marker in the diagnosis and treatment of single and multiple HPV infections. © 2017 Wiley Periodicals, Inc.

  17. IDENTIFIKASI TIPE HLA KELAS II DENGAN TEKNIK PCR

    Directory of Open Access Journals (Sweden)

    Ervi Salwati

    2012-09-01

    Full Text Available HLA (Human Leukocyte Antigen contains a set of genes located together on the short arm of chromosome 6. These genes control immune responses, graft acceptance or rejection and tumor surveillance. These abilities have close relationship with genetic variation (occur in "many forms" or alleles that bind and present antigens to T lymphocytes. Using advanced technology and molecular biology approaches (PCR technique detection of genetic variation in the HLA region (or HLA typing has been performed based on DNA.. PCR is an in vitro technique to amplify the DNA sequence enzymatically. "Sequence Specific Primers" (SSP are designed for this PCR to obtain amplification of specific alleles or groups of alleles. The PCR products are visualized through agarose gel electrophoresis stained with ethidium bromide. The PCR technique requires small amount of whole blood (0.5 - 1 ml, gives rapid, accurate and complete result. This paper discuss identification of HLA class II typing using PCR-SSP technique and show the examples of the results.   Key words: HLA (Human Leukocyte Antigen class II, PCR (Polymerase Chain Reaction

  18. Multiplex PCR identification of Taenia spp. in rodents and carnivores.

    Science.gov (United States)

    Al-Sabi, Mohammad N S; Kapel, Christian M O

    2011-11-01

    The genus Taenia includes several species of veterinary and public health importance, but diagnosis of the etiological agent in definitive and intermediate hosts often relies on labor intensive and few specific morphometric criteria, especially in immature worms and underdeveloped metacestodes. In the present study, a multiplex PCR, based on five primers targeting the 18S rDNA and ITS2 sequences, produced a species-specific banding patterns for a range of Taenia spp. Species typing by the multiplex PCR was compared to morphological identification and sequencing of cox1 and/or 12S rDNA genes. As compared to sequencing, the multiplex PCR identified 31 of 32 Taenia metacestodes from rodents, whereas only 14 cysts were specifically identified by morphology. Likewise, the multiplex PCR identified 108 of 130 adult worms, while only 57 were identified to species by morphology. The tested multiplex PCR system may potentially be used for studies of Taenia spp. transmitted between rodents and carnivores.

  19. Solid-phase PCR for rapid multiplex detection of Salmonella spp. at the subspecies level, with amplification efficiency comparable to conventional PCR

    DEFF Research Database (Denmark)

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas

    2017-01-01

    Solid-phase PCR (SP-PCR) has attracted considerable interest in different research fields since it allows parallel DNA amplification on the surface of a solid substrate. However, the applications of SP-PCR have been hampered by the low efficiency of the solid-phase amplification. In order to incr...... diagnosis, high-throughput DNA sequencing, and single-nucleotide polymorphism analysis. Graphical abstract Schematic representation of solid-phase PCR....

  20. Denoising PCR-amplified metagenome data

    Directory of Open Access Journals (Sweden)

    Rosen Michael J

    2012-10-01

    Full Text Available Abstract Background PCR amplification and high-throughput sequencing theoretically enable the characterization of the finest-scale diversity in natural microbial and viral populations, but each of these methods introduces random errors that are difficult to distinguish from genuine biological diversity. Several approaches have been proposed to denoise these data but lack either speed or accuracy. Results We introduce a new denoising algorithm that we call DADA (Divisive Amplicon Denoising Algorithm. Without training data, DADA infers both the sample genotypes and error parameters that produced a metagenome data set. We demonstrate performance on control data sequenced on Roche’s 454 platform, and compare the results to the most accurate denoising software currently available, AmpliconNoise. Conclusions DADA is more accurate and over an order of magnitude faster than AmpliconNoise. It eliminates the need for training data to establish error parameters, fully utilizes sequence-abundance information, and enables inclusion of context-dependent PCR error rates. It should be readily extensible to other sequencing platforms such as Illumina.

  1. Utilisation of Rep-PCR to track microbes in aerosols collected adjacent to their source, a saline lake in Victoria, Australia.

    Science.gov (United States)

    Munday, Chris I; O'Loingsigh, Tadhg; Tapper, Nigel J; De Deckker, Patrick; Allison, Gwen E

    2013-04-15

    Dust storms are a major source of aerosolized bacteria, especially in the drought conditions experienced in Australia in the decade to 2009. The major aims of this project were to identify the culturable bacteria in environmental samples and to genetically fingerprint all isolates using repetitive element PCR (Rep-PCR) to investigate the possibility of tracking isolates from their source into the atmosphere. Four field trips were conducted to a dry lake in western Victoria, Australia to sample aerosols and sediments. Aerosols were collected at heights up to 150 m using vacuum pumps with filters attached to a tethered helium balloon, while corresponding sediments were collected in sterile polypropylene tubes. Isolates were cultivated on Tryptic Soy Agar, R2 Agar and Marine Agar, and grown in dark conditions at ambient temperature. By sequencing the 16S rRNA gene of 270 isolates, fifteen different bacterial families were identified, with both the aerosols and sediments dominated by the Bacillaceae family. Four sets of Rep-PCR primers were tested, with the ERIC and (GTG)5 primers proving to be the most suitable for fingerprinting the cultured taxa. Rep-PCR revealed very high strain diversity in the samples collected, however some strains were still able to be tracked from sediments up to 150 m in height. This shows the potential of Rep-PCR, however very large reference databases would be required for the technique to be more useful. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Comparison of a conventional and nested PCR for diagnostic confirmation and genotyping of Orientia tsutsugamushi.

    Science.gov (United States)

    Janardhanan, Jeshina; Prakash, John Antony Jude; Abraham, Ooriapadickal C; Varghese, George M

    2014-05-01

    A nested polymerase chain reaction (PCR) targeting the 56-kDa antigen gene is currently the most commonly used molecular technique for confirmation of scrub typhus and genotyping of Orientia tsutsugamushi. In this study, we have compared the commonly used nested PCR (N-PCR) with a single-step conventional PCR (C-PCR) for amplification and genotyping. Eschar samples collected from 24 patients with scrub typhus confirmed by IgM enzyme-linked immunosorbent assay were used for DNA extraction following which amplifications were carried out using nested and C-PCR methods. The amplicons were sequenced and compared to other sequences in the database using BLAST. Conventional PCR showed a high positivity rate of 95.8% compared to the 75% observed using N-PCR. On sequence analysis, the N-PCR amplified region showed more variation among strains than the C-PCR amplified region. The C-PCR, which is more economical, provided faster and better results compared to N-PCR. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Control method of Three-phase Four-leg converter based on repetitive control

    Science.gov (United States)

    Hui, Wang

    2018-03-01

    The research chose the magnetic levitation force of wind power generation system as the object. In order to improve the power quality problem caused by unbalanced load in power supply system, we combined the characteristics and repetitive control principle of magnetic levitation wind power generation system, and then an independent control strategy for three-phase four-leg converter was proposed. In this paper, based on the symmetric component method, the second order generalized integrator was used to generate the positive and negative sequence of signals, and the decoupling control was carried out under the synchronous rotating reference frame, in which the positive and negative sequence voltage is PI double closed loop, and a PI regulator with repetitive control was introduced to eliminate the static error regarding the fundamental frequency fluctuation characteristic of zero sequence component. The simulation results based on Matlab/Simulink show that the proposed control project can effectively suppress the disturbance caused by unbalanced loads and maintain the load voltage balance. The project is easy to be achieved and remarkably improves the quality of the independent power supply system.

  4. SCREENING OF COMMON FLAX FAD GENES BY PCR

    Directory of Open Access Journals (Sweden)

    Veronika Štefúnová

    2013-02-01

    Full Text Available Currently, flax (Linum usitatissimum L. is an important crop from commercial and economical aspects. In the spotlight is the linseed oil as a source of α-linolenic acid. The aim of presented study was to analyse fatty acid desaturase (FAD genes in flax. Several genotypes of flax (Hohenheim, La Plata 1938, Redwing USA and Escalina were used. The primers described by Vrinten et al. (2005 were used for PCR amplification reactions. Two FAD3 genes, LuFAD3A and LuFAD3B, were identified in a genome of flax. Subsequently the nucleotide sequences between origins and genotypes of flax FAD genes were compared. Primarily were used the nucleotide sequences of FAD2 and FAD3C genes available in NCBI database. Differences were found using BLAST program in nucleotide sequences of FAD genes and the specific primers were designed to amplify a specific target sequences in a genome of flax. These primers were used in PCR amplification reactions to identification of FAD2 and FAD3C genes. The PCR products were separated by electrophoresis on agarose gel.

  5. Amino acid and nucleotide recurrence in aligned sequences: synonymous substitution patterns in association with global and local base compositions.

    Science.gov (United States)

    Nishizawa, M; Nishizawa, K

    2000-10-01

    The tendency for repetitiveness of nucleotides in DNA sequences has been reported for a variety of organisms. We show that the tendency for repetitive use of amino acids is widespread and is observed even for segments conserved between human and Drosophila melanogaster at the level of >50% amino acid identity. This indicates that repetitiveness influences not only the weakly constrained segments but also those sequence segments conserved among phyla. Not only glutamine (Q) but also many of the 20 amino acids show a comparable level of repetitiveness. Repetitiveness in bases at codon position 3 is stronger for human than for D.melanogaster, whereas local repetitiveness in intron sequences is similar between the two organisms. While genes for immune system-specific proteins, but not ancient human genes (i.e. human homologs of Escherichia coli genes), have repetitiveness at codon bases 1 and 2, repetitiveness at codon base 3 for these groups is similar, suggesting that the human genome has at least two mechanisms generating local repetitiveness. Neither amino acid nor nucleotide repetitiveness is observed beyond the exon boundary, denying the possibility that such repetitiveness could mainly stem from natural selection on mRNA or protein sequences. Analyses of mammalian sequence alignments show that while the 'between gene' GC content heterogeneity, which is linked to 'isochores', is a principal factor associated with the bias in substitution patterns in human, 'within gene' heterogeneity in nucleotide composition is also associated with such bias on a more local scale. The relationship amongst the various types of repetitiveness is discussed.

  6. Development of species-specific DNA probes for Campylobacter jejuni, Campylobacter coli, and Campylobacter lari by polymerase chain reaction fingerprinting

    NARCIS (Netherlands)

    Giesendorf, B A; van Belkum, A; Koeken, A; Stegeman, H; Henkens, M H; van der Plas, J; Goossens, H; Niesters, H G; Quint, W G

    The application of polymerase chain reaction (PCR) fingerprinting assays enables discrimination between species and strains of microorganisms. PCR primers aiming at arbitrary sequences in combination with primers directed against the repetitive extragenic palindrome (REP) or enterobacterial

  7. A repetitive probe for FISH analysis of bovine interphase nuclei

    Directory of Open Access Journals (Sweden)

    Cribiu Edmond

    2000-03-01

    Full Text Available Abstract The purpose of this study was to generate repetitive DNA sequence probes for the analysis of interphase nuclei by fluorescent in situ hybridisation (FISH. Such probes are useful for the diagnosis of chromosomal abnormalities in bovine preimplanted embryos. Of the seven probes (E1A, E4A, Ba, H1A, W18, W22, W5 that were generated and partially sequenced, five corresponded to previously described Bos taurus repetitive DNA (E1A, E4A, Ba, W18, W5, one probe (W22 shared no homology with other DNA sequences and one (H1A displayed a significant homology with Rattus norvegicus mRNA for secretin receptor transmembrane domain 3. Fluorescent in situ hybridisation was performed on metaphase bovine fibroblast cells and showed that five of the seven probes hybridised most centromeres (E1A, E4A, Ba, W18, W22, one labelled the arms of all chromosomes (W5 and the H1A probe was specific to three chromosomes (ch14, ch20, and ch25. Moreover, FISH with H1A resulted in interpretable signals on interphase nuclei in 88% of the cases, while the other probes yielded only dispersed overlapping signals.

  8. [Short interspersed repetitive sequences (SINEs) and their use as a phylogenetic tool].

    Science.gov (United States)

    Kramerov, D A; Vasetskiĭ, N S

    2009-01-01

    The data on one of the most common repetitive elements of eukaryotic genomes, short interspersed elements (SINEs), are reviewed. Their structure, origin, and functioning in the genome are discussed. The variation and abundance of these neutral genomic markers makes them a convenient and reliable tool for phylogenetic analysis. The main methods of such analysis are presented, and the potential and limitations of this approach are discussed using specific examples.

  9. A simple, flexible and efficient PCR-fusion/Gateway cloning procedure for gene fusion, site-directed mutagenesis, short sequence insertion and domain deletions and swaps

    Directory of Open Access Journals (Sweden)

    Etchells J Peter

    2009-10-01

    Full Text Available Abstract Background The progress and completion of various plant genome sequencing projects has paved the way for diverse functional genomic studies that involve cloning, modification and subsequent expression of target genes. This requires flexible and efficient procedures for generating binary vectors containing: gene fusions, variants from site-directed mutagenesis, addition of protein tags together with domain swaps and deletions. Furthermore, efficient cloning procedures, ideally high throughput, are essential for pyramiding of multiple gene constructs. Results Here, we present a simple, flexible and efficient PCR-fusion/Gateway cloning procedure for construction of binary vectors for a range of gene fusions or variants with single or multiple nucleotide substitutions, short sequence insertions, domain deletions and swaps. Results from selected applications of the procedure which include ORF fusion, introduction of Cys>Ser mutations, insertion of StrepII tag sequence and domain swaps for Arabidopsis secondary cell wall AtCesA genes are demonstrated. Conclusion The PCR-fusion/Gateway cloning procedure described provides an elegant, simple and efficient solution for a wide range of diverse and complicated cloning tasks. Through streamlined cloning of sets of gene fusions and modification variants into binary vectors for systematic functional studies of gene families, our method allows for efficient utilization of the growing sequence and expression data.

  10. Evaluation of short repetition time, partial flip angle, gradient recalled echo pulse sequences in cervical spine imaging

    International Nuclear Information System (INIS)

    Enzmann, D.; Rubin, J.B.

    1987-01-01

    A short repetition time (TR), partial flip angle, gradient recalled echo pulse sequence (GRASS) was prospectively studied to optimize it for the diagnosis of cervical disk and cord disease in 98 patients. Changes in signal-to-noise ratio (SNR) and contrast were measured as the following parameters were varied: flip angle (3 0 to 18 0 ), TR (22-60 msec), and echo time (TE) (12.5-25 msec). Flip angle was the single most important parameter. For disk disease, cerebrospinal fluid (CSF) SNR peaked at an 8 0 flip angle in the axial view but at a 4 0 flip angle in the sagittal view. In the sagittal view, disk-CSF contrast decreased progressively from a flip angle of 3 0 , while in the axial view it peaked at 10 0 . For cord lesions the findings were similar except that lesion-cord contrast could be increased by lengthening both TR and TE. No one combination of parameters proved greatly superior for either disk disease or cord disease. The selection of parameters required balancing of several factors that often had opposing effects

  11. Detection of hepatitis A virus by the nucleic acid sequence-based amplification technique and comparison with reverse transcription-PCR.

    Science.gov (United States)

    Jean, J; Blais, B; Darveau, A; Fliss, I

    2001-12-01

    A nucleic acid sequence-based amplification (NASBA) technique for the detection of hepatitis A virus (HAV) in foods was developed and compared to the traditional reverse transcription (RT)-PCR technique. Oligonucleotide primers targeting the VP1 and VP2 genes encoding the major HAV capsid proteins were used for the amplification of viral RNA in an isothermal process resulting in the accumulation of RNA amplicons. Amplicons were detected by hybridization with a digoxigenin-labeled oligonucleotide probe in a dot blot assay format. Using the NASBA, as little as 0.4 ng of target RNA/ml was detected per comparison to 4 ng/ml for RT-PCR. When crude HAV viral lysate was used, a detection limit of 2 PFU (4 x 10(2) PFU/ml) was obtained with NASBA, compared to 50 PFU (1 x 10(4) PFU/ml) obtained with RT-PCR. No interference was encountered in the amplification of HAV RNA in the presence of excess nontarget RNA or DNA. The NASBA system successfully detected HAV recovered from experimentally inoculated samples of waste water, lettuce, and blueberries. Compared to RT-PCR and other amplification techniques, the NASBA system offers several advantages in terms of sensitivity, rapidity, and simplicity. This technique should be readily adaptable for detection of other RNA viruses in both foods and clinical samples.

  12. [Application of Nested PCR in the Diagnosis of Imported Plasmodium Ovale Infection].

    Science.gov (United States)

    Huang, Bing-cheng; Xu, Chao; Li, Jin; Xiao, Ting; Yin, Kun; Liu, Gong-zhen; Wang, Wei-yan; Zhao, Gui-hua; Wei, Yan-bin; Wang, Yong-bin; Zhao, Chang-lei; Wei, Qing-kuan

    2015-02-01

    To identity Plasmodium ovale infection by 18S rRNA gene nested PCR. Whole blood and filter paper blood samples of malaria patients in Shandong Province were collected during 2012-2013. The parasites were observed under a microscope with Giemsa staining. The genome DNA of blood samples were extracted as PCR templates. Genus- and species-specific primers were designed according to the Plasmodium 18S rRNA gene sequences. Plasmodium ovale-positive specimens were identified by nested PCR as well as verified by sequencing. There were 7 imported cases of P. ovale infection in the province during 2012-2013. Nested PCR results showed that the P. ovale specific band (800 bp) was amplified in all the 7 specimens. Blast results indicated that the PCR products were consistent with the Plasmodium ovale reference sequence in GenBank. Seven imported cases of ovale malaria in Shandong Province in 2012-2013 are confirmed by nested PCR.

  13. Comparison of allele-specific PCR, created restriction-site PCR, and PCR with primer-introduced restriction analysis methods used for screening complex vertebral malformation carriers in Holstein cattle

    Science.gov (United States)

    Altınel, Ahmet

    2017-01-01

    Complex vertebral malformation (CVM) is an inherited, autosomal recessive disorder of Holstein cattle. The aim of this study was to compare sensitivity, specificity, positive and negative predictive values, accuracy, and rapidity of allele-specific polymerase chain reaction (AS-PCR), created restriction-site PCR (CRS-PCR), and PCR with primer-introduced restriction analysis (PCR-PIRA), three methods used in identification of CVM carriers in a Holstein cattle population. In order to screen for the G>T mutation in the solute carrier family 35 member A3 (SLC35A3) gene, DNA sequencing as the gold standard method was used. The prevalence of carriers and the mutant allele frequency were 3.2% and 0.016, respectively, among Holstein cattle in the Thrace region of Turkey. Among the three methods, the fastest but least accurate was AS-PCR. Although the rapidity of CRS-PCR and PCR-PIRA were nearly equal, the accuracy of PCR-PIRA was higher than that of CRS-PCR. Therefore, among the three methods, PCR-PIRA appears to be the most efficacious for screening of mutant alleles when identifying CVM carriers in a Holstein cattle population. PMID:28927256

  14. FTA card utility for PCR detection of Mycobacterium leprae.

    Science.gov (United States)

    Aye, Khin Saw; Matsuoka, Masanori; Kai, Masanori; Kyaw, Kyaw; Win, Aye Aye; Shwe, Mu Mu; Thein, Min; Htoo, Maung Maung; Htoon, Myo Thet

    2011-01-01

    The suitability of the FTA® elute card for the collection of slit skin smear (SSS) samples for PCR detection of Mycobacterium leprae was evaluated. A total of 192 SSS leprosy samples, of bacillary index (BI) 1 to 5, were collected from patients attending two skin clinics in Myanmar and preserved using both FTA® elute cards and 70% ethanol tubes. To compare the efficacy of PCR detection of DNA from each BI class, PCR was performed to amplify an M. leprae-specific repetitive element. Of the 192 samples, 116 FTA® elute card and 112 70% ethanol samples were PCR positive for M. leprae DNA. When correlated with BI, area under the curve (AUC) values of the respective receiver-operating characteristic curves were similar for the FTA® elute card and ethanol collection methods (AUC=0.6). Taken together, our results indicate that the FTA® elute card, which enables the collection, transport, and archiving of clinical samples, is an attractive alternative to ethanol preservation for the detection of M. leprae DNA.

  15. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor

    Directory of Open Access Journals (Sweden)

    Hankus Lukasz

    2006-10-01

    Full Text Available Abstract Background Repbase is a reference database of eukaryotic repetitive DNA, which includes prototypic sequences of repeats and basic information described in annotations. Updating and maintenance of the database requires specialized tools, which we have created and made available for use with Repbase, and which may be useful as a template for other curated databases. Results We describe the software tools RepbaseSubmitter and Censor, which are designed to facilitate updating and screening the content of Repbase. RepbaseSubmitter is a java-based interface for formatting and annotating Repbase entries. It eliminates many common formatting errors, and automates actions such as calculation of sequence lengths and composition, thus facilitating curation of Repbase sequences. In addition, it has several features for predicting protein coding regions in sequences; searching and including Pubmed references in Repbase entries; and searching the NCBI taxonomy database for correct inclusion of species information and taxonomic position. Censor is a tool to rapidly identify repetitive elements by comparison to known repeats. It uses WU-BLAST for speed and sensitivity, and can conduct DNA-DNA, DNA-protein, or translated DNA-translated DNA searches of genomic sequence. Defragmented output includes a map of repeats present in the query sequence, with the options to report masked query sequence(s, repeat sequences found in the query, and alignments. Conclusion Censor and RepbaseSubmitter are available as both web-based services and downloadable versions. They can be found at http://www.girinst.org/repbase/submission.html (RepbaseSubmitter and http://www.girinst.org/censor/index.php (Censor.

  16. Impact of repetitive DNA on sex chromosome evolution in plants

    Czech Academy of Sciences Publication Activity Database

    Hobza, Roman; Kubát, Z.; Čegan, R.; Jesionek, W.; Vyskot, B.; Kejnovský, E.

    2015-01-01

    Roč. 23, č. 3 (2015), s. 561-570 ISSN 0967-3849 R&D Projects: GA ČR GBP501/12/G090; GA ČR GAP501/12/2220 Institutional support: RVO:61389030 Keywords : repetitive sequences * transposable elements * tandem repeats (satellites) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.590, year: 2015

  17. Diversity analysis of Bemisia tabaci biotypes: RAPD, PCR-RFLP and sequencing of the ITS1 rDNA region

    OpenAIRE

    Rabello, Aline R.; Queiroz, Paulo R.; Simões, Kenya C.C.; Hiragi, Cássia O.; Lima, Luzia H.C.; Oliveira, Maria Regina V.; Mehta, Angela

    2008-01-01

    The Bemisia tabaci complex is formed by approximately 41 biotypes, two of which (B and BR) occur in Brazil. In this work we aimed at obtaining genetic markers to assess the genetic diversity of the different biotypes. In order to do that we analyzed Bemisia tabaci biotypes B, BR, Q and Cassava using molecular techniques including RAPD, PCR-RFLP and sequencing of the ITS1 rDNA region. The analyses revealed a high similarity between the individuals of the B and Q biotypes, which could be distin...

  18. Detection of Babesia canis rossi, B. canis vogeli, and Hepatozoon canis in dogs in a village of eastern Sudan by using a screening PCR and sequencing methodologies.

    Science.gov (United States)

    Oyamada, Maremichi; Davoust, Bernard; Boni, Mickaël; Dereure, Jacques; Bucheton, Bruno; Hammad, Awad; Itamoto, Kazuhito; Okuda, Masaru; Inokuma, Hisashi

    2005-11-01

    Babesia and Hepatozoon infections of dogs in a village of eastern Sudan were analyzed by using a single PCR and sequencing. Among 78 dogs, 5 were infected with Babesia canis rossi and 2 others were infected with B. canis vogeli. Thirty-three dogs were positive for Hepatozoon. Hepatozoon canis was detected by sequence analysis.

  19. Detection of Babesia canis rossi, B. canis vogeli, and Hepatozoon canis in Dogs in a Village of Eastern Sudan by Using a Screening PCR and Sequencing Methodologies

    OpenAIRE

    Oyamada, Maremichi; Davoust, Bernard; Boni, Mickaël; Dereure, Jacques; Bucheton, Bruno; Hammad, Awad; Itamoto, Kazuhito; Okuda, Masaru; Inokuma, Hisashi

    2005-01-01

    Babesia and Hepatozoon infections of dogs in a village of eastern Sudan were analyzed by using a single PCR and sequencing. Among 78 dogs, 5 were infected with Babesia canis rossi and 2 others were infected with B. canis vogeli. Thirty-three dogs were positive for Hepatozoon. Hepatozoon canis was detected by sequence analysis.

  20. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    Science.gov (United States)

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  1. A method for accurate detection of genomic microdeletions using real-time quantitative PCR

    Directory of Open Access Journals (Sweden)

    Bassett Anne S

    2005-12-01

    Full Text Available Abstract Background Quantitative Polymerase Chain Reaction (qPCR is a well-established method for quantifying levels of gene expression, but has not been routinely applied to the detection of constitutional copy number alterations of human genomic DNA. Microdeletions or microduplications of the human genome are associated with a variety of genetic disorders. Although, clinical laboratories routinely use fluorescence in situ hybridization (FISH to identify such cryptic genomic alterations, there remains a significant number of individuals in which constitutional genomic imbalance is suspected, based on clinical parameters, but cannot be readily detected using current cytogenetic techniques. Results In this study, a novel application for real-time qPCR is presented that can be used to reproducibly detect chromosomal microdeletions and microduplications. This approach was applied to DNA from a series of patient samples and controls to validate genomic copy number alteration at cytoband 22q11. The study group comprised 12 patients with clinical symptoms of chromosome 22q11 deletion syndrome (22q11DS, 1 patient trisomic for 22q11 and 4 normal controls. 6 of the patients (group 1 had known hemizygous deletions, as detected by standard diagnostic FISH, whilst the remaining 6 patients (group 2 were classified as 22q11DS negative using the clinical FISH assay. Screening of the patients and controls with a set of 10 real time qPCR primers, spanning the 22q11.2-deleted region and flanking sequence, confirmed the FISH assay results for all patients with 100% concordance. Moreover, this qPCR enabled a refinement of the region of deletion at 22q11. Analysis of DNA from chromosome 22 trisomic sample demonstrated genomic duplication within 22q11. Conclusion In this paper we present a qPCR approach for the detection of chromosomal microdeletions and microduplications. The strategic use of in silico modelling for qPCR primer design to avoid regions of repetitive

  2. Repetition and Translation Shifts

    Directory of Open Access Journals (Sweden)

    Simon Zupan

    2006-06-01

    Full Text Available Repetition manifests itself in different ways and at different levels of the text. The first basic type of repetition involves complete recurrences; in which a particular textual feature repeats in its entirety. The second type involves partial recurrences; in which the second repetition of the same textual feature includes certain modifications to the first occurrence. In the article; repetitive patterns in Edgar Allan Poe’s short story “The Fall of the House of Usher” and its Slovene translation; “Konec Usherjeve hiše”; are compared. The author examines different kinds of repetitive patterns. Repetitions are compared at both the micro- and macrostructural levels. As detailed analyses have shown; considerable microstructural translation shifts occur in certain types of repetitive patterns. Since these are not only occasional; sporadic phenomena; but are of a relatively high frequency; they reduce the translated text’s potential for achieving some of the gothic effects. The macrostructural textual property particularly affected by these shifts is the narrator’s experience as described by the narrative; which suffers a reduction in intensity.

  3. Development of Quantitative Competitive PCR and Absolute Based Real-Time PCR Assays for Quantification of The Butyrate Producing Bacterium: Butyrivibrio fibrisolvens

    Directory of Open Access Journals (Sweden)

    Mojtaba Tahmoorespur

    2016-04-01

    Full Text Available Introduction Butyrivibrio fibrisolvens strains are presently recognized as the major butyrate-producing bacteria found in the rumen and digestive track of many animals and also in the human gut. In this study we reported the development of two DNA based techniques, quantitative competitive (QC PCR and absolute based Real-Time PCR, for enumerating Butyrivibrio fibrisolvens strains. Despite the recent introduction of real-time PCR method for the rapid quantification of the target DNA sequences, use of quantitative competitive PCR (QC-PCR technique continues to play an important role in nucleic acid quantification since it is more cost effective. The procedure relies on the co-amplification of the sequence of interest with a serially diluted synthetic DNA fragment of the known concentration (competitor, using the single set primers. A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR. It monitors the amplification of a targeted DNA molecule during the PCR. Materials and Methods At first reported species-specific primers targeting the 16S rDNA region of the bacterium Butyrivibrio fibrisolvens were used for amplifying a 213 bp fragment. A DNA competitor differing by 50 bp in length from the 213 bp fragment was constructed and cloned into pTZ57R/T vector. The competitor was quantified by NanoDrop spectrophotometer and serially diluted and co-amplified by PCR with total extracted DNA from rumen fluid samples. PCR products were quantified by photographing agarose gels and analyzed with Image J software and the amount of amplified target DNA was log plotted against the amount of amplified competitor. Coefficient of determination (R2 was used as a criterion of methodology precision. For developing the Real-time PCR technique, the 213 bp fragment was amplified and cloned into pTZ57R/T was used to draw a standard curve. Results and Discussion The specific primers of Butyrivibrio

  4. The Role of Memory Processes in Repetition Blindness

    Science.gov (United States)

    Johnston, James C.; Hochhaus, Larry; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    We investigated whether Repetition Blindness (RB) in processing RSVP strings depends critically on memory demands. When all items in the sequence had to be reported, strong RB was found. When only the 2 critical items (cued by color) had to be reported, no RB was found. Preliminary results show that imposing a separate memory load, while reporting only the critical items, also produces little RB. Implications for the processing locus of RB will be discussed.

  5. Single base pair mutation analysis by PNA directed PCR clamping

    DEFF Research Database (Denmark)

    Ørum, H.; Nielsen, P.E.; Egholm, M.

    1993-01-01

    A novel method that allows direct analysis of single base mutation by the polymerase chain reaction (PCR) is described. The method utilizes the finding that PNAs (peptide nucleic acids) recognize and bind to their complementary nucleic acid sequences with higher thermal stability and specificity...... allows selective amplification/suppression of target sequences that differ by only one base pair. Finally we show that PNAs can be designed in such a way that blockage can be accomplished when the PNA target sequence is located between the PCR primers....

  6. Detection of Babesia canis rossi, B. canis vogeli, and Hepatozoon canis in Dogs in a Village of Eastern Sudan by Using a Screening PCR and Sequencing Methodologies

    Science.gov (United States)

    Oyamada, Maremichi; Davoust, Bernard; Boni, Mickaël; Dereure, Jacques; Bucheton, Bruno; Hammad, Awad; Itamoto, Kazuhito; Okuda, Masaru; Inokuma, Hisashi

    2005-01-01

    Babesia and Hepatozoon infections of dogs in a village of eastern Sudan were analyzed by using a single PCR and sequencing. Among 78 dogs, 5 were infected with Babesia canis rossi and 2 others were infected with B. canis vogeli. Thirty-three dogs were positive for Hepatozoon. Hepatozoon canis was detected by sequence analysis. PMID:16275954

  7. Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L. and spelt (Triticum spelta L..

    Directory of Open Access Journals (Sweden)

    Klaudia Goriewa-Duba

    Full Text Available Fluorescent in situ hybridization (FISH relies on fluorescent-labeled probes to detect specific DNA sequences in the genome, and it is widely used in cytogenetic analyses. The aim of this study was to determine the karyotype of T. aestivum and T. spelta hybrids and their parental components (three common wheat cultivars and five spelt breeding lines, to identify chromosomal aberrations in the evaluated wheat lines, and to analyze the distribution of polymorphisms of repetitive sequences in the examined hybrids. The FISH procedure was carried out with four DNA clones, pTa-86, pTa-535, pTa-713 and 35S rDNA used as probes. The observed polymorphisms between the investigated lines of common wheat, spelt and their hybrids was relatively low. However, differences were observed in the distribution of repetitive sequences on chromosomes 4A, 6A, 1B and 6B in selected hybrid genomes. The polymorphisms observed in common wheat and spelt hybrids carry valuable information for wheat breeders. The results of our study are also a valuable source of knowledge about genome organization and diversification in common wheat, spelt and their hybrids. The relevant information is essential for common wheat breeders, and it can contribute to breeding programs aimed at biodiversity preservation.

  8. Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L.) and spelt (Triticum spelta L.).

    Science.gov (United States)

    Goriewa-Duba, Klaudia; Duba, Adrian; Kwiatek, Michał; Wiśniewska, Halina; Wachowska, Urszula; Wiwart, Marian

    2018-01-01

    Fluorescent in situ hybridization (FISH) relies on fluorescent-labeled probes to detect specific DNA sequences in the genome, and it is widely used in cytogenetic analyses. The aim of this study was to determine the karyotype of T. aestivum and T. spelta hybrids and their parental components (three common wheat cultivars and five spelt breeding lines), to identify chromosomal aberrations in the evaluated wheat lines, and to analyze the distribution of polymorphisms of repetitive sequences in the examined hybrids. The FISH procedure was carried out with four DNA clones, pTa-86, pTa-535, pTa-713 and 35S rDNA used as probes. The observed polymorphisms between the investigated lines of common wheat, spelt and their hybrids was relatively low. However, differences were observed in the distribution of repetitive sequences on chromosomes 4A, 6A, 1B and 6B in selected hybrid genomes. The polymorphisms observed in common wheat and spelt hybrids carry valuable information for wheat breeders. The results of our study are also a valuable source of knowledge about genome organization and diversification in common wheat, spelt and their hybrids. The relevant information is essential for common wheat breeders, and it can contribute to breeding programs aimed at biodiversity preservation.

  9. Learning Correct Responses and Errors in the Hebb Repetition Effect: Two Faces of the Same Coin

    Science.gov (United States)

    Couture, Mathieu; Lafond, Daniel; Tremblay, Sebastien

    2008-01-01

    In a serial recall task, the "Hebb repetition effect" occurs when recall performance improves for a sequence repeated throughout the experimental session. This phenomenon has been replicated many times. Nevertheless, such cumulative learning seldom leads to perfect recall of the whole sequence, and errors persist. Here the authors report…

  10. Pigs in sequence space: A 0.66X coverage pig genome survey based on shotgun sequencing

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Schierup, M.H.; Jorgensen, F.G.

    2005-01-01

    sequences (0.66X coverage) from the pig genome. The data are hereby released (NCBI Trace repository with center name "SDJVP", and project name "Sino-Danish Pig Genome Project") together with an initial evolutionary analysis. The non-repetitive fraction of the sequences was aligned to the UCSC human...

  11. Human papillomavirus detection and typing using a nested-PCR-RFLP assay.

    Science.gov (United States)

    Coser, Janaina; Boeira, Thaís da Rocha; Fonseca, André Salvador Kazantzi; Ikuta, Nilo; Lunge, Vagner Ricardo

    2011-01-01

    It is clinically important to detect and type human papillomavirus (HPV) in a sensitive and specific manner. Development of a nested-polymerase chain reaction-restriction fragment length polymorphism (nested-PCR-RFLP) assay to detect and type HPV based on the analysis of L1 gene. Analysis of published DNA sequence of mucosal HPV types to select sequences of new primers. Design of an original nested-PCR assay using the new primers pair selected and classical MY09/11 primers. HPV detection and typing in cervical samples using the nested-PCR-RFLP assay. The nested-PCR-RFLP assay detected and typed HPV in cervical samples. Of the total of 128 clinical samples submitted to simple PCR and nested-PCR for detection of HPV, 37 (28.9%) were positive for the virus by both methods and 25 samples were positive only by nested-PCR (67.5% increase in detection rate compared with single PCR). All HPV positive samples were effectively typed by RFLP assay. The method of nested-PCR proved to be an effective diagnostic tool for HPV detection and typing.

  12. Automated PCR setup for forensic casework samples using the Normalization Wizard and PCR Setup robotic methods.

    Science.gov (United States)

    Greenspoon, S A; Sykes, K L V; Ban, J D; Pollard, A; Baisden, M; Farr, M; Graham, N; Collins, B L; Green, M M; Christenson, C C

    2006-12-20

    Human genome, pharmaceutical and research laboratories have long enjoyed the application of robotics to performing repetitive laboratory tasks. However, the utilization of robotics in forensic laboratories for processing casework samples is relatively new and poses particular challenges. Since the quantity and quality (a mixture versus a single source sample, the level of degradation, the presence of PCR inhibitors) of the DNA contained within a casework sample is unknown, particular attention must be paid to procedural susceptibility to contamination, as well as DNA yield, especially as it pertains to samples with little biological material. The Virginia Department of Forensic Science (VDFS) has successfully automated forensic casework DNA extraction utilizing the DNA IQ(trade mark) System in conjunction with the Biomek 2000 Automation Workstation. Human DNA quantitation is also performed in a near complete automated fashion utilizing the AluQuant Human DNA Quantitation System and the Biomek 2000 Automation Workstation. Recently, the PCR setup for casework samples has been automated, employing the Biomek 2000 Automation Workstation and Normalization Wizard, Genetic Identity version, which utilizes the quantitation data, imported into the software, to create a customized automated method for DNA dilution, unique to that plate of DNA samples. The PCR Setup software method, used in conjunction with the Normalization Wizard method and written for the Biomek 2000, functions to mix the diluted DNA samples, transfer the PCR master mix, and transfer the diluted DNA samples to PCR amplification tubes. Once the process is complete, the DNA extracts, still on the deck of the robot in PCR amplification strip tubes, are transferred to pre-labeled 1.5 mL tubes for long-term storage using an automated method. The automation of these steps in the process of forensic DNA casework analysis has been accomplished by performing extensive optimization, validation and testing of the

  13. [Comparison of Bacteria ERIC-PCR Fingerprints of Index Fingers and Contactants].

    Science.gov (United States)

    Liu, Y T; Sun, D M; Shi, S P; Yang, X

    2018-02-01

    To explore the bacteria relevance between index fingers and contactant' surfaces (mobile phone touch screen and desktop of personal office table). Bacteria were collected from the index fingers, mobile phone touch screen and desktop of personal office table of 10 volunteers. Enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprint was established by PCR amplification technique of metagenome. There were 7 volunteers' ERIC-PCR fingerprints of index fingers matched that took from the mobile phone touch screens, and different from each other. There were 3 volunteers' ERIC-PCR fingerprints of index fingers matched that took from desk top of personal office table, and other 7 volunteers' ERIC-PCR fingerprints did not match perfectly with that took from desk top of personal office table, but had at least one similar band for both. The bacteria on index finger shows individual specificity, which on mobile phone touching screen and personal desktop may be a new biological sample of forensic identification. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  14. Polymerase chain reaction-mediated DNA fingerprinting for epidemiological studies on Campylobacter spp

    NARCIS (Netherlands)

    Giesendorf, B A; Goossens, H; Niesters, H G; Van Belkum, A; Koeken, A; Endtz, H P; Stegeman, H; Quint, W G

    The applicability of polymerase chain reaction (PCR)-mediated DNA typing, with primers complementary to dispersed repetitive DNA sequences and arbitrarily chosen DNA motifs, to study the epidemiology of campylobacter infection was evaluated. With a single PCR reaction and simple gel electrophoresis,

  15. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: A historical overview and modern concepts.

    Science.gov (United States)

    Trofimova, Irina; Krasikova, Alla

    2016-12-01

    Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription.

  16. Development and application of a real-time quantitative PCR assay ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... and a gel band purification kit (GE Health Care, UK), the PCR products obtained were ... amino acid sequences from various species, sequence alignment ..... sequence weighting, positions-specific gap penalties and weight.

  17. A Repetition Test for Pseudo-Random Number Generators

    OpenAIRE

    Gil, Manuel; Gonnet, Gaston H.; Petersen, Wesley P.

    2017-01-01

    A new statistical test for uniform pseudo-random number generators (PRNGs) is presented. The idea is that a sequence of pseudo-random numbers should have numbers reappear with a certain probability. The expectation time that a repetition occurs provides the metric for the test. For linear congruential generators (LCGs) failure can be shown theoretically. Empirical test results for a number of commonly used PRNGs are reported, showing that some PRNGs considered to have good statistical propert...

  18. A characterization of linearly repetitive cut and project sets

    Science.gov (United States)

    Haynes, Alan; Koivusalo, Henna; Walton, James

    2018-02-01

    For the development of a mathematical theory which can be used to rigorously investigate physical properties of quasicrystals, it is necessary to understand regularity of patterns in special classes of aperiodic point sets in Euclidean space. In one dimension, prototypical mathematical models for quasicrystals are provided by Sturmian sequences and by point sets generated by substitution rules. Regularity properties of such sets are well understood, thanks mostly to well known results by Morse and Hedlund, and physicists have used this understanding to study one dimensional random Schrödinger operators and lattice gas models. A key fact which plays an important role in these problems is the existence of a subadditive ergodic theorem, which is guaranteed when the corresponding point set is linearly repetitive. In this paper we extend the one-dimensional model to cut and project sets, which generalize Sturmian sequences in higher dimensions, and which are frequently used in mathematical and physical literature as models for higher dimensional quasicrystals. By using a combination of algebraic, geometric, and dynamical techniques, together with input from higher dimensional Diophantine approximation, we give a complete characterization of all linearly repetitive cut and project sets with cubical windows. We also prove that these are precisely the collection of such sets which satisfy subadditive ergodic theorems. The results are explicit enough to allow us to apply them to known classical models, and to construct linearly repetitive cut and project sets in all pairs of dimensions and codimensions in which they exist. Research supported by EPSRC grants EP/L001462, EP/J00149X, EP/M023540. HK also gratefully acknowledges the support of the Osk. Huttunen foundation.

  19. Methylation-Specific PCR Unraveled

    Directory of Open Access Journals (Sweden)

    Sarah Derks

    2004-01-01

    Full Text Available Methylation‐specific PCR (MSP is a simple, quick and cost‐effective method to analyze the DNA methylation status of virtually any group of CpG sites within a CpG island. The technique comprises two parts: (1 sodium bisulfite conversion of unmethylated cytosine's to uracil under conditions whereby methylated cytosines remains unchanged and (2 detection of the bisulfite induced sequence differences by PCR using specific primer sets for both unmethylated and methylated DNA. This review discusses the critical parameters of MSP and presents an overview of the available MSP variants and the (clinical applications.

  20. Optimized PCR with sequence specific primers (PCR-SSP for fast and efficient determination of Interleukin-6 Promoter -597/-572/-174Haplotypes

    Directory of Open Access Journals (Sweden)

    Bugert Peter

    2009-12-01

    Full Text Available Abstract Background Interleukin-6 (IL-6 promoter polymorphisms at positions -597(G→A, -572(G→C and -174(G→C were shown to have a clinical impact on different major diseases. At present PCR-SSP protocols for IL-6 -597/-572/-174haplotyping are elaborate and require large amounts of genomic DNA. Findings We describe an improved typing technique requiring a decreased number of PCR-reactions and a reduced PCR-runtime due to optimized PCR-conditions. Conclusion This enables a fast and efficient determination of IL-6 -597/-572/-174haplotypes in clinical diagnosis and further evaluation of IL-6 promoter polymorphisms in larger patient cohorts.

  1. [Sensitivity and specificity of nested PCR pyrosequencing in hepatitis B virus drug resistance gene testing].

    Science.gov (United States)

    Sun, Shumei; Zhou, Hao; Zhou, Bin; Hu, Ziyou; Hou, Jinlin; Sun, Jian

    2012-05-01

    To evaluate the sensitivity and specificity of nested PCR combined with pyrosequencing in the detection of HBV drug-resistance gene. RtM204I (ATT) mutant and rtM204 (ATG) nonmutant plasmids mixed at different ratios were detected for mutations using nested-PCR combined with pyrosequencing, and the results were compared with those by conventional PCR pyrosequencing to analyze the linearity and consistency of the two methods. Clinical specimens with different viral loads were examined for drug-resistant mutations using nested PCR pyrosequencing and nested PCR combined with dideoxy sequencing (Sanger) for comparison of the detection sensitivity and specificity. The fitting curves demonstrated good linearity of both conventional PCR pyrosequencing and nested PCR pyrosequencing (R(2)>0.99, PNested PCR showed a better consistency with the predicted value than conventional PCR, and was superior to conventional PCR for detection of samples containing 90% mutant plasmid. In the detection of clinical specimens, Sanger sequencing had a significantly lower sensitivity than nested PCR pyrosequencing (92% vs 100%, Pnested PCR and Sanger sequencing method, nested PCR pyrosequencing has a higher sensitivity especially in clinical specimens with low viral copies, which can be important for early detection of HBV mutant strains and hence more effective clinical management.

  2. Entropic fluctuations in DNA sequences

    Science.gov (United States)

    Thanos, Dimitrios; Li, Wentian; Provata, Astero

    2018-03-01

    The Local Shannon Entropy (LSE) in blocks is used as a complexity measure to study the information fluctuations along DNA sequences. The LSE of a DNA block maps the local base arrangement information to a single numerical value. It is shown that despite this reduction of information, LSE allows to extract meaningful information related to the detection of repetitive sequences in whole chromosomes and is useful in finding evolutionary differences between organisms. More specifically, large regions of tandem repeats, such as centromeres, can be detected based on their low LSE fluctuations along the chromosome. Furthermore, an empirical investigation of the appropriate block sizes is provided and the relationship of LSE properties with the structure of the underlying repetitive units is revealed by using both computational and mathematical methods. Sequence similarity between the genomic DNA of closely related species also leads to similar LSE values at the orthologous regions. As an application, the LSE covariance function is used to measure the evolutionary distance between several primate genomes.

  3. Droplet digital PCR technology promises new applications and research areas.

    Science.gov (United States)

    Manoj, P

    2016-01-01

    Digital Polymerase Chain Reaction (dPCR) is used to quantify nucleic acids and its applications are in the detection and precise quantification of low-level pathogens, rare genetic sequences, quantification of copy number variants, rare mutations and in relative gene expressions. Here the PCR is performed in large number of reaction chambers or partitions and the reaction is carried out in each partition individually. This separation allows a more reliable collection and sensitive measurement of nucleic acid. Results are calculated by counting amplified target sequence (positive droplets) and the number of partitions in which there is no amplification (negative droplets). The mean number of target sequences was calculated by Poisson Algorithm. Poisson correction compensates the presence of more than one copy of target gene in any droplets. The method provides information with accuracy and precision which is highly reproducible and less susceptible to inhibitors than qPCR. It has been demonstrated in studying variations in gene sequences, such as copy number variants and point mutations, distinguishing differences between expression of nearly identical alleles, assessment of clinically relevant genetic variations and it is routinely used for clonal amplification of samples for NGS methods. dPCR enables more reliable predictors of tumor status and patient prognosis by absolute quantitation using reference normalizations. Rare mitochondrial DNA deletions associated with a range of diseases and disorders as well as aging can be accurately detected with droplet digital PCR.

  4. A Nonword Repetition Task for Speakers with Misarticulations: The Syllable Repetition Task (SRT)

    Science.gov (United States)

    Shriberg, Lawrence D.; Lohmeier, Heather L.; Campbell, Thomas F.; Dollaghan, Christine A.; Green, Jordan R.; Moore, Christopher A.

    2009-01-01

    Purpose: Conceptual and methodological confounds occur when non(sense) word repetition tasks are administered to speakers who do not have the target speech sounds in their phonetic inventories or who habitually misarticulate targeted speech sounds. In this article, the authors (a) describe a nonword repetition task, the Syllable Repetition Task…

  5. Colony-PCR Is a Rapid Method for DNA Amplification of Hyphomycetes

    Directory of Open Access Journals (Sweden)

    Georg Walch

    2016-04-01

    Full Text Available Fungal pure cultures identified with both classical morphological methods and through barcoding sequences are a basic requirement for reliable reference sequences in public databases. Improved techniques for an accelerated DNA barcode reference library construction will result in considerably improved sequence databases covering a wider taxonomic range. Fast, cheap, and reliable methods for obtaining DNA sequences from fungal isolates are, therefore, a valuable tool for the scientific community. Direct colony PCR was already successfully established for yeasts, but has not been evaluated for a wide range of anamorphic soil fungi up to now, and a direct amplification protocol for hyphomycetes without tissue pre-treatment has not been published so far. Here, we present a colony PCR technique directly from fungal hyphae without previous DNA extraction or other prior manipulation. Seven hundred eighty-eight fungal strains from 48 genera were tested with a success rate of 86%. PCR success varied considerably: DNA of fungi belonging to the genera Cladosporium, Geomyces, Fusarium, and Mortierella could be amplified with high success. DNA of soil-borne yeasts was always successfully amplified. Absidia, Mucor, Trichoderma, and Penicillium isolates had noticeably lower PCR success.

  6. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats.

    Directory of Open Access Journals (Sweden)

    Andrew J Alverson

    2011-01-01

    Full Text Available The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean, and show that despite its unexceptional size (401,262 nt, the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38-297 nt repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.

  7. Characterisation of Toxoplasma gondii isolates using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) of the non-coding Toxoplasma gondii (TGR)-gene sequences

    DEFF Research Database (Denmark)

    Høgdall, Estrid; Vuust, Jens; Lind, Peter

    2000-01-01

    of using TGR gene variants as markers to distinguish among T. gondii isolates from different animals and different geographical sources. Based on the band patterns obtained by restriction fragment length polymorphism (RFLP) analysis of the polymerase chain reaction (PCR) amplified TGR sequences, the T...

  8. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods

    Science.gov (United States)

    2016-01-01

    Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units–variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications. PMID:27709842

  9. Use of RAPD and PCR double amplification in the study of ancient DNA

    Directory of Open Access Journals (Sweden)

    F. Balzano

    2011-01-01

    Full Text Available This project analysed the DNA extracted from bones of ancient sheep which have been brought to light in Sardinian different archaeological sites. In order to better analyse this highly fragmented DNA, a double amplification technique was chosen. The first approach consisted of RAPD-PCR abd the second one in classic PCR. The RAPD-PCR amplified random fragments and allowed the production of numerous amplicons. The products of RAPD amplification have been amplified, more specifically, by the second PCR using primers for a sequence of 176 bp of mitochondrial D-loop region. These DNA fragments have been sequenced and the sequence analysis has confirmed that it belonged to Ovis aries. Consequently, this provedure can be considered a valid tool to perform amplification of degraded DNA, such as ancient DNA.

  10. RT-PCR and sequence analysis of the full-length fusion protein of Canine Distemper Virus from domestic dogs.

    Science.gov (United States)

    Romanutti, Carina; Gallo Calderón, Marina; Keller, Leticia; Mattion, Nora; La Torre, José

    2016-02-01

    During 2007-2014, 84 out of 236 (35.6%) samples from domestic dogs submitted to our laboratory for diagnostic purposes were positive for Canine Distemper Virus (CDV), as analyzed by RT-PCR amplification of a fragment of the nucleoprotein gene. Fifty-nine of them (70.2%) were from dogs that had been vaccinated against CDV. The full-length gene encoding the Fusion (F) protein of fifteen isolates was sequenced and compared with that of those of other CDVs, including wild-type and vaccine strains. Phylogenetic analysis using the F gene full-length sequences grouped all the Argentinean CDV strains in the SA2 clade. Sequence identity with the Onderstepoort vaccine strain was 89.0-90.6%, and the highest divergence was found in the 135 amino acids corresponding to the F protein signal-peptide, Fsp (64.4-66.7% identity). In contrast, this region was highly conserved among the local strains (94.1-100% identity). One extra putative N-glycosylation site was identified in the F gene of CDV Argentinean strains with respect to the vaccine strain. The present report is the first to analyze full-length F protein sequences of CDV strains circulating in Argentina, and contributes to the knowledge of molecular epidemiology of CDV, which may help in understanding future disease outbreaks. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Differential preparation intervals modulate repetition processes in task switching: an ERP study

    Directory of Open Access Journals (Sweden)

    Min eWang

    2016-02-01

    Full Text Available In task-switching paradigms, reaction times (RTs switch cost (SC and the neural correlates underlying the SC are affected by different preparation intervals. However, little is known about the effect of the preparation interval on the repetition processes in task-switching. To examine this effect we utilized a cued task-switching paradigm with long sequences of repeated trials. Response-stimulus intervals (RSI and cue-stimulus intervals (CSI were manipulated in short and long conditions. Electroencephalography (EEG and behavioral data were recorded. We found that with increasing repetitions, RTs were faster in the short CSI conditions, while P3 amplitudes decreased in the LS (long RSI and short CSI conditions. Positive correlations between RT benefit and P3 activation decrease (repeat 1 minus repeat 5, and between the slope of the RT and P3 regression lines were observed only in the LS condition. Our findings suggest that differential preparation intervals modulate repetition processes in task switching.

  12. FDSTools: A software package for analysis of massively parallel sequencing data with the ability to recognise and correct STR stutter and other PCR or sequencing noise.

    Science.gov (United States)

    Hoogenboom, Jerry; van der Gaag, Kristiaan J; de Leeuw, Rick H; Sijen, Titia; de Knijff, Peter; Laros, Jeroen F J

    2017-03-01

    Massively parallel sequencing (MPS) is on the advent of a broad scale application in forensic research and casework. The improved capabilities to analyse evidentiary traces representing unbalanced mixtures is often mentioned as one of the major advantages of this technique. However, most of the available software packages that analyse forensic short tandem repeat (STR) sequencing data are not well suited for high throughput analysis of such mixed traces. The largest challenge is the presence of stutter artefacts in STR amplifications, which are not readily discerned from minor contributions. FDSTools is an open-source software solution developed for this purpose. The level of stutter formation is influenced by various aspects of the sequence, such as the length of the longest uninterrupted stretch occurring in an STR. When MPS is used, STRs are evaluated as sequence variants that each have particular stutter characteristics which can be precisely determined. FDSTools uses a database of reference samples to determine stutter and other systemic PCR or sequencing artefacts for each individual allele. In addition, stutter models are created for each repeating element in order to predict stutter artefacts for alleles that are not included in the reference set. This information is subsequently used to recognise and compensate for the noise in a sequence profile. The result is a better representation of the true composition of a sample. Using Promega Powerseq™ Auto System data from 450 reference samples and 31 two-person mixtures, we show that the FDSTools correction module decreases stutter ratios above 20% to below 3%. Consequently, much lower levels of contributions in the mixed traces are detected. FDSTools contains modules to visualise the data in an interactive format allowing users to filter data with their own preferred thresholds. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Mixed-frame and stationary-frame repetitive control schemes for compensating typical load and grid harmonics

    DEFF Research Database (Denmark)

    Loh, P.; Tang, Y.; Blaabjerg, Frede

    2011-01-01

    In this study, repetitive current controllers operating in either the mixed or stationary frame are proposed for high-precision reference tracking and disturbance rejection of power converters. Both controllers use a proportional-resonant regulator in the stationary frame for regulating...... the positive- and negative-sequence fundamental currents, which are known to directly influence the flow of active and reactive power in most energy conversion systems. Moreover, for the tracking or compensation of harmonics, the controllers include a repetitive control path in either the synchronous...... or stationary frame, whose inherent feedback and feedforward structure is proven to resemble a bank of resonant filters in either reference frames. Unlike other existing controllers, the proposed repetitive controllers function by introducing multiple resonant peaks at only those harmonic frequencies typically...

  14. Positive Streptobacillus moniliformis PCR in guinea pigs likely due to Leptotrichia spp.

    Science.gov (United States)

    Boot, Ron; Van de Berg, Lia; Reubsaet, Frans A G; Vlemminx, Maurice J

    2008-04-30

    Streptobacillus moniliformis is a zoonotic bacterium. We obtained positive S. moniliformis PCR results in oral swab samples from guinea pigs from an experimental colony and the breeding colony of origin. Comparison of the DNA sequence of an amplicon with deposited 16S rDNA sequences revealed that Leptotrichia sp. can be the source of a false positive S. moniliformis PCR outcome.

  15. Molecular Diagnostic Analysis of Outbreak Scenarios

    Science.gov (United States)

    Morsink, M. C.; Dekter, H. E.; Dirks-Mulder, A.; van Leeuwen, W. B.

    2012-01-01

    In the current laboratory assignment, technical aspects of the polymerase chain reaction (PCR) are integrated in the context of six different bacterial outbreak scenarios. The "Enterobacterial Repetitive Intergenic Consensus Sequence" (ERIC) PCR was used to analyze different outbreak scenarios. First, groups of 2-4 students determined optimal…

  16. Genotyping by PCR and High-Throughput Sequencing of Commercial Probiotic Products Reveals Composition Biases.

    Directory of Open Access Journals (Sweden)

    Wesley Morovic

    2016-11-01

    Full Text Available Recent advances in microbiome research have brought renewed focus on beneficial bacteria, many of which are available in food and dietary supplements. Although probiotics have historically been defined as microorganisms that convey health benefits when ingested in sufficient viable amounts, this description now includes the stipulation well defined strains, encompassing definitive taxonomy for consumer consideration and regulatory oversight. Here, we evaluated 52 commercial dietary supplements covering a range of labeled species, and determined their content using plate counting, targeted genotyping. Additionally, strain identities were assessed using methods recently published by the United States Pharmacopeial Convention. We also determined the relative abundance of individual bacteria by high-throughput sequencing (HTS of the 16S rRNA sequence using paired-end 2x250bp Illumina MiSeq technology. Using multiple methods, we tested the hypothesis that products do contain the quantitative amount of labeled bacteria, and qualitative list of labeled microbial species. We found that 17 samples (33% were below label claim for CFU prior to their expiration dates. A multiplexed-PCR scheme showed that only 30/52 (58% of the products contained a correctly labeled classification, with issues encompassing incorrect taxonomy, missing species and un-labeled species. The HTS revealed that many blended products consisted predominantly of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis. These results highlight the need for reliable methods to qualitatively determine the correct taxonomy and quantitatively ascertain the relative amounts of mixed microbial populations in commercial probiotic products.

  17. Significant performance variation among PCR systems in diagnosing congenital toxoplasmosis in São Paulo, Brazil: analysis of 467 amniotic fluid samples

    Directory of Open Access Journals (Sweden)

    Thelma Suely Okay

    2009-03-01

    Full Text Available INTRODUCTION: Performance variation among PCR systems in detecting Toxoplasma gondii has been extensively reported and associated with target genes, primer composition, amplification parameters, treatment during pregnancy, host genetic susceptibility and genotypes of different parasites according to geographical characteristics. PATIENTS: A total of 467 amniotic fluid samples from T. gondii IgM- and IgG-positive Brazilian pregnant women being treated for 1 to 6 weeks at the time of amniocentesis (gestational ages of 14 to 25 weeks. METHODS: One nested-B1-PCR and three one-round amplification systems targeted to rDNA, AF146527 and the B1 gene were employed. RESULTS: Of the 467 samples, 189 (40.47% were positive for one-round amplifications: 120 (63.49% for the B1 gene, 24 (12.69% for AF146527, 45 (23.80% for both AF146527 and the B1 gene, and none for rDNA. Fifty previously negative one-round PCR samples were chosen by computer-assisted randomization analysis and re-tested (nested-B1-PCR, during which nine additional cases were detected (9/50 or 18%. DISCUSSION: The B1 gene PCR was far more sensitive than the AF146527 PCR, and the rDNA PCR was the least effective even though the rDNA had the most repetitive sequence. Considering that the four amplification systems were equally affected by treatment, that the amplification conditions were optimized for the target genes and that most of the primers have already been reported, it is plausible that the striking differences found among PCR performances could be associated with genetic diversity in patients and/or with different Toxoplasma gondii genotypes occurring in Brazil. CONCLUSION: The use of PCR for the diagnosis of fetal Toxoplasma infections in Brazil should be targeted to the B1 gene when only one gene can be amplified, preferably by nested amplification with primers B22/B23.

  18. Analysis of ELA-DQB exon 2 polymorphism in Argentine Creole horses by PCR-RFLP and PCR-SSCP.

    Science.gov (United States)

    Villegas-Castagnasso, E E; Díaz, S; Giovambattista, G; Dulout, F N; Peral-García, P

    2003-08-01

    The second exon of equine leucocyte antigen (ELA)-DQB genes was amplified from genomic DNA of 32 Argentine Creole horses by PCR. Amplified DNA was analysed by PCR-restriction fragment length polymorphism (RFLP) and PCR-single-strand conformation polymorphism (SSCP). The PCR-RFLP analysis revealed two HaeIII patterns, four RsaI patterns, five MspI patterns and two HinfI patterns. EcoRI showed no variation in the analysed sample. Additional patterns that did not account for known exon 2 DNA sequences were observed, suggesting the existence of novel ELA-DQB alleles. PCR-SSCP analysis exhibited seven different band patterns, and the number of bands per animal ranged from four to nine. Both methods indicated that at least two DQB genes are present. The presence of more than two alleles in each animal showed that the primers employed in this work are not specific for a unique DQB locus. The improvement of this PCR-RFLP method should provide a simple and rapid technique for an accurate definition of ELA-DQB typing in horses.

  19. Targeted resequencing and variant validation using pxlence PCR assays

    Directory of Open Access Journals (Sweden)

    Frauke Coppieters

    2016-01-01

    Full Text Available The advent of next-generation sequencing technologies had a profound impact on molecular diagnostics. PCR is a popular method for target enrichment of disease gene panels. Using our proprietary primer-design pipeline, primerXL, we have created almost one million assays covering over 98% of the human exome. Here we describe the assay specification and both in silico and wet-lab validation of a selected set of 2294 assays using both next-generation sequencing and Sanger sequencing. Using a universal PCR protocol without optimization, these assays result in high coverage uniformity and limited non-specific coverage. In addition, data indicates a positive correlation between the predictive in silico specificity score and the amount of assay non-specific coverage.

  20. Haben repetitive DNA-Sequenzen biologische Funktionen?

    Science.gov (United States)

    John, Maliyakal E.; Knöchel, Walter

    1983-05-01

    By DNA reassociation kinetics it is known that the eucaryotic genome consists of non-repetitive DNA, middle-repetitive DNA and highly repetitive DNA. Whereas the majority of protein-coding genes is located on non-repetitive DNA, repetitive DNA forms a constitutive part of eucaryotic DNA and its amount in most cases equals or even substantially exceeds that of non-repetitive DNA. During the past years a large body of data on repetitive DNA has accumulated and these have prompted speculations ranging from specific roles in the regulation of gene expression to that of a selfish entity with inconsequential functions. The following article summarizes recent findings on structural, transcriptional and evolutionary aspects and, although by no means being proven, some possible biological functions are discussed.

  1. Succession of Selected Strains of Acetobacter pasteurianus and Other Acetic Acid Bacteria in Traditional Balsamic Vinegar

    OpenAIRE

    Gullo, M.; De Vero, L.; Giudici, P.

    2009-01-01

    The application of a selected Acetobacter pasteurianus strain for traditional balsamic vinegar production was assessed. Genomic DNA was extracted from biofilms after enrichment cultures on GYC medium (10% glucose, 1.0% yeast extract, 2.0% calcium carbonate) and used for PCR/denaturing gradient gel electrophoresis, 16S rRNA gene sequencing, and enterobacterial repetitive intergenic consensus/PCR sequencing. Results suggested that double-culture fermentation is suitable for traditional balsamic...

  2. Unequal distribution of RT-PCR artifacts along the E1-E2 region of Hepatitis C virus.

    Science.gov (United States)

    Domingo-Calap, Pilar; Sentandreu, Vicente; Bracho, Maria Alma; González-Candelas, Fernando; Moya, Andrés; Sanjuán, Rafael

    2009-10-01

    Although viral variability studies have focused traditionally on consensus sequences, the relevance of molecular clone sequences for studying viral evolution at the intra-host level is being increasingly recognized. However, for this approach to be reliable, RT-PCR artifacts do not have to contribute excessively to the observed variability. Molecular clone sequences were obtained from an in vitro transcript to estimate the maximum error rate associated to RT-PCR for the Hepatitis C virus (HCV) E1-E2 region. On average, the frequency of RT-PCR errors was one order of magnitude lower than the level of intra-host genetic variability observed in samples from an HCV outbreak. However, RT-PCR errors were not distributed evenly along the E1-E2 region and were concentrated heavily in the hypervariable region 2 (HVR 2). Although it is concluded that RT-PCR molecular clone sequences are reliable, these results warn against extrapolation of RT-PCR error rates to different genome regions. The data suggest that the RNA sequence context or secondary structure can determine the fidelity of in vitro transcription or reverse transcription. Potentially, these factors might also modify the fidelity of the viral polymerase.

  3. Molecular characterization of the rDNA-ITS sequence and a PCR diagnostic technique for Pileolaria terebinthi, the cause of pistachio rust

    Directory of Open Access Journals (Sweden)

    Hossein ALAEI

    2013-01-01

    Full Text Available Eleven samples of the most important pistachio rust (caused by Pileolaria terebinthi (DC. Cast.,, which causes disease on Beneh (Pistacia atlantica Desf. subsp. mutica (Fisch. & Mey. Rech. F and Kasoor (Pistacia khinjuk Stocks., were collected from herbarium specimens and pistachio fields at the Pistachio Research Institute in Rafsanjan, Iran. The complete sequences of ribosomal DNA internal transcribed spacers ITS1 and ITS2 (rDNA ITS from the samples were determined and analysed. In general, very little rDNA ITS sequence variation was observed between rDNA ITS sequences of P. terebinthi samples. The length of the PCR fragments was 621 bp (for ITS1F-ITS4 and 1177 bp (for ITS1F-rust1, and consisted of 67 bp at the 3 ́ end of 18S rDNA, 93 bp of ITS1 region, 154 bp of 5.8S rDNA, 246 bp of the ITS2 region, 57 bp (for ITS1F-ITS4 and 613 bp (for ITS1F-rust1 at the 5 ́ end of the 28S rDNA. Restriction fragment length polymorphisms (RFLPs of the rDNA-ITS region were used to identify Pileolaria terebinthi. Three strong bands of 105, 134 and 381 bp and five bands of 105, 134, 200, 301 and 437 bp are observed for the fragment of “ITS1F-ITS4” and “ITS1F-rust1”, respectively. A PCR-RFLP diagnostic technique provided effective identification of the species by a unique pattern with the specific restriction enzyme XapI (ApoI.

  4. Culture independent PCR: an alternative enzyme discovery strategy

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Lydolph, Magnus; Lange, Lene

    2005-01-01

    Degenerate primers were designed for use in a culture-independent PCR screening of DNA from composite fungal communities, inhabiting residues of corn stovers and leaves. According to similarity searches and alignments amplified clone sequences affiliated with glycosyl hydrolase family 7 and glyco...... the value of culture-independent PCR in microbial diversity studies and could add to development of a new enzyme screening technology....

  5. Sensitivity of PCR assays for murine gammaretroviruses and mouse contamination in human blood samples.

    Directory of Open Access Journals (Sweden)

    Li Ling Lee

    Full Text Available Gammaretroviruses related to murine leukemia virus (MLV have variously been reported to be present or absent in blood from chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME patients and healthy controls. Using subjects from New York State, we have investigated by PCR methods whether MLV-related sequences can be identified in nucleic acids isolated from whole blood or from peripheral blood mononuclear cells (PBMCs or following PBMC culture. We have also passaged the prostate cancer cell line LNCaP following incubation with plasma from patients and controls and assayed nucleic acids for viral sequences. We have used 15 sets of primers that can effectively amplify conserved regions of murine endogenous and exogenous retrovirus sequences. We demonstrate that our PCR assays for MLV-related gag sequences and for mouse DNA contamination are extremely sensitive. While we have identified MLV-like gag sequences following PCR on human DNA preparations, we are unable to conclude that these sequences originated in the blood samples.

  6. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.

    Science.gov (United States)

    Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N

    2003-09-01

    Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.

  7. Comparison of DNA Quantification Methods for Next Generation Sequencing.

    Science.gov (United States)

    Robin, Jérôme D; Ludlow, Andrew T; LaRanger, Ryan; Wright, Woodring E; Shay, Jerry W

    2016-04-06

    Next Generation Sequencing (NGS) is a powerful tool that depends on loading a precise amount of DNA onto a flowcell. NGS strategies have expanded our ability to investigate genomic phenomena by referencing mutations in cancer and diseases through large-scale genotyping, developing methods to map rare chromatin interactions (4C; 5C and Hi-C) and identifying chromatin features associated with regulatory elements (ChIP-seq, Bis-Seq, ChiA-PET). While many methods are available for DNA library quantification, there is no unambiguous gold standard. Most techniques use PCR to amplify DNA libraries to obtain sufficient quantities for optical density measurement. However, increased PCR cycles can distort the library's heterogeneity and prevent the detection of rare variants. In this analysis, we compared new digital PCR technologies (droplet digital PCR; ddPCR, ddPCR-Tail) with standard methods for the titration of NGS libraries. DdPCR-Tail is comparable to qPCR and fluorometry (QuBit) and allows sensitive quantification by analysis of barcode repartition after sequencing of multiplexed samples. This study provides a direct comparison between quantification methods throughout a complete sequencing experiment and provides the impetus to use ddPCR-based quantification for improvement of NGS quality.

  8. Effects of prolonged chlorine exposures upon PCR detection of Helicobacter pylori DNA.

    Science.gov (United States)

    The effect of low doses of free chlorine on the detection by qPCR of Helicobacter pylori (H. pylori) cells by qPCR in tap water was monitored. H. pylori target sequences (within suspended, intact cells at densities of 102 to 103 cells /ml) were rendered undetectable by qPCR an...

  9. Deep-sequencing protocols influence the results obtained in small-RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Joern Toedling

    Full Text Available Second-generation sequencing is a powerful method for identifying and quantifying small-RNA components of cells. However, little attention has been paid to the effects of the choice of sequencing platform and library preparation protocol on the results obtained. We present a thorough comparison of small-RNA sequencing libraries generated from the same embryonic stem cell lines, using different sequencing platforms, which represent the three major second-generation sequencing technologies, and protocols. We have analysed and compared the expression of microRNAs, as well as populations of small RNAs derived from repetitive elements. Despite the fact that different libraries display a good correlation between sequencing platforms, qualitative and quantitative variations in the results were found, depending on the protocol used. Thus, when comparing libraries from different biological samples, it is strongly recommended to use the same sequencing platform and protocol in order to ensure the biological relevance of the comparisons.

  10. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events

    Directory of Open Access Journals (Sweden)

    Tigst Demeke

    2018-05-01

    Full Text Available Droplet digital PCR (ddPCR has been used for absolute quantification of genetically engineered (GE events. Absolute quantification of GE events by duplex ddPCR requires the use of appropriate primers and probes for target and reference gene sequences in order to accurately determine the amount of GE materials. Single copy reference genes are generally preferred for absolute quantification of GE events by ddPCR. Study has not been conducted on a comparison of reference genes for absolute quantification of GE canola events by ddPCR. The suitability of four endogenous reference sequences (HMG-I/Y, FatA(A, CruA and Ccf for absolute quantification of GE canola events by ddPCR was investigated. The effect of DNA extraction methods and DNA quality on the assessment of reference gene copy numbers was also investigated. ddPCR results were affected by the use of single vs. two copy reference genes. The single copy, FatA(A, reference gene was found to be stable and suitable for absolute quantification of GE canola events by ddPCR. For the copy numbers measured, the HMG-I/Y reference gene was less consistent than FatA(A reference gene. The expected ddPCR values were underestimated when CruA and Ccf (two copy endogenous Cruciferin sequences were used because of high number of copies. It is important to make an adjustment if two copy reference genes are used for ddPCR in order to obtain accurate results. On the other hand, real-time quantitative PCR results were not affected by the use of single vs. two copy reference genes. Keywords: Canola, Digital PCR, DNA extraction, GMO, Reference genes

  11. Multiplex PCR-based assay for detection of Bordetella pertussis in nasopharyngeal swab specimens.

    Science.gov (United States)

    Wadowsky, R M; Michaels, R H; Libert, T; Kingsley, L A; Ehrlich, G D

    1996-11-01

    A multiplex PCR-based assay was developed for the detection of Bordetella pertussis in nasopharyngeal swab specimens. The assay simultaneously amplified two separate DNA targets (153 and 203 bp) within a B. pertussis repetitive element and a 438-bp target within the beta-actin gene of human DNA (PCR amplification control). PCR products were detected by a sensitive and specific liquid hybridization gel retardation assay. A total of 496 paired nasopharyngeal swab specimens were tested by both the PCR-based assay and culture. Although 30 (6%) of the specimens inhibited the amplification of the beta-actin target, in all 29 specimens studied, the inhibition disappeared on repeat testing or was easily overcome with a 1:8 dilution or less of specimen digest. Of the 495 specimen pairs yielding a final evaluable result by the PCR-based assay, 19.0% were positive by the PCR-based assay, whereas 13.9% were positive by culture (P < 0.0001). After resolving the PCR-positive, culture-negative results by testing an additional aliquot from these specimens by the multiplex PCR-based assay, the PCR-based assay had a sensitivity and specificity of 98.9 and 99.7%, respectively, compared with values of 73.4 and 100%, respectively, for culture. In comparison with patients with culture-confirmed pertussis, those with PCR-positive, culture-negative results were older and more likely to have had prolonged cough, immunization with pertussis vaccine, or treatment with erythromycin. This multiplex PCR-based assay is substantially more sensitive than culture and identifies specimens that contain inhibitors of PCR.

  12. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments.

    Science.gov (United States)

    Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip

    2004-09-22

    Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments. Bellerophon is available as an interactive web server at http://foo.maths.uq.edu.au/~huber/bellerophon.pl

  13. Detection of a putative novel adenovirus by PCR amplification, sequencing and phylogenetic characterisation of two gene fragments from formalin-fixed paraffin-embedded tissues of a cat diagnosed with disseminated adenovirus disease.

    Science.gov (United States)

    Lakatos, Béla; Hornyák, Ákos; Demeter, Zoltán; Forgách, Petra; Kennedy, Frances; Rusvai, Miklós

    2017-12-01

    Adenoviral nucleic acid was detected by polymerase chain reaction (PCR) in formalin-fixed paraffin-embedded tissue samples of a cat that had suffered from disseminated adenovirus infection. The identity of the amplified products from the hexon and DNA-dependent DNA polymerase genes was confirmed by DNA sequencing. The sequences were clearly distinguishable from corresponding hexon and polymerase sequences of other mastadenoviruses, including human adenoviruses. These results suggest the possible existence of a distinct feline adenovirus.

  14. Biosynthesis and characterization of a non-repetitive polypeptide derived from silk fibroin heavy chain

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gaoqiang; Wu, Mingyang; Yi, Honggen; Wang, Jiannan, E-mail: wangjn@suda.edu.cn

    2016-02-01

    Silk fibroin heavy chain is the major protein component of Bombyx mori silk fibroin and is composed of 12 repetitive and 11 non-repetitive regions, with the non-repetitive domain consisting of a hydrophilic polypeptide chain. In order to determine the biomedical function of the non-repetitive domain or potentially use it to modify hydrophobic biomaterials, high-purity isolation is necessary. Previously, we cloned and extended a gene motif (f(1)) encoding the non-repetitive domain. Here, this motif and its multimers are inserted into a glutathione S-transferase (GST)-tagged fusion-protein expression vector. Motif f(1) and multimers f(4) and f(8) were expressed in Escherichia coli BL21 cells following isopropyl β-D-1-thiogalactopyranoside induction, purified by GST-affinity chromatography, and single bands of purified fusion proteins GST-F(1), GST-F(4), and GST-F(8), were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Target polypeptides F(1), F(4), and F(8), were cleaved clearly from the GST-fusion tag following thrombin digestion. Mass spectrometry results indicate that the molecular weights associated with fusion proteins GST-F(1), GST-F(4), and GST-F(8) are 31.5, 43.8, and 59.0 kDa, respectively, and with the cleaved polypeptides F(1), F(4), and F(8) are 4.8, 16.8, and 32.8 kDa, respectively. The F(1), F(4), and F(8) polypeptide chains are negatively charged with isoelectric points (pI) of 3.3, 3.2, and 3.0, respectively. The molecular weight and pI values of the polypeptide chains are consistent with the predicted values and the amino acid compositions similar to predicted sequences. FTIR and CD results show the molecular conformation of F(1) was mainly random coil, and more stable α-helix structure formed in longer molecular chain. - Highlights: • A non-repetitive domain and its multimers of silk fibroin were expressed by E. coli. • The corresponding target polypeptides F(1), F(4) and F(8) were cleaved clearly. • Their

  15. Molecular structure and chromosome distribution of three repetitive DNA families in Anemone hortensis L. (Ranunculaceae).

    Science.gov (United States)

    Mlinarec, Jelena; Chester, Mike; Siljak-Yakovlev, Sonja; Papes, Drazena; Leitch, Andrew R; Besendorfer, Visnja

    2009-01-01

    The structure, abundance and location of repetitive DNA sequences on chromosomes can characterize the nature of higher plant genomes. Here we report on three new repeat DNA families isolated from Anemone hortensis L.; (i) AhTR1, a family of satellite DNA (stDNA) composed of a 554-561 bp long EcoRV monomer; (ii) AhTR2, a stDNA family composed of a 743 bp long HindIII monomer and; (iii) AhDR, a repeat family composed of a 945 bp long HindIII fragment that exhibits some sequence similarity to Ty3/gypsy-like retroelements. Fluorescence in-situ hybridization (FISH) to metaphase chromosomes of A. hortensis (2n = 16) revealed that both AhTR1 and AhTR2 sequences co-localized with DAPI-positive AT-rich heterochromatic regions. AhTR1 sequences occur at intercalary DAPI bands while AhTR2 sequences occur at 8-10 terminally located heterochromatic blocks. In contrast AhDR sequences are dispersed over all chromosomes as expected of a Ty3/gypsy-like element. AhTR2 and AhTR1 repeat families include polyA- and polyT-tracks, AT/TA-motifs and a pentanucleotide sequence (CAAAA) that may have consequences for chromatin packing and sequence homogeneity. AhTR2 repeats also contain TTTAGGG motifs and degenerate variants. We suggest that they arose by interspersion of telomeric repeats with subtelomeric repeats, before hybrid unit(s) amplified through the heterochromatic domain. The three repetitive DNA families together occupy approximately 10% of the A. hortensis genome. Comparative analyses of eight Anemone species revealed that the divergence of the A. hortensis genome was accompanied by considerable modification and/or amplification of repeats.

  16. Repetition and lag effects in movement recognition.

    Science.gov (United States)

    Hall, C R; Buckolz, E

    1982-03-01

    Whether repetition and lag improve the recognition of movement patterns was investigated. Recognition memory was tested for one repetition, two-repetitions massed, and two-repetitions distributed with movement patterns at lags of 3, 5, 7, and 13. Recognition performance was examined both immediately afterwards and following a 48 hour delay. Both repetition and lag effects failed to be demonstrated, providing some support for the claim that memory is unaffected by repetition at a constant level of processing (Craik & Lockhart, 1972). There was, as expected, a significant decrease in recognition memory following the retention interval, but this appeared unrelated to repetition or lag.

  17. DNA polymerase preference determines PCR priming efficiency.

    Science.gov (United States)

    Pan, Wenjing; Byrne-Steele, Miranda; Wang, Chunlin; Lu, Stanley; Clemmons, Scott; Zahorchak, Robert J; Han, Jian

    2014-01-30

    Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3' hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3' end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification efficiencies among three commercially

  18. Prediction of the Maximum Number of Repetitions and Repetitions in Reserve From Barbell Velocity.

    Science.gov (United States)

    García-Ramos, Amador; Torrejón, Alejandro; Feriche, Belén; Morales-Artacho, Antonio J; Pérez-Castilla, Alejandro; Padial, Paulino; Haff, Guy Gregory

    2018-03-01

    To provide 2 general equations to estimate the maximum possible number of repetitions (XRM) from the mean velocity (MV) of the barbell and the MV associated with a given number of repetitions in reserve, as well as to determine the between-sessions reliability of the MV associated with each XRM. After determination of the bench-press 1-repetition maximum (1RM; 1.15 ± 0.21 kg/kg body mass), 21 men (age 23.0 ± 2.7 y, body mass 72.7 ± 8.3 kg, body height 1.77 ± 0.07 m) completed 4 sets of as many repetitions as possible against relative loads of 60%1RM, 70%1RM, 80%1RM, and 90%1RM over 2 separate sessions. The different loads were tested in a randomized order with 10 min of rest between them. All repetitions were performed at the maximum intended velocity. Both the general equation to predict the XRM from the fastest MV of the set (CV = 15.8-18.5%) and the general equation to predict MV associated with a given number of repetitions in reserve (CV = 14.6-28.8%) failed to provide data with acceptable between-subjects variability. However, a strong relationship (median r 2  = .984) and acceptable reliability (CV  .85) were observed between the fastest MV of the set and the XRM when considering individual data. These results indicate that generalized group equations are not acceptable methods for estimating the XRM-MV relationship or the number of repetitions in reserve. When attempting to estimate the XRM-MV relationship, one must use individualized relationships to objectively estimate the exact number of repetitions that can be performed in a training set.

  19. ABO Blood Group Genotyping by Real-time PCR in Kazakh Population

    Directory of Open Access Journals (Sweden)

    Pavel Tarlykov

    2014-12-01

    Full Text Available Introduction. ABO blood group genotyping is a new technology in hematology that helps prevent adverse transfusion reactions in patients. Identification of antigens on the surface of red blood cells is based on serology; however, genotyping employs a different strategy and is aimed directly at genes that determine the surface proteins. ABO blood group genotyping by real-time PCR has several crucial advantages over other PCR-based techniques, such as high rapidity and reliability of analysis. The purpose of this study was to examine nucleotide substitutions differences by blood types using a PCR-based method on Kazakh blood donors.Methods. The study was approved by the Ethics Committee of the National Center for Biotechnology. Venous blood samples from 369 healthy Kazakh blood donors, whose blood types had been determined by serological methods, were collected after obtaining informed consent. The phenotypes of the samples included blood group A (n = 99, B (n = 93, O (n = 132, and AB (n = 45. Genomic DNA was extracted using a salting-out method. PCR products of ABO gene were sequenced on an ABI 3730xl DNA analyzer (Applied Biosystems. The resulting nucleotide sequences were compared and aligned against reference sequence NM_020469.2. Real-time PCR analysis was performed on CFX96 Touch™ Real-Time PCR Detection System (BioRad.Results. Direct sequencing of ABO gene in 369 samples revealed that the vast majority of nucleotide substitutions that change the ABO phenotype were limited to exons 6 and 7 of the ABO gene at positions 261, 467, 657, 796, 803, 930 and 1,060. However, genotyping of only three of them (261, 796 and 803 resulted in identification of major ABO genotypes in the Kazakh population. As a result, TaqMan probe based real-time PCR assay for the specific detection of genotypes 261, 796 and 803 was developed. The assay did not take into account several other mutations that may affect the determination of blood group, because they have a

  20. If you negate, you may forget: negated repetitions impair memory compared with affirmative repetitions.

    Science.gov (United States)

    Mayo, Ruth; Schul, Yaacov; Rosenthal, Meytal

    2014-08-01

    One of the most robust laws of memory is that repeated activation improves memory. Our study shows that the nature of repetition matters. Specifically, although both negated repetition and affirmative repetition improve memory compared with no repetition, negated repetition hinders memory compared with affirmative repetition. After showing participants different entities, we asked them about features of these entities, leading to either "yes" or "no" responses. Our findings show that correctly negating an incorrect feature of an entity elicits an active forgetting effect compared with correctly affirming its true features. For example, after seeing someone drink a glass of white wine, answering "no" to "was it red wine?" may lead one to greater memory loss of the individual drinking wine at all compared with answering "yes" to "was it white wine?" We find this negation-induced forgetting effect in 4 experiments that differ in (a) the meaning given for the negation, (b) the type of stimuli (visual or verbal), and (c) the memory measure (recognition or free recall). We discuss possible underlying mechanisms and offer theoretical and applied implications of the negation-induced forgetting effect in relation to other known inhibition effects. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. B chromosome in the beetle Coprophanaeus cyanescens (Scarabaeidae: emphasis in the organization of repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Gomes de Oliveira Sarah

    2012-11-01

    Full Text Available Abstract Background To contribute to the knowledge of coleopteran cytogenetics, especially with respect to the genomic content of B chromosomes, we analyzed the composition and organization of repetitive DNA sequences in the Coprophanaeus cyanescens karyotype. We used conventional staining and the application of fluorescence in situ hybridization (FISH mapping using as probes C0t-1 DNA fraction, the 18S and 5S rRNA genes, and the LOA-like non-LTR transposable element (TE. Results The conventional analysis detected 3 individuals (among 50 analyzed carrying one small metacentric and mitotically unstable B chromosome. The FISH analysis revealed a pericentromeric block of C0t-1 DNA in the B chromosome but no 18S or 5S rDNA clusters in this extra element. Using the LOA-like TE probe, the FISH analysis revealed large pericentromeric blocks in eight autosomal bivalents and in the B chromosome, and a pericentromeric block extending to the short arm in one autosomal pair. No positive hybridization signal was observed for the LOA-like element in the sex chromosomes. Conclusions The results indicate that the origin of the B chromosome is associated with the autosomal elements, as demonstrated by the hybridization with C0t-1 DNA and the LOA-like TE. The present study is the first report on the cytogenetic mapping of a TE in coleopteran chromosomes. These TEs could have been involved in the origin and evolution of the B chromosome in C. cyanescens.

  2. Software for optimization of SNP and PCR-RFLP genotyping to discriminate many genomes with the fewest assays

    Directory of Open Access Journals (Sweden)

    Wagner Mark C

    2005-05-01

    Full Text Available Abstract Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As

  3. Mung bean nuclease treatment increases capture specificity of microdroplet-PCR based targeted DNA enrichment.

    Directory of Open Access Journals (Sweden)

    Zhenming Yu

    Full Text Available Targeted DNA enrichment coupled with next generation sequencing has been increasingly used for interrogation of select sub-genomic regions at high depth of coverage in a cost effective manner. Specificity measured by on-target efficiency is a key performance metric for target enrichment. Non-specific capture leads to off-target reads, resulting in waste of sequencing throughput on irrelevant regions. Microdroplet-PCR allows simultaneous amplification of up to thousands of regions in the genome and is among the most commonly used strategies for target enrichment. Here we show that carryover of single-stranded template genomic DNA from microdroplet-PCR constitutes a major contributing factor for off-target reads in the resultant libraries. Moreover, treatment of microdroplet-PCR enrichment products with a nuclease specific to single-stranded DNA alleviates off-target load and improves enrichment specificity. We propose that nuclease treatment of enrichment products should be incorporated in the workflow of targeted sequencing using microdroplet-PCR for target capture. These findings may have a broad impact on other PCR based applications for which removal of template DNA is beneficial.

  4. Detection of Trypanosoma congolense type savannah in field samples of buffy coats of bovins using PCR-ELISA

    International Nuclear Information System (INIS)

    Sidibe, I.

    2007-01-01

    PCR-ELISA was set up to detect strain of Trypanosoma congolense type savannah in field samples of buffy coats. Results of PCR-ELISA and PCR were compared and the sensibility and specificity of both techniques were also compared with those of the method of Murray [1] for the detection of TCS in 257 samples. The PCR products were labelling with DIG-dUTP during amplification cycles of the repetitive satellite DNA. A DNA biotinyled capture probe was used to detect the amplicon by ELISA in streptavidine coated microplates. Both of PCR-ELISA and PCR were more sensible and more specific than the method of Murray. Indeed, for the 257 samples analysed by the three techniques, PCR-ELISA and PCR have detected TCS in 98 and 97 samples respectively, whereas the method of Murray has detected TCS in only 39 samples. In addition, PCRELISA and PCR had almost the same sensibility and specificity. So, PCR-ELISA and PCR have respectively detected TCS in 38.62% and 39.22% of all the 334 samples analysed by both techniques during this study. At the end of this study, the cost of analyse by PCR-ELISA of a sample of buffy coat, was evaluated at 1993 FCFA or Euro 3,04. (author) [fr

  5. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events.

    Science.gov (United States)

    Demeke, Tigst; Eng, Monika

    2018-05-01

    Droplet digital PCR (ddPCR) has been used for absolute quantification of genetically engineered (GE) events. Absolute quantification of GE events by duplex ddPCR requires the use of appropriate primers and probes for target and reference gene sequences in order to accurately determine the amount of GE materials. Single copy reference genes are generally preferred for absolute quantification of GE events by ddPCR. Study has not been conducted on a comparison of reference genes for absolute quantification of GE canola events by ddPCR. The suitability of four endogenous reference sequences ( HMG-I/Y , FatA(A), CruA and Ccf) for absolute quantification of GE canola events by ddPCR was investigated. The effect of DNA extraction methods and DNA quality on the assessment of reference gene copy numbers was also investigated. ddPCR results were affected by the use of single vs. two copy reference genes. The single copy, FatA(A), reference gene was found to be stable and suitable for absolute quantification of GE canola events by ddPCR. For the copy numbers measured, the HMG-I/Y reference gene was less consistent than FatA(A) reference gene. The expected ddPCR values were underestimated when CruA and Ccf (two copy endogenous Cruciferin sequences) were used because of high number of copies. It is important to make an adjustment if two copy reference genes are used for ddPCR in order to obtain accurate results. On the other hand, real-time quantitative PCR results were not affected by the use of single vs. two copy reference genes.

  6. A Ribeiroia spp. (Class: Trematoda) - Specific PCR-based diagnostic

    Science.gov (United States)

    Reinitz, David M.; Yoshino, T.P.; Cole, Rebecca A.

    2007-01-01

    Increased reporting of amphibian malformations in North America has been noted with concern in light of reports that amphibian numbers and species are declining worldwide. Ribeiroia ondatrae has been shown to cause a variety of types of malformations in amphibians. However, little is known about the prevalence of R. ondatrae in North America. To aid in conducting field studies of Ribeiroia spp., we have developed a polymerase chain reaction (PCR)-based diagnostic. Herein, we describe the development of an accurate, rapid, simple, and cost-effective diagnostic for detection of Ribeiroia spp. infection in snails (Planorbella trivolvis). Candidate oligonucleotide primers for PCR were designed via DNA sequence analyses of multiple ribosomal internal transcribed spacer-2 regions from Ribeiroia spp. and Echinostoma spp. Comparison of consensus sequences determined from both genera identified areas of sequence potentially unique to Ribeiroia spp. The PCR reliably produced a diagnostic 290-base pair (bp) product in the presence of a wide concentration range of snail or frog DNA. Sensitivity was examined with DNA extracted from single R. ondatrae cercaria. The single-tube PCR could routinely detect less than 1 cercariae equivalent, because DNA isolated from a single cercaria could be diluted at least 1:50 and still yield a positive result via gel electrophoresis. An even more sensitive nested PCR also was developed that routinely detected 100 fg of the 290-bp fragment. The assay did not detect furcocercous cercariae of certain Schistosomatidae, Echinostoma sp., or Sphaeridiotrema globulus nor adults of Clinostomum sp. or Cyathocotyle bushiensis. Field testing of 137 P. trivolvis identified 3 positives with no overt environmental cross-reactivity, and results concurred with microscopic examinations in all cases. ?? American Society of Parasitologists 2007.

  7. Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting.

    Directory of Open Access Journals (Sweden)

    Jutta Zwielehner

    Full Text Available BACKGROUND: We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota. METHODOLOGY/PRINCIPAL FINDINGS: Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, age- and lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, Bacteroides, bifidobacteria, Clostridium cluster IV and XIVa as well as C. difficile with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037 following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the Bacteroides while the Clostridium cluster IV and XIVa were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of Clostridium cluster IV and XIVa in response to chemotherapy with cluster IV diversity being particularly affected by antibiotics. The occurrence of C. difficile in three out of seventeen subjects was accompanied by a decrease in the genera Bifidobacterium, Lactobacillus, Veillonella and Faecalibacterium prausnitzii. Enterococcus faecium increased following chemotherapy. CONCLUSIONS/SIGNIFICANCE: Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with C. difficile and Enterococcus faecium. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics.

  8. A PCR detection method for rapid identification of Melissococcus pluton in honeybee larvae.

    Science.gov (United States)

    Govan, V A; Brözel, V; Allsopp, M H; Davison, S

    1998-05-01

    Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae.

  9. Two-stage clustering (TSC: a pipeline for selecting operational taxonomic units for the high-throughput sequencing of PCR amplicons.

    Directory of Open Access Journals (Sweden)

    Xiao-Tao Jiang

    Full Text Available Clustering 16S/18S rRNA amplicon sequences into operational taxonomic units (OTUs is a critical step for the bioinformatic analysis of microbial diversity. Here, we report a pipeline for selecting OTUs with a relatively low computational demand and a high degree of accuracy. This pipeline is referred to as two-stage clustering (TSC because it divides tags into two groups according to their abundance and clusters them sequentially. The more abundant group is clustered using a hierarchical algorithm similar to that in ESPRIT, which has a high degree of accuracy but is computationally costly for large datasets. The rarer group, which includes the majority of tags, is then heuristically clustered to improve efficiency. To further improve the computational efficiency and accuracy, two preclustering steps are implemented. To maintain clustering accuracy, all tags are grouped into an OTU depending on their pairwise Needleman-Wunsch distance. This method not only improved the computational efficiency but also mitigated the spurious OTU estimation from 'noise' sequences. In addition, OTUs clustered using TSC showed comparable or improved performance in beta-diversity comparisons compared to existing OTU selection methods. This study suggests that the distribution of sequencing datasets is a useful property for improving the computational efficiency and increasing the clustering accuracy of the high-throughput sequencing of PCR amplicons. The software and user guide are freely available at http://hwzhoulab.smu.edu.cn/paperdata/.

  10. Characterization of relative abundance of lactic acid bacteria species in French organic sourdough by cultural, qPCR and MiSeq high-throughput sequencing methods.

    Science.gov (United States)

    Michel, Elisa; Monfort, Clarisse; Deffrasnes, Marion; Guezenec, Stéphane; Lhomme, Emilie; Barret, Matthieu; Sicard, Delphine; Dousset, Xavier; Onno, Bernard

    2016-12-19

    In order to contribute to the description of sourdough LAB composition, MiSeq sequencing and qPCR methods were performed in association with cultural methods. A panel of 16 French organic bakers and farmer-bakers were selected for this work. The lactic acid bacteria (LAB) diversity of their organic sourdoughs was investigated quantitatively and qualitatively combining (i) Lactobacillus sanfranciscensis-specific qPCR, (ii) global sequencing with MiSeq Illumina technology and (iii) molecular isolates identification. In addition, LAB and yeast enumeration, pH, Total Titratable Acidity, organic acids and bread specific volume were analyzed. Microbial and physico-chemical data were statistically treated by Principal Component Analysis (PCA) and Hierarchical Ascendant Classification (HAC). Total yeast counts were 6 log 10 to 7.6 log 10 CFU/g while LAB counts varied from 7.2 log 10 to 9.6 log 10 CFU/g. Values obtained by L. sanfranciscensis-specific qPCR were estimated between 7.2 and 10.3 log 10 CFU/g, except for one sample at 4.4 log 10 CFU/g. HAC and PCA clustered the sixteen sourdoughs into three classes described by their variables but without links to bakers' practices. L. sanfranciscensis was the dominant species in 13 of the 16 sourdoughs analyzed by Next Generation Sequencing (NGS), by the culture dependent method this species was dominant only in only 10 samples. Based on isolates identification, LAB diversity was higher for 7 sourdoughs with the recovery of L. curvatus, L. brevis, L. heilongjiangensis, L. xiangfangensis, L. koreensis, L. pontis, Weissella sp. and Pediococcus pentosaceus, as the most representative species. L. koreensis, L. heilongjiangensis and L. xiangfangensis were identified in traditional Asian food and here for the first time as dominant in organic sourdough. This study highlighted that L. sanfranciscensis was not the major species in 6/16 sourdough samples and that a relatively high LAB diversity can be observed in French organic

  11. Repetitive muscle compression reduces vascular mechano-sensitivity and the hyperemic response to muscle contraction.

    Science.gov (United States)

    Messere, A; Turturici, M; Millo, G; Roatta, S

    2017-06-01

    Animal studies have shown that the rapid hyperemic response to external muscle compression undergoes inactivation upon repetitive stimulation, but this phenomenon has never been observed in humans. The aim of the present study was to determine whether 1) the vascular mechano-sensitivity underlying muscle compression-induced hyperemia is inactivated in an inter-stimulus interval (ISI)-dependent fashion upon repetitive stimulation, as suggested by animal studies, and 2) whether such inactivation also attenuates contraction-induced hyperemia. Brachial artery blood flow was measured by echo Doppler sonography in 13 healthy adults in response to 1) single and repetitive cuff muscle compression (CMC) of the forearm (20 CMCs, 1 s ISI); 2) a sequence of CMC delivered at decreasing ISI from 120 to 2 s; and 3) electrically-stimulated contraction of the forearm muscles before and after repetitive CMC. The peak amplitude of hyperemia in response to CMC normalized to baseline decreased from 2.2 ± 0.6 to 1.4 ± 0.4 after repetitive CMC and, in general, was decreased at ISI < 240 s. The peak amplitude of contraction-induced hyperemia was attenuated after as compared to before repeated CMC (1.7 ± 0.4 and 2.6 ± 0.6, respectively). Mechano-sensitivity of the vascular network can be conditioned by previous mechanical stimulation, and such preconditioning may substantially decrease contraction-induced hyperemia.

  12. Repetitive Questioning Exasperates Caregivers

    Directory of Open Access Journals (Sweden)

    R. C. Hamdy MD

    2018-01-01

    Full Text Available Repetitive questioning is due to an impaired episodic memory and is a frequent, often presenting, problem in patients with Alzheimer’s disease (amnestic type. It is due to the patients’ difficulties learning new information, retaining it, and recalling it, and is often aggravated by a poor attention span and easy distractibility. A number of factors may trigger and maintain repetitive questioning. Caregivers should try to identify and address these triggers. In the case discussion presented, it is due to the patient’s concerns about her and her family’s safety triggered by watching a particularly violent movie aired on TV. What went wrong in the patient/caregiver interaction and how it could have been avoided or averted are explored. Also reviewed are the impact of repetitive questioning, the challenges it raises for caregivers, and some effective intervention strategies that may be useful to diffuse the angst that caregivers experience with repetitive questioning.

  13. 16S-23S rDNA intergenic spacer region polymorphism of Lactococcus garvieae, Lactococcus raffinolactis and Lactococcus lactis as revealed by PCR and nucleotide sequence analysis.

    Science.gov (United States)

    Blaiotta, Giuseppe; Pepe, Olimpia; Mauriello, Gianluigi; Villani, Francesco; Andolfi, Rosamaria; Moschetti, Giancarlo

    2002-12-01

    The intergenic spacer region (ISR) between the 16S and 23S rRNA genes was tested as a tool for differentiating lactococci commonly isolated in a dairy environment. 17 reference strains, representing 11 different species belonging to the genera Lactococcus, Streptococcus, Lactobacillus, Enterococcus and Leuconostoc, and 127 wild streptococcal strains isolated during the whole fermentation process of "Fior di Latte" cheese were analyzed. After 16S-23S rDNA ISR amplification by PCR, species or genus-specific patterns were obtained for most of the reference strains tested. Moreover, results obtained after nucleotide analysis show that the 16S-23S rDNA ISR sequences vary greatly, in size and sequence, among Lactococcus garvieae, Lactococcus raffinolactis, Lactococcus lactis as well as other streptococci from dairy environments. Because of the high degree of inter-specific polymorphism observed, 16S-23S rDNA ISR can be considered a good potential target for selecting species-specific molecular assays, such as PCR primer or probes, for a rapid and extremely reliable differentiation of dairy lactococcal isolates.

  14. Establishing a novel single-copy primer-internal intron-spanning PCR (spiPCR) procedure for the direct detection of gene doping.

    Science.gov (United States)

    Beiter, Thomas; Zimmermann, Martina; Fragasso, Annunziata; Armeanu, Sorin; Lauer, Ulrich M; Bitzer, Michael; Su, Hua; Young, William L; Niess, Andreas M; Simon, Perikles

    2008-01-01

    So far, the abuse of gene transfer technology in sport, so-called gene doping, is undetectable. However, recent studies in somatic gene therapy indicate that long-term presence of transgenic DNA (tDNA) following various gene transfer protocols can be found in DNA isolated from whole blood using conventional PCR protocols. Application of these protocols for the direct detection of gene doping would require almost complete knowledge about the sequence of the genetic information that has been transferred. Here, we develop and describe the novel single-copy primer-internal intron-spanning PCR (spiPCR) procedure that overcomes this difficulty. Apart from the interesting perspectives that this spiPCR procedure offers in the fight against gene doping, this technology could also be of interest in biodistribution and biosafety studies for gene therapeutic applications.

  15. A real-time PCR assay with improved specificity for detection and discrimination of all clinically relevant Bordetella species by the presence and distribution of three Insertion Sequence elements

    Directory of Open Access Journals (Sweden)

    Ossewaarde Jacobus M

    2011-01-01

    Full Text Available Abstract Background In Dutch laboratories molecular detection of B. pertussis and B. parapertussis is commonly based on insertion sequences IS481 and IS1001, respectively. Both IS elements are more widely spread among Bordetella species. Both Bordetella holmesii, and B. bronchiseptica can harbour IS481. Also, IS1001 is found among B. bronchiseptica. IS481, and IS1001 based PCR thus lacks specificity when used for detection of specific Bordetella spp. Findings We designed a PCR based on IS1002, another IS element that is present among Bordetella species, and exploited it as a template in combination with PCR for IS481, and IS1001. In combining the PCRs for IS481, IS1001, and IS1002, and including an inhibition control, we were able to detect and discriminate all clinically relevant Bordetella species. Conclusions We developed an improved PCR method for specific detection of B. pertussis, B. parapertussis, B. holmesii, and B. bronchiseptica.

  16. Genotypic Characterization of Escherichia coli O157:H7 Isolates from Different Sources in the North-West Province, South Africa, Using Enterobacterial Repetitive Intergenic Consensus PCR Analysis

    Directory of Open Access Journals (Sweden)

    Collins Njie Ateba

    2014-05-01

    Full Text Available In many developing countries, proper hygiene is not strictly implemented when animals are slaughtered and meat products become contaminated. Contaminated meat may contain Escherichia coli (E. coli O157:H7 that could cause diseases in humans if these food products are consumed undercooked. In the present study, a total of 94 confirmed E. coli O157:H7 isolates were subjected to the enterobacterial repetitive intergenic consensus (ERIC polymerase chain reaction (PCR typing to generate genetic fingerprints. The ERIC fragments were resolved by electrophoresis on 2% (w/v agarose gels. The presence, absence and intensity of band data were obtained, exported to Microsoft Excel (Microsoft Office 2003 and used to generate a data matrix. The unweighted pair group method with arithmetic mean (UPGMA and complete linkage algorithms were used to analyze the percentage of similarity and matrix data. Relationships between the various profiles and/or lanes were expressed as dendrograms. Data from groups of related lanes were compiled and reported on cluster tables. ERIC fragments ranged from one to 15 per isolate, and their sizes varied from 0.25 to 0.771 kb. A large proportion of the isolates produced an ERIC banding pattern with three duplets ranging in sizes from 0.408 to 0.628 kb. Eight major clusters (I–VIII were identified. Overall, the remarkable similarities (72% to 91% between the ERIC profiles for the isolate from animal species and their corresponding food products indicated some form of contamination, which may not exclude those at the level of the abattoirs. These results reveal that ERIC PCR analysis can be reliable in comparing the genetic profiles of E. coli O157:H7 from different sources in the North-West Province of South Africa.

  17. Genotypic characterization of Escherichia coli O157:H7 isolates from different sources in the North-West Province, South Africa, using enterobacterial repetitive intergenic consensus PCR analysis.

    Science.gov (United States)

    Ateba, Collins Njie; Mbewe, Moses

    2014-05-30

    In many developing countries, proper hygiene is not strictly implemented when animals are slaughtered and meat products become contaminated. Contaminated meat may contain Escherichia coli (E. coli) O157:H7 that could cause diseases in humans if these food products are consumed undercooked. In the present study, a total of 94 confirmed E. coli O157:H7 isolates were subjected to the enterobacterial repetitive intergenic consensus (ERIC) polymerase chain reaction (PCR) typing to generate genetic fingerprints. The ERIC fragments were resolved by electrophoresis on 2% (w/v) agarose gels. The presence, absence and intensity of band data were obtained, exported to Microsoft Excel (Microsoft Office 2003) and used to generate a data matrix. The unweighted pair group method with arithmetic mean (UPGMA) and complete linkage algorithms were used to analyze the percentage of similarity and matrix data. Relationships between the various profiles and/or lanes were expressed as dendrograms. Data from groups of related lanes were compiled and reported on cluster tables. ERIC fragments ranged from one to 15 per isolate, and their sizes varied from 0.25 to 0.771 kb. A large proportion of the isolates produced an ERIC banding pattern with three duplets ranging in sizes from 0.408 to 0.628 kb. Eight major clusters (I-VIII) were identified. Overall, the remarkable similarities (72% to 91%) between the ERIC profiles for the isolate from animal species and their corresponding food products indicated some form of contamination, which may not exclude those at the level of the abattoirs. These results reveal that ERIC PCR analysis can be reliable in comparing the genetic profiles of E. coli O157:H7 from different sources in the North-West Province of South Africa.

  18. Repeated DNA sequences in fungi

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S K

    1974-11-01

    Several fungal species, representatives of all broad groups like basidiomycetes, ascomycetes and phycomycetes, were examined for the nature of repeated DNA sequences by DNA:DNA reassociation studies using hydroxyapatite chromatography. All of the fungal species tested contained 10 to 20 percent repeated DNA sequences. There are approximately 100 to 110 copies of repeated DNA sequences of approximately 4 x 10/sup 7/ daltons piece size of each. Repeated DNA sequence homoduplexes showed on average 5/sup 0/C difference of T/sub e/50 (temperature at which 50 percent duplexes dissociate) values from the corresponding homoduplexes of unfractionated whole DNA. It is suggested that a part of repetitive sequences in fungi constitutes mitochondrial DNA and a part of it constitutes nuclear DNA. (auth)

  19. Computer-Related Repetitive Stress Injuries

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Computer-Related Repetitive Stress Injuries KidsHealth / For Parents / Computer-Related Repetitive Stress Injuries What's in this article? ...

  20. Typing of avian pathogenic Escherichia coli strains by REP-PCR Tipificação de amostras aviárias patogênicas de Escherichia coli pela REP-PCR

    Directory of Open Access Journals (Sweden)

    Marcelo Brocchi

    2006-06-01

    Full Text Available In the present study the repetitive extragenic palindromic (REP polymerase chain reaction (PCR technique was used to establish the clonal variability of 49 avian Escherichia coli (APEC strains isolated from different outbreak cases of septicemia (n=24, swollen head syndrome (n=14 and omphalitis (n=11. Thirty commensal strains isolated from poultry with no signs of these illnesses were used as control strains. The purified DNA of these strains produced electrophoretic profiles ranging from 0 to 15 bands with molecular sizes varying from 100 bp to 6.1 kb, allowing the grouping of the 79 strains into a dendrogram containing 49 REP-types. Although REP-PCR showed good discriminating power it was not able to group the strains either into specific pathogenic classes or to differentiate between pathogenic and non-pathogenic strains. On the contrary, we recently demonstrated that other techniques such as ERIC-PCR and isoenzyme profiles are appropriate to discriminate between commensal and APEC strains and also to group these strains into specific pathogenic classes. In conclusion, REP-PCR seems to be a technique neither efficient nor universal for APEC strains discrimination. However, the population clonal structure obtained with the use of REP-PCR must not be ignored particularly if one takes into account that the APEC pathogenic mechanisms are not completely understood yet.A técnica de REP (Repetitive extragenic palindrome-PCR foi utilizada para avaliar a variabilidade genética de 49 amostras de Escherichia coli patogênicas para aves (APEC, isoladas de aves de corte (frangos em diferentes surtos de septicemia (n=24, síndrome da cabeça inchada (n=14 e onfalite (n=11. Trinta amostras comensais, isoladas de frangos sem sinais de doença, foram utilizadas como controle. A análise do perfil eletroforético obtido por reação de REP-PCR utilizando DNA purificado das amostras evidenciou a amplificação de 0 a 15 bandas de DNA com pesos moleculares

  1. Chromosomal organization of repetitive DNAs in Hordeum bogdanii and H. brevisubulatum (Poaceae

    Directory of Open Access Journals (Sweden)

    Quanwen Dou

    2016-10-01

    Full Text Available Molecular karyotypes of H. bogdanii Wilensky, 1918 (2n = 14, and H. brevisubulatum Link, 1844 ssp. brevisubulatum (2n = 28, were characterized by physical mapping of several repetitive sequences. A total of 18 repeats, including all possible di- or trinucleotide SSR (simple sequence repeat motifs and satellite DNAs, such as pAs1, 5S rDNA, 45S rDNA, and pSc119.2, were used as probes for fluorescence in situ hybridization on root-tip metaphase chromosomes. Except for the SSR motifs AG, AT and GC, all the repeats we examined produced detectable hybridization signals on chromosomes of both species. A detailed molecular karyotype of the I genome of H. bogdanii is described for the first time, and each repetitive sequence is physically mapped. A high degree of chromosome variation, including aneuploidy and structural changes, was observed in H. brevisubulatum. Although the distribution of repeats in the chromosomes of H. brevisubulatum is different from that of H. bogdanii, similar patterns between the two species imply that the autopolyploid origin of H. brevisubulatum is from a Hordeum species with an I genome. A comparison of the I genome and the other Hordeum genomes, H, Xa and Xu, shows that colocalization of motifs AAC, ACT and CAT and colocalization of motifs AAG and AGG are characteristic of the I genome. In addition, we discuss the evolutionary significance of repeats in the genome during genome differentiation.

  2. Molecular discrimination of Echinococcus granulosus and Echinococcus multilocularis by sequencing and a new PCR-RFLP method with the potential use for other Echinococcus species

    OpenAIRE

    ŞAKALAR, Çağrı; KUK, Salih; ERENSOY, Ahmet; DAĞLI, Adile Ferda; ÖZERCAN, İbrahim Hanifi

    2015-01-01

    To develop a novel polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) protocol using a new genomic marker sequence and a novel set of restriction enzymes in order to detect and discriminate 2 Echinococcus species, E. granulosus and E. multilocularis, found in formalin-fixed paraffin-embedded (FFPE) human tissues. Materials and methods: DNA was isolated from 11 FFPE human tissue samples positive for cystic echinococcosis or alveolar echinococcosis. A mitochondrial...

  3. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    Science.gov (United States)

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  4. Ligation-mediated PCR with a back-to-back adapter reduces amplification bias resulting from variations in GC content.

    Science.gov (United States)

    Ishihara, Satoru; Kotomura, Naoe; Yamamoto, Naoki; Ochiai, Hiroshi

    2017-08-15

    Ligation-mediated polymerase chain reaction (LM-PCR) is a common technique for amplification of a pool of DNA fragments. Here, a double-stranded oligonucleotide consisting of two primer sequences in back-to-back orientation was designed as an adapter for LM-PCR. When DNA fragments were ligated with this adapter, the fragments were sandwiched between two adapters in random orientations. In the ensuing PCR, ligation products linked at each end to an opposite side of the adapter, i.e. to a distinct primer sequence, were preferentially amplified compared with products linked at each end to an identical primer sequence. The use of this adapter in LM-PCR reduced the impairment of PCR by substrate DNA with a high GC content, compared with the use of traditional LM-PCR adapters. This result suggested that our method has the potential to contribute to reduction of the amplification bias that is caused by an intrinsic property of the sequence context in substrate DNA. A DNA preparation obtained from a chromatin immunoprecipitation assay using pulldown of a specific form of histone H3 was successfully amplified using the modified LM-PCR, and the amplified products could be used as probes in a fluorescence in situ hybridization analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR

    NARCIS (Netherlands)

    Huijsdens, Xander W.; Linskens, Ronald K.; Mak, Mariëtte; Meuwissen, Stephan G. M.; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2002-01-01

    The use of real-time quantitative PCR (5' nuclease PCR assay) as a tool to study the gastrointestinal microflora that adheres to the colonic mucosa was evaluated. We developed primers and probes based on the 16S ribosomal DNA gene sequences for the detection of Escherichia coli and Bacteroides

  6. Aspergillus section Fumigati typing by PCR-restriction fragment polymorphism.

    Science.gov (United States)

    Staab, Janet F; Balajee, S Arunmozhi; Marr, Kieren A

    2009-07-01

    Recent studies have shown that there are multiple clinically important members of the Aspergillus section Fumigati that are difficult to distinguish on the basis of morphological features (e.g., Aspergillus fumigatus, A. lentulus, and Neosartorya udagawae). Identification of these organisms may be clinically important, as some species vary in their susceptibilities to antifungal agents. In a prior study, we utilized multilocus sequence typing to describe A. lentulus as a species distinct from A. fumigatus. The sequence data show that the gene encoding beta-tubulin, benA, has high interspecies variability at intronic regions but is conserved among isolates of the same species. These data were used to develop a PCR-restriction fragment length polymorphism (PCR-RFLP) method that rapidly and accurately distinguishes A. fumigatus, A. lentulus, and N. udagawae, three major species within the section Fumigati that have previously been implicated in disease. Digestion of the benA amplicon with BccI generated unique banding patterns; the results were validated by screening a collection of clinical strains and by in silico analysis of the benA sequences of Aspergillus spp. deposited in the GenBank database. PCR-RFLP of benA is a simple method for the identification of clinically important, similar morphotypes of Aspergillus spp. within the section Fumigati.

  7. Aspergillus Section Fumigati Typing by PCR-Restriction Fragment Polymorphism▿

    Science.gov (United States)

    Staab, Janet F.; Balajee, S. Arunmozhi; Marr, Kieren A.

    2009-01-01

    Recent studies have shown that there are multiple clinically important members of the Aspergillus section Fumigati that are difficult to distinguish on the basis of morphological features (e.g., Aspergillus fumigatus, A. lentulus, and Neosartorya udagawae). Identification of these organisms may be clinically important, as some species vary in their susceptibilities to antifungal agents. In a prior study, we utilized multilocus sequence typing to describe A. lentulus as a species distinct from A. fumigatus. The sequence data show that the gene encoding β-tubulin, benA, has high interspecies variability at intronic regions but is conserved among isolates of the same species. These data were used to develop a PCR-restriction fragment length polymorphism (PCR-RFLP) method that rapidly and accurately distinguishes A. fumigatus, A. lentulus, and N. udagawae, three major species within the section Fumigati that have previously been implicated in disease. Digestion of the benA amplicon with BccI generated unique banding patterns; the results were validated by screening a collection of clinical strains and by in silico analysis of the benA sequences of Aspergillus spp. deposited in the GenBank database. PCR-RFLP of benA is a simple method for the identification of clinically important, similar morphotypes of Aspergillus spp. within the section Fumigati. PMID:19403766

  8. Utilization of deletion bins to anchor and order sequences along the wheat 7B chromosome.

    Science.gov (United States)

    Belova, Tatiana; Grønvold, Lars; Kumar, Ajay; Kianian, Shahryar; He, Xinyao; Lillemo, Morten; Springer, Nathan M; Lien, Sigbjørn; Olsen, Odd-Arne; Sandve, Simen R

    2014-09-01

    A total of 3,671 sequence contigs and scaffolds were mapped to deletion bins on wheat chromosome 7B providing a foundation for developing high-resolution integrated physical map for this chromosome. Bread wheat (Triticum aestivum L.) has a large, complex and highly repetitive genome which is challenging to assemble into high quality pseudo-chromosomes. As part of the international effort to sequence the hexaploid bread wheat genome by the international wheat genome sequencing consortium (IWGSC) we are focused on assembling a reference sequence for chromosome 7B. The successful completion of the reference chromosome sequence is highly dependent on the integration of genetic and physical maps. To aid the integration of these two types of maps, we have constructed a high-density deletion bin map of chromosome 7B. Using the 270 K Nimblegen comparative genomic hybridization (CGH) array on a set of cv. Chinese spring deletion lines, a total of 3,671 sequence contigs and scaffolds (~7.8 % of chromosome 7B physical length) were mapped into nine deletion bins. Our method of genotyping deletions on chromosome 7B relied on a model-based clustering algorithm (Mclust) to accurately predict the presence or absence of a given genomic sequence in a deletion line. The bin mapping results were validated using three different approaches, viz. (a) PCR-based amplification of randomly selected bin mapped sequences (b) comparison with previously mapped ESTs and (c) comparison with a 7B genetic map developed in the present study. Validation of the bin mapping results suggested a high accuracy of the assignment of 7B sequence contigs and scaffolds to the 7B deletion bins.

  9. Absence of Mycoplasma-specific DNA sequence in brain, blood and CSF of patients with multiple sclerosis (MS): a study by PCR and real-time PCR.

    Science.gov (United States)

    Casserly, Georgina; Barry, Thomas; Tourtellotte, Wallace W; Hogan, Edward L

    2007-02-15

    Mycoplasmas are the smallest of the known self-replicating organisms. They lack cell walls and are associated with numerous diseases in humans and animals. We are exploring the possibility that infection by Mycoplasma may induce the inflammatory demyelinating disease of the central nervous system (CNS) that is MS. The presence of specific Mycoplasma species DNA was sought in brain, serum and cerebrospinal fluid (CSF) of patients diagnosed with multiple sclerosis (MS) and other neurological diseases (OND) including inflammatory disorders. The MS samples from patients with active and progressive MS, as well as in remission, a variety of other neurological disease controls, including inflammatory CNS diseases such as meningitis, cryptococcal meningitis and encephalitis and other neurological disorders such as migraine were also examined. Clinical samples were provided by the National Neurological Research Specimen Bank and the Human Brain and Spinal Fluid Resource Centre, Los Angeles. Analysis was carried out by conventional PCR using Mycoplasma-specific primers (McAuliffe et al., 2005) that target the 16S rDNA gene in Mycoplasma species. The Mycoplasma-specific primers could detect 102 Mycoplasma species. In this study, 30 samples of human brain and 57 pairs of serum and CSF and were examined. No Mycoplasma-specific nucleic acid sequence was detected, and the consistent observation of an endogenous gene, human serum albumin (HSA), as a positive control documented the adequacy of the method. Real-time PCR analysis of serum and CSF was done also targeting utilizing the Mycoplasma 16S rDNA gene, and this also demonstrated the lack of Mycoplasma in these samples. The presence of Mycoplasma at extraneural sites in MS patients is now being explored.

  10. Sequence determinants of human microsatellite variability

    Directory of Open Access Journals (Sweden)

    Jakobsson Mattias

    2009-12-01

    Full Text Available Abstract Background Microsatellite loci are frequently used in genomic studies of DNA sequence repeats and in population studies of genetic variability. To investigate the effect of sequence properties of microsatellites on their level of variability we have analyzed genotypes at 627 microsatellite loci in 1,048 worldwide individuals from the HGDP-CEPH cell line panel together with the DNA sequences of these microsatellites in the human RefSeq database. Results Calibrating PCR fragment lengths in individual genotypes by using the RefSeq sequence enabled us to infer repeat number in the HGDP-CEPH dataset and to calculate the mean number of repeats (as opposed to the mean PCR fragment length, under the assumption that differences in PCR fragment length reflect differences in the numbers of repeats in the embedded repeat sequences. We find the mean and maximum numbers of repeats across individuals to be positively correlated with heterozygosity. The size and composition of the repeat unit of a microsatellite are also important factors in predicting heterozygosity, with tetra-nucleotide repeat units high in G/C content leading to higher heterozygosity. Finally, we find that microsatellites containing more separate sets of repeated motifs generally have higher heterozygosity. Conclusions These results suggest that sequence properties of microsatellites have a significant impact in determining the features of human microsatellite variability.

  11. Synergy Repetition Training versus Task Repetition Training in Acquiring New Skill.

    Science.gov (United States)

    Patel, Vrajeshri; Craig, Jamie; Schumacher, Michelle; Burns, Martin K; Florescu, Ionut; Vinjamuri, Ramana

    2017-01-01

    Traditionally, repetitive practice of a task is used to learn a new skill, exhibiting as immediately improved performance. Research suggests, however, that a more experience-based rather than exposure-based training protocol may allow for better transference of the skill to related tasks. In synergy-based motor control theory, fundamental motor skills, such as hand grasping, are represented with a synergy subspace that captures essential motor patterns. In this study, we propose that motor-skill learning through synergy-based mechanisms may provide advantages over traditional task repetition learning. A new task was designed to highlight the range of motion and dexterity of the human hand. Two separate training strategies were tested in healthy subjects: task repetition training and synergy training versus a control. All three groups showed improvements when retested on the same task. When tested on a similar, but different set of tasks, only the synergy group showed improvements in accuracy (9.27% increase) compared to the repetition (3.24% decline) and control (3.22% decline) groups. A kinematic analysis revealed that although joint angular peak velocities decreased, timing benefits stemmed from the initial feed-forward portion of the task (reaction time). Accuracy improvements may have derived from general improved coordination among the four involved fingers. These preliminary results warrant further investigation of synergy-based motor training in healthy individuals, as well as in individuals undergoing hand-based rehabilitative therapy.

  12. Passive Repetitive Stretching for a Short Duration within a Week Increases Myogenic Regulatory Factors and Myosin Heavy Chain mRNA in Rats' Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Yurie Kamikawa

    2013-01-01

    Full Text Available Stretching is a stimulation of muscle growth. Stretching for hours or days has an effect on muscle hypertrophy. However, differences of continuous stretching and repetitive stretching to affect muscle growth are not well known. To clarify the difference of continuous and repetitive stretching within a short duration, we investigated the gene expression of muscle-related genes on stretched skeletal muscles. We used 8-week-old male Wistar rats ( for this study. Animals medial gastrocnemius muscle was stretched continuously or repetitively for 15 min daily and 4 times/week under anesthesia. After stretching, muscles were removed and total RNA was extracted. Then, reverse transcriptional quantitative real-time PCR was done to evaluate the mRNA expression of MyoD, myogenin, and embryonic myosin heavy chain (MyHC. Muscles, either stretched continuously or repetitively, increased mRNA expression of MyoD, myogenin, and embryonic MyHC more than unstretched muscles. Notably, repetitive stretching resulted in more substantial effects on embryonic MyHC gene expression than continuous stretching. In conclusion, passive stretching for a short duration within a week is effective in increasing myogenic factor expression, and repetitive stretching had more effects than continuous stretching for skeletal muscle on muscle growth. These findings are applicable in clinical muscle-strengthening therapy.

  13. Direct detection of hemophilia B F9 gene mutation using multiplex PCR and conformation sensitive gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Ki Young Yoo

    2010-03-01

    Full Text Available Purpose : The F9 gene is known to be the causative gene for hemophilia B, but unfortunately the detection rate for restriction fragment length polymorphism-based linkage analysis is only 55.6%. Direct DNA sequencing can detect 98% of mutations, but this alternative procedure is very costly. Here, we conducted multiplex polymerase chain reactions (PCRs and conformation sensitive gel electrophoresis (CSGE to perform a screened DNA sequencing for the F9 gene, and we compared the results with direct sequencing in terms of accuracy, cost, simplicity, and time consumption. Methods : A total of 27 unrelated hemophilia B patients were enrolled. Direct DNA sequencing was performed for 27 patients by a separate institute, and multiplex PCR-CSGE screened sequencing was done in our laboratory. Results of the direct DNA sequencing were used as a reference, to which the results of the multiplex PCR-CSGE screened sequencing were compared. For the patients whose mutation was not detected by the 2 methods, multiplex ligation-dependent probe amplification (MLPA was conducted. Results : With direct sequencing, the mutations could be identified from 26 patients (96.3%, whereas for multiplex PCR- CSGE screened sequencing, the mutations could be detected in 23 (85.2%. One patient’s mutation was identified by MLPA. A total of 21 different mutations were found among the 27 patients. Conclusion : Multiplex PCR-CSGE screened DNA sequencing detected 88.9% of mutations and reduced costs by 55.7% compared with direct DNA sequencing. However, it was more labor-intensive and time-consuming.

  14. Refining borders of genome-rearrangements including repetitions

    Directory of Open Access Journals (Sweden)

    JA Arjona-Medina

    2016-10-01

    Full Text Available Abstract Background DNA rearrangement events have been widely studied in comparative genomic for many years. The importance of these events resides not only in the study about relatedness among different species, but also to determine the mechanisms behind evolution. Although there are many methods to identify genome-rearrangements (GR, the refinement of their borders has become a huge challenge. Until now no accepted method exists to achieve accurate fine-tuning: i.e. the notion of breakpoint (BP is still an open issue, and despite repeated regions are vital to understand evolution they are not taken into account in most of the GR detection and refinement methods. Methods and results We propose a method to refine the borders of GR including repeated regions. Instead of removing these repetitions to facilitate computation, we take advantage of them using a consensus alignment sequence of the repeated region in between two blocks. Using the concept of identity vectors for Synteny Blocks (SB and repetitions, a Finite State Machine is designed to detect transition points in the difference between such vectors. The method does not force the BP to be a region or a point but depends on the alignment transitions within the SBs and repetitions. Conclusion The accurate definition of the borders of SB and repeated genomic regions and consequently the detection of BP might help to understand the evolutionary model of species. In this manuscript we present a new proposal for such a refinement. Features of the SBs borders and BPs are different and fit with what is expected. SBs with more diversity in annotations and BPs short and richer in DNA replication and stress response, which are strongly linked with rearrangements.

  15. The relationships within the mathematical content of teachers’ lesson sequences

    Science.gov (United States)

    Shahrill, M.; Prahmana, R. C. I.; Roslan, R.

    2017-12-01

    This study explored how mathematics content is carried through by means of the problems presented during lessons. Following the definitions and the coding criteria from the TIMSS 1999 Video Study, a total of 163 mathematics problems were identified in the video- recorded lesson sequences of four Bruneian mathematics teachers teaching at the Year 8 level. These problems were classified according to the four basic kinds of relationships: mathematically related, thematically related, repetition and unrelated. Drawing on the mathematical content of the teachers’ lesson sequences, the findings revealed variations among the mathematical problems coded as repetition and thematically related, between the four Brunei classes. The aggregated results obtained from the four classes highlighted several points of discussion, such as the relatively higher proportion of repetition problems (52%) from one teacher in particular; the percentage similarities of thematically related problems for all four classes (ranging from 26% to 33%); and the incredibly varied results for mathematically related problems across the four Brunei classes.

  16. The Orthology Clause in the Next Generation Sequencing Era: Novel Reference Genes Identified by RNA-seq in Humans Improve Normalization of Neonatal Equine Ovary RT-qPCR Data.

    Directory of Open Access Journals (Sweden)

    Dragos Scarlet

    Full Text Available Vertebrate evolution is accompanied by a substantial conservation of transcriptional programs with more than a third of unique orthologous genes showing constrained levels of expression. Moreover, there are genes and exons exhibiting excellent expression stability according to RNA-seq data across a panel of eighteen tissues including the ovary (Human Body Map 2.0.We hypothesized that orthologs of these exons would also be highly uniformly expressed across neonatal ovaries of the horse, which would render them appropriate reference genes (RGs for normalization of reverse transcription quantitative PCR (RT-qPCR data in this context. The expression stability of eleven novel RGs (C1orf43, CHMP2A, EMC7, GPI, PSMB2, PSMB4, RAB7A, REEP5, SNRPD3, VCP and VPS29 was assessed by RT-qPCR in ovaries of seven neonatal fillies and compared to that of the expressed repetitive element ERE-B, two universal (OAZ1 and RPS29 and four traditional RGs (ACTB, GAPDH, UBB and B2M. Expression stability analyzed with the software tool RefFinder top ranked the normalization factor constituted of the genes SNRPD3 and VCP, a gene pair that is not co-expressed according to COEXPRESdb and GeneMANIA. The traditional RGs GAPDH, B2M, ACTB and UBB were only ranked 3rd and 12th to 14th, respectively.The functional diversity of the novel RGs likely facilitates expression studies over a wide range of physiological and pathological contexts related to the neonatal equine ovary. In addition, this study augments the potential for RT-qPCR-based profiling of human samples by introducing seven new human RG assays (C1orf43, CHMP2A, EMC7, GPI, RAB7A, VPS29 and UBB.

  17. Simple, quick and cost-efficient: A universal RT-PCR and sequencing strategy for genomic characterisation of foot-and-mouth disease viruses.

    Science.gov (United States)

    Dill, V; Beer, M; Hoffmann, B

    2017-08-01

    Foot-and-mouth disease (FMD) is a major contributor to poverty and food insecurity in Africa and Asia, and it is one of the biggest threats to agriculture in highly developed countries. As FMD is extremely contagious, strategies for its prevention, early detection, and the immediate characterisation of outbreak strains are of great importance. The generation of whole-genome sequences enables phylogenetic characterisation, the epidemiological tracing of virus transmission pathways and is supportive in disease control strategies. This study describes the development and validation of a rapid, universal and cost-efficient RT-PCR system to generate genome sequences of FMDV, reaching from the IRES to the end of the open reading frame. The method was evaluated using twelve different virus strains covering all seven serotypes of FMDV. Additionally, samples from experimentally infected animals were tested to mimic diagnostic field samples. All primer pairs showed a robust amplification with a high sensitivity for all serotypes. In summary, the described assay is suitable for the generation of FMDV sequences from all serotypes to allow immediate phylogenetic analysis, detailed genotyping and molecular epidemiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Nonword repetition in adults who stutter: The effects of stimuli stress and auditory-orthographic cues.

    Directory of Open Access Journals (Sweden)

    Geoffrey A Coalson

    Full Text Available Adults who stutter (AWS are less accurate in their immediate repetition of novel phonological sequences compared to adults who do not stutter (AWNS. The present study examined whether manipulation of the following two aspects of traditional nonword repetition tasks unmask distinct weaknesses in phonological working memory in AWS: (1 presentation of stimuli with less-frequent stress patterns, and (2 removal of auditory-orthographic cues immediately prior to response.Fifty-two participants (26 AWS, 26 AWNS produced 12 bisyllabic nonwords in the presence of corresponding auditory-orthographic cues (i.e., immediate repetition task, and the absence of auditory-orthographic cues (i.e., short-term recall task. Half of each cohort (13 AWS, 13 AWNS were exposed to the stimuli with high-frequency trochaic stress, and half (13 AWS, 13 AWNS were exposed to identical stimuli with lower-frequency iambic stress.No differences in immediate repetition accuracy for trochaic or iambic nonwords were observed for either group. However, AWS were less accurate when recalling iambic nonwords than trochaic nonwords in the absence of auditory-orthographic cues.Manipulation of two factors which may minimize phonological demand during standard nonword repetition tasks increased the number of errors in AWS compared to AWNS. These findings suggest greater vulnerability in phonological working memory in AWS, even when producing nonwords as short as two syllables.

  19. Microbial community analysis of shallow subsurface samples with PCR-DGGE

    Energy Technology Data Exchange (ETDEWEB)

    Itaevaara, M.; Suihko, M. -L.; Kapanen, A.; Piskonen, R.; Juvonen, R. [VTT Biotechnology, Espoo (Finland)

    2005-11-15

    This work is part of the site investigations for the disposal of spent nuclear fuel in Olkiluoto bedrock. The purpose of the research was to study the suitability of PCR-DGGE (polymerase chain reaction - denaturing gradient gel electrophoresis) method for monitoring of hydrogeomicrobiology of Olkiluoto repository site. PCR-DGGE method has been applied for monitoring microbial processes in several applications. The benefit of the method is that microorganisms are not cultivated but the presence of microbial communities can be monitored by direct DNA extractions from the environmental samples. Partial 16SrDNA gene sequence is specifically amplified by PCR (polymerase chain reaction) which detect bacteria as a group. The gene sequences are separated in DGGE, and the nucleotide bands are then cut out, extracted, sequenced and identified by the genelibraries by e.g. Blast program. PCR-DGGE method can be used to detect microorganisms which are present abundantly in the microbial communities because small quantities of genes cannot be separated reliably. However, generally the microorganisms involved in several environmental processes are naturally enriched and present as major population. This makes it possible to utilize PCRDGGE as a monitoring method. In this study, we studied the structure of microbial communities in ten ground water samples originating from Olkiluoto. Two universal bacterial primer sets were compared which amplified two different regions of the 16SrDNA gene. The longer sequence amplified resulted in fewer bands in DGGE, in addition there were problems with purification of the sequences after DGGE. The shorter sequence gave more bands in DGGE and more clear results without any amplification problems. Comparison of the sequences from the gene-libraries resulted in the detection of the same species by both primer sets, in addition some different species were detected. Several species were anaerobic bacteria, such as acetogenic and sulphate reducing

  20. Microbial community analysis of shallow subsurface samples with PCR-DGGE

    International Nuclear Information System (INIS)

    Itaevaara, M.; Suihko, M.-L.; Kapanen, A.; Piskonen, R.; Juvonen, R.

    2005-11-01

    This work is part of the site investigations for the disposal of spent nuclear fuel in Olkiluoto bedrock. The purpose of the research was to study the suitability of PCR-DGGE (polymerase chain reaction - denaturing gradient gel electrophoresis) method for monitoring of hydrogeomicrobiology of Olkiluoto repository site. PCR-DGGE method has been applied for monitoring microbial processes in several applications. The benefit of the method is that microorganisms are not cultivated but the presence of microbial communities can be monitored by direct DNA extractions from the environmental samples. Partial 16SrDNA gene sequence is specifically amplified by PCR (polymerase chain reaction) which detect bacteria as a group. The gene sequences are separated in DGGE, and the nucleotide bands are then cut out, extracted, sequenced and identified by the genelibraries by e.g. Blast program. PCR-DGGE method can be used to detect microorganisms which are present abundantly in the microbial communities because small quantities of genes cannot be separated reliably. However, generally the microorganisms involved in several environmental processes are naturally enriched and present as major population. This makes it possible to utilize PCRDGGE as a monitoring method. In this study, we studied the structure of microbial communities in ten ground water samples originating from Olkiluoto. Two universal bacterial primer sets were compared which amplified two different regions of the 16SrDNA gene. The longer sequence amplified resulted in fewer bands in DGGE, in addition there were problems with purification of the sequences after DGGE. The shorter sequence gave more bands in DGGE and more clear results without any amplification problems. Comparison of the sequences from the gene-libraries resulted in the detection of the same species by both primer sets, in addition some different species were detected. Several species were anaerobic bacteria, such as acetogenic and sulphate reducing

  1. Exact and conceptual repetition dissociate conceptual memory tests: problems for transfer appropriate processing theory.

    Science.gov (United States)

    McDermott, K B; Roediger, H L

    1996-03-01

    Three experiments examined whether a conceptual implicit memory test (specifically, category instance generation) would exhibit repetition effects similar to those found in free recall. The transfer appropriate processing account of dissociations among memory tests led us to predict that the tests would show parallel effects; this prediction was based upon the theory's assumption that conceptual tests will behave similarly as a function of various independent variables. In Experiment 1, conceptual repetition (i.e., following a target word [e.g., puzzles] with an associate [e.g., jigsaw]) did not enhance priming on the instance generation test relative to the condition of simply presenting the target word once, although this manipulation did affect free recall. In Experiment 2, conceptual repetition was achieved by following a picture with its corresponding word (or vice versa). In this case, there was an effect of conceptual repetition on free recall but no reliable effect on category instance generation or category cued recall. In addition, we obtained a picture superiority effect in free recall but not in category instance generation. In the third experiment, when the same study sequence was used as in Experiment 1, but with instructions that encouraged relational processing, priming on the category instance generation task was enhanced by conceptual repetition. Results demonstrate that conceptual memory tests can be dissociated and present problems for Roediger's (1990) transfer appropriate processing account of dissociations between explicit and implicit tests.

  2. Comparing Whole-Genome Sequencing with Sanger Sequencing for spa Typing of Methicillin-Resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bartels, Mette Damkjaer; Petersen, Andreas; Worning, Peder

    2014-01-01

    spa typing of methicillin-resistant Staphylococcus aureus (MRSA) has traditionally been done by PCR amplification and Sanger sequencing of the spa repeat region. At Hvidovre Hospital, Denmark, whole-genome sequencing (WGS) of all MRSA isolates has been performed routinely since January 2013, and ...

  3. DNA extraction method for PCR in mycorrhizal fungi.

    Science.gov (United States)

    Manian, S; Sreenivasaprasad, S; Mills, P R

    2001-10-01

    To develop a simple and rapid DNA extraction protocol for PCR in mycorrhizal fungi. The protocol combines the application of rapid freezing and boiling cycles and passage of the extracts through DNA purification columns. PCR amplifiable DNA was obtained from a number of endo- and ecto-mycorrhizal fungi using minute quantities of spores and mycelium, respectively. DNA extracted following the method, was used to successfully amplify regions of interest from high as well as low copy number genes. The amplicons were suitable for further downstream applications such as sequencing and PCR-RFLPs. The protocol described is simple, short and facilitates rapid isolation of PCR amplifiable genomic DNA from a large number of fungal isolates in a single day. The method requires only minute quantities of starting material and is suitable for mycorrhizal fungi as well as a range of other fungi.

  4. PCR detection of Bartonella spp. in the dog

    Directory of Open Access Journals (Sweden)

    Jarmila Konvalinová

    2014-01-01

    Full Text Available Our study aimed at using PCR to identify the incidence of Bartonella spp. in blood of dogs. Altogether 286 dogs of 92 breeds aged 3 month to 17 years were tested from October 2008 to December 2009. Healthy dogs as well as dogs with various clinical symptoms of disease were included in the group. Samples were tested by polymerase chain reaction (PCR specific for the presence of Bartonella spp. Following the DNA examination in 286 dogs by PCR and subsequent sequencing, two samples were identified as Bartonella henselae (0.7%. Other species of Bartonella were not found. It was the first time in the Czech Republic when incidence of Bartonella spp. was determined in dogs.

  5. Transgene detection by digital droplet PCR.

    Directory of Open Access Journals (Sweden)

    Dirk A Moser

    Full Text Available Somatic gene therapy is a promising tool for the treatment of severe diseases. Because of its abuse potential for performance enhancement in sports, the World Anti-Doping Agency (WADA included the term 'gene doping' in the official list of banned substances and methods in 2004. Several nested PCR or qPCR-based strategies have been proposed that aim at detecting long-term presence of transgene in blood, but these strategies are hampered by technical limitations. We developed a digital droplet PCR (ddPCR protocol for Insulin-Like Growth Factor 1 (IGF1 detection and demonstrated its applicability monitoring 6 mice injected into skeletal muscle with AAV9-IGF1 elements and 2 controls over a 33-day period. A duplex ddPCR protocol for simultaneous detection of Insulin-Like Growth Factor 1 (IGF1 and Erythropoietin (EPO transgenic elements was created. A new DNA extraction procedure with target-orientated usage of restriction enzymes including on-column DNA-digestion was established. In vivo data revealed that IGF1 transgenic elements could be reliably detected for a 33-day period in DNA extracted from whole blood. In vitro data indicated feasibility of IGF1 and EPO detection by duplex ddPCR with high reliability and sensitivity. On-column DNA-digestion allowed for significantly improved target detection in downstream PCR-based approaches. As ddPCR provides absolute quantification, it ensures excellent day-to-day reproducibility. Therefore, we expect this technique to be used in diagnosing and monitoring of viral and bacterial infection, in detecting mutated DNA sequences as well as profiling for the presence of foreign genetic material in elite athletes in the future.

  6. Development of a pan-Simbu real-time reverse transcriptase PCR for the detection of Simbu serogroup viruses and comparison with SBV diagnostic PCR systems.

    Science.gov (United States)

    Fischer, Melina; Schirrmeier, Horst; Wernike, Kerstin; Wegelt, Anne; Beer, Martin; Hoffmann, Bernd

    2013-11-05

    Schmallenberg virus (SBV), a novel orthobunyavirus of the Simbu serogroup, was first identified in October 2011 in dairy cattle in Germany, where it caused fever, diarrhea and a drop in milk yield. Since then, SBV additionally has been detected in adult sheep and goats. Although symptoms of acute infection were not observed, infection during a vulnerable phase of pregnancy caused congenital malformations and stillbirths. In view of the current situation and the possible emergence of further Simbu serogroup members, a pan-Simbu real-time reverse transcriptase (RT) PCR system for the reliable detection of Simbu serogroup viruses should be developed. In this study a pan-Simbu real-time RT-PCR system was established and compared to several SBV real-time RT-PCR assays. All PCR-systems were tested using a panel of different Simbu serogroup viruses as well as several field samples from diseased cattle, sheep and goats originating from all over Germany. Several pan-Simbu real-time RT-PCR products were sequenced via Sanger sequencing. Furthermore, in silico analyses were performed to investigate suitability for the detection of further orthobunyaviruses. All tested members of the Simbu serogroup (n = 14) as well as most of the field samples were successfully detected by the pan-Simbu real-time RT-PCR system. The comparison of this intercalating dye assay with different TaqMan probe-based assays developed for SBV diagnostics confirmed the functionality of the pan-Simbu assay for screening purposes. However, the SBV-TaqMan-assay SBV-S3 delivered the highest analytical sensitivity of less than ten copies per reaction for duplex systems including an internal control. In addition, for confirmation of SBV-genome detection the highly specific SBV-M1 assay was established. The pan-Simbu real-time RT-PCR system was able to detect all tested members of the Simbu serogroup, most of the SBV field samples as well as three tested Bunyamwera serogroup viruses with a suitable

  7. PCR-Internal Transcribed Spacer (ITS) genes sequencing and ...

    African Journals Online (AJOL)

    Methods: DNA extraction, purification, amplification and sequencing of Internal Transcribed Spacer (ITS) genes were per- formed using ... Keywords: Internal transcribed spacer genes, phylogenetic, genetic relationship, clinical and environmental fungi, HIV-TB. ... Nigeria. An Ethical clearance was obtained from the Eth-.

  8. Detection of Bacillus spores using PCR and FTA filters.

    Science.gov (United States)

    Lampel, Keith A; Dyer, Deanne; Kornegay, Leroy; Orlandi, Palmer A

    2004-05-01

    Emphasis has been placed on developing and implementing rapid detection systems for microbial pathogens. We have explored the utility of expanding FTA filter technology for the preparation of template DNA for PCR from bacterial spores. Isolated spores from several Bacillus spp., B. subtilis, B. cereus, and B. megaterium, were applied to FTA filters, and specific DNA products were amplified by PCR. Spore preparations were examined microscopically to ensure that the presence of vegetative cells, if any, did not yield misleading results. PCR primers SRM86 and SRM87 targeted a conserved region of bacterial rRNA genes, whereas primers Bsub5F and Bsub3R amplified a product from a conserved sequence of the B. subtilis rRNA gene. With the use of the latter set of primers for nested PCR, the sensitivity of the PCR-based assay was increased. Overall, 53 spores could be detected after the first round of PCR, and the sensitivity was increased to five spores by nested PCR. FTA filters are an excellent platform to remove PCR inhibitors and have universal applications for environmental, clinical, and food samples.

  9. A seminested PCR assay for detection and typing of human papillomavirus based on E1 gene sequences.

    Science.gov (United States)

    Cavalcante, Gustavo Henrique O; de Araújo, Josélio M G; Fernandes, José Veríssimo; Lanza, Daniel C F

    2018-05-01

    HPV infection is considered one of the leading causes of cervical cancer in the world. To date, more than 180 types of HPV have been described and viral typing is critical for defining the prognosis of cancer. In this work, a seminested PCR which allow fast and inexpensively detection and typing of HPV is presented. The system is based on the amplification of a variable length region within the viral gene E1, using three primers that potentially anneal in all HPV genomes. The amplicons produced in the first step can be identified by high resolution electrophoresis or direct sequencing. The seminested step includes nine specific primers which can be used in multiplex or individual reactions to discriminate the main types of HPV by amplicon size differentiation using agarose electrophoresis, reducing the time spent and cost per analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Detection by PCR of pathogenic protozoa in raw and drinkable water samples in Colombia.

    Science.gov (United States)

    Triviño-Valencia, Jessica; Lora, Fabiana; Zuluaga, Juan David; Gomez-Marin, Jorge E

    2016-05-01

    We evaluated the presence of DNA of Giardia, Toxoplasma, and Cryptosporidium by PCR, and of Giardia and Cryptosporidium genera by immunofluorescence antibody test (IFAT), in water samples, before, during, and after plant treatment for drinkable water. We applied this method in 38 samples of 10 l of water taken from each of the water treatment steps and in 8 samples taken at home (only for Toxoplasma PCR) in Quindio region in Colombia. There were 8 positive samples for Cryptosporidium parvum (21 %), 4 for Cryptosporidium hominis (10.5 %), 27 for Toxoplasma gondii (58.6 %), 2 for Giardia duodenalis assemblage A (5.2 %), and 5 for G. duodenalis assemblage B (13.1 %). By IFAT, 23 % were positive for Giardia and 21 % for Cryptosporidium. An almost perfect agreement was found between IFAT and combined results of PCR, by Kappa composite proportion analysis. PCR positive samples were significantly more frequent in untreated raw water for C. parvum (p = 0.02). High mean of fecal coliforms, high pH values, and low mean of chlorine residuals were strongly correlated with PCR positivity for G. duodenalis assemblage B. High pH value was correlated with PCR positivity for C. parvum. Phylogenetic analysis of DNA sequences was possible, showing water and human clinical sequences for Toxoplasma within the same phylogenetic group for B1 repeated sequence. PCR assay is complementary to IFAT assay for monitoring of protozoa in raw and drinkable water, enabling species identification and to look for phylogenetic analysis in protozoa from human and environmental sources.

  11. APE1 incision activity at abasic sites in tandem repeat sequences.

    Science.gov (United States)

    Li, Mengxia; Völker, Jens; Breslauer, Kenneth J; Wilson, David M

    2014-05-29

    Repetitive DNA sequences, such as those present in microsatellites and minisatellites, telomeres, and trinucleotide repeats (linked to fragile X syndrome, Huntington disease, etc.), account for nearly 30% of the human genome. These domains exhibit enhanced susceptibility to oxidative attack to yield base modifications, strand breaks, and abasic sites; have a propensity to adopt non-canonical DNA forms modulated by the positions of the lesions; and, when not properly processed, can contribute to genome instability that underlies aging and disease development. Knowledge on the repair efficiencies of DNA damage within such repetitive sequences is therefore crucial for understanding the impact of such domains on genomic integrity. In the present study, using strategically designed oligonucleotide substrates, we determined the ability of human apurinic/apyrimidinic endonuclease 1 (APE1) to cleave at apurinic/apyrimidinic (AP) sites in a collection of tandem DNA repeat landscapes involving telomeric and CAG/CTG repeat sequences. Our studies reveal the differential influence of domain sequence, conformation, and AP site location/relative positioning on the efficiency of APE1 binding and strand incision. Intriguingly, our data demonstrate that APE1 endonuclease efficiency correlates with the thermodynamic stability of the DNA substrate. We discuss how these results have both predictive and mechanistic consequences for understanding the success and failure of repair protein activity associated with such oxidatively sensitive, conformationally plastic/dynamic repetitive DNA domains. Published by Elsevier Ltd.

  12. Sequence analysis and over-expression of ribosomal protein S28 ...

    African Journals Online (AJOL)

    RPS28 is a component of the 40S small ribosomal subunit encoded by RPS28 gene, which is specific to eukaryotes. The cDNA and the genomic sequence of RPS28 were cloned successfully from the Giant Panda using RT-PCR technology and Touchdown-PCR, respectively. Both sequences were analyzed preliminarily ...

  13. Repetitive Questioning II

    Directory of Open Access Journals (Sweden)

    R. C. Hamdy MD

    2018-02-01

    Full Text Available Repetitive questioning is a major problem for caregivers, particularly taxing if they are unable to recognize and understand the reasons why their loved one keeps asking the same question over and over again. Caregivers may be tempted to believe that the patient does not even try to remember the answer given or is just getting obnoxious. This is incorrect. Repetitive questioning is due to the underlying disease: The patient’s short term memory is impaired and he is unable to register, encode, retain and retrieve the answer. If he is concerned about a particular topic, he will keep asking the same question over and over again. To the patient each time she asks the question, it is as if she asked it for the first time. Just answering repetitive questioning by providing repeatedly the same answer is not sufficient. Caregivers should try to identify the underlying cause for this repetitive questioning. In an earlier case study, the patient was concerned about her and her family’s safety and kept asking whether the doors are locked. In this present case study, the patient does not know how to handle the awkward situation he finds himself in. He just does not know what to do. He is not able to adjust to the new unexpected situation. So he repeatedly wants to reassure himself that he is not intruding by asking the same question over and over again. We discuss how the patient’s son-in-law could have avoided this situation and averted the catastrophic ending.

  14. Succession of methanogenic archaea in rice straw incorporated into a Japanese rice field: estimation by PCR-DGGE and sequence analyses

    Directory of Open Access Journals (Sweden)

    Atsuo Sugano

    2005-01-01

    Full Text Available The succession and phylogenetic profiles of methanogenic archaeal communities associated with rice straw decomposition in rice-field soil were studied by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE analysis followed by 16S rDNA sequencing. Nylon bags containing either leaf sheaths or blades were buried in the plowed layer of a Japanese rice field under drained conditions during the off-crop season and under flooded conditions after transplanting. In addition, rice straw samples that had been buried in the rice field under drained conditions during the off-crop season were temporarily removed during spring plowing and then re-buried in the same rice field under flooded conditions at transplanting. Populations of methanogenic archaea were examined by amplification of the 16S rRNA genes in the DNA extracted from the rice straw samples. No PCR product was produced for samples of leaf sheath or blade prior to burial or after burial under drained conditions, indicating that the methanogen population was very small during decomposition of rice straw under oxic conditions. Many common bands were observed in rice straw samples of leaf sheath and blade during decomposition of rice straw under flooded conditions. Cluster analysis based on DGGE patterns divided methanogenic archaeal communities into two groups before and after the mid-season drainage. Sequence analysis of DGGE bands that were commonly present were closely related to Methanomicrobiales and Rice cluster I. Methanomicrobiales, Rice cluster I and Methanosarcinales were major members before the mid-season drainage, whereas the DGGE bands that characterized methanogenic archaeal communities after the mid-season drainage were closely related to Methanomicrobiales. These results indicate that mid-season drainage affected the methanogenic archaeal communities irrespective of their location on rice straw (sheath and blade and the previous history of decomposition

  15. S1 satellite DNA repetitive units display identical structure and overall variability in all Anatolian brown frog taxa.

    Science.gov (United States)

    Picariello, Orfeo; Feliciello, Isidoro; Chinali, Gianni

    2016-02-01

    S1 satellite DNA from Palearctic brown frogs has a species-specific structure in all European species. We characterized S1 satellite DNA from the Anatolian brown frogs Rana macrocnemis, R. camerani, and R. holtzi in order to define their taxonomic rank and the structure of this satellite in this frog lineage. Southern blots of genomic DNA digested with KpnI, EcoRV, NdeI, NheI, or StuI produced the same pattern of satellite DNA bands. Moreover, quantitative dot blots showed that this satellite DNA accounts for 0.1 % of the genome in all taxa. Analysis of the overall genomic variability of the S1a repeat sequence in specimens from various populations demonstrated that this repetitive unit also has the same size (476 bp), the same most common sequence (MCS) and the same overall variability in all three taxa, and also in R. macrocnemis tavasensis. The S1a repetitive unit presents three deletions of 9, 8 and 1 bp compared to the 494-bp S1a repeat from European frogs. The S1a MCS has three variable positions (sequence WWTK in positions 183-186), due to the presence of two repeat subpopulations with motifs AATG and WWTT in all taxa. Unlike previously analyzed mitochondrial and nuclear sequences that show considerable variations among these taxa, no difference could be detected in the structure and variability of the S1 satellite repetitive units. This suggests that these taxa should belong to a single species. Our results indicate that this satellite DNA variety probably formed when the Anatolian lineage radiated from common ancestor about 4 mya, and since then has maintained its structure in all four taxa examined.

  16. Molecular beacon-based real-time PCR method for detection of porcine DNA in gelatin and gelatin capsules.

    Science.gov (United States)

    Mohamad, Nurhidayatul Asma; Mustafa, Shuhaimi; Khairil Mokhtar, Nur Fadhilah; El Sheikha, Aly Farag

    2018-03-05

    The pharmaceutical industry has boosted gelatin consumption worldwide. This is supported by the availability of cost-effective gelatin production from porcine by-products. However, cross-contamination of gelatin materials, where porcine gelatin was unintentionally included in the other animal sources of gelatin, has caused significant concerns about halal authenticity. The real-time polymerase chain reaction (PCR) has enabled a highly specific and sensitive animal species detection method in various food products. Hence, such a technique was employed in the present study to detect and quantify porcine DNA in gelatin using a molecular beacon probe, with differences in performance between mitochondrial (cytochrome b gene) and chromosomal DNA-(MPRE42 repetitive element) based porcine-specific PCR assays being compared. A higher sensitivity was observed in chromosomal DNA (MPRE-PCR assay), where this assay allows the detection of gelatin DNA at amounts as as low as 1 pg, whereas mitochondrial DNA (CBH-PCR assay) can only detect at levels down to 10 pg of gelatin DNA. When an analysis with commercial gelatin and gelatin capsule samples was conducted, the same result was observed, with a significantly more sensitive detection being provided by the repetitive element of chromosomal DNA. The present study has established highly sensitive DNA-based porcine detection systems derived from chromosomal DNA that are feasible for highly processed products such as gelatin and gelatin capsules containing a minute amount of DNA. This sensitive detection method can also be implemented to assist the halal authentication process of various food products available on the market. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  17. Applicazioni della PCR e PCR in situ nella diagnosi di infezioni batteriche e virali da biopsie fissate in formalina e incluse in paraffina

    Directory of Open Access Journals (Sweden)

    Stefania Cazzavillan

    2003-03-01

    Full Text Available In situ PCR, amplification of target DNA sequences in fixed cells, is a very useful molecular biology tecnique with potential to combine the high sensitivity of tube PCR with the precise anatomical localization of the targeted bsequences. It allows the study of low copy viral or bacterial DNA. In this study we document the utility of directin situ PCR with single primer pair by applying it to 3 infectious agents in different model systems: Borrelia burgdorferi in 5 Eritema migrans lesions and 55 primitive cutaneous B cell lymphomas, Chlamydia pneumoniae in 200 autoptic atheromasic lesions, and Papilloma virus in 20 CIN 1 (mild cervical dysplasia. In situ PCR seems to be a very promising tecnique; however, the prerequisite for the success of in situ PCR is conditioned by optimal standardization of the key variables which, on the other hand, are influenced by tissue composition.

  18. Ultrasensitive quantitation of human papillomavirus type 16 E6 oncogene sequences by nested real time PCR

    Directory of Open Access Journals (Sweden)

    López-Revilla Rubén

    2010-05-01

    Full Text Available Abstract Background We have developed an ultrasensitive method based on conventional PCR preamplification followed by nested amplification through real time PCR (qPCR in the presence of the DNA intercalating agent EvaGreen. Results Amplification mixtures calibrated with a known number of pHV101 copies carrying a 645 base pair (bp-long insert of the human papillomavirus type 16 (HPV16 E6 oncogene were used to generate the E6-1 amplicon of 645 bp by conventional PCR and then the E6-2 amplicon of 237 bp by nested qPCR. Direct and nested qPCR mixtures for E6-2 amplification corresponding to 2.5 × 102-2.5 × 106 initial pHV101 copies had threshold cycle (Ct values in the ranges of 18.7-29.0 and 10.0-25.0, respectively. The Ct of qPCR mixtures prepared with 1/50 volumes of preamplified mixtures containing 50 ng of DNA of the SiHa cell line (derived from an invasive cervical cancer with one HPV16 genome per cell was 19.9. Thermal fluorescence extinction profiles of E6-2 amplicons generated from pHV101 and SiHa DNA were identical, with a peak at 85.5°C. Conclusions Our method based on conventional preamplification for 15 cycles increased 10,750 times the sensitivity of nested qPCR for the quantitation of the E6 viral oncogene and confirmed that the SiHa cell line contains one E6-HPV16 copy per cell.

  19. Development of a highly sensitive one-tube nested real-time PCR for detecting Mycobacterium tuberculosis.

    Science.gov (United States)

    Choi, Yeonim; Jeon, Bo-Young; Shim, Tae Sun; Jin, Hyunwoo; Cho, Sang-Nae; Lee, Hyeyoung

    2014-12-01

    Rapid, accurate detection of Mycobacterium tuberculosis is crucial in the diagnosis of tuberculosis (TB), but conventional diagnostic methods have limited sensitivity and specificity or are time consuming. A new highly sensitive nucleic acid amplification test, combined nested and real-time polymerase chain reaction (PCR) in a single tube (one-tube nested real-time PCR), was developed for detecting M. tuberculosis, which takes advantage of two PCR techniques, i.e., nested PCR and real-time PCR. One-tube nested real-time PCR was designed to have two sequential reactions with two sets of primers and dual probes for the insertion sequence (IS) 6110 sequence of M. tuberculosis in a single closed tube. The minimum limits of detection of IS6110 real-time PCR and IS6110 one-tube nested real-time PCR were 100 fg/μL and 1 fg/μL of M. tuberculosis DNA, respectively. AdvanSure TB/non-tuberculous mycobacteria (NTM) real-time PCR, IS6110 real-time PCR, and two-tube nested real-time PCR showed 100% sensitivity and 100% specificity for clinical M. tuberculosis isolates and NTM isolates. In comparison, the sensitivities of AdvanSure TB/NTM real-time PCR, single IS6110 real-time PCR, and one-tube nested real-time PCR were 91% (152/167), 94.6% (158/167), and 100% (167/167) for sputum specimens, respectively. In conclusion, IS6110 one-tube nested real-time PCR is useful for detecting M. tuberculosis due to its high sensitivity and simple manipulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Development of a PCR assay to detect cyprinid herpesvirus 1 in koi and common carp.

    Science.gov (United States)

    Viadanna, Pedro H O; Miller-Morgan, Tim; Peterson, Trace; Way, Keith; Stone, David M; Marty, Gary D; Pilarski, Fabiana; Hedrick, Ronald P; Waltzek, Thomas B

    2017-02-08

    Cyprinid herpesvirus 1 (CyHV1) infects all scaled and color varieties of common carp Cyprinus carpio, including koi. While it is most often associated with unsightly growths known as 'carp pox,' the underlying lesion (epidermal hyperplasia) can arise from a variety of disease processes. CyHV1-induced epidermal hyperplasia may occur transiently in response to water temperature, and thus histopathology cannot be used in isolation to assess CyHV1 infection status. To address this problem, here we describe a PCR assay targeted to the putative thymidine kinase gene of CyHV1. The PCR assay generates a 141 bp amplicon and reliably detects down to 10 copies of control plasmid DNA sequence (analytic sensitivity). The PCR does not cross-detect genomic DNA from cyprinid herpesvirus 2 and 3 (analytic specificity). The CyHV1 PCR effectively detected viral DNA in koi and common carp sampled from various locations in the UK, USA, Brazil, and Japan. Viral DNA was detected in both normal appearing and grossly affected epidermal tissues from koi experiencing natural epizootics. The new CyHV1 PCR provides an additional approach to histopathology for the rapid detection of CyHV1. Analysis of the thymidine kinase gene sequences determined for 7 PCR-positive carp originating from disparate geographical regions identified 3 sequence types, with 1 type occurring in both koi and common carp.

  1. Emotional response to musical repetition.

    Science.gov (United States)

    Livingstone, Steven R; Palmer, Caroline; Schubert, Emery

    2012-06-01

    Two experiments examined the effects of repetition on listeners' emotional response to music. Listeners heard recordings of orchestral music that contained a large section repeated twice. The music had a symmetric phrase structure (same-length phrases) in Experiment 1 and an asymmetric phrase structure (different-length phrases) in Experiment 2, hypothesized to alter the predictability of sensitivity to musical repetition. Continuous measures of arousal and valence were compared across music that contained identical repetition, variation (related), or contrasting (unrelated) structure. Listeners' emotional arousal ratings differed most for contrasting music, moderately for variations, and least for repeating musical segments. A computational model for the detection of repeated musical segments was applied to the listeners' emotional responses. The model detected the locations of phrase boundaries from the emotional responses better than from performed tempo or physical intensity in both experiments. These findings indicate the importance of repetition in listeners' emotional response to music and in the perceptual segmentation of musical structure.

  2. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    Science.gov (United States)

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  3. IDENTIFIKASI DAGING BABI MENGGUNAKAN METODE PCR-RFLP GEN Cytochrome b DAN PCR PRIMER SPESIFIK GEN AMELOGENIN (Pork Identification Using PCR-RFLP of Cytochrome b Gene and Species Specific PCR of Amelogenin Gene

    Directory of Open Access Journals (Sweden)

    Yuny Erwanto

    2013-03-01

    Full Text Available A polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP and species specific PCR methods had been applied for identifying pork in mixture of meat. Pork sample in various levels (1, 3, 5 and 10% was prepared in mixture with beef, chicken and mutton. The primary CYTb1 and CYTb2 were designed in the mitochondrial cytochrome b b (cytochrome b gene and PCR successfully amplified fragments of 359 bp. To distinguish pig species existence, the amplified PCR products of mitochondrial DNA were cut by BseDI restriction enzyme. The result showed that pig mitochondrial DNA was cut into 131 and 228 bp fragments. A polymerase chain reaction (PCR method based on the nucleotide sequence variation in the amelogenin gene has been chosen for the specific identification of pork DNAs in mixture meat. The primers designed generated specific fragments of 353 and 312 bp length for pork. The specificity of the primary designed was tested on 4 animal species including pig, cattle, chicken and goat species. Analysis of experimental mixture meat demonstrated that 1% of raw pork tissues could be detected using PCR-RFLP with BseDI restriction enzyme but detection using species-specific PCR showed the cross reactivity to beef, chicken and mutton. The cytochrome b PCR-RFLP species identification assay yielded excellent results for identification of pig species. PCR-RFLP is a potentially reliable technique for detection of the existence of pork in animal food product for Halal authentication. Keywords: Pork identification, cytochrome b, amelogenin, polymerase chain reaction   ABSTRAK   Penelitian ini dilakukan untuk mengaplikasikan metode deteksi daging babi dalam campuan daging dengan sapi, kambing dan ayam melalui PCR-RFLP dan PCR dengan primer spesifik untuk babi. Level kontaminasi daging babi dibuat sebesar 1, 3, 5 dan 10% dari total daging dalam campuran. Metode PCR-RFLP menggunakan sepasang primer yaitu gen cytochrome b dari mitokondria yang

  4. Whole Genome Sequencing and Multiplex qPCR Methods to Identify Campylobacter jejuni Encoding cst-II or cst-III Sialyltransferase

    Directory of Open Access Journals (Sweden)

    Jason M. Neal-McKinney

    2018-03-01

    Full Text Available Campylobacter jejuni causes more than 2 million cases of gastroenteritis annually in the United States, and is also linked to the autoimmune sequelae Guillan–Barre syndrome (GBS. GBS often results in flaccid paralysis, as the myelin sheaths of nerve cells are degraded by the adaptive immune response. Certain strains of C. jejuni modify their lipooligosaccharide (LOS with the addition of neuraminic acid, resulting in LOS moieties that are structurally similar to gangliosides present on nerve cells. This can trigger GBS in a susceptible host, as antibodies generated against C. jejuni can cross-react with gangliosides, leading to demyelination of nerves and a loss of signal transduction. The goal of this study was to develop a quantitative PCR (qPCR method and use whole genome sequencing data to detect the Campylobactersialyltransferase (cst genes responsible for the addition of neuraminic acid to LOS. The qPCR method was used to screen a library of 89 C. jejuni field samples collected by the Food and Drug Administration Pacific Northwest Lab (PNL as well as clinical isolates transferred to PNL. In silico analysis was used to screen 827 C. jejuni genomes in the FDA GenomeTrakr SRA database. The results indicate that a majority of C. jejuni strains could produce LOS with ganglioside mimicry, as 43.8% of PNL isolates and 46.9% of the GenomeTrakr isolates lacked the cst genes. The methods described in this study can be used by public health laboratories to rapidly determine whether a C. jejuni isolate has the potential to induce GBS. Based on these results, a majority of C. jejuni in the PNL collection and submitted to GenomeTrakr have the potential to produce LOS that mimics human gangliosides.

  5. Molecular diagnosis of lyssaviruses and sequence comparison of Australian bat lyssavirus samples.

    Science.gov (United States)

    Foord, A J; Heine, H G; Pritchard, L I; Lunt, R A; Newberry, K M; Rootes, C L; Boyle, D B

    2006-07-01

    To evaluate and implement molecular diagnostic tests for the detection of lyssaviruses in Australia. A published hemi-nested reverse transcriptase polymerase chain reaction (RT-PCR) for the detection of all lyssavirus genotypes was modified to a fully nested RT-PCR format and compared with the original assay. TaqMan assays for the detection of Australian bat lyssavirus (ABLV) were compared with both the nested and hemi-nested RT-PCR assays. The sequences of RT-PCR products were determined to assess sequence variations of the target region (nucleocapsid gene) in samples of ABLV originating from different regions. The nested RT-PCR assay was highly analytically specific, and at least as analytically sensitive as the hemi-nested assay. The TaqMan assays were highly analytically specific and more analytically sensitive than either RT-PCR assay, with a detection level of approximately 10 genome equivalents per microl. Sequence of the first 544 nucleotides of the nucleocapsid protein coding sequence was obtained from all samples of ABLV received at Australian Animal Health Laboratory during the study period. The nested RT-PCR provided a means for molecular diagnosis of all tested genotypes of lyssavirus including classical rabies virus and Australian bat lyssavirus. The published TaqMan assay proved to be superior to the RT-PCR assays for the detection of ABLV in terms of analytical sensitivity. The TaqMan assay would also be faster and cross contamination is less likely. Nucleotide sequence analyses of samples of ABLV from a wide geographical range in Australia demonstrated the conserved nature of this region of the genome and therefore the suitability of this region for molecular diagnosis.

  6. Structural analysis of a repetitive protein sequence motif in strepsirrhine primate amelogenin.

    Directory of Open Access Journals (Sweden)

    Rodrigo S Lacruz

    2011-03-01

    Full Text Available Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL, the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates.

  7. A PCR-based epidemiological survey of Hepatozoon canis in dogs in Nigeria.

    Science.gov (United States)

    Sasaki, Mizuki; Omobowale, Olutayo; Ohta, Kaisaku; Tozuka, Morito; Matsuu, Aya; Hirata, Haruyuki; Nottidge, Helen Oyebukola; Ikadai, Hiromi; Oyamada, Takashi

    2008-07-01

    The prevalence of Hepatozoon canis infections in dogs in Nigeria was surveyed using molecular methods. DNA was extracted from blood samples obtained from 400 dogs. A primer set that amplified the Babesia canis 18S rRNA gene, which has high similarity to the H. canis 18S rRNA gene, was used for the PCR. As a result, samples from 81 dogs (20.3%) produced 757 bp bands, which differed from the 698 bp band that corresponded to B. canis infection. The sequence of the PCR products of 10 samples were determined, all of which corresponded with the H. canis sequence.

  8. Incorporation of unique molecular identifiers in TruSeq adapters improves the accuracy of quantitative sequencing.

    Science.gov (United States)

    Hong, Jungeui; Gresham, David

    2017-11-01

    Quantitative analysis of next-generation sequencing (NGS) data requires discriminating duplicate reads generated by PCR from identical molecules that are of unique origin. Typically, PCR duplicates are identified as sequence reads that align to the same genomic coordinates using reference-based alignment. However, identical molecules can be independently generated during library preparation. Misidentification of these molecules as PCR duplicates can introduce unforeseen biases during analyses. Here, we developed a cost-effective sequencing adapter design by modifying Illumina TruSeq adapters to incorporate a unique molecular identifier (UMI) while maintaining the capacity to undertake multiplexed, single-index sequencing. Incorporation of UMIs into TruSeq adapters (TrUMIseq adapters) enables identification of bona fide PCR duplicates as identically mapped reads with identical UMIs. Using TrUMIseq adapters, we show that accurate removal of PCR duplicates results in improved accuracy of both allele frequency (AF) estimation in heterogeneous populations using DNA sequencing and gene expression quantification using RNA-Seq.

  9. Human papillomavirus detection using the Abbott RealTime high-risk HPV tests compared with conventional nested PCR coupled to high-throughput sequencing of amplification products in cervical smear specimens from a Gabonese female population.

    Science.gov (United States)

    Moussavou-Boundzanga, Pamela; Koumakpayi, Ismaël Hervé; Labouba, Ingrid; Leroy, Eric M; Belembaogo, Ernest; Berthet, Nicolas

    2017-12-21

    Cervical cancer is the fourth most common malignancy in women worldwide. However, screening with human papillomavirus (HPV) molecular tests holds promise for reducing cervical cancer incidence and mortality in low- and middle-income countries. The performance of the Abbott RealTime High-Risk HPV test (AbRT) was evaluated in 83 cervical smear specimens and compared with a conventional nested PCR coupled to high-throughput sequencing (HTS) to identify the amplicons. The AbRT assay detected at least one HPV genotype in 44.57% of women regardless of the grade of cervical abnormalities. Except for one case, good concordance was observed for the genotypes detected with the AbRT assay in the high-risk HPV category determined with HTS of the amplicon generated by conventional nested PCR. The AbRT test is an easy and reliable molecular tool and was as sensitive as conventional nested PCR in cervical smear specimens for detection HPVs associated with high-grade lesions. Moreover, sequencing amplicons using an HTS approach effectively identified the genotype of the hrHPV identified with the AbRT test.

  10. A comparison of QuantStudio™ 3D Digital PCR and ARMS-PCR for measuring plasma EGFR T790M mutations of NSCLC patients.

    Science.gov (United States)

    Feng, Qin; Gai, Fei; Sang, Yaxiong; Zhang, Jie; Wang, Ping; Wang, Yue; Liu, Bing; Lin, Dongmei; Yu, Yang; Fang, Jian

    2018-01-01

    The AURA3 clinical trial has shown that advanced non-small cell lung cancer (NSCLC) patients with EGFR T790M mutations in circulating tumor DNA (ctDNA) could benefit from osimertinib. The aim of this study was to assess the usefulness of QuantStudio™ 3D Digital PCR System platform for the detection of plasma EGFR T790M mutations in NSCLC patients, and compare the performances of 3D Digital PCR and ARMS-PCR. A total of 119 Chinese patients were enrolled in this study. Mutant allele frequency of plasma EGFR T790M was detected by 3D Digital PCR, then 25 selected samples were verified by ARMS-PCR and four of them were verified by next generation sequencing (NGS). In total, 52.94% (69/119) had EGFR T790M mutations detected by 3D Digital PCR. In 69 positive samples, the median mutant allele frequency (AF) was 1.09% and three cases presented low concentration (AF Digital PCR) was identified as T790M- by ARMS-PCR. Four samples were identified as T790M+ by both NGS and 3D Digital PCR, and typically three samples (3/4) presented at a low ratio (AF Digital PCR is a novel method with high sensitivity and specificity to detect EGFR T790M mutation in plasma.

  11. Identification of rhabdoviral sequences in oropharyngeal swabs from German and Danish bats.

    Science.gov (United States)

    Fischer, Melina; Freuling, Conrad M; Müller, Thomas; Schatz, Juliane; Rasmussen, Thomas Bruun; Chriel, Mariann; Balkema-Buschmann, Anne; Beer, Martin; Hoffmann, Bernd

    2014-11-25

    In the frame of active lyssavirus surveillance in bats, oropharyngeal swabs from German (N = 2297) and Danish (N = 134) insectivorous bats were investigated using a newly developed generic pan-lyssavirus real-time reverse transcriptase PCR (RT-qPCR). In total, 15 RT-qPCR positive swabs were detected. Remarkably, sequencing of positive samples did not confirm the presence of bat associated lyssaviruses but revealed nine distinct novel rhabdovirus-related sequences. Several novel rhabdovirus-related sequences were detected both in German and Danish insectivorous bats. The results also prove that the novel generic pan-lyssavirus RT-qPCR offers a very broad detection range that allows the collection of further valuable data concerning the broad and complex diversity within the family Rhabdoviridae.

  12. PCR Cloning of Partial "nbs" Sequences from Grape ("Vitis aestivalis" Michx)

    Science.gov (United States)

    Chang, Ming-Mei; DiGennaro, Peter; Macula, Anthony

    2009-01-01

    Plants defend themselves against pathogens via the expressions of disease resistance (R) genes. Many plant R gene products contain the characteristic nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. There are highly conserved motifs within the NBS domain which could be targeted for polymerase chain reaction (PCR) cloning of R…

  13. Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome.

    Science.gov (United States)

    Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette

    2009-06-01

    Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.

  14. Repetitive learning control of continuous chaotic systems

    International Nuclear Information System (INIS)

    Chen Maoyin; Shang Yun; Zhou Donghua

    2004-01-01

    Combining a shift method and the repetitive learning strategy, a repetitive learning controller is proposed to stabilize unstable periodic orbits (UPOs) within chaotic attractors in the sense of least mean square. If nonlinear parts in chaotic systems satisfy Lipschitz condition, the proposed controller can be simplified into a simple proportional repetitive learning controller

  15. Simultaneous digital quantification and fluorescence-based size characterization of massively parallel sequencing libraries.

    Science.gov (United States)

    Laurie, Matthew T; Bertout, Jessica A; Taylor, Sean D; Burton, Joshua N; Shendure, Jay A; Bielas, Jason H

    2013-08-01

    Due to the high cost of failed runs and suboptimal data yields, quantification and determination of fragment size range are crucial steps in the library preparation process for massively parallel sequencing (or next-generation sequencing). Current library quality control methods commonly involve quantification using real-time quantitative PCR and size determination using gel or capillary electrophoresis. These methods are laborious and subject to a number of significant limitations that can make library calibration unreliable. Herein, we propose and test an alternative method for quality control of sequencing libraries using droplet digital PCR (ddPCR). By exploiting a correlation we have discovered between droplet fluorescence and amplicon size, we achieve the joint quantification and size determination of target DNA with a single ddPCR assay. We demonstrate the accuracy and precision of applying this method to the preparation of sequencing libraries.

  16. Document retrieval on repetitive string collections.

    Science.gov (United States)

    Gagie, Travis; Hartikainen, Aleksi; Karhu, Kalle; Kärkkäinen, Juha; Navarro, Gonzalo; Puglisi, Simon J; Sirén, Jouni

    2017-01-01

    Most of the fastest-growing string collections today are repetitive, that is, most of the constituent documents are similar to many others. As these collections keep growing, a key approach to handling them is to exploit their repetitiveness, which can reduce their space usage by orders of magnitude. We study the problem of indexing repetitive string collections in order to perform efficient document retrieval operations on them. Document retrieval problems are routinely solved by search engines on large natural language collections, but the techniques are less developed on generic string collections. The case of repetitive string collections is even less understood, and there are very few existing solutions. We develop two novel ideas, interleaved LCPs and precomputed document lists , that yield highly compressed indexes solving the problem of document listing (find all the documents where a string appears), top- k document retrieval (find the k documents where a string appears most often), and document counting (count the number of documents where a string appears). We also show that a classical data structure supporting the latter query becomes highly compressible on repetitive data. Finally, we show how the tools we developed can be combined to solve ranked conjunctive and disjunctive multi-term queries under the simple [Formula: see text] model of relevance. We thoroughly evaluate the resulting techniques in various real-life repetitiveness scenarios, and recommend the best choices for each case.

  17. REPETITIVE STRENGTH AMONG STUDENTS OF AGE 14

    Directory of Open Access Journals (Sweden)

    Besim Halilaj

    2014-06-01

    Full Text Available The study involved 82 male students of the primary school “Qamil Ilazi” in Kaçanik-Kosovo.Four movement tests, which test the repetitive strength, were conducted: 1. Pull-up, 2. Sit-Up, 3. Back extension, 4. Push-up.The main goal of this study was to verify the actual motor status, respectively the component of the repetitive strength among students of age 14 of masculine gender. In addition to verifying the actual motor status, another objective was to verify the relationship between the variables employed.Basic statistical parameters show a distribution which is not significantly different from the normal distribution, yielded highly correlative values among the repetitive strength tests. Space factorization resulted in extracting two latent squares defined as repetitive strength of arms factor, and repetitive strength of body factor.

  18. Detection and Analysis of Circular RNAs by RT-PCR.

    Science.gov (United States)

    Panda, Amaresh C; Gorospe, Myriam

    2018-03-20

    Gene expression in eukaryotic cells is tightly regulated at the transcriptional and posttranscriptional levels. Posttranscriptional processes, including pre-mRNA splicing, mRNA export, mRNA turnover, and mRNA translation, are controlled by RNA-binding proteins (RBPs) and noncoding (nc)RNAs. The vast family of ncRNAs comprises diverse regulatory RNAs, such as microRNAs and long noncoding (lnc)RNAs, but also the poorly explored class of circular (circ)RNAs. Although first discovered more than three decades ago by electron microscopy, only the advent of high-throughput RNA-sequencing (RNA-seq) and the development of innovative bioinformatic pipelines have begun to allow the systematic identification of circRNAs (Szabo and Salzman, 2016; Panda et al ., 2017b; Panda et al ., 2017c). However, the validation of true circRNAs identified by RNA sequencing requires other molecular biology techniques including reverse transcription (RT) followed by conventional or quantitative (q) polymerase chain reaction (PCR), and Northern blot analysis (Jeck and Sharpless, 2014). RT-qPCR analysis of circular RNAs using divergent primers has been widely used for the detection, validation, and sometimes quantification of circRNAs (Abdelmohsen et al ., 2015 and 2017; Panda et al ., 2017b). As detailed here, divergent primers designed to span the circRNA backsplice junction sequence can specifically amplify the circRNAs and not the counterpart linear RNA. In sum, RT-PCR analysis using divergent primers allows direct detection and quantification of circRNAs.

  19. Pericentric satellite DNA sequences in Pipistrellus pipistrellus (Vespertilionidae; Chiroptera).

    Science.gov (United States)

    Barragán, M J L; Martínez, S; Marchal, J A; Fernández, R; Bullejos, M; Díaz de la Guardia, R; Sánchez, A

    2003-09-01

    This paper reports the molecular and cytogenetic characterization of a HindIII family of satellite DNA in the bat species Pipistrellus pipistrellus. This satellite is organized in tandem repeats of 418 bp monomer units, and represents approximately 3% of the whole genome. The consensus sequence from five cloned monomer units has an A-T content of 62.20%. We have found differences in the ladder pattern of bands between two populations of the same species. These differences are probably because of the absence of the target sites for the HindIII enzyme in most monomer units of one population, but not in the other. Fluorescent in situ hybridization (FISH) localized the satellite DNA in the pericentromeric regions of all autosomes and the X chromosome, but it was absent from the Y chromosome. Digestion of genomic DNAs with HpaII and its isoschizomer MspI demonstrated that these repetitive DNA sequences are not methylated. Other bat species were tested for the presence of this repetitive DNA. It was absent in five Vespertilionidae and one Rhinolophidae species, indicating that it could be a species/genus specific, repetitive DNA family.

  20. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi

    Science.gov (United States)

    Komaki-Yasuda, Kanako; Vincent, Jeanne Perpétue; Nakatsu, Masami; Kato, Yasuyuki; Ohmagari, Norio

    2018-01-01

    A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient’s blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a “fast PCR enzyme”. In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the “fast PCR enzyme”, with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses. PMID:29370297

  1. Validation of the digital PCR system in tyrosine kinase inhibitor-resistant EGFR mutant non-small-cell lung cancer.

    Science.gov (United States)

    Masago, Katsuhiro; Fujita, Shiro; Hata, Akito; Okuda, Chiyuki; Yoshizumi, Yuko; Kaji, Reiko; Katakami, Nobuyuki; Hirata, Yukio; Yatabe, Yasushi

    2018-03-01

    The aim of this study was to compare the accuracy of the QuantStudio 3D Digital polymerase chain reaction (dPCR) system and a PCR-based next generation sequencing (NGS) system for detecting a secondary mutation in the epidermal growth factor receptor (EGFR) gene T790M in non-small cell lung cancer (NSCLC) patients previously diagnosed with EGFR-activating mutations. Twenty-five patients with NSCLC previously treated with EGFR-TKIs were examined. The patients were treated daily with either erlotinib or gefitinib. New biopsies, followed by DNA sequencing on an Ion Torrent systems using the Ion Torrent AmpliSeq Cancer Hotspot Panel and dPCR were performed. A comparison of NGS, sensitive PCR, and dPCR revealed that the sensitivities of NGS and dPCR were similar in this study. As well, T790M was detected in as low as about 5% of mutant allelic frequencies, which represented 5% of the total reads on site mapped reads in NGS and greater than 5% of the dPCR reads, which represented mutant and wild type copies. The strategy in which NGS sequencing is followed by revealed acquired mutation with dPCR may be a reasonable one. We demonstrated the utility of combining NGS and dPCR as a tool for monitoring T790M. NGS and dPCR with formalin-fixed paraffin-embedded (FFPE) specimens might become a standard genomic test for exploring acquired resistance to targeted molecular medicines. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  2. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi.

    Directory of Open Access Journals (Sweden)

    Kanako Komaki-Yasuda

    Full Text Available A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient's blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a "fast PCR enzyme". In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the "fast PCR enzyme", with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses.

  3. Snake Genome Sequencing: Results and Future Prospects.

    Science.gov (United States)

    Kerkkamp, Harald M I; Kini, R Manjunatha; Pospelov, Alexey S; Vonk, Freek J; Henkel, Christiaan V; Richardson, Michael K

    2016-12-01

    Snake genome sequencing is in its infancy-very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.

  4. Snake Genome Sequencing: Results and Future Prospects

    Directory of Open Access Journals (Sweden)

    Harald M. I. Kerkkamp

    2016-12-01

    Full Text Available Snake genome sequencing is in its infancy—very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.

  5. Third-Generation Sequencing and Analysis of Four Complete Pig Liver Esterase Gene Sequences in Clones Identified by Screening BAC Library.

    Science.gov (United States)

    Zhou, Qiongqiong; Sun, Wenjuan; Liu, Xiyan; Wang, Xiliang; Xiao, Yuncai; Bi, Dingren; Yin, Jingdong; Shi, Deshi

    2016-01-01

    Pig liver carboxylesterase (PLE) gene sequences in GenBank are incomplete, which has led to difficulties in studying the genetic structure and regulation mechanisms of gene expression of PLE family genes. The aim of this study was to obtain and analysis of complete gene sequences of PLE family by screening from a Rongchang pig BAC library and third-generation PacBio gene sequencing. After a number of existing incomplete PLE isoform gene sequences were analysed, primers were designed based on conserved regions in PLE exons, and the whole pig genome used as a template for Polymerase chain reaction (PCR) amplification. Specific primers were then selected based on the PCR amplification results. A three-step PCR screening method was used to identify PLE-positive clones by screening a Rongchang pig BAC library and PacBio third-generation sequencing was performed. BLAST comparisons and other bioinformatics methods were applied for sequence analysis. Five PLE-positive BAC clones, designated BAC-10, BAC-70, BAC-75, BAC-119 and BAC-206, were identified. Sequence analysis yielded the complete sequences of four PLE genes, PLE1, PLE-B9, PLE-C4, and PLE-G2. Complete PLE gene sequences were defined as those containing regulatory sequences, exons, and introns. It was found that, not only did the PLE exon sequences of the four genes show a high degree of homology, but also that the intron sequences were highly similar. Additionally, the regulatory region of the genes contained two 720bps reverse complement sequences that may have an important function in the regulation of PLE gene expression. This is the first report to confirm the complete sequences of four PLE genes. In addition, the study demonstrates that each PLE isoform is encoded by a single gene and that the various genes exhibit a high degree of sequence homology, suggesting that the PLE family evolved from a single ancestral gene. Obtaining the complete sequences of these PLE genes provides the necessary foundation for

  6. Detection of adenoviruses in shellfish by means of conventional-PCR, nested-PCR, and integrated cell culture PCR (ICC/PCR).

    Science.gov (United States)

    Rigotto, C; Sincero, T C M; Simões, C M O; Barardi, C R M

    2005-01-01

    We tested three PCR based methodologies to detect adenoviruses associated with cultivated oysters. Conventional-PCR, nested-PCR, and integrated cell culture-PCR (ICC/PCR) were first optimized using oysters seeded with know amounts of Adenovirus serotype 5 (Ad5). The maximum sensitivity for Ad5 detection was determined for each method, and then used to detect natural adenovirus contamination in oysters from three aquiculture farms in Florianopolis, Santa Catarina State, Brazil, over a period of 6 months. The results showed that the nested-PCR was more sensitive (limit of detection: 1.2 PFU/g of tissue) than conventional-PCR and ICC-PCR (limit of detection for both: 1.2 x 10(2)PFU/g of tissue) for detection of Ad5 in oyster extracts. Nested-PCR was able to detect 90% of Ad5 contamination in harvested oyster samples, while conventional-PCR was unable to detect Ad5 in any of the samples. The present work suggests that detection of human adenoviruses can be used as a tool to monitor the presence of human viruses in marine environments where shellfish grow, and that nested-PCR is the method of choice.

  7. RAPD-PCR – still a suitable Method for Genetically Underexplored Species?

    Directory of Open Access Journals (Sweden)

    Konstanze Ursula Behrmann

    2015-11-01

    Full Text Available Saithe (Pollachius virens is a commercially important fish species; the annual catch quota in the Northeast Atlantic exceeds 100.000 t. Despite that saithe is underexplored from a fish population genetically view. Because saithe is a highly migratory species, which undergoes a long larval drift, the population structure of saithe within the Northeast Atlantic is not fully understood. Models used as a basis for the management plan are based on tagging studies, which have been carried out in the 1960th. But still there are doubts regarding the numbers of stocks living in the Northeast Atlantic. Migration routes are affected by salmon farming, growing steadily from the 1990th. In the last years a hyperstability of the saithe stock in the North Sea had been detected underlining the need to have a closer look on the saithe stocks in the Northeast Atlantic. Random amplified polymorphic DNA (RAPD - PCR is a DNA fingerprinting technique often used in species identification and population genetic research for species, whose genome has not been sequenced very extensive as being the case for most of the food fishes. We applied RAPD-PCR in a study of saithe populations from the North Atlantic. The suitability of RAPD-PCR was improved by optimisations for enhanced reproducibility. The “classical” protocol for RAPD-PCR was modified by increasing the annealing temperature and shortening the time of annealing, providing a much better reproducibility. Thus, RAPD-PCR was found to be a straightforward and low-cost way, compared to other population genetic tools, to get a first insight into the population structure of less sequenced fish species within a very short time, being useful for preliminary studies or laboratories without large capacities for DNA sequencing.

  8. Detection of Leishmania infantum in naturally infected Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) and Canis familiaris in Misiones, Argentina: the first report of a PCR-RFLP and sequencing-based confirmation assay.

    Science.gov (United States)

    Acardi, Soraya Alejandra; Liotta, Domingo Javier; Santini, María Soledad; Romagosa, Carlo Mariano; Salomón, Oscar Daniel

    2010-09-01

    In this study, a genotypification of Leishmania was performed using polimerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing techniques to identify species of Leishmania parasites in phlebotomine sand flies and dogs naturally infected. Between January-February of 2009, CDC light traps were used to collect insect samples from 13 capture sites in the municipality of Posadas, which is located in the province of Misiones of Argentina. Sand flies identified as Lutzomyia longipalpis were grouped into 28 separate pools for molecular biological analysis. Canine samples were taken from lymph node aspirates of two symptomatic stray animals that had been positively diagnosed with canine visceral leishmaniasis. One vector pool of 10 sand flies (1 out of the 28 pools tested) and both of the canine samples tested positively for Leishmania infantum by PCR and RFLP analysis. PCR products were confirmed by sequencing and showed a maximum identity with L. infantum. Given that infection was detected in one out of the 28 pools and that at least one infected insect was infected, it was possible to infer an infection rate at least of 0.47% for Lu. longipalpis among the analyzed samples. These results contribute to incriminate Lu. longipalpis as the vector of L. infantum in the municipality of Posadas, where cases of the disease in humans and dogs have been reported since 2005.

  9. The analysis of novel microRNA mimic sequences in cancer cells reveals lack of specificity in stem-loop RT-qPCR-based microRNA detection.

    Science.gov (United States)

    Winata, Patrick; Williams, Marissa; McGowan, Eileen; Nassif, Najah; van Zandwijk, Nico; Reid, Glen

    2017-11-17

    MicroRNAs are frequently downregulated in cancer, and restoring expression has tumour suppressive activity in tumour cells. Our recent phase I clinical trial investigated microRNA-based therapy in patients with malignant pleural mesothelioma. Treatment with TargomiRs, microRNA mimics with novel sequence packaged in EGFR antibody-targeted bacterial minicells, revealed clear signs of clinical activity. In order to detect delivery of microRNA mimics to tumour cells in future clinical trials, we tested hydrolysis probe-based assays specific for the sequence of the novel mimics in transfected mesothelioma cell lines using RT-qPCR. The custom assays efficiently and specifically amplified the consensus mimics. However, we found that these assays gave a signal when total RNA from untransfected and control mimic-transfected cells were used as templates. Further investigation revealed that the reverse transcription step using stem-loop primers appeared to introduce substantial non-specific amplification with either total RNA or synthetic RNA templates. This suggests that reverse transcription using stem-loop primers suffers from an intrinsic lack of specificity for the detection of highly similar microRNAs in the same family, especially when analysing total RNA. These results suggest that RT-qPCR is unlikely to be an effective means to detect delivery of microRNA mimic-based drugs to tumour cells in patients.

  10. Decoding DNA labels by melting curve analysis using real-time PCR.

    Science.gov (United States)

    Balog, József A; Fehér, Liliána Z; Puskás, László G

    2017-12-01

    Synthetic DNA has been used as an authentication code for a diverse number of applications. However, existing decoding approaches are based on either DNA sequencing or the determination of DNA length variations. Here, we present a simple alternative protocol for labeling different objects using a small number of short DNA sequences that differ in their melting points. Code amplification and decoding can be done in two steps using quantitative PCR (qPCR). To obtain a DNA barcode with high complexity, we defined 8 template groups, each having 4 different DNA templates, yielding 158 (>2.5 billion) combinations of different individual melting temperature (Tm) values and corresponding ID codes. The reproducibility and specificity of the decoding was confirmed by using the most complex template mixture, which had 32 different products in 8 groups with different Tm values. The industrial applicability of our protocol was also demonstrated by labeling a drone with an oil-based paint containing a predefined DNA code, which was then successfully decoded. The method presented here consists of a simple code system based on a small number of synthetic DNA sequences and a cost-effective, rapid decoding protocol using a few qPCR reactions, enabling a wide range of authentication applications.

  11. Specific PCR Identification between Peucedanum praeruptorum and Angelica decursiva and Identification between Them and Adulterant Using DNA Barcode.

    Science.gov (United States)

    Han, Bang-Xing; Yuan, Yuan; Huang, Lu-Qi; Zhao, Qun; Tan, Ling-Ling; Song, Xiang-Wen; He, Xiao-Mei; Xu, Tao; Liu, Feng; Wang, Jian

    2017-01-01

    The traditional Chinese medicine (TCM) Qianhu and Zihuaqianhu are the dried roots of Peucedanum praeruptorum and Angelica decursiva , respectively. Since the plant sources of Qianhu and Zihuaqianhu are more complex, the chemical compositions of P. praeruptorum and A. decursiva are significantly different, and many adulterants exist because of the differences in traditional understanding and medication habits. Therefore, the rapid and accurate identification methods are required. The aim was to study the feasibility of using DNA barcoding to distinguish between Traditional Chinese medicine Qianhu ( Peucedanum praeruptorum ), Zihuaqianhu ( Angelica decursiva ), and common adulterants, based on internal transcribed spacer (ITS) sequences, as well as specific PCR identification between P. praeruptorum and A. decursiva . The ITS sequences of P. praeruptorum , A. decursiva , and adulterant were studied, and a phylogenetic tree was constructed. Based on the ITS barcode, the specific PCR primer pairs QH-CP19s/QH-CP19a and ZHQH-CP3s/ZHQH-CP3a were designed for P. praeruptorum and A. decursiva , respectively. The amplification conditions were optimized, and specific PCR products were obtained. The results showed that the phylogenetic trees constructed using the BI and MP methods were consistent, and P. praeruptorum and A. decursiva sequence haplotypes formed their own monophyly. The experimental results showed that in PCR products, the target bands appeared in the genuine drug and not in the adulterant, which suggests the high specificity of the two primer pairs. The ITS sequence was ideal DNA barcode to identify P. praeruptorum , A. decursiva , and adulterant. The specific PCR is a quick and effective method to distinguish between P. praeruptorum and A. decursiva . Peucedanum praeruptorum and Angelica decursiva sequence haplotypes formed their own monophyly.The ITS sequence was ideal DNA barcode to identify P. praeruptorum , A. decursiva , and adulterant.Specific PCR is a

  12. Molecular biological identification of Babesia, Theileria, and Anaplasma species in cattle in Egypt using PCR assays, gene sequence analysis and a novel DNA microarray.

    Science.gov (United States)

    El-Ashker, Maged; Hotzel, Helmut; Gwida, Mayada; El-Beskawy, Mohamed; Silaghi, Cornelia; Tomaso, Herbert

    2015-01-30

    In this preliminary study, a novel DNA microarray system was tested for the diagnosis of bovine piroplasmosis and anaplasmosis in comparison with microscopy and PCR assay results. In the Dakahlia Governorate, Egypt, 164 cattle were investigated for the presence of piroplasms and Anaplasma species. All investigated cattle were clinically examined. Blood samples were screened for the presence of blood parasites using microscopy and PCR assays. Seventy-one animals were acutely ill, whereas 93 were apparently healthy. In acutely ill cattle, Babesia/Theileria species (n=11) and Anaplasma marginale (n=10) were detected. Mixed infections with Babesia/Theileria spp. and A. marginale were present in two further cases. A. marginale infections were also detected in apparently healthy subjects (n=23). The results of PCR assays were confirmed by DNA sequencing. All samples that were positive by PCR for Babesia/Theileria spp. gave also positive results in the microarray analysis. The microarray chips identified Babesia bovis (n=12) and Babesia bigemina (n=2). Cattle with babesiosis were likely to have hemoglobinuria and nervous signs when compared to those with anaplasmosis that frequently had bloody feces. We conclude that clinical examination in combination with microscopy are still very useful in diagnosing acute cases of babesiosis and anaplasmosis, but a combination of molecular biological diagnostic assays will detect even asymptomatic carriers. In perspective, parallel detection of Babesia/Theileria spp. and A. marginale infections using a single microarray system will be a valuable improvement. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Real-time PCR for Leishmania species identification: Evaluation and comparison with classical techniques.

    Science.gov (United States)

    de Morais, Rayana Carla Silva; da Costa Oliveira, Cintia Nascimento; de Albuquerque, Suênia da Cunha Gonçalves; Mendonça Trajano Silva, Lays Adrianne; Pessoa-E-Silva, Rômulo; Alves da Cruz, Heidi Lacerda; de Brito, Maria Edileuza Felinto; de Paiva Cavalcanti, Milena

    2016-06-01

    Cutaneous leishmaniasis (CL) is a parasitic disease caused by various Leishmania species. Several studies have shown that real time quantitative PCR (qPCR) can be used for Leishmania spp. identification by analyzing the melting temperature (Tm). Thus, the aim of this study was to evaluate the viability of qPCR for differentiating eight closely related Leishmania species that cause the same clinical form of the disease and to compare the results with classical techniques. qPCR assays for standardizing the Tm using reference strains were performed. After the CL diagnosis on blood samples of domestic animals, positive samples were analyzed by their Tm and qPCR products were purified and sequenced. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by Tm. A Restriction Fragment Length Polymorphism (RFLP) assay, a reference test, was also standardized, by using the reference strains. Through standardization of Tm for Leishmania spp., two Tm ranges were created for analysis: 1 (Tm = 78-79.99 °C) included Leishmania (V.) braziliensis, Leishmania (V.) panamensis, Leishmania (V.) lainsoni, Leishmania (V.) guyanensis and Leishmania (V.) shawi; and 2 (Tm = 80-82.2 °C) included Leishmania (V.) naiffi, Leishmania (L.) amazonensis and Leishmania (L.) mexicana. A total of 223 positive blood samples were analyzed, with 58 included in range 1 and 165 in range 2. L. (V.) braziliensis, L. (V.) panamensis and L. (V.) guyanensis were identified by sequencing, while L. (V.) braziliensis, L. (L.) mexicana and L. (V.) panamensis were identified by RFLP analysis. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by qPCR Tm analysis; five were classified in range 1 and five in range 2. A concordance of 80% was calculated between qPCR and the gold-standard (MLEE) with no significant difference between the methods (p = 0.6499); a similar result was observed for sequencing

  14. Improved diagnostic PCR assay for Actinobacillus pleuropneumoniae based on the nucleotide sequence of an outer membrane lipoprotein

    DEFF Research Database (Denmark)

    Gram, Trine; Ahrens, Peter

    1998-01-01

    species related to A. pleuropneumoniae or isolated from pigs were assayed. They were all found negative in the PCR, as were tonsil cultures from 50 pigs of an A. pleuropneumoniae-negative herd. The sensitivity assessed by agarose gel analysis of the PCR product was 10(2) CFU/PCR test tube. The specificity...

  15. Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias.

    Science.gov (United States)

    Clarke, Laurence J; Soubrier, Julien; Weyrich, Laura S; Cooper, Alan

    2014-11-01

    Studies of insect assemblages are suited to the simultaneous DNA-based identification of multiple taxa known as metabarcoding. To obtain accurate estimates of diversity, metabarcoding markers ideally possess appropriate taxonomic coverage to avoid PCR-amplification bias, as well as sufficient sequence divergence to resolve species. We used in silico PCR to compare the taxonomic coverage and resolution of newly designed insect metabarcodes (targeting 16S) with that of existing markers [16S and cytochrome oxidase c subunit I (COI)] and then compared their efficiency in vitro. Existing metabarcoding primers amplified in silico 90% coverage. Furthermore, metabarcodes targeting COI appeared to introduce taxonomic PCR-amplification bias, typically amplifying a greater percentage of Lepidoptera and Diptera species, while failing to amplify certain orders in silico. To test whether bias predicted in silico was observed in vitro, we created an artificial DNA blend containing equal amounts of DNA from 14 species, representing 11 insect orders and one arachnid. We PCR-amplified the blend using five primer sets, targeting either COI or 16S, with high-throughput amplicon sequencing yielding more than 6 million reads. In vitro results typically corresponded to in silico PCR predictions, with newly designed 16S primers detecting 11 insect taxa present, thus providing equivalent or better taxonomic coverage than COI metabarcodes. Our results demonstrate that in silico PCR is a useful tool for predicting taxonomic bias in mixed template PCR and that researchers should be wary of potential bias when selecting metabarcoding markers. © 2014 John Wiley & Sons Ltd.

  16. The diagnosis of microorganism involved in infective endocarditis (IE by polymerase chain reaction (PCR and real-time PCR: A systematic review

    Directory of Open Access Journals (Sweden)

    Reza Faraji

    2018-02-01

    Full Text Available Broad-range bacterial rDNA polymerase chain reaction (PCR followed by sequencing may be identified as the etiology of infective endocarditis (IE from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery.

  17. The diagnosis of microorganism involved in infective endocarditis (IE) by polymerase chain reaction (PCR) and real-time PCR: A systematic review.

    Science.gov (United States)

    Faraji, Reza; Behjati-Ardakani, Mostafa; Moshtaghioun, Seyed Mohammad; Kalantar, Seyed Mehdi; Namayandeh, Seyedeh Mahdieh; Soltani, Mohammadhossien; Emami, Mahmood; Zandi, Hengameh; Firoozabadi, Ali Dehghani; Kazeminasab, Mahmood; Ahmadi, Nastaran; Sarebanhassanabadi, Mohammadtaghi

    2018-02-01

    Broad-range bacterial rDNA polymerase chain reaction (PCR) followed by sequencing may be identified as the etiology of infective endocarditis (IE) from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery. Copyright © 2017. Published by Elsevier Taiwan.

  18. A Novel PCR Assay for Detecting Brucella abortus and Brucella melitensis.

    Science.gov (United States)

    Alamian, Saeed; Esmaelizad, Majid; Zahraei, Taghi; Etemadi, Afshar; Mohammadi, Mohsen; Afshar, Davoud; Ghaderi, Soheila

    2017-02-01

    Brucellosis is a major zoonotic disease that poses a significant public health threat worldwide. The classical bacteriological detection process used to identify Brucella spp. is difficult and time-consuming. This study aimed to develop a novel molecular assay for detecting brucellosis. All complete sequences of chromosome 1 with 2.1-Mbp lengths were compared among all available Brucella sequences. A unique repeat sequence (URS) locus on chromosome 1 could differentiate Brucella abortus from Brucella melitensis . A primer set was designed to flank the unique locus. A total of 136 lymph nodes and blood samples were evaluated and classified by the URS-polymerase chain reaction (PCR) method in 2013-2014. Biochemical tests and bacteriophage typing as the golden standard indicated that all Brucella spp. isolates were B. melitensis biovar 1 and B. abortus biovar 3. The PCR results were the same as the bacteriological method for detecting Brucella spp. The sensitivity and specificity of the URS-PCR method make it suitable for detecting B. abortus and B. melitensis . Quick detection of B. abortus and B. melitensis can provide the most effective strategies for control of these bacteria. The advantage of this method over other presented methods is that both B. abortus and B. melitensis are detectable in a single test tube. Furthermore, this method covered 100% of all B. melitensis and B. abortus biotypes. The development of this URS-PCR method is the first step toward the development of a novel kit for the molecular identification of B. abortus and B. melitensis .

  19. Approach to determine the diversity of Legionella species by nested PCR-DGGE in aquatic environments

    Science.gov (United States)

    Huang, Wen-Chien; Tsai, Hsin-Chi; Tao, Chi-Wei; Chen, Jung-Sheng; Shih, Yi-Jia; Kao, Po-Min; Huang, Tung-Yi; Hsu, Bing-Mu

    2017-01-01

    In this study, we describe a nested PCR-DGGE strategy to detect Legionella communities from river water samples. The nearly full-length 16S rRNA gene was amplified using bacterial primer in the first step. After, the amplicons were employed as DNA templates in the second PCR using Legionella specific primer. The third round of gene amplification was conducted to gain PCR fragments apposite for DGGE analysis. Then the total numbers of amplified genes were observed in DGGE bands of products gained with primers specific for the diversity of Legionella species. The DGGE patterns are thus potential for a high-throughput preliminary determination of aquatic environmental Legionella species before sequencing. Comparative DNA sequence analysis of excised DGGE unique band patterns showed the identity of the Legionella community members, including a reference profile with two pathogenic species of Legionella strains. In addition, only members of Legionella pneumophila and uncultured Legionella sp. were detected. Development of three step nested PCR-DGGE tactic is seen as a useful method for studying the diversity of Legionella community. The method is rapid and provided sequence information for phylogenetic analysis. PMID:28166249

  20. Cloning and sequencing of a cellobiohydrolase gene from Trichoderma harzianum FP108

    Science.gov (United States)

    Patrick Guilfoile; Ron Burns; Zu-Yi Gu; Matt Amundson; Fu-Hsian Chang

    1999-01-01

    A cbbl cellobiohydrolase gene was cloned and sequenced from the fungus Trichoderrna harzianum FP108. The cloning was performed by PCR amplification of T. harzianum genomic DNA, using PCR primers whose sequence was based on the cbbl gene from Tricboderma reesei. The 3' end of the gene was isolated by inverse...

  1. Sequence variation of bovine mitochondrial ND-5 between haplotypes of composite and Hereford Breeds of beef cattle

    Directory of Open Access Journals (Sweden)

    SUTARNO

    2002-07-01

    Full Text Available The aims of the study were to: Investigate polymorphisms in the ND-5 region of bovine mitochondrial DNA in the composite and purebred Hereford herds from the Wokalup selection experiment, sequencing and compare the sequences between haplotypes and published sequence from Genebank. A total of 194 Hereford and 235 composite breed cattle from Wokalup Research Station were used in this study. The mitochondrial DNA was extracted using Wizard genomic DNA purification system from Promega. ND-5 fragment of mitochondrial DNA was amplified using PCR and continued with RFLP. Each haplotypes were sequenced. PCR products of each haplotype were cloned into pCR II, transformed, colonies selection, plasmid DNA extraction continued with cycle sequencing. Polymorphisms were found in both breeds of cattle in ND-5 region of mitochondrial DNA by PCR-RFLP analysis. Sequencing analysis confirmed the RFLPs data.

  2. Genotyping of virulent Escherichia coli obtained from poultry and poultry farm workers using enterobacterial repetitive intergenic consensus-polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    M. Soma Sekhar

    2017-11-01

    Full Text Available Aim: The aim of this study was to characterize virulent Escherichia coli isolated from different poultry species and poultry farm workers using enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR genotyping. Materials and Methods: Fecal swabs from different poultry species (n=150 and poultry farm workers (n=15 were analyzed for E. coli and screened for virulence genes (stx1, stx2, eaeA, and hlyA by multiplex PCR. Virulent E. coli was serotyped based on their "O" antigen and then genotyped using ERIC-PCR. Results: A total of 134 E. coli isolates (122/150 from poultry and 12/15 from farm workers were recovered. Virulence genes were detected in a total of 12 isolates. Serological typing of the 12 virulent E. coli revealed nine different serotypes (O2, O49, O60, O63, O83, O101, O120, UT, and Rough. ERIC-PCR genotyping allowed discrimination of 12 virulent E. coli isolates into 11 ERIC-PCR genotypes. The numerical index of discrimination was 0.999. Conclusion: Our findings provide information about the wide genetic diversity and discrimination of virulent E. coli in apparently healthy poultry and poultry farm workers of Andhra Pradesh (India based on their genotype.

  3. Cloning and sequence analysis of hyaluronoglucosaminidase (nagH gene of Clostridium chauvoei

    Directory of Open Access Journals (Sweden)

    Saroj K. Dangi

    2017-09-01

    Full Text Available Aim: Blackleg disease is caused by Clostridium chauvoei in ruminants. Although virulence factors such as C. chauvoei toxin A, sialidase, and flagellin are well characterized, hyaluronidases of C. chauvoei are not characterized. The present study was aimed at cloning and sequence analysis of hyaluronoglucosaminidase (nagH gene of C. chauvoei. Materials and Methods: C. chauvoei strain ATCC 10092 was grown in ATCC 2107 media and confirmed by polymerase chain reaction (PCR using the primers specific for 16-23S rDNA spacer region. nagH gene of C. chauvoei was amplified and cloned into pRham-SUMO vector and transformed into Escherichia cloni 10G cells. The construct was then transformed into E. cloni cells. Colony PCR was carried out to screen the colonies followed by sequencing of nagH gene in the construct. Results: PCR amplification yielded nagH gene of 1143 bp product, which was cloned in prokaryotic expression system. Colony PCR, as well as sequencing of nagH gene, confirmed the presence of insert. Sequence was then subjected to BLAST analysis of NCBI, which confirmed that the sequence was indeed of nagH gene of C. chauvoei. Phylogenetic analysis of the sequence showed that it is closely related to Clostridium perfringens and Clostridium paraputrificum. Conclusion: The gene for virulence factor nagH was cloned into a prokaryotic expression vector and confirmed by sequencing.

  4. DNA fingerprinting by ERIC-PCR for comparing Listeria spp. strains isolated from different sources in San Luis: Argentina Caracterización molecular por ERIC-PCR de cepas de Listeria spp. aisladas de diversos orígenes en San Luis: Argentina

    Directory of Open Access Journals (Sweden)

    A. Laciar

    2006-04-01

    Full Text Available In this study, a total of 24 Listeria spp. strains were analyzed. Twenty-two isolates were obtained in San Luis (Argentina from human, animal, and food samples. Two types of strains, Listeria monocytogenes CLIP 22762 and Listeria innocua CLIP 74915, were included as reference strains. All isolates were biochemically identified and characterized by serotyping, phage typing, and amplification of the flaA gene by polymerase chain reaction (PCR. Repetitive intergenic consensus (ERIC sequence-based PCR was used to generate DNA fingerprints. On the basis of ERIC-PCR fingerprints, Listeria spp. strains were divided into three major clusters matching origin of isolation. ERIC-PCR fingerprints of human and animal isolates were different from those of food isolates. In addition, groups I and II included ten L. monocytogenes strains, and only one Listeria seeligeri strain. Group III included nine L. innocua strains and four L. monocytogenes strains. Computer evaluation of ERIC-PCR fingerprints allowed discrimination between the tested serotypes 1/2b, 4b, 6a, and 6b within each major cluster. The index of discrimination calculated was 0.94. This study suggests that the ERIC-PCR technique provides an alternative method for the identification of Listeria species and the discrimination of strains within one species.En este estudio se analizaron 24 cepas de Listeria spp. De ellas, 22 fueron obtenidas en San Luis (Argentina, a partir de muestras humanas, de animales y alimentos. Se incluyeron 2 cepas de referencia Listeria monocytogenes CLIP 22762 y Listeria innocua CLIP 74915. Todos los aislamientos fueron identificados bioquímicamente y caracterizados por serotipificación, fagotipificación y detección del gen flaA por reacción en cadena de la polimerasa (PCR. Se generaron perfiles de bandas de ADN mediante la amplificación de secuencias repetitivas de consenso intergénico de enterobacterias (ERIC-PCR. De acuerdo a los resultados obtenidos por ERIC-PCR

  5. Simultaneous Detection of Genetically Modified Organisms in a Mixture by Multiplex PCR-Chip Capillary Electrophoresis.

    Science.gov (United States)

    Patwardhan, Supriya; Dasari, Srikanth; Bhagavatula, Krishna; Mueller, Steffen; Deepak, Saligrama Adavigowda; Ghosh, Sudip; Basak, Sanjay

    2015-01-01

    An efficient PCR-based method to trace genetically modified food and feed products is in demand due to regulatory requirements and contaminant issues in India. However, post-PCR detection with conventional methods has limited sensitivity in amplicon separation that is crucial in multiplexing. The study aimed to develop a sensitive post-PCR detection method by using PCR-chip capillary electrophoresis (PCR-CCE) to detect and identify specific genetically modified organisms in their genomic DNA mixture by targeting event-specific nucleotide sequences. Using the PCR-CCE approach, novel multiplex methods were developed to detect MON531 cotton, EH 92-527-1 potato, Bt176 maize, GT73 canola, or GA21 maize simultaneously when their genomic DNAs in mixtures were amplified using their primer mixture. The repeatability RSD (RSDr) of the peak migration time was 0.06 and 3.88% for the MON531 and Bt176, respectively. The RSD (RSDR) of the Cry1Ac peak ranged from 0.12 to 0.40% in multiplex methods. The method was sensitive in resolving amplicon of size difference up to 4 bp. The PCR-CCE method is suitable to detect multiple genetically modified events in a composite DNA sample by tagging their event specific sequences.

  6. Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2004-04-01

    The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

  7. Amplification of nonspecific products in quantitative polymerase chain reactions (qPCR

    Directory of Open Access Journals (Sweden)

    Adrián Ruiz-Villalba

    2017-12-01

    Full Text Available Quantitative PCR allows the precise measurement of DNA concentrations and is generally considered to be straightforward and trouble free. However, a survey with 93 validated assays for genes in the Wnt-pathway showed that the amplification of nonspecific products occurs frequently and is unrelated to Cq or PCR efficiency values. Titration experiments showed that the occurrence of low and high melting temperature artifacts was shown to be determined by annealing temperature, primer concentration and cDNA input. To explore the range of input variations that occur in the normal use of the Cre assay these conditions were mimicked in a complete two-way design of template −plasmid DNA- and non-template −mouse cDNA- concentrations. These experiments showed that the frequency of the amplification of the correct product and the artifact, as well as the valid quantification of the correct product, depended on the concentration of the non-template cDNA. This finding questions the interpretation of dilution series in which template as well as non-template concentrations are simultaneously decreasing. Repetition of this cDNA concentration experiment with other templates revealed that exact reproduction qPCR experiments was affected by the time it takes to complete the pipetting of a qPCR plate. Long bench times were observed to lead to significantly more artifacts. However, the measurement of artifact-associated fluorescence can be avoided by inclusion of a small heating step after the elongation phase in the amplification protocol. Taken together, this trouble-shooting journey showed that reliability and reproducibility of qPCR experiments not only depends on standardization and reporting of the biochemistry and technical aspects but also on hitherto neglected factors as sample dilution and waiting times in the laboratory work flow. Keywords: RT-qPCR, Melting curve analysis, Reaction parameters, Artifacts

  8. Repetition and Emotive Communication in Music Versus Speech

    Directory of Open Access Journals (Sweden)

    Elizabeth Hellmuth eMargulis

    2013-04-01

    Full Text Available Music and speech are often placed alongside one another as comparative cases. Their relative overlaps and disassociations have been well explored (e.g. Patel, 2010. But one key attribute distinguishing these two domains has often been overlooked: the greater preponderance of repetition in music in comparison to speech. Recent fMRI studies have shown that familiarity – achieved through repetition – is a critical component of emotional engagement with music (Pereira et al., 2011. If repetition is fundamental to emotional responses to music, and repetition is a key distinguisher between the domains of music and speech, then close examination of the phenomenon of repetition might help clarify the ways that music elicits emotion differently than speech.

  9. Comparison of the DiversiLab Repetitive Element PCR System with spa Typing and Pulsed-Field Gel Electrophoresis for Clonal Characterization of Methicillin-Resistant Staphylococcus aureus▿

    Science.gov (United States)

    Babouee, B.; Frei, R.; Schultheiss, E.; Widmer, A. F.; Goldenberger, D.

    2011-01-01

    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become an increasing problem worldwide in recent decades. Molecular typing methods have been developed to identify clonality of strains and monitor spread of MRSA. We compared a new commercially available DiversiLab (DL) repetitive element PCR system with spa typing, spa clonal cluster analysis, and pulsed-field gel electrophoresis (PFGE) in terms of discriminatory power and concordance. A collection of 106 well-defined MRSA strains from our hospital was analyzed, isolated between 1994 and 2006. In addition, we analyzed 6 USA300 strains collected in our institution. DL typing separated the 106 MRSA isolates in 10 distinct clusters and 8 singleton patterns. Clustering analysis into spa clonal complexes resulted in 3 clusters: spa-CC 067/548, spa-CC 008, and spa-CC 012. The discriminatory powers (Simpson's index of diversity) were 0.982, 0.950, 0.846, and 0.757 for PFGE, spa typing, DL typing, and spa clonal clustering, respectively. DL typing and spa clonal clustering showed the highest concordance, calculated by adjusted Rand's coefficients. The 6 USA300 isolates grouped homogeneously into distinct PFGE and DL clusters, and all belonged to spa type t008 and spa-CC 008. Among the three methods, DL proved to be rapid and easy to perform. DL typing qualifies for initial screening during outbreak investigation. However, compared to PFGE and spa typing, DL typing has limited discriminatory power and therefore should be complemented by more discriminative methods in isolates that share identical DL patterns. PMID:21307215

  10. Mitochondrial capture enriches mito-DNA 100 fold, enabling PCR-free mitogenomics biodiversity analysis

    DEFF Research Database (Denmark)

    Liu, Shanlin; Wang, Xin; Xie, Lin

    2016-01-01

    Biodiversity analyses based on next-generation sequencing (NGS) platforms have developed by leaps and bounds in recent years. A PCR-free strategy, which can alleviate taxonomic bias, was considered as a promising approach to delivering reliable species compositions of targeted environments...... data is highly demanding on computing resources. Here, we present a mitogenome enrichment pipeline via a gene capture chip that was designed by virtue of the mitogenome sequences of the 1000 Insect Transcriptome Evolution project (1KITE, www.1kite.org). A mock sample containing 49 species was used...... in abundance. However, the frequencies of input taxa were largely maintained after capture (R2 = 0.81). We suggest that our mitogenome capture approach coupled with PCR-free shotgun sequencing could provide ecological researchers an efficient NGS method to deliver reliable biodiversity assessment....

  11. Sequencing and characterisation of rearrangements in three S. pastorianus strains reveals the presence of chimeric genes and gives evidence of breakpoint reuse.

    Directory of Open Access Journals (Sweden)

    Sarah K Hewitt

    Full Text Available Gross chromosomal rearrangements have the potential to be evolutionarily advantageous to an adapting organism. The generation of a hybrid species increases opportunity for recombination by bringing together two homologous genomes. We sought to define the location of genomic rearrangements in three strains of Saccharomyces pastorianus, a natural lager-brewing yeast hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus, using whole genome shotgun sequencing. Each strain of S. pastorianus has lost species-specific portions of its genome and has undergone extensive recombination, producing chimeric chromosomes. We predicted 30 breakpoints that we confirmed at the single nucleotide level by designing species-specific primers that flank each breakpoint, and then sequencing the PCR product. These rearrangements are the result of recombination between areas of homology between the two subgenomes, rather than repetitive elements such as transposons or tRNAs. Interestingly, 28/30 S. cerevisiae-S. eubayanus recombination breakpoints are located within genic regions, generating chimeric genes. Furthermore we show evidence for the reuse of two breakpoints, located in HSP82 and KEM1, in strains of proposed independent origin.

  12. Feature-based motion control for near-repetitive structures

    NARCIS (Netherlands)

    Best, de J.J.T.H.

    2011-01-01

    In many manufacturing processes, production steps are carried out on repetitive structures which consist of identical features placed in a repetitive pattern. In the production of these repetitive structures one or more consecutive steps are carried out on the features to create the final product.

  13. Evaluation of PCR and multiplex PCR in relation to nested PCR for diagnosing Theileria equi

    Directory of Open Access Journals (Sweden)

    Danielle C. Leal

    2011-07-01

    Full Text Available Conventional PCR (PCRTeq for diagnosing Theileria equi and multiplex PCR (M/PCRTeq-Bc for diagnosing T. equi and Babesia caballi were comparatively evaluated with nested PCR (N/PCR-Teq for diagnosing equine piroplasmosis. In DNA sensitivity determinations, in multiple dilutions of equine blood that had tested positive for T. equi, PCR-Teq and N/PCR-Teq detected hemoparasite DNA in the larger dilutions (1:128, but did not differ significantly from the M/PCRTeq-Bc (1:64. In analyses on equine serum tested by ELISA, there was high agreement between this serological test and PCR-Teq (k = 0.780 and moderate agreement with N/PCR-Teq (k = 0.562 and M/PCRTeq-Bc (k = 0.488. PCR-Teq found a higher frequency of T. equi both in extensively and intensively reared horses, but this was not significant in relation to N/PCR-Teq (P>0.05, and both PCRs indicated that there was an endemic situation regarding T. equi in the population of horses of this sample. PCR-Teq was only significantly different from M/PCR-Teq-Bc (P<0.05. PCR-Teq presented high sensitivity and specificity, comparable to N/PCR-Teq, but with the advantage of higher speed in obtaining results and lower costs and risks of laboratory contamination. This accredits PCR-Teq for epidemiological studies and for determinations on affected horses.

  14. Grade Repetition and Primary School Dropout in Uganda

    Science.gov (United States)

    Kabay, Sarah

    2016-01-01

    Research on education in low-income countries rarely focuses on grade repetition. When addressed, repetition is typically presented along with early school dropout as the "wasting" of educational resources. Simplifying grade repetition in this way often fails to recognize significant methodological concerns and also overlooks the unique…

  15. A high-throughput pipeline for the design of real-time PCR signatures

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2010-06-01

    Full Text Available Abstract Background Pathogen diagnostic assays based on polymerase chain reaction (PCR technology provide high sensitivity and specificity. However, the design of these diagnostic assays is computationally intensive, requiring high-throughput methods to identify unique PCR signatures in the presence of an ever increasing availability of sequenced genomes. Results We present the Tool for PCR Signature Identification (TOPSI, a high-performance computing pipeline for the design of PCR-based pathogen diagnostic assays. The TOPSI pipeline efficiently designs PCR signatures common to multiple bacterial genomes by obtaining the shared regions through pairwise alignments between the input genomes. TOPSI successfully designed PCR signatures common to 18 Staphylococcus aureus genomes in less than 14 hours using 98 cores on a high-performance computing system. Conclusions TOPSI is a computationally efficient, fully integrated tool for high-throughput design of PCR signatures common to multiple bacterial genomes. TOPSI is freely available for download at http://www.bhsai.org/downloads/topsi.tar.gz.

  16. Analogous selection processes in declarative and procedural working memory: N-2 list-repetition and task-repetition costs.

    Science.gov (United States)

    Gade, Miriam; Souza, Alessandra S; Druey, Michel D; Oberauer, Klaus

    2017-01-01

    Working memory (WM) holds and manipulates representations for ongoing cognition. Oberauer (Psychology of Learning and Motivation, 51, 45-100, 2009) distinguishes between two analogous WM sub-systems: a declarative WM which handles the objects of thought, and a procedural WM which handles the representations of (cognitive) actions. Here, we assessed whether analogous effects are observed when participants switch between memory sets (declarative representations) and when they switch between task sets (procedural representations). One mechanism assumed to facilitate switching in procedural WM is the inhibition of previously used, but currently irrelevant task sets, as indexed by n-2 task-repetition costs (Mayr & Keele, Journal of Experimental Psychology: General, 129(1), 4-26, 2000). In this study we tested for an analogous effect in declarative WM. We assessed the evidence for n-2 list-repetition costs across eight experiments in which participants switched between memory lists to perform speeded classifications, mental arithmetic, or a local recognition test. N-2 list-repetition costs were obtained consistently in conditions assumed to increase interference between memory lists, and when lists formed chunks in long-term memory. Further analyses across experiments revealed a substantial contribution of episodic memory to n-2 list-repetition costs, thereby questioning the interpretation of n-2 repetition costs as reflecting inhibition. We reanalyzed the data of eight task-switching experiments, and observed that episodic memory also contributes to n-2 task-repetition costs. Taken together, these results show analogous processing principles in declarative and procedural WM, and question the relevance of inhibitory processes for efficient switching between mental sets.

  17. The Golden Ratio of Gait Harmony: Repetitive Proportions of Repetitive Gait Phases

    Directory of Open Access Journals (Sweden)

    Marco Iosa

    2013-01-01

    Full Text Available In nature, many physical and biological systems have structures showing harmonic properties. Some of them were found related to the irrational number known as the golden ratio that has important symmetric and harmonic properties. In this study, the spatiotemporal gait parameters of 25 healthy subjects were analyzed using a stereophotogrammetric system with 25 retroreflective markers located on their skin. The proportions of gait phases were compared with , the value of which is about 1.6180. The ratio between the entire gait cycle and stance phase resulted in 1.620 ± 0.058, that between stance and the swing phase was 1.629 ± 0.173, and that between swing and the double support phase was 1.684 ± 0.357. All these ratios did not differ significantly from each other (, , repeated measure analysis of variance or from (, resp., t-tests. The repetitive gait phases of physiological walking were found in turn in repetitive proportions with each other, revealing an intrinsic harmonic structure. Harmony could be the key for facilitating the control of repetitive walking. Harmony is a powerful unifying factor between seemingly disparate fields of nature, including human gait.

  18. Modulation of repetitive genes in the parent forms of heterozygous corn hybrids

    International Nuclear Information System (INIS)

    Gilyazetdinov, S.Ya.; Zimnitskii, A.N.; Yakhin, I.A.; Bikbaeva, E.S.

    1987-01-01

    The number of copies of the genes of high-molecular-weight rRNA, 5 S r RNA, and certain other families of repetitive sequences of DNA in the genome of different forms of corn is not coordinated but is stably inherited in the same strains. The authors present the results of their investigations into the repetition of the genes of tRNA, 5 S rRNA, histones, and the controlling element Ds of corn for the highly heterozygous hybrid Slava (VIR 44 x VIR 38), the medium-heterozygous hybrid Svetoch (VIR 40 x VIR 43), the low heterozygous hybrid Iskra (VIR 26 x VIR 27), and their parent strains. The relative content of these sequences was studied by the molecular hybridization of DNA immobilized on nitrocellulose filters with [ 125 I]tRNA labeled in vitro, 5 S rRNA, histone DNA of Drosophila, and the Ds-element of corn. The DNA preparations were isolated from the zones of the meristem (1.5-2mm), elongation (4-5mm), differentiation of the roots (3 cm), of 3-4 day seedlings, and from isolated embryos of 4 h and 24 h seedlings. The DNA of the embryos immobilized on the filters was preliminarily incubated with unlabeled high-molecular-weight rRNA in the experiments with tRNA and 5 S rRNA, while when histone DNA and the Ds element of corn were used in the hybridization reaction, it was preliminary incubated with plasmid DNA

  19. Development of Nested-PCR Assay to Detect Acidovorax citrulli, a Causal Agent of Bacterial Fruit Blotch at Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    Young-Tak Kim

    2015-06-01

    Full Text Available The specific and sensitive nested-PCR method to detect Acidovorax citrulli, a causal agent of bacterial fruit blotch on cucurbitaceae, was developed. PCR primers were designed from the draft genome sequence which was obtained with the Next Generation Sequencing of A. citrulli KACC10651, and the nested-PCR primer set (Ac-ORF 21F/Ac-ORF 21R were selected by checking of specificity to A. citrulli with PCR assays. The selected nested-PCR primer amplified the 140 bp DNA only from A. citrulli strains, and detection sensitivity of the nested PCR increased 10,000 times of 1st PCR detection limit (10 ng genomic DNA/PCR. The nested PCR detected A. citrulli from the all samples of seed surface wash (external seed detection of the artificially inoculated watermelon seeds with 101 cfu/ml and above population of A. citrulli while the nested PCR could not detected A. citrulli from the mashed seed suspension (internal seed detection of the all artificially inoculated watermelon seeds. When the naturally infested watermelon seeds (10% seed infested rate with grow-out test used, the nested PCR detected A. citrulli from 2 seed samples out of 10 replication samples externally and 5 seed samples out of 10 replication samples internally. We believe that the nested-PCR developed in this study will be useful method to detect A. citrulli from the Cucurbitaceae seeds.

  20. Evaluation of a PCR and comparison with RLB for detection and differentiation of Theileria sp. MK and other Theileria and Babesia species of small ruminants.

    Science.gov (United States)

    Altay, Kursat; Aktas, Munir; Dumanli, Nazir; Aydin, Mehmet Fatih

    2008-07-01

    Theileria sp. MK in sheep and goats were detected first time by polymerase chain reaction (PCR) and detection limit of PCR and reverse line blotting (RLB) were compared. A part of 18S ssu rRNA gene was amplified from blood samples that were taken from sheep and goats naturally infected with Theileria sp. MK by PCR. Detection limit of both PCR and RLB methods was one infected cell in 10(7) sheep erythrocytes. Nine hundred twenty field samples that had been tested previously by RLB were evaluated by the PCR assay. As found by RLB previously, 12 of 920 (1.30%) samples were detected as positive by PCR. Two positive PCR products, one of which was from sheep and the other from goat, were sequenced. These sequences were identical to the reported nucleotide sequence of Theileria sp. MK. It is concluded that the PCR described in this study will be useful for epidemiological studies and for discrimination between Theileria sp. MK and other Theileria species. In addition, PCR has superiority over RLB because of its ease of use and time period required.

  1. Pure chromosome-specific PCR libraries from single sorted chromosomes

    NARCIS (Netherlands)

    VanDevanter, D. R.; Choongkittaworn, N. M.; Dyer, K. A.; Aten, J. A.; Otto, P.; Behler, C.; Bryant, E. M.; Rabinovitch, P. S.

    1994-01-01

    Chromosome-specific DNA libraries can be very useful in molecular and cytogenetic genome mapping studies. We have developed a rapid and simple method for the generation of chromosome-specific DNA sequences that relies on polymerase chain reaction (PCR) amplification of a single flow-sorted

  2. Novel degenerate PCR method for whole genome amplification applied to Peru Margin (ODP Leg 201 subsurface samples

    Directory of Open Access Journals (Sweden)

    Amanda eMartino

    2012-01-01

    Full Text Available A degenerate PCR-based method of whole-genome amplification, designed to work fluidly with 454 sequencing technology, was developed and tested for use on deep marine subsurface DNA samples. The method, which we have called Random Amplification Metagenomic PCR (RAMP, involves the use of specific primers from Roche 454 amplicon sequencing, modified by the addition of a degenerate region at the 3’ end. It utilizes a PCR reaction, which resulted in no amplification from blanks, even after 50 cycles of PCR. After efforts to optimize experimental conditions, the method was tested with DNA extracted from cultured E. coli cells, and genome coverage was estimated after sequencing on three different occasions. Coverage did not vary greatly with the different experimental conditions tested, and was around 62% with a sequencing effort equivalent to a theoretical genome coverage of 14.10X. The GC content of the sequenced amplification product was within 2% of the predicted values for this strain of E. coli. The method was also applied to DNA extracted from marine subsurface samples from ODP Leg 201 site 1229 (Peru Margin, and results of a taxonomic analysis revealed microbial communities dominated by Proteobacteria, Chloroflexi, Firmicutes, Euryarchaeota, and Crenarchaeota, among others. These results were similar to those obtained previously for those samples; however, variations in the proportions of taxa show that community analysis can be sensitive to both the amplification technique used and the method of assigning sequences to taxonomic groups. Overall, we find that RAMP represents a valid methodology for amplifying metagenomes from low biomass samples.

  3. Subjective duration distortions mirror neural repetition suppression.

    Science.gov (United States)

    Pariyadath, Vani; Eagleman, David M

    2012-01-01

    Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression. Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli) followed by a line presented at a different orientation (oddball stimulus). We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context--that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials. Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.

  4. Subjective duration distortions mirror neural repetition suppression.

    Directory of Open Access Journals (Sweden)

    Vani Pariyadath

    Full Text Available Subjective duration is strongly influenced by repetition and novelty, such that an oddball stimulus in a stream of repeated stimuli appears to last longer in duration in comparison. We hypothesize that this duration illusion, called the temporal oddball effect, is a result of the difference in expectation between the oddball and the repeated stimuli. Specifically, we conjecture that the repeated stimuli contract in duration as a result of increased predictability; these duration contractions, we suggest, result from decreased neural response amplitude with repetition, known as repetition suppression.Participants viewed trials consisting of lines presented at a particular orientation (standard stimuli followed by a line presented at a different orientation (oddball stimulus. We found that the size of the oddball effect correlates with the number of repetitions of the standard stimulus as well as the amount of deviance from the oddball stimulus; both of these results are consistent with a repetition suppression hypothesis. Further, we find that the temporal oddball effect is sensitive to experimental context--that is, the size of the oddball effect for a particular experimental trial is influenced by the range of duration distortions seen in preceding trials.Our data suggest that the repetition-related duration contractions causing the oddball effect are a result of neural repetition suppression. More generally, subjective duration may reflect the prediction error associated with a stimulus and, consequently, the efficiency of encoding that stimulus. Additionally, we emphasize that experimental context effects need to be taken into consideration when designing duration-related tasks.

  5. [Molecular authentication of Jinyinhua formula granule by using allele-specific PCR].

    Science.gov (United States)

    Jiang, Chao; Tu, Li-Chan; Yuan, Yuan; Huang, Lu-Qi; Gao, Wei; Jin, Yan

    2017-07-01

    Traditional authentication method is hard to identify herb's authenticity of traditional Chinese medicine(TCM) formula granules because they have lost all their morphological characteristics. In this study, a new allele-specific PCR method was established for identifying the authentication of Jinyinhua formula granule (made from Lonicerae Japonicae Flos) based on an SNP site in trnL-trnF fragment. Genomic DNA was successfully extracted from Lonicerae Japonicae Flos and its formula granules by using an improved spin column method and then PCR was performed with the designed primer. Approximately 110 bp specific bands was obtained only in the authentic Lonicerae Japonicae Flos and its formula granules, while no bands were found in fake mixed products. In addition, the PCR product sequence was proved from Lonicerae Japonicae Flos trnL-trnF sequence by using BLAST method. Therefore, DNA molecular authentication method could make up the limitations of character identification method and microscopic identification, and quickly identify herb's authenticity of TCM formula granules, with enormous potential for market supervision and quality control. Copyright© by the Chinese Pharmaceutical Association.

  6. Evaluation of highly conserved hsp65-specific nested PCR primers for diagnosing Mycobacterium tuberculosis.

    Science.gov (United States)

    Priyadarshini, P; Tiwari, K; Das, A; Kumar, D; Mishra, M N; Desikan, P; Nath, G

    2017-02-01

    To evaluate the sensitivity and specificity of a new nested set of primers designed for the detection of Mycobacterium tuberculosis complex targeting a highly conserved heat shock protein gene (hsp65). The nested primers were designed using multiple sequence alignment assuming the nucleotide sequence of the M. tuberculosis H37Rv hsp65 genome as base. Multidrug-resistant Mycobacterium species along with other non-mycobacterial and fungal species were included to evaluate the specificity of M. tuberculosis hsp65 gene-specific primers. The sensitivity of the primers was determined using serial 10-fold dilutions, and was 100% as shown by the bands in the case of M. tuberculosis complex. None of the other non M. tuberculosis complex bacterial and fungal species yielded any band on nested polymerase chain reaction (PCR). The first round of amplification could amplify 0.3 ng of the template DNA, while nested PCR could detect 0.3 pg. The present hsp65-specific primers have been observed to be sensitive, specific and cost-effective, without requiring interpretation of biochemical tests, real-time PCR, sequencing or high-performance liquid chromatography. These primer sets do not have the drawbacks associated with those protocols that target insertion sequence 6110, 16S rDNA, rpoB, recA and MPT 64.

  7. The Developmental Trajectory of Nonword Repetition

    Science.gov (United States)

    Chiat, Shula

    2006-01-01

    In line with the original presentation of nonword repetition as a measure of phonological short-term memory (Gathercole & Baddeley, 1989), the theoretical account Gathercole (2006) puts forward in her Keynote Article focuses on phonological storage as the key capacity common to nonword repetition and vocabulary acquisition. However, evidence that…

  8. Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR.

    Science.gov (United States)

    Krych, Łukasz; Kot, Witold; Bendtsen, Katja M B; Hansen, Axel K; Vogensen, Finn K; Nielsen, Dennis S

    2018-01-01

    The Dextran Sulfate Sodium (DSS) induced colitis mouse model is commonly used to investigate human inflammatory bowel disease (IBD). Nucleic acid extracts originating from these animals are often contaminated with DSS, which is a strong inhibitor of many enzymatic based molecular biology reactions including PCR and reverse-transcription (RT). Methods for removing DSS from nucleic acids extracts exist for RNA, but no effective protocol for DNA or cDNA is currently available. However, spermine has previously been shown to be an effective agent for counteracting DSS inhibition of polynucleotide kinase, which led to the hypothesis, that spermine could be used to counteract DSS inhibition of PCR and RT. We investigated the means of adding spermine in an adequate concentration to PCR based protocols (including qPCR, two-step RT-qPCR, and amplicon sequencing library preparation) to remove DSS inhibition. Within the range up to 0.01g/L, spermine can be added to PCR/qPCR or RT prophylactically without a significant reduction of reaction efficiency. Addition of spermine at the concentration of 0.08g/L can be used to recover qualitative PCR signal inhibited by DSS in concentrations up to 0.32g/L. For optimal quantitative analysis, the concentration of spermine requires fine adjustment. Hence, we present here a simple fluorometric based method for adjusting the concentration of spermine ensuring an optimal efficiency of the reaction exposed to an unknown concentration of DSS. In conclusion, we demonstrate a cost effective and easy method to counteract DSS inhibition in PCR and two-step RT-qPCR. Fixed or fine-tuned concentrations of spermine can be administered depending on the qualitative or quantitative character of the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Characterization by PCR of Vibrio parahaemolyticus isolates collected during the 1997-1998 Chilean outbreak

    Directory of Open Access Journals (Sweden)

    JOSÉ LUIS CÓRDOVA

    2002-01-01

    Full Text Available Between November 1997 and April 1998, several human gastroenteritis cases were reported in Antofagasta, a city in the north of Chile. This outbreak was associated with the consumption of shellfish, and the etiologic agent responsible was identified as Vibrio parahaemolyticus. This was the first report of this bacterium causing an epidemic in Chile. V. parahaemolyticus was the only pathogenic bacterium isolated from patient stools and from shellfish samples. These isolates were analyzed by polymerase chain reaction (PCR amplification of the pR72H gene, a species-specific sequence. Based on the pR72H gene amplification pattern, at least three different isolates of V. parahaemolyticus were found. Two isolates (named amplicons A and C generated PCR products of approximately 400 bp and 340 bp respectively, while another type of isolate designated B, did not generate a PCR product, regardless of which method of DNA purification was used. Sequence analysis of the amplicons A and C shows that they have an 80 bp and 183 bp conserved region at the 5'end of the gene. However, both isolates have different sequences at their 3' terminus and are also different from the pR72H sequence originally reported. Using this PCR assay we demonstrated that these three isolates were found in clinical samples as well as in shellfish. The warm seawater caused by the climatological phenomena "El Niño" perhaps favored the geographic dispersion of the bacterium (bacterial bloom occurring in Antofagasta that occurred during that time of year

  10. Characterization by PCR of Vibrio parahaemolyticus isolates collected during the 1997-1998 Chilean outbreak.

    Science.gov (United States)

    Córdova, José Luis; Astorga, Josefa; Silva, Wally; Riquelme, Carlos

    2002-01-01

    Between November 1997 and April 1998, several human gastroenteritis cases were reported in Antofagasta, a city in the north of Chile. This outbreak was associated with the consumption of shellfish, and the etiologic agent responsible was identified as Vibrio parahaemolyticus. This was the first report of this bacterium causing an epidemic in Chile. V. parahaemolyticus was the only pathogenic bacterium isolated from patient stools and from shellfish samples. These isolates were analyzed by polymerase chain reaction (PCR) amplification of the pR72H gene, a species-specific sequence. Based on the pR72H gene amplification pattern, at least three different isolates of V. parahaemolyticus were found. Two isolates (named amplicons A and C) generated PCR products of approximately 400 bp and 340 bp respectively, while another type of isolate designated B, did not generate a PCR product, regardless of which method of DNA purification was used. Sequence analysis of the amplicons A and C shows that they have an 80 bp and 183 bp conserved region at the 5' end of the gene. However, both isolates have different sequences at their 3' terminus and are also different from the pR72H sequence originally reported. Using this PCR assay we demonstrated that these three isolates were found in clinical samples as well as in shellfish. The warm seawater caused by the climatological phenomena "El Niño" perhaps favored the geographic dispersion of the bacterium (bacterial bloom) occurring in Antofagasta that occurred during that time of year.

  11. Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y chromosome DNA in a dioecious plant, Silene latifolia

    International Nuclear Information System (INIS)

    Matsunaga, S.; Kawano, S.; Michimoto, T.; Higashiyama, T.; Nakao, S.; Sakai, A.; Kuroiwa, T.

    1999-01-01

    Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but-hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes

  12. Global Repetition Influences Contextual Cueing

    Science.gov (United States)

    Zang, Xuelian; Zinchenko, Artyom; Jia, Lina; Li, Hong

    2018-01-01

    Our visual system has a striking ability to improve visual search based on the learning of repeated ambient regularities, an effect named contextual cueing. Whereas most of the previous studies investigated contextual cueing effect with the same number of repeated and non-repeated search displays per block, the current study focused on whether a global repetition frequency formed by different presentation ratios between the repeated and non-repeated configurations influence contextual cueing effect. Specifically, the number of repeated and non-repeated displays presented in each block was manipulated: 12:12, 20:4, 4:20, and 4:4 in Experiments 1–4, respectively. The results revealed a significant contextual cueing effect when the global repetition frequency is high (≥1:1 ratio) in Experiments 1, 2, and 4, given that processing of repeated displays was expedited relative to non-repeated displays. Nevertheless, the contextual cueing effect reduced to a non-significant level when the repetition frequency reduced to 4:20 in Experiment 3. These results suggested that the presentation frequency of repeated relative to the non-repeated displays could influence the strength of contextual cueing. In other words, global repetition statistics could be a crucial factor to mediate contextual cueing effect. PMID:29636716

  13. Imbalance between abstract and concrete repetitive thinking modes in schizophrenia.

    Science.gov (United States)

    Maurage, Pierre; Philippot, Pierre; Grynberg, Delphine; Leleux, Dominique; Delatte, Benoît; Mangelinckx, Camille; Belge, Jan-Baptist; Constant, Eric

    2017-10-01

    Repetitive thoughts can be divided in two modes: abstract/analytic (decontextualized and dysfunctional) and concrete/experiential (problem-focused and adaptive). They constitute a transdiagnostic process involved in many psychopathological states but have received little attention in schizophrenia, as earlier studies only indexed increased ruminations (related to dysfunctional repetitive thoughts) without jointly exploring both modes. This study explored the two repetitive thinking modes, beyond ruminations, to determine their imbalance in schizophrenia. Thirty stabilized patients with schizophrenia and 30 matched controls completed the Repetitive Response Scale and the Mini Cambridge-Exeter Repetitive Thought Scale, both measuring repetitive thinking modes. Complementary measures related to schizophrenic symptomatology, depression and anxiety were also conducted. Compared to controls, patients with schizophrenia presented an imbalance between repetitive thinking modes, with increased abstract/analytic and reduced concrete/experiential thoughts, even after controlling for comorbidities. Schizophrenia is associated with stronger dysfunctional repetitive thoughts (i.e. abstract thinking) and impaired ability to efficiently use repetitive thinking for current problem-solving (i.e. concrete thinking). This imbalance confirms the double-faced nature of repetitive thinking modes, whose influence on schizophrenia's symptomatology should be further investigated. The present results also claim for evaluating these processes in clinical settings and for rehabilitating the balance between opposite repetitive thinking modes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. PCR-restriction fragment length polymorphism analysis of indigenous nitrogen-fixing micro organisms lineages

    International Nuclear Information System (INIS)

    Liew Woan Ying Pauline; Jong Bor Chyan; Khairuddin Abdul Rahim

    2006-01-01

    The use of PCR-RFLP analysis as a useful microbial identification tool has been evaluated for years. This approach was verified effective worldwide, where differential DNA bands and sequence markers distinctive to specific microbes or microbial groups have been identified. In our study, PCR-RFLP technique has been adopted in the identification of our indigenous N 2 -fixing isolates obtained from several local environments. RFLP was carried out with suitable restriction enzymes and the patterns were documented. Representatives of the different patterns were selected and analysed with the 16S ribosomal DNA sequencing method. The results demonstrated correlation between the differential RFLP patterns and the 16S rDNA identities. (Author)

  15. Characterization and sequence analysis of cysteine and glycine-rich ...

    African Journals Online (AJOL)

    Primers specific for CSRP3 were designed using known cDNA sequences of Bos taurus published in database with different accession numbers. Polymerase chain reaction (PCR) was performed and products were purified and sequenced. Sequence analysis and alignment were carried out using CLUSTAL W (1.83).

  16. Isolation, sequence identification and tissue expression profile of a ...

    African Journals Online (AJOL)

    The complete expressed sequence tag (CDS) sequence of Banna mini-pig inbred line (BMI) ribokinase gene (RBKS) was amplified using the reverse transcription-polymerase chain reaction (RT-PCR) based on the conserved sequence information of the cattle or other mammals and known highly homologous swine ESTs.

  17. The prevalence of canine Leishmania infantum infection in western China detected by PCR and serological tests

    Directory of Open Access Journals (Sweden)

    Chen Hai-Tang

    2011-05-01

    Full Text Available Abstract Background Canine leishmaniasis (CanL is endemic in western China, resulting in important public health problem. It is essential to evaluate the prevalence of canine Leishmania infantum infection for designing control policy. In the present study we report for the first time prevalence of Leishmania infection in dogs living in Jiuzhaigou County (Sichuan Provence, China, which is not only an important endemic area of CanL but also a tourism scenic spot, detected by PCR, ELISA and dipstick test. The results could provide key information for designing control programs against canine and human leishmaniasis. In addition, the complete sequence of the Leishmania isolate from Sichuan Province has not been reported to date and we present the sequences of 116 base-pair (bp fragment of the conserved region in the minicircle kinetoplast DNA (kDNA and the results of phylogenetic analyses based on the sequence of the amplified fragment. Results The proportion of dogs infected with Leishmania in Jiuzhaigou County was 36.79%, 9.43%, and 51.88% detected by ELISA, dipstick test, and PCR, respectively. The ELISA and PCR tests were more sensitive than dipstick test. The PCR method is the most sensitive way to detect dogs infected with Leishmania parasites. The total positive rate for infected dogs in the area was 59.43% by the three methods. The PCR products of 116-bp fragment amplified from the kDNA conserved region of dog blood samples and laboratory maintained L. infantum were DNA sequenced and the variation of the sequences was observed. The phylogenetic tree based on the sequences of 116-bp fragment reveals that L. infantum is more genetically related to visceralizing species L. donovani than to the Leishmania species associated with cutaneous disease. Conclusions More than half of dogs living in the endemic Jiuzhaigou County were infected by L. infantum. Control measures, such as treatment or eradication of infected dogs, or prohibition of

  18. Variations among Japanese of the factor IX gene (F9) detected by PCR-denaturing gradient gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Chiyoko; Takahashi, Norio; Asakawa, Junichi; Hiyama, Keiko; Kodaira, Meiko (Radiation Effects Research Foundation, Hiroshima (Japan))

    1993-01-01

    In the course of feasibility studies to examine the efficiencies and practicalities of various techniques for screening for genetic variations, the human coagulation factor IX (F9) genes of 63 Japanese families were examined by PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Four target sequences with lengths of 983-2,891 bp from the F9 genes of 126 unrelated individuals from Hiroshima and their 100 children were amplified by PCR, digested with restriction enzymes to approximately 500-bp fragments, and examined by DGGE - a total of 6,724 bp being examined per individual. GC-rich sequences (GC-clamps) of 40 bp were attached to both ends of the target sequences, as far as was feasible. Eleven types of new nucleotide substitutions were detected in the population, none of which produced RFLPs or caused hemophilia B. By examining two target sequences in a single lane, approximately 8,000 bp in a diploid individual could be examined. This approach is very effective for the detection of variations in DNA and is applicable to large-scale population studies. 46 refs., 3 figs., 1 tab.

  19. Repetitive thinking, executive functioning, and depressive mood in the elderly.

    Science.gov (United States)

    Philippot, Pierre; Agrigoroaei, Stefan

    2017-11-01

    Previous findings and the depressive-executive dysfunction hypothesis suggest that the established association between executive functioning and depression is accounted for by repetitive thinking. Investigating the association between executive functioning, repetitive thinking, and depressive mood, the present study empirically tested this mediational model in a sample of older adults, while focusing on both concrete and abstract repetitive thinking. This latter distinction is important given the potential protective role of concrete repetitive thinking, in contrast to the depletive effect of abstract repetitive thinking. A sample of 43 elderly volunteers, between 75 and 95 years of age, completed tests of executive functioning (the Stroop test, the Trail Making test, and the Fluency test), and questionnaires of repetitive thinking and depression. Positive correlations were observed between abstract repetitive thinking and depressive mood, and between concrete repetitive thinking and executive functioning; a negative correlation was observed between depressive mood and executive functioning. Further, mediational analysis evidenced that the relation between executive functioning and depressive mood was mediated by abstract repetitive thinking. The present data provide, for the first time, empirical support to the depressive-executive dysfunction hypothesis: the lack of executive resources would favor a mode of abstract repetitive thinking, which in turn would deplete mood. It suggests that clinical intervention targeting depression in the elderly should take into consideration repetitive thinking modes and the executive resources needed to disengage from rumination.

  20. Single-base resolution and long-coverage sequencing based on single-molecule nanomanipulation

    International Nuclear Information System (INIS)

    An Hongjie; Huang Jiehuan; Lue Ming; Li Xueling; Lue Junhong; Li Haikuo; Zhang Yi; Li Minqian; Hu Jun

    2007-01-01

    We show new approaches towards a novel single-molecule sequencing strategy which consists of high-resolution positioning isolation of overlapping DNA fragments with atomic force microscopy (AFM), subsequent single-molecule PCR amplification and conventional Sanger sequencing. In this study, a DNA labelling technique was used to guarantee the accuracy in positioning the target DNA. Single-molecule multiplex PCR was carried out to test the contamination. The results showed that the two overlapping DNA fragments isolated by AFM could be successfully sequenced with high quality and perfect contiguity, indicating that single-base resolution and long-coverage sequencing have been achieved simultaneously

  1. A newly constructed primer pair for the PCR amplification, cloning and sequencing of the flagellin (flaA) gene from isolatesof urease-negative Campylobacter lari.

    Science.gov (United States)

    Sekizuka, Tsuyoshi; Yokoi, Taeko; Murayama, Ohoshi; Millar, B Cherie; Moore, Johne; Matsuda, Motoo

    2005-08-01

    A newly constructed primer pair (lari-Af/lari-Ar) designed to generate a product of the flagellin (flaA) gene for urease-negative Campylobacter lari produced a PCR amplicon of about 1700 bp for 16 isolates from 7 seagulls, 5 humans, 3 food animals and one mussel in Japan and Northern Ireland. Nucleotide sequencing and alignments of the flaA amplicons from these isolates demonstrated that the deduced amino acid sequences of the possible open reading frame were 564-572 amino acid residues in length with calculated molecular weights of 58,804 to 59,463. The deduced amino acid sequence similarity analysis strongly suggested that the ORF of the flaA from the 16 isolates showed 70-75% sequence similarities to those of Campylobacter jejuni isolates. The approximate Mr of the flagellin purified from some of the isolates of urease-negative C. lari was estimated to range from 59.6 to 61.8 kDa. Thus, flagellin from the isolates of urease-negative C. lari was shown for the first time to have a molecular size similar to those of C. jejuni and Campylobacter coli isolates, but to be different from the shorter flaA and smaller flagellin of urease-positive thermophilic Campylobacter (UPTC) isolates. Flagellins from C. lari spp., consisting of the two representative taxa of urease-negative C. lari and UPTC, thus show genotypic and phenotypic diversity.

  2. High-resolution melt PCR analysis for genotyping of Ureaplasma parvum isolates directly from clinical samples.

    Science.gov (United States)

    Payne, Matthew S; Tabone, Tania; Kemp, Matthew W; Keelan, Jeffrey A; Spiller, O Brad; Newnham, John P

    2014-02-01

    Ureaplasma sp. infection in neonates and adults underlies a variety of disease pathologies. Of the two human Ureaplasma spp., Ureaplasma parvum is clinically the most common. We have developed a high-resolution melt (HRM) PCR assay for the differentiation of the four serovars of U. parvum in a single step. Currently U. parvum strains are separated into four serovars by sequencing the promoter and coding region of the multiple-banded antigen (MBA) gene. We designed primers to conserved sequences within this region for PCR amplification and HRM analysis to generate reproducible and distinct melt profiles that distinguish clonal representatives of serovars 1, 3, 6, and 14. Furthermore, our HRM PCR assay could classify DNA extracted from 74 known (MBA-sequenced) test strains with 100% accuracy. Importantly, HRM PCR was also able to identify U. parvum serovars directly from 16 clinical swabs. HRM PCR performed with DNA consisting of mixtures of combined known serovars yielded profiles that were easily distinguished from those for single-serovar controls. These profiles mirrored clinical samples that contained mixed serovars. Unfortunately, melt curve analysis software is not yet robust enough to identify the composition of mixed serovar samples, only that more than one serovar is present. HRM PCR provides a single-step, rapid, cost-effective means to differentiate the four serovars of U. parvum that did not amplify any of the known 10 serovars of Ureaplasma urealyticum tested in parallel. Choice of reaction reagents was found to be crucial to allow sufficient sensitivity to differentiate U. parvum serovars directly from clinical swabs rather than requiring cell enrichment using microbial culture techniques.

  3. DNA microarray-based PCR ribotyping of Clostridium difficile.

    Science.gov (United States)

    Schneeberg, Alexander; Ehricht, Ralf; Slickers, Peter; Baier, Vico; Neubauer, Heinrich; Zimmermann, Stefan; Rabold, Denise; Lübke-Becker, Antina; Seyboldt, Christian

    2015-02-01

    This study presents a DNA microarray-based assay for fast and simple PCR ribotyping of Clostridium difficile strains. Hybridization probes were designed to query the modularly structured intergenic spacer region (ISR), which is also the template for conventional and PCR ribotyping with subsequent capillary gel electrophoresis (seq-PCR) ribotyping. The probes were derived from sequences available in GenBank as well as from theoretical ISR module combinations. A database of reference hybridization patterns was set up from a collection of 142 well-characterized C. difficile isolates representing 48 seq-PCR ribotypes. The reference hybridization patterns calculated by the arithmetic mean were compared using a similarity matrix analysis. The 48 investigated seq-PCR ribotypes revealed 27 array profiles that were clearly distinguishable. The most frequent human-pathogenic ribotypes 001, 014/020, 027, and 078/126 were discriminated by the microarray. C. difficile strains related to 078/126 (033, 045/FLI01, 078, 126, 126/FLI01, 413, 413/FLI01, 598, 620, 652, and 660) and 014/020 (014, 020, and 449) showed similar hybridization patterns, confirming their genetic relatedness, which was previously reported. A panel of 50 C. difficile field isolates was tested by seq-PCR ribotyping and the DNA microarray-based assay in parallel. Taking into account that the current version of the microarray does not discriminate some closely related seq-PCR ribotypes, all isolates were typed correctly. Moreover, seq-PCR ribotypes without reference profiles available in the database (ribotype 009 and 5 new types) were correctly recognized as new ribotypes, confirming the performance and expansion potential of the microarray. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Novel Degenerate PCR Method for Whole-Genome Amplification Applied to Peru Margin (ODP Leg 201) Subsurface Samples

    Science.gov (United States)

    Martino, Amanda J.; Rhodes, Matthew E.; Biddle, Jennifer F.; Brandt, Leah D.; Tomsho, Lynn P.; House, Christopher H.

    2011-01-01

    A degenerate polymerase chain reaction (PCR)-based method of whole-genome amplification, designed to work fluidly with 454 sequencing technology, was developed and tested for use on deep marine subsurface DNA samples. While optimized here for use with Roche 454 technology, the general framework presented may be applicable to other next generation sequencing systems as well (e.g., Illumina, Ion Torrent). The method, which we have called random amplification metagenomic PCR (RAMP), involves the use of specific primers from Roche 454 amplicon sequencing, modified by the addition of a degenerate region at the 3′ end. It utilizes a PCR reaction, which resulted in no amplification from blanks, even after 50 cycles of PCR. After efforts to optimize experimental conditions, the method was tested with DNA extracted from cultured E. coli cells, and genome coverage was estimated after sequencing on three different occasions. Coverage did not vary greatly with the different experimental conditions tested, and was around 62% with a sequencing effort equivalent to a theoretical genome coverage of 14.10×. The GC content of the sequenced amplification product was within 2% of the predicted values for this strain of E. coli. The method was also applied to DNA extracted from marine subsurface samples from ODP Leg 201 site 1229 (Peru Margin), and results of a taxonomic analysis revealed microbial communities dominated by Proteobacteria, Chloroflexi, Firmicutes, Euryarchaeota, and Crenarchaeota, among others. These results were similar to those obtained previously for those samples; however, variations in the proportions of taxa identified illustrates well the generally accepted view that community analysis is sensitive to both the amplification technique used and the method of assigning sequences to taxonomic groups. Overall, we find that RAMP represents a valid methodology for amplifying metagenomes from low-biomass samples. PMID:22319519

  5. Efficiency of PCR-based methods in discriminating Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis strains of human origin.

    Science.gov (United States)

    Srůtková, Dagmar; Spanova, Alena; Spano, Miroslav; Dráb, Vladimír; Schwarzer, Martin; Kozaková, Hana; Rittich, Bohuslav

    2011-10-01

    Bifidobacterium longum is considered to play an important role in health maintenance of the human gastrointestinal tract. Probiotic properties of bifidobacterial isolates are strictly strain-dependent and reliable methods for the identification and discrimination of this species at both subspecies and strain levels are thus required. Differentiation between B. longum ssp. longum and B. longum ssp. infantis is difficult due to high genomic similarities. In this study, four molecular-biological methods (species- and subspecies-specific PCRs, random amplified polymorphic DNA (RAPD) method using 5 primers, repetitive sequence-based (rep)-PCR with BOXA1R and (GTG)(5) primers and amplified ribosomal DNA restriction analysis (ARDRA)) and biochemical analysis, were compared for the classification of 30 B. longum strains (28 isolates and 2 collection strains) on subspecies level. Strains originally isolated from the faeces of breast-fed healthy infants (25) and healthy adults (3) showed a high degree of genetic homogeneity by PCR with subspecies-specific primers and rep-PCR. When analysed by RAPD, the strains formed many separate clusters without any potential for subspecies discrimination. These methods together with arabionose/melezitose fermentation analysis clearly differentiated only the collection strains into B. longum ssp. longum and B. longum ssp. infantis at the subspecies level. On the other hand, ARDRA analysis differentiated the strains into the B. longum/infantis subspecies using the cleavage analysis of genus-specific amplicon with just one enzyme, Sau3AI. According to our results the majority of the strains belong to the B. longum ssp. infantis (75%). Therefore we suggest ARDRA using Sau3AI restriction enzyme as the first method of choice for distinguishing between B. longum ssp. longum and B. longum ssp. infantis. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Next-generation sequencing of multiple individuals per barcoded library by deconvolution of sequenced amplicons using endonuclease fragment analysis

    DEFF Research Database (Denmark)

    Andersen, Jeppe D; Pereira, Vania; Pietroni, Carlotta

    2014-01-01

    The simultaneous sequencing of samples from multiple individuals increases the efficiency of next-generation sequencing (NGS) while also reducing costs. Here we describe a novel and simple approach for sequencing DNA from multiple individuals per barcode. Our strategy relies on the endonuclease...... digestion of PCR amplicons prior to library preparation, creating a specific fragment pattern for each individual that can be resolved after sequencing. By using both barcodes and restriction fragment patterns, we demonstrate the ability to sequence the human melanocortin 1 receptor (MC1R) genes from 72...... individuals using only 24 barcoded libraries....

  7. Bioinformatic tools and guideline for PCR primer design | Abd ...

    African Journals Online (AJOL)

    Bioinformatics has become an essential tool not only for basic research but also for applied research in biotechnology and biomedical sciences. Optimal primer sequence and appropriate primer concentration are essential for maximal specificity and efficiency of PCR. A poorly designed primer can result in little or no ...

  8. Molecular characterization and pathogenicity of Erwinia spp. associated with pineapple [Ananas comosus (L. Merr.] and papaya (Carica papaya L.

    Directory of Open Access Journals (Sweden)

    Ramachandran Kogeethavani

    2015-12-01

    Full Text Available The Erwinia species are well-known pathogens of economic importance in Malaysia causing serious damage to high-value fruit crops that include pineapple [Ananas comosus (L. Merr.] and papaya (Carica papaya L..The 16S rRNA sequence using eubacteria fD1 and rP2 primers, identified two bacteria species; Dickeya zeae from pineapple heart rot, and Erwinia mallotivora from papaya dieback. Phylogenetic analysis based on the neighbor-joining method indicated that all the bacterial isolates clustered in their own taxa and formed monophyletic clades. From the pathogenicity test, all isolates of D. zeae and E. mallotivora showed pathogenic reactions on their respective host plants. Genetic variability of these isolates was assessed using repetitive sequence-based PCR (rep-PCR fingerprinting. The results indicated interspecies, and intraspecies variation in both species’ isolates. There were more polymorphic bands shown by rep-PCR fingerprints than enterobacterial repetitive intergenic consensus (ERIC and BOX- PCRs, however both species’ isolates produced distinguishable banding patterns. Unweighted pair-group method with arithmetic averages (UPGMA cluster analysis indicated that all Dickeya and Erwinia isolates from the same species were grouped in the same main cluster. Similarity among the isolates ranged from 77 to 99%. Sequencing of 16S rRNA using eubacteria fD1 and rP2 primers, and rep-PCR fingerprinting revealed diversity among Dickeya and Erwinia isolates. But this method appears to be reliable for discriminating isolates from pineapple heart rot and papaya dieback.

  9. Molecular identification of Mucorales in human tissues: contribution of PCR electrospray-ionization mass spectrometry.

    Science.gov (United States)

    Alanio, A; Garcia-Hermoso, D; Mercier-Delarue, S; Lanternier, F; Gits-Muselli, M; Menotti, J; Denis, B; Bergeron, A; Legrand, M; Lortholary, O; Bretagne, S

    2015-06-01

    Molecular methods are crucial for mucormycosis diagnosis because cultures are frequently negative, even if microscopy suggests the presence of hyphae in tissues. We assessed PCR/electrospray-ionization mass spectrometry (PCR/ESI-MS) for Mucorales identification in 19 unfixed tissue samples from 13 patients with proven or probable mucormycosis and compared the results with culture, quantitative real-time PCR, 16S-23S rRNA gene internal transcribed spacer region (ITS PCR) and 18S PCR sequencing. Concordance with culture identification to both genus and species levels was higher for PCR/ESI-MS than for the other techniques. Thus, PCR/ESI-MS is suitable for Mucorales identification, within 6 hours, for tissue samples for which microscopy results suggest the presence of hyphae. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Next-generation sequencing

    DEFF Research Database (Denmark)

    Rieneck, Klaus; Bak, Mads; Jønson, Lars

    2013-01-01

    , Illumina); several millions of PCR sequences were analyzed. RESULTS: The results demonstrated the feasibility of diagnosing the fetal KEL1 or KEL2 blood group from cell-free DNA purified from maternal plasma. CONCLUSION: This method requires only one primer pair, and the large amount of sequence...... information obtained allows well for statistical analysis of the data. This general approach can be integrated into current laboratory practice and has numerous applications. Besides DNA-based predictions of blood group phenotypes, platelet phenotypes, or sickle cell anemia, and the determination of zygosity...

  11. Identification of tissue-embedded ascarid larvae by ribosomal DNA sequencing.

    Science.gov (United States)

    Ishiwata, Kenji; Shinohara, Akio; Yagi, Kinpei; Horii, Yoichiro; Tsuchiya, Kimiyuki; Nawa, Yukifumi

    2004-01-01

    Polymerase chain reaction (PCR) was applied to identify tissue-embedded ascarid nematode larvae. Two sequences of the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA), ITS1 and ITS2, of the ascarid parasites were amplified and compared with those of ascarid-nematodes registered in a DNA database (GenBank). The ITS sequences of the PCR products obtained from the ascarid parasite specimen in our laboratory were compatible with those of registered adult Ascaris and Toxocara parasites. PCR amplification of the ITS regions was sensitive enough to detect a single larva of Ascaris suum mixed with porcine liver tissue. Using this method, ascarid larvae embedded in the liver of a naturally infected turkey were identified as Toxocara canis. These results suggest that even a single larva embedded in tissues from patients with larva migrans could be identified by sequencing the ITS regions.

  12. Utility of Whole-Genome Sequencing in Characterizing Acinetobacter Epidemiology and Analyzing Hospital Outbreaks

    Science.gov (United States)

    Fitzpatrick, Margaret A.; Hauser, Alan R.

    2015-01-01

    Acinetobacter baumannii frequently causes nosocomial infections and outbreaks. Whole-genome sequencing (WGS) is a promising technique for strain typing and outbreak investigations. We compared the performance of conventional methods with WGS for strain typing clinical Acinetobacter isolates and analyzing a carbapenem-resistant A. baumannii (CRAB) outbreak. We performed two band-based typing techniques (pulsed-field gel electrophoresis and repetitive extragenic palindromic-PCR), multilocus sequence type (MLST) analysis, and WGS on 148 Acinetobacter calcoaceticus-A. baumannii complex bloodstream isolates collected from a single hospital from 2005 to 2012. Phylogenetic trees inferred from core-genome single nucleotide polymorphisms (SNPs) confirmed three Acinetobacter species within this collection. Four major A. baumannii clonal lineages (as defined by MLST) circulated during the study, three of which are globally distributed and one of which is novel. WGS indicated that a threshold of 2,500 core SNPs accurately distinguished A. baumannii isolates from different clonal lineages. The band-based techniques performed poorly in assigning isolates to clonal lineages and exhibited little agreement with sequence-based techniques. After applying WGS to a CRAB outbreak that occurred during the study, we identified a threshold of 2.5 core SNPs that distinguished nonoutbreak from outbreak strains. WGS was more discriminatory than the band-based techniques and was used to construct a more accurate transmission map that resolved many of the plausible transmission routes suggested by epidemiologic links. Our study demonstrates that WGS is superior to conventional techniques for A. baumannii strain typing and outbreak analysis. These findings support the incorporation of WGS into health care infection prevention efforts. PMID:26699703

  13. Real-time PCR for the quantification of fungi in planta.

    Science.gov (United States)

    Klosterman, Steven J

    2012-01-01

    Methods enabling quantification of fungi in planta can be useful for a variety of applications. In combination with information on plant disease severity, indirect quantification of fungi in planta offers an additional tool in the screening of plants that are resistant to fungal diseases. In this chapter, a method is described for the quantification of DNA from a fungus in plant leaves using real-time PCR (qPCR). Although the method described entails quantification of the fungus Verticillium dahliae in lettuce leaves, the methodology described would be useful for other pathosystems as well. The method utilizes primers that are specific for amplification of a β-tubulin sequence from V. dahliae and a lettuce actin gene sequence as a reference for normalization. This approach enabled quantification of V. dahliae in the amount of 2.5 fg/ng of lettuce leaf DNA at 21 days following plant inoculation.

  14. Monomorphism in humans and sequence differences among higher primates for a sequence tagged site (STS) in homeo box cluster 2 as assayed by denaturing gradient electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Ruano, G.; Ruddle, F.H.; Kidd, K.K. (Yale Univ., New Haven, CT (United States)); Gray, M.R. (Tufts Univ., Boston, MA (United States)); Miki, Tetsuro (Osaka Univ. (Japan)); Ferguson-Smith, A.C. (Inst. of Animal Physiology and Genetics Research, Cambridge (United Kingdom))

    1990-03-11

    The human homeo box cluster 2 (HOX2) contains genes coding for DNA binding proteins involved in developmental control and is highly conserved between mouse and man. The authors have applied in concert the Polymerase Chain Reaction (PCR) and Denaturing Gradient Electrophoresis (DGE) to amplify defined primate HOX2 segments and to detect sequence differences among them. They have sequenced a PstI fragment 4 kb upstream from HOX 2.2 and synthesized primers delimiting both halves of 630 bp segment within it PCR on various unrelated humans and SC-PCR on chimpanzee, gorilla, orangutan and gibbon yielded products of the same length for each primer pair.

  15. Detection of Mycoplasma hyopneumoniae in lungs and nasal swabs of pigs by nested PCR Detecção de Mycoplasma hyopneumoniae em pulmões e suabes nasais de suínos por nested PCR

    Directory of Open Access Journals (Sweden)

    F.M.F. Silva

    2009-02-01

    Full Text Available Fifty-four samples were collected from growing and finishing pigs for the molecular diagnosis of enzootic porcine pneumonia. Nineteen lung fragments were obtained from pigs that showed signs of respiratory disease and 35 nasal swabs were obtained from clinically healthy pigs. For the detection of the bacterial genome in the samples, the nested PCR technique was used to amplify a fragment of 706bp. This fragment was subsequently cloned and sequenced. The sequence of obtained nucleotides was compared with six other sequences of Mycoplasma hyopneumoniae and 11 sequences of other bacteria available in the Genbank. To measure the sensitivity of the nested PCR, serial dilutions (10-1 to 10-15 of cloned fragments were conducted based on the concentration of 300ng. Ten lung fragments and eight nasal swabs showed positive for M. hyopneumoniae and the limit of detection was estimated to be 0.3fg DNA cloned. The sequence of nucleotides obtained showed 99.1% homology with the other sequences of M. hyopneumoniae, demonstrating that the nested PCR used in this study may provide an important diagnostic tool for the detection of this agent.Foram coletadas 54 amostras de animais em fase de crescimento e terminação para o diagnóstico molecular da pneumonia enzoótica suína. Dezenove fragmentos de pulmão foram obtidos de suínos que apresentavam sinais de doença respiratória e 35 suabes nasais foram obtidas de suínos clinicamente saudáveis. Para a detecção do genoma bacteriano nas amostras, foi utilizada a técnica de nested PCR que originou um fragmento de 706pb, o qual foi, posteriormente, clonado e sequenciado. A sequência de nucleotídeos obtida foi comparada com outras seis sequências de Mycoplasma hyopneumoniae e 11 sequências de outras bactérias disponíveis no Genbank. Para medir a sensibilidade da nested PCR, foram realizadas diluições seriadas (10-1 a 10-15 do fragmento clonado, partindo da concentração de 300ng. Dez fragmentos de pulm

  16. Development of a PCR Assay to detect Papillomavirus Infection in the Snow Leopard

    Directory of Open Access Journals (Sweden)

    Eng Curtis

    2011-07-01

    Full Text Available Abstract Background Papillomaviruses (PVs are a group of small, non-encapsulated, species-specific DNA viruses that have been detected in a variety of mammalian and avian species including humans, canines and felines. PVs cause lesions in the skin and mucous membranes of the host and after persistent infection, a subset of PVs can cause tumors such as cervical malignancies and head and neck squamous cell carcinoma in humans. PVs from several species have been isolated and their genomes have been sequenced, thereby increasing our understanding of the mechanism of viral oncogenesis and allowing for the development of molecular assays for the detection of PV infection. In humans, molecular testing for PV DNA is used to identify patients with persistent infections at risk for developing cervical cancer. In felids, PVs have been isolated and sequenced from oral papillomatous lesions of several wild species including bobcats, Asian lions and snow leopards. Since a number of wild felids are endangered, PV associated disease is a concern and there is a need for molecular tools that can be used to further study papillomavirus in these species. Results We used the sequence of the snow leopard papillomavirus UuPV1 to develop a PCR strategy to amplify viral DNA from samples obtained from captive animals. We designed primer pairs that flank the E6 and E7 viral oncogenes and amplify two DNA fragments encompassing these genes. We detected viral DNA for E6 and E7 in genomic DNA isolated from saliva, but not in paired blood samples from snow leopards. We verified the identity of these PCR products by restriction digest and DNA sequencing. The sequences of the PCR products were 100% identical to the published UuPV1 genome sequence. Conclusions We developed a PCR assay to detect papillomavirus in snow leopards and amplified viral DNA encompassing the E6 and E7 oncogenes specifically in the saliva of animals. This assay could be utilized for the molecular

  17. Rhipicephalus microplus strain Deutsch, 10 BAC clone sequences

    Science.gov (United States)

    The cattle tick, Rhipicephalus (Boophilus) microplus, has a genome over 2.4 times the size of the human genome, and with over 70% of repetitive DNA, this genome would prove very costly to sequence at today's prices and difficult to assemble and analyze. We used labeled DNA probes from the coding reg...

  18. Analysis and Visualization Tool for Targeted Amplicon Bisulfite Sequencing on Ion Torrent Sequencers.

    Directory of Open Access Journals (Sweden)

    Stephan Pabinger

    Full Text Available Targeted sequencing of PCR amplicons generated from bisulfite deaminated DNA is a flexible, cost-effective way to study methylation of a sample at single CpG resolution and perform subsequent multi-target, multi-sample comparisons. Currently, no platform specific protocol, support, or analysis solution is provided to perform targeted bisulfite sequencing on a Personal Genome Machine (PGM. Here, we present a novel tool, called TABSAT, for analyzing targeted bisulfite sequencing data generated on Ion Torrent sequencers. The workflow starts with raw sequencing data, performs quality assessment, and uses a tailored version of Bismark to map the reads to a reference genome. The pipeline visualizes results as lollipop plots and is able to deduce specific methylation-patterns present in a sample. The obtained profiles are then summarized and compared between samples. In order to assess the performance of the targeted bisulfite sequencing workflow, 48 samples were used to generate 53 different Bisulfite-Sequencing PCR amplicons from each sample, resulting in 2,544 amplicon targets. We obtained a mean coverage of 282X using 1,196,822 aligned reads. Next, we compared the sequencing results of these targets to the methylation level of the corresponding sites on an Illumina 450k methylation chip. The calculated average Pearson correlation coefficient of 0.91 confirms the sequencing results with one of the industry-leading CpG methylation platforms and shows that targeted amplicon bisulfite sequencing provides an accurate and cost-efficient method for DNA methylation studies, e.g., to provide platform-independent confirmation of Illumina Infinium 450k methylation data. TABSAT offers a novel way to analyze data generated by Ion Torrent instruments and can also be used with data from the Illumina MiSeq platform. It can be easily accessed via the Platomics platform, which offers a web-based graphical user interface along with sample and parameter storage

  19. Competitive PCR-High Resolution Melting Analysis (C-PCR-HRMA) for large genomic rearrangements (LGRs) detection: A new approach to assess quantitative status of BRCA1 gene in a reference laboratory.

    Science.gov (United States)

    Minucci, Angelo; De Paolis, Elisa; Concolino, Paola; De Bonis, Maria; Rizza, Roberta; Canu, Giulia; Scaglione, Giovanni Luca; Mignone, Flavio; Scambia, Giovanni; Zuppi, Cecilia; Capoluongo, Ettore

    2017-07-01

    Evaluation of copy number variation (CNV) in BRCA1/2 genes, due to large genomic rearrangements (LGRs), is a mandatory analysis in hereditary breast and ovarian cancers families, if no pathogenic variants are found by sequencing. LGRs cannot be detected by conventional methods and several alternative methods have been developed. Since these approaches are expensive and time consuming, identification of alternative screening methods for LGRs detection is needed in order to reduce and optimize the diagnostic procedure. The aim of this study was to investigate a Competitive PCR-High Resolution Melting Analysis (C-PCR-HRMA) as molecular tool to detect recurrent BRCA1 LGRs. C-PCR-HRMA was performed on exons 3, 14, 18, 19, 20 and 21 of the BRCA1 gene; exons 4, 6 and 7 of the ALB gene were used as reference fragments. This study showed that it is possible to identify recurrent BRCA1 LGRs, by melting peak height ratio between target (BRCA1) and reference (ALB) fragments. Furthermore, we underline that a peculiar amplicon-melting profile is associated to a specific BRCA1 LGR. All C-PCR-HRMA results were confirmed by Multiplex ligation-dependent probe amplification. C-PCR-HRMA has proved to be an innovative, efficient and fast method for BRCA1 LGRs detection. Given the sensitivity, specificity and ease of use, c-PCR-HRMA can be considered an attractive and powerful alternative to other methods for BRCA1 CNVs screening, improving molecular strategies for BRCA testing in the context of Massive Parallel Sequencing. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Structure characterization of the central repetitive domain of high molecular weight gluten proteins .1. Model studies using cyclic and linear peptides

    NARCIS (Netherlands)

    VanDijk, AA; VanWijk, LL; VanVliet, A; Haris, P; VanSwieten, E; Tesser, GI; Robillard, GT

    The high molecular weight (HMW) proteins from wheat contain a repetitive domain that forms 60-80% of their sequence. The consensus peptides PGQGQQ and GYYPTSPQQ form more than 90% of the domain; both are predicted to adopt beta-turn structure. This paper describes the structural characterization of

  1. Efficiency to Discovery Transgenic Loci in GM Rice Using Next Generation Sequencing Whole Genome Re-sequencing

    Directory of Open Access Journals (Sweden)

    Doori Park

    2015-09-01

    Full Text Available Molecular characterization technology in genetically modified organisms, in addition to how transgenic biotechnologies are developed now require full transparency to assess the risk to living modified and non-modified organisms. Next generation sequencing (NGS methodology is suggested as an effective means in genome characterization and detection of transgenic insertion locations. In the present study, we applied NGS to insert transgenic loci, specifically the epidermal growth factor (EGF in genetically modified rice cells. A total of 29.3 Gb (~72× coverage was sequenced with a 2 × 150 bp paired end method by Illumina HiSeq2500, which was consecutively mapped to the rice genome and T-vector sequence. The compatible pairs of reads were successfully mapped to 10 loci on the rice chromosome and vector sequences were validated to the insertion location by polymerase chain reaction (PCR amplification. The EGF transgenic site was confirmed only on chromosome 4 by PCR. Results of this study demonstrated the success of NGS data to characterize the rice genome. Bioinformatics analyses must be developed in association with NGS data to identify highly accurate transgenic sites.

  2. Intra-Genomic Internal Transcribed Spacer Region Sequence Heterogeneity and Molecular Diagnosis in Clinical Microbiology.

    Science.gov (United States)

    Zhao, Ying; Tsang, Chi-Ching; Xiao, Meng; Cheng, Jingwei; Xu, Yingchun; Lau, Susanna K P; Woo, Patrick C Y

    2015-10-22

    Internal transcribed spacer region (ITS) sequencing is the most extensively used technology for accurate molecular identification of fungal pathogens in clinical microbiology laboratories. Intra-genomic ITS sequence heterogeneity, which makes fungal identification based on direct sequencing of PCR products difficult, has rarely been reported in pathogenic fungi. During the process of performing ITS sequencing on 71 yeast strains isolated from various clinical specimens, direct sequencing of the PCR products showed ambiguous sequences in six of them. After cloning the PCR products into plasmids for sequencing, interpretable sequencing electropherograms could be obtained. For each of the six isolates, 10-49 clones were selected for sequencing and two to seven intra-genomic ITS copies were detected. The identities of these six isolates were confirmed to be Candida glabrata (n=2), Pichia (Candida) norvegensis (n=2), Candida tropicalis (n=1) and Saccharomyces cerevisiae (n=1). Multiple sequence alignment revealed that one to four intra-genomic ITS polymorphic sites were present in the six isolates, and all these polymorphic sites were located in the ITS1 and/or ITS2 regions. We report and describe the first evidence of intra-genomic ITS sequence heterogeneity in four different pathogenic yeasts, which occurred exclusively in the ITS1 and ITS2 spacer regions for the six isolates in this study.

  3. Rapid and Easy Protocol for Quantification of Next-Generation Sequencing Libraries.

    Science.gov (United States)

    Hawkins, Steve F C; Guest, Paul C

    2018-01-01

    The emergence of next-generation sequencing (NGS) over the last 10 years has increased the efficiency of DNA sequencing in terms of speed, ease, and price. However, the exact quantification of a NGS library is crucial in order to obtain good data on sequencing platforms developed by the current market leader Illumina. Different approaches for DNA quantification are available currently and the most commonly used are based on analysis of the physical properties of the DNA through spectrophotometric or fluorometric methods. Although these methods are technically simple, they do not allow exact quantification as can be achieved using a real-time quantitative PCR (qPCR) approach. A qPCR protocol for DNA quantification with applications in NGS library preparation studies is presented here. This can be applied in various fields of study such as medical disorders resulting from nutritional programming disturbances.

  4. Real-time PCR assays for hepatitis B virus DNA quantification may require two different targets.

    Science.gov (United States)

    Liu, Chao; Chang, Le; Jia, Tingting; Guo, Fei; Zhang, Lu; Ji, Huimin; Zhao, Junpeng; Wang, Lunan

    2017-05-12

    Quantification Hepatitis B virus (HBV) DNA plays a critical role in the management of chronic HBV infections. However, HBV is a DNA virus with high levels of genetic variation, and drug-resistant mutations have emerged with the use of antiviral drugs. If a mutation caused a sequence mismatched in the primer or probe of a commercial DNA quantification kit, this would lead to an underestimation of the viral load of the sample. The aim of this study was to determine whether commercial kits, which use only one pair of primers and a single probe, accurately quantify the HBV DNA levels and to develop an improved duplex real-time PCR assay. We developed a new duplex real-time PCR assay that used two pairs of primers and two probes based on the conserved S and C regions of the HBV genome. We performed HBV DNA quantitative detection of HBV samples and compared the results of our duplex real-time PCR assays with the COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. The target region of the discordant sample was amplified, sequenced, and validated using plasmid. The results of the duplex real-time PCR were in good accordance with the commercial COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. We showed that two samples from Chinese HBV infections underestimated viral loads when quantified by the Roche kit because of a mismatch between the viral sequence and the reverse primer of the Roche kit. The HBV DNA levels of six samples were undervalued by duplex real-time PCR assays of the C region because of mutations in the primer of C region. We developed a new duplex real-time PCR assay, and the results of this assay were similar to the results of commercial kits. The HBV DNA level could be undervalued when using the COBAS TaqMan HBV Test version 2 for Chinese HBV infections owing to a mismatch with the primer/probe. A duplex real-time PCR assay based on the S and C regions could solve this problem to some extent.

  5. Molecular characterization of Salmonella enterica serotype Enteritidis isolates from food and human samples by serotyping, antimicrobial resistance, plasmid profiling, (GTG5-PCR and ERIC-PCR

    Directory of Open Access Journals (Sweden)

    F. Fardsanei

    2016-11-01

    Full Text Available In recent years, Salmonella enterica serovar Enteritidis has been a primary cause of human salmonellosis in many countries. The major objective of this study was to investigate genetic diversity among Salmonella Enteritidis strains from different origins (food and human by Enterobacterial Repetitive Intergenic Consensus (ERIC -PCR, as well as to assess their plasmid profiling and antimicrobial resistance. A total of 30 Salmonella Enteritidis isolates, 15 from food samples (chicken, lamb, beef and duck meats and 15 from clinical samples were collected in Tehran. Identification of isolates as Salmonella was confirmed by using conventional standard biochemical and serological tests. Multiplex-PCR was used for serotyping of isolates to identify Salmonella Enteritidis. Antimicrobial susceptibility testing to 16 agents founds drug resistance patterns among Salmonella Enteritidis isolates. No resistance was observed to cephalexin, ceftriaxone, ceftazidime and cefotaxime, ciprofloxacin, imipenem or meropenem, chloramphenicol and gentamicin. The highest resistance (96.7% was observed to nitrofurantoin. Seven plasmid profiles (P1–P7 were detected, and a 68-kb plasmid was found in all isolates. Two different primers; ERIC and (GTG5 were used for genotyping, which each produced four profiles. The majority of clinical and food isolates fell into two separate common types (CTs with a similar percentage of 95% by ERIC-PCR. Using primer (GTG5, 29 isolates incorporated in three CTs with 70% of isolates showing a single banding pattern. Limited genetic diversity among human and food isolates of Salmonella Enteritidis may indicate that contaminated foods were possibly the source of human salmonellosis. These results confirmed that ERIC-PCR genotyping has limited discriminatory power for Salmonella Enteritidis of different origin.

  6. MRI of bone marrow: opposed-phase gradient-echo sequences with long repetition time

    International Nuclear Information System (INIS)

    Seiderer, M.; Staebler, A.; Wagner, H.

    1999-01-01

    Signal intensity for opposed-phase gradient-echo (GE) sequences of tissues composed of fat- and water-equivalent cells such as red bone marrow is extremely sensitive to variation of the ratio of both cell populations (fat-to-water ratio Q F/W ). Because most bone marrow pathology results in variation of Q F/W , GE sequences are characterized by high-contrast imaging of pathology. The aim of this study was to evaluate the influence of TR, TE, FA, Q F/W and histology on signal intensity. Signal intensity of opposed-phase GE sequences as a function of TR, TE, FA, and Q F/W was measured for a fat-water phantom and cadaver specimens of normal bone marrow (red and yellow) and pathological bone marrow (tumors). All specimens were correlated to histology. Opposed-phase GE imaging of red bone marrow pathology results in low-signal-intensity imaging of intact red bone marrow and high-signal-intensity positive contrast imaging of pathology associated with a change in Q F/W . In first-order approximation the signal intensity of pathology is linearly correlated to the change in Q F/W . Opposed-phase GE imaging is a sensitive imaging technique for red bone marrow pathology. Relative contrast of red bone marrow pathology is similar to fat-suppressed imaging techniques. Acquisition time is identical to T1-weighted SE sequences. (orig.)

  7. A fully sealed plastic chip for multiplex PCR and its application in bacteria identification.

    Science.gov (United States)

    Xu, Youchun; Yan, He; Zhang, Yan; Jiang, Kewei; Lu, Ying; Ren, Yonghong; Wang, Hui; Wang, Shan; Xing, Wanli

    2015-07-07

    Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing.

  8. Virology: The Next Generation from Digital PCR to Single Virion Genomics

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard A.; Brazelton De Cardenas, Jessica N.; Hayden, Randall T.

    2015-10-01

    In the past 25 years, virology has had major technology breakthroughs stemming first from the introduction of nucleic acid amplification testing, but more recently from the use of next-generation sequencing, digital PCR, and the possibility of single virion genomics. These technologies have and will improve diagnosis and disease state monitoring in clinical settings, aid in environmental monitoring, and reveal the vast genetic potential of viruses. Using the principle of limiting dilution, digital PCR amplifies single molecules of DNA in highly partitioned endpoint reactions and reads each of those reactions as either positive or negative based on the presence or absence of target fluorophore. In this review, digital PCR will be highlighted along with current studies, advantages/disadvantages, and future perspectives with regard to digital PCR, viral load testing, and the possibility of single virion genomics.

  9. [Rapid detection of hot spot mutations of FGFR3 gene with PCR-high resolution melting assay].

    Science.gov (United States)

    Li, Shan; Wang, Han; Su, Hua; Gao, Jinsong; Zhao, Xiuli

    2017-08-10

    To identify the causative mutations in five individuals affected with dyschondroplasia and develop an efficient procedure for detecting hot spot mutations of the FGFR3 gene. Genomic DNA was extracted from peripheral blood samples with a standard phenol/chloroform method. PCR-Sanger sequencing was used to analyze the causative mutations in the five probands. PCR-high resolution melting (HRM) was developed to detect the identified mutations. A c.1138G>A mutation in exon 8 was found in 4 probands, while a c.1620C>G mutation was found in exon 11 of proband 5 whom had a mild phenotype. All patients were successfully distinguished from healthy controls with the PCR-HRM method. The results of HRM analysis were highly consistent with that of Sanger sequencing. The Gly380Arg and Asn540Lys are hot spot mutations of the FGFR3 gene among patients with ACH/HCH. PCR-HRM analysis is more efficient for detecting hot spot mutations of the FGFR3 gene.

  10. Genomic organization and dynamics of repetitive DNA sequences in representatives of three Fagaceae genera.

    Science.gov (United States)

    Alves, Sofia; Ribeiro, Teresa; Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2012-05-01

    Oaks, chestnuts, and beeches are economically important species of the Fagaceae. To understand the relationship between these members of this family, a deep knowledge of their genome composition and organization is needed. In this work, we have isolated and characterized several AFLP fragments obtained from Quercus rotundifolia Lam. through homology searches in available databases. Genomic polymorphisms involving some of these sequences were evaluated in two species of Quercus, one of Castanea, and one of Fagus with specific primers. Comparative FISH analysis with generated sequences was performed in interphase nuclei of the four species, and the co-immunolocalization of 5-methylcytosine was also studied. Some of the sequences isolated proved to be genus-specific, while others were present in all the genera. Retroelements, either gypsy-like of the Tat/Athila clade or copia-like, are well represented, and most are dispersed in euchromatic regions of these species with no DNA methylation associated, pointing to an interspersed arrangement of these retroelements with potential gene-rich regions. A particular gypsy-sequence is dispersed in oaks and chestnut nuclei, but its confinement to chromocenters in beech evidences genome restructuring events during evolution of Fagaceae. Several sequences generated in this study proved to be good tools to comparatively study Fagaceae genome organization.

  11. Analysis of T-DNA/Host-Plant DNA Junction Sequences in Single-Copy Transgenic Barley Lines

    Directory of Open Access Journals (Sweden)

    Joanne G. Bartlett

    2014-01-01

    Full Text Available Sequencing across the junction between an integrated transfer DNA (T-DNA and a host plant genome provides two important pieces of information. The junctions themselves provide information regarding the proportion of T-DNA which has integrated into the host plant genome, whilst the transgene flanking sequences can be used to study the local genetic environment of the integrated transgene. In addition, this information is important in the safety assessment of GM crops and essential for GM traceability. In this study, a detailed analysis was carried out on the right-border T-DNA junction sequences of single-copy independent transgenic barley lines. T-DNA truncations at the right-border were found to be relatively common and affected 33.3% of the lines. In addition, 14.3% of lines had rearranged construct sequence after the right border break-point. An in depth analysis of the host-plant flanking sequences revealed that a significant proportion of the T-DNAs integrated into or close to known repetitive elements. However, this integration into repetitive DNA did not have a negative effect on transgene expression.

  12. Diagnosis of Cutaneous Leishmaniasis by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    M Heiat

    2010-07-01

    Full Text Available Introduction: Annually, more than 14 million people are reported to be infected with Leishmaniasis all over the world. In Iran, this disease is seen in the form of cutaneous and visceral leishmaniasis, of which the cutaneous form is more wide spread. In recent years, cutaneous leishmaniaisis is diagnosed by PCR utilizing specific primers in order to amplify different parasite genes including ribosomal RNA genes, kinetoplast DNA or tandem repeating sequences. The aim of this research was to detect early stage cutaneous leishmaniasis using Multiplex-PCR technique. Methods: In this study, 67 samples were prepared from patients with cutaneous leishmaniasis. DNA was extracted with phenolchloroform. Each specimen was analyzed using two different pairs of PCR primers. The sensitivity of each PCR was optimized on pure Leishmania DNA prior to use for diagnosis. Two standard parasites L. major and L. tropica were used as positive control. Results: DNA amplification fragments were two 115 bp and 683 bp for AB and UL primers, respectively. The sensitivity of two primers was not equal for detection of L. major and L. tropica. The sensivity of PCR with AB primer was 35 cells, while that for UL primer was 40 cells. Conclusion: The results of this study indicate that PCR is a sensitive diagnostic assay for cutaneous leishmaniasis and could be employed as the new standard for routine diagnosis when species identification is not required. However, the ability to identify species is especially important in prognosis of the disease and in deciding appropriate therapy, especially in regions where more than one type of species and disease are seen by clinicians.

  13. Lingual Kinematics during Rapid Syllable Repetition in Parkinson's Disease

    Science.gov (United States)

    Wong, Min Ney; Murdoch, Bruce E.; Whelan, Brooke-Mai

    2012-01-01

    Background: Rapid syllable repetition tasks are commonly used in the assessment of motor speech disorders. However, little is known about the articulatory kinematics during rapid syllable repetition in individuals with Parkinson's disease (PD). Aims: To investigate and compare lingual kinematics during rapid syllable repetition in dysarthric…

  14. Diagnosis of clinical samples spotted on FTA cards using PCR-based methods.

    Science.gov (United States)

    Jamjoom, Manal; Sultan, Amal H

    2009-04-01

    The broad clinical presentation of Leishmaniasis makes the diagnosis of current and past cases of this disease rather difficult. Differential diagnosis is important because diseases caused by other aetiologies and a clinical spectrum similar to that of leishmaniasis (e.g. leprosy, skin cancers and tuberculosis for CL; malaria and schistosomiasis for VL) are often present in endemic areas of endemicity. Presently, a variety of methods have been developed and tested to aid the identification and diagnosis of Leishmania. The advent of the PCR technology has opened new channels for the diagnosis of leishmaniasis in a variety of clinical materials. PCR is a simple, rapid procedure that has been adapted for diagnosis of leishmaniasis. A range of tools is currently available for the diagnosis and identification of leishmaniasis and Leishmania species, respectively. However, none of these diagnostic tools are examined and tested using samples spotted on FTA cards. Three different PCR-based approaches were examined including: kDNA minicircle, Leishmania 18S rRNA gene and PCR-RFLP of Intergenic region of ribosomal protein. PCR primers were designed that sit within the coding sequences of genes (relatively well conserved) but which amplify across the intervening intergenic sequence (relatively variable). These were used in PCR-RFLP on reference isolates of 10 of the most important Leishmania species: L. donovani, L. infantum, L. major & L. tropica. Digestion of PCR products with restriction enzymes produced species-specific restriction patterns allowed discrimination of reference isolates. The kDNA minicircle primers are highly sensitive in diagnosis of both bone marrow and skin smears from FTA cards. Leishmania 18S rRNA gene conserved region is sensitive in identification of bone marrow smear but less sensitive in diagnosing skin smears. The intergenic nested PCR-RFLP using P5 & P6 as well as P1 & P2 newly designed primers showed high level of reproducibility and sensitivity

  15. Detection and analysis of hemolysin genes in Aeromonas hydrophila isolated from Gouramy (Osphronemus gouramy) by polymerase chain reaction (PCR)

    Science.gov (United States)

    Rozi; Rahayu, K.; Daruti, D. N.

    2018-04-01

    The goal of this study was to detect of Aeromonas hydrophila carrying the hlyA gene in guramy by PCR assay. A total of 5 A. hydrophila strains were isolated from gouramy with different location and furthermore genotypic of all A. hydrophila strains havedetected by PCR assay for 16S rRNA gene. The primers used in the PCR targeted a 592-bp fragment of the hlyA gene coding for the hemolysin gene. Particularly hlyA genes are responsible for haemolysin toxins production in this genus. After gel electrophoresis, the amplicons from representative strains of the A. hydrophila were purified using extraction kit and were subjected to the DNA sequencing analysis. The results showed that: (i) the 592bp amplicon of the hlyA gene was detected in 5/6 of the A. hydrophila; (ii) the nucleotide blast results of hemolysin gene sequences of the strains of A. hydrophila revealed a high homology of 90-97 % with published sequences, and;(iii) the protein blast showed 95-98 % homology when compared to the published sequences. The PCR clearly identified the haemolysin-producing strains of A. hydrophila by detection in hlyA genes and may have application as a rapid species-specific virulence test.

  16. Development and validation of a quantitative PCR assay for Ichthyophonus spp.

    Science.gov (United States)

    White, Vanessa C; Morado, J Frank; Crosson, Lisa M; Vadopalas, Brent; Friedman, Carolyn S

    2013-04-29

    Members of the genus Ichthyophonus are trophically transmitted, cosmopolitan parasites that affect numerous fish species worldwide. A quantitative PCR (qPCR) assay specific for genus Ichthyophonus 18S ribosomal DNA was developed for parasite detection and surveillance. The new assay was tested for precision, repeatability, reproducibility, and both analytical sensitivity and specificity. Diagnostic sensitivity and specificity were estimated using tissue samples from a wild population of walleye pollock Theragra chalcogramma. Ichthyophonus sp. presence in tissue samples was determined by qPCR, conventional PCR (cPCR), and histology. Parasite prevalence estimates varied depending upon the detection method employed and tissue type tested. qPCR identified the greatest number of Ichthyophonus sp.-positive cases when applied to walleye pollock skeletal muscle. The qPCR assay proved sensitive and specific for Ichthyophonus spp. DNA, but like cPCR, is only a proxy for infection. When compared to cPCR, qPCR possesses added benefits of parasite DNA quantification and a 100-fold increase in analytical sensitivity. Because this novel assay is specific for known members of the genus, it is likely appropriate for detecting Ichthyophonus spp. DNA in various hosts from multiple regions. However, species-level identification and isotype variability would require DNA sequencing. In addition to distribution and prevalence applications, this assay could be modified and adapted for use with zooplankton or environmental samples. Such applications could aid in investigating alternate routes of transmission and life history strategies typical to members of the genus Ichthyophonus.

  17. Negative effects of item repetition on source memory.

    Science.gov (United States)

    Kim, Kyungmi; Yi, Do-Joon; Raye, Carol L; Johnson, Marcia K

    2012-08-01

    In the present study, we explored how item repetition affects source memory for new item-feature associations (picture-location or picture-color). We presented line drawings varying numbers of times in Phase 1. In Phase 2, each drawing was presented once with a critical new feature. In Phase 3, we tested memory for the new source feature of each item from Phase 2. Experiments 1 and 2 demonstrated and replicated the negative effects of item repetition on incidental source memory. Prior item repetition also had a negative effect on source memory when different source dimensions were used in Phases 1 and 2 (Experiment 3) and when participants were explicitly instructed to learn source information in Phase 2 (Experiments 4 and 5). Importantly, when the order between Phases 1 and 2 was reversed, such that item repetition occurred after the encoding of critical item-source combinations, item repetition no longer affected source memory (Experiment 6). Overall, our findings did not support predictions based on item predifferentiation, within-dimension source interference, or general interference from multiple traces of an item. Rather, the findings were consistent with the idea that prior item repetition reduces attention to subsequent presentations of the item, decreasing the likelihood that critical item-source associations will be encoded.

  18. Subtractive hybridization and random arbitrarily primed PCR analyses of a benzoate-assimilating bacterium, Desulfotignum balticum.

    Science.gov (United States)

    Habe, Hiroshi; Kobuna, Akinori; Hosoda, Akifumi; Kouzuma, Atsushi; Yamane, Hisakazu; Nojiri, Hideaki; Omori, Toshio; Watanabe, Kazuya

    2008-05-01

    Subtractive hybridization (SH) and random arbitrarily primed PCR (RAP-PCR) were used to detect genes involved in anaerobic benzoate degradation by Desulfotignum balticum. Through SH, we obtained 121 DNA sequences specific for D. balticum but not for D. phosphitoxidans (a non-benzoate-assimilating species). Furthermore, RAP-PCR analysis showed that a 651-bp DNA fragment, having 55% homology with the solute-binding protein of the ABC transporter system in Methanosarcina barkeri, was expressed when D. balticum was grown on benzoate, but not on pyruvate. By shotgun sequencing of the fosmid clone (38,071 bp) containing the DNA fragment, 33 open reading frames (ORFs) and two incomplete ORFs were annotated, and several genes within this region corresponded to the DNA fragments obtained by SH. An 11.3-kb gene cluster (ORF10-17) revealed through reverse transcription-PCR showed homology with the ABC transporter system and TonB-dependent receptors, both of which are presumably involved in the uptake of siderophore/heme/vitamin B(12), and was expressed in response to growth on benzoate.

  19. Partial nucleotide sequence analysis of 18S ribosomal RNA gene of the four genotypes of Trypanosoma congolense

    International Nuclear Information System (INIS)

    Osanya, A.; Majiwa, P.A.O.; Kinyanjui, P.W.

    2006-01-01

    Specific oligonucleotide primers based on conserved nucleotide sequences of 18s ribisomal RNA (18s rRNA) gene of Trypanosoma brucei, Leishmania donovani, Triponema aequale and Lagenidium gigantum have been designed and used in the ploymerase chain reaction (PCR) to amplify genomic DNA from four different clones each representing a different genotypic group of T. congolence. PCR products of approximately 1Kb were generated using as template DNA from each of the trypanosomes. The PCR products cross-hybridized with genomic DNA from T.brucei, T. simiae and the four genotypes of T.congolense implying significant sequence homology of 18S rRNA gene among trypanosomes. The nucleotide sequence of a segment of the PCR products were determined by direct sequencing to provide partial nucleotide sequence of the 18s rRNA gene in each T.congolense genotypic group. The sequences obtained together with those that have been published for T.brucei reveals that although most regions show inter and intra species nucleotide identity, there are several sites where deletions, insertions and base changes have occured in nucleotide sequence of of T.brucei and the four genotypes of T.congolense.(author)

  20. Whole genome sequencing for the molecular characterization of carbapenem-resistant Klebsiella pneumoniae strains isolated at the Italian ASST Fatebenefratelli Sacco Hospital, 2012-2014.

    Science.gov (United States)

    Rimoldi, Sara Giordana; Gentile, Bernardina; Pagani, Cristina; Di Gregorio, Annamaria; Anselmo, Anna; Palozzi, Anna Maria; Fortunato, Antonella; Pittiglio, Valentina; Ridolfo, Anna Lisa; Gismondo, Maria Rita; Rizzardini, Giuliano; Lista, Florigio

    2017-10-10

    The emergence of carbapenem-resistant Klebsiella pneumoniae strains is threatening antimicrobial treatment. Sixty-eight carbapenemase-producing K. pneumoniae strains isolated at Luigi Sacco University Hospital-ASST Fatebenefratelli Sacco (Milan, Italy) between 2012 and 2014 were characterised microbiologically and molecularly. They were tested for drug susceptibility and carbapenemase phenotypes, investigated by means of repetitive extra-genic palindromic polymerase chain reaction (REP-PCR), and fully sequenced by means of next-generation sequencing for the in silico analysis of multi-locus sequence typing (MLST), their resistome, virulome and plasmid content, and their core single nucleotide polymorphism (SNP) genotypes. All of the samples were resistant to carbapenems, other β-lactams and ciprofloxacin; many were resistant to aminoglycosides and tigecycline; and seven were resistant to colistin. Resistome analysis revealed the presence of blaKPC genes and, less frequently blaSHV, blaTEM, blaCTX-M and blaOXA, which are related to resistance to carbapenem and other β-lactams. Other genes conferring resistance to aminoglycoside, fluoroquinolone, phenicol, sulphonamide, tetracycline, trimethoprim and macrolide-lincosamide-streptogramin were also detected. Genes related to AcrAB-TolC efflux pump-dependent and pump-independent tigecycline resistance mechanisms were investigated, but it was not possible to clearly correlate the genomic features with tigecycline resistance because of the presence of a common mutation in susceptible, intermediate and resistant strains. Concerning colistin resistance, the mgrB gene was disrupted by an IS5-like element, and the mobile mcr-1 and mcr-2 genes were not detected in two cases. The virulome profile revealed type-3 fimbriae and iron uptake system genes, which are important during the colonisation stage in the mammalian host environment. The in silico detected plasmid replicons were classified as IncFIB(pQil), IncFIB(K), Col