WorldWideScience

Sample records for repetitive electrical field

  1. Repetitive control of electrically driven robot manipulators

    Science.gov (United States)

    Fateh, Mohammad Mehdi; Ahsani Tehrani, Hojjat; Karbassi, Seyed Mehdi

    2013-04-01

    This article presents a novel robust discrete repetitive control of electrically driven robot manipulators for tracking of a periodic trajectory. We propose a novel model, which presents the highly non-linear dynamics of robot manipulator in the form of linear discrete-time time-varying system. Based on the proposed model, we develop a two-term control law. The first term is an ordinary time-optimal and minimum-norm (TOMN) control by employing parametric controllers to guarantee stability. The second term is a novel robust control to improve the control performance in the face of uncertainties. The robust control estimates and compensates uncertainties including the parametric uncertainty, unmodelled dynamics and external disturbances. Performance of the proposed method is compared with two discrete methods, namely the TOMN control and an adaptive iterative learning (AIL) control. Simulation results confirm superiority of the proposed method in terms of the convergence speed and precision.

  2. Effects of repetition and temperature on Contingent Electrical Stimulation

    DEFF Research Database (Denmark)

    Castrillon, Eduardo E.; Zhou, Xinwen; Svensson, Peter

    Effects of repetition and temperature on Contingent Electrical Stimulation. E.E. Castrillon W1, 2, Xinwen Zhou 3, P. Svensson1, 2, 4 1 Department of Dentistry and Oral Health, Section of Orofacial Pain and Jaw Function, Aarhus University, Denmark2 Scandinavian Center for Orofacial Neuroscience...... (SCON)3 Department of Dentistry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China. 4 Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden  Background: Contingent electrical stimulation (CES) of the facial skin has been shown to reduce electromyographic (EMG......) activity associated with bruxism. Repetition of the electrical stimulus and skin surface temperature (ST) may affect the perception of CES and possibly also the inhibitory EMG effects.Objectives: To determine the effects of stimulus repetition and skin ST on the perception of CES.  Methods: Healthy...

  3. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  4. Electric Field Imaging Project

    Science.gov (United States)

    Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward

    2016-01-01

    NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.

  5. Electric field analysis

    CERN Document Server

    Chakravorti, Sivaji

    2015-01-01

    This book prepares newcomers to dive into the realm of electric field analysis. The book details why one should perform electric field analysis and what are its practical implications. It emphasizes both the fundamentals and modern computational methods of electric machines. The book covers practical applications of the numerical methods in high voltage equipment, including transmission lines, power transformers, cables, and gas insulated systems.

  6. Repetitively Pulsed Electric Laser Acoustic Studies. Volume 1.

    Science.gov (United States)

    1983-09-01

    INGARD ET AL. SEP 83 UNCLASSIFIED APHAL-IR-83-2858-VOL-1 F336i5 86-C 2848 F/ 0/ 8, EEEmohEEEomhiE EohEEmhohEEEEE mhhhmmomhhlm...TR-83-2058, Vol 9, 0 REPETITIVELY PULSED ELECTRIC LASER ACOUSTIC STUDIES Volume I K. U. INGARD , CHARLES F. MCMILLAN uDEPARTMENT OF AERONAUTICS AND...CONTRACT OR GRANT NUMBER(s) K.U. Ingard and Charles F. McMillan F33615.80-C-2040 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT

  7. Directed cell movement in pulsed electric fields.

    Science.gov (United States)

    Franke, K; Gruler, H

    1994-01-01

    Human granulocytes exposed to pulsed electric guiding fields were investigated. The trajectories were determined from digitized pictures (phase contrast). The basic results are: (i) No directed response was induced by pulsed electric guiding fields having a zero averaged field. (ii) A directed response was induced by pulsed electric guiding fields having a non-zero averaged field. (iii) The directed response was enhanced for pulse sequences having a repetition time of 8 s. (iv) The lag-time between signal recognition and cellular response was 8-10 s. The results are discussed in the framework of a self-ignition model.

  8. Place field repetition and spatial learning in a multicompartment environment.

    Science.gov (United States)

    Grieves, Roddy M; Jenkins, Bryan W; Harland, Bruce C; Wood, Emma R; Dudchenko, Paul A

    2016-01-01

    Recent studies have shown that place cells in the hippocampus possess firing fields that repeat in physically similar, parallel environments. These results imply that it should be difficult for animals to distinguish parallel environments at a behavioral level. To test this, we trained rats on a novel odor-location task in an environment with four parallel compartments which had previously been shown to yield place field repetition. A second group of animals was trained on the same task, but with the compartments arranged in different directions, an arrangement we hypothesised would yield less place field repetition. Learning of the odor-location task in the parallel compartments was significantly impaired relative to learning in the radially arranged compartments. Fewer animals acquired the full discrimination in the parallel compartments compared to those trained in the radial compartments, and the former also required many more sessions to reach criterion compared to the latter. To confirm that the arrangement of compartments yielded differences in place cell repetition, in a separate group of animals we recorded from CA1 place cells in both environments. We found that CA1 place cells exhibited repeated fields across four parallel local compartments, but did not do so when the same compartments were arranged radially. To confirm that the differences in place field repetition across the parallel and radial compartments depended on their angular arrangement, and not incidental differences in access to an extra-maze visual landmark, we repeated the recordings in a second set of rats in the absence of the orientation landmark. We found, once again, that place fields showed repetition in parallel compartments, and did not do so in radially arranged compartments. Thus place field repetition, or lack thereof, in these compartments was not dependent on extra-maze cues. Together, these results imply that place field repetition constrains spatial learning.

  9. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  10. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  11. The impacts of magnetic field on repetitive nanosecond pulsed dielectric barrier discharge in air

    Science.gov (United States)

    Liu, Yidi; Qi, Haicheng; Fan, Zhihui; Yan, Huijie; Ren, ChunSheng

    2016-11-01

    In this paper, the impacts of the parallel magnetic field on the repetitive nanosecond pulsed dielectric barrier discharge (DBD) are experimentally investigated by optical and electrical measurements. The DBD is generated between two parallel-plate electrodes in the ambient air with the stationary magnetic field on the order of 1 T. The experimental results show that additional microdischarge channels are generated and the photocurrent intensity of the plasma is increased by the magnetic field. The microdischarge channels develop along the magnetic field lines and the diffuse background emission of the discharge is stronger in the DBD with the magnetic field. As the pulse repetition frequency decreases from 1200 Hz to 100 Hz, only the photocurrent intensity of the third discharge that occurred at about 500 ns is noticeably increased by the additional magnetic field. It is believed that the enhancement of the memory effect and the confinement of the magnetic field on electrons are the main reasons.

  12. Repetition rate tunable ultra-short optical pulse generation based on electrical pattern generator

    Institute of Scientific and Technical Information of China (English)

    Xin Fu; Hongming Zhang; Meng Yan; Minyu Yao

    2009-01-01

    @@ An actively mode-locked laser with tunable repetition rate is proposed and experimentally demonstrated based on a programmable electrical pattern generator.By changing the repetition rate of the electrical patterns applied on the in-cavity modulator, the repetition rate of the output optical pulse sequences changes accordingly while the pulse width of the optical pulse train remains almost constant.In other words, the output ultra-short pulse train has a tunable duty cycle.In a proof-of-principle experiment, optical pulses with repetition rates of 10, 5, 2.5 and 1.25 GHz are obtained by adjusting the electrical pattern applied on the in-cavity modulator while their pulse widths remain almost unchanged.

  13. What Are Electric and Magnetic Fields? (EMF)

    Science.gov (United States)

    ... take for granted. What are electric and magnetic fields? Electric and magnetic fields (EMF) are invisible lines of ... humans. AC electric power produces electric and magnetic fields that create weak electric currents in humans. Being exposed to some kinds ...

  14. Cryosurgery with pulsed electric fields.

    Science.gov (United States)

    Daniels, Charlotte S; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  15. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  16. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  17. Electric Field Uniformity of TEPC

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Wei-hua; WANG; Zhi-qiang; LIU; Yi-na; LI; Chun-juan; LUO; Hai-long

    2012-01-01

    <正>As a proportional counter, the problem with tissue-equivalent proportional counter (TEPC) is that near the end of the anode wire the wall of detector is much closer to the anode, the electric field is stronger, and the gas gain is higher than at the center of the anode, namely end effects. In order to optimize the design of TEPC, a gas-flow TEPC (Fig. 1) is designed and constructed to take the research of electric field distribution characteristics.

  18. Non-contact thrust stand calibration method for repetitively pulsed electric thrusters.

    Science.gov (United States)

    Wong, Andrea R; Toftul, Alexandra; Polzin, Kurt A; Pearson, J Boise

    2012-02-01

    A thrust stand calibration technique for use in testing repetitively pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoid to produce a pulsed magnetic field that acts against a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasi-steady average deflection of the thrust stand arm away from the unforced or "zero" position can be related to the average applied force through a simple linear Hooke's law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other. The overall error on the linear regression fit used to determine the calibration coefficient was roughly 1%.

  19. Revisiting the Corotation Electric Field

    Science.gov (United States)

    Rothwell, P. L.

    2001-05-01

    The rotation of the Earth's dipole magnetic field produces a corotation electric field in the nonrotating frame of reference. A quick calculation implies that this field might arise from the relative motion of an observer in the nonrotating frame and the motion of rotating magnetic field lines. However, upon applying Faraday's Law one finds that total time rate of change of the magnetic field as seen in the nonrotating frame is zero due to the azimuthal symmetry of the dipole. Therefore, classical EM theory(1) predicts a zero corotation electric field in the nonrotating frame for a vacuum. This conundrum has been traditionally treated in the following manner(2,3). 1) Start with a vacuum state with no conductors and plasma present. The transformation between E (the electric field in the nonrotating frame) and E' (the electric field in the rotating frame)implies that in the rotating frame E' is nonzero while E = 0. 2) In the presence of a thin conducting spherical shell (the ionosphere) polarization charges form in the shell due to the magnetic force on the electrons. A polarization electric field Ep is created such that in the idealized case the shell has a uniform electric potential. This Ep has a component along the magnetic field lines outside the shell. 3) Plasma will polarize along B, thus canceling the parallel component of Ep which allows the potential on the shell to be mapped along the magnetic field lines setting E' = 0. From the transformation equation E is now nonzero. This is the electric field required in the nonrotating frame for the plasma to corotate with the dipole. The presence of the corotation electric field is not a local result, but a nonlocal effect that requires the presence of an ionosphere and a conducting plasma. (1) W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism, Addison-Wesley, 1956. (2) H. Alfven and C.-G. Falthammar, Cosmical Electrodynamics, 2nd ed., Oxford Press, 1963. (3) E.W.Hones and J.E.Bergeson, J. Geophys

  20. THOR Electric Field Instrument - EFI

    Science.gov (United States)

    Khotyaintsev, Yuri; Bale, Stuart D.; Rothkaehl, Hanna; Bonnell, John; Åhlen, Lennart; Vaivads, Andris; Lindqvist, Per-Arne; Ivchenko, Nickolay; Soucek, Jan

    2017-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Electric Field Instrument (EFI) is to measure the electric field vector in the frequency range 0-200 kHz. EFI consists of two sets of sensors: Spin-plane Double Probes (EFI-SDP) providing high sensitivity DC electric field in the spacecraft spin plane (2D), and the High-Frequency Antenna (EFI-HFA) providing 3D electric field at frequencies above 1 kHz. EFI-SDP consists of 4 biased spherical probes extended on 50 m long wire booms, 90 degrees apart in the spin plane, giving a 100 m baseline for each of the two spin-plane electric field components. EFI-HFA consists of 6 x 1.25 m long monopoles, forming 3 dipolar antennas crossed at 90 degrees to each other. In addition to the sensors, EFI contains HFA and SDP pre-amplifiers, as well as bias electronics boards (BEBs) hosted in the man electronics box of the Field and Wave processor (FWP). As THOR spacecraft has a sun-pointing spin axis, EFI-SDP measures the electric field in the plane approximately orthogonal to the sun using long wire booms. The sun-pointing attitude greatly reduces errors due to wake effects and asymmetric photoelectron clouds, enabling the highly accurate in comparison to earlier missions ±0.1 mV/m near-DC electric field measurements. Interferometry using the electric field probes can be used to infer wavelengths and scale sizes at the smallest scales in the plasma. EFI also measures the floating potential of the satellite, which can be used to estimate the plasma density at very high time resolution (up to a few hundred Hz). The sun-pointing attitude greatly reduces changes in the illuminated area, and hence the associated spin-dependent errors. In combination with densities derived from the observed plasma frequency emission line, EFI monitors the plasma density from DC to a few hundred Hz. EFI measurements characterize electric field and density variations associated with kinetic

  1. Electric fields and quantum wormholes

    CERN Document Server

    Engelhardt, Dalit; Iqbal, Nabil

    2015-01-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole". We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a non-perturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U(1) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.

  2. Electric fields and quantum wormholes

    Science.gov (United States)

    Engelhardt, Dalit; Freivogel, Ben; Iqbal, Nabil

    2015-09-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole." We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a nonperturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U (1 ) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.

  3. Synaptic Effects of Electric Fields

    Science.gov (United States)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  4. Non-Contact Thrust Stand Calibration Method for Repetitively-Pulsed Electric Thrusters

    Science.gov (United States)

    Wong, Andrea R.; Toftul, Alexandra; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    A thrust stand calibration technique for use in testing repetitively-pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoidal coil to produce a pulsed magnetic field that acts against the magnetic field produced by a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasisteady average deflection of the thrust stand arm away from the unforced or zero position can be related to the average applied force through a simple linear Hooke s law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other as the constant relating average deflection and average thrust match within the errors on the linear regression curve fit of the data. Quantitatively, the error on the calibration coefficient is roughly 1% of the coefficient value.

  5. Microstickies agglomeration by electric field.

    Science.gov (United States)

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied.

  6. Apparatuses and methods for generating electric fields

    Science.gov (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  7. Special Effect of Parallel Inductive Electric Field

    Institute of Scientific and Technical Information of China (English)

    陈涛; 刘振兴; W.Heikkila

    2002-01-01

    Acceleration of electrons by a field-aligned electric field during a magnetospheric substorm in the deep geomagnetic tail is studied by means of a one-dimensional electromagnetic particle code. It was found that the free acceleration of the electrons by the parallel electric field is obvious; kinetic energy variation is greater than electromagnetic energy variation in the presence of parallel electric field. Magnetic energy is greater than kinetic energy variation and electric energy variation in the absence of the parallel electric field. More wave modes in the presence of the parallel electric field are generated than those in the absence of the parallel electric field.

  8. Electrophoresis in strong electric fields.

    Science.gov (United States)

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  9. Linear electric field mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D.J.; Nordholt, J.E.

    1991-03-29

    A mass spectrometer is described having a low weight and low power requirement, for use in space. It can be used to analyze the ionized particles in the region of the spacecraft on which it is mounted. High mass resolution measurements are made by timing ions moving through a gridless cylindrically sysmetric linear electric field.

  10. Electric fields and quantum wormholes

    NARCIS (Netherlands)

    Engelhardt, D.; Freivogel, B.; Iqbal, N.

    2015-01-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a

  11. Electric fields and quantum wormholes

    NARCIS (Netherlands)

    Engelhardt, D.; Freivogel, B.; Iqbal, N.

    2015-01-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "

  12. GROUNDWATER AND SOIL REMEDIATION USING ELECTRICAL FIELD

    Science.gov (United States)

    Enhancements of contaminants removal and degradation in low permeability soils by electrical fields are achieved by the processes of electrical heating, electrokinetics, and electrochemical reactions. Electrical heating increases soil temperature resulting in the increase of cont...

  13. Electric field distribution of electron emitter surfaces

    Science.gov (United States)

    Tagawa, M.; Takenobu, S.; Ohmae, N.; Umeno, M.

    1987-03-01

    The electric field distribution of a tungsten field emitter surface and a LaB6 thermionic emitter surface has been studied. The computer simulation of electric field distribution on the emitter surface was carried out with a charge simulation method. The electric field distribution of the LaB6 thermionic emitter was experimentally evaluated by the Schottky plot. Two independent equations are necessary for obtaining local electric field and work function; the Fowler-Nordheim equation and the equation of total energy distribution of emitted electron being used to evaluate the electric field distribution of the tungsten field emitter. The experimental results agreed with the computer simulation.

  14. Pulsed electric field increases reproduction.

    Science.gov (United States)

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  15. New electric field in asymmetric magnetic reconnection.

    Science.gov (United States)

    Malakit, K; Shay, M A; Cassak, P A; Ruffolo, D

    2013-09-27

    We present a theory and numerical evidence for the existence of a previously unexplored in-plane electric field in collisionless asymmetric magnetic reconnection. This electric field, dubbed the "Larmor electric field," is associated with finite Larmor radius effects and is distinct from the known Hall electric field. Potentially, it could be an important indicator for the upcoming Magnetospheric Multiscale mission to locate reconnection sites as we expect it to appear on the magnetospheric side, pointing earthward, at the dayside magnetopause reconnection site.

  16. Cell separation using electric fields

    Science.gov (United States)

    Mangano, Joseph (Inventor); Eppich, Henry (Inventor)

    2009-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  17. Tuning Photoluminescence Response by Electric Field in Electrically Soft Ferroelectrics

    Science.gov (United States)

    Khatua, Dipak Kumar; Kalaskar, Abhijeet; Ranjan, Rajeev

    2016-03-01

    We show that an electrically soft ferroelectric host can be used to tune the photoluminescence (PL) response of rare-earth emitter ions by external electric field. The proof of this concept is demonstrated by changing the PL response of the Eu3 + ion by electric field on a model system Eu-doped 0.94 (Na1 /2Bi1 /2TiO3)-0.06 (BaTiO3) . We also show that new channels of radiative transitions, forbidden otherwise, open up due to positional disorder in the system, which can as well be tuned by electric field.

  18. Electric double layer of anisotropic dielectric colloids under electric fields

    Science.gov (United States)

    Han, M.; Wu, H.; Luijten, E.

    2016-07-01

    Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties.

  19. Electric-field guiding of magnetic skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Pramey; Yu, Guoqiang; Amiri, Pedram Khalili; Wang, Kang L.

    2015-10-01

    We theoretically study equilibrium and dynamic properties of nanosized magnetic skyrmions in thin magnetic films with broken inversion symmetry, where an electric field couples to magnetization via spin-orbit coupling. Based on a symmetry-based phenomenology and micromagnetic simulations we show that this electric-field coupling, via renormalizing the micromagnetic energy, modifies the equilibrium properties of the skyrmion. This change, in turn, results in a significant alteration of the current-induced skyrmion motion. Particularly, the speed and direction of the skyrmion can be manipulated by designing a desired energy landscape electrically, which we describe within Thiele's analytical model and demonstrate in micromagnetic simulations including electric-field-controlled magnetic anisotropy. We additionally use this electric-field control to construct gates for controlling skyrmion motion exhibiting a transistorlike and multiplexerlike function. The proposed electric-field effect can thus provide a low-energy electrical knob to extend the reach of information processing with skyrmions.

  20. Compact Electric- And Magnetic-Field Sensor

    Science.gov (United States)

    Winterhalter, Daniel; Smith, Edward

    1994-01-01

    Compact sensor measures both electric and magnetic fields. Includes both short electric-field dipole and search-coil magnetometer. Three mounted orthogonally providing triaxial measurements of electromagnetic field at frequencies ranging from near 0 to about 10 kHz.

  1. Imaging electric field dynamics with graphene optoelectronics

    Science.gov (United States)

    Horng, Jason; Balch, Halleh B.; McGuire, Allister F.; Tsai, Hsin-Zon; Forrester, Patrick R.; Crommie, Michael F.; Cui, Bianxiao; Wang, Feng

    2016-12-01

    The use of electric fields for signalling and control in liquids is widespread, spanning bioelectric activity in cells to electrical manipulation of microstructures in lab-on-a-chip devices. However, an appropriate tool to resolve the spatio-temporal distribution of electric fields over a large dynamic range has yet to be developed. Here we present a label-free method to image local electric fields in real time and under ambient conditions. Our technique combines the unique gate-variable optical transitions of graphene with a critically coupled planar waveguide platform that enables highly sensitive detection of local electric fields with a voltage sensitivity of a few microvolts, a spatial resolution of tens of micrometres and a frequency response over tens of kilohertz. Our imaging platform enables parallel detection of electric fields over a large field of view and can be tailored to broad applications spanning lab-on-a-chip device engineering to analysis of bioelectric phenomena.

  2. Entanglement Generation by Electric Field Background

    OpenAIRE

    Ebadi, Zahra; Mirza, Behrouz

    2014-01-01

    The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fer...

  3. Entanglement Generation by Electric Field Background

    CERN Document Server

    Ebadi, Zahra

    2014-01-01

    The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

  4. Plasma heating by electric field compression.

    Science.gov (United States)

    Avinash, K; Kaw, P K

    2014-05-09

    Plasma heating by compression of electric fields is proposed. It is shown that periodic cycles of external compression followed by the free expansion of electric fields in the plasma cause irreversible, collisionless plasma heating and corresponding entropy generation. As a demonstration of general ideas and scalings, the heating is shown in the case of a dusty plasma, where electric fields are created due to the presence of charged dust. The method is expected to work in the cases of compression of low frequency or dc electric fields created by other methods. Applications to high power laser heating of plasmas using this scheme are discussed.

  5. Electric field domain interface in helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Sanuki, Heiji; Toda, Shinichiro; Yokoyama, Masayuki [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Research Institute for Applied Mechanics, Kasuga, Fukuoka (Japan); Fukuyama, Atsushi [Kyoto Univ., Department of Nuclear Engineering, Kyoto (Japan)

    2001-07-01

    The electric field bifurcation in helical plasmas under the condition of continuous fluxes is investigated. The stationary solution of the transport equation, together with charge neutrality condition, is investigated. It is shown that the anomalous flux plays an important role in determining multiple electric field solutions. The transition to the branch with a strong positive electric field occurs when the heat flux exceeds a critical value. Condition for the presence of transition is obtained. The radial structure of the electric field domain interface is obtained. The condition that the suppression of turbulence is expected to occur is discussed. Comparison with experimental observation is briefly mentioned. (author)

  6. Electric field soundings through thunderstorms

    Science.gov (United States)

    Marshall, Thomas C.; Rust, W. D.

    1991-01-01

    Twelve balloon soundings of the electric field in thunderstorms are reported. The maximum magnitude of E in the storms averaged 96 +/-28 kV/m, with the largest being 146 kV/m. The maximum was usually observed between vertically adjacent regions of opposite charge. Using a 1D approximation to Gauss' law, four to ten charge regions in the storms are inferred. The magnitude of the density in the charge regions varied between 0.2 and 13 nC/cu m. The vertical extent of the charge regions ranged from 130 to 2100 m. None of the present 12 storms had charge distributions that fit the long-accepted model of Simpson et al. (1937, 1941) of a lower positive charge, a main negative charge, and an upper positive charge. In addition to regions similar to the Simpson model, the present storms had screening layers at the upper and lower cloud boundaries and extra charge regions, usually in the lower part of the cloud.

  7. Cavity-enhanced field-free molecular alignment at high repetition rate

    CERN Document Server

    Benko, Craig; Allison, Thomas K; Labaye, François; Ye, Jun

    2015-01-01

    Extreme ultraviolet frequency combs are a versatile tool with applications including precision measurement, strong-field physics, and solid-state physics. Here we report on an application of extreme ultraviolet frequency combs and their driving lasers to studying strong-field effects in molecular systems. We perform field-free molecular alignment and high-order hamonic generation with aligned molecules in a gas jet at 154 MHz repetition rate using a high-powered optical frequency comb inside a femtosecond enhancement cavity. The cavity-enhanced system provides means to reach suitable intensities to study field-free molecular alignment and enhance the observable effects of the molecule-field interaction. We observe modulations of the driving field, arising from the nature of impulsive stimulated Raman scattering responsible for coherent molecular rotations. We foresee impact of this work on the study of molecule-based strong-field physics, with improved precision and a more fundamental understanding of the int...

  8. Electric Potential and Electric Field Imaging with Applications

    Science.gov (United States)

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  9. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value ar

  10. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  11. Rotating artificial gauge magnetic and electric fields

    CERN Document Server

    Lembessis, V E; Alshamari, S; Siddig, A; Aldossary, O M

    2016-01-01

    We consider the creation of artificial gauge magnetic and electric fields created when a two-level atom interacts with an optical Ferris wheel light field.These fields have the spatial structure of the optical Ferris wheel field intensity profile. If this optical field pattern is made to rotate in space then we have the creation of artificial electromagnetic fields which propagate in closed paths. The properties of such fields are presented and discussed

  12. Nanorod dynamics in ac electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Ruda, H E; Shik, A [Centre for Advanced Nanotechnology, University of Toronto, Toronto, M5S 3E3 (Canada)

    2010-06-11

    Metal and semiconductor nanorods polarized by an external electric field tend to align parallel to this field. We derived the equation of motion for this alignment, taking into account electrostatic forces, thermal fluctuations and viscous resistance of the liquid the nanorods are suspended in. It was solved for a strong ac electric field, as well as for the combination of strong dc and weak ac fields. The results were used for calculations of the capacity of the nanorod solution, its frequency dispersion and dependence on the field strength. Modification of the nanorod absorption spectra under the influence of an electric field was also considered. It was shown that metal nanorods in laser radiation, with the frequency belonging to the interval between longitudinal and transverse plasmon modes, tend to align perpendicular, rather than parallel, to the optical electric field.

  13. Sensing electric fields using single diamond spins

    CERN Document Server

    Dolde, Florian; Doherty, Marcus W; Nöbauer, Tobias; Rempp, Florian; Balasubramanian, Gopalakrishnan; Wolf, Thomas; Reinhard, Friedemann; Hollenberg, Lloyd C L; Jelezko, Fedor; Wrachtrup, Jörg

    2011-01-01

    The ability to sensitively detect charges under ambient conditions would be a fascinating new tool benefitting a wide range of researchers across disciplines. However, most current techniques are limited to low-temperature methods like single-electron transistors (SET), single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we open up a new quantum metrology technique demonstrating precision electric field measurement using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC electric field sensitivity reaching ~ 140V/cm/\\surd Hz has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of ~ 150 nm from our spin sensor with averaging for one second. By careful analysis of the electronic structure of the defect centre, we show how an applied magnetic field influences the electric field sensing properties. By this we demonstrate that diamond defect centre spins can be switched between electric and magneti...

  14. Electric Field Generation in Martian Dust Devils

    Science.gov (United States)

    Barth, Erika L.; Farrell, William M.; Rafkin, Scot C. R.

    2015-01-01

    Terrestrial dust devils are known to generate electric fields from the vertical separation of charged dust particles. The particles present within the dust devils on Mars may also be subject to similar charging processes and so likely contribute to electric field generation there as well. However, to date, no Marsin situ instrumentation has been deployed to measure electric field strength. In order to explore the electric environment of dust devils on Mars, the triboelectric dust charging physics from the MacroscopicTriboelectric Simulation (MTS) code has been coupled to the Mars Regional Atmospheric ModelingSystem (MRAMS). Using this model, we examine how macroscopic electric fields are generated within martian dust disturbances and attempt to quantify the time evolution of the electrodynamical system.Electric fields peak for several minutes within the dust devil simulations. The magnitude of the electric field is a strong function of the size of the particles present, the average charge on the particles and the number of particles lifted. Varying these parameters results in peak electric fields between tens of millivolts per meter and tens of kilovolts per meter.

  15. Threshold electric field in unconventional density waves

    Science.gov (United States)

    Dóra, Balázs; Virosztek, Attila; Maki, Kazumi

    2001-07-01

    As it is well known most charge-density waves (CDW's) and spin-density waves exhibit nonlinear transport with well-defined threshold electric field ET. Here we study theoretically the threshold electric field of unconventional density waves. We find that the threshold field increases monotonically with temperature without divergent behavior at Tc, unlike the one in conventional CDW. The present result in the three-dimensional weak pinning limit appears to describe rather well the threshold electric field observed recently in the low-temperature phase of α-(BEDT-TTF)2KHg(SCN)4.

  16. Resistive memory effects in BiFeO3 single crystals controlled by transverse electric fields

    Science.gov (United States)

    Kawachi, S.; Kuroe, H.; Ito, T.; Miyake, A.; Tokunaga, M.

    2016-04-01

    The effects of electric fields perpendicular to the c-axis of the trigonal cell in single crystals of BiFeO3 are investigated through magnetization and resistance measurements. Magnetization and resistance exhibit hysteretic changes under applied electric fields, which can be ascribed to the reorientation of the magnetoelectric domains. Samples are repetitively switched between high- and low-resistance states by changing the polarity of the applied electric fields over 20 000 cycles at room temperature. These results demonstrate the potential of BiFeO3 for use in non-volatile memory devices.

  17. Electric Field Screening by the Proximity of Two Knife-Edge Field Emitters of Finite Width

    Science.gov (United States)

    Wong, P.; Tang, W.; Lau, Y. Y.; Hoff, B.

    2015-11-01

    Field emitter arrays have the potential to provide high current density, low voltage operation, and high pulse repetition for radar and communication. It is well known that packing density of the field emitter arrays significantly affect the emission current. Previously we calculated analytically the electric field profile of two-dimensional knife-edge cathodes with arbitrary separation by using a Schwarz-Christoffel transformation. Here we extend this previous work to include the finite width of two identical emitters. From the electric field profile, the field enhancement factor, thereby the severity of the electric field screening, are determined. It is found that for two identical emitters with finite width, the magnitude of the electric field on the knife-edge cathodes depends strongly on the ratio h / a and h / r , where h is the height of the knife-edge cathode, 2a is the distance between the cathodes, and 2 r represents their width. Particle-in-cell simulations are performed to compare with the analytical results on the emission current distribution. P. Y. Wong was supported by a Directed Energy Summer Scholar internship at Air Force Research Laboratory, Kirtland AFB, and by AFRL Award No. FA9451-14-1-0374.

  18. ELECTRIC AND MAGNETIC FIELDS ELECTRIC AND GASOLINE-POWERED VEHICLES.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m(-1) for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m(-1) for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model.

  19. The Electric Field of a Weakly Electric Fish

    Science.gov (United States)

    Rasnow, Brian K.

    Freshwater fish of the genus Apteronotus (family Gymnotidae) generate a weak, high frequency electric field (electroreception. Temporal jitter of the periodic field is less than 1 musec. However, electrocyte activity is not globally synchronous along the fish's electric organ. The propagation of electrocyte activation down the fish's body produces a rotation of the electric field vector in the caudal part of the fish. This may assist the fish in identifying nonsymmetrical objects, and could also confuse electrosensory predators that try to locate Apteronotus by following its fieldlines. The propagation also results in a complex spatiotemporal pattern of the EOD potential near the fish. Visualizing the potential on the same and different fish over timescales of several months suggests that it is stable and could serve as a unique signature for individual fish. Measurements of the electric field were used to calculate the effects of simple objects on the fish's electric field. The shape of the perturbation or "electric image" on the fish's skin is relatively independent of a simple object's size, conductivity, and rostrocaudal location, and therefore could unambiguously determine object distance. The range of electrolocation may depend on both the size of objects and their rostrocaudal location. Only objects with very large dielectric constants cause appreciable phase shifts, and these are strongly dependent on the water conductivity.

  20. Interaction Between Flames and Electric Fields Studied

    Science.gov (United States)

    Yuan, Zeng-Guang; Hegde, Uday

    2003-01-01

    The interaction between flames and electric fields has long been an interesting research subject that has theoretical importance as well as practical significance. Many of the reactions in a flame follow an ionic pathway: that is, positive and negative ions are formed during the intermediate steps of the reaction. When an external electric field is applied, the ions move according to the electric force (the Coulomb force) exerted on them. The motion of the ions modifies the chemistry because the reacting species are altered, it changes the velocity field of the flame, and it alters the electric field distribution. As a result, the flame will change its shape and location to meet all thermal, chemical, and electrical constraints. In normal gravity, the strong buoyant effect often makes the flame multidimensional and, thus, hinders the detailed study of the problem.

  1. Local electric field measurements by optical tweezers

    Directory of Open Access Journals (Sweden)

    G. Pesce

    2011-09-01

    Full Text Available We report a new technique to measure direction and amplitude of electric fields generated by microelectrodes embedded in polar liquid environment, as often used in microfluidic devices. The method is based on optical tweezers which act as sensitive force transducer while a trapped charged microsphere behaves as a probe. When an electric field is applied the particles moves from its equilibrium position and finishes in a new equilibrium position where electric and optical forces are balanced. A trapped bead is moved to explore the electric field in a wide region around the microelectrodes. In such way maps of electric fields with high spatial resolution can be reconstructed even for complex electrode geometries where numerical simulation approaches can fail. Experimental results are compared with calculations based on finite element analysis simulation.

  2. Field distribution of epidural electrical stimulation.

    Science.gov (United States)

    Xie, Xiaobo; Cui, Hong yan; Xu, Shengpu; Hu, Yong

    2013-11-01

    Epidural electrical stimulation has been applied in clinics for many years. However, there is still a concern about possible injury to spinal nerves. This study investigated electrical field and current density distribution during direct epidural electrical stimulation. Field distribution models were theoretically deduced, while the distribution of potentials and current were analyzed. The current density presented an increase of 70-80%, with one peak value ranging from -85° to 85° between the two stimulated poles. The effect of direct epidural electrical stimulation is mainly on local tissue surrounding the electrodes, concentrated around the two stimulated positions. © 2013 Elsevier Ltd. All rights reserved.

  3. Magnetotail electric fields observed from lunar orbit

    Science.gov (United States)

    Mccoy, J. E.; Lin, R. P.; Mcguire, R. E.; Chase, L. M.; Anderson, K. A.

    1975-01-01

    Direct observations of convection electric fields in the earth's magnetotail are reported. The electric fields have been measured from lunar orbit by detection of the E x B/B-squared drift displacement of low-energy electrons at the limb of the moon. It is found that electric fields range in magnitude from a value less than or equal to 0.02 mV/m, the limit of sensitivity of the method, to 2 mV/M. The typical value is 0.15 mV/M, and the corresponding convection velocity is 15 km/s. The sense of the electric field is almost always dawn to dusk. The electric field is often variable on a time scale of hours and sometimes minutes. The observations indicate that the electric field is not uniform across the magnetotail. If it is assumed that the typical measured electric-field value represents an average over the inhomogeneities, the potential drop across the entire tail is of the order of 40 kV.

  4. Molecular dynamics in high electric fields

    Science.gov (United States)

    Apostol, M.; Cune, L. C.

    2016-06-01

    Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called "dipolons"); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  5. Numerical Study of Electric Field Enhanced Combustion

    KAUST Repository

    Han, Jie

    2016-12-26

    Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments have been carried out to study electric field enhanced combustion, they are not sufficient to explain how the ions in a flame are affected by an electric field. It is therefore necessary to investigate the problem through numerical simulations. In the present work, the electric structure of stabilized CH4/air premixed flames at atmospheric pressure within a direct current field is studied using numerical simulations. This study consists of three parts. First, the transport equations are derived from the Boltzmann kinetic equation for each individual species. Second, a general method for computing the diffusivity and mobility of ions in a gas mixture is introduced. Third, the mechanisms for neutral and charged species are improved to give better predictions of the concentrations of charged species, based on experimental data. Following from this, comprehensive numerical results are presented, including the concentrations and fluxes of charged species, the distributions of the electric field and electric potential, and the electric current-voltage relation. Two new concepts introduced with the numerical results are the plasma sheath and dead zone in the premixed flame. A reactive plasma sheath and a Boltzmann relation sheath are discovered in the region near the electrodes. The plasma sheath penetrates into the flame gas when a voltage is applied, and penetrating further if the voltage is higher. The zone outside the region of sheath penetration is defined as the dead zone. With the two concepts, analytical solutions for the electric field, electric potential and current-voltage curve are derived. The solutions directly describe the electric structure of a premixed flame subject to a DC field. These analytical solutions

  6. Effects of repetitive facilitative exercise with neuromuscular electrical stimulation, vibratory stimulation and repetitive transcranial magnetic stimulation of the hemiplegic hand in chronic stroke patients.

    Science.gov (United States)

    Etoh, Seiji; Noma, Tomokazu; Takiyoshi, Yuko; Arima, Michiko; Ohama, Rintaro; Yokoyama, Katsuya; Hokazono, Akihiko; Amano, Yumeko; Shimodozono, Megumi; Kawahira, Kazumi

    2016-11-01

    Repetitive facilitative exercise (RFE) is a developed approach to the rehabilitation of hemiplegia. RFE can be integrated with neuromuscular electrical stimulation (NMES), direct application of vibratory stimulation (DAVS) and repetitive transcranial magnetic stimulation (rTMS). The aims of the present study were to retrospectively compare the effects of RFE and NMES, DAVS with those of RFE and rTMS, and to determine the maximal effect of the combination of RFE with NMES, DAVS, rTMS and pharmacological treatments in stroke patients. Thirty-three stroke patients were enrolled and divided into three groups: 15 who received RFE with rTMS (4 min) (TMS4 alone), 9 who received RFE with NMES, DAVS (NMES, DAVS alone) and 9 who received RFE with NMES, DAVS and rTMS (10 min) (rTMS10 + NMES, DAVS). The subjects performed the Fugl-Meyer Assessment (FMA) and Action Research Arm Test (ARAT) before and after the 2-week session. The 18 patients in the NMES, DAVS alone and rTMS10 + NMES, DAVS group underwent the intervention for 4 weeks. There were no significant differences in the increases in the FMA, ARAT scores in the three groups. The FMA or ARAT scores in the NMES, DAVS alone and the rTMS10 + NMES, DAVS group were increased significantly. The FMA and ARAT scores were significantly improved after 4 weeks in the NMES, DAVS alone group. RFE with NMES, DAVS may be more effective than RFE with rTMS for the recovery of upper-limb function. Patients who received RFE with NMES, DAVS and pharmacological treatments showed significant functional recovery.

  7. Introduction to power-frequency electric and magnetic fields.

    OpenAIRE

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conduct...

  8. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  9. Electric field imaging of single atoms.

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-05-30

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures.

  10. Electric field control of the magnetocaloric effect.

    Science.gov (United States)

    Gong, Yuan-Yuan; Wang, Dun-Hui; Cao, Qing-Qi; Liu, En-Ke; Liu, Jian; Du, You-Wei

    2015-02-04

    Through strain-mediated magnetoelectric coupling, it is demonstrated that the magnetocaloric effect of a ferromagnetic shape-memory alloy can be controlled by an electric field. Large hysteresis and the limited operating temperature region are effectively overcome by applying an electric field on a laminate comprising a piezoelectric and the alloy. Accordingly, a model for an active magnetic refrigerator with high efficiency is proposed in principle.

  11. Swarm equatorial electric field chain: First results

    OpenAIRE

    Alken, P; Maus, S.; A. Chulliat; Vigneron, P.; Sirol, O.; Hulot, G.

    2015-01-01

    International audience; The eastward equatorial electric field (EEF) in the E region ionosphere drives many important phenomena at low latitudes. We developed a method of estimating the EEF from magnetometer measurements of near-polar orbiting satellites as they cross the magnetic equator, by recovering a clean signal of the equatorial electrojet current and modeling the observed current to determine the electric field present during the satellite pass. This algorithm is now implemented as an...

  12. GEM Detector Electric Field Simulation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    GEM (Gas Electron Multiplier) detectors have been widely employed in the experimental field of high energy physics and nuclear physics. As a successor to drift chambers, GEMs are much easier to fabricate and have a much higher spatial resolution

  13. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  14. Stability of Spherical Vesicles in Electric Fields

    Science.gov (United States)

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  15. Rotationally Vibrating Electric-Field Mill

    Science.gov (United States)

    Kirkham, Harold

    2008-01-01

    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  16. Electric field measurements from Halley, Antarctica

    Science.gov (United States)

    Nicoll, Keri; Harrison, R. Giles

    2016-04-01

    Antarctica is a unique location for the study of atmospheric electricity. Not only is it one of the most pollutant free places on Earth, but its proximity to the south magnetic pole means that it is an ideal location to study the effects of solar variability on the atmospheric electric field. This is due to the reduced shielding effect of the geomagnetic field at the poles which leads to a greater flux of incoming Galactic Cosmic Rays (GCRs) as well as an increased probability of energetic particle precipitation from SEPs and relativistic electrons. To investigate such effects, two electric field mills of different design were installed at the British Antarctic Survey Halley base in February 2015 (75. 58 degrees south, 26.66 degrees west). Halley is situated on the Brunt Ice Shelf in the south east of the Weddell Sea and has snow cover all year round. Preliminary analysis has focused on selection of fair weather criteria using wind speed and visibility measurements which are vital to assess the effects of falling snow, blowing snow and freezing fog on the electric field measurements. When the effects of such adverse weather conditions are removed clear evidence of the characteristic Carnegie Curve diurnal cycle exists in the Halley electric field measurements (with a mean value of 50V/m and showing a 40% peak to peak variation in comparison to the 34% variation in the Carnegie data). Since the Carnegie Curve represents the variation in thunderstorm activity across the Earth, its presence in the Halley data confirms the presence of the global atmospheric electric circuit signal at Halley. The work presented here will discuss the details of the Halley electric field dataset, including the variability in the fair weather measurements, with a particular focus on magnetic field fluctuations.

  17. Stratospheric electric field measurements with transmediterranean balloons

    Science.gov (United States)

    de La Morena, B. A.; Alberca, L. F.; Curto, J. J.; Holzworth, R. H.

    1993-01-01

    The horizontal component of the stratospheric electric field was measured using a balloon in the ODISEA Campaign of Transmediterranean Balloon Program. The balloon flew between Trapani (Sicily) and El Arenosillo (Huelva, Spain) along the 39 deg N parallel at a height between 34 and 24 km. The high values found for the field on fair-weather and its quasi-turbulent variation, both in amplitude and direction, are difficult to explain with the classical electric field source. A new source, first described by Holzworth (1989), is considered as possibly causing them.

  18. Schwinger effect in inhomogeneous electric fields

    CERN Document Server

    Hebenstreit, Florian

    2011-01-01

    The vacuum of quantum electrodynamics is unstable against the formation of many-body states in the presence of an external electric field, manifesting itself as the creation of electron-positron pairs (Schwinger effect). This effect has been a long-standing but still unobserved prediction as the generation of the required field strengths has not been feasible so far. However, due to the advent of a new generation of high-intensity laser systems such as the European XFEL or the Extreme Light Infrastructure (ELI), this effect might eventually become observable within the next decades. Based on the equal-time Wigner formalism, various aspects of the Schwinger effect in electric fields showing both temporal and spatial variations are investigated. Regarding the Schwinger effect in time-dependent electric fields, analytic expressions for the equal-time Wigner function in the presence of a static as well as a pulsed electric field are derived. Moreover, the pair creation process in the presence of a pulsed electric...

  19. Sintering of Ceramic Materials Under Electric Field

    OpenAIRE

    Naik , Kiran Suresh

    2014-01-01

    The remarkable discovery of flash sintering came across during the early work of Cologna et al. and emerged as an attractive technique in the field of ceramic processing. In this technique the applied electric field initiates the “flash” event, while the densification is controlled by the current density set. Sintering occurs in less than 5 s at a threshold temperature for a given applied field. The objective of this thesis is to analyse the phenomena of flash sintering with different cer...

  20. Possible mechanism of electrical field origin around celestial bodies

    OpenAIRE

    Bisnovatyi-Kogan, G. S.

    2002-01-01

    Slow magnetic field variations in stars and planets create a quasistationary electrical field which may be observed. It is supposed that the electrical field near the Earth surface may be partially connected with variation of the Earth magnetic field. Two examples of the electrical field distribution around the infinite cylinder, and the circular loop with a lineary growing with time electrical currents are given.

  1. Microwave electric field sensing with Rydberg atoms

    Science.gov (United States)

    Stack, Daniel T.; Kunz, Paul D.; Meyer, David H.; Solmeyer, Neal

    2016-05-01

    Atoms form the basis of precise measurement for many quantities (time, acceleration, rotation, magnetic field, etc.). Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. Highly-excited (Rydberg) neutral atoms have very large electric-dipole moments and many dipole allowed transitions in the range of 1 - 500 GHz. It is possible to sensitively probe the electric field in this range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This technique allows for very sensitive field amplitude, polarization, and sub-wavelength imaging measurements. These quantities can be extracted by measuring properties of a probe laser beam as it passes through a warm rubidium vapor cell. Thus far, Rydberg microwave electrometry has relied upon the absorption of the probe laser. We report on our use of polarization rotation, which corresponds to the real part of the susceptibility, for measuring the properties of microwave frequency electric fields. Our simulations show that when a magnetic field is present and directed along the optical propagation direction a polarization rotation signal exists and can be used for microwave electrometry. One central advantage in using the polarization rotation signal rather than the absorption signal is that common mode laser noise is naturally eliminated leading to a potentially dramatic increase in signal-to-noise ratio.

  2. Schwinger Pair Production in Pulsed Electric Fields

    CERN Document Server

    Kim, Sang Pyo; Ruffini, Remo

    2012-01-01

    We numerically investigate the temporal behavior and the structure of longitudinal momentum spectrum and the field polarity effect on pair production in pulsed electric fields in scalar quantum electrodynamics (QED). Using the evolution operator expressed in terms of the particle and antiparticle operators, we find the exact quantum states under the influence of electric pulses and measure the number of pairs of the Minkowski particle and antiparticle. The number of pairs, depending on the configuration of electric pulses, exhibits rich structures in the longitudinal momentum spectrum and undergoes diverse dynamical behaviors at the onset of the interaction but always either converges to a momentum-dependent constant or oscillates around a momentum-dependent time average after the completion of fields.

  3. Electric field induced deformation of sessile drops

    Science.gov (United States)

    Corson, Lindsey; Tsakonas, Costas; Duffy, Brian; Mottram, Nigel; Brown, Carl; Wilson, Stephen

    2014-11-01

    The ability to control the shape of a drop with the application of an electric field has been exploited for many technological applications including measuring surface tension, producing an optical display device, and optimising the optical properties of microlenses. In this work we consider, both theoretically and experimentally, the deformation of pinned sessile drops with contact angles close to either 0° or 90° resting on the lower substrate inside a parallel plate capacitor due to an A.C. electric field. Using both asymptotic and numerical approaches we obtain predictive equations for the static and dynamic drop shape deformations as functions of the key experimental parameters (drop size, capacitor plate separation, electric field magnitude and contact angle). The asymptotic results agree well with the experimental results for a range of liquids. We gratefully acknowledge the financial support of EPSRC via research Grants EP/J009865 and EP/J009873.

  4. Electric field controlled emulsion phase contactor

    Science.gov (United States)

    Scott, Timothy C.

    1995-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  5. Quasi-Static Electric Field Generator

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  6. Electric-field-stimulated protein mechanics.

    Science.gov (United States)

    Hekstra, Doeke R; White, K Ian; Socolich, Michael A; Henning, Robert W; Šrajer, Vukica; Ranganathan, Rama

    2016-12-15

    The internal mechanics of proteins-the coordinated motions of amino acids and the pattern of forces constraining these motions-connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2(PDZ2)) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function.

  7. Microfluidic Screening of Electric Fields for Electroporation

    Science.gov (United States)

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-02-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes.

  8. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... by DE 1. The selected passes, which occurred during substorm expansion phase, maximum, or early recovery phase, cover the entire nighttime substorm. The organization of the data used the method developed by Fujii et al. [1994], which divided the data into six local time sectors covering the nighttime...

  9. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  10. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  11. Electric field stimulated growth of Zn whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Niraula, D.; McCulloch, J.; Irving, R.; Karpov, V. G. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Warrell, G. R.; Shvydka, Diana, E-mail: diana.shvydka@utoledo.edu [Department of Radiation Oncology, University of Toledo Health Science Campus, Toledo, Ohio 43614 (United States)

    2016-07-15

    We have investigated the impact of strong (∼10{sup 4} V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  12. Electric field stimulated growth of Zn whiskers

    Science.gov (United States)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  13. Electric fields and double layers in plasmas

    Science.gov (United States)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-05-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  14. Critical electric field strengths of onion tissues treated by pulsed electric fields.

    Science.gov (United States)

    Asavasanti, Suvaluk; Ersus, Seda; Ristenpart, William; Stroeve, Pieter; Barrett, Diane M

    2010-09-01

    The impact of pulsed electric fields (PEF) on cellular integrity and texture of Ranchero and Sabroso onions (Allium cepa L.) was investigated. Electrical properties, ion leakage rate, texture, and amount of enzymatically formed pyruvate were measured before and after PEF treatment for a range of applied field strengths and number of pulses. Critical electric field strengths or thresholds (E(c)) necessary to initiate membrane rupture were different because dissimilar properties were measured. Measurement of electrical characteristics was the most sensitive method and was used to detect the early stage of plasma membrane breakdown, while pyruvate formation by the enzyme alliinase was used to identify tonoplast membrane breakdown. Our results for 100-μs pulses indicate that breakdown of the plasma membrane occurs above E(c)= 67 V/cm for 10 pulses, but breakdown of the tonoplast membrane is above either E(c)= 200 V/cm for 10 pulses or 133 V/cm for 100 pulses. This disparity in field strength suggests there may be 2 critical electrical field strengths: a lower field strength for plasma membrane breakdown and a higher field strength for tonoplast membrane breakdown. Both critical electric field strengths depended on the number of pulses applied. Application of a single pulse at an electric field up to 333 V/cm had no observable effect on any measured properties, while significant differences were observed for n≥10. The minimum electric field strength required to cause a measurable property change decreased with the number of pulses. The results also suggest that PEF treatment may be more efficient if a higher electric field strength is applied for a fewer pulses.

  15. Multilayer graphene under vertical electric field

    OpenAIRE

    Kumar, S. Bala; GUO, Jing

    2011-01-01

    We study the effect of vertical electric field (E-field) on the electronic properties of multilayer graphene. We show that the effective mass, electron velocity and density-of-state of a bilayer graphene are modified under the E-field. We also study the transformation of the band structure of multilayer graphenes. E-field induces finite (zero) bandgap in the even (odd)-layer ABA-stacking graphene. On the other hand, finite bandgap is induced in all ABC-stacking graphene. We also identify the ...

  16. Particle creation by peak electric field

    CERN Document Server

    Adorno, T C; Gitman, D M

    2016-01-01

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially-increasing and another exponentially-decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered.

  17. Particle creation by peak electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Gavrilov, S.P. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)

    2016-08-15

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially increasing and another exponentially decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered. (orig.)

  18. Health of workers exposed to electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, D.E.; Broadbent, M.H.; Male, J.C.; Jones, M.R.

    1985-02-01

    The results of health questionnaire interviews with 390 electrical power transmission and distribution workers, together with long term estimates of their exposure to 50 Hz electric fields, and short term measurements of the actual exposure for 287 of them are reported. Twenty eight workers received measurable exposures, averaging about 30 kVm-1h over the two week measurement period. Estimated exposure rates were considerably greater, but showed fair correlation with the measurements. Although the general level of health was higher than we have found in manual workers in other industries, there were significant differences in the health measures between different categories of job, different parts of the country, and in association with factors such as overtime, working alone, or frequently changing shift. After allowing for the effects of job and location, however, we found no significant correlations of health with either measured or estimated exposure to electric fields.

  19. Leidenfrost droplets in an electric field

    Science.gov (United States)

    Wildeman, Sander; Sun, Chao; Lohse, Detlef

    2014-11-01

    In a recent video broadcast dubbed the ``Knitting Needle Experiment,'' astronaut Don Petit aboard the ISS demonstrated how weightless water droplets can be made to orbit a statically charged Teflon rod. We study the earthly analogue of mobile droplets in an electric field, whereby the mobility is ensured by a thin vapor film sustained between the droplet and a hot plate (the Leidenfrost effect). We find that in a strong vertical electric field the droplet starts to bounce progressively higher, defying gravitational attraction. From its trajectory we can deduce the temporal evolution of the charge on the droplet. The measurements show that the charge starts high and then decreases in a step-like manner as the droplet evaporates. The discharge trend is predicted well by treating the droplet as a dielectric sphere in electrical contact with the hot plate, but the mechanism by which definite lumps of charge are transferred through the vapor film is still an open question.

  20. Pulsed Electric Field treatment of packaged food

    NARCIS (Netherlands)

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal

  1. Workshop on Biophysics of Transmembrane Electric Fields

    Science.gov (United States)

    1990-11-15

    research on the ionic mechanisms of electric-field detection. To obtain detailed information on the electroreceptive membrane and its ionic channels...not to all cells, tissues, and organs of the human body. The electroreceptive membranes also provide a unique opportunity for com- paring the ionic

  2. Modelling electricity forward markets by ambit fields

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Fred Espen Benth, Fred Espen; Veraart, Almut

    This paper proposes a new modelling framework for electricity forward markets, which is based on ambit fields. The new model can capture many of the stylised facts observed in energy markets. One of the main differences to the traditional models lies in the fact that we do not model the dynamics...

  3. Motional Spin Relaxation in Large Electric Fields

    CERN Document Server

    Schmid, Riccardo; Filippone, B W

    2008-01-01

    We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}\\mathrm{He}$ atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}\\mathrm{He}$ samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}\\mathrm{He}$ atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}\\mathrm{He}$ atoms at temperatures below $600 \\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, ...

  4. Preliminary Studies on Pulsed Electric Field Breakdown of Lead Azide

    Science.gov (United States)

    1976-10-01

    1/2 OS CO ton NO. S3L TECHNICAL REPORT 4991 PRELIMINARY SUJDfES ON PULSED ELECTRIC FIELD BREAKDOWN OF LEAD AZIDE L AVRAMI M. BUMS D. DOWNS...Introduction Background A. Contact Effects B. Pulsed Electric Field Measurements Experimental A. Contact Effects B. Pulsed Electric Fields Discussion...B. Pulsed Electric Field Measurements The application of pulsed electric fields to lead azide does not exactly simulate the conditions experienced

  5. Tikekar superdense stars in electric fields

    Science.gov (United States)

    Komathiraj, K.; Maharaj, S. D.

    2007-04-01

    We present exact solutions to the Einstein-Maxwell system of equations with a specified form of the electric field intensity by assuming that the hypersurface {t=constant} are spheroidal. The solution of the Einstein-Maxwell system is reduced to a recurrence relation with variable rational coefficients which can be solved in general using mathematical induction. New classes of solutions of linearly independent functions are obtained by restricting the spheroidal parameter K and the electric field intensity parameter α. Consequently, it is possible to find exact solutions in terms of elementary functions, namely, polynomials and algebraic functions. Our result contains models found previously including the superdense Tikekar neutron star model [J. Math. Phys. 31, 2454 (1990)] when K=-7 and α=0. Our class of charged spheroidal models generalize the uncharged isotropic Maharaj and Leach solutions [J. Math. Phys. 37, 430 (1996)]. In particular, we find an explicit relationship directly relating the spheroidal parameter K to the electromagnetic field.

  6. Repetitive precision gravity studies at the Cerro Prieto and Heber geothermal fields

    Science.gov (United States)

    Grannell, R. B.

    1982-09-01

    To study subsidence and mass removal, a precise gravity network was established on 60 permanent monuments in the Cerro Prieto geothermal field in early 1978, and repeated annually through early 1981; the survey was tied to two bedrock sites outside the limits of the current production zone. The looping technique of station occupation was utilized, in which occupation of the base was followed by occupation of several stations, followed by a return to the base. Use of two LaCoste and Romberg gravity meters, and replication of values within loops as well as entire loops, enhanced precision such that the median standard deviations of the base-to-station differences, reduced to observed gravity values, ranged from 7 to 15 microgals for individual surveys. The smaller values were obtained as field and data reduction techniques were improved and experience was gained. A similar survey was initiated in the Heber area just north of the Mexican border in early 1980. It too was established on permanent monuments, was tied to bedrock stations outside the geothermal area, and used multiple repetitions of values with two meters to achieve high precision.

  7. Repetition suppression and expectation suppression are dissociable in time in early auditory evoked fields.

    Science.gov (United States)

    Todorovic, Ana; de Lange, Floris P

    2012-09-26

    Repetition of a stimulus, as well as valid expectation that a stimulus will occur, both attenuate the neural response to it. These effects, repetition suppression and expectation suppression, are typically confounded in paradigms in which the nonrepeated stimulus is also relatively rare (e.g., in oddball blocks of mismatch negativity paradigms, or in repetition suppression paradigms with multiple repetitions before an alternation). However, recent hierarchical models of sensory processing inspire the hypothesis that the two might be separable in time, with repetition suppression occurring earlier, as a consequence of local transition probabilities, and suppression by expectation occurring later, as a consequence of learnt statistical regularities. Here we test this hypothesis in an auditory experiment by orthogonally manipulating stimulus repetition and stimulus expectation and, using magnetoencephalography, measuring the neural response over time in human subjects. We found that stimulus repetition (but not stimulus expectation) attenuates the early auditory response (40-60 ms), while stimulus expectation (but not stimulus repetition) attenuates the subsequent, intermediate stage of auditory processing (100-200 ms). These findings are well in line with hierarchical predictive coding models, which posit sequential stages of prediction error resolution, contingent on the level at which the hypothesis is generated.

  8. Conically shaped drops in electric fields

    Science.gov (United States)

    Stone, Howard A.; Brenner, Michael P.; Lister, John R.

    1996-11-01

    When an electric field is applied to a dielectric liquid containing a suspended immiscible fluid drop, the drop deforms into a prolate ellipsoidal shape. Above a critical field strength the drop develops conical ends, as first observed by Zeleny [Phys. Rev. 10, 1 (1917)] and Wilson & Taylor [Proc. Camb. Phil. Soc. 22, 728 (1925)] for, respectively, the case of conducting drops and soap films in air. The case of two dielectric liquids was studied recently using a slender drop approximation by Li, Halsey & Lobkovsky [Europhys. Lett 27, 575 (1994)]. In this presentation we further develop the slender body approximation to obtain coupled ordinary differential equations for the electric field and the drop shape. Analytical formulae are derived which approximately give the cone angle as a function of the dielectric constant ratio between the two fluids, and the minimum applied electric field at which conical tips first form as a function of the dielectric constant ratio. Finally, drops shapes are calculated numerically and compared with the common prolate shape assumption.

  9. Electric Field and Humidity Trigger Contact Electrification

    Directory of Open Access Journals (Sweden)

    Yanzhen Zhang

    2015-01-01

    Full Text Available Here, we study the old problem of why identical insulators can charge one another on contact. We perform several experiments showing that, if driven by a preexisting electric field, charge is transferred between contacting insulators. This transfer happens because the insulator surfaces adsorb small amounts of water from a humid atmosphere. We believe the electric field then separates positively from negatively charged ions prevailing within the water, which we believe to be hydronium and hydroxide ions, such that at the point of contact, positive ions of one insulator neutralize negative ions of the other one, charging both of them. This mechanism can explain for the first time the observation made four decades ago that wind-blown sand discharges in sparks if and only if a thunderstorm is nearby.

  10. Broadband Electric-Field Sensor Array Technology

    Science.gov (United States)

    2012-08-05

    the RF DUT. The RF receiver measures the power output from the photodiode, Prf. Fringing RF electric fields from a microstrip resonator circuit ...are measured by placing the ring resonators on top of the circuit . A photograph of the microstrip resonator circuit is shown in Fig. 6(b). The... circuit is a one port device and consists of a 50 Ω input line gap-coupled to a second 50 Ω microstrip line resonator. From vector network analyzer (VNA

  11. Electrohydrodynamic deformation of capsules in electric field

    Science.gov (United States)

    Das, Sudip; Thaokar, Rochish

    2016-11-01

    Micron size capsules are abundant in natural, technological and biological processes but they still require extensive investigation for better understanding of their mechanical behavior. A spherical capusle containing a Newtonian fluid bounded by a viscoelastic membrane and immersed in another Newtonian fluid, and subject to electric field is considered. Discontinuity of electrical properties such as conductivity and permittivity leads to a net Maxwell stress at the capsule interface. In response the capsule undergoes elastic deformation, leading to strain fields and elastic stresses that can balance the applied forces. We investigate this problem with fully resolved hydrodynamics in the Stokes flow limit and electrostatics using the capacitance model. Effect of AC, DC and pulsed DC fields is investigated. Our results show that membrane electrical properties have a huge impact on the equilibrium deformation as well as on the break up of capsules. Our results match with the literature results in the limit of high conductance of the membrane. Analytical theory is employed using spherical harmonics and numerical investigations are conducted using the Boundary integral method.

  12. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  13. Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership

    Science.gov (United States)

    Freire, P. F.; Pane, E.; Guaraldo, N.

    2012-12-01

    , layered stratified or showing lateral variations, ranging down to several tens of kilometers deep, reaching the crust-mantle interface (typically with the order of 30-40 km). This work aims to analyze the constraints of the current soil models being used for grounding electrodes design, and suggests the need of a soil modeling methodology compatible with large grounding systems. Concerning the aspects related to soil modeling, electrical engineers need to get aware of geophysics resources, such as: - geophysical techniques for soil electrical resistivity prospection (down to about 15 kilometers deep); and - techniques for converting field measured data, from many different geophysical techniques, into adequate soil models for grounding grid simulation. It is also important to equalize the basic knowledge for the professionals that are working together for the specific purpose of soil modeling for electrical grounding studies. The authors have experienced the situation of electrical engineers working with geophysicists, but it was not clear for the latter the effective need of the electrical engineers, and for the engineers it was unknown the available geophysical resources, and also, what to do convert the large amount of soil resistivity data into a reliable soil model.

  14. Transient electrical field across cellular membranes: pulsed electric field treatment of microbial cells

    Energy Technology Data Exchange (ETDEWEB)

    Timoshkin, I V [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); MacGregor, S J [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Fouracre, R A [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Crichton, B H [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Anderson, J G [Robertson Trust Laboratory for Electronic Sterilization Technologies (ROLEST), Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2006-02-07

    The pulsed electric field (PEF) treatment of liquid and pumpable products contaminated with microorganisms has attracted significant interest from the pulsed power and bioscience research communities particularly because the inactivation mechanism is non-thermal, thereby allowing retention of the original nutritional and flavour characteristics of the product. Although the biological effects of PEF have been studied for several decades, the physical mechanisms of the interaction of the fields with microorganisms is still not fully understood. The present work is a study of the dynamics of the electrical field both in a PEF treatment chamber with dielectric barriers and in the plasma (cell) membrane of a microbial cell. It is shown that the transient process can be divided into three physical phases, and models for these phases are proposed and briefly discussed. The complete dynamics of the time development of the electric field in a spherical dielectric shell representing the cellular membrane is then obtained using an analytical solution of the Ohmic conduction problem. It was found that the field in the membrane reaches a maximum value that could be two orders of magnitude higher than the original Laplacian electrical field in the chamber, and this value was attained in a time comparable to the field relaxation time in the chamber. Thus, the optimal duration of the field during PEF treatment should be equal to such a time.

  15. Electric Field Induced Surface Modification of Au

    Energy Technology Data Exchange (ETDEWEB)

    Erchak, A.A.; Franklin, G.F.; Houston, J.E.; Mayer, T.M.; Michalske, T.A.

    1999-02-15

    We discuss the role of localized high electric fields in the modification of Au surfaces with a W probe using the Interfacial Force Microscope. Upon bringing a probe close to a Au surface, we measure both the interfacial force and the field emission current as a function of separation with a constant potential of 100 V between tip and sample. The current initially increases exponentially as the separation decreases. However, at a distance of less than {approximately} 500{angstrom} the current rises sharply as the surface begins to distort and rapidly close the gap. Retraction of the tip before contact is made reveals the formation of a mound on the surface. We propose a simple model, in which the localized high electric field under the tip assists the production of mobile Au adatoms by detachment from surface steps, and a radial field gradient causes a net flux of atoms toward the tip by surface diffusion. These processes give rise to an unstable surface deformation which, if left unchecked, results in a destructive mechanical contact. We discuss our findings with respect to earlier work using voltage pulses in the STM as a means of nanofabrication.

  16. Biofouling prevention with pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Ghazala, A.; Schoenbach, K.H.

    2000-02-01

    Temporary immobilization of aquatic nuisance species through application of short electric pulses has been explored as a method to prevent biofouling in cooling water systems where untreated lake, river, or sea water is used. In laboratory experiments, electrical pulses with amplitudes on the order of kilovolts/centimeter and submicrosecond duration were found to be most effective in stunning time in a temporal range from minutes to hours. The temporary immobilization is assumed to be caused by reversible membrane breakdown. This assumption is supported by results of measurements of the energy required for stunning. Based on the data obtained in laboratory experiments, field experiments in a tidal water environment have been performed. The flow velocity was such that the residence time of the aquatic nuisance species in the system was approximately half a minute. The results showed that the pulsed electric field method provides full protection against biofouling when pulses of 0.77 {micro}s width and 6 kV/cm amplitude are applied to the water at the inlet of such a cooling water system. Even at amplitudes of 1 kV/cm, the protection is still in the 90% range, at an energy expenditure of 1 kWh for the treatment of 60,000 gallons of water.

  17. Spontaneous electric fields in solid films: spontelectrics

    DEFF Research Database (Denmark)

    Field, David; Plekan, Oksana; Cassidy, Andrew

    2013-01-01

    When dipolar gases are condensed at sufficiently low temperature onto a solid surface, they form films that may spontaneously exhibit electric fields in excess of 108V/m. This effect, called the ‘spontelectric effect’, was recently revealed using an instrument designed to measure scattering...... that the spontelectric field generally decreases monotonically with increased deposition temperature, with the exception of methyl formate that shows an increase beyond a critical range of deposition temperature. Films of spontelectric material show a Curie temperature above which the spontelectric effect disappears....... Heterolayers may also be laid down creating potential wells on the nanoscale. A model is put forward based upon competition between dipole alignment and thermal disorder, which is successful in reproducing the variation of the degree of dipole alignment and the spontelectric field with deposition temperature...

  18. Can Neural Activity Propagate by Endogenous Electrical Field?

    National Research Council Canada - National Science Library

    Qiu, Chen; Shivacharan, Rajat S; Zhang, Mingming; Durand, Dominique M

    2015-01-01

    .... The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments...

  19. Electropumping of water with rotating electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; De Luca, Sergio; Todd, Billy

    2013-01-01

    of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also...... require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly...... exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum...

  20. Characterization of composite particles responsive to electric and magnetic fields

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaopeng; GUO Hongxia

    2004-01-01

    The multilayer particles with responses to electric and magnetic fields are a prerequisite for particles assembled under external fields. Three routes to produce particles responsive to electric and magnetic fields are presented in this article. The size and morphology, properties as well as the electric-magnetic responses of three kinds of particles are comparatively discussed. This will provide a useful basis for the control of the behavior of the particles in suspensions by external electric and magnetic fields.

  1. Hydrogel Actuation by Electric Field Driven Effects

    Science.gov (United States)

    Morales, Daniel Humphrey

    Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of

  2. Electric field control of Skyrmions in magnetic nanodisks

    Science.gov (United States)

    Nakatani, Y.; Hayashi, M.; Kanai, S.; Fukami, S.; Ohno, H.

    2016-04-01

    The control of magnetic Skyrmions confined in a nanometer scale disk using electric field pulses is studied by micromagnetic simulation. A stable Skyrmion can be created and annihilated by an electric field pulse depending on the polarity of the electric field. Moreover, the core direction of the Skyrmion can be switched using the same electric field pulses. Such creation and annihilation of Skyrmions, and its core switching do not require any magnetic field and precise control of the pulse length. This unconventional manipulation of magnetic texture using electric field pulses allows a robust way of controlling magnetic Skyrmions in nanodiscs, a path toward building ultralow power memory devices.

  3. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    Science.gov (United States)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  4. Electrostatic air filters generated by electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-27

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity.

  5. Plasma instabilities in high electric fields

    DEFF Research Database (Denmark)

    Morawetz, K.; Jauho, Antti-Pekka

    1994-01-01

    We analyze nonequilibrium screening with nonequilibrium Green function techniques. By employing the generalized Kadanoff-Baym ansatz to relate the correlation function to the nonequilibrium distribution function, the latter of which is assumed to be a shifted Maxwellian, an analytically tractable...... expression is derived for the nonequilibrium dielectric function epsilon(K, omega). For certain values of momenta K and frequency omega, Imepsilon(K, omega) becomes negative, implying a plasma instability. This new instability exists only for strong electric fields, underlining its nonequilibrium origin....

  6. Perturbative renormalization of the electric field correlator

    CERN Document Server

    Christensen, C

    2016-01-01

    The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine the perturbative renormalization factor for a particular lattice discretization of this correlator within Wilson's SU(3) gauge theory, finding a ~12% NLO correction for values of the bare coupling used in the current generation of simulations. The impact of this result on existing lattice determinations is commented upon, and a possibility for non-perturbative renormalization through the gradient flow is pointed out.

  7. Perturbative renormalization of the electric field correlator

    Directory of Open Access Journals (Sweden)

    C. Christensen

    2016-04-01

    Full Text Available The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine the perturbative renormalization factor for a particular lattice discretization of this correlator within Wilson's SU(3 gauge theory, finding a ∼12% NLO correction for values of the bare coupling used in the current generation of simulations. The impact of this result on existing lattice determinations is commented upon, and a possibility for non-perturbative renormalization through the gradient flow is pointed out.

  8. Perturbative renormalization of the electric field correlator

    Science.gov (United States)

    Christensen, C.; Laine, M.

    2016-04-01

    The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine the perturbative renormalization factor for a particular lattice discretization of this correlator within Wilson's SU(3) gauge theory, finding a ∼ 12% NLO correction for values of the bare coupling used in the current generation of simulations. The impact of this result on existing lattice determinations is commented upon, and a possibility for non-perturbative renormalization through the gradient flow is pointed out.

  9. Electric field gradient, generalized Sternheimer shieldings and electric field gradient polarizabilities by multiconfigurational SCF response

    Science.gov (United States)

    Rizzo, Antonio; Ruud, Kenneth; Helgaker, Trygve; Jaszuński, Michał

    1998-08-01

    The electric field gradient (EFG) at the nuclei, the generalized Sternheimer shielding constants and the EFG electric dipole polarizabilities are computed for eight small molecules employing multiconfigurational self-consistent field wave functions and the corresponding linear and quadratic response functions. The molecules studied are H2, N2, CO, HF, C2H2, HCl, HCN, and HNC, all of which are linear. For the hydrogen molecule, full configuration-interaction results for the properties are also reported. The dependence of the computed quantities on the basis set and the electron-correlation treatment is analyzed.

  10. Dielectric Fluid in Inhomogeneous Pulsed Electric Field

    CERN Document Server

    Shneider, M N

    2013-01-01

    We consider the dynamics of a compressible fluid under the influence of electrostrictive ponderomotive forces in strong inhomogeneous nonstationary electric fields. It is shown that if the fronts of the voltage rise at a sharp, needle-like electrode are rather steep (less than or about nanoseconds), and the region of negative pressure arises, which can reach values at which the fluid loses its continuity with the formation of cavitation ruptures. If the voltage on the electrode is not large enough or the front is flatter, the cavitation in the liquid does not occur. However, a sudden shutdown of the field results in a reverse flow of liquid from the electrode, which leads to appearance of negative pressure, and, possibly, cavitation.

  11. ELECTRIC FIELD SENSORS BASED ON MEMS TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    Gong Chao; Xia Shanhong; Deng Kai; Bai Qiang; Chen Shaofeng

    2005-01-01

    The design and optimization of two types of novel miniature vibrating Electric Field Sensors (EFSs) based on Micro Electro Mechanical Systems (MEMS) technology are presented.They have different structures and vibrating modes. The volume is much smaller than other types of charge-induced EFSs such as field-mills. As miniaturizing, the induced signal is reduced enormously and a high sensitive circuit is needed to detect it. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Computer simulations for different structural parameters of the EFSs and vibrating methods have been carried out by Finite Element Method (FEM). It is proved that the new structures are realizable and the output signals are detectable.

  12. Nonlinear relaxation field in charged systems under high electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Morawetz, K

    2000-07-01

    The influence of an external electric field on the current in charged systems is investigated. The results from the classical hierarchy of density matrices are compared with the results from the quantum kinetic theory. The kinetic theory yields a systematic treatment of the nonlinear current beyond linear response. To this end the dynamically screened and field-dependent Lenard-Balescu equation is integrated analytically and the nonlinear relaxation field is calculated. The classical linear response result known as Debye - On-Sager relaxation effect is only obtained if asymmetric screening is assumed. Considering the kinetic equation of one specie the other species have to be screened dynamically while the screening with the same specie itself has to be performed statically. Different other approximations are discussed and compared. (author)

  13. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    Institute of Scientific and Technical Information of China (English)

    SUN Bao; CHEN Fu-Shen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive im-pulse electric field measurement. The integrated optical sensor is based on a Mach-Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The max-imal detectable electric field range (-75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation.

  14. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  15. Saturation of the Electric Field Transmitted to the Magnetosphere

    Science.gov (United States)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James A.

    2010-01-01

    We reexamined the processes leading to saturation of the electric field, transmitted into the Earth's ionosphere from the solar wind, incorporating features of the coupled system previously ignored. We took into account that the electric field is transmitted into the ionosphere through a region of open field lines, and that the ionospheric conductivity in the polar cap and auroral zone may be different. Penetration of the electric field into the magnetosphere is linked with the generation of the Alfven wave, going out from the ionosphere into the solar wind and being coupled with the field-aligned currents at the boundary of the open field limes. The electric field of the outgoing Alfven wave reduces the original electric field and provides the saturation effect in the electric field and currents during strong geomagnetic disturbances, associated with increasing ionospheric conductivity. The electric field and field-aligned currents of this Alfven wave are dependent on the ionospheric and solar wind parameters and may significantly affect the electric field and field-aligned currents, generated in the polar ionosphere. Estimating the magnitude of the saturation effect in the electric field and field-aligned currents allows us to improve the correlation between solar wind parameters and resulting disturbances in the Earth's magnetosphere.

  16. Repetitively pulsed electric laser acoustic studies. Volume 1. Final technical report, Jun 80-Jun 83

    Energy Technology Data Exchange (ETDEWEB)

    Ingard, K.U.; McMillan, C.F.

    1983-09-01

    This report summarizes a study of the acoustical characteristics of a closed loop duct system for pulsed lasers with emphasis on acoustic suppression technology. Several topics are considered involving wave propagation reflection and attenuation in a shock tube, in which pulse waves are generated, simulating those in a pulsed laser system. A detailed analysis of the design of parallel-baffle attenuators for suppression of acoustic waves is given, allowing for the contributions of the reflection transmitted and reverberant contributions to the sound pressure field in the optical cavity.

  17. Dynamics of an electric dipole moment in a stochastic electric field.

    Science.gov (United States)

    Band, Y B

    2013-08-01

    The mean-field dynamics of an electric dipole moment in a deterministic and a fluctuating electric field is solved to obtain the average over fluctuations of the dipole moment and the angular momentum as a function of time for a Gaussian white-noise stochastic electric field. The components of the average electric dipole moment and the average angular momentum along the deterministic electric-field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a stochastic magnetic field with Gaussian white noise in all three components. The components of the average electric dipole moment and the average angular momentum perpendicular to the deterministic electric-field direction oscillate with time but decay to zero, and their variance grows with time.

  18. Manipulating colloids with charges and electric fields

    Science.gov (United States)

    Leunissen, M. E.

    2007-02-01

    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their relatively large size, colloids are much easier to investigate and manipulate, though. This makes them excellent condensed matter model systems. With this in mind, we studied micrometer-sized perspex (‘PMMA’) spheres, labeled with a fluorescent dye for high-resolution confocal microscopy imaging, and suspended in a low-polar mixture of the organic solvents cyclohexyl bromide and cis-decalin. This system offered us the flexibility to change the interactions between the particles from ‘hard-sphere-like’ to long-ranged repulsive (between like-charged particles), long-ranged attractive (between oppositely charged particles) and dipolar (in an electric field). We investigated the phase behavior of our suspensions as a function of the particle concentration, the ionic strength of the solvent and the particles’ charges. In this way, we obtained new insight in the freezing and melting behavior of like-charged and oppositely charged colloids. Interestingly, we found that the latter can readily form large crystals, thus defying the common belief that plus-minus interactions inevitably lead to aggregation. Moreover, we demonstrated that these systems can serve as a reliable model system for classical ionic matter (‘salts’), and that opposite-charge interactions can greatly facilitate the self-assembly of new structures with special properties for applications. On a slightly different note, we also studied electrostatic effects in mixtures of the cyclohexyl bromide solvent and water, both with and without colloidal particles present. This provided new insight in the stabilization mechanisms of oil-water emulsions and gave us control over the self-assembly of various

  19. Electrical integrity of oxides in a radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Laboratory, TN (United States); Kinoshita, C.

    1996-04-01

    In the absence of an applied electric field, irradiation generally produces a decrease in the permanent (beam-off) electrical conductivity of ceramic insulators. However, in the past 6 years several research groups have reported a phenomenon known as radiation induced electrical degradation (RIED), which produces significant permanent increases in the electrical conductivity of ceramic insulators irradiated with an applied electric field. RIED has been reported to occur at temperatures between 420 and 800 K with applied electric fields as low as 20 V/mm.

  20. Electric field enhancement of depolarization of excited states

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.; Hillard, G.B.; Glab, W.L.

    1985-12-01

    Our calculations show that an external dc electric field can enhance by many orders of magnitude the depolarization cross section of highly excited atoms by charged particles. The enhancement is due to the fact that the electric field extends and shifts the electronic charge distribution along its direction, thus effectively creating a giant electric dipole in the atom.

  1. Liquid methanol under a static electric field

    Energy Technology Data Exchange (ETDEWEB)

    Cassone, Giuseppe, E-mail: giuseppe.cassone@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France); Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Giaquinta, Paolo V., E-mail: paolo.giaquinta@unime.it [Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); Saija, Franz, E-mail: saija@ipcf.cnr.it [CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Saitta, A. Marco, E-mail: marco.saitta@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France)

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  2. Patchy particle packing under electric fields.

    Science.gov (United States)

    Song, Pengcheng; Wang, Yufeng; Wang, Yu; Hollingsworth, Andrew D; Weck, Marcus; Pine, David J; Ward, Michael D

    2015-03-01

    Colloidal particles equipped with two, three, or four negatively charged patches, which endow the particles with 2-fold, 3-fold, or tetrahedral symmetries, form 1D chains, 2D layers, and 3D packings when polarized by an AC electric field. Two-patch particles, with two patches on opposite sides of the particle (2-fold symmetry) pack into the cmm plane group and 3D packings with I4mm space group symmetry, in contrast to uncharged spherical or ellipsoidal colloids that typically crystallize into a face-centered ABC layer packing. Three-patch particles (3-fold symmetry) form chains having a 21 screw axis symmetry, but these chains pair in a manner such that each individual chain has one-fold symmetry but the pair has 21 screw axis symmetry, in an arrangement that aligns the patches that would favor Coulombic interactions along the chain. Surprisingly, some chain pairs form unanticipated double-helix regions that result from mutual twisting of the chains about each other, illustrating a kind of polymorphism that may be associated with nucleation from short chain pairs. Larger 2D domains of the three-patch particles crystallize in the p6m plane group with alignment (with respect to the field) and packing densities that suggest random disorder in the domains, whereas four-patch particles form 2D domains in which close-packed rows are aligned with the field.

  3. Review Of Fiber-Optic Electric-Field Sensors

    Science.gov (United States)

    De Paula, Ramon P.; Jarzynski, Jacek

    1989-01-01

    Tutorial paper reviews state of art in fiber-optic sensors of alternating electric fields. Because such sensors are made entirely of dielectric materials, they are relatively transparent to incident electric fields; they do not distort fields significantly. Paper presents equations that express relationships among stress, strain, and electric field in piezoactive plastic and equations for phase shift in terms of photoelastic coefficients and strains in optical fiber.

  4. The influence of electric field and confinement on cell motility.

    Science.gov (United States)

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.

  5. Biological effects of electric fields: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.E.; Phillips, R.D.

    1983-11-01

    An overview of the literature suggests tha electric-field exposure is an environmental agent/influence of relatively low potential toxicity to biological systems. Generally, many of the biological effects which have been reported are quite subtle and differences between exposed and unexposed subjects may be masked by normal biological variations. However, several recent reports indicate possibly more serious consequences from chronic exposure, emphasizing the need for more research in epidemiology and laboratory experiments. This paper presents a cursory overview of investigations on the biological consequences of exposure to ELF electromagnetic fields. Three important topics are discussed, including: 1) the general methodology of exposure experiments, including those elements which are critical for definitive studies in biological systems; 2) a brief discussion of epidemiological and clinical studies conducted to date; and 3) a somewhat more extensive examination of animal experiments representing major areas of investigation (behavior, biological rhythms, nervous and endocrine systems, bone growth and repair, cardiovascular system and blood chemistry, immunology, reproduction, growth and development mortality and pathology, cellular and membrane studies, and mutagenesis). A discussion of current concepts, possible mechanisms and future directions of research is presented. 110 references.

  6. Measurements of the vertical atmospheric electric field and of the electrical conductivity with stratospheric balloons

    Science.gov (United States)

    Iversen, I. B.; Madsen, M. M.; Dangelo, N.

    1985-01-01

    Measurements of the atmospheric (vertical) electric field with balloons in the stratosphere are reported. The atmospheric electrical conductivity is also measured and the current density inferred. The average vertical current shows the expected variation with universal time and is also seen to be influenced by external (magnetospheric) electric fields.

  7. Field-Induced Superconductivity in Electric Double Layer Transistors

    NARCIS (Netherlands)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    2014-01-01

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be possi

  8. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  9. Flow-driven cell migration under external electric fields

    Science.gov (United States)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2016-01-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and can migrate toward a cathode or an anode, depending on the cell type. In this paper, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent. PMID:26765031

  10. Generation of Electric Field and Net Charge in Hall Reconnection

    Institute of Scientific and Technical Information of China (English)

    MA Zhi-Wei; FENG Shu-Ling

    2008-01-01

    @@ Generation of Hall electric field and net charge associated with magnetic reconnection is studied under different initial conditions of plasma density and magnetic field. With inclusion of the Hall effects, decoupling of the electron and ion motions leads to the formation of a narrow layer with strong electric field and large net charge density along the separatrix. The asymmetry of the plasma density or magnetic field or both across the current sheet will largely increase the magnitude of the electric field and net charge. The results indicate that the asymmetry of the magnetic field is more effective in producing larger electric field and charge density. The electric field and net charge are always much larger in the low density or/and high magnetic field side than those in the high density or/and low magnetic field side. Both the electric field and net charge density are linearly dependent on the ratios of the plasma density or the square of the magnetic field across the current sheet. For the case with both initial asymmetries of the magnetic field and density, rather large Hall electric field and charge density are generated.

  11. Electrically small, complementary electric-field-coupled resonator antennas

    Science.gov (United States)

    Odabasi, H.; Teixeira, F. L.; Guney, D. O.

    2013-02-01

    We study the radiation properties of electrically small resonant antennas (ka CELC) resonators and a monopole antenna. We use such parasitic ELC and CELC "metaresonators" to design various electrically small antennas. In particular, monopole-excited and bent-monopole-excited CELC resonator antennas are proposed that provide very low profiles on the order of λ0/20. We compare the performance of the proposed ELC and CELC antennas against more conventional designs based upon split-ring resonators.

  12. Effective Action of Scalar QED in Electric Field Backgrounds

    CERN Document Server

    Kim, Sang Pyo; Yoon, Yongsung

    2008-01-01

    We use the evolution operator method to find the one-loop effective action of scalar QED in electric field backgrounds in terms of the Bogoliubov coefficient between the ingoing and the outgoing vacuum. The effective action shows the general relation between the vacuum persistence and the mean number of created pairs for any electric field. We obtain the exact effective action for a constant electric field and a pulsed electric field, E_0 sech^2 (t/tau), and show that the imaginary part correctly yields the vacuum persistence.

  13. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  14. Electric field effects on electronic characteristics of arsenene nanoribbons

    Science.gov (United States)

    Luo, Yanwei; Li, Yuxiao; Wang, Fei; Guo, Peng; Jia, Yu

    2017-10-01

    By using the first-principles calculations, we investigate the effects of electric field on electronic structures of armchair and zigzag arsenene nanoribbons (AsNRs) with different widths. The results show that for each case, quantum size effects induce a smaller band gap in larger AsNRs. Moreover, electric field can reduce effectively the band gap of AsNRs. In addition, the electric field can induce only the transition of band structures in the A-AsNRs or Z-AsNRs with narrow size. The band gap decrease more rapidly and the threshold electric field induced metal becomes smaller in the wider AsNRs.

  15. Effects of aging in electric field on 2024 alloy

    Institute of Scientific and Technical Information of China (English)

    王秀芳; 孙东立; 武高辉; 王美玲

    2002-01-01

    The effect of heat treatment in an electric field on micro-plastic deformation characteristics of 2024 Al alloy was investigated.The mechanism of aging in an electric field affecting the micro-plastic deformation behavior was preliminarily discussed.The results show that the resistance to micro-plastic deformation of the alloy can be greatly increased by aging in an electric field.Aging temperature,aging time and electric field strength are selected by adopting the orthogonal design method and the optimum technological parameters are obtained.

  16. Effect of applied DC electric fields in flame spread over polyethylene-coated electrical wire

    KAUST Repository

    Jin, Young Kyu

    2011-03-01

    We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ±7 kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet. © 2011 The Korean Society of Mechanical Engineers.

  17. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation

    Science.gov (United States)

    Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai

    2016-02-01

    Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media.

  18. Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm

    CERN Document Server

    Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai

    2011-01-01

    The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...

  19. Scattering polarization in the presence of magnetic and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Yee Oo, Yee [Department of Physics, Mandalay University, Mandalay (Myanmar); Sampoorna, M. [Indian Institute of Astrophysics, Bangalore 560 034 (India); Joint Astronomy Program, Department of Physics, IISc, Bangalore 560 012 (India); Nagendra, K.N. [Indian Institute of Astrophysics, Bangalore 560 034 (India); Ananthamurthy, Sharath [Department of Physics, Bangalore University, Bangalore 560 056 (India); Ramachandran, G. [Indian Institute of Astrophysics, Bangalore 560 034 (India)], E-mail: gr@iiap.res.in

    2007-11-15

    The polarization of radiation by scattering on an atom embedded in combined external quadrupole electric and uniform magnetic fields is studied theoretically. Limiting cases of scattering under Zeeman effect, and Hanle effect in weak magnetic fields are discussed. The theory is general enough to handle scattering in intermediate magnetic fields (Hanle-Zeeman effect) and for arbitrary orientation of magnetic field. The quadrupolar electric field produces asymmetric line shifts, and causes interesting level-crossing phenomena either in the absence of an ambient magnetic field, or in its presence. It is shown that the quadrupolar electric field produces an additional depolarization in the Q/I profiles and rotation of the plane of polarization in the U/I profile over and above that arising from magnetic field itself. This characteristic may have a diagnostic potential to detect steady-state and time-varying electric fields that surround radiating atoms in solar atmospheric layers.

  20. Pulsed electric field assisted assembly of polyaniline

    Science.gov (United States)

    Kumar, Arun; Kazmer, David O.; Barry, Carol M. F.; Mead, Joey L.

    2012-08-01

    Assembling conducting polyaniline (PANi) on pre-patterned nano-structures by a high rate, commercially viable route offers an opportunity for manufacturing devices with nanoscale features. In this work we report for the first time the use of pulsed electric field to assist electrophoresis for the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 s, assembly resolution of 100 nm). Moreover, the area coverage increases with the increase in number of pulses. A similar trend was observed with the deposition height and the increase in deposition height followed a linear trend with a correlation coefficient of 0.95. When the experimental mass deposited was compared with Hamaker’s theoretical model, the two were found to be very close. The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to thermoplastic polyurethane using the thermoforming process.

  1. Surface electric fields for North America during historical geomagnetic storms

    Science.gov (United States)

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  2. Measurement of electric fields and estimation of dielectric susceptibility

    Science.gov (United States)

    Nogi, Yasuyuki; Suzuki, Kiyomitsu; Ohkuma, Yasunori

    2013-05-01

    We describe a method of measuring the spatial structures of electric fields produced by charge distributions such as those on strip electrodes, small disk electrodes, and long double-plate electrodes. An electric-field sensor with high sensitivity to ac fields is fabricated for the measurement using a thin copper sheet. The reliability of the sensor is confirmed using a parallel-plate capacitor. The electric fields are oscillated at a frequency of 300 kHz to operate the electric-field sensor successfully. The structures of the measured fields coincide well with those of theoretical fields derived from Coulomb's law. When a dielectric is inserted in an electric field, polarization charges appear on the surface of the dielectric and modify the electric field in empty space. We measure the modified field and confirm the well-known linear relation between the polarization of a dielectric and the electric field. Dielectric susceptibilities are estimated from the linear relation for four types of dielectric.

  3. Simultaneous electric-field measurements on nearby balloons.

    Science.gov (United States)

    Mozer, F. S.

    1972-01-01

    Electric-field payloads were flown simultaneously on two balloons from Great Whale River, Canada, on September 21, 1971, to provide data at two points in the upper atmosphere that differed in altitude by more than one atmospheric density scale height and in horizontal position by 30-140 km. The altitude dependences in the two sets of data prove conclusively that the vertical electric field at balloon altitudes stems from fair-weather atmospheric electricity sources and that the horizontal fields are mapped down ionospheric fields, since the weather-associated horizontal fields were smaller than 2 mV/m.

  4. Electric fields inside and outside an anisotropic dielectric sphere

    Institute of Scientific and Technical Information of China (English)

    Li Ying-Le; Wang Ming-Jun

    2009-01-01

    Analytical expressions of electric fields inside and outside an anisotropic dielectric sphere are presented by transforming an anisotropic medium into an isotropic one based on the multi-scale transformation of electromagnetic theory.The theoretical expressions are consistent with those in the literature. The inside electric field, the outside electric field and the angle between their directions are derived in detail. Numerical simulations show that the direction of the outside field influences the magnitude of the inside field, while the dielectric constant tensor greatly affects its direction.

  5. Decoherence and coherence in gravitational, electric and strong nuclear fields

    CERN Document Server

    Silva, P R

    2010-01-01

    Inspired in the work of Erich Joos which appreciated the role played by matter in making the decoherence of the gravitational field, we developed an alternative way of treating the former problem. Besides this, we used the alternative approach to examine the decoherence of the electric field performed by the conduction electrons in metals. As a counterpoint, we studied the coherence of the electric color field inside nucleons, which renders the strong field a totally quantum character.

  6. Electrical Field Effects in Phthalocyanine Film Growth by Vapor Deposition

    Science.gov (United States)

    Banks, Curtis E.; Zhu, Shen; Frazier, Donald O.; Penn, Benjamin; Abdeldayem, Hossin; Hicks, Roslin; Sarkisov, Sergey

    1999-01-01

    Phthalocyanine, an organic material, is a very good candidate for non-linear optical application, such as high-speed switching and optical storage devices. Phthalocyanine films have been synthesized by vapor deposition on quartz substrates. Some substrates were coated with a very thin gold film for introducing electrical field. These films have been characterized by surface morphology, material structure, chemical and thermal stability, non-linear optical parameters, and electrical behaviors. The films have excellent chemical and optical stability. However, the surface of these films grown without electrical field shows flower-like morphology. When films are deposited under an electrical field ( an aligned structure is revealed on the surface. A comparison of the optical and electrical properties and the growth mechanism for these films grown with and without an electrical field will be discussed.

  7. Orientation of the agarose gel matrix in pulsed electric fields.

    OpenAIRE

    Stellwagen, J; Stellwagen, N C

    1989-01-01

    The technique of transient electric birefringence was used to investigate the effect of pulsed electric fields on the orientation of the agarose gel matrix. Orientation of the gel was observed at all electric field strengths. Very slow, time-dependent effects were observed when pulses of 10-100 V/cm were applied to 1% gels for 0.5-2 seconds, indicating that domains of the matrix were being oriented by the electric field. The sign of the birefringence reversed when the direction of the applied...

  8. Fetal exposure to low frequency electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Cech, R; Leitgeb, N; Pediaditis, M [Institute of Clinical Engineering, Graz University of Technology, Inffeldgasse 18, 8010 Graz (Austria)

    2007-02-21

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  9. Fetal exposure to low frequency electric and magnetic fields

    Science.gov (United States)

    Cech, R.; Leitgeb, N.; Pediaditis, M.

    2007-02-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  10. Gastric applications of electrical field stimulation.

    LENUS (Irish Health Repository)

    Hogan, Aisling M

    2012-02-01

    Advances in clinical applications of electricity have been vast since the launch of Hayman\\'s first cardiac pacemaker more than 70 years ago. Gastric electrical stimulation devices have been recently licensed for treatment of gastroparesis and preliminary studies examining their potential for use in refractory obesity yield promising results.

  11. Electric and Magnetic Fields | RadTown USA | US EPA

    Science.gov (United States)

    2017-08-07

    Electromagnetic fields (EMF) are a combination of electric and magnetic fields of energy that surround any electrical device when it is plugged in and turned on. Scientific experiments have not clearly shown whether or not exposure to EMF increases cancer risk. Scientists continue to study the issue.

  12. The effect of pulsed electric fields on carotenoids bioaccessibility

    NARCIS (Netherlands)

    Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo

    2018-01-01

    Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and

  13. High School Students' Representations and Understandings of Electric Fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  14. Defect agglomeration in ferroelectric ceramics under cyclic electric field

    Institute of Scientific and Technical Information of China (English)

    GENG LiMing; YANG Wei

    2008-01-01

    The agglomeration of point defects in ferroelectric ceramics could be driven by repeated domain switching under cyclic electric field. The evolution equation of pore concentration under cyclic electric field is derived, with the help of a relation between the pore concentration and the extent of pore agglomeration. The results of the simulation agree quantitatively with the experimental data. An integrated framework about the mechanisms of electrically induced fatigue is proposed, which links the mechanisms at different scales.

  15. Lamb-shift and electric field measurements in plasmas

    Science.gov (United States)

    Doveil, F.; Chérigier-Kovacic, L.; Ström, P.

    2017-01-01

    The electric field is a quantity of particular relevance in plasma physics. Indeed, its fluctuations are responsible for different macroscopic phenomena such as anomalous transport in fusion plasmas. Answering a long-standing challenge, we offer a new method to locally and non-intrusively measure weak electric fields and their fluctuations in plasmas, by means of a beam of hydrogen ions or atoms. We present measurements of the electric field in vacuum and in a plasma where Debye shielding is measured. For the first time, we have used the Lamb-shift resonance to measure oscillating electric fields around 1 GHz and observed the strong enhancement of the Lyman-α signal. The measurement is both direct and non-intrusive. This method provides sensitivity (mV cm-1) and temporal resolution (ns) that are three orders higher compared to current diagnostics. It thus allows measuring fluctuations of the electric field at scales not previously reached experimentally.

  16. Characteristics of DC electric fields at dipolarization fronts

    Science.gov (United States)

    Laakso, Harri; Escoubet, Philippe; Masson, Arnaud

    2016-04-01

    We investigate the characteristics of DC electric field at dipolarization fronts and BBF's using multi-point Cluster observations. There are plenty of important issues that are considered, such as what kind of DC electric fields exist in such events and what are their spatial scales. One can also recognize if electrons and ions perform ExB drift motions in these events. To investigate this, we take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer. The calibrated observations of the three spectrometers are used to determine the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. This investigation also helps understand how well different measurements are calibrated.

  17. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  18. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    Directory of Open Access Journals (Sweden)

    Charlie Huveneers

    Full Text Available Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1, using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1 the behaviour of 18 white sharks (Carcharodon carcharias near a static bait, and (2 the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  19. Novel electric field effects on Landau levels in graphene.

    Science.gov (United States)

    Lukose, Vinu; Shankar, R; Baskaran, G

    2007-03-16

    A new effect in graphene in the presence of crossed uniform electric and magnetic fields is predicted. Landau levels are shown to be modified in an unexpected fashion by the electric field, leading to a collapse of the spectrum, when the value of electric to magnetic field ratio exceeds a certain critical value. Our theoretical results, strikingly different from the standard 2D electron gas, are explained using a "Lorentz boost," and as an "instability of a relativistic quantum field vacuum." It is a remarkable case of emergent relativistic type phenomena in nonrelativistic graphene. We also discuss few possible experimental consequence.

  20. Laser ablation of titanium in liquid in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  1. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields.

    Science.gov (United States)

    Sutton, Gregory P; Clarke, Dominic; Morley, Erica L; Robert, Daniel

    2016-06-28

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee.

  2. Determinants of the electric field during transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Opitz, Alexander; Paulus, Walter; Will, Susanne

    2015-01-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field...... over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect...... fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant...

  3. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields

    Science.gov (United States)

    Sutton, Gregory P.; Clarke, Dominic; Morley, Erica L.; Robert, Daniel

    2016-01-01

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee. PMID:27247399

  4. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.

    Science.gov (United States)

    Grossman, Nir; Bono, David; Dedic, Nina; Kodandaramaiah, Suhasa B; Rudenko, Andrii; Suk, Ho-Jun; Cassara, Antonino M; Neufeld, Esra; Kuster, Niels; Tsai, Li-Huei; Pascual-Leone, Alvaro; Boyden, Edward S

    2017-06-01

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Transition of radial electric field in helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka; Sanuki, Heiji; Toda, Shinichiro; Yokoyama, Masayuki [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Fukuyama, Atsushi [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2001-06-01

    Transition of radial electric field is investigated in helical plasmas for the given plasma fluxes. The density and temperature gradients are simultaneously determined together with radial electric field. The electric field shows a nature of bifurcation, if an anomalous particle transport exist in addition to the neoclassical particle flux. Based on the Maxwell's construction with respect to the work-done, the critical condition for the bifurcation is obtained. The existence of bifurcation is not affected by the anomalous energy flux. The gradients are found to be subject to bifurcation at high plasma fluxes regime. The transition to a better confinement is predicted. The presence of hard transition of the gradient and electric field indicates the existence of the electric domain interface, across which the discontinuous change of gradient takes place. (author)

  6. On the correlation analysis of electric field inside jet engine

    OpenAIRE

    A Krishna; Khattab, T.; Abdelaziz, A.F.; Guizani, M.

    2014-01-01

    A Simple channel modeling method based on correlation analysis of the electric field inside jet engine is presented. The analysis of the statistical propagation characteristics of electromagnetic field inside harsh jet engine environment is presented by using `Ansys® HFSS'. In this paper, we propose a method to locate the best position for receiving probes inside jet engine with minimum correlation between the receiver points which have strong average electric field. Moreover, a MIMO system c...

  7. Fermionic Particle Production by Varying Electric and Magnetic Fields

    Science.gov (United States)

    Sogut, Kenan; Yanar, Hilmi; Havare, Ali

    2016-11-01

    Creation of fermionic particles by a time-dependent electric field and a space-dependent magnetic field is studied with the Bogoulibov transformation method. Exact analytic solutions of the Dirac equation are obtained in terms of the Whittaker functions and the particle creation number density depending on the electric and magnetic fields is determined. Supported by the Research Fund of Mersin University in TURKEY with project number: 2016-1-AP4-1425

  8. Numerical Simulation of Modified Radial Electric Field by LHCD

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Ding Bojiang; Kuang Guangli

    2005-01-01

    Based on the electron's radial force equilibrium, the profiles of radial electric field in OH and LHCD phase are calculated by using a simulation code. The dependences of radial electron field on electron density and its profile and different current ratio, Irf/Ip, are given. The connections between the improvement of plasma confinement and the modified radial electric field by LHCD are discussed by comparing the calculated results with the experimental results.

  9. Nonpremixed flame in a counterflow under electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-08

    Electrically assisted combustion has been studied in order to control or improve flame characteristics, and emphasizing efficiency and emission regulation. Many phenomenological observations have been reported on the positive impact of electric fields on flame, however there is a lack of detailed physical mechanisms for interpreting these. To clarify the effects of electric fields on flame, I have investigated flame structure, soot formation, and flow field with ionic wind electrical current responses in nonpremixed counterflow flames. The effects of direct current (DC) electric field on flame movement and flow field was also demonstrated in premixed Bunsen flames. When a DC electric field was applied to a lower nozzle, the flames moved toward the cathode side due to Lorentz force action on the positive ions, soot particles simultaneously disappeared completely and laser diagnostics was used to identify the results from the soot particles. To understand the effects of an electric field on flames, flow visualization was performed by Mie scattering to check the ionic wind effect, which is considered to play an important role in electric field assisted combustion. Results showed a bidirectional ionic wind, with a double-stagnant flow configuration, which blew from the flame (ionic source) toward both the cathode and the anode. This implies that the electric field affects strain rate and the axial location of stoichiometry, important factors in maintaining nonpremixed counterflow flames; thus, soot formation of the counterflow flame can also be affected by the electric field. In a test of premixed Bunsen flames having parallel electrodes, flame movement toward the cathode and bidirectional ionic wind were observed. Using PIV measurement it was found that a created radial velocity caused by positive ions (i.e. toward a cathode), was much faster than the velocity toward the anode. Even in a study of alternating current (AC) electric fields, bidirectional ionic wind could

  10. Enhancement of antibacterial properties of Ag nanorods by electric field

    Directory of Open Access Journals (Sweden)

    Omid Akhavan and Elham Ghaderi

    2009-01-01

    Full Text Available The effect of an electric field on the antibacterial activity of columnar aligned silver nanorods was investigated. Silver nanorods with a polygonal cross section, a width of 20–60 nm and a length of 260–550 nm, were grown on a titanium interlayer by applying an electric field perpendicular to the surface of a Ag/Ti/Si(100 thin film during its heat treatment at 700 °C in an Ar+H2 environment. The optical absorption spectrum of the silver nanorods exhibited two peaks at wavelengths of 350 and 395 nm corresponding to the main surface plasmon resonance bands of the one-dimensional silver nanostructures. It was found that the silver nanorods with an fcc structure were bounded mainly by {100} facets. The antibacterial activity of the silver nanorods against Escherichia coli bacteria was evaluated at various electric fields applied in the direction of the nanorods without any electrical connection between the nanorods and the capacitor plates producing the electric field. Increasing the electric field from 0 to 50 V cm−1 resulted in an exponential increase in the relative rate of reduction of the bacteria from 3.9×10−2 to 10.5×10−2 min−1. This indicates that the antibacterial activity of silver nanorods can be enhanced by applying an electric field, for application in medical and food-preserving fields.

  11. Enhancement of antibacterial properties of Ag nanorods by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Akhavan, Omid [Department of Physics, Sharif University of Technology, PO Box 11155-9161, Tehran (Iran, Islamic Republic of); Ghaderi, Elham [Tehran University of Medical Sciences, PO Box 14155-6447, Tehran (Iran, Islamic Republic of)], E-mail: oakhavan@sharif.edu

    2009-01-15

    The effect of an electric field on the antibacterial activity of columnar aligned silver nanorods was investigated. Silver nanorods with a polygonal cross section, a width of 20-60 nm and a length of 260-550 nm, were grown on a titanium interlayer by applying an electric field perpendicular to the surface of a Ag/Ti/Si(100) thin film during its heat treatment at 700 deg. C in an Ar+H{sub 2} environment. The optical absorption spectrum of the silver nanorods exhibited two peaks at wavelengths of 350 and 395 nm corresponding to the main surface plasmon resonance bands of the one-dimensional silver nanostructures. It was found that the silver nanorods with an fcc structure were bounded mainly by {l_brace}100{r_brace} facets. The antibacterial activity of the silver nanorods against Escherichia coli bacteria was evaluated at various electric fields applied in the direction of the nanorods without any electrical connection between the nanorods and the capacitor plates producing the electric field. Increasing the electric field from 0 to 50 V cm{sup -1} resulted in an exponential increase in the relative rate of reduction of the bacteria from 3.9x10{sup -2} to 10.5x10{sup -2} min{sup -1}. This indicates that the antibacterial activity of silver nanorods can be enhanced by applying an electric field, for application in medical and food-preserving fields.

  12. Effects of an electric field on interaction of aromatic systems.

    Science.gov (United States)

    Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S

    2016-04-30

    The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc.

  13. Electric-field-assisted crystallisation in phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Kohary, Krisztian; Diosdado, Jorge A.V.; Ashwin, Peter; Wright, C. David [College of Engineering, Mathematics, and Physical Sciences, University of Exeter (United Kingdom)

    2012-10-15

    Phase-change materials are of intense research interest due mainly to their use in phase-change memory (PCM) devices that are emerging as a promising technology for future non-volatile, solid-state, electrical storage. Electrically driven transitions from the amorphous to the crystalline phase in such devices exhibit characteristic threshold switching. Several alternative electronic explanations for the origins of this characteristic behaviour have been put forward, for example Poole-Frenkel effects, delocalisation of tail states, field emission processes and space charge limited currents [for a full discussion, see Radielli et al., J. Appl. Phys. 103, 111101 (2008) and Simon et al., MRS Proc. 1251, H01-H011 (2010)]. However, an alternative to these conventional electronic models of threshold switching is based on electric field induced lowering of the system free energy, leading to the field induced nucleation of conducting crystal filaments. In this paper we investigate this alternative view. We present a detailed kinetics study of crystallisation in the presence of an electric field for the phase-change material Ge{sub 2}Sb{sub 2}Te{sub 5}. We derive quantitative crystallisation maps to show the effects of both temperature and electric field on crystallisation and we identify field ranges and parameter values where the electric field might play a significant role. Then we carry out physically realistic simulations of the threshold switching process in typical phase-change device structures, both with and without electric field dependent energy contributions to the system free energy. Our results show that threshold switching can be obtained by a mechanism driven purely by electric field induced nucleation, but the fields so required are large, of the order of 300 MV m{sup -1}, and significantly larger than the experimentally measured threshold fields. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Electric field gradients in Hg compounds

    DEFF Research Database (Denmark)

    Arcisauskaité, Vaida; Knecht, Stefan; Sauer, Stephan P. A.

    2012-01-01

    We examine the performance of Density Functional Theory (DFT) approaches based on the Zeroth-Order Regular Approximation (ZORA) Hamiltonian (with and without inclusion of spinorbit coupling) for predictions of electric ¿eld gradients (EFGs) at the heavy atom Hg nucleus. This is achieved by compar......We examine the performance of Density Functional Theory (DFT) approaches based on the Zeroth-Order Regular Approximation (ZORA) Hamiltonian (with and without inclusion of spinorbit coupling) for predictions of electric ¿eld gradients (EFGs) at the heavy atom Hg nucleus. This is achieved...

  15. Scattering and pair creation by L-constant electric field

    CERN Document Server

    Gavrilov, S P

    2015-01-01

    Using QFT approach developed by us in Ref. arXiv:1506.01156, we consider particle scattering and vacuum instability in the so-called L-constant electric field, which is a constant electric field confined between two capacitor plates separated by a finite distance L. We obtain and analyze special sets of stationary solutions of the Dirac and Klein-Gordon equations with the L-constant electric field. Then, we represent probabilities of particle scattering and characteristics of the vacuum instability (related to the pair creation) in terms of the introduced solutions. From exact formulas, we derive asymptotic expressions for the differential mean numbers, for the total mean number of created particles, and for the vacuum-to-vacuum transition probability. Using the equivalence principle, we demonstrate that the distributions of created particles by L-constant electric field and gravitational field of a black hole have similar thermal structure.

  16. Relationship between large horizontal electric fields and auroral arc elements

    Energy Technology Data Exchange (ETDEWEB)

    Lanchester, B.S. [Univ. of Southampton (United Kingdom); Kaila, K. [Univ. of Oulu (Finland); McCrea, I.W. [Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom)

    1996-03-01

    The authors report on data which correlates high time resolution optical measurements of auroral features with EISCAT radar measurements of electron density, with 0.2 sec time resolution and horizontal electric field, with time resolution near 9 sec. The associations between such electric fields and auroral arc features have been a subject of interest for years. They report on one event where following an auroral breakup, an arc moved southward. During 30 seconds of this event a section of the arc was close to the radar beam, and better resolution was available for the electric field measurements. The results indicate that the electric field pointed towards the point of brightest emission in the arc, indicating that the fields might be associated with the charged-particle precipitation causing the bright features in the arc.

  17. [Mechanism of ablation with nanosecond pulsed electric field].

    Science.gov (United States)

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  18. Solar Wind Electric Fields in the Ion Cyclotron Frequency Range

    CERN Document Server

    Kellogg, P J; Mozer, F S; Horbury, T S; Reme, H

    2006-01-01

    Measurements of fluctuations of electric fields in the frequency range from a fraction of one Hz to 12.5 Hz are presented, and corrected for the Lorentz transformation of magnetic fluctuations to give the electric fields in the plasma frame. The electric fields are large enough to provide the dominant force on the ions of the solar wind in the region near the ion cyclotron frequency of protons, larger than the force due to magnetic fluctuations. They provide sufficient velocity space diffusion or heating to counteract conservation of magnetic moment in the expanding solar wind to maintain nearly isotropic velocity distributions.

  19. Effects of Orthogonal Rotating Electric Fields on Electrospinning Process

    CERN Document Server

    Cipolletta, Federico; Pontrelli, Giuseppe; Pisignano, Dario; Succi, Sauro

    2016-01-01

    Electrospinning is an nanotechnology process whereby an external electric field is used to accelerate and stretch a charged polymer jet, so as to produce fibers at nanoscale diameters. In quest of a further reduction in the cross section of electrified jets hence of the resulting electrospun fibers, we explore the effects of an external rotating electric field orthogonal to the jet direction. Through extensive particle simulations, it is shown that by a proper tuning of the electric field amplitude and frequency, a reduction of up to a 30% in the aforementioned radius can be obtained, thereby opening new perspectives in the design of future ultra-thin electrospun fibres.

  20. High Dynamic Range Electric Field Sensor for Electromagnetic Pulse Detection

    CERN Document Server

    Lin, Che-Yun; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T

    2014-01-01

    We design a high dynamic range electric field sensor based on domain inverted electro-optic (E-O) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices. Experimental results demonstrate effective detection of electric field from 16.7V/m to 750KV/m at a frequency of 1GHz, and spurious free measurement range of 70dB.

  1. Giant and tunable electric field enhancement in the terahertz regime.

    Science.gov (United States)

    Lu, Xiaoyuan; Wan, Rengang; Wang, Guoxi; Zhang, Tongyi; Zhang, Wenfu

    2014-11-01

    A novel array of slits design combining the nano-slit grating and dielectric-metal is proposed to obtain giant and tunable electric field enhancement in the terahertz regime. The maximum amplitude of electric field is more than 6000 times larger than that of the incident electric field. It is found that the enhancement depends primarily on the stripe and nano-slits width of grating, as well as the thickness of spacer layer. This property is particularly beneficial for the realization of ultra-sensitive nanoparticles detection and nonlinear optics in the terahertz range, such as the second harmonic generation (SHG).

  2. A neuronal network model for simulating the effects of repetitive transcranial magnetic stimulation on local field potential power spectra.

    Directory of Open Access Journals (Sweden)

    Alina Bey

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS holds promise as a non-invasive therapy for the treatment of neurological disorders such as depression, schizophrenia, tinnitus, and epilepsy. Complex interdependencies between stimulus duration, frequency and intensity obscure the exact effects of rTMS stimulation on neural activity in the cortex, making evaluation of and comparison between rTMS studies difficult. To explain the influence of rTMS on neural activity (e.g. in the motor cortex, we use a neuronal network model. The results demonstrate that the model adequately explains experimentally observed short term effects of rTMS on the band power in common frequency bands used in electroencephalography (EEG. We show that the equivalent local field potential (eLFP band power depends on stimulation intensity rather than on stimulation frequency. Additionally, our model resolves contradictions in experiments.

  3. Pulsed electric field technology: Modeling of electric field and temperature distributions within continuous flow PEF treatment chamber

    OpenAIRE

    Salengke, dkk

    2012-01-01

    Innovations and technology developments in the field of food pasteurization and sterilization are continuously evolving. These include innovations in thermal processing technologies such as aseptic processing, ohmic technology, and microwave technology, as well as non-thermal processing technologies which include pulsed electric field technology and high pressure processing technology. This paper discussed the results of a study on mathematical modeling of electric field and temperature distr...

  4. Synthesis of zirconium oxynitride in air under DC electric fields

    Science.gov (United States)

    Morisaki, Nobuhiro; Yoshida, Hidehiro; Matsui, Koji; Tokunaga, Tomoharu; Sasaki, Katsuhiro; Yamamoto, Takahisa

    2016-08-01

    We synthesized zirconium oxynitride from yttria-stabilized zirconia (YSZ) in air by applying DC electric fields that produced a controlled electric current in the specimen. When YSZ was heated under an applied DC electric field, the electric current of the specimen steeply increased at a critical temperature, called a flash event, during flash sintering. By keeping the electric current of the specimen constant during the flash event and then holding the specimen at the critical temperature, YSZ was transformed into zirconium oxynitride under the optimal conditions of 50 V/cm, 500 mA, and 1000 °C. We confirmed that zirconium oxynitride formed using high-resolution transmission electron microscopy, electron energy-loss spectroscopy, and energy-dispersive spectrometry. To convert oxides to nitrides, reducing conditions are necessary to form excess oxygen vacancies. Our technique produced the strong reducing conditions necessary to form nitrides from the oxides by delivering a controlled electric current to the specimen.

  5. High-frequency electric field amplification in a magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, Aleksandr V [Russian Research Centre ' Kurchatov Institute' , Moscow (Russian Federation)

    2006-11-30

    In the investigation of cyclotron ion heating in systems designed for plasma isotope separation, the high-frequency (HF) electric field amplification effect was found to occur in equilibrium plasma. In the present article this effect is treated as a result of the interaction of the plasma placed in a constant external magnetic field with the HF modes of the vacuum chamber. Consistent elaboration of this approach allowed obtaining a clear interpretation of the HF electric field amplification effect and constructing a simple model of HF field excitation in a plasma column embedded in the external magnetic field. (methodological notes)

  6. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    Science.gov (United States)

    Huveneers, Charlie; Rogers, Paul J; Semmens, Jayson M; Beckmann, Crystal; Kock, Alison A; Page, Brad; Goldsworthy, Simon D

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  7. Formation of Organized Protein Thin Films with External Electric Field.

    Science.gov (United States)

    Ferreira, Cecília Fabiana da G; Camargo, Paulo C; Benelli, Elaine M

    2015-10-01

    The effect of an external electric field on the formation of protein GlnB-Hs films and on its buffer solution on siliconized glass slides has been analyzed by current versus electric field curves and atomic force microscopy (AFM). The Herbaspirillum seropedicae GlnB protein (GlnB-Hs) is a globular, soluble homotrimer (36 kDa) with its 3-D structure previously determined. Concentrations of 10 nM native denatured GlnB-Hs protein were deposited on siliconized glass slides under ambient conditions. Immediately after solution deposition a maximum electric field of 30 kV/m was applied with rates of 3 V/s. The measured currents were surface currents and were analyzed as transport current. Electric current started to flow only after a minimum electric field (critical value) for the systems analyzed. The AFM images showed films with a high degree of directional organization only when the proteins were present in the solution. These results showed that the applied electric field favored directional organization of the protein GlnB-Hs films and may contribute to understand the formation of protein films under applied electric fields.

  8. S. cerevisiae fermentation activity after moderate pulsed electric field pre-treatments.

    Science.gov (United States)

    Mattar, Jessy R; Turk, Mohammad F; Nonus, Maurice; Lebovka, Nikolai I; El Zakhem, Henri; Vorobiev, Eugene

    2015-06-01

    The batch fermentation process, inoculated by Pulsed Electric Field (PEF) treated wine yeasts (Saccharomyces cerevisiae Actiflore F33), was studied. PEF treatment was applied to the aqueous yeast suspensions ([Y] = 0.012 g/L) at the electric field strengths of E = 100 and 6000 V/cm using the same treatment protocol (number of pulses n = 1000, pulse duration ti = 100 μs, and pulse repetition time Δt = 100 ms). Electrical conductivity was increasing during and after the PEF treatment, which reflected cell electroporation. Then, fermentation was run for 150 h in an incubator (30 °C) with synchronic agitation. Electro-stimulation was revealing itself by the improvement of fermentation characteristics, and thus increased yeast metabolism. At the end of the lag phase (t = 40 h), fructose consumption in samples with electrically activated inoculum exceeded that of the control samples by ≈ 2.33 times for E = 100 V/cm and by ≈ 3.98 for E = 6000 V/cm. At the end of the log phase (120 h of fermentation), ≈ 30% mass reduction was reached in samples with PEF-treated inocula (E = 6000 V/cm), whereas the same mass reduction of the control sample required approximately 20 extra hours of fermentation.

  9. The bee, the flower and the electric field

    Directory of Open Access Journals (Sweden)

    Robert Daniel

    2016-01-01

    Full Text Available Insects use several different senses to forage on flowers, and detect floral cues such as color, shape, pattern, humidity and chemical volatiles. This presentation will present our discovery of a previously unappreciated sensory capacity in bumblebees (Bombus terrestris: the detection of floral electric fields. We show that these floral fields act as informational cues, and that they can be affected by the visit of naturally electrically charged bees. Like visual cues, floral electric fields exhibit variations in pattern and structure, which can be discriminated by bumblebees. We also show that such electric field information contributes to the complex array of floral cues that together improve a pollinator’s memory of floral rewards. Floral electric fields arise from complex interactions with the surrounding atmosphere, an interaction between plants and their environment that not well understood. Because floral electric fields can change within seconds, this new sensory modality - electrostatic field detection- may facilitate rapid and dynamic communication between flowers and their pollinators.

  10. EFFECT OF ELECTRIC FIELD ON CONTINUOUS LIQUID STREAM

    Science.gov (United States)

    The effect of an electrical field on a continous water jet is considered. The higher electrification of water jets, the more intense are jet sprays...It seems possible to contract an electrized water jet by letting it pass the cylinder charged with the same sign. An attempt to electrify kerosene and spindel oil jets (good insulators) was unsucessful.

  11. Magnetic domain wall motion triggered by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Pyatakov, A P; Sergeev, A S; Sechin, D A; Meshkov, G A; Nikolaeva, E P; Nikolaev, A V; Logginov, A S [Physics Department, M.V. Lomonosov Moscow State University, Leninskie gory, Moscow, 119296 (Russian Federation); Zvezdin, A K, E-mail: pyatakov@phys.msu.r [A.M. Prokhorov General Physics Institute, 38, Vavilova st., Moscow, 119991 (Russian Federation)

    2010-01-01

    We propose the new approach to the problem of electrically controlled magnetic state: the electric field driven domain wall motion. The effect is demonstrated in iron garnet films in ambient conditions. The theoretical model based on inhomogenous magnetoelectric interaction provides with the necessary criteria of the effect and the way to maximize it.

  12. Electric and magnetic field measurements. Annual report 80

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, R.H.; Kotter, F.R.; Misakian, M.; Ortiz, P.

    1981-02-01

    The NBS program is concerned with developing methods for evaluating and calibrating instrumentation for use in measuring the electric field and various ion-related electrical quantities in the vicinity of high-voltage direct current (HVDC) transmission lines and in apparatus designed to simulate the transmission line environment.

  13. Generation of Focused Electric Field Patterns at Dielectric Surfaces

    Science.gov (United States)

    Olofsson, Jessica; Levin, Mikael; Strömberg, Anette; Weber, Stephen G.; Ryttsén, Frida; Orwar, Owe

    2006-01-01

    We here report on a concept for creating well-defined electric field gradients between the boundaries of capillary electrode (a capillary of a nonconducting material equipped with an interior metal electrode) outlets, and dielectric surfaces. By keeping a capillary electrode opening close to a boundary between a conducting solution and a nonconducting medium, a high electric field can be created close to the interface by field focusing effects. By varying the inner and outer diameters of the capillary, the span of electric field strengths and the field gradient obtained can be controlled, and by varying the slit height between the capillary rim and the surface, or the applied current, the average field strength and gradient can be varied. Field focusing effects and generation of electric field patterns were analyzed using finite element method simulations. We experimentally verified the method by electroporation of a fluorescent dye (fluorescein diphosphate) into adherent, monolayered cells (PC-12 and WSS-1) and obtained a pattern of fluorescent cells corresponding to the focused electric field. PMID:16013887

  14. Interferometric methods for mapping static electric and magnetic fields

    DEFF Research Database (Denmark)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi;

    2014-01-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensi......) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.......The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity...... on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors...

  15. Communication: Control of chemical reactions using electric field gradients.

    Science.gov (United States)

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  16. Probing surface electric field noise with a single ion

    CERN Document Server

    Daniilidis, N; Bolloten, G; Ramm, M; Ransford, A; Ulin-Avila, E; Talukdar, I; Häffner, H

    2013-01-01

    We report room-temperature electric field noise measurements combined with in-situ surface characterization and cleaning of a microfabricated ion trap. We used a single-ion electric field noise sensor in combination with surface cleaning and analysis tools, to investigate the relationship between electric field noise from metal surfaces in vacuum and the composition of the surface. These experiments were performed in a novel setup that integrates ion trapping capabilities with surface analysis tools. We find that surface cleaning of an aluminum-copper surface significantly reduces the level of electric field noise, but the surface does not need to be atomically clean to show noise levels comparable to those of the best cryogenic traps. The post-cleaning noise levels are low enough to allow fault-tolerant trapped-ion quantum information processing on a microfabricated surface trap.

  17. Direct sampling of electric-field vacuum fluctuations

    National Research Council Canada - National Science Library

    Riek, C; Seletskiy, D V; Moskalenko, A S; Schmidt, J F; Krauspe, P; Eckart, S; Eggert, S; Burkard, G; Leitenstorfer, A

    2015-01-01

    .... The ground-state electric-field variance is inversely proportional to the four-dimensional space-time volume, which we sampled electro-optically with tightly focused laser pulses lasting a few femtoseconds...

  18. Communication: Control of chemical reactions using electric field gradients

    Science.gov (United States)

    Deshmukh, Shivaraj D.; Tsori, Yoav

    2016-05-01

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  19. Calculation of the electric field gradients, generalized Sternheimer shielding constants, and electric-field-gradient polarizabilities for ten small molecules

    Science.gov (United States)

    Bishop, David M.; Cybulski, sławomir M.

    1994-05-01

    Electric field gradients, generalized Sternheimer shielding constants, and electric-field-gradient polarizabilities are calculated for H2, N2, F2, HF, HCl, CO, HCN, HNC, H2O, and NH3. The calculations are performed at both the Hartree-Fock and second order Møller-Plesset levels of approximation using large basis sets. For most of these molecules this is the first time that the shielding constants and electric field gradient polarizabilities have been determined. Electron correlation is generally found to be a significant factor.

  20. Effective critical electric field for runaway electron generation

    CERN Document Server

    Stahl, Adam; Decker, Joan; Embréus, Ola; Fülöp, Tünde

    2014-01-01

    In this letter we investigate factors that influence the effective critical electric field for runaway electron generation in plasmas. We present numerical solutions of the kinetic equation, and discuss the implications for the threshold electric field. We show that the effective electric field necessary for significant runaway formation often is higher than previously calculated due to both (1) extremely strong dependence of primary generation on temperature, and (2) synchrotron radiation losses. We also address the effective critical field in the context of a transition from runaway growth to decay. We find agreement with recent experiments, but show that the observation of an elevated effective critical field can mainly be attributed to changes in the momentum-space distribution of runaways, and only to a lesser extent to a de facto change in the critical field.

  1. Drop oscillation and mass transfer in alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Carleson, T.E.

    1992-06-24

    In certain cases droplet direct contact heat transfer rates can be significantly enhanced by the application of an alternating electric field. This field can produce shape oscillations in a droplet which will enhance mixing. The theoretical evaluation of the effect of the interaction of the field with drop charge on the hydrodynamics has been completed for small amplitude oscillations. Previous work with a zero order perturbation method was followed up with a first order perturbation method to evaluate the effect of drop distortion on drop charge and field distribution. The first order perturbation results show secondary drop oscillations of four modes and two frequencies in each mode. The most significant secondary oscillation has the same mode and frequency as the second mode oscillation predicted from the first order perturbation work. The resonant frequency of all oscillations decrease with increasing electric field strength and drop charge. Work is currently underway to evaluate the heat transfer enhancement from an applied alternating electric field.

  2. Electric field effects in hyperexcitable neural tissue: A review

    Energy Technology Data Exchange (ETDEWEB)

    Durand, D.M

    2003-07-01

    Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm{sup -1} in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm{sup -1}. These results suggest that the threshold for this effect is clearly smaller than 1mV mm{sup -1}. The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease (n=4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than {approx}1mmV mm{sup -.} (author)

  3. Space charge, plasma potential and electric field distributions in HiPIMS discharges of varying configuration

    Science.gov (United States)

    Liebig, B.; Bradley, J. W.

    2013-08-01

    An electron-emitting (emissive) probe has been used to study the temporal and spatial distribution of the plasma potential during high-power impulse magnetron sputtering (HiPIMS) discharges with various substrate and magnetic field configurations. The average power was 700 W, with a repetition frequency of 100 Hz and pulse duration of 100 µs. Strongly negative plasma potentials exceeding -300 V and electric fields up to 10 kV m-1, caused by strong separation of charges with net charge carrier densities Δn of about 1014 m-3, were observed during the ignition of the discharge. The spatial distribution of the plasma potential in the stable stage of the discharge showed values consistently 5 V more negative for a floating substrate compared with a grounded one, so enhancing electron transport around the insulated substrate to grounded walls. However, this change in the electrical configuration of the plasma does not alter significantly the fraction of ionized sputtered particles (of about 30%) that can potentially reach the substrate. By changing the degree of unbalance of the sputtering source, we find a strong correlation between the electric field strength in the magnetic trap (created through charge separation) and the absolute value (and shape) of the magnetic field. For the more unbalanced magnetron, a flattening of the plasma potential structure (decrease in the axial electric field) was observed close to the target. Our findings show in principle that manipulation of the potential barrier close to the target through changing the magnetic field can regulate the proportion of sputtered and ionized species reaching the substrate.

  4. Anomalous plasma transport and induced electric field in a stochastic magnetic field structure

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Tetsuyuki; Itoh, Sanae-I.; Toda, Shinichiro; Yamaguchi, Hiroki [Kyushu Univ., Fukuoka (Japan); Fukuyama, Atsushi [Okayama Univ. (Japan)

    1995-04-01

    The plasma transport matrix is formulated using the kinetic equation for the particles in the stochastic magnetic field. The radial electric field generation is analyzed using this transport matrix. This thermoelectric field is dictated by the difference between the electron heat flux and the ion heat flux. We calculate the spatial structures of the radial electric field and the temperature in the stochastic field region. 7 refs., 3 figs.

  5. Evolution of Spiral Waves under Modulated Electric Fields

    Institute of Scientific and Technical Information of China (English)

    MA Jun; YING He-Ping; PAN Guo-Wei; PU Zhong-Sheng

    2005-01-01

    @@ Spirals generated from the excitable media within the Barkley model is investigated under the gradient electric fields by a numerical simulation. The spiral drift and spiral break up are observed when the amplitude of the electric fields is modulated by a constant signal or a chaotic signal. It is also verified that, even in the presence of the white noise, the whole system can reach homogeneous states after the spiral breakup, by using an adaptive strategy.

  6. Electric field dependence of crystallinity in poly(vinylidene fluoride)

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, R.G.; Anderson, R.A.; Lagasse, R.R.

    1982-05-03

    It is shown that the crystallinity of poled films of poly(vinylidene fluoride) can be changed by the application of an electric field. This is the first time that electric-field-induced changes of crystallinity in a polymer have been reported, and this observation confirms the hypothesis that reversible changes in crystallinity with temperature contribute significantly to the pyroelectric effect in poly(vinylidene fluoride).

  7. Electric Field Dependence of Crystallinity in Poly(Vinylidene Fluoride)

    Science.gov (United States)

    Kepler, R. G.; Anderson, R. A.; Lagasse, R. R.

    1982-05-01

    It is shown that the crystallinity of poled films of poly(vinylidene fluoride) can be changed by the application of an electric field. This is the first time that electric-field-induced changes of crystallinity in a polymer have been reported, and this observation confirms the hypothesis that reversible changes in crystallinity with temperature contribute significantly to the pyroelectric effect in poly(vinylidene fluoride).

  8. Ionizing gas breakdown waves in strong electric fields.

    Science.gov (United States)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  9. Spiral Wave Generation in a Vortex Electric Field

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-Ping; CHEN Jiang-Xing; ZHAO Ye-Hua; LOU Qin; WANG Lu-Lu; SIIEN Qian

    2011-01-01

    The effect of a vortical electric field on nonlinear patterns in excitable media is studied. When an appropriate vortex electric field is applied, the system exhibits pattern transition from chemical turbulence to spiral waves, which possess the same chtality as the vortex electric field. The underlying mechanism of this is discussed. We also show the meandering behavior of a spiral under the taming of a vortex electric field. The results obtained here may contribute to control strategies of patterns on surface reaction.%The effect of a vortical electric field on nonlinear patterns in excitable media is studied.When an appropriate vortex electric field is applied,the system exhibits pattern transition from chemical turbulence to spiral waves,which possess the same chirality as the vortex electric field.The underlying mechanism of this is discussed.We also show the meandering behavior of a spiral under the taming of a vortex electric field.The results obtained here may contribute to control strategies of patterns on surface reaction.Spiral waves are one of the most common and widely studied patterns in nature.They appear in hydrodynamic systems,chemical reactions and a large variety of biological,chemical and physical systems.[1-5] Much attention has been paid to their rich nonlinear dynamics,as well as potential applications in various biological or physiological systems,since the emergence and instability of spirals usually lead to abnormal states,for example in cardiac arrythmia[6,7] and epilepsy[8].Much research has been carried out in studying pattern formations in catalytic CO oxidation on Pt(110),[9-11] because they provide practical utilization in industry.A rich variety of spatiotemporal patterns,including travelling pulses,standing waves,target patterns,spiral waves and chemical turbulence have been observed in this system.[12-16

  10. Analysis of Electric Fields inside Microchannels and Single Cell Electrical Lysis with a Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Tofy Mussivand

    2013-06-01

    Full Text Available Analysis of electric fields generated inside the microchannels of a microfluidic device for electrical lysis of biological cells along with experimental verification are presented. Electrical lysis is the complete disintegration of cell membranes, due to a critical level of electric fields applied for a critical duration on a biological cell. Generating an electric field inside a microchannel of a microfluidic device has many advantages, including the efficient utilization of energy and low-current requirement. An ideal microchannel model was compared with a practical microchannel model using a finite element analysis tool that suggests that the overestimation error can be over 10%, from 2.5 mm or smaller, in the length of a microchannel. Two analytical forms are proposed to reduce this overestimation error. Experimental results showed that the high electric field is confined only inside the microchannel that is in agreement with the simulation results. Single cell electrical lysis was conducted with a fabricated microfluidic device. An average of 800 V for seven seconds across an 8 mm-long microchannel with the dimension of 100 μm × 20 μm was required for lysis, with electric fields exceeding 100 kV/m and consuming 300 mW.

  11. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design.

    Science.gov (United States)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  12. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    Science.gov (United States)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  13. Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling-Yun; WANG Peng-Ye

    2008-01-01

    We present an analytical solution for fluid velocity field distribution of polyelectrolyte DNA. Both the electric field force and the viscous force in the DNA solution are considered under a suitable boundary condition. The solution of electric potential is analytically obtained by using the linearized Poisson-Boltzmann equation. The fluid velocity along the electric field is dependent on the cylindrical radius and concentration. It is shown that the electric field-induced fluid velocity will be increased with the increasing cylindrical radius, whose distribution also varies with the concentration

  14. Effects of high external electric fields on protein conformation

    Science.gov (United States)

    Pompa, Pier Paolo; Bramanti, Alessandro; Maruccio, Giuseppe; del Mercato, Loretta Laureana; Chiuri, Rocco; Cingolani, Roberto; Rinaldi, Ross

    2005-06-01

    Resistance of biomolecules to high electric fields is a main concern for nanobioelectronics/nanobiosensing applications, and it is also a relevant issue from a fundamental perspective, to understand the dielectric properties and structural dynamics of proteins. In nanoscale devices, biomolecules may experience electric fields as high as 107 V/m in order to elicit charge transport/transfer. Understanding the effects of such fields on their structural integrity is thus crucial to assess the reliability of biomolecular devices. In this study, we show experimental evidence for the retention of native-like fold pattern by proteins embedded in high electric fields. We have tested the metalloprotein azurin, deposited onto SiO2 substrates in air with proper electrode configuration, by applying high static electric fields (up to 106-107 V/m). The effects on the conformational properties of protein molecules have been determined by means of intrinsic fluorescence measurements. Experimental results indicate that no significant field-induced conformational alteration occurs. This behavior is also discussed and supported by theoretical predictions of the intrinsic intra-protein electric fields. As the general features of such inner fields are not peculiar of azurin, the conclusions presented here should have general validity.

  15. Particle acceleration by fluctuating electric fields at a magnetic field null point

    CERN Document Server

    Petkaki, P

    2007-01-01

    Particle acceleration consequences from fluctuating electric fields superposed on an X-type magnetic field in collisionless solar plasma are studied. Such a system is chosen to mimic generic features of dynamic reconnection, or the reconnective dissipation of a linear disturbance. We explore numerically the consequences for charged particle distributions of fluctuating electric fields superposed on an X-type magnetic field. Particle distributions are obtained by numerically integrating individual charged particle orbits when a time varying electric field is superimposed on a static X-type neutral point. This configuration represents the effects of the passage of a generic MHD disturbance through such a system. Different frequencies of the electric field are used, representing different possible types of wave. The electric field reduces with increasing distance from the X-type neutral point as in linear dynamic magnetic reconnection. The resulting particle distributions have properties that depend on the ampli...

  16. Migration of amoeba cells in an electric field

    Science.gov (United States)

    Guido, Isabella; Bodenschatz, Eberhard

    2015-03-01

    Exogenous and endogenous electric fields play a role in cell physiology as a guiding mechanism for the orientation and migration of cells. Electrotaxis of living cells has been observed for several cell types, e.g. neurons, fibroblasts, leukocytes, neural crest cells, cancer cells. Dictyostelium discoideum (Dd), an intensively investigated chemotactic model organism, also exhibits a strong electrotactic behavior moving toward the cathode under the influence of electric fields. Here we report experiments on the effects of DC electric fields on the directional migration of Dd cells. We apply the electric field to cells seeded into microfluidic devices equipped with agar bridges to avoid any harmful effects of the electric field on the cells (ions formation, pH changes, etc.) and a constant flow to prevent the build-up of chemical gradient that elicits chemotaxis. Our results show that the cells linearly increase their speed over time when a constant electric field is applied for a prolonged duration (2 hours). This novel phenomenon cannot be attributed to mechanotaxis as the drag force of the electroosmotic flow is too small to produce shear forces that can reorient cells. It is independent of the cellular developmental stage and to our knowledge, it was not observed in chemotaxis. This work is supported by MaxSynBio project of the Max Planck Society.

  17. Effect of superheat and electric field on saturated film boiling

    Science.gov (United States)

    Pandey, Vinod; Biswas, Gautam; Dalal, Amaresh

    2016-05-01

    The objective of this investigation is to study the influence of superheat temperature and applied uniform electric field across the liquid-vapor interface during film boiling using a coupled level set and volume of fluid algorithm. The hydrodynamics of bubble growth, detachment, and its morphological variation with electrohydrodynamic forces are studied considering the medium to be incompressible, viscous, and perfectly dielectric at near critical pressure. The transition in interfacial instability behavior occurs with increase in superheat, the bubble release being periodic both in space and time. Discrete bubble growth occurs at a smaller superheat whereas vapor columns form at the higher superheat values. Destabilization of interfacial motion due to applied electric field results in decrease in bubble separation distance and increase in bubble release rate culminating in enhanced heat transfer rate. A comparison of maximum bubble height owing to application of different intensities of electric field is performed at a smaller superheat. The change in dynamics of bubble growth due to increasing superheat at a high intensity of electric field is studied. The effect of increasing intensity of electric field on the heat transfer rate at different superheats is determined. The boiling characteristic is found to be influenced significantly only above a minimum critical intensity of the electric field.

  18. Spiking patterns of a hippocampus model in electric fields

    Institute of Scientific and Technical Information of China (English)

    Men Cong; Wang Jiang; Qin Ying-Mei; Wei Xi-Le; Che Yan-Qiu; Deng Bin

    2011-01-01

    We develop a model of CA3 neurons embedded in a resistive array to mimic the effects of electric fields from a new perspective.Effects of DC and sinusoidal electric fields on firing patterns in CA3 neurons are investigated in this study.The firing patterns can be switched from no firing pattern to burst or from burst to fast periodic firing pattern with the increase of DC electric field intensity.It is also found that the firing activities are sensitive to the frequency and amplitude of the sinusoidal electric field.Different phase-locking states and chaotic firing regions are observed in the parameter space of frequency and amplitude.These findings are qualitatively in accordance with the results of relevant experimental and numerical studies.It is implied that the external or endogenous electric field can modulate the neural code in the brain.Furthermore,it is helpful to develop control strategies based on electric fields to control neural diseases such as epilepsy.

  19. [Study on dewatering of activated sludge under applied electric field].

    Science.gov (United States)

    Ji, Xue-Yuan; Wang, Yi-Li; Feng, Jing

    2012-12-01

    For an electro-dewatering process of activated sludge (AS), the effect of pH and conductivity of AS, flocculation conditioning and operation factors of horizontal electric field (voltage magnitude, method of applying electric field and distance between plates) were investigated, and the corresponding optimum electro-dewatering conditions were also obtained. The results showed that the best electro-dewatering effect was achieved for AS without change of its pH value (6.93) and conductivity (1.46 mS x cm(-1)). CPAM conditioning could lead to the increase of 30%-40% in the dewatering rate and accelerate the dewatering process, whereas a slight increase in the electro-dewatering rate. The electro-dewatering rate for conditioned AS reached 83.12% during an electric field applied period of 60 minutes, while this rate for original AS could be 75.31% even the electric field applied period extended to 120 minutes. The delay of applying the electric field had an inhibition effect on the AS electro-dewatering rate. Moreover, the optimum conditions for AS electro-dewatering were followed: CPAM dose of 9 g x kg(-1), electric field strength of 600 V x m(-1), distance between the two plates of 40 mm, dehydration time of 60 minutes. Under above optimum conditions the AS electro-dewatering rate could approach to 85.33% and the moisture content in AS decreased from 99.30% to 95.15% accordingly.

  20. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  1. Propagation of Magnetic Fields from Electrical Domestic Appliances

    Science.gov (United States)

    Orlova, K. N.; Gaidamak, M. A.; Borovikov, I. F.

    2016-08-01

    The article presents a research into propagation of magnetic fields from electrical domestic devices. A safe distance at which magnetic induction does not exceed the background level is determined for each type of devices. It is proved that there are two stages of increasing magnetic induction as the distance from the source increases. At the first stage magnetic induction rises and electromagnetic field is formed. At the second stage exponential decrease of magnetic field induction takes place. Mathematical regularities of propagation of magnetic field from electrical domestic devices are experimentally educed.

  2. The chromatographic separation of particles using optical electric fields

    DEFF Research Database (Denmark)

    Javier Alvarez, Nicolas; Jeppesen, Claus; Yvind, Kresten

    2013-01-01

    We introduce a new field-flow fractionation (FFF) technique, whereby molecules are separated based on their differential interaction (dielectrophoresis (DEP)) with optical electric fields, i.e. electric fields with frequencies in the visible and near-infrared range. The results show that a parallel...... array of axially non-uniform optical fields yielding an attractive potential (positive-DEP-FFF) is advantageous for the separation of polymers, biomolecules, and nanoparticles over very short distances. Furthermore, positive-DEP-FFF yields superior selectivity and resolution compared to conventional...

  3. Vacuum radiation induced by time dependent electric field

    Science.gov (United States)

    Zhang, Bo; Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian; Gu, Yu-qiu

    2017-04-01

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  4. Ponderomotive Force in the Presence of Electric Fields

    Science.gov (United States)

    Khazanov, G. V.; Krivorutsky, E. N.

    2013-01-01

    This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.

  5. Low magnetic Johnson noise electric field plates for precision measurement

    CERN Document Server

    Rabey, I M; Hinds, E A; Sauer, B E

    2016-01-01

    We describe a parallel pair of high voltage electric field plates designed and constructed to minimise magnetic Johnson noise. They are formed by laminating glass substrates with commercially available polyimide (Kapton) tape, covered with a thin gold film. Tested in vacuum, the outgassing rate is less than $5\\times10^{-5}$ mbar.l/s. The plates have been operated at electric fields up to 8.3 kV/cm, when the leakage current is at most a few hundred pA. The design is discussed in the context of a molecular spin precession experiment to measure the permanent electric dipole moment of the electron.

  6. Electric field and temperature effects in irradiated MOSFETs

    Science.gov (United States)

    Silveira, M. A. G.; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A.; Aguiar, Vitor. A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H.

    2016-07-01

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices

  7. Electric Field-Responsive Mesoporous Suspensions: A Review

    Directory of Open Access Journals (Sweden)

    Seung Hyuk Kwon

    2015-12-01

    Full Text Available This paper briefly reviews the fabrication and electrorheological (ER characteristics of mesoporous materials and their nanocomposites with conducting polymers under an applied electric field when dispersed in an insulating liquid. Smart fluids of electrically-polarizable particles exhibit a reversible and tunable phase transition from a liquid-like to solid-like state in response to an external electric field of various strengths, and have potential applications in a variety of active control systems. The ER properties of these mesoporous suspensions are explained further according to their dielectric spectra in terms of the flow curve, dynamic moduli, and yield stress.

  8. Static electric field enhancement in nanoscale structures

    Science.gov (United States)

    Lepetit, Bruno; Lemoine, Didier; Márquez-Mijares, Maykel

    2016-08-01

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  9. Static electric field enhancement in nanoscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)

    2016-08-28

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  10. Report on Non-Contact DC Electric Field Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Miles, R; Bond, T; Meyer, G

    2009-06-16

    This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

  11. Reversible electric-field control of magnetization at oxide interfaces

    Science.gov (United States)

    Cuellar, F. A.; Liu, Y. H.; Salafranca, J.; Nemes, N.; Iborra, E.; Sanchez-Santolino, G.; Varela, M.; Hernandez, M. Garcia; Freeland, J. W.; Zhernenkov, M.; Fitzsimmons, M. R.; Okamoto, S.; Pennycook, S. J.; Bibes, M.; Barthélémy, A.; Te Velthuis, S. G. E.; Sefrioui, Z.; Leon, C.; Santamaria, J.

    2014-06-01

    Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin-dependent resistance states, in the absence of a magnetic field.

  12. Electric field-induced softening of alkali silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, C.; Heffner, W.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Tessarollo, R.; Raj, R. [Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309 (United States)

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  13. Electric field-induced softening of alkali silicate glasses

    Science.gov (United States)

    McLaren, C.; Heffner, W.; Tessarollo, R.; Raj, R.; Jain, H.

    2015-11-01

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  14. Rovibrational spectra of diatomic molecules in strong electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Ferez, R; Schmelcher, P [Departamento de Fisica Moderna and Instituto ' Carlos I' de Fisica Teorica y Computacional, Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain); Theoretische Chemie, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, D-69120 Heidelberg (Germany)

    2005-01-01

    We investigate the effects of a strong static electric field on the rovibrational spectra of diatomic heteronuclear molecules in a {sup 1}{sigma}{sup +} electronic ground state. Using a hybrid computational technique combining discretization and basis set methods the full rovibrational equation of motion is solved. As a prototype for our computations we take the carbon monoxide molecule. For experimentally accessible field strengths we observe that while low-lying states are not significantly affected by the field, for highly excited states strong orientation and hybridization are achieved. We propose an effective rotor Hamiltonian, including the main properties of each vibrational state, to describe the influence of the electric field on the rovibrational spectra of a molecular system with a small coupling between its rotational and vibrational motions. This effective rotor approach goes significantly beyond the rigid rotor approach and is able to describe the effect of the electric field for highly excited states.

  15. Rydberg-Stark states in oscillating electric fields

    CERN Document Server

    Zhelyazkova, V

    2015-01-01

    Experimental and theoretical studies of the effects of weak radio-frequency electric fields on Rydberg-Stark states with electric dipole moments as large as 10000 D are reported. High-resolution laser spectroscopic studies of Rydberg states with principal quantum number $n=52$ and $53$ were performed in pulsed supersonic beams of metastable helium with the excited atoms detected by pulsed electric field ionisation. Experiments were carried out in the presence of sinusoidally oscillating electric fields with frequencies of 20~MHz, amplitudes of up to 120~mV/cm, and dc offsets of up to 4.4~V/cm. In weak fields the experimentally recorded spectra are in excellent agreement with the results of calculations carried out using Floquet methods to account for electric dipole couplings in the oscillating fields. This highlights the validity of these techniques for the accurate calculation of the Stark energy level structure in such fields, and the limitations of the calculations in stronger fields where $n-$mixing and ...

  16. Rydberg-Stark states in oscillating electric fields

    Science.gov (United States)

    Zhelyazkova, V.; Hogan, S. D.

    2015-12-01

    Experimental and theoretical studies of the effects of weak radio-frequency electric fields on Rydberg-Stark states with electric dipole moments as large as 10,000 D are reported. High-resolution laser spectroscopic studies of Rydberg states with principal quantum number n = 52 and 53 were performed in pulsed supersonic beams of metastable helium with the excited atoms detected by pulsed electric field ionisation. Experiments were carried out in the presence of sinusoidally oscillating electric fields with frequencies of 20 MHz, amplitudes of up to 120 mV/cm, and dc offsets of up to 4.4 V/cm. In weak fields, the experimentally recorded spectra are in excellent agreement with the results of calculations carried out using Floquet methods to account for electric dipole couplings in the oscillating fields. This highlights the validity of these techniques for the accurate calculation of the Stark energy level structure in such fields, and the limitations of the calculations in stronger fields where n-mixing and higher order contributions become important.

  17. New Method for Solving Inductive Electric Fields in the Ionosphere

    Science.gov (United States)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  18. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  19. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    DEFF Research Database (Denmark)

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reac...

  20. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    2011-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measureme

  1. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    2011-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measureme

  2. Limiting electric fields of HVDC overhead power lines.

    Science.gov (United States)

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths.

  3. Controlling Growth Orientation of Phthalocyanine Films by Electrical Fields

    Science.gov (United States)

    Zhu, S.; Banks, C. E.; Frazier, D. O.; Ila, D.; Muntele, I.; Penn, B. G.; Sharma, A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Organic Phthalocyanine films have many applications ranging from data storage to various non-linear optical devices whose quality is affected by the growth orientation of Phthalocyanine films. Due to the structural and electrical properties of Phthalocyanine molecules, the film growth orientation depends strongly on the substrate surface states. In this presentation, an electrical field up to 4000 V/cm is introduced during film growth. The Phthalocyanine films are synthesized on quartz substrates using thermal evaporation. An intermediate layer is deposited on some substrates for introducing the electrical field. Scanning electron microscopy, x-ray diffraction, and Fourier transform infrared spectroscopy are used for measuring surface morphology, film structure, and optical properties, respectively. The comparison of Phthalocyanine films grown with and without the electrical field reveals different morphology, film density, and growth orientation, which eventually change optical properties of these films. These results suggest that the growth method in the electrical field can be used to synthesized Phthalocyanine films with a preferred crystal orientation as well as propose an interaction mechanism between the substrate surface and the depositing molecules. The details of growth conditions and of the growth model of how the Phthalocyanine molecules grow in the electrical field will be discussed.

  4. High school students' representations and understandings of electric fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-12-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields postinstruction as indicated by students' performance on textbook-style questions. It has, however, inadequately captured student ideas expressed in other situations yet informative to educational research. In this study, we explore students' ideas of electric fields preinstruction as shown by students' representations produced in open-ended activities. 92 participant students completed a worksheet that involved drawing comic strips about electric charges as characters of a cartoon series. Three students who had spontaneously produced arrow diagrams were interviewed individually after class. We identified nine ideas related to electric fields that these three students spontaneously leveraged in the comic strip activity. In this paper, we describe in detail each idea and its situated context. As most research in the literature has understood students as having relatively fixed conceptions and mostly identified divergences in those conceptions from canonical targets, this study shows students' reasoning to be more variable in particular moments, and that variability includes common sense resources that can be productive for learning about electric fields.

  5. Consistency restrictions on maximal electric-field strength in quantum field theory.

    Science.gov (United States)

    Gavrilov, S P; Gitman, D M

    2008-09-26

    Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET2, one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.

  6. Realistic Electric Field Mapping of Anisotropic Muscle During Electrical Stimulation Using a Combination of Water Diffusion Tensor and Electrical Conductivity.

    Science.gov (United States)

    Choi, Bup Kyung; Oh, Tong In; Sajib, Saurav Zk; Kim, Jin Woong; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-04-01

    To realistically map the electric fields of biological tissues using a diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) method to estimate tissue response during electrical stimulation. Imaging experiments were performed using chunks of bovine muscle. Two silver wire electrodes were positioned inside the muscle tissue for electrical stimulation. Electric pulses were applied with a 100-V amplitude and 100-μs width using a voltage stimulator. During electrical stimulation, we collected DT-MREIT data from a 3T magnetic resonance imaging scanner. We adopted the projected current density method to calculate the electric field. Based on the relation between the water diffusion tensor and the conductivity tensor, we computed the position-dependent scale factor using the measured magnetic flux density data. Then, a final conductivity tensor map was reconstructed using the multiplication of the water diffusion tensor and the scale factor. The current density images from DT-MREIT data represent the internal current flows that exist not only in the electrodes but also in surrounding regions. The reconstructed electric filed map from our anisotropic conductivity tensor with the projected current density shows coverage that is more than 2 times as wide, and higher signals in both the electrodes and surrounding tissues, than the previous isotropic method owing to the consideration of tissue anisotropy. An electric field map obtained by an anisotropic reconstruction method showed different patterns from the results of the previous isotropic reconstruction method. Since accurate electric field mapping is important to correctly estimate the coverage of the electrical treatment, future studies should include more rigorous validations of the new method through in vivo and in situ experiments.

  7. Realistic Electric Field Mapping of Anisotropic Muscle During Electrical Stimulation Using a Combination of Water Diffusion Tensor and Electrical Conductivity

    Science.gov (United States)

    2017-01-01

    Purpose To realistically map the electric fields of biological tissues using a diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) method to estimate tissue response during electrical stimulation. Methods Imaging experiments were performed using chunks of bovine muscle. Two silver wire electrodes were positioned inside the muscle tissue for electrical stimulation. Electric pulses were applied with a 100-V amplitude and 100-μs width using a voltage stimulator. During electrical stimulation, we collected DT-MREIT data from a 3T magnetic resonance imaging scanner. We adopted the projected current density method to calculate the electric field. Based on the relation between the water diffusion tensor and the conductivity tensor, we computed the position-dependent scale factor using the measured magnetic flux density data. Then, a final conductivity tensor map was reconstructed using the multiplication of the water diffusion tensor and the scale factor. Results The current density images from DT-MREIT data represent the internal current flows that exist not only in the electrodes but also in surrounding regions. The reconstructed electric filed map from our anisotropic conductivity tensor with the projected current density shows coverage that is more than 2 times as wide, and higher signals in both the electrodes and surrounding tissues, than the previous isotropic method owing to the consideration of tissue anisotropy. Conclusions An electric field map obtained by an anisotropic reconstruction method showed different patterns from the results of the previous isotropic reconstruction method. Since accurate electric field mapping is important to correctly estimate the coverage of the electrical treatment, future studies should include more rigorous validations of the new method through in vivo and in situ experiments. PMID:28446015

  8. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  9. Electric field mapping inside metallized film capacitors

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2015-01-01

    and durability and serves as verification that failure- and degradation mechanisms remain the same at different stress levels during accelerated testing. In this work we have used Kelvin probe force microscopy (KPFM) to analyze metallized film capacitors with the purpose of determining the degradation mechanism......(s) they suffered from accelerated testing. We have prepared film capacitors for analysis by micro-sectioning and verified the quality of the preparation procedure using optical and atomic force microscopy. The potential distribution in the layer structure (alternating 7 µm thick dielectric and 50-100 nm thick...... of the metallization stripes had lost contact to the end-spray. Thus, it is shown that the surface electric potential distributions on micro-sectioned film capacitors can be obtained through KPFM analysis. We have, from KPFM measurements, shown that the degraded capacitors under investigation had suffered from...

  10. High electric field phenomena in insulation

    Science.gov (United States)

    Laghari, J. R.; Sarjeant, W. J.

    1989-01-01

    The present study extends previous work to include electron radiation-induced changes in monoisopropyl biphenyl (MIPB)-impregnated polypropylene film as well as the effects of neutron/gamma radiation on dry polypropylene films. Effects that were quite similar were induced by both electron and neutron radiation on the properties of interest of the polypropylene films. Impregnation of the film with MIPB had a mitigatory effect on the degradation of the properties. This report also contains the results of a simultaneous electrical and thermal aging study of a capacitor-grade polypropylene film. The data obtained in this study was fitted to models that will enable realistic prediction of lifetimes under operating conditions.

  11. Elastic constant of Dendrobium protoplasts in AC electric fields

    Directory of Open Access Journals (Sweden)

    Pikul Wanichapichart

    2002-11-01

    Full Text Available This work reports elongation of Dendrobium protoplasts in an ac electric field between two cylindrical electrodes. A protoplast firstly was translated towards an electrode by dielectrophoretic force in 17 kV.m-1 field strength at 1 MHz, and secondly it was elongated due to an interaction between an induced electric dipole (μ and the electric field (E. Protoplast elongation was observed by varying both the field strength at 30, 45, 60, and 85 kV.m-1 and field frequency at 0.5, 1, 5, and 10 MHz. For a given field frequency and field strength, a parameter a/b (major/minor axis was measured as the protoplast elongation.Two-step elongation and restoration phases were observed. The former was completed within 2 minutes of field exposure, and the latter was completed within 15 seconds regardless of the field exposure time between 3 and 20 minutes. The evidence of a complete restoration indicated that the elasticity of the protoplast membrane obeyed Hooke’s law. This study also found that elastic constant k of the membrane varied non-linearly with the field strength. It was found to be from 0.04 to 0.08 mN.m-1, dependent on the field frequency.

  12. Wetting of sessile water drop under an external electrical field

    Science.gov (United States)

    Vancauwenberghe, Valerie; di Marco, Paolo; Brutin, David; Amu Collaboration; Unipi Collaboration

    2013-11-01

    The enhancement of heat and mass transfer using a static electric field is an interesting process for industrial applications, due to its low energy consumption and potentially high level of evaporation rate enhancement. However, to date, this phenomenon is still not understood in the context of the evaporation of sessile drops. We previously synthesized the state of the art concerning the effect of an electric field on sessile drops with a focus on the change of contact angle and shape and the influence of the evaporation rate [1]. We present here the preliminary results of an new experiment set-up. The novelty of the set-up is the drop injection from the bottom that allows to generate safety the droplet under the electrostatic field. The evaporation at room temperature of water drops having three different volumes has been investigated under an electric field up to 10.5 kV/cm. The time evolutions of the contact angles, volumes and diameters have been analysed. As reported in the literature, the drop elongate along the direction of the electric field. Despite the hysteresis effect of the contact angle, the receding contact angle increases with the strength of the electric field. This is clearly observable for the small drops for which the gravity effect can be neglected.

  13. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min Suk

    2012-12-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  14. Production of pulsed electric fields using capacitively coupled electrodes

    Science.gov (United States)

    Kendall, B. R. F.; Schwab, F. A. S.

    1980-01-01

    It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.

  15. Using Gravitational Analogies to Introduce Elementary Electrical Field Theory Concepts

    Science.gov (United States)

    Saeli, Susan; MacIsaac, Dan

    2007-01-01

    Since electrical field concepts are usually unfamiliar, abstract, and difficult to visualize, conceptual analogies from familiar gravitational phenomena are valuable for teaching. Such analogies emphasize the underlying continuity of field concepts in physics and support the spiral development of student understanding. We find the following four…

  16. Noncommuting Electric Fields and Algebraic Consistency in Noncommutative Gauge theories

    CERN Document Server

    Banerjee, R

    2003-01-01

    We show that noncommuting electric fields occur naturally in noncommutative gauge theories. Using this noncommutativity, which is field dependent, and a hamiltonian generalisation of the Seiberg-Witten Map, the algebraic consistency in the lagrangian and hamiltonian formulations of these theories, is established. The stability of the Poisson algebra, under this generalised map, is studied.

  17. Electric-field effect in partially deoxygenated YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kula, W. (Dept. of Electrical Engineering and Lab. for Laser Energetics, Univ. of Rochester, NY (United States) Inst. of Physics, Polish Academy of Sciences, Warszawa (Poland)); Sobolewski, R. (Dept. of Electrical Engineering and Lab. for Laser Energetics, Univ. of Rochester, NY (United States) Inst. of Physics, Polish Academy of Sciences, Warszawa (Poland))

    1994-02-01

    We report our studies on the electric-field effect in partially oxygen-depleted YBa[sub 2]Cu[sub 3]O[sub y] (YBCO) thin-film test structures fabricated by a laser-writing patterning technique. Our preliminary results indicate substantial, field-induced changes of the sample critical current. (orig.)

  18. Asymmetry of Neoclassical Transport by Dipole Electric Field

    Institute of Scientific and Technical Information of China (English)

    王中天; 王龙

    2004-01-01

    Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity.

  19. Effects of pulsed electric field on ULQ and RFP plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M. [Iwate Univ., Morioka (Japan). Faculty of Engineering; Saito, K.; Suzuki, T. [and others

    1997-12-31

    Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)

  20. Time Evolution of Electric Fields in CDMS Detectors

    CERN Document Server

    Leman, S W; Brink, P L; Cabrera, B; Chagani, H; Cherry, M; Cushman, P; Silva, E Do Couto E; Doughty, T; Figueroa-Feliciano, E; Mandic, V; McCarthy, K A; Mirabolfathi, N; Pyle, M; Reisetter, A; Resch, R; Sadoulet, B; Serfass, B; Sundqvist, K M; Tomada, A; Young, B A; Zhang, J

    2011-01-01

    The Cryogenic Dark Matter Search (CDMS) utilizes large mass, 3" diameter x 1" thick target masses as particle detectors. The target is instrumented with both phonon and ionization sensors, the later providing a $\\sim$1 V cm$^{-1}$ electric field in the detector bulk. Cumulative radiation exposure which creates $\\sim 200\\times 10^6$ electron-hole pairs is sufficient to produce a comparable reverse field in the detector thereby degrading the ionization channel performance. To study this, the existing CDMS detector Monte Carlo has been modified to allow for an event by event evolution of the bulk electric field, in three spatial dimensions. Our most resent results and interpretation are discussed.

  1. Electro-optic probe measurements of electric fields in plasmas

    Science.gov (United States)

    Nishiura, M.; Yoshida, Z.; Mushiake, T.; Kawazura, Y.; Osawa, R.; Fujinami, K.; Yano, Y.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2017-02-01

    The direct measurements of high-frequency electric fields in a plasma bring about significant advances in the physics and engineering of various waves. We have developed an electro-optic sensor system based on the Pockels effect. Since the signal is transmitted through an optical fiber, the system has high tolerance for electromagnetic noises. To demonstrate its applicability to plasma experiments, we report the first result of measurement of the ion-cyclotron wave excited in the RT-1 magnetosphere device. This study compares the results of experimental field measurements with simulation results of electric fields in plasmas.

  2. On a Correlation between the Ionospheric Electric Field and the Time Derivative of the Magnetic Field

    Directory of Open Access Journals (Sweden)

    R. R. Ilma

    2012-01-01

    Full Text Available A correlation of the ionospheric electric field and the time derivative of the magnetic field was noticed over thirty years ago and has yet to be explained. Here we report on another set of examples during the superstorm of November 2004. The electric field in the equatorial ionosphere, measured with the Jicamarca incoherent scatter radar, exhibited a 3 mV/m electric field pulse that was not seen in the interplanetary medium. It was, however, accompanied by a correlation with the time derivative of the magnetic field measured at two points in Peru. Our inclination was to assume that the field was inductive. However, the time scale of the pulse was too short for the magnetic field to penetrate the crust of the Earth. This means that the area threaded by ∂B/∂t was too small to create the observed electric field by induction. We suggest that the effect was caused by a modulation of the ring current location relative to the Earth due to the electric field. This electric field is required, as the magnetic field lines are considered frozen into the plasma in the magnetosphere. The closer location of the ring current to the Earth in turn increased the magnetic field at the surface.

  3. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  4. Vapor-liquid equilibrium in electric field gradients.

    Science.gov (United States)

    Samin, Sela; Tsori, Yoav

    2011-01-13

    We investigate the vapor-liquid coexistence of polar and nonpolar fluids in the presence of a nonuniform electric field. We find that a large enough electric field can nucleate a gas bubble from the liquid phase or a liquid droplet from the vapor phase. The surface tension of the vapor-liquid interface is determined within squared-gradient theory. When the surface potential (charge) is controlled, the surface tension increases (decreases) compared to the zero-field interface. The effect of the electric field on the fluid phase diagram depends strongly on the constitutive relation for the dielectric constant. Finally, we show that gas bubbles can be nucleated far from the bounding surfaces.

  5. Pulsed electric field reduces the permeability of potato cell wall.

    Science.gov (United States)

    Galindo, Federico Gómez; Vernier, P Thomas; Dejmek, Petr; Vicente, António; Gundersen, Martin A

    2008-05-01

    The effect of the application of pulsed electric fields to potato tissue on the diffusion of the fluorescent dye FM1-43 through the cell wall was studied. Potato tissue was subjected to field strengths ranging from 30 to 500 V/cm, with one 1 ms rectangular pulse, before application of FM1-43 and microscopic examination. Our results show a slower diffusion of FM1-43 in the electropulsed tissue when compared with that in the non-pulsed tissue, suggesting that the electric field decreased the cell wall permeability. This is a fast response that is already detected within 30 s after the delivery of the electric field. This response was mimicked by exogenous H2O2 and blocked by sodium azide, an inhibitor of the production of H2O2 by peroxidases. (c) 2007 Wiley-Liss, Inc.

  6. Effect of Electric Field on Conductivity and Vickers Hardness of an Al-Li Alloy

    Science.gov (United States)

    Liu, Bing; Chen, Da-Rong; Chen, Zheng; Wang, Yong-Xin; Li, Xiao-Ling

    2003-11-01

    Static electric fields were applied on an aluminium-lithium alloy during solution treatment. The conductivity and Vickers hardness of the quenched Al-Li alloy is changed with the effect of electric field. The Vickers hardness increases with the applied electric field for a certain solutionizing time but decreases with the time under an electric field. In the absence of the electric field, the Vickers hardness and the conductivity increase synchronously, while reversed after electric field treatment. Positive and negative electric fields had the similar effect. The change of the local electron density in alloy caused by electric field is presented to explain the effect.

  7. Effect of Electric Field on Conductivity and Vickers Hardness of an A1-Li Alloy

    Institute of Scientific and Technical Information of China (English)

    刘兵; 陈大融; 陈铮; 王永欣; 李晓玲

    2003-01-01

    Static electric fields were applied on an aluminium-lithium alloy during solution treatment.The conductivity and Vickers hardness of the quenched Al-Li alloy is changed with the effect of electric field.The Vickers hardness increases with the applied electric field for a certain solutionizing time but decreases with the time under an electric field.In the absence of the electric field,the Vickers hardness and the conductivity increase synchronously,while reversed after electric field treatment.Positive and negative electric fields had the similar effect.The change of the local electron density in alloy caused by electric field is presented to explain the effect.

  8. Coherent anti-Stokes Raman scattering under electric field stimulation

    Science.gov (United States)

    Capitaine, Erwan; Ould Moussa, Nawel; Louot, Christophe; Lefort, Claire; Pagnoux, Dominique; Duclère, Jean-René; Kaneyasu, Junya F.; Kano, Hideaki; Duponchel, Ludovic; Couderc, Vincent; Leproux, Philippe

    2016-12-01

    We introduce an experiment using electro-CARS, an electro-optical method based on the combination of ultrabroadband multiplex coherent anti-Stokes Raman scattering (M-CARS) spectroscopy and electric field stimulation. We demonstrate that this method can effectively discriminate the resonant CARS signal from the nonresonant background owing to a phenomenon of molecular orientation in the sample medium. Such molecular orientation is intrinsically related to the induction of an electric dipole moment by the applied static electric field. Evidence of the electro-CARS effect is obtained with a solution of n -alkanes (CnH2 n +2 , 15 ≤n ≤40 ), for which an enhancement of the CARS signal-to-noise ratio is achieved in the case of CH2 and CH3 symmetric/asymmetric stretching vibrations. Additionally, an electric-field-induced second-harmonic generation experiment is performed in order to corroborate the orientational organization of molecules due to the electric field excitation. Finally, we use a simple mathematical approach to compare the vibrational information extracted from electro-CARS measurements with spontaneous Raman data and to highlight the impact of electric stimulation on the vibrational signal.

  9. Relationship between ionospheric electric fields and magnetic activity indices

    Science.gov (United States)

    Shirapov, D. Sh.

    2012-02-01

    The relations between electric fields in the daytime and nighttime sectors of the polar ionosphere and magnetic activity indices of auroral region (AL) and northern polar cap (PCN) are studied. It is found that the above relations do exist and are described by: a) equations U {pc/(1)} (kV) = 27.62 + 21.43PCN with a correlation coefficient R = 0.87 and U {pc/(1)} (kV) = 4.06 + 49.21PCN - 6.24 PCN2 between the difference in the electric potentials across the polar cap in the daytime sector U {pc/(1)} and PCN and b) regression equation U {pc/(2)} (kV) = 23.33 + 0.08|AL| with R = 0.86 between the difference in the electric potentials across the polar cap in the nighttime sector U {pc/(2)} and |AL|. It is shown that: a) it is possible to use the AL and PCN indices for real-time diagnostics of instantaneous values of the electric fields in the daytime and nighttime sectors of the polar ionosphere in the process of a substorm development; b) at the expansion phase of a substorm, due to calibration of PCN values by the values of the solar wind electric field E sw, the PCN index does not feel the contribution of the western electrojet and, accordingly, the contribution of the nighttime ionospheric electric field U {pc/(2)}, governed by the reconnection in the magnetospheric tail.

  10. Manipulation of red blood cells with electric field

    Science.gov (United States)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  11. Modeling of electric field distribution in tissues during electroporation.

    Science.gov (United States)

    Corovic, Selma; Lackovic, Igor; Sustaric, Primoz; Sustar, Tomaz; Rodic, Tomaz; Miklavcic, Damijan

    2013-02-21

    Electroporation based therapies and treatments (e.g. electrochemotherapy, gene electrotransfer for gene therapy and DNA vaccination, tissue ablation with irreversible electroporation and transdermal drug delivery) require a precise prediction of the therapy or treatment outcome by a personalized treatment planning procedure. Numerical modeling of local electric field distribution within electroporated tissues has become an important tool in treatment planning procedure in both clinical and experimental settings. Recent studies have reported that the uncertainties in electrical properties (i.e. electric conductivity of the treated tissues and the rate of increase in electric conductivity due to electroporation) predefined in numerical models have large effect on electroporation based therapy and treatment effectiveness. The aim of our study was to investigate whether the increase in electric conductivity of tissues needs to be taken into account when modeling tissue response to the electroporation pulses and how it affects the local electric distribution within electroporated tissues. We built 3D numerical models for single tissue (one type of tissue, e.g. liver) and composite tissue (several types of tissues, e.g. subcutaneous tumor). Our computer simulations were performed by using three different modeling approaches that are based on finite element method: inverse analysis, nonlinear parametric and sequential analysis. We compared linear (i.e. tissue conductivity is constant) model and non-linear (i.e. tissue conductivity is electric field dependent) model. By calculating goodness of fit measure we compared the results of our numerical simulations to the results of in vivo measurements. The results of our study show that the nonlinear models (i.e. tissue conductivity is electric field dependent: σ(E)) fit experimental data better than linear models (i.e. tissue conductivity is constant). This was found for both single tissue and composite tissue. Our results of

  12. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation

    Science.gov (United States)

    Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C

    2017-01-01

    Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.4 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r = 0.89) and depth (r = 0.84) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials. DOI: http://dx.doi.org/10.7554/eLife.18834.001 PMID:28169833

  13. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation.

    Science.gov (United States)

    Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C

    2017-02-07

    Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.4 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r = 0.89) and depth (r = 0.84) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials.

  14. Numerical simulation of electromagnetic and flow fields of TiAI melt under electric field

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong; Ding Hongsheng; Jiang Sanyong; Chen Ruirun; Guo Jingjie

    2010-01-01

    This article aims at building an electromagnetic and fluid model, based on the Maxwell equations and Navier-Stokes equations, in TiAI melt under two electric fields. FEM (Finite Element Method) and APDL (ANSYS Parametric Design Language) were employed to perform the simulation, model setup, loading and problem solving. The melt in molds of same cross section area with different flakiness ratio (i.e. width/depth) under the load of sinusoidal current or pulse current was analyzed to obtain the distribution of electromagnetic field and flow field. The results show that the induced magnetic field occupies sufficiently the domain of the melt in the mold with a flakiness ratio of 5:1. The melt is driven bipolarly from the center in each electric field. It is also found that the pulse electric field actuates the TiAI melt to flow stronger than what the sinusoidal electric field does.

  15. Water-methanol separation with carbon nanotubes and electric fields

    Science.gov (United States)

    Winarto, Affa; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-07-01

    Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water-methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing diameter. In contrast, under an electric field, water molecules strongly prefer to occupy the CNTs over methanol molecules, resulting in a separation effect for water. More interestingly, the separation effect for water does not decrease with increasing CNT diameter. Formation of water structures in CNTs induced by an electric field has an important role in the separation of water from methanol.Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water-methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing

  16. Integrated optical waveguide sensor for lighting impulse electric field measurement

    Science.gov (United States)

    Zhang, Jiahong; Chen, Fushen; Sun, Bao; Chen, Kaixin

    2014-09-01

    A Lithium niobate (LiNbO3) based integrated optical E-field sensor with an optical waveguide Mach-Zehnder interferometer (MZI) and a tapered antenna has been designed and fabricated for the measurement of the pulsed electric field. The minimum detectable E-field of the sensor was 10 kV/m. The sensor showed a good linear characteristic while the input E-fields varied from 10 kV/m to 370 kV/m. Furthermore, the maximum detectable E-field of the sensor, which could be calculated from the sensor input/output characteristic, was approximately equal to 1000 kV/m. All these results suggest that such sensor can be used for the measurement of the lighting impulse electric field.

  17. ELF electric and magnetic fields: Pacific Northwest Laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L.E.

    1992-06-01

    Studies have been conducted at Battelle, Pacific Northwest Laboratory, to examine extremely-low-frequency (ELF) electromagnetic fields for possible biological effects in animals. Three areas of investigation are reported here: (1) studies on the nervous system, including behavior and neuroendocrine function, (2) experiments on cancer development in animals, and (3) measurements of currents and electric fields induced in animal models by exposure to external magnetic fields. In behavioral experiments, rats have been shown to be responsive to ELF electric field exposure. Furthermore, experimental data indicate that short-term memory may be affected in albino rats exposed to combined ELF and static magnetic fields. Neuroendocrine studies have been conducted to demonstrate an apparent stress-related response in rats exposed to 60-Hz electric fields. Nighttime pineal melatonin levels have been shown to be significantly depressed in animals exposed to either electric or magnetic fields. A number of animal tumor models are currently under investigation to examine possible relationships between ELF exposure and carcinogenesis. Finally, theoretical and experimental measurements have been performed which form the basis for animals and human exposure comparisons.

  18. Formation of electric dipoles in pea stem tissue due to an electric field

    Science.gov (United States)

    Ahmadi, Fatemeh; Farahani, Elham

    2016-07-01

    For examining the effect of an electrical field (DC) on pea seed, we exposed the pea seeds to electric fields with intensities 1, 4 and 7 kV/cm for 30, 230, 430 and 630 seconds. The tests were repeated three times, and each iteration had 5 seeds. Then, the seeds were moved to packaged plates. Finally, microscopic observation of the pea stem tissue showed that the application of a DC electrical field caused a deformation in the pea stem tissue. The results led us to examine the deformation of the tissue theoretically and to address that deformation as an electrostatic problem. In this regard, we modeled the pea stem based on the formation of electric dipoles. Then, theoretically, we calculated the force acting on each xylem section by coding, and the results were consistent with the experimental data.

  19. Electric Field Detection in Sawfish and Shovelnose Rays

    Science.gov (United States)

    Wueringer, Barbara E.; Jnr, Lyle Squire; Kajiura, Stephen M.; Tibbetts, Ian R.; Hart, Nathan S.; Collin, Shaun P.

    2012-01-01

    In the aquatic environment, living organisms emit weak dipole electric fields, which spread in the surrounding water. Elasmobranchs detect these dipole electric fields with their highly sensitive electroreceptors, the ampullae of Lorenzini. Freshwater sawfish, Pristis microdon, and two species of shovelnose rays, Glaucostegus typus and Aptychotrema rostrata were tested for their reactions towards weak artificial electric dipole fields. The comparison of sawfishes and shovelnose rays sheds light on the evolution and function of the elongated rostrum (‘saw’) of sawfish, as both groups evolved from a shovelnose ray-like ancestor. Electric stimuli were presented both on the substrate (to mimic benthic prey) and suspended in the water column (to mimic free-swimming prey). Analysis of around 480 behavioural sequences shows that all three species are highly sensitive towards weak electric dipole fields, and initiate behavioural responses at median field strengths between 5.15 and 79.6 nVcm−1. The response behaviours used by sawfish and shovelnose rays depended on the location of the dipoles. The elongation of the sawfish’s rostrum clearly expanded their electroreceptive search area into the water column and enables them to target free-swimming prey. PMID:22848543

  20. Carrier heating in disordered conjugated polymers in electric field

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2010-01-26

    The electric field dependence of charge carrier transport and the effect of carrier heating in disordered conjugated polymers were investigated. A parameter-free multiscale methodology consisting of classical molecular dynamics simulation for the generation of the atomic structure, large system electronic structure and electron-phonon coupling constants calculations and the procedure for extracting the bulk polymer mobility, was used. The results suggested that the mobility of a fully disordered poly(3-hexylthiophene) (P3HT) polymer increases with electric field which is consistent with the experimental results on samples of regiorandom P3HT and different from the results on more ordered regioregular P3HT polymers, where the opposite trend is often observed at low electric fields. We calculated the electric field dependence of the effective carrier temperature and showed however that the effective temperature cannot be used to replace the joint effect of temperature and electric field, in contrast to previous theoretical results from phenomenological models. Such a difference was traced to originate from the use of simplified Miller-Abrahams hopping rates in phenomenological models in contrast to our considerations that explicitly take into account the electronic state wave functions and the interaction with all phonon modes.

  1. MEFISTO An electric field instrument for BepiColombo/MMO

    Science.gov (United States)

    Blomberg, L. G.; Matsumoto, H.; Bougeret, J.-L.; Kojima, H.; Yagitani, S.; Cumnock, J. A.; Eriksson, A. I.; Marklund, G. T.; Wahlund, J.-E.; Bylander, L.; Åhlén, L.; Holtet, J. A.; Ishisaka, K.; Kallio, E.; Kasaba, Y.; Matsuoka, A.; Moncuquet, M.; Mursula, K.; Omura, Y.; Trotignon, J. G.

    2006-01-01

    MEFISTO, together with the companion instrument WPT, are planning the first-ever in situ measurements of the electric field in the magnetosphere of planet Mercury. The instruments have been selected by JAXA for inclusion in the BepiColombo/MMO payload, as part of the Plasma Wave Investigation coordinated by Kyoto University. The magnetosphere of Mercury was discovered by Mariner 10 in 1974 and will be studied further by Messenger starting in 2011. However, neither spacecraft did or will measure the electric field. Electric fields are crucial in the dynamics of a magnetosphere and for the energy and plasma transport between different regions within the magnetosphere as well as between the magnetosphere and the surrounding regions. The MEFISTO instrument will be capable of measuring electric fields from DC to 3 MHz, and will thus also allow diagnostics of waves at all frequencies of relevance to the Hermean magnetosphere. MEFISTO is a double-probe electric field instrument. The double-probe technique has strong heritage and is well proven on missions such as Viking, Polar, and Cluster. For BepiColombo, a newly developed deployment mechanism is planned which reduces the mass by a factor of about 5 compared to conventional mechanisms for 15 m long booms. We describe the basic characteristics of the instrument and briefly discuss the new developments made to tailor the instrument to flight in Mercury orbit.

  2. MEFISTO - an electric field instrument for BepiColombo/MMO

    Science.gov (United States)

    Blomberg, L. G.; Mefisto Team

    MEFISTO, together with the companion instrument PANT, are planning the first-ever in-situ measurements of the electric field in the magnetosphere of planet Mercury. The instruments are proposed to JAXA for inclusion in the BepiColombo/MMO payload, as part of the Plasma Wave Investigation co-ordinated by Kyoto University. The magnetosphere of Mercury was discovered by Mariner 10 in 1974, and will be studied further by Messenger starting in 2009. However, neither spacecraft measures the electric field. Electric fields are crucial in the dynamics of a magnetosphere and for the energy and plasma transport between different regions within the magnetosphere as well as between the magnetosphere and the surrounding regions. The instrument will be capable of measuring electric fields from DC to 3 MHz, and will thus also allow diagnostics of waves at all frequencies of relevance to the Hermean magnetosphere. MEFISTO is a double-probe electric field instrument. The double-probe technique has strong heritage and is well proven on missions such as Viking, Freja, and Cluster. For BepiColombo, a newly developed deployment mechanism is planned which reduces the mass by a factor of about 5 compared to conventional mechanisms. We describe the basic characteristics of the instrument and briefly discuss the new developments made to tailor the instrument to flight in Mercury orbit.

  3. Additional electric field in real trench MOS barrier Schottky diode

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2016-04-01

    In real trench MOS barrier Schottky diode (TMBS diode) additional electric field (AEF) the whole is formed in the near contact region of the semiconductor and its propagation space is limited with the barrier metal and the metallic electrodes of MOS structures. Effective potential barrier height TMBS diode is formed via resulting electric field of superposition AEF and electric field of space charge region (SCR) semiconductor. The dependence of the resulting electric field intensity of the distance towards the inside the semiconductor is nonlinear and characterized by a peak at a certain distance from the interface. The thickness of the SCR in TMBS diode becomes equal to the trench depth. Force and energy parameters of the AEF, and thus resulting electric field in the SCR region, become dependent on the geometric design parameters TMBS diode. The forward I-V characteristic TMBS diode is described by the thermionic emission theory as in conventional flat Scottky diode, and in the reverse bias, current is virtually absent at initial voltage, appears abruptly at a certain critical voltage.

  4. Amended Electric Field Distribution: A Reliable Technique for Electrical Performance Improvement in Nano scale SOI MOSFETs

    Science.gov (United States)

    Ramezani, Zeinab; Orouji, Ali A.

    2017-04-01

    To achieve reliable transistors, we propose a new silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) with an amended electric field in the channel for improved electrical and thermal performance, with an emphasis on current leakage improvement. The amended electric field leads to lower electric field crowding and thereby we assume enhanced reliability, leakage current, gate-induced drain leakage (GIDL), and electron temperature. To modify the electric field distribution, an additional rectangular metal region (RMR) is utilized in the buried oxide of the SOI MOSFET. The location and dimensions of the RMR have been carefully optimized to achieve the best results. The electrical, thermal, and radiofrequency characteristics of the proposed structure were analyzed using two-dimensional (2-D) numerical simulations and compared with the characteristics of the conventional, fully depleted SOI MOSFET (C-SOI). Also, critical short-channel effects (SCEs) such as threshold voltage, drain-induced barrier lowering (DIBL), subthreshold slope degradation, hot-carrier effect, GIDL, and leakage power consumption are improved. According to the results obtained, the proposed nano SOI MOSFET is a reliable device, especially for use in low-power and high-temperature applications.

  5. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low source-

  6. Electric field enhanced hydrogen storage on polarizable materials substrates.

    Science.gov (United States)

    Zhou, J; Wang, Q; Sun, Q; Jena, P; Chen, X S

    2010-02-16

    Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H(2) molecules is adsorbed on a BN sheet, the binding energy per H(2) molecule increases from 0.03 eV/H(2) in the field-free case to 0.14 eV/H(2) in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H(2) can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H(2) molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials.

  7. Biological proton pumping in an oscillating electric field

    OpenAIRE

    Kim, Young C.; Furchtgott, Leon A.; Hummer, Gerhard

    2009-01-01

    Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological “fuel cell,” we show that t...

  8. Five crop seasons' records of greenhouse gas fluxes from upland fields with repetitive applications of biochar and cattle manure.

    Science.gov (United States)

    Watanabe, Akira; Ikeya, Kosuke; Kanazaki, Naoya; Makabe, Shuhei; Sugiura, Yuki; Shibata, Akira

    2014-11-01

    The application of char to agricultural land is recognized as a potential way to sequester atmospheric carbon (C) assimilated by plants in soil, thus decelerating global warming. Such a process would also be expected to improve plant growth and the physical and chemical properties of soil. However, field investigations of the effects of continuous char application have not been reported. In the present study, the effects of repetitive bamboo char application on CO2, CH4, and N2O flux from soil, soil C content, and crop yield were investigated at two upland fields over five crop seasons. Three treatments: chemical fertilizer (CF) applied plots (Control plot); cattle manure (CM) (10 t ha(-1)) and CF applied plot (CM plot); and bamboo char (20 t ha(-1)), cattle manure (10 t ha(-1)), and CF applied plot (Char/CM plot), were arranged in each field. After three crop seasons, the fourth treatment with char was applied without CF (Char plot) was given to one of the fields. CM and/or char were applied every crop season. Gas fluxes were measured using the static chamber method. Seasonal variations in CO2 flux and total CO2 emissions were consistently similar between the CM and Char/CM plots and between the Char and Control plots. As such, the decomposition rate of bamboo char was quite small, and the positive or negative effect of char on CM decomposition was not significant in the fields. Soil C analysis provided confirmation of this. CM application enhanced N2O emission mainly in the summer crop season. The differences in total N2O emission between the Char/CM and CM plots as well as between the Char and Control plots were insignificant in most cases. Total CH4 flux was negligibly small in all cases. Although the yield of winter crop (broccoli) in the Char/CM plots was twice observed to be higher than that in the Control and CM plots at one of the fields, in general, the char application had no effect on overall crop yield. Thus, the repeated application of bamboo

  9. Transition from interpulse to afterglow plasmas driven by repetitive short-pulse microwaves in a multicusp magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Shail; Sahu, Debaprasad; Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2012-08-15

    In the power-off phase, plasmas generated by repetitive short-pulse microwaves in a multicusp magnetic field show a transitive nature from interpulse to afterglow as a function of pulse duration t{sub w} = 20-200 {mu}s. The ionized medium can be driven from a highly non equilibrium to an equilibrium state inside the pulses, thereby dictating the behavior of the plasma in the power-off phase. Compared to afterglows, interpulse plasmas observed for t{sub w} < 50 {mu}s are characterized by a quasi-steady-state in electron density that persists for {approx} 20-40 {mu}s even after the end of the pulse and has a relatively slower decay rate ({approx} 4.3 Multiplication-Sign 10{sup 4} s{sup -1}) of the electron temperature, as corroborated by optical measurements. The associated electron energy probability function indicates depletion in low energy electrons which appear at higher energies just after the end of the pulse. The transition occurs at t{sub w} {approx} 50 {mu}s as confirmed by time evolution of integrated electron numbers densities obtained from the distribution function.

  10. Transition from interpulse to afterglow plasmas driven by repetitive short-pulse microwaves in a multicusp magnetic field

    Science.gov (United States)

    Pandey, Shail; Sahu, Debaprasad; Bhattacharjee, Sudeep

    2012-08-01

    In the power-off phase, plasmas generated by repetitive short-pulse microwaves in a multicusp magnetic field show a transitive nature from interpulse to afterglow as a function of pulse duration tw = 20-200 μs. The ionized medium can be driven from a highly non equilibrium to an equilibrium state inside the pulses, thereby dictating the behavior of the plasma in the power-off phase. Compared to afterglows, interpulse plasmas observed for tw < 50 μs are characterized by a quasi-steady-state in electron density that persists for ˜ 20-40 μs even after the end of the pulse and has a relatively slower decay rate (˜ 4.3 × 104 s-1) of the electron temperature, as corroborated by optical measurements. The associated electron energy probability function indicates depletion in low energy electrons which appear at higher energies just after the end of the pulse. The transition occurs at tw ˜ 50 μs as confirmed by time evolution of integrated electron numbers densities obtained from the distribution function.

  11. Electric Field Structures in Thin Films: Formation and Properties

    DEFF Research Database (Denmark)

    Cassidy, Andrew; Plekan, Oksana; Balog, Richard

    2014-01-01

    by combining layers of different spontelectric materials. This is demonstrated using the spontelectric materials nitrous oxide, toluene, isoprene, isopentane, and CF2Cl2. These yield a variety of tailored electric field structures, with individual layers harboring fields between 107 and 108 V/m. Fields may......A newly discovered class of molecular materials, so-called “spontelectrics”, display spontaneous electric fields. Here we show that the novel properties of spontelectrics can be used to create composite spontelectrics, illustrating how electric fields in solid films may be structured on the nanoscale...

  12. Resistance switching induced by electric fields in manganite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Villafuerte, M [Facultad de Ciencias Exactas y TecnologIa, Universidad Nacional de Tucuman, S. M. de Tucuman (Argentina); Juarez, G [Facultad de Ciencias Exactas y TecnologIa, Universidad Nacional de Tucuman, S. M. de Tucuman (Argentina); Duhalde, S [Dpto de Fisica, Facultad de IngenierIa, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Golmar, F [Dpto de Fisica, Facultad de IngenierIa, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Degreef, C L [Dpto de Fisica, Facultad de IngenierIa, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); Heluani, S P [Facultad de Ciencias Exactas y TecnologIa, Universidad Nacional de Tucuman, S. M. de Tucuman (Argentina)

    2007-04-15

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of {sub 0.5}Ca{sub 0.5}MnO{sub 3} (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results.

  13. Improved theory of cyclical electrical field flow fractionation.

    Science.gov (United States)

    Kantak, Ameya; Merugu, Srinivas; Gale, Bruce K

    2006-07-01

    Previously reported theories for cyclical electrical field flow fractionation (CyElFFF) are severely limited in that they do not account for diffusion, steric, or electric double layer effects. Experiments have shown that these theories overpredict the retention of particles in CyElFFF. In this work, we present a model for prediction of steric, diffusion, and electrical effects. The electrical double layer effects are treated using a lumped electrical circuit model that accounts for the field shielding by the electrical double layer formed at the electrode-carrier interface. The electrical effects are shown to dominate retention times and outweigh the contributions of diffusion and particle size. Detailed results from the simulations are presented in this work, and a comparison between the theoretical and experimental results obtained from the retentions of polystyrene particle standards is presented in this paper. The models are shown to correctly predict the retention of the polystyrene standards in CyElFFF with a reasonable error, while existing models are shown to have significant failings.

  14. Histopathology of normal skin and melanomas after nanosecond pulsed electric field treatment.

    Science.gov (United States)

    Chen, Xinhua; James Swanson, R; Kolb, Juergen F; Nuccitelli, Richard; Schoenbach, Karl H

    2009-12-01

    Nanosecond pulsed electric fields (nsPEFs) can affect the intracellular structures of cells in vitro. This study shows the direct effects of nsPEFs on tumor growth, tumor volume, and histological characteristics of normal skin and B16-F10 melanoma in SKH-1 mice. A melanoma model was set up by injecting B16-F10 into female SKH-1 mice. After a 100-pulse treatment with an nsPEF (40-kV/cm field strength; 300-ns duration; 30-ns rise time; 2-Hz repetition rate), tumor growth and histology were studied using transillumination, light microscopy with hematoxylin and eosin stain and transmission electron microscopy. Melanin and iron within the melanoma tumor were also detected with specific stains. After nsPEF treatment, tumor development was inhibited with decreased volumes post-nsPEF treatment compared with control tumors (Pcell contraction and nuclear shrinkage while concurrently, but not permanently, damaging peripheral healthy skin tissue in the treated area, which we attribute to the highly localized electric fields surrounding the needle electrodes.

  15. Effect of AC electric fields on flame spread over electrical wire

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The effect of electric fields on the characteristics of flame spread over insulated electrical wire has been investigated experimentally by varying AC voltage and frequency applied to the wire in the normal gravity condition. The polyethylene (PE) insulated electrical wire was placed horizontally on electrically non-conducting posts and one end of the wire was connected to the high voltage terminal. Thus, the electrical system is the single electrode configuration. The wire was ignited at one end and the flame spread rate along the wire has been measured from the images using a video camera. Two distinct regimes existed depending on the applied AC frequency. In the low frequency regime, the flame spread rate decreased with the frequency and voltage. While in the high frequency regime, it decreased initially with voltage and then increased. At high frequency, the spread rate was even over that without applying electric fields. This result implies that fire safety codes developed without considering the effect of electric fields may require modifications. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  16. On the ionospheric coupling of auroral electric fields

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2009-04-01

    Full Text Available The quasi-static coupling of high-altitude potential structures and electric fields to the ionosphere is discussed with particular focus on the downward field-aligned current (FAC region. Results are presented from a preliminary analysis of a selection of electric field events observed by Cluster above the acceleration region. The degree of coupling is here estimated as the ratio between the magnetic field-aligned potential drop, ΔΦII, as inferred from the characteristic energy of upward ion (electron beams for the upward (downward current region and the high-altitude perpendicular (to B potential, ΔΦbot, as calculated by integrating the perpendicular electric field across the structure. For upward currents, the coupling can be expressed analytically, using the linear current-voltage relation, as outlined by Weimer et al. (1985. This gives a scale size dependent coupling where structures are coupled (decoupled above (below a critical scale size. For downward currents, the current-voltage relation is highly non-linear which complicates the understanding of how the coupling works. Results from this experimental study indicate that small-scale structures are decoupled, similar to small-scale structures in the upward current region. There are, however, exceptions to this rule as illustrated by Cluster results of small-scale intense electric fields, correlated with downward currents, indicating a perfect coupling between the ionosphere and Cluster altitude.

  17. Calculation and measurement of electric field under HVDC transmission lines

    Science.gov (United States)

    Kasdi, A.; Zebboudj, Y.; Yala, H.

    2007-03-01

    A stable corona discharge in a two conductors-to-plane configuration is analysed in this paper. A linear biased probe, without end-effect, has been adapted to a linear geometry and is used for the first time to measure the ground-plane current density and electric field during the bipolar corona. The values of the electric field and the current density are maximum under the two coronating conductors and decrease when moving away from them. Furthermore, a hybrid technique is developed to obtain a general solution of the governing equations of the coupled space-charge and electric field problem. The technique is to use the finite-element method (FEM) to solve Poisson's equation, and the method of characteristic (MOC) to find the charge density from a current-continuity relation. The model avoids resorting to the Deutsch assumption. The computed values are in good agreement with experimental data.

  18. High School Students' Understandings and Representations of the Electric Field

    CERN Document Server

    Cao, Ying

    2014-01-01

    This study investigates the understandings and representations of the electric field expressed by Chinese high school students ages 15 to 16 who have not yet received high school-level physics instruction. The literature has reported students' ideas of the electric field post-instruction as indicated by their performance on textbook-style questionnaires. However, by relying on measures such as questionnaires, previous research has inadequately captured the thinking process that led students to answer questions in the ways that they did. The present study portrays the beginning of this process by closely examining students' understandings pre-instruction. The participants in this study were asked to engage in a lesson that included informal group tasks that involved playing a Web-based hockey game that replicated an electric field and drawing comic strips that used charges as characters. The lesson was videotaped, students' work was collected, and three students were interviewed afterward to ascertain more det...

  19. Incompressible Einstein–Maxwell fluids with specified electric fields

    Indian Academy of Sciences (India)

    S Hansraj; S D Maharaj; T Mthethwa

    2013-10-01

    The Einstein–Maxwell equations describing static charged spheres with uniform density and variable electric field intensity are studied. The special case of constant electric field is also studied. The evolution of the model is governed by a hypergeometric differential equation which has a general solution in terms of special functions. Several classes of exact solutions are identified which may be considered as charged generalizations of the incompressible Schwarzschild interior model. An analysis of the physical features is undertaken for the uniform case. It is demonstrated that uniform density spheres with constant electric field intensity are not realizable with isotropic pressures. This highlights the necessity of studying the criteria for physical admissability of gravitating spheres in general relativity which are solutions to the Einstein–Maxwell equations.

  20. Method of using an electric field controlled emulsion phase contactor

    Science.gov (United States)

    Scott, Timothy C.

    1993-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  1. Liesegang patterns: Complex formation of precipitate in an electric field

    Indian Academy of Sciences (India)

    István Lagzi

    2005-02-01

    Formation of 1D Liesegang patterns was studied numerically in precipitation and reversible complex formation of precipitate scenarios in an electric field. The Ostwald’s supersaturation model reported by Büki, Kárpáti-Smidróczki and Zrínyi (BKZ model) was extended further. In the presence of an electric field the position of the first and the last bands () measured from the junction point of the outer and the inner electrolytes can be described by the function = 1 $_{}^{1/2}$ + 2 + 3 , where is the time elapsed until the nth band formation, 1, 2 and 3 are constants. The variation of the total number of bands with different electric field strengths () has a maximum. For higher one can observe a moving precipitation zone that becomes wider due to precipitation and reversible complex formation.

  2. Microspacecraft and Earth observation: Electrical Field (ELF) measurement project

    Science.gov (United States)

    1990-01-01

    There is a need for an inexpensive, extensive, long-lasting global electric field measurement system (ELF). The primary performance driver of this mission is the need to measure the attitude of each spacecraft in the Earth's electric field very accurately. In addition, it is necessary to know the electric charge generated by the satellite as it crosses the magnetic field lines (E equals V times B). In order to achieve the desired global coverage, a constellation of about 50 satellites in at least 18 different orbits will be used. To reduce the cost of each satellite, off-the-shelf, proven technology will be used whenever possible. Researchers have set a limit of $500,000 per satellite. Researchers expect the program cost, including the deployment of the entire constellation, to be less than $100 million. The minimum projected mission life is five years.

  3. Built-in electric field thickness design for betavoltaic batteries

    Institute of Scientific and Technical Information of China (English)

    Chen Haiyang; Li Darang; Yin Jianhua; Cai Shengguo

    2011-01-01

    Isotope source energy deposition along the thickness direction of a semiconductor is calculated,based upon which an ideal short current is evaluated for betavoltaic batteries.Electron-hole pair recombination and drifting length in a PN junction built-in electric field are extracted by comparing the measured short currents with the ideal short currents.A built-in electric field thickness design principle is proposed for betavoltaic batteries:after measuring the energy deposition depth and the carrier drift length,the shorter one should then be chosen as the built-in electric field thickness.If the energy deposition depth is much larger than the carrier drift length,a multijunction is preferred in betavoltaic batteries and the number of the junctions should be the value of the deposition depth divided by the drift length.

  4. Built-in electric field thickness design for betavoltaic batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen Haiyang; Li Darang; Yin Jianhua; Cai Shengguo, E-mail: haiyangchen@bit.edu.cn [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2011-09-15

    Isotope source energy deposition along the thickness direction of a semiconductor is calculated, based upon which an ideal short current is evaluated for betavoltaic batteries. Electron-hole pair recombination and drifting length in a PN junction built-in electric field are extracted by comparing the measured short currents with the ideal short currents. A built-in electric field thickness design principle is proposed for betavoltaic batteries: after measuring the energy deposition depth and the carrier drift length, the shorter one should then be chosen as the built-in electric field thickness. If the energy deposition depth is much larger than the carrier drift length, a multi-junction is preferred in betavoltaic batteries and the number of the junctions should be the value of the deposition depth divided by the drift length. (semiconductor devices)

  5. The effect of electric fields on lipid membranes

    CERN Document Server

    Vasilkoski, Z

    2006-01-01

    Contrary to existing theoretical models, experimental evidence points out that electroporation (membrane defect formation under external electric fields) starts to occur within the range of transmembrane voltages that cells may routinely experience, curiously, just above the range of transmembrane voltages involved in neural signal transmission. Understanding the underlying principles of electric fields-lipid membrane interactions seems to carry a great biological importance. An argument is presented toward understanding the theoretical aspects of electroporation by using the DLVO theory, which has not been recognized previously in the context of electroporation. Further, the dispersion interactions (with its quantum nature), of the double layer counterions and membrane lipid molecules over the Stern layer are emphasized. The sign of these forces is such that they compress the membrane. A parallel is drawn to the theory of thin films. The argument is that the external electric field breaks the symmetry of the...

  6. Magnetic field dependence of the threshold electric field in unconventional charge density waves

    Science.gov (United States)

    Dóra, Balázs; Virosztek, Attila; Maki, Kazumi

    2002-04-01

    Many experiments suggest that the unidentified low-temperature phase of α-(BEDT-TTF)2KHg(SCN)4 is most likely unconventional charge density wave (UCDW). To further extend this identification we present our theoretical study of the threshold electric field of UCDW in a magnetic field. The magnetic field-temperature phase diagram is very similar to those in a d-wave superconductor. The optical conductivity shows clear features characteristic to both UDW and magnetic field. We find a rather strong field dependence of the threshold electric field, which shows qualitatively good agreement with the experimental data.

  7. Measurements of middle-atmosphere electric fields and associated electrical conductivities

    Science.gov (United States)

    Hale, L. C.; Croskey, C. L.; Mitchell, J. D.

    1981-01-01

    A simple antenna for measuring the vertical electric field in the 'middle atmosphere' has been flown on a number of rocket-launched parachute-borne payloads. The data from the first nine such flights, launched under a variety of geophysical conditions, are presented, along with electrical conductivities measured simultaneously. The data include indications of layered peaks of several volts per meter in the mesospheric field at high and low latitudes in situations of relatively low conductivity. During an auroral 'REP' event the electric field reversed direction in the lower stratosphere, accompanied by a substantial enhancement in conductivity. The data generally do not confirm speculations based only on the extension of the thunderstorm circuit from below or the mapping of ionospheric and magnetospheric fields from above, but seem to require, in addition, internal generation processes in the middle atmosphere.

  8. Uniform electric field induced lateral migration of a sedimenting drop

    CERN Document Server

    Bandopadhyay, Aditya; Chakraborty, Suman

    2015-01-01

    We investigate the motion of a sedimenting spherical drop in the presence of an applied uniform electric field in an otherwise arbitrary direction in the limit of low surface charge convection. We analytically solve the electric potential in and around the leaky dielectric drop, and solve for the Stokesian velocity and pressure fields. We obtain the drop velocity through perturbations in powers of the electric Reynolds number which signifies the importance of the charge relaxation time scale as compared to the convective time scale. We show that in the presence of electric field either in the sedimenting direction or orthogonal to it, there is a change in the drop velocity only in the direction of sedimentation due to an asymmetric charge distribution in the same direction. However, in the presence of an electric field applied in both the directions, and depending on the permittivities and conductivities of the two fluids, we obtain a non-intuitive lateral migration of drop in addition to the buoyancy driven ...

  9. Nanoelectrospray emitter arrays providing interemitter electric field uniformity.

    Science.gov (United States)

    Kelly, Ryan T; Page, Jason S; Marginean, Ioan; Tang, Keqi; Smith, Richard D

    2008-07-15

    Arrays of electrospray ionization (ESI) emitters have been reported previously as a means of enhancing ionization efficiency or signal intensity. A key challenge when working with multiple, closely spaced ESI emitters is overcoming the deleterious effects caused by electrical interference among neighboring emitters. Individual emitters can experience different electric fields depending on their relative position in the array, such that it becomes difficult to operate all of the emitters optimally for a given applied potential. In this work, we have developed multi-nanoESI emitters arranged with a circular pattern, which enable the constituent emitters to experience a uniform electric field. The performance of the circular emitter array was compared to a single emitter and to a previously developed linear emitter array, which verified that improved electric field uniformity was achieved with the circular arrangement. The circular arrays were also interfaced with a mass spectrometer via a matching multicapillary inlet, and the results were compared with those obtained using a single emitter. By minimizing interemitter electric field inhomogeneities, much larger arrays having closer emitter spacing should be feasible.

  10. Electrical Properties of Composite Materials with Electric Field-Assisted Alignment of Nanocarbon Fillers

    Science.gov (United States)

    Yakovenko, Olena; Matzui, Ludmila; Danylova, Ganna; Zadorozhnii, Victor; Vovchenko, Ludmila; Perets, Yulia; Lazarenko, Oleksandra

    2017-07-01

    The article reports about electric field-induced alignment of the carbon nanoparticles embedded in epoxy matrix. Optical microscopy was performed to consider the effect of the electric field magnitude and configuration, filler morphology, and aspect ratio on alignment process. Characteristic time of aligned network formation was compared with modeling predictions. Carbon nanotube and graphite nanoplatelet rotation time was estimated using an analytical model based on effective medium approach. Different depolarization factor was applied according to the geometries of the particle and electric field. Solid nanocomposites were fabricated by using AC electric field. We have investigated concentration dependence of electrical conductivity of graphite nanoplatelets/epoxy composites using two-probe technique. It was established that the electrical properties of composites with random and aligned filler distribution are differ by conductivity value at certain filler content and distinguish by a form of concentration dependence of conductivity for fillers with different morphology. These differences were explained in terms of the dynamic percolation and formation of various conductive networks: chained in case of graphite nanoplatelets and crossed framework in case of carbon nanotubes filler.

  11. Electrical Properties of Composite Materials with Electric Field-Assisted Alignment of Nanocarbon Fillers.

    Science.gov (United States)

    Yakovenko, Olena; Matzui, Ludmila; Danylova, Ganna; Zadorozhnii, Victor; Vovchenko, Ludmila; Perets, Yulia; Lazarenko, Oleksandra

    2017-12-01

    The article reports about electric field-induced alignment of the carbon nanoparticles embedded in epoxy matrix. Optical microscopy was performed to consider the effect of the electric field magnitude and configuration, filler morphology, and aspect ratio on alignment process. Characteristic time of aligned network formation was compared with modeling predictions. Carbon nanotube and graphite nanoplatelet rotation time was estimated using an analytical model based on effective medium approach. Different depolarization factor was applied according to the geometries of the particle and electric field.Solid nanocomposites were fabricated by using AC electric field. We have investigated concentration dependence of electrical conductivity of graphite nanoplatelets/epoxy composites using two-probe technique. It was established that the electrical properties of composites with random and aligned filler distribution are differ by conductivity value at certain filler content and distinguish by a form of concentration dependence of conductivity for fillers with different morphology. These differences were explained in terms of the dynamic percolation and formation of various conductive networks: chained in case of graphite nanoplatelets and crossed framework in case of carbon nanotubes filler.

  12. Simulation of induced electric field distribution based on five-sphere model used in rTMS.

    Science.gov (United States)

    Pu, Lina; Liu, Zhipeng; Yin, Tao; An, Hao; Li, Song

    2010-01-01

    Repetitive Transcranial magnetic stimulation (TMS) is a relatively new technique, which is non-invasive and painless used to stimulate the central and peripheral neural tissues. The principle is generating time-varying magnetic fields to stimulate the cerebral cortex neuron and inducing eddy current inside the tissues. Many researches study on the distributing of magnetic field and electric field induced inside the human brain, whereas the static electric field was neglected roughly in many studies. In this paper, a five-sphere model is established to simulate the human head used in rTMS. According to the different dielectric properties of the head tissues, the Laplace equation of static electric field is deduced by both of Gauss theorem and current's continuity principle. Boundary conditions used in different interface between two adjacent layers in the five-sphere model is proposed in this paper. Simulating study is conducted to calculate the distribution of the electric field in the model. Simulating results suggest that the model is useful to get the parameters of the most focus coil. Therefore this study could be potential to promote the development of rTMS stimulator.

  13. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  14. Electric-field manipulation of magnetization vector direction

    Science.gov (United States)

    Ohno, Hideo

    2009-03-01

    Ferromagnetism and magnetization in Mn-doped III-V semiconductors can be manipulated by various means; by changing its carrier concentration by electric fields [1] or by spin- current flowing along with the electric current [2]. This material system is thus an excellent system to study the physics involved in manipulation of magnetism as well as exploring new ways to control magnetization. Here, we show that electrical control of magnetization direction can be done through manipulating electronically the magnetic anisotropy energies [3]. The basic idea behind the effort is to control the population of carriers on spin-split anisotropic valence bands that governs the magnetic anisotropy energies, which should result in change of the direction of magnetization. In order to measure the magnetic anisotropies under a gate that applies the electric-field to the ferromagnetic semiconductor channel, we used the planar Hall effect. Analyses showed that there are biaxial as well as uniaxial anisotropies. As the sheet carrier concentration is reduced by applying electric- field to the channel, the uniaxial anisotropy field reduced its magnitude and eventually changed its sign, whereas no significant change was apparent in the biaxial anisotropy field. From the electric-field dependent anisotropy fields, one can show that the angle of the magnetization direction in the absence of magnetic fields is modulated by electric-fields by 10 degrees. This opens up a new and unique opportunity for manipulating magnetization direction solely by electronic means, not resorting to magnetic-field, spin-current, mechanical stress, nor multiferroics. The conditions for switching the magnetization direction will also be discussed. The work was done together with D. Chiba, F. Matsukura, M. Sawicki, Y. Nishitani, and Y. Nakatani. [4pt] [1] H. Ohno, et al. Nature 408, 944 (2000). D. Chiba, et al. Science, 301, 943 (2003). D. Chiba, et al. Appl. Phys. Lett. 89, 162505 (2006). [0pt] [2] M

  15. Dependence of electric field on STM tip preparation

    DEFF Research Database (Denmark)

    Huang, D.H.; Grey, Francois; Aono, M.

    1998-01-01

    Voltage pulses applied between an STM tip and a surface can modify the surface on the nanometer scale due to electric-field-induced evaporation. However, at present, different groups have achieved surface modification with quite different bias conditions, and it is still difficult to obtain high...... reproducibility in such experiments. In this paper, we measure the tip displacement during a pulse at constant tunnelling current, and deduce that the electric field produced by the pulse depends in a systematic way on tip preparation, The results show how differences in tip preparation can be a major source...

  16. Dynamic electrophoresis of charged colloids in an oscillating electric field.

    Science.gov (United States)

    Shih, Chunyu; Yamamoto, Ryoichi

    2014-06-01

    The dynamics of charged colloids in an electrolyte solution is studied using direct numerical simulations via the smoothed profile method. We calculated the complex electrophoretic mobility μ(ω) of the charged colloids under an oscillating electric field of frequency ω. We show the existence of three dynamically distinct regimes, determined by the momentum diffusion and ionic diffusion time scales. The present results agree well with approximate theories based on the cell model in dilute suspensions; however, systematic deviations between the simulation results and theoretical predictions are observed as the volume fraction of colloids is increased, similar to the case of constant electric fields.

  17. Mechanism of Carbon Nanotubes Aligning along Applied Electric Field

    Institute of Scientific and Technical Information of China (English)

    MA Shao-Jie; GUO Wan-Lin

    2008-01-01

    The mechanism of single-walled carbon nanotubes (SWCNTS)aligning in the direction of external electric field is studied by quantum mechanics calculations.The rotational torque on the carbon nanotubes is proportional to the difference between the longitudinal and transverse polarizabilities and varies with the angle of SWCNTs to the external electric field.The longitudinal polarizability increases with second power of length,while the transverse polarizability increases linearly with length.A zigzag SWCNT has larger longitudinal and transverse polarizabilities than an armchair SWCNT with the same diameter and the discrepancy becomes larger for longer tubes.

  18. Characterization of complementary electric field coupled resonant surfaces

    Science.gov (United States)

    Hand, Thomas H.; Gollub, Jonah; Sajuyigbe, Soji; Smith, David R.; Cummer, Steven A.

    2008-11-01

    We present angle-resolved free-space transmission and reflection measurements of a surface composed of complementary electric inductive-capacitive (CELC) resonators. By measuring the reflection and transmission coefficients of a CELC surface with different polarizations and particle orientations, we show that the CELC only responds to in-plane magnetic fields. This confirms the Babinet particle duality between the CELC and its complement, the electric field coupled LC resonator. Characterization of the CELC structure serves to expand the current library of resonant elements metamaterial designers can draw upon to make unique materials and surfaces.

  19. Nonlinear Optical Response of Conjugated Polymer to Electric Field

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-fang; ZHUANG De-xin; CUI Bin

    2005-01-01

    The organic π-conjugated polymers are of major interest materials for the use in electro-optical and nonlinear optical devices. In this work, for a selected polyacetylene chain, the optical absorption spectra in UV/Vis regime as well as the linear polarizabilitiy and nonlinear hyperpolarizability are calculated by using quantum chemical ab initio and semiempirical methods. The relationship of its optical property to electric field is obtained. Some physical mechanism of electric field effect on molecular optical property is discussed by means of electron distribution and intramolecular charge transfer.

  20. Brane Intersections in the Presence of a Worldvolume Electric Field

    CERN Document Server

    Bhattacharya, R; Bhattacharyya, Rajsekhar; Douari, Jamila

    2005-01-01

    The study of brane intersections has provided important insights into a possible non-commutative structure of spacetime geometry. In this paper we focus on the D1$\\bot$D3 system. We compare the D1 and D3 descriptions of the interesection and search for non-static solutions of the D3$\\bot$D1 funnel equations in the presence of a worldvolume electric field. We find that the D1 and D3 descriptions do not agree. We find time dependent solutions that are a natural generalization of those found without the electric field.

  1. Generation of Radial Electric Field with Electrode Biasing

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng; PAN Ge-Sheng; WEN Yi-Zhi; YU Chang-Xuan; WAN Shu-De; LIU Wan-Dong; WANG Zhi-Jiang; SUN Xuan

    2001-01-01

    Time and space resolved measurements of the radial electric field (Er) have been conducted during the electrode biasing experiments on the KT-5C tokamak. The suppression of the turbulent transport with the change of Er induced by the biased electrode is observed. It is found that the poloidal flow contributes to the main part of the Er, and the change of the poloidal flow has a lead of about 20μs to the formation of Er. These observations suggest that a radialcurrent, responding to an induced voltage on the electrode, drives a poloidal flow which in turn drives the radial electric field.

  2. Reduced dielectric response in spatially varying electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2015-01-01

    In this paper, the dynamical equation for polarization is derived. From this the dielectric response to a spatially varying electric field is analyzed showing a reduced response due to flux of polarization in the material. This flux is modeled as a diffusive process through linear constitutive...... relations between the flux and the gradient of the polarization. Comparison between the theory and molecular dynamics simulations confirms this effect. The effect is significant for small length scale electric field variations and the inclusion of the flux is thus important in nanoscale modeling...

  3. Electric field effects in scanning tunneling microscope imaging

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Quaade, Ulrich; Grey, Francois

    1998-01-01

    We present a high-voltage extension of the Tersoff-Hamann theory of scanning tunneling microscope (STM) images, which includes the effect of the electric field between the tip and the sample. The theoretical model is based on first-principles electronic structure calculations and has no adjustable...... parameters. We use the method to calculate theoretical STM images of the monohydrate Si(100)-H(2x1) surface with missing hydrogen defects at -2V and find an enhanced corrugation due to the electric field, in good agreement with experimental images....

  4. Integrated optical electric field sensor with telescopic dipole

    Institute of Scientific and Technical Information of China (English)

    Bao Sun; Fushen Chen; Yongjun Yang

    2008-01-01

    An integrated optical electric field sensor based on a Mach-Zehnder interferometer with the telescopic dipole is designed and fabricated, and its electrodes are segmented and connected with a telescopic dipole.The measured results show that when the frequency response is from 10kHz to 6GHz with the antenna length of 55mm, the minimum detectable electric field of 20mV/m can be obtained, and the linear dynamics range can reach 90dB at 250MHz.

  5. PRESERVATION OF AVOCADO OIL WITH ELECTRIC FIELD TREATMENT

    OpenAIRE

    J.A. Ariza-Ortega; E. Ramírez-Moreno; M.E. Ramos-Cassellis; J. Díaz-Reyes

    2014-01-01

    The aim of this study was to analyze the effect of different conditions of electric field (voltage 3 kV cm-1, 60 Hz, 10 and 180 s; 720 Hz, 10 and 180 s) as method on preservation up to 365 days on oil extracted of the avocado pulp. Unsaturated fatty acid oxidation in crude avocado oil was analyzed by Fourier transform infrared spectroscopy technique in the mid infrared region and by quality parameters (acidity, peroxide and iodine). The electric field caused minimal changes on unsaturated fat...

  6. Linear oscillations of a drop in uniform alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wenrui; Carleson, T.E.

    1990-10-01

    Oscillations of a conducting drop immersed in a dielectric fluid in an alternating electric field has been modelled in order to understand the enhancement of the transport processes by the electric field. Numerical solutions for oscillation amplitude, velocity distribution, resonant frequency and streamlines were obtained. The effects of viscosity and density on the resonant frequency and the velocity distribution were investigated. It was found that the resonant frequency of viscous fluids was always smaller than the free oscillation frequency of the same droplet. The predicted scanning frequency response curve and the streamlines agree well with the experimental observations.

  7. Hyperpolarisation effects on the electric field gradient at a nucleus

    Science.gov (United States)

    Fowler, P. W.

    1989-04-01

    The electric field gradient at the nucleus of an atom or ion depends quadratically on the external electric field through the ɛ hyperpolarisability. Ab initio Hartree-Fock calculations on the He, Ne and Ar isoelectronic series show that ɛ is positive for s 2 and negative for p 6 electronic configurations, always having the opposite sign to the Sternheimer antishielding factor. The ab initio values for free atoms and ions conflict in sign with the effective hyperpolarisation term in one ionic model of nuclear quadrupole constants of gaseous alkali halides but the sign of the empirical parameter could change if overlap damping of the Sternheimer response were included in the model.

  8. A theoretical model for mid- and low-latitude ionospheric electric fields in realistic geomagnetic fields

    Institute of Scientific and Technical Information of China (English)

    REN ZhiPeng; WAN WeiXing; WEI Yong; LIU LiBo; YU Tao

    2008-01-01

    The geomagnetic fields, which play important roles in the ionospheric dynamo, can greatly affect the global distribution of ionospheric electric fields, currents and other ionospheric electrodynamics phenomena. In the study of ionospheric electrodynamics phenomena, such as the longitudinal variations of ionospheric electric fields, the non-dipolar component of the geomagnetic fields must be taken into account. In this paper, we deduce a theoretical electric field model for ionospheric dynamo at midand low-latitude which adopt a modified magnetic apex coordinates system. In the new electric field model, the geomagnetic fields can be calculated from either the IGRF model or the dipole field model,and the neutral winds and conductivities are calculated based on empirical models. Then the dynamo equation for the electric potential is finally solved in terms of the line-by-line iteration method, and the ionospheric electric fields and currents are derived from the calculated potential. Our model can reproduce the main features of the ionospheric electrodynamics processes, so it will be a useful tool for the investigation of the upper atmosphere and ionosphere.

  9. Electric field tuning of phase separation in manganite thin films

    KAUST Repository

    Lourembam, James

    2014-01-29

    In this paper, we investigate the electric field effect on epitaxial Pr0.65(Ca0.75Sr0.25)0.35MnO3 thin films in electric double-layer transistors. Different from the conventional transistors with semiconducting channels, the sub(micrometer)-scale phase separation in the manganite channels is expected to result in inhomogeneous distribution of mobile carriers and local enhancement of electric field. The field effect is much larger in the low-temperature phase separation region compared to that in the high-temperature polaron transport region. Further enhancement of electroresistance is achieved by applying a magnetic field, and a 250% modulation of resistance is observed at 80 K, equivalent to an increase of the ferromagnetic metallic phase fraction by 0.51%, as estimated by the general effective medium model. Our results illustrate the complementary nature of electric and magnetic field effects in phase-separated manganites, providing insights on such novel electronic devices based on complex oxides.

  10. Non-stationary corona around multi-point system in atmospheric electric field: I. Onset electric field and discharge current

    Science.gov (United States)

    Bazelyan, E. M.; Raizer, Yu. P.; Aleksandrov, N. L.

    2014-03-01

    The properties of a non-stationary glow corona maintained near the tips of a multi-point ground system in a time-varying thundercloud electric field have been studied numerically and analytically. Computer and analytical models were developed to simulate the corona discharge initiated from a system of identical vertical conductive electrodes distributed uniformly over a grounded plane surface. The simulation was based on a solution of the electrostatic equation for electric field and continuity equations for light and aerosol ions. The development of individual corona space charge layers from different points and the formation of a united plane layer were considered. The effect of system dimensions and that of the distance between electrodes on the external electric field corresponding to corona onset near the rod tips was investigated. The evolution in time of the corona current was calculated for systems with various numbers of coronating rods in time-varying atmospheric electric field. In the limit of infinite number of coronating rods, reasonable agreement was obtained between numerical calculations and analytical theory considering the effect of surrounding rods on the corona discharge from a given rod in a simplified integral way. Conditions were determined under which the corona properties of a multi-point system are similar to the properties of a plane surface emitting ions into the atmosphere. In this case, the corona current density is governed by the time derivative of the thundercloud electric field and is independent of the ion mobility and of the coronating system dimensions. The total corona space charge injected into the atmosphere per unit area by a given instant is controlled by the thundercloud electric field at this instant and depends on the geometrical parameters of the system only indirectly, through the corona onset atmospheric electric field. This simple model could be used to simulate a corona discharge during thunderstorms at the earth

  11. Distribution of Electrical Field Energy for Conversion of Methane to C2 Hydrocarbons via Dissymmetrical Electric Field Enhanced Plasma

    Institute of Scientific and Technical Information of China (English)

    Baowei Wang; Genhui Xu; Hongwei Sun

    2006-01-01

    Direct conversion of methane into C2 hydrocarbons through alternating current electric field enhanced plasma was studied under room temperature, atmospheric pressure and low power conditions.The distribution of electrical field intensity and distribution of energy were calculated with software that was developed by us according to the charge simulation method. The results indicated that the energy of tip of electrode was 0.36 J/mm3 and it was higher than the methane dissociation energy (0.0553 J/mm3).The methane located at this area can be activated easily. The higher-energy particles produced by dissociation collided with molecules around them and initiated consecutive reactions between free radicals and molecules. The method was proved to be valided and could be taken as a basis for the electrical field study concerned.

  12. Synthesis of zirconium oxynitride in air under DC electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Morisaki, Nobuhiro; Tokunaga, Tomoharu; Sasaki, Katsuhiro; Yamamoto, Takahisa, E-mail: yamataka@numse.nagoya-u.ac.jp [Department of Quantum Engineering, Nagoya University, Furocho, Chikusa-ku, Nagoya 464–8603 (Japan); Yoshida, Hidehiro [National Institute for Materials Science, 1–2–1 Sengen, Tsukuba, Ibaraki 305–0047 (Japan); Matsui, Koji [Inorganic Materials Research Laboratory, Tosoh Corporation, 4560 Kaisei-cho, Shunan, Yamaguchi 746-8501 (Japan)

    2016-08-22

    We synthesized zirconium oxynitride from yttria-stabilized zirconia (YSZ) in air by applying DC electric fields that produced a controlled electric current in the specimen. When YSZ was heated under an applied DC electric field, the electric current of the specimen steeply increased at a critical temperature, called a flash event, during flash sintering. By keeping the electric current of the specimen constant during the flash event and then holding the specimen at the critical temperature, YSZ was transformed into zirconium oxynitride under the optimal conditions of 50 V/cm, 500 mA, and 1000 °C. We confirmed that zirconium oxynitride formed using high-resolution transmission electron microscopy, electron energy-loss spectroscopy, and energy-dispersive spectrometry. To convert oxides to nitrides, reducing conditions are necessary to form excess oxygen vacancies. Our technique produced the strong reducing conditions necessary to form nitrides from the oxides by delivering a controlled electric current to the specimen.

  13. Resonances in low frequency ionization by periodic electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Dando, P.A.; Richards, D. (Open Univ., Milton Keynes (United Kingdom). Mathematics Faculty)

    1993-09-28

    The behaviour of a one-dimensional system perturbed by a low frequency, periodic electric field is examined in the limit as the field frequency, [Omega], tends to zero, that is the static field limit. In particular we obtain estimates of the widths of each member of the infinite set of resonances between any finite value of [Omega] and 0. In order to obtain this estimate we derive a new analytic approximation of the two-state equations of motion. Our analysis shows why recent experiments on the ionization of excited hydrogen atoms by low frequency fields failed to observe any resonances. (author).

  14. The acceleration of a neutron in a static electric field

    Science.gov (United States)

    Cappelletti, R. L.

    2012-06-01

    We show that when a non-relativistic neutron travels in a static electric field, the acceleration vector operator is perpendicular to the velocity operator. Kinetic energy is conserved. A spin-dependent field term in the canonical momentum gives rise to a non-dispersive contribution to the quantum mechanical (Aharonov-Casher) phase. This motion differs from that in a static magnetic field which has no field term in the canonical momentum and no conservation of kinetic energy. For the geometry of the Aharonov-Casher effect, there is no acceleration, while in Mott-Schwinger scattering, the acceleration causes a spin-dependent change in neutron direction.

  15. Comparison of automated repetitive-sequence-based polymerase chain reaction and spa typing versus pulsed-field gel electrophoresis for molecular typing of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Church, Deirdre L; Chow, Barbara L; Lloyd, Tracie; Gregson, Daniel B

    2011-01-01

    Automated repetitive polymerase chain reaction (PCR) (DiversiLab, bioMérieux, St. Laurent, Quebec, Canada) and single locus sequence typing of the Staphylococcus protein A (spa) gene with spa-type assignment by StaphType RIDOM software were compared to pulsed-field gel electrophoresis (PFGE) as the "gold standard" method for methicillin-resistant Staphylococcus aureus (MRSA) typing. Fifty-four MRSA isolates were typed by all methods: 10 of known PFGE CMRSA type and 44 clinical isolates. Correct assignment of CMRSA type or cluster occurred for 47 of 54 (87%) of the isolates when using a rep-PCR similarity index (SI) of ≥95%. Rep-PCR gave 7 discordant results [CMRSA1 (3), CMRSA2 (1), CMRSA4 (1), and CMRSA10 (2)], and some CMRSA clusters were not distinguished (CMRSA10/5/9, CMRSA 7/8, and CMRSA3/6). Several spa types occurred within a single PFGE or repetitive PCR types among the 19 different spa types found. spa type t037 was shared by CMRSA3 and CMRSA6 strains, and CMRSA9 and most CMRSA10 strains shared spa type t008. Time to results for PFGE, repetitive PCR, and spa typing was 3-4 days, 24 h, and 48 h, respectively. The annual costs of using spa or repetitive PCR were 2.4× and 1.9× higher, respectively, than PFGE but routine use of spa typing would lower annual labor costs by 0.10 full-time equivalents compared to PFGE. Repetitive PCR is a good method for rapid outbreak screening, but MRSA isolates that share the same repetitive PCR or PFGE patterns can be distinguished by spa typing. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Mechanical Properties of the Electric Field: A Novel Prediction derived from the Field's Mass and Stress

    CERN Document Server

    Cohen, Eliahu; Grossman, Doron; Horwitz, Lawrence; Elitzur, Avshalom C

    2013-01-01

    An experiment is proposed which can distinguish between two approaches to the reality of the electric field, and whether its lines have physical properties such as rigidity and stress. A charged pendulum swings within the field of another charge. If the curvature of the field-lines is a genuine physical phenomenon, the charge's center of mass must be proportionately shifted, in contrast with the conventional interpretation of the curvature as a mere superposition of different field-lines. Granting reality to the electric field may shed new light on several unresolved issues in electromagnetism, classical as well as quantum and relativistic.

  17. GUIDING OF PLASMA BY ELECTRIC FIELD AND MAGNETIC FIELD

    Institute of Scientific and Technical Information of China (English)

    ZHANG TAO; HOU JUN-DA; TANG BAO-YIN; P. K. CHU; I. G. BROWN

    2001-01-01

    The relationship between the transported ion current and the cathodic arc current is determined in a vacuum arc plasma source equipped with a curved magnetic filter. Our results suggest that the outer and inner walls of the duct interact with the plasma independently. The duct magnetic field is a critical factor of the plasma output. The duct transport efficiency is to maximize at a value of bias plate voltage in the range +10 V to +20 V, and independent (within our limit of measurement) of the magnetic field strength in the duct. The plasma flux is composed of two components:a diffusion flux in the transverse direction due to particle collisions, and a drift flux due to the ion inertia. The inner wall of the magnetic duct sees only the diffusion flux while the outer wall receives both fluxes. Thus, applying a positive potential to the outer duct wall can reflect the ions and increase the output current. Our experimental data also show that biasing both sides of the duct is more effective than biasing the outer wall alone.

  18. Electric-field-induced crack patterns: Experiments and simulation

    Science.gov (United States)

    Khatun, Tajkera; Choudhury, Moutushi Dutta; Dutta, Tapati; Tarafdar, Sujata

    2012-07-01

    We report a study of crack patterns formed in laponite gel drying in an electric field. The sample dries in a circular petri dish and the field is radial, acting inward or outward. A system of radial cracks forms in the setup with the center terminal positive, while predominantly cross-radial cracks form when the center is at a negative potential. The laponite accumulates near the negative terminal making the layer thicker at this end. A spring model on a square lattice is used to simulate the desiccation crack formation, with an additional radial force acting due to the electric field. With the radial force acting outward, radial cracks form and for the reversed field cross-radial cracks form. This conforms to the observation that laponite platelets become effectively positive due to overcharging and are attracted towards the negative terminal.

  19. Imaging of magnetic and electric fields by electron microscopy.

    Science.gov (United States)

    Zweck, Josef

    2016-10-12

    Nanostructured materials become more and more a part of our daily life, partly as self-assembled particles or artificially patterned. These nanostructures often possess intrinsic magnetic and/or electric fields which determine (at least partially) their physical properties. Therefore it is important to be able to measure these fields reliably on a nanometre scale. A rather common instrument for the investigation of these fields is the transmission electron microscope as it offers high spatial resolution. The use of an electron microscope to image electric and magnetic fields on a micron down to sub-nanometre scale is treated in detail for transmission electron microscopes (TEM) and scanning transmission electron microscopes (STEM). The formation of contrast is described for the most common imaging modes, the specific advantages and disadvantages of each technique are discussed and examples are given. In addition, the experimental requirements for the use of the techniques described are listed and explained.

  20. Control of colloids with gravity, temperature gradients, and electric fields

    CERN Document Server

    Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M

    2003-01-01

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  1. Imaging of magnetic and electric fields by electron microscopy

    Science.gov (United States)

    Zweck, Josef

    2016-10-01

    Nanostructured materials become more and more a part of our daily life, partly as self-assembled particles or artificially patterned. These nanostructures often possess intrinsic magnetic and/or electric fields which determine (at least partially) their physical properties. Therefore it is important to be able to measure these fields reliably on a nanometre scale. A rather common instrument for the investigation of these fields is the transmission electron microscope as it offers high spatial resolution. The use of an electron microscope to image electric and magnetic fields on a micron down to sub-nanometre scale is treated in detail for transmission electron microscopes (TEM) and scanning transmission electron microscopes (STEM). The formation of contrast is described for the most common imaging modes, the specific advantages and disadvantages of each technique are discussed and examples are given. In addition, the experimental requirements for the use of the techniques described are listed and explained.

  2. MHD rotation of electrically conducting media in crossed fields

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, N.V.

    1978-01-01

    A nonlinear scheme is developed for calculating the hydrodynamic characteristics of MHD flow in a cylindrical vessel of finite dimensions, in an electric field and a magnetic field crossing each other. The incompressible fluid is assumed to have a constant viscosity and electrical conductivity. The solution to the complete system of MHD equations is expanded in a series with respect to the magnetic Reynolds number, for a large hydrodynamic Reynolds number. And rather simple engineering formulas for calculating the velocity field and the pressure field are derived by the Karman-Pohlhausen method of integral relations. The results are compared with experimental data pertaining to a model helium-xenon discharge chamber with distribution of the Lorentz force causing the plasma to rotate as a quasi-solid. 15 references, 5 figures, 1 table.

  3. Integral Solution of 3D Electric Field of a Disconnector

    Directory of Open Access Journals (Sweden)

    Pavel Karban

    2008-01-01

    Full Text Available The disconnectors belong to elements widely used in electrical power engineering and apparatus technology for disconnecting various electric circuits. Usually they work without voltage (the circuit is first switched off by a circuit breaker. Nevertheless, in a fault regime the contacts of the disconnector may carry the full voltage, which may result in the electric arc between them at the moment when the movable contact approaches to the fixed one. In order to estimate this moment it is necessary to know the time evolution of the electric field in the domain between both contacts. This problem is solved in 3D (in somewhat simplified geometry by the integral technique. The theoretical analysis is supplemented with an illustrative example whose results are discussed.

  4. Behavior in Electric Fields of Simple Biological Membranes

    Science.gov (United States)

    Honciuc, Maria; Slavnicu, Elena

    The latest studies in biophysics and biochemistry have revealed the major role that liquid crystals (LC) and related phenomena play in biological processes. To account for a number of membrane mechanisms in view of the theoretical model developed by S. J. Singer, studies were carried out on mixtures of fatty acids (arachidic, lauric, butyric) and cholesterol in different weight percentages. Such mixtures may help one understand some mechanisms on which the operation of biological membranes relies. To this end, the way these mixtures behave in an electric field was studied. Electric measurements were conducted from which the average time of electric relaxation (τ) and average electric permittivity (ɛr) were determined. Depending on cholesterol percentage, changes by more than one order of magnitude were found to occur in the electric relaxation time. The ratio between the various fatty acid components did not influence the average time τ in any significant manner. By contrast, the relative electric permittivity ɛr was seen to decrease by at least one order of magnitude with raising the cholesterol percentage. The electric properties of such systems essentially depend on changing the amount of cholesterol in the system.

  5. Electrical conductivity of a methane-air burning plasma under the action of weak electric fields

    Science.gov (United States)

    Colonna, G.; Pietanza, L. D.; D'Angola, A.; Laricchiuta, A.; Di Vita, A.

    2017-02-01

    This paper focuses on the calculation of the electrical conductivity of a methane-air flame in the presence of weak electric fields, solving the Boltzmann equation for free electrons self-consistently coupled with chemical kinetics. The chemical model GRI-Mech 3.0 has been completed with chemi-ionization reactions to model ionization in the absence of fields, and a database of cross sections for electron-impact-induced processes to account for reactions and transitions activated in the flame during discharge. The dependence of plasma properties on the frequency of an oscillating field has been studied under different pressure and gas temperature conditions. Fitting expressions of the electrical conductivity as a function of gas temperature and methane consumption are provided for different operational conditions in the Ansaldo Energia burner.

  6. Magnetic liquids under high electric fields as optical diodes

    CERN Document Server

    Pereira, Jonas P; Smolyaninova, Vera N

    2016-01-01

    We show and give examples of how unidirectional propagation of light rays in the limit of geometric optics could arise in some magnetic fluids due to the magnetoelectric effect under weak DC magnetic fields and strong DC electric fields around half of their dielectric breakdown. For such liquids as kerosene and transformer oils, one-way propagation of light may occur for 30 nm diameter magnetic nanoparticles (e.g. cobalt) and concentrations of 2% or larger.

  7. Noncommuting electric fields and algebraic consistency in noncommutative gauge theories

    Science.gov (United States)

    Banerjee, Rabin

    2003-05-01

    We show that noncommuting electric fields occur naturally in θ-expanded noncommutative gauge theories. Using this noncommutativity, which is field dependent, and a Hamiltonian generalization of the Seiberg-Witten map, the algebraic consistency in the Lagrangian and Hamiltonian formulations of these theories is established. A comparison of results in different descriptions shows that this generalized map acts as a canonical transformation in the physical subspace only. Finally, we apply the Hamiltonian formulation to derive the gauge symmetries of the action.

  8. Magnetic liquids under high electric fields as broadband optical diodes

    Science.gov (United States)

    Pereira, Jonas P.; Smolyaninov, Igor I.; Smolyaninova, Vera N.

    2016-10-01

    We show that unidirectional propagation of light rays in the limit of geometric optics could arise in some magnetic fluids due to the magnetoelectric effect under weak DC magnetic fields and strong DC electric fields around half of their dielectric breakdown. For such liquids as kerosene and transformer oils, one-way propagation of light may occur for 30-nm-diameter magnetic nanoparticles (e.g., cobalt) and concentrations of 2 % or larger.

  9. Stretching magnetism with an electric field in a nitride semiconductor

    Science.gov (United States)

    Sztenkiel, D.; Foltyn, M.; Mazur, G. P.; Adhikari, R.; Kosiel, K.; Gas, K.; Zgirski, M.; Kruszka, R.; Jakiela, R.; Li, Tian; Piotrowska, A.; Bonanni, A.; Sawicki, M.; Dietl, T.

    2016-10-01

    The significant inversion symmetry breaking specific to wurtzite semiconductors, and the associated spontaneous electrical polarization, lead to outstanding features such as high density of carriers at the GaN/(Al,Ga)N interface--exploited in high-power/high-frequency electronics--and piezoelectric capabilities serving for nanodrives, sensors and energy harvesting devices. Here we show that the multifunctionality of nitride semiconductors encompasses also a magnetoelectric effect allowing to control the magnetization by an electric field. We first demonstrate that doping of GaN by Mn results in a semi-insulating material apt to sustain electric fields as high as 5 MV cm-1. Having such a material we find experimentally that the inverse piezoelectric effect controls the magnitude of the single-ion magnetic anisotropy specific to Mn3+ ions in GaN. The corresponding changes in the magnetization can be quantitatively described by a theory developed here.

  10. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    Science.gov (United States)

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan; Yeagle, Erin M.; Linn, Gary S.; Megevand, Pierre; Thielscher, Axel; Deborah A., Ross; Milham, Michael P.; Mehta, Ashesh D.; Schroeder, Charles E.

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG. PMID:27535462

  11. Electric Potential and Electric Field Imaging with Dynamic Applications: 2017 Research Award Innovation

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  12. Electro-Anatomical Characterization by Cardiac Electric Near-Fields

    Science.gov (United States)

    2007-11-02

    CHARACTERIZATION BY CARDIAC ELECTRIC NEAR-FIELDS E. Hofer1, G. Plank2, I. Schafferhofer1, D. Sanchez-Quintana3 1Institute of Medical Physics and...Project Number Task Number Work Unit Number Performing Organization Name(s) and Address(es) Institute of Medical Physics and Biophysics Karl-Frazens

  13. Control over colloidal crystallization by shear and electric fields

    NARCIS (Netherlands)

    Wu, Y.L.

    2007-01-01

    We used shear flow and an electric field to control colloidal crystallization. The structures were examined in situ with confocal microscopy. For experiments under shear, a new parallel plate shear cell was designed. It had a zero-velocity plane that was stationary with respect to the microscope. Th

  14. Pulsed electric field (PEF)research at USDA, ARS, ERRC

    Science.gov (United States)

    This article summarizes the effects of pulsed electric fields on the microbiological safety and quality aspects of various liquid food matrices, obtained at USDA, ARS, Eastern Regional Research Center under CRIS Project No. 1935-41420-013-00D, Processing Intervention Technologies for Enhancing the S...

  15. Pulsed electric field processing for fruit and vegetables

    Science.gov (United States)

    This month’s column reviews the theory and current applications of pulsed electric field (PEF) processing for fruits and vegetables to improve their safety and quality. This month’s column coauthor, Stefan Toepfl, is advanced research manager at the German Institute of Food Technologies and professo...

  16. Pulsed and streamer discharges in air above breakdown electric field

    NARCIS (Netherlands)

    Sun, A.B.; Teunissen, H.J.; Ebert, U.

    2013-01-01

    A 3D particle model is developed to investigate the streamer formation in electric fields above the breakdown threshold, in atmospheric air (1bar, 300 Kelvin). Adaptive particle management, adaptive mesh refinement and parallel computing techniques are used in the code. Photoionization and electron

  17. Fluctuation of the electric field in a plasma

    Science.gov (United States)

    Lee, Hee J.

    2015-04-01

    The theory of electric field fluctuations in a plasma is reviewed. The fluctuations of an electric field can be assumed to be due to the Cerenkov radiation, which is emitted by single particles that satisfy the Landau wave-particle resonance conditions. This view naturally agrees with the picture that a plasma can be considered to be an aggregate of non-interacting dressed particles. A simple classical derivation of the fluctuation-dissipation theorem is presented to show that the fluctuations of the Cerenkov electric field agree with the fluctuation-dissipation theorem. A quasilinear-like solution of the Liouville equation is shown to derive an electric field fluctuation with the same form as that obtained by using the dressed particle approach. We suggest that the fluctuation can be traced to the causality that gives rise to collisionless dissipation (imaginary part of the dielectric function). Therefore, the fluctuation in a plasma has a philosophical implication in that its existence is fundamentally due to the causal principle that the effect cannot be precedent to the cause, thus defining the direction of time.

  18. Electric-Field-Enhanced Jumping-Droplet Condensation

    Science.gov (United States)

    Miljkovic, Nenad; Preston, Daniel; Enright, Ryan; Limia, Alexander; Wang, Evelyn

    2013-11-01

    When condensed droplets coalesce on a superhydrophobic surface, the resulting droplet can jump due to the conversion of surface energy into kinetic energy. This frequent out-of-plane droplet jumping has the potential to enhance condensation heat and mass transfer. In this work, we demonstrated that these jumping droplets accumulate positive charge that can be used to further increase condensation heat transfer via electric fields. We studied droplet jumping dynamics on silanized nanostructured copper oxide surfaces. By characterizing the droplet trajectories under various applied external electric fields (0 - 50 V/cm), we show that condensation on superhydrophobic surfaces results in a buildup of negative surface charge (OH-) due to dissociated water ion adsorption on the superhydrophobic coating. Consequently, the opposite charge (H3O +) accumulates on the coalesced jumping droplet. Using this knowledge, we demonstrate electric-field-enhanced jumping droplet condensation whereby an external electric field opposes the droplet vapor flow entrainment towards the condensing surface to increase the droplet removal rate and overall surface heat transfer by 100% when compared to state-of-the-art dropwise condensing surfaces. This work not only shows significant condensation heat transfer enhancement through the passive charging of condensed droplets, but promises a low cost approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification.

  19. Electrons under the dominant action of shock-electric fields

    CERN Document Server

    Fahr, Hans J

    2016-01-01

    We consider a fast magnetosonic multifluid shock as a representation of the solar-wind termination shock. We assume the action of the transition happens in a three-step process: In the first step, the upstream supersonic solar-wind plasma is subject to a strong electric field that flashes up on a small distance scale $\\Delta z\\simeq U_1/ \\Omega _{\\mathrm e}$ (first part of the transition layer), where $\\Omega_{\\mathrm e}$ is the electron gyro-frequency and $U_1$ is the upstream speed. This electric field both decelerates the supersonic ion flow and accelerates the electrons up to high velocities. In this part of the transition region, the electric forces connected with the deceleration of the ion flow strongly dominate over the Lorentz forces. We, therefore, call this part the demagnetization region. In the second phase, Lorentz forces due to convected magnetic fields compete with the electric field, and the highly anisotropic and energetic electron distribution function is converted into a shell distribution...

  20. Oil dehydration using hydrodynamic effects and electrical fields

    Energy Technology Data Exchange (ETDEWEB)

    Skipin, V.S.; Cherepnin, V.V.; Didenko, V.I.

    1980-01-01

    This article examines the influence of hydrodynamic effects and electrical fields upon the water content of commercial oil. It is demonstrated that increasing the period of contact of the emulsion with a reagent and a unit for emulsive perturbation and reagent transfer, leads to a dosage reduction with a resulting high-quality of oil.

  1. Holographic gratings in photorefractive polymers without external electric field

    DEFF Research Database (Denmark)

    Kukhtarev, N.; Lyuksyutov, S.; Buchhave, Preben

    1997-01-01

    Using anomalous large diffusion we report a recording of reflection type gratings in a PVK-based photorefractive polymer without any external electric field. The diffraction efficiency of the gratings was measured to be 7%. An efficient modulation of beams during two-beam coupling up to 12...

  2. Water–methanol separation with carbon nanotubes and electric fields.

    Science.gov (United States)

    Winarto; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-08-07

    Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water–methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing diameter. In contrast, under an electric field, water molecules strongly prefer to occupy the CNTs over methanol molecules, resulting in a separation effect for water. More interestingly, the separation effect for water does not decrease with increasing CNT diameter. Formation of water structures in CNTs induced by an electric field has an important role in the separation of water from methanol.

  3. Towards a quantum Hall effect for atoms using electric fields

    CERN Document Server

    Ericsson, M; Ericsson, Marie; Sjoqvist, Erik

    2002-01-01

    An atomic analogue of Landau quantization based on the Aharonov-Casher (AC) interaction is developed. The effect provides a first step towards an atomic quantum Hall system using electric fields, which may be realized in a Bose-Einstein condensate.

  4. Viscosity Reduction in Liquid Suspensions by Electric or Magnetic Fields

    Science.gov (United States)

    Tao, R.; Xu, X.

    Reducing the viscosity of liquid suspensions is of great importance in science and engineering. We present a theory and experiments that a suitable electric or magnetic field pulse can effectively reduce the viscosity for several hours with no appreciable change of temperature. Positive experimental results with magnetorheological fluids and crude oil suggest a broad range of practical applications.

  5. Electric field deformation in diamond sensors induced by radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de; Boegelspacher, Felix; Dierlamm, Alexander; Mueller, Thomas; Steck, Pia [Institut fuer Experimentelle Kernphysik (IEKP), Karlsruher Institut fuer Technologie (KIT) (Germany); Dabrowski, Anne; Guthoff, Moritz [CERN (Switzerland)

    2016-07-01

    The BCML system is a beam monitoring device in the CMS experiment at the LHC. As detectors 32 poly-crystalline CVD diamond sensors are positioned in a ring around the beam pipe at a distance of ±1.8 m and ±14.4 m from the interaction point. The radiation hardness of the diamond sensors in terms of measured signal during operation was significantly lower than expected from laboratory measurements. At high particle rates, such as those occurring during the operation of the LHC, a significant fraction of the defects act as traps for charge carriers. This space charge modifies the electrical field in the sensor bulk leading to a reduction of the charge collection efficiency (CCE). A diamond irradiation campaign was started to investigate the rate dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the Transient Current Technique, the CCE was measured. The experimental results were used to create an effective trap model that takes the radiation damage into account. Using this trap model the rate dependent electrical field deformation and the CCE were simulated with the software ''SILVACO TCAD''. This talk compares the experimental measurement results with the simulations.

  6. Clay-oil droplet suspensions in electric fields

    Science.gov (United States)

    Rozynek, Zbigniew; Fossum, Jon Otto; Kjerstad, Knut; Mikkelsen, Alexander; Castberg, Rene

    2012-02-01

    Silicone oil droplets containing synthetic smectite clay submerged in immiscible organic oil have been studied by observing clay particle movement and oil circulation when an electric field is applied. Results show how electric field strength, dielectric and electrorheological properties as well as electrohydrodynamics determine the fluid flow and clay particle formation. In a presence of the DC electric fields the clay particles formed a ribbon-like structure onto the inner surface of the droplet. The structure consists of short chain-like clay elements orienting parallel to the electric field direction. It is suggested that a combination of two phenomena, namely the induced viscous flow (electrohydrodynamic effect) and the polarization of the clay particles (dielectric effect), contribute to the ribbon-like structure formation. -/abstract- References [1] G. Taylor, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 291 (1966) 159--166. [2] J. R. Melcher and G. I. Taylor, Annual Review of Fluid Mechanics 1 (1969) 111--146. [3] H. Sato, N. Kaji, T. Mochizuki, and Y. H. Mori, Physics of Fluids 18 (2006) 127101. [4] D. A. Saville, Annual Review of Fluid Mechanics 29 (1997) 27--64. [5] J. O. Fossum, Y. M'eheust, K. P. S. Parmar, K. D. Knudsen, K. J. Måløy, and D. M. Fonseca Europhysics Letters 74

  7. Surface paraconductivity induced by an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, B.Y. (Jack and Pearl Resnik Institute of Advance Technology, Physics Department, Bar-Ilan University, Ramat Gan 52900 (Israel))

    1993-12-01

    The fluctuating properties of the surface superconducting layers created by an electric field perpendicular to the surface are investigated. Shifts of the critical temperature, heat capacity, and the conductivity above the critical temperature have been calculated for arbitrary relations between the screening and coherence lengths.

  8. On the energy of electric field in hydrogen atom

    OpenAIRE

    Kornyushin, Yuri

    2009-01-01

    It is shown that hydrogen atom is a unique object in physics having negative energy of electric field, which is present in the atom. This refers also to some hydrogen-type atoms: hydrogen anti-atom, atom composed of proton and antiproton, and positronium.

  9. Human Resources Development in the Field of Electrical Engineering

    Science.gov (United States)

    Ishigame, Atsushi

    It is becoming increasingly clear that the decline in popularity in the field of electrical engineering is undergoing rapidly due to the fact that more young people are moving away from the science. The primary goal of this paper is to recognize the importance of educational new effort and, second, suggest social-provided education support needed to meet this challenge.

  10. Cholesteric elastomers in external mechanical and electric fields

    Science.gov (United States)

    Menzel, Andreas M.; Brand, Helmut R.

    2007-01-01

    In our studies, we focus on the reaction of cholesteric side-chain liquid single-crystal elastomers (SCLSCEs) to static external mechanical and electric fields. By means of linearized continuum theory, different geometries are investigated: The mechanical forces are oriented in a direction either parallel or perpendicular to the axis of the cholesteric helix such that they lead to a compression or dilation of the elastomer. Whereas only a homogeneous deformation of the system is found for the parallel case, perpendicularly applied mechanical forces cause either twisting or untwisting of the cholesteric helix. This predominantly depends on the direction in which the director of the cholesteric phase is anchored at the boundaries of the elastomer, and on the sign of a material parameter that describes how deformations of the elastomer couple to the relative rotations between the elastomer and the director. It is also this material parameter that leads to an anisotropy of the mechanical reaction of the system to compression and dilation, due to the liquid crystalline order. The effect of an external electric field is studied when applied parallel to the helix axis of a perfect electric insulator. Here an instability arises at a threshold value of the field amplitude, where the latter results from a competition between the effects of the external electric field on the one hand and the influences of the boundaries of the system, the cholesteric order, and the coupling between the director and the polymer network on the other hand. The instability is either homogeneous in space in the directions perpendicular to the external electric field and includes homogeneous shearing, or, for certain values of the material parameters, there arise undulations of the elastomer and the director orientation perpendicular to the direction of the external electric field at onset. This describes a qualitatively new phenomenon not observed in cholesteric systems yet, as these undulations

  11. Structural and electrical properties of electric field assisted spray deposited pea structured ZnO film

    Science.gov (United States)

    Chaturvedi, Neha; Swami, Sanjay Kumar; Dutta, Viresh

    2016-05-01

    Spray deposition of ZnO film was carried out. The uneven growth of ZnO nanostructures is resulted for spray deposited ZnO film. Application of DC voltage (1000V) during spray deposition provides formation of pea like structures with uniform coverage over the substrate. Electric field assisted spray deposition provides increased crystallinity with reduced resistivity and improved mobility of the ZnO film as compared to spray deposited ZnO film without electric field. This with large area deposition makes the process more efficient than other techniques.

  12. C/NOFS Observations of AC Electric Field Fields Associated with Equatorial Spread-F

    Science.gov (United States)

    Pfaff, R.; Liebrecht, C.

    2009-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set in which to acquire detailed knowledge of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations, primarily gathered within the ELF band (1 Hz to 250 Hz) on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The data will be used to explore the anisotropy/isotropy of the waves, their wavelength and phase velocity, as well as their spectral distributions. When analyzed in conjunction with the driving DC electric fields and detailed plasma number density measurements, the combined data reveal important information concerning the instability mechanisms themselves. We also present high resolution, vector measurements of intense lower hybrid waves that have been detected on numerous occasions by the VEFI burst memory VLF electric field channels.

  13. An electric-field representation of the harmonic XY model

    Science.gov (United States)

    Faulkner, Michael F.; Bramwell, Steven T.; Holdsworth, Peter C. W.

    2017-03-01

    The two-dimensional harmonic XY (HXY) model is a spin model in which the classical spins interact via a piecewise parabolic potential. We argue that the HXY model should be regarded as the canonical classical lattice spin model of phase fluctuations in two-dimensional condensates, as it is the simplest model that guarantees the modular symmetry of the experimental systems. Here we formulate a lattice electric-field representation of the HXY model and contrast this with an analogous representation of the Villain model and the two-dimensional Coulomb gas with a purely rotational auxiliary field. We find that the HXY model is a spin-model analogue of a lattice electric-field model of the Coulomb gas with an auxiliary field, but with a temperature-dependent vacuum (electric) permittivity that encodes the coupling of the spin vortices to their background spin-wave medium. The spin vortices map to the Coulomb charges, while the spin-wave fluctuations correspond to auxiliary-field fluctuations. The coupling explains the striking differences in the high-temperature asymptotes of the specific heats of the HXY model and the Coulomb gas with an auxiliary field. Our results elucidate the propagation of effective long-range interactions throughout the HXY model (whose interactions are purely local) by the lattice electric fields. They also imply that global spin-twist excitations (topological-sector fluctuations) generated by local spin dynamics are ergodically excluded in the low-temperature phase. We discuss the relevance of these results to condensate physics.

  14. Determinants of the electric field during transcranial direct current stimulation.

    Science.gov (United States)

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The manipulation of magnetic coercive field and orientation of magnetic anisotropy via electric fields

    Science.gov (United States)

    Xiang, Jun-Sen; Ye, Jun; Yang, Yun-Long; Xie, Yong; Li, Wei; Chen, Zi-Yu

    2016-08-01

    We report the effects of the electric field on the magnetic coercive field (H c) and uniaxial magnetic anisotropy (UMA) orientation of polycrystalline Ni film grown on an unpoled (0 1 1) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3] x (PMN-PT) single crystal substrate. Under various electric fields, normalized magnetic hysteresis loops of Ni films change in width; this represents the change of coercive field (ΔH c). Loop shapes are found to depend on the angle between the magnetic field and the sample, where changes in the shape reveal a small rotation of UMA. All these changes show that the magnetic properties vary periodically with a periodic electric field, by strain-mediated magnetoelectric coupling in the Ni/Ag/PMN-PT/Ag heterostructure. The poled PMN-PT produces strains under electric fields in the range of  -4.2 kV cm-1  ⩽  E  ⩽  4.2 kV cm-1, then transfers it to Ni films resulting in changes to its H c and UMA. The curves of the in-plane H c and strain, at two mutually orthogonal directions, represent butterfly patterns versus the applied electric field. In addition, the changes observed in both the H c and strain show asymmetric features in two orthogonal directions, which results in a small rotation angle of the UMA of Ni as the electric field decreases. The effective manipulation of magnitude and orientation of magnetic anisotropy via electric fields in ferromagnetic/ferroelectric (FM/FE) heterostructures is an important step towards controlling the magnetic tunnel junctions.

  16. Atmospheric Electric Field Measurements at 100 Hz and High Frequency Electric Phenomena

    Science.gov (United States)

    Conceição, Ricardo; Gonçalves da Silva, Hugo; Matthews, James; Bennett, Alec; Chubb, John

    2016-04-01

    Spectral response of Atmospheric Electric Potential Gradient (PG), symmetric to the Atmospheric Electric Field, gives important information about phenomena affecting these measurements with characteristic time-scales that appear in the spectra as specific periodicities. This is the case of urban pollution that has a clear weekly dependence and reveals itself on PG measurements by a ~7 day periodicity (Silva et al., 2014). While long-term time-scales (low frequencies) have been exhaustively explored in literature, short-term time-scales (high frequencies), above 1 Hz, have comparatively received much less attention (Anisimov et al., 1999). This is mainly because of the technical difficulties related with the storage of such a huge amount of data (for 100 Hz sampling two days of data uses a ~1 Gb file) and the response degradation of the field-meters at such frequencies. Nevertheless, important Electric Phenomena occurs for frequencies above 1 Hz that are worth pursuing, e.g. the Schumann Resonances have a signature of worldwide thunderstorm activity at frequencies that go from ~8 up to ~40 Hz. To that end the present work shows preliminary results on PG measurements at 100 Hz that took place on two clear-sky days (17th and 18th June 2015) on the South of Portugal, Évora (38.50° N, 7.91° W). The field-mill used is a JCI 131F installed in the University of Évora campus (at 2 m height) with a few trees and two buildings in its surroundings (~50 m away). This device was developed by John Chubb (Chubb, 2014) and manufactured by Chilworth (UK). It was calibrated in December 2013 and recent work by the author (who is honored in this study for his overwhelming contribution to atmospheric electricity) reveals basically a flat spectral response of the device up to frequencies of 100 Hz (Chubb, 2015). This makes this device suitable for the study of High Frequency Electric Phenomena. Anisimov, S.V., et al. (1999). On the generation and evolution of aeroelectric structures

  17. A Diagnostic for Electric Field Measurements in the Near/Far-Field Regions of ICRF Antenna

    Science.gov (United States)

    Martin, E. H.; Caughman, J. B. O.; Isler, R. C.

    2015-11-01

    The physics mechanisms of wave heating and current drive processes in the bulk hot plasma are generally well identified. However, details of the wave-plasma interaction with a material surface in the cold plasma edge are still not fully understood. The driver behind this interaction is the time-periodic wave electric field and is referred to as the near/far-field depending on the location with respect to the antenna. Various models have been formulated to capture the near/far-field physics but have not been tested experimentally. Thus, a diagnostic capable of measuring the electric field with temporal and 3D-spatial resolution is critical for confidence in the codes used to design next generation ICRF antennas. This research is focused on the development of a laser based spectroscopic technique, Doppler-free saturation spectroscopy (DFSS), and its implementation to study near/far-field physics. Using DFSS the spectra line profile of various electronic transitions are measured and fit to a quantum mechanical model incorporating both magnetic and dynamic electric field operators. The electric field direction and magnitude are extracted from the fit. The experimental setup and planned experiments will be discussed. Additionally, initial measurements of fitted Hδ spectrum under the influence of known electric and magnetic fields will be presented.

  18. Phantom collapse of electrically charged scalar field in dilaton gravity

    CERN Document Server

    Nakonieczna, Anna

    2013-01-01

    Our research focus on gravitational collapse of electrically charged scalar field in dilaton gravity and in the presence of phantom coupling. We examine dynamical behaviour of the scalar field coupled to Maxwell field when gravitational interactions have form consistent with the low-energy limit of the string theory. Moreover, we allow the evolving fields to have negative sign in front of the respective kinetic term of the Lagrangian. The main aim of our studies is to investigate in what manner does the phantom nature of either Maxwell or dilaton fields (or both of them) affect the outcomes of the collapse. It turns out that the influence is crucial to the obtained spacetime structures. Negative kinetic energy of one (or both) of the fields delays, changes the course or even prevents the collapse.

  19. The Contribution of Electric Force to Sintering Ⅱ.Natures of the Applied Electric Field for Driving lonic Diffusion

    Institute of Scientific and Technical Information of China (English)

    SHIShang-zhao

    1994-01-01

    Through discussion on the acting forces of the applied electric field on the ionic system,it was shown that a periordical field with both even and odd components is to be applied.The suitable wavelengty,the extent of the field intensity and electric potential and the application of the selected field were suggested.

  20. Adsorbate Electric Fields on a Cryogenic Atom Chip

    CERN Document Server

    Chan, K S; Hufnagel, C; Dumke, R

    2013-01-01

    We investigate the behaviour of electric fields originating from adsorbates deposited on a cryogenic atom chip as it is cooled from room temperature to cryogenic temperature. Using Rydberg electromagnetically induced transparency we measure the field strength versus distance from a 1 mm square of YBCO patterned onto a YSZ chip substrate. We find a localized and stable dipole field at room temperature and attribute it to a saturated layer of chemically adsorbed rubidium atoms on the YBCO. As the chip is cooled towards 83 K we observe a change in sign of the electric field as well as a transition from a localized to a delocalized dipole density. We relate these changes to the onset of physisorption on the chip surface when the van der Waals attraction overcomes the thermal desorption mechanisms. Our findings suggest that, through careful selection of substrate materials, it may be possible to reduce the electric fields caused by atomic adsorption on chips, opening up experiments to controlled Rydberg-surface co...

  1. Interferometric methods for mapping static electric and magnetic fields

    Science.gov (United States)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2014-02-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity Equation. Among these approaches, image-plane off-axis electron holography in the transmission electron microscope has acquired a prominent role thanks to its quantitative capabilities and broad range of applicability. After a brief overview of the main ideas and methods behind field mapping, we focus on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p-n junctions in semiconductors, quantized magnetic flux in superconductors and magnetization topographies in nanoparticles and other magnetic materials) and electron-optical geometries (including multiple biprism, amplitude and mixed-type set-ups). We conclude by highlighting the emerging perspectives of (i) three-dimensional field mapping using electron holographic tomography and (ii) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.

  2. Calculations of the Electric Fields in Liquid Solutions

    Science.gov (United States)

    Fried, Stephen D.; Wang, Lee-Ping; Boxer, Steven G.; Ren, Pengyu; Pande, Vijay S.

    2014-01-01

    The electric field created by a condensed phase environment is a powerful and convenient descriptor for intermolecular interactions. Not only does it provide a unifying language to compare many different types of interactions, but it also possesses clear connections to experimental observables, such as vibrational Stark effects. We calculate here the electric fields experienced by a vibrational chromophore (the carbonyl group of acetophenone) in an array of solvents of diverse polarities using molecular dynamics simulations with the AMOEBA polarizable force field. The mean and variance of the calculated electric fields correlate well with solvent-induced frequency shifts and band broadening, suggesting Stark effects as the underlying mechanism of these key solution phase spectral effects. Compared to fixed-charge and continuum models, AMOEBA was the only model examined that could describe non-polar, polar, and hydrogen bonding environments in a consistent fashion. Nevertheless, we found that fixed-charge force fields and continuum models were able to replicate some results of the polarizable simulations accurately, allowing us to clearly identify which properties and situations require explicit polarization and/or atomistic representations to be modeled properly, and for which properties and situations simpler models are sufficient. We also discuss the ramifications of these results for modeling electrostatics in complex environments, such as proteins. PMID:24304155

  3. ELF magnetic fields in electric and gasoline-powered vehicles.

    Science.gov (United States)

    Tell, R A; Sias, G; Smith, J; Sahl, J; Kavet, R

    2013-02-01

    We conducted a pilot study to assess magnetic field levels in electric compared to gasoline-powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline-powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline-powered vehicle and at least one electric vehicle, enabling intra-model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40-1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline-powered cars (P electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross-section of electric-type vehicles. Copyright © 2012 Wiley Periodicals, Inc.

  4. Alignment of atmospheric mineral dust due to electric field

    Science.gov (United States)

    Ulanowski, Z.; Bailey, J.; Lucas, P. W.; Hough, J. H.; Hirst, E.

    2007-12-01

    Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust episode show dichroic extinction indicating the presence of vertically aligned particles in the atmosphere. Modelling of the extinction together with particle orientation indicates that the alignment could have been due to an electric field of the order of 2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect of reduced atmospheric conductivity and charging of the dust layer, the latter effect being a more likely candidate. It is concluded that partial alignment may be a common feature of Saharan dust layers. The modelling indicates that the alignment can significantly alter dust optical depth. This "Venetian blind effect" may have decreased optical thickness in the vertical direction by as much as 10% for the case reported here. It is also possible that the alignment and the electric field modify dust transport.

  5. Counting photons in static electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Mueck, Wolfgang [Universita degli Studi di Napoli ' ' Federico II' ' , Via Cintia, Dipartimento di Fisica, Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Napoli (Italy)

    2013-12-15

    We describe the electromagnetic field by the massless limit of a massive vector field in the presence of a Coulomb gauge fixing term. The gauge fixing term ensures that, in the massless limit, the longitudinal mode is removed from the spectrum and only the two transverse modes survive. The system, coupled to a classical conserved current, is quantized in the canonical formalism. The classical field configurations due to time-independent electric charges and currents are represented by coherent states of longitudinal and transverse photons, respectively. The occupation number in these states is finite. In particular, the number of longitudinal photons bound by an electric charge q is given by N = q{sup 2}/(16{pi}{Dirac_h}). (orig.)

  6. Directing Soft Matter in Water Using Electric Fields.

    Science.gov (United States)

    van der Asdonk, Pim; Kragt, Stijn; Kouwer, Paul H J

    2016-06-29

    Directing the spatial organization of functional supramolecular and polymeric materials at larger length scales is essential for many biological and molecular optoelectronic applications. Although the application of electrical fields is one of the most powerful approaches to induce spatial control, it is rarely applied experimentally in aqueous solutions, since the low susceptibility of soft and biological materials requires the use of high fields, which leads to parasitic heating and electrochemical degradation. In this work, we demonstrate that we can apply electric fields when we use a mineral liquid crystal as a responsive template. Besides aligning and positioning functional soft matter, we show that the concentration of the liquid crystal template controls the morphology of the assembly. As our setup is very easy to operate and our approach lacks specific molecular interactions, we believe it will be applicable for a wide range of (aqueous) materials.

  7. Photodetachment of HF-in an Electric Field

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua

    2008-01-01

    @@ Photdetachment of a negative HF-ion in an electric field is studied by using the two-centre model and the closed orbit theory.An analytic formula is presented for the electron flux of HF- in the presence of an electric field.The results show that the oscillation in the electron flux distribution is caused by the rescattering effect of the molecular ion core and the interference betweed the two nuclei.In addition,the interference between the orbits passing through the given spatial point also plays an important role in the electron flux distribution.This study provides a new understanding of the photodetachment of polar molecules in the presence of external field.

  8. Molecular dynamics simulations of nanoscale metal tips under electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Parviainen, S., E-mail: stefan.parviainen@helsinki.fi [Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland); Djurabekova, F.; Pohjonen, A.; Nordlund, K. [Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland)

    2011-07-15

    Vacuum arcing is a plasma discharge over a metal surface under high electric fields. Plasma formation requires the supply of neutral atoms, which under high vacuum condition can only come from the surface itself. Nevertheless, the mechanisms by which the atoms are supplied are not known. In the present work, we propose a model for the onset of surface roughness and field-enhanced atom evaporation. Specifically, we describe a dislocation mechanism of tip growth from near-surface voids. We also simulate surface charging and resistive heating using a hybrid electrodynamics and molecular dynamics (ED and MD) code for dynamic simulations of electronic effects. We study the morphological evolution of the nanoscale protrusion under the electronic effects, such as the stretching of the tip by the stress induced by the electric field.

  9. Relaxation Dynamics of Ferroelectric Liquid Crystals in Pulsed Electric Field

    Science.gov (United States)

    Kudreyko, A. A.; Migranov, N. G.; Migranova, D. N.

    2016-11-01

    In this contribution we report a theoretical study of relaxation processes in surface-stabilized ferroelectric liquid crystals with spontaneous polarization. The influence of pulsed electric field on the behavior of ferroelectric liquid crystal in the SmC* phase, which is placed in a thin cell with strong anchoring of SmC* molecules with the boundary substrate, is studied. In the vicinity of the substrate interface, temporal dependence of the azimuthal motion of the director induced by electric field is obtained. The response to the external distortion of ferroelectric liquid crystal confined between two microstructured substrates is the occurrence of periodic temporal formation of solitons connected with the distortion of the director field n in the sample bulk. The interplay between microstructured substrates and director distribution of the ferroelectric SmC* phase is explained by the Frenkel-Kontorova model for a chain of atoms, but adapted for the continuum problem.

  10. Nucleation of lysozyme crystals under external electric and ultrasonic fields

    Science.gov (United States)

    Nanev, Christo N.; Penkova, Anita

    2001-11-01

    Preferred orientation along c-axis of hen-egg-white lysozyme (HEWL) crystals has been observed in an external electric field. Besides, the HEWL crystals grew predominantly on the cathode side of the glass cell. These facts were explained on the basis of a concept for specific spatial distribution of the positive electric charges on the individual HEWL molecules, and thus attributed to the (preferred) orientation of individual HEWL molecules in the solution, under these conditions. Ultrasonic field redoubles the nucleation rate of HEWL crystals, but does not change the number of building units in the critical nucleus. Taking into account the intermolecular binding energy, we conclude that ultrasonic field accelerates nucleation due to breaking of the protein crystals.

  11. Steady electric fields and currents elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    2013-01-01

    Steady Electric Fields and Currents, Volume 1 is an introductory text to electromagnetism and potential theory. This book starts with the fields associated with stationary charges and unravels the stationary condition to allow consideration of the flow of steady currents in closed circuits. The opening chapter discusses the experimental results that require mathematical explanation and discussion, particularly those referring to phenomena that question the validity of the simple Newtonian concepts of space and time. The subsequent chapters consider steady-state fields, electrostatics, dielectr

  12. Analysis of the temporal electric fields in lossy dielectric media

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1991-01-01

    The time-dependent electric fields associated with lossy dielectric media are examined. The analysis illustrates that, with respect to the basic time constant, these lossy media can take a considerable time to attain a steady-state condition. Time-dependent field enhancement factors are considered......, and inherent surface-charge densities quantified. The calculation of electrostatic forces on a free, lossy dielectric particle is illustrated. An extension to the basic analysis demonstrates that, on reversal of polarity, the resultant tangential field at the interface could play a decisive role...

  13. Sensing electric and magnetic fields with Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Wildermuth, Stefan; Hofferberth, S.; Lesanovsky, Igor

    2006-01-01

    We experimentally demonstrate that one-dimensional Bose-Einstein condensates brought close to microfabricated wires on an atom chip are a very sensitive sensor for magnetic and electric fields reaching a sensitivity to potential variations of ∼ 10-14 eV at 3 μm spatial resolution. We measure a two......-dimensional magnetic field map 10 μm above a 100-μm-wide wire and show how the transverse current-density component inside the wire can be reconstructed. The relation between the field sensitivity and the spatial resolution is discussed and further improvements utilizing Feshbach-resonances are outlined....

  14. Estimating of pulsed electric fields using optical measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Timothy McGuire; Chantler, Gary.

    2013-09-01

    We performed optical electric field measurements ion nanosecond time scales using the electrooptic crystal beta barium borate (BBO). Tests were based on a preliminary bench top design intended to be a proofofprinciple stepping stone towards a modulardesign optical Efield diagnostic that has no metal in the interrogated environment. The long term goal is to field a modular version of the diagnostic in experiments on large scale xray source facilities, or similarly harsh environments.

  15. Energy partitioning of gaseous ions in an electric field.

    Science.gov (United States)

    Hahn, H.-S.; Mason, E. A.

    1973-01-01

    The partitioning of ion energy among thermal energy, drift energy, and random-field energy is studied by solution of the Boltzmann equation. An expansion in powers of the square of the electric field strength is obtained by Kihara's method. Numerical calculations for several ion-neutral force laws show that Wannier's constant mean-free-time model gives a reasonable first approximation. The formal extension to multicomponent mixtures is also given. The matrix elements obtained are tabulated, and can be used to study the field dependence of other moments of the ion-distribution function.

  16. Alternative current source based Schottky contact with additional electric field

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2017-07-01

    Additional electric field (AEF) in the Schottky contacts (SC) that covered the peripheral contact region wide and the complete contact region narrow (as TMBS diode) SC. Under the influence of AEF is a redistribution of free electrons produced at certain temperatures of the semiconductor, and is formed the space charge region (SCR). As a result of the superposition of the electric fields SCR and AEF occurs the resulting electric field (REF). The REF is distributed along a straight line perpendicular to the contact surface, so that its intensity (and potential) has a minimum value on the metal surface and the maximum value at a great distance from the metal surface deep into the SCR. Under the influence of AEF as a sided force the metal becomes negative pole and semiconductor - positive pole, therefore, SC with AEF becomes an alternative current source (ACS). The Ni-nSi SC with different diameters (20-1000 μm) under the influence of the AEF as sided force have become ACS with electromotive force in the order of 0.1-1.0 mV, which are generated the electric current in the range of 10-9-10-7 A, flowing through the external resistance 1000 Ohm.

  17. Electrohydrodynamics of a compound vesicle under an AC electric field

    Science.gov (United States)

    Priti Sinha, Kumari; Thaokar, Rochish M.

    2017-07-01

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius λ {{R}o} , is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  18. The Role of Field Electron Emission in Polypropylene/Aluminum Nanodielectrics Under High Electric Fields.

    Science.gov (United States)

    Zhang, Guoqiang; Li, Yue; Tang, Saide; Thompson, Rhett D; Zhu, Lei

    2017-03-09

    Polymer/metallic particle nanocomposites or nanodielectrics can exhibit colossal dielectric constants with a relatively low dissipation factor under low electric fields and thus seem to be promising for high-energy density dielectric capacitors. To study this possibility, this work focused on the dielectric performance and loss mechanisms in polypropylene (PP)/aluminum nanoparticle (nAl NP) composites under high electric fields. Phosphonic acid-terminated poly(ethylene-co-1-butene) was grafted to the Al2O3 surface layer on the nAl NPs in order to achieve reasonable dispersion in the PP matrix. The dielectric breakdown study showed that the breakdown strength decreased to nearly 1/20 that of the neat PP film as the nAl content increased to 25.0 vol %. The leakage current study revealed three electronic conduction mechanisms in the PP/100 nm nAl nanocomposites, namely, ohmic conduction at low fields, hopping conduction at intermediate fields, and Fowler-Nordheim (FN) field electron emission above a critical field, depending on the filler content. Compared to the 100 nm nAl NPs, smaller (e.g., 18 nm) nAl NPs needed a much higher electric field to exhibit FN field electron emission. It was the FN electron tunneling that induced a substantial reduction in breakdown strength for the PP/nAl nanocomposites. Meanwhile, electron-tunneling injected space charges (electrons) from nAl NPs into the PP matrix, and internal electronic conduction led to significant dielectric nonlinearity at high poling fields. Although polymer/metallic NP composites are not suitable for high-field electric applications, they can be good candidates for electrical switches and quantum tunneling composites operated at relatively low electric fields.

  19. Wave packet dynamics under effect of a pulsed electric field

    Science.gov (United States)

    da Silva, A. R. C. B.; de Moura, F. A. B. F.; Dias, W. S.

    2016-06-01

    We studied the dynamics of an electron in a crystalline one-dimensional model under effect of a time-dependent Gaussian field. The time evolution of an initially Gaussian wave packet it was obtained through the numerical solution of the time-dependent Schrödinger equation. Our analysis consists of computing the electronic centroid as well as the mean square displacement. We observe that the electrical pulse is able to promote a special kind of displacement along the chain. We demonstrated a direct relation between the group velocity of the wave packet and the applied electrical pulses. We compare those numerical calculations with a semi-classical approach.

  20. Frequency and electric field controllable photodevice: FYTRONIX device

    Science.gov (United States)

    Tataroğlu, A.; Al-Sehemi, Abdullah G.; Özdemir, Mehmet; Özdemir, Resul; Usta, Hakan; Al-Ghamdi, Ahmed A.; Farooq, W. A.; Yakuphanoglu, F.

    2017-08-01

    Al/p-Si/BODIPY/Al diode was fabricated by forming BODIPY organic layer on p-Si having ohmic contact. The electrical and photoresponse properties of the prepared diode were investigated in detail. The current-voltage (I-V) measurements were performed under dark and various illumination intensities. It is observed that the photocurrent under illumination is higher than the dark current. The transient measurements indicate that the device exhibits both photodiode and photocapacitor behavior. We called this device as FYTRONIX device. The photoresponse behavior of the FYTRONIX device is controlled simultaneously by frequency and electric field. The FYRONIX device can be used as a photoresponse sensor in optoelectronic applications.

  1. Electric field and energy of a point electric charge between confocal hyperbolaidal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ley-Koo, E. [Universidad Nacional Autonoma de Mexico, Mexico, D. F. (Mexico)

    2001-06-01

    The electric potential and intensity field, as well as the energy of a point electric charge between confocal hyperboloidal electrodes is evaluated as a superposition of prolate spheroidal harmonics using the Green-function technique. This study is motivated by the need to model the electric field between the tip and the sample in a scanning tunnelling microscope, and it can also be applied to a conductor-insulator-conductor junction. [Spanish] Los campos de potencial y de intensidad electrica, asi como la energia de una carga electrica puntual entre electrodos hiperboloidales confocales se evaluan como superposiciones de armonicos esferoidales prolatos usando la tecnica de la funcion de Green. Este estudio ha sido motivado por la necesidad de modelar el campo electrico entre la punta y la muestra de un microscopio de tunelamiento y barrido, y se puede aplicar tambien a una union de conductor-aislante-conductor.

  2. Electric-field Induced Microdynamics of Charged Rods

    Directory of Open Access Journals (Sweden)

    Kyongok eKang

    2014-12-01

    Full Text Available Electric-field induced phase/state transitions are observed in AC electric fields with small amplitudes and low frequencies in suspensions of charged fibrous viruses (fd, which are model systems for highly charged rod-like colloids. Texture- and particle-dynamics in these field-induced states, and on crossing transition lines, are explored by image time-correlation and dynamic light scattering, respectively. At relatively low frequencies, starting from a system within the isotropic-nematic coexistence region, a transition from a nematic to a chiral nematic is observed, as well as a dynamical state where nematic domains melt and reform. These transitions are preliminary due to field-induced dissociation/association of condensed ions. At higher frequencies a uniform state is formed that is stabilized by hydrodynamic interactions through field-induced electro-osmotic flow where the rods align along the field direction. There is a point in the field-amplitude versus frequency plane where various transition lines meet. This point can be identified as a non-equilibrium critical point, in the sense that a length scale and a time scale diverge on approach of that point. The microscopic dynamics exhibits discontinuities on crossing transition lines that were identified independently by means of image and signal correlation spectroscopy.

  3. Temporal analysis of moving dc electric fields in aquatic media

    Science.gov (United States)

    Hofmann, Michael H.; Wilkens, Lon A.

    2005-03-01

    Many aquatic vertebrates can sense the weak electric fields generated by other animals and may also sense geoelectric or electromagnetic phenomena for use in orientation. All these sources generate stationary (dc) fields. In addition, fields from animals are modulated by respiration and other body movements. Since electroreceptors are insensitive to a pure dc field, it has been suggested that the ac modulation carries most of the relevant information for electrosensory animals. However, in a natural situation pure dc fields are rare since any relative movement between source and receiver will transform a dc field into a time varying signal. In this paper, we will describe the properties of such signals and how they are filtered at the first stage of electrosensory information processing in the brain. We will show that the signal perceived by an animal traversing a dc electric field contains all the information necessary to reconstruct the distance to the source and that the signal conditioning algorithms are perfectly adapted to preserve such information.

  4. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Victor; Kostyrya, Igor D. [Institute of High Current Electronics, Russian Academy of Science, Tomsk 634055 (Russian Federation); Ma Hao [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yan Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2012-12-15

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30-40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  5. Electric-field control of magnetism in multiferroic heterostructures

    Science.gov (United States)

    Zhao, Yonggang; Zhang, Sen; Li, Peisen; Chen, Aitian; Li, Dalai; Yang, Lifeng; Rizwan, S.; Liu, Y.; Xiao, Xia; Wu, Yizheng; Jin, Xiaofeng; Han, Xiufeng; Zhang, Huiyun; Zhu, Meihong

    2015-03-01

    We have studied electric-field control of magnetism in different multiferroic heterostructures, composed of ferromagnetic (FM) and ferroelectric (FE) materials such as Co40Fe40B20(CoFeB)/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PMN-PT) and magnetic tunnel junctions (MTJ) on PMN-PT, etc. A giant electric-field control of magnetization as well as magnetic anisotropy was observed in a CoFeB/PMN-PT structure at room temperature with a maximum relative magnetization change up to 83 percent and a 90° rotation of the easy axis. In MTJ of CoFeB/AlOx/CoFeB grown on PMN-PT, we demonstrate a reversible, continuous magnetization rotation and manipulation of tunneling magnetoresistance at room temperature by electric fields without the assistance of a magnetic field. These results show the interesting new physics and potential applications of the FM/FE multiferroic heterostructures.

  6. [A literature analysis of power frequency electric field testing data].

    Science.gov (United States)

    Zhang, Suli; Guo, Zehua; Yu, Xintian; Ding, Yan; Zhu, Zhiliang

    2015-06-01

    To analyze the literature on power frequency electric field testing data and to propose views and suggestions for current testing. The literature on power frequency electric field testing data published in the previous years was searched to identify 306 articles involving 193 valid testing data. Mann-Whitney test and Wilcoxon W test were used for analyzing the testing data. The classification of data was carried out according to one quarter of occupational exposure limit (1.25 kV/m), one half of the exposure limit (2.5 kV/m), and the exposure limit (5 kV/m). The structure of testing data showed a significant difference between the non-power facility group and the power facility group (Pelectric field is extensive. However, the power frequency electric field testing data in actual workplaces except high-voltage power facilities are far less than the occupational exposure limit with little harmfulness. There is a phenomenon of excessive testing at present.

  7. Tunable control of antibody immobilization using electric field.

    Science.gov (United States)

    Emaminejad, Sam; Javanmard, Mehdi; Gupta, Chaitanya; Chang, Shuai; Davis, Ronald W; Howe, Roger T

    2015-02-17

    The controlled immobilization of proteins on solid-state surfaces can play an important role in enhancing the sensitivity of both affinity-based biosensors and probe-free sensing platforms. Typical methods of controlling the orientation of probe proteins on a sensor surface involve surface chemistry-based techniques. Here, we present a method of tunably controlling the immobilization of proteins on a solid-state surface using electric field. We study the ability to orient molecules by immobilizing IgG molecules in microchannels while applying lateral fields. We use atomic force microscopy to both qualitatively and quantitatively study the orientation of antibodies on glass surfaces. We apply this ability for controlled orientation to enhance the performance of affinity-based assays. As a proof of concept, we use fluorescence detection to indirectly verify the modulation of the orientation of proteins bound to the surface. We studied the interaction of fluorescently tagged anti-IgG with surface immobilized IgG controlled by electric field. Our study demonstrates that the use of electric field can result in more than 100% enhancement in signal-to-noise ratio compared with normal physical adsorption.

  8. The effect of electric fields upon liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Carleson, T.E.

    1988-04-13

    A series of mass transfer studies were conducted for the extraction of solute from droplets falling in an electric field. The experiments were planned such that the dispersed phase resistance was controlling. In one series of experiments single drops were formed from a charged nozzle and allowed to fall through a continuous, dielectric phase. The drop size and velocity were correlated by means of a simple force balance. Drop mass transfer coefficients were calculated for the drop free fall period and were compared to predictions based upon literature correlations for an oscillating droplet in-the absence of an electric field. Droplet size and velocity were approximately predicted by a staple force balance whereas the mass transfer coefficient was approximately 25--250% higher than that predicted. Droplet extraction efficiencies Increased about 20--30% in the presence of electric fields up to 2 kv/cm. For the same field, the drop diameter decreased 30--50% and the terminal velocity increased by up to 50%. The enhancements for the toluene-water system can be ascribed to increases in terminal velocity and decreases in drop diameter. The mass transfer model for freely falling drops proposed by Skelland and Wellek roughly predicts the moderate mass transfer efficiency increases (about 18% at 1 kv/cm) for the toluene water system but failed to predict the increases (about 25% at 0.5 kv/cm) for the heptane furfural system. The second series of experiments involved the formation of a swarm of droplets In a three stage sieve tray column. In a separate series of experiments. the effect of the electric field upon mass transfer from drops exhibiting interfacial turbulence was evaluated.

  9. Controlling turbulent drag across electrolytes using electric fields

    Science.gov (United States)

    Lee, Alpha; Ostilla-Mónico, Rodolfo

    2016-11-01

    Controlling friction is a crucial problem in engineering science. Using direct numerical simulation, we investigate the phenomenology of turbulent Couette flows in electrolytes sheared by charged surfaces. We show how the presence of large shear rates affects the structure, dynamics and stress generation in the electrical double layer. The constant injection of energy from the sheared boundaries drives the double layer far from thermodynamic equilibrium, thus placing conventional statistical physical intuitions on a more tenuous footing. Critically, we uncover regimes where friction associated with turbulent dissipation could be controlled by applying an electric field. The implications of our results on chaotic electrokinetic flows and the non-equilibrium electrical double layer in other electrokinetic settings will also be discussed.

  10. Review of the Dynamics of Coalescence and Demulsification by High-Voltage Pulsed Electric Fields

    OpenAIRE

    Ye Peng; Tao Liu; Haifeng Gong; Xianming Zhang

    2016-01-01

    The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric...

  11. Dynamics of Drop Formation in an Electric Field.

    Science.gov (United States)

    Notz; Basaran

    1999-05-01

    The effect of an electric field on the formation of a drop of an inviscid, perfectly conducting liquid from a capillary which protrudes from the top plate of a parallel-plate capacitor into a surrounding dynamically inactive, insulating gas is studied computationally. This free boundary problem which is comprised of the surface Bernoulli equation for the transient drop shape and the Laplace equation for the velocity potential inside the drop and the electrostatic potential outside the drop is solved by a method of lines incorporating the finite element method for spatial discretization. The finite element algorithm employed relies on judicious use of remeshing and element addition to a two-region adaptive mesh to accommodate large domain deformations, and allows the computations to proceed until the thickness of the neck connecting an about to form drop to the rest of the liquid in the capillary is less than 0.1% of the capillary radius. The accuracy of the computations is demonstrated by showing that in the absence of an electric field predictions made with the new algorithm are in excellent agreement with boundary integral calculations (Schulkes, R. M. S. M. J. Fluid Mech. 278, 83 (1994)) and experimental measurements on water drops (Zhang, X., and Basaran, O. A. Phys. Fluids 7(6), 1184 (1995)). In the presence of an electric field, the algorithm predicts that as the strength of the applied field increases, the mode of drop formation changes from simple dripping to jetting to so-called microdripping, in accordance with experimental observations (Cloupeau, M., and Prunet-Foch, B. J. Aerosol Sci. 25(6), 1021 (1994); Zhang, X., and Basaran, O. A. J. Fluid Mech. 326, 239 (1996)). Computational predictions of the primary drop volume and drop length at breakup are reported over a wide range of values of the ratios of electrical, gravitational, and inertial forces to surface tension force. In contrast to previously mentioned cases where both the flow rate in the tube

  12. Magnetic field effect in photodetachment from negative ion in electric field near metal surface

    Institute of Scientific and Technical Information of China (English)

    Tang Tian-Tian; Wang De-Hua; Huang Kai-Yun; Wang Shan-Shan

    2011-01-01

    Based on the closed-orbit theory, the magnetic field effect in the photodetachment of negative ion in the electric field near a metal surface is studied for the first time. The results show that the magnetic field can produce a significant effect on the photodetachment of negative ion near a metal surface. Besides the closed orbits previously found by Du et al. for the H-in the electric field near a metal surface (J. Phys. B 43 035002 (2010)), some additional closed orbits are produced due to the effect of magnetic field. For a given ion-surface distance and an electric field strength, the cross section depends sensitively on the magnetic field strength. As the magnetic field strength is very small, its influence can be neglected. With the increase of the magnetic field strength, the number of the closed orbits increases greatly and the oscillation in the cross section becomes much more complex. Therefore we can control the photodetachment cross section of the negative ion by changing the magnetic field strength. We hope that our results may guide future experimental studies for the photodetachment process of negative ion in the presence of external fields and surfaces.

  13. The electroresponse properties of alginate films under the electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.J.; Kang, H.W.; Jeong, C.N. [Sunchon National University, Sunchon (Korea)

    2002-05-01

    Alginate is a natural ionic polymer including numerous anionic groups and can be actuated by the ionic group under the electric field. The crosslinked alginate films were fabricated with CaCl{sub 2}. The thermal, mechanical and electroresponse properties of the films were investigated by thermogravimetric analysis, tensile and bending tests. The initial degradation and tensile strength increased according to the degree of crosslinking. Also, the swelling ratio of the films increased with decreasing degree of crosslinking and increasing pH due to free volume and electrostatic repulsion. The films actuated by an electric stimulus exhibited gentle and flexible action like a pendulum. In the electric field, the electric stimuli such as the applied voltage, ionic strength and kind of electrolyte solution had an effect on the electroresponse of the films. Alginate films with 5 wt% crosslinking agent showed the highest bending angle and reversible bending behavior. When the ionic strength of NaCl and KCI electrolyte solution was 0.1 M, the films showed the highest electroresponse. The bending behavior of the films increased with the applied voltage. (author). 18 refs., 12 figs.

  14. Electric Field Measurements During the Genesis and Rapid Intensification Processes (GRIP) Field Program

    Science.gov (United States)

    Bateman, Monte G.; Blakeslee, Richard J.; Mach, Douglas M.

    2010-01-01

    During the Genesis and Rapid Intensification Processes (GRIP) field program, a system of 6 electric field mills was flown on one of NASA's Global Hawk aircraft. We placed several mills on the aircraft to enable us to measure the vector electric field. We created a distributed, ethernet-connected system so that each sensor has its own embedded Linux system, complete with web server. This makes our current generation system fully "sensor web enabled." The Global Hawk has several unique qualities, but relevant to quality storm electric field measurements are high altitude (20 km) and long duration (20-30 hours) flights. There are several aircraft participating in the GRIP program, and coordinated measurements are happening. Lightning and electric field measurements will be used to study the relationships between lightning and other storm characteristics. It has been long understood that lightning can be used as a marker for strong convective activity. Past research and field programs suggest that lightning flash rate may serve as an indicator and precursor for rapid intensification change in tropical cyclones and hurricanes. We have the opportunity to sample hurricanes for many hours at a time and observe intensification (or de-intensification) periods. The electrical properties of hurricanes during such periods are not well known. American

  15. Analysis of electric field screening by the proximity of two knife-edge field emitters

    Science.gov (United States)

    Tang, Wilkin; Shiffler, Don; Cartwright, Keith L.

    2011-08-01

    The electric field of two semi-infinitely wide knife-edge cathodes with arbitrary separation is calculated by using a Schwarz-Christoffel transformation. This geometry could also represent a trench (or scratch) on a flat surface. It is found that the magnitude of the electric field on the knife-edge cathodes depends strongly on the ratio h/a, where h is the height of the knife-edge cathodes and 2a is the distance between the cathodes. When h/a increases, the magnitude of the electric field on the cathode's surface decreases. This shows the screening of one cathode by another cathode; for example, keeping the height fixed and decreasing the distance between the cathodes, the field enhancement on the corner decreases. Analytic approximations for the divergent electric field in the immediate vicinity of the sharp edge are derived for the cases where h /a>>1, and h /a≪1. These results lead to insight on the relationship of the density of field emitter in field emitting arrays and field emission from rough surfaces.

  16. Shielding $^2\\Sigma$ ultracold dipolar molecular collisions with electric fields

    CERN Document Server

    Quéméner, Goulven

    2016-01-01

    The prospects for shielding ultracold, paramagnetic, dipolar molecules from inelastic and chemical collisions are investigated. Molecules placed in their first rotationally excited states are found to exhibit effective long-range repulsion for applied electric fields above a certain critical value, as previously shown for non-paramagnetic molecules. This repulsion can safely allow the molecules to scatter while reducing the risk of inelastic or chemically reactive collisions. Several molecular species of $^2\\Sigma$ molecules of experimental interest -- RbSr, SrF, BaF, and YO -- are considered, and all are shown to exhibit orders of magnitude suppression in quenching rates in a sufficiently strong laboratory electric field. It is further shown that, for these molecules described by Hund's coupling case b, electronic and nuclear spins play the role of spectator with respect to the shielding.

  17. Wave rectification in plasma sheaths surrounding electric field antennas

    Science.gov (United States)

    Boehm, M. H.; Carlson, C. W.; Mcfadden, J. P.; Clemmons, J. H.; Ergun, R. E.; Mozer, F. S.

    1994-01-01

    Combined measurements of Langmuir or broadband whistler wave intensity and lower-frequency electric field waveforms, all at 10-microsecond time resolution, were made on several recent sounding rockets in the auroral ionosphere. It is found that Langmuir and whistler waves are partically rectified in the plasma sheaths surrounding the payload and the spheres used as antennas. This sheath rectification occurs whenever the high frequency (HF) potential across the sheath becomes of the same order as the electron temperature or higher, for wave frequencies near or above the ion plasma frequency. This rectification can introduce false low-frequency waves into measurements of electric field spectra when strong high-frequency waves are present. Second harmonic signals are also generated, although at much lower levels. The effect occurs in many different plasma conditions, primarily producing false waves at frequencies that are low enough for the antenna coupling to the plasma to be resistive.

  18. Pulsed electric fields (PEF applications on wine production: A review

    Directory of Open Access Journals (Sweden)

    Ozturk Burcu

    2017-01-01

    Full Text Available Novel techniques have been searched in the last decades as a result of increasing demand for high quality food products. Non-thermal processing technologies, such as pulsed electric fields (PEF have been improved to achieve inhibition of deleterious effects on quality-related compounds. The working principle of PEF is based on the application of pulses of high voltage (typically above 20 kV/cm up to 70 kV/cm to liquid foods placed between two electrodes. Pulsed electric fields technique has also been studied in winemaking process. Certain positive influences of PEF on vinification have been reported as elimination of pathogenic microorganisms, reduction of maceration time, increase in phenolic compounds extraction , acceleration of wine aging and inactivation of oxidative enzymes. The aim of this review is to summarize the potential applications of PEF in winemaking and to express its effects on quality of wine.

  19. Urbach's tail in III-nitrides under an electric field

    Science.gov (United States)

    Rodrigues, Clóves G.; Vasconcellos, Áurea R.; Luzzi, Roberto; Freire, V. N.

    2001-08-01

    We consider electron-hole recombination in wide-gap strong-polar semiconductors of the III-nitride family under high electric fields. The calculated low-energy side of the luminescense spectrum displays the so-called Urbach's tail, which is characterized as resulting from the presence of sidebands in the form of replicas of the main band, corresponding to recombination with accompanying emission of one, two, etc., LO phonons. The influence of the nonequilibrium macroscopic state of hot carriers and phonons on the luminescence spectrum is evidenced. Our results for a 45 kV/cm electric field intensity point to 50, 120, and 220 meV Urbach tail widths in, respectively, wurtzite InN, GaN, and AlN.

  20. Student understanding of electric and magnetic fields in materials

    CERN Document Server

    Mitchem, Savannah L; Sayre, Eleanor C

    2016-01-01

    We discuss the clusters of resources that emerge when upper-division students enrolled in an upper-division electricity and magnetism course write about fields in linear materials. We examine how these clusters change with time and context. The evidence shows that students benefit from activating resources related to the internal structure of the atom when thinking about electric fields and their effect on materials. We argue that facilitating activation of certain resources by the instructor in the classroom can affect the plasticity of those resources in the student, making them more solid and easily activated. We find that the wording of the questions posed to students affects which resources are activated, and that students often fill in resources to link known phenomena to phenomena described by the question when lacking detailed mental models.

  1. Enormous enhancement of electric field in active gold nanoshells

    Science.gov (United States)

    Jiang, Shu-Min; Wu, Da-Jian; Wu, Xue-Wei; Liu, Xiao-Jun

    2014-04-01

    The electric field enhancement properties of an active gold nanoshell with gain material inside have been investigated by using Mie theory. As the gain coefficient of the inner core increases to a critical value, a super-resonance appears in the active gold nanoshell, and enormous enhancements of the electric fields can be found near the surface of the particle. With increasing shell thickness, the critical value of the gain coefficient for the super-resonance of the active gold nanoshell first decreases and then increases, and the corresponding surface enhanced Raman scattering (SERS) enhancement factor (G factor) also first increases and then decreases. The optimized active gold nanoshell can be obtained with an extremely high SERS G factor of the order of 1019-1020. Such an optimized active gold nanoshell possesses a high-efficiency SERS effect and may be useful for single-molecule detection.

  2. Electric field profiling by current transients in silicon diodes

    CERN Document Server

    Menichelli, D; Borchi, E; Toci, G

    2002-01-01

    A novel method, suitable to evaluate the electric field distribution in the space charge region of silicon diodes directly from the measurement of their pulse current response, is proposed. A Transient Current Technique experimental setup, based on a nano-second UV laser, is used for this purpose. It is shown that the problem of solving the basic equations, connecting the current response to the electric field distribution, can be expressed by a linear integral equation. An iterative mathematical procedure is used to obtain the solution, and a spatial resolution of about 10 mu m, comparable to the accuracy obtainable from other commonly used techniques, is deduced from the numerical tests. A preliminary analysis of measured data has also been carried out; the results are encouraging, but they point out that a refinement of the transport model is needed to reach a satisfactorily practical applicability.

  3. Electric field profiling by current transients in silicon diodes

    Energy Technology Data Exchange (ETDEWEB)

    Menichelli, D. E-mail: menichelli@ingfil.ing.unifi.it; Serafini, D.; Borchi, E.; Toci, G

    2002-01-11

    A novel method, suitable to evaluate the electric field distribution in the space charge region of silicon diodes directly from the measurement of their pulse current response, is proposed. A Transient Current Technique experimental setup, based on a nano-second UV laser, is used for this purpose. It is shown that the problem of solving the basic equations, connecting the current response to the electric field distribution, can be expressed by a linear integral equation. An iterative mathematical procedure is used to obtain the solution, and a spatial resolution of about 10 {mu}m, comparable to the accuracy obtainable from other commonly used techniques, is deduced from the numerical tests. A preliminary analysis of measured data has also been carried out; the results are encouraging, but they point out that a refinement of the transport model is needed to reach a satisfactorily practical applicability.

  4. Student understanding of electric and magnetic fields in materials

    Science.gov (United States)

    Mitchem, Savannah L.; Zohrabi Alaee, Dina; Sayre, Eleanor C.

    2017-09-01

    We discuss the clusters of resources that emerge when upper-division students write about electromagnetic fields in linear materials. The data analyzed for this paper come from students' written tests in an upper-division electricity and magnetism course. We examine how these clusters change with time and context. The evidence shows that students benefit from activating resources related to the internal structure of the atom when thinking about electric fields and their effect on materials. We argue that facilitating activation of certain resources by the instructor in the classroom can affect the plasticity of those resources in the student, making them more solid and easily activated. We find that the wording of the questions posed to students affects which resources are activated, and that students often fill in resources to link known phenomena to phenomena described by the question when lacking detailed mental models.

  5. Electric field stimulation setup for photoemission electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F., E-mail: frithjof.nolting@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2015-08-15

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg{sub 0.66}Nb{sub 0.33})O{sub 3}-PbTiO{sub 3} and La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/PMN-PT artificial multiferroic nanostructures.

  6. Electric field stimulation setup for photoemission electron microscopes

    Science.gov (United States)

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F.

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg0.66Nb0.33)O3-PbTiO3 and La0.7Sr0.3MnO3/PMN-PT artificial multiferroic nanostructures.

  7. The NASA STORMS Sub-Payload electric field observations

    Science.gov (United States)

    Pratt, J.; Swenson, C. M.; Barjatya, A.; Sanderson, W.

    2008-12-01

    The NASA STORMS sounding rocket, 36.218, was launched at 00:10 LT on October 30, 2007 into a mid- latitude spread-F condition over Wallops Island. The rocket deployed instrumented main and sub-payloads. The sub payload instrument complement included a plasma impedance probe for measuring plasma density, a Langmuir probe for relative plasma density and temperature measurements and the daughter electric field experiment. Unfortunately the sub-payload coned badly upon deployment complicating the data reduction. Within this paper we present a description of our data reduction techniques which are based upon an all magnetic attitude solution for the sub-payload's complex motion. The attitude solution is used to present preliminary density and electric field observations within this mid-latitude spread-F event.

  8. Shielding ultracold dipolar molecular collisions with electric fields

    Science.gov (United States)

    Quéméner, Goulven; Bohn, John

    2016-05-01

    The prospect for shielding ultracold dipolar molecules from inelastic and reactive collisions is investigated. Molecules placed in their first rotationally excited states are found to exhibit effective long-range repulsion for applied electric fields above a certain critical value. This repulsion can safely allow the molecules to scatter while reducing the risk of inelastic or chemically reactive collisions. Several molecular species of molecules of experimental interest such as NaRb, NaK, RbSr, SrF, BaF, and YO, are considered and all are shown to exhibit orders of magnitude suppression in quenching rates in a sufficiently strong laboratory electric field. We acknowledge the financial support of the COPOMOL project (ANR-13-IS04-0004) from Agence Nationale de la Recherche and the ARO MURI Grant No. W911NF-12-1-0476.

  9. Electric field stimulation setup for photoemission electron microscopes.

    Science.gov (United States)

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures.

  10. Charged Polymers Transport under Applied Electric Fields in Periodic Channels

    Directory of Open Access Journals (Sweden)

    Sorin Nedelcu

    2013-07-01

    Full Text Available By molecular dynamics simulations, we investigated the transport of charged polymers in applied electric fields in confining environments, which were straight cylinders of uniform or non-uniform diameter. In the simulations, the solvent was modeled explicitly and, also, the counterions and coions of added salt. The electrophoretic velocities of charged chains in relation to electrolyte friction, hydrodynamic effects due to the solvent, and surface friction were calculated. We found that the velocities were higher if counterions were moved away from the polymeric domain, which led to a decrease in hydrodynamic friction. The topology of the surface played a key role in retarding the motion of the polyelectrolyte and, even more so, in the presence of transverse electric fields. The present study showed that a possible way of improving separation resolution is by controlling the motion of counterions or electrolyte friction effects.

  11. Nonlinear Conductivity of a Holographic Superconductor Under Constant Electric Field

    CERN Document Server

    Zeng, Hua-Bi; Fan, Zheyong; Chen, Chiang-Mei

    2016-01-01

    The dynamics of a two-dimensional superconductor under a constant electric field $E$ is studied by using the gauge/gravity correspondence. The pair breaking current induced by $E$ first increases to a peak value and then decreases to a constant value at late time, where the superconducting gap goes to zero, corresponding to a normal conducting phase. The peak value of the current is found to increase linearly with respect to the electric field. Moreover, the nonlinear conductivity, defined as an average of the conductivity in the superconducting phase, scales as $\\sim E^{-2/3}$ for large $E$ when the system is close to the critical temperature, which agrees with predictions from solving the time dependent Ginzburg-Landau equation.

  12. Distribution of electric field for carbon nanotube assembly: Simulation (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    Soon-Geun KWON; Soo-Hyun KIM; Kwang-Ho KIM; Myung-Chang KANG; Hyung-Woo LEE

    2011-01-01

    The distribution of electric field for the alignment and attachment of carbon nanotubes (CNTs) was simulated. To be attached at the desired place. the aligned and attracted CNTs should be stayed in the desired area called the stable region or the quasi-stable region for an instant where the change of electric field is minimized. Since the conical electrode has the very narrow sized quasi-stable region, few CNTs can be attached. The rectangular electrodes have a wide stable region, so lots of CNTs can be attached. The results indicate that the round electrode which has a proper sized quasi-stable region is more effective for aligning and attaching a single CNT than the conical or rectangular shaped electrodes.

  13. Biological Electric Fields and Rate Equations for Biophotons

    CERN Document Server

    Alvermann, M; Swain, J; Widom, A

    2014-01-01

    Ultraweak bioluminescence - the emission of biophotons - remains an experimentally well-established, but theoretically poorly understood phenomenon. This paper presents several related investigations into the physical process of both spontaneous biophoton emission and delayed luminescence. Since light intensities depend upon the modulus squared of their corresponding electric fields we first make some general estimates about the inherent electric fields within various biological systems. Since photon emission from living matter following an initial excitation ("delayed luminescence") typically does not follow a simple exponential decay law after excitation we discuss such non-exponential decays from a general theoretical perspective and argue that they are often to be expected and why. We then discuss the dynamics behind some nonlinear rate equations, connecting them both to biological growth rates and biophoton emission rates, noting a possible connection with cancer. We then return to non-exponential decay ...

  14. Electrical emissions of airplanes flying in electrified clouds and their effect on airplane measurements of cloud electric fields

    Science.gov (United States)

    Jones, James J.

    1991-01-01

    The signature of the cloud electric field components deduced from measurements made with electric field meters carried on airplane penetrating electrified clouds is often complex, especially when the airplane experiences strong electrical charging. However, simple electric field variations were obtained for penetrations involving severe charging of the airplane on flights over KSC on 19 Aug. 1989. During these episodes of severe electrical charging, the airplane typically became negatively charged as it approached a region of negative cloud charge and then became positively charged as it receded from the cloud charge. The charge acquired by the airplane within the cloud was so large that the electric fields at the faces of the mills mounted on the fuselage were as large as for an ambient electric field of 60 to 80 kV/m. However, the deduced electric field components perpendicular to the direction of flight, to which these mills respond, were only about 5 to 10 kV/m. The variation of the deduced ambient field component in the direction of flight was antisymmetric about the charge region for these penetrations. Analysis of these results suggest that intense plumes of electric charge were emitted from the airplane and that the electric field associated with these plumes overcame the electric field due to the cloud charge at the tail-mounted field mill. As a consequence, the deduced component of the ambient electric field in the direction of flight was severely distorted. These findings emphasize the need for careful evaluation of airplane electric field measurements and of the need for further work on techniques for improving the measurements.

  15. Electric field effect on vertical magnetotransport in multilayer systems under tilted magnetic fields

    Science.gov (United States)

    Kobayashi, Kaya; Saito, Masaki; Ohmichi, Eiji; Osada, Toshihito

    2004-04-01

    We have investigated a new electric field effect on magnetotransport in the multilayer systems where each layer is highly anisotropic. Under tilted magnetic fields, the resonant increase of interlayer conduction occurs when open electron orbits become periodic in k-space. The interlayer electric fields tilt the open orbits on two sheetlike Fermi surfaces in the different way, causing the split of the resonance. Using an organic conductor α-(BEDT-TTF) 2KHg(SCN) 4, we have successfully proved the above scenario experimentally.

  16. 电激励重复频率非链式HF激光器%Electrically initiated repetitive-pulsed non-chain HF lasers

    Institute of Scientific and Technical Information of China (English)

    易爱平; 刘晶儒; 唐影; 黄珂; 黄欣; 于力; 马连英

    2011-01-01

    energy of 600 mJ is achieved under the condition of 28 kV charging voltage and 12 kPa gas pressure with 8 % C2 H6. Specific output energy of 8.5 J/l and laser electrical efficiency of 2.5% are obtained. In repetition mode, the laser can operate in the repetition rate from 1 Hz to 50 Hz. The first pulse energy is above 500 mJ, and the stable output energy of the laser at the repetition rate of 10 Hz is about 200 mJ.

  17. Controlling turbulent drag across electrolytes using electric fields

    OpenAIRE

    Ostilla-Mónico, Rodolfo; Lee, Alpha A

    2017-01-01

    Reversible in operando control of friction is an unsolved challenge crucial to industrial tribology. Recent studies show that at low sliding velocities, this control can be achieved by applying an electric field across electrolyte lubricants. However, the phenomenology at high sliding velocities is yet unknown. In this paper, we investigate the hydrodynamic friction across electrolytes under shear beyond the transition to turbulence. We develop a novel, highly parallelised, numerical method f...

  18. Urbach's tail in III-nitrides under an electric field

    OpenAIRE

    Rodrigues, CG; Vasconcellos, AR; Luzzi, R.; Freire, VN

    2001-01-01

    We consider electron-hole recombination in wide-gap strong-polar semiconductors of the III-nitride family under high electric fields. The calculated low-energy side of the luminescense spectrum displays the so-called Urbach's tail, which is characterized as resulting from the presence of sidebands in the form of replicas of the main band, corresponding to recombination with accompanying emission of one, two, etc., LO phonons. The influence of the nonequilibrium macroscopic state of hot carrie...

  19. Multipacting phenomenon at high electric fields of superconducting cavities

    Institute of Scientific and Technical Information of China (English)

    Zhu Feng; D.Proch; Hao Jian-Kui

    2005-01-01

    Recently multipacting(MP) recalculation of the TeV Energy Superconductiong Linear Accelerator (TESLA)resonator was performed. In addition to the normal MP which occurs at a peak electric field of around 40MV/m for the TESLA cavity, another type of multipacting with resonant electron trajectory that is far from the equator is also seen.It occurs at a gradient around 60MV/m to 70MV/m. This result seems to explain some experimental observations.

  20. Gas storage and separation by electric field swing adsorption

    Science.gov (United States)

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  1. Chemically induced electric field: flat band potential engineering

    Science.gov (United States)

    Bak, T.; Guo, Z.; Li, W.; Atanacio, A. J.; Nowotny, J.

    2012-10-01

    The present work considers engineering of the flat band potential, FBP, of metal oxides in a controlled manner. The aim is to minimise the energy losses related to recombination. The related experimental approaches include imposition of a chemically-induced electric field using the phenomena of segregation, diffusion and the formation of multilayer systems. This paper considers several basic phenomena that allow the modification of the surface charge and the space charge at the gas/solid and solid/liquid interfaces.

  2. The acceleration of a neutron in a static electric field

    Energy Technology Data Exchange (ETDEWEB)

    Cappelletti, R.L., E-mail: ron.cappelletti@nist.gov [NIST Center for Neutron Research, Gaithersburg, MD 20899 (United States)

    2012-06-18

    We show that when a non-relativistic neutron travels in a static electric field, the acceleration vector operator is perpendicular to the velocity operator. Kinetic energy is conserved. A spin-dependent field term in the canonical momentum gives rise to a non-dispersive contribution to the quantum mechanical (Aharonov–Casher) phase. This motion differs from that in a static magnetic field which has no field term in the canonical momentum and no conservation of kinetic energy. For the geometry of the Aharonov–Casher effect, there is no acceleration, while in Mott–Schwinger scattering, the acceleration causes a spin-dependent change in neutron direction. -- Highlights: ► Acceleration of a neutron in an E field is orthogonal to velocity. KE is conserved. ► For the Aharonov–Casher (AC) effect, acceleration is 0. ► The AC phase arises from the field term in the canonical momentum. ► In a static B field there is no field term in the canonical momentum. ► In a static B field KE is exchanged with Zeeman energy to conserve energy.

  3. Electric and Magnetic Field control of Exchange Bias

    Science.gov (United States)

    Binek, Christian

    2007-03-01

    Exchange bias (EB) and its accompanying training effect are fundamental interface phenomena in coupled magnetic thin films with significant impact in spintronic applications. Here we report on the electric field control of the EB in innovative antiferromagnetic (AF)/ferromagnetic (FM) heterostructures and the magnetic field control of the EB training effect in exchange coupled all FM bilayer systems. Electric control of the EB is realized in Cr2O3 (111)/(Co/Pt)3 heterostructures by taking advantage of the magnetoelectric (ME) properties of the AF pinning layer [1]. An electric field induces excess magnetization in the ME Cr2O3 film. Exchange coupling between the induced magnetization and the CoPt thin film gives rise to electrically controlled perpendicular EB. Bias fields are measured by means of AGFM, SQUID-magnetometry and polar Kerr-rotation. Electrically controlled EB is proposed for novel spintronic applications such as pure voltage control of magnetic configurations in spin valve-type architectures. The latter provide an attractive alternative to current-induced switching of the magnetization [2]. In addition, training of the EB effect is studied in novel all FM heterostructures of exchange coupled soft and hard FM thin films [3]. FM bilayers show remarkable analogies to the conventional AF/FM EB systems. Not only do they exhibit a tunable EB effect, they also show a distinct training behavior upon cycling the soft layer through consecutive hysteresis loops. In contrast to conventional EB systems, all FM bilayers allow the observation of training induced changes in the bias-setting hard layer by means of simple magnetometry. Initialization of the EB is achieved at constant temperature exclusively by means of magnetic fields. Our experiments show unambiguously that EB training is driven by deviations from the equilibrium spin configuration of the pinning layer. The experimental data show excellent agreement with our theoretical predictions including the

  4. Effects of a static electric field on two-color photoassociation of heteronuclear atom-pairs

    CERN Document Server

    Chakraborty, Debashree

    2013-01-01

    We study non-perturbative effects of a static electric field on two-color photoassociation of heteronuclear atom-pairs. A static electric field induces anisotropy in scattering between two heteronuclear atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty $\\it {et.}$ $\\it {al.}$, J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between heteronuclear atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between heteronuclear atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scatt...

  5. Nanosecond pulsed electric field ablation of hepatocellular carcinoma.

    Science.gov (United States)

    Beebe, Stephen J; Chen, Xinhua; Liu, Jie A; Schoenbach, Karl H

    2011-01-01

    Hepatocellular carcinoma often evades effective therapy and recurrences are frequent. Recently, nanosecond pulsed electric field (nsPEF) ablation using pulse power technology has emerged as a local-regional, non-thermal, and non-drug therapy for skin cancers. In the studies reported here we use nsPEFs to ablate murine, rat and human HCCs in vitro and an ectopic murine Hepa 1-6 HCC in vivo. Using pulses with 60 or 300 ns and electric fields as high as 60 kV/cm, murine Hepa 1-6, rat N1S1 and human HepG2 HCC are readily eliminated with changes in caspase-3 activity. Interestingly caspase activities increase in the mouse and human model and decrease in the rat model as electric field strengths are increased. In vivo, while sham treated control mice survived an average of 15 days after injection and before humane euthanasia, Hepa 1-6 tumors were eliminated for longer than 50 days with 3 treatments using one hundred pulses with 100 ns at 55 kV/cm. Survival was 40% in mice treated with 30 ns pulses at 55 kV/cm. This study demonstrates that nsPEF ablation is not limited to effectively treating skin cancers and provides a rationale for treating orthotopic hepatocellular carcinoma in pre-clinical applications and ultimately in clinical trials.

  6. Neuronal spike initiation modulated by extracellular electric fields.

    Directory of Open Access Journals (Sweden)

    Guo-Sheng Yi

    Full Text Available Based on a reduced two-compartment model, the dynamical and biophysical mechanism underlying the spike initiation of the neuron to extracellular electric fields is investigated in this paper. With stability and phase plane analysis, we first investigate in detail the dynamical properties of neuronal spike initiation induced by geometric parameter and internal coupling conductance. The geometric parameter is the ratio between soma area and total membrane area, which describes the proportion of area occupied by somatic chamber. It is found that varying it could qualitatively alter the bifurcation structures of equilibrium as well as neuronal phase portraits, which remain unchanged when varying internal coupling conductance. By analyzing the activating properties of somatic membrane currents at subthreshold potentials, we explore the relevant biophysical basis of spike initiation dynamics induced by these two parameters. It is observed that increasing geometric parameter could greatly decrease the intensity of the internal current flowing from soma to dendrite, which switches spike initiation dynamics from Hopf bifurcation to SNIC bifurcation; increasing internal coupling conductance could lead to the increase of this outward internal current, whereas the increasing range is so small that it could not qualitatively alter the spike initiation dynamics. These results highlight that neuronal geometric parameter is a crucial factor in determining the spike initiation dynamics to electric fields. The finding is useful to interpret the functional significance of neuronal biophysical properties in their encoding dynamics, which could contribute to uncovering how neuron encodes electric field signals.

  7. Electric field effect in the growth of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, E., E-mail: ericvpp@gmail.com; Briceño-Fuenmayor, H. [Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio de Física de Fluidos y Plasma (Venezuela, Bolivarian Republic of); Arévalo, J. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of); Atencio, R. [Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (Venezuela, Bolivarian Republic of); Corredor, L. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of)

    2015-06-15

    The growth of carbon nanotubes (CNTs) under a controlled electric field in a chemical vapor deposition system is investigated. We evaluate the influence of this external field on the morphological and structural characteristics of CNTs. Scanning electron microscopy results display a large presence of carbonaceous material in the positive plate, which appear to be a consequence of the attraction of electric forces over the electronically unbalanced cracked carbon molecules in the heating zone. We also observe a growth behavior for CNTs, in which catalyst particles are localized either at the bottom or the upper part of the nanotube, depending on the intensity and direction of the electric field. A Raman analysis from all obtained carbon materials shows the presence of two peaks, corresponding to the D ∼ 1340 cm{sup −1} and G ∼ 1590 cm{sup −1} bands attributed to multiwall CNTs. The average diameter of the CNTs is in the range between 90 and 40 nm. These results provide experimental evidence for the dependence of the catalyst and subtract interaction on the growing mechanism, in which weak chemical or electronic interactions could stimulate a top-growing as the strongest base-growing process.

  8. Chemical Analysis of NOx Removal Under Different Reduced Electric Fields

    Science.gov (United States)

    Haddouche, A.; Lemerini, M.

    2015-07-01

    This work presents a chemical kinetic analysis of different species involved in nitrogen-oxygen mixed gas induced by stationary corona discharge at room temperature and atmospheric pressure. This study takes into account twenty different chemical species participating in one hundred and seventy selected chemical reactions. The reaction rate coefficients are taken from the literature, and the density is analyzed by the continuity equation without the diffusion term. A large number of investigations considered the removal of NOx showing the effects of N, O and O3 radicals. The aim of the present simulation is to complete these studies by analysing various plasma species under different reduced electric fields in the range of 100-200 Td (1 Td=10-21 V·m2). In particular, we analyze the time evolution of depopulation (10-9-10-3 s) of NOx. We have found that the depopulation rate of NO and NO2 is substantially affected by the rise of reduced electric field as it grows from 100 Td to 200 Td. This allows us to ascertain the important role played by the reduced electric field.

  9. Structures of water molecules in carbon nanotubes under electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Winarto,; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji, E-mail: yasuoka@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2015-03-28

    Carbon nanotubes (CNTs) are promising for water transport through membranes and for use as nano-pumps. The development of CNT-based nanofluidic devices, however, requires a better understanding of the properties of water molecules in CNTs because they can be very different from those in the bulk. Using all-atom molecular dynamics simulations, we investigate the effect of axial electric fields on the structure of water molecules in CNTs having diameters ranging from (7,7) to (10,10). The water dipole moments were aligned parallel to the electric field, which increases the density of water inside the CNTs and forms ordered ice-like structures. The electric field induces the transition from liquid to ice nanotubes in a wide range of CNT diameters. Moreover, we found an increase in the lifetime of hydrogen bonds for water structures in the CNTs. Fast librational motion breaks some hydrogen bonds, but the molecular pairs do not separate and the hydrogen bonds reform. Thus, hydrogen bonds maintain the water structure in the CNTs, and the water molecules move collectively, decreasing the axial diffusion coefficient and permeation rate.

  10. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  11. Magnetic and Electric Field Polarizations of Oblique Magnetospheric Chorus Waves

    Science.gov (United States)

    Verkhoglyadova, Olga; Tsurutani, Bruce T.; Lakhina, Gurbax S.

    2012-01-01

    A theory was developed to explain the properties of the chorus magnetic and electric field components in the case of an arbitrary propagation angle. The new theory shows that a whistler wave has circularly polarized magnetic fields for oblique propagation. This theoretical result is verified by GEOTAIL observations. The wave electric field polarization plane is not orthogonal to the wave vector, and in general is highly elliptically polarized. A special case of the whistler wave called the Gendrin mode is also discussed. This will help to construct a detailed and realistic picture of wave interaction with magnetosphere electrons. It is the purpose of this innovation to study the magnetic and electric polarization properties of chorus at all frequencies, and at all angles of propagation. Even though general expressions for electromagnetic wave polarization in anisotropic plasma are derived in many textbooks, to the knowledge of the innovators, a detailed analysis for oblique whistler wave mode is lacking. Knowledge of the polarization properties is critical for theoretical calculations of resonant wave-particle interactions.

  12. Electric field diagnostics of the dynamics of equatorial density depletions

    Science.gov (United States)

    Laakso, H.; Maynard, N. C.; Pfaff, R. F.; Aggson, T. L.; Coley, W. R.; Janhunen, P.; Herrero, F. A.

    1997-09-01

    During its life of 10 months, the San Marco D satellite crossed a large number of plasma density depletion channels in the nightside F-region equatorial ionosphere. In-situ measurements of vector electric fields from San Marco D reveal convection velocity variations inside such channels and thus can be used as diagnostics of the dynamics of these plasma depleted regions. Furthermore, in some cases, the temporal evolution of the channel can be inferred from the measurements. In this paper the electric field data are converted to plasma drift velocities in order to illustrate cases where the plasma flow is directed upward or downward in the channel, the channel itself is oriented vertically upward or tilted eastward/westward, or the channel is experiencing a bifurcation or pinching-off process. Although the E × B plasma drift velocities within the depleted channels are commonly a few hundred m s-1, on some occasions electric fields corresponding to speeds as large as 2-3 km s-1 have been observed. The implications for such highly supersonic convection are discussed, including the possible constriction of such high-speed depletion channels at higher altitudes.

  13. Interaction between hollow needles - electric field, light emission and ozone generation study in multineedle to plate electrical discharge

    Science.gov (United States)

    Kriha, Vitezslav

    2004-09-01

    Multi hollow needle to plate electrical discharges in air are studied as ozone sources. Dependence of ozone concentration as an function of applied voltage, discharge current, mutual hollow needles position and electrical connection, working gas flow rate, distances between needles tips and plate electrode, visible light emission was measured experimentally in these systems. Electric field was numerically modeled. Light emission and electrical field distributions were compared. Coming from light emission and electric field a model of energy density spatial distribution was built. This model was finally compared with ozone generation.

  14. Electric field engineering using quantum-size-effect-tuned heterojunctions

    KAUST Repository

    Adinolfi, V.

    2013-07-03

    A quantum junction solar cell architecture was recently reported that employs colloidal quantum dots (CQDs) on each side of the p-n junction. This architecture extends the range of design opportunities for CQD photovoltaics, since the bandgap can be tuned across the light-absorbing semiconductor layer via control over CQD size, employing solution-processed, room-temperature fabricated materials. We exploit this feature by designing and demonstrating a field-enhanced heterojunction architecture. We optimize the electric field profile within the solar cell through bandgap engineering, thereby improving carrier collection and achieving an increased open circuit voltage, resulting in a 12% improvement in power conversion efficiency.

  15. Lecture demonstrations of relativity of electric and magnetic fields

    Science.gov (United States)

    Mayer, V. V.; Varaksina, E. I.

    2016-07-01

    Students can obtain further insight into the physical essence of the principle of relativity if they experimentally investigate the phenomenon of electromagnetic induction in various reference frames. For this purpose we propose a special apparatus. This device is an indicator of a potential difference. The use of the apparatus makes it possible to detect an electric field in a reference frame moving uniformly and rectilinearly relative to a permanent magnet in a uniform magnetic field, which is created by this magnet. In addition to the above, the indicator of a potential difference ensures the fulfilment of a number of demonstration experiments on electrodynamics.

  16. Electric field engineering using quantum-size-effect-tuned heterojunctions

    Science.gov (United States)

    Adinolfi, V.; Ning, Z.; Xu, J.; Masala, S.; Zhitomirsky, D.; Thon, S. M.; Sargent, E. H.

    2013-07-01

    A quantum junction solar cell architecture was recently reported that employs colloidal quantum dots (CQDs) on each side of the p-n junction. This architecture extends the range of design opportunities for CQD photovoltaics, since the bandgap can be tuned across the light-absorbing semiconductor layer via control over CQD size, employing solution-processed, room-temperature fabricated materials. We exploit this feature by designing and demonstrating a field-enhanced heterojunction architecture. We optimize the electric field profile within the solar cell through bandgap engineering, thereby improving carrier collection and achieving an increased open circuit voltage, resulting in a 12% improvement in power conversion efficiency.

  17. Metallization of Nanofilms in Strong Adiabatic Electric Fields

    Science.gov (United States)

    Durach, Maxim; Rusina, Anastasia; Kling, Matthias F.; Stockman, Mark I.

    2010-08-01

    We introduce an effect of metallization of dielectric nanofilms by strong, adiabatically varying electric fields. The metallization causes optical properties of a dielectric film to become similar to those of a plasmonic metal (strong absorption and negative permittivity at low optical frequencies). This is a quantum effect, which is exponentially size-dependent, occurring at fields on the order of 0.1V/Å and pulse durations ranging from ˜1fs to ˜10ns for a film thickness of 3-10 nm.

  18. Electric-field effects in resistive oxides: facts and artifacts

    Directory of Open Access Journals (Sweden)

    Reisner G. M.

    2013-01-01

    Full Text Available Striking non-linear conductivity effects induced by surprisingly low electric-fields in charge-ordered oxides, were reported variously as dielectric breakdown, charge-order collapse, depinning of charge-density-waves or other electronic effects. Our pulsed and d.c. I-V measurements on resistive oxides show that non-linear conductivity of electronic origin at low electric-fields is a rare phenomenon. In the majority of cases we detected no deviations from linearity in pulsed I-V characteristics under fields up to E ~ 500 V/cm. Current-controlled negative-differential-resistance (NDR and hysteresis were found in d.c. measurements at fields that decrease with increasing temperatures, a behavior typical of Joule heating in materials with negative temperature coefficient of resistivity. For the d.c. I-V characteristics of our samples exhibiting NDR, we found a rather unexpected correlation between ρ(Em - the resistivity at maximum field (at the onset of NDR and ρ(E=0 – the ohmic resistivity. The data points for ρ(Em versus ρ(E=0 obtained from such characteristics of 13 samples (8 manganites, 4 nickelates and one multiferroic at various ambient temperatures, plotted together on a log-log scale, follow closely a linear dependence with slope one that spans more than five orders of magnitude. This dependence is reproduced by several simple models.

  19. Missile launch detection electric field perturbation experiment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kane, R.J.; Rynne, T.M.

    1993-04-28

    The Lawrence Livermore National Laboratory and SARA Inc. participated in the ATMD missile launch activities that occurred at WSMR during January 1993. LLNL and SARA deployed sensors for monitoring of basic phenomena. An attempt was made to measure perturbations of the earth geo-potential during the launch of a Lance missile. The occurrence of the perturbation is expected from the conducting body of the missile and the exhaust plume. A set of voltage-probe antennas were used to monitor the local electric field perturbation from the launch at ranges of approximately 1 km. Examination of the data acquired during the launch period failed to show identifiable correlation of the field variations with the launch event. Three reasons are ascribed to this lack of event data: (1) The electric field potential variations have a limited spatial correlation length - the fields measured in one region have little correlation to measurements made at distances of a kilometer away. The potential variations are related to localized atmospheric disturbances and are generally unpredictable. A value for the spatial correlation length is also not known. (2) The conductivity of the plume and missile body are not adequate to produce a field perturbation of adequate magnitude. Phenomena related to the exhaust plume and missile may exist and be outside of the collection range of the equipment employed for these measurements. (3) The presence of 60 Hz power line noise was of sufficient magnitude to irreversibly contaminate measurements.

  20. Thermospheric Response to Solar Wind Electric Field Fluctuations

    Science.gov (United States)

    Perlongo, N. J.; Ridley, A. J.

    2013-12-01

    The electron density of the thermosphere is of paramount importance for radio communications and drag on low altitude satellites, particularly during geomagnetic storms. Transient enhancements of ion velocities and subsequent density and temperature increases frequently occur as a result of storm-driven solar wind electric field fluctuations. Since the Earth's dipole magnetic field is tilted and offset from the center of the planet, significant asymmetries arise that alter the thermospheric response to energy input based upon the time of day of the disturbance. This study utilizes the Global Ionosphere-Thermosphere Model (GITM) to investigate this phenomenon by enhancing the convective electric field for one hour of the day in 22 different simulations. An additional baseline run was conducted with no IMF perturbation. Furthermore, four configurations of Earth's magnetic field were considered, Internal Geomagnetic Reference Field (IGRF), a perfect dipole, a dipole tilted by 10 degrees, and a tilted and offset dipole. These runs were conducted at equinox when the amount of sunlight falling on the different hemispheres is the same. Two additional runs were conducted at the solstices for comparison. It was found that the most geo-effective times are when the poles are pointed towards the sun. The electron density, neutral density and temperature as well as the winds are explored.

  1. Green's functions in an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P.; Gitman, D.M.; Shvartsman, S.M.

    1979-04-01

    An approach to quantum electrodynamics in an intense electromagnetic field was proposed in Ref. 1 (E. S. Fradkin and D. M. Gitman, Preprint, MIT, 1978). In the case when the vacuum is unstable with respect to electron-positron pair production, an entire series of various Green's functions in an external classical field enters into the theory. In the present study these Green's functions are calculated for the case of a constant homogeneous electric field. The results are presented in the form of contour integrals over the proper time. The operator representations of the Green's functions in this field are given. Only scalar QED is considered.

  2. Chiral medium produced by parallel electric and magnetic fields

    CERN Document Server

    Ruggieri, Marco; Chernodub, Maxim

    2016-01-01

    We compute (pseudo)critical temperature, $T_c$, of chiral symmetry restoration for quark matter in the background of parallel electric and magnetic fields. This field configuration leads to the production of a chiral medium on a time scale $\\tau$, characterized by a nonvanishing value of the chiral density that equilibrates due to microscopic processes in the thermal bath. We estimate the relaxation time $\\tau$ to be about $\\approx 0.1-1$ fm/c around the chiral crossover; then we compute the effect of the fields and of the chiral medium on~$T_c$. We find $T_c$ to be lowered by the external fields in the chiral medium.

  3. Transverse electric fields' effects in the Dark Energy Camera CCDs

    CERN Document Server

    Plazas, Andres; Sheldon, Erin

    2014-01-01

    Spurious electric fields transverse to the surface of thick, fully-depleted, high-resistivity CCDs displace the photo-generated charges in the bulk of the detector, effectively modifying the pixel area and producing noticeable signals in astrometric and photometric measurements. We use data from the science verification period of the Dark Energy Survey (DES) to characterize these effects in the Dark Energy Camera (DECam) CCDs. The transverse fields mainly manifest as concentric rings (tree rings) and bright stripes near the boundaries of the detectors (edge distortions) with relative amplitudes of about 1 % and 10 % in the flat-field images, respectively. Their nature as pixel size variations is confirmed by comparing their photometric and astrometric signatures. Using flat-field images from DECam, we derive templates in the five DES photometric bands (grizY) for the tree rings and the edge distortions as a function of their position in each DECam detector. The templates are directly incorporated into the der...

  4. Occupational Exposure to Electric Shocks and Magnetic Fields and Amyotrophic Lateral Sclerosis in Sweden

    NARCIS (Netherlands)

    Fischer, Heidi; Kheifets, Leeka; Huss, Anke; Peters, Tracy L; Vermeulen, Roel; Ye, Weimin; Fang, Fang; Wiebert, Pernilla; Vergara, Ximena P; Feychting, Maria

    2015-01-01

    BACKGROUND: Amyotrophic lateral sclerosis (ALS) has been consistently related to "electric occupations," but associations with magnetic field levels were generally weaker than those with electrical occupations. Exposure to electric shock has been suggested as a possible explanation. Furthermore, stu

  5. Occupational Exposure to Electric Shocks and Magnetic Fields and Amyotrophic Lateral Sclerosis in Sweden

    NARCIS (Netherlands)

    Fischer, Heidi; Kheifets, Leeka; Huss, Anke; Peters, Tracy L; Vermeulen, Roel; Ye, Weimin; Fang, Fang; Wiebert, Pernilla; Vergara, Ximena P; Feychting, Maria

    2015-01-01

    BACKGROUND: Amyotrophic lateral sclerosis (ALS) has been consistently related to "electric occupations," but associations with magnetic field levels were generally weaker than those with electrical occupations. Exposure to electric shock has been suggested as a possible explanation. Furthermore, stu

  6. Manipulation of nano-entities in suspension by electric fields

    Science.gov (United States)

    Fan, Donglei

    Nanoscale entities, including nanospheres, nanodisks, nanorings, nanowires and nanotubes are potential building blocks for nanoscale devices. Among them, nanowires is an important type of nanoparticles, due to the potential application in microelectronics and bio-diagnosis. Manipulation of nanowires in suspension has been a formidable problem. As described in this thesis, using AC electric fields applied to strategically designed microelectrodes, nanowires in suspension can be driven to align, to chain, to accelerate in directions parallel and perpendicular to its orientation, to concentrate onto designated places, and to disperse in a controlled manner with high efficiency despite an extremely low Reynolds number at the level of 10-5. Randomly oriented nanowires in suspension can be rapidly assembled into extended nonlinear structures within seconds. We show that both the electric field and its gradient play the essential roles of aligning and transporting the nanowires into scaffolds according to the electric field distributions inherent to the geometry of the microelectrodes. The assembling efficiency depends strongly on the frequency of the applied AC voltages and varies as square of the voltage. Furthermore, nanowires have been rotated by AC electric fields applied to strategically designed electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 25000 rpm), definite chirality, and total angle of rotation. This new method has been used to controllably rotate magnetic and non-magnetic nanowires as well as multi-wall carbon nanotubes. We have also produced a micromotor using a rotating nanowire that can drive particles into circular motion. This has application to microfluidic devices, micro-stirrers, and micro electromechanical systems (MEMS). To move and place nanowires onto designated locations with high precision, electrophoretic force has been combined with dielectrophoretic force to

  7. Electrical Resistivity of an Elasmobranch's Ampullary Jelly in Varying Electric and Magnetic Fields

    Science.gov (United States)

    Brown, Brandon; Hughes, Mary E.

    2001-03-01

    The ampullae of Lorenzini are believed to function as the electroreceptive organs in elasmobranch fishes. Though the entire excised organs have been the subject of electrical transport measurements, the jelly that fills the ampullae -- composed primarily of glycoproteins with proteins and dissolved salts -- has received less scrutiny. The specific electromagnetic properties of the jelly contribute to electroreception, and we hope to supply useful parameters to modeling efforts via precise electrical characterization. We report preliminary resistivity measurements from ampullary jelly removed, post mortem, from an adult triaenodon obesus (white-tip reef shark). We present data over a broad range of applied electrical currents. We also present data of the resistivity as a function of applied magnetic field strength.

  8. Functionally Graded Interfaces: Role and Origin of Internal Electric Field and Modulated Electrical Response.

    Science.gov (United States)

    Maurya, Deepam; Zhou, Yuan; Chen, Bo; Kang, Min-Gyu; Nguyen, Peter; Hudait, Mantu K; Priya, Shashank

    2015-10-14

    We report the tunable electrical response in functionally graded interfaces in lead-free ferroelectric thin films. Multilayer thin film graded heterostructures were synthesized on platinized silicon substrate with oxide layers of varying thickness. Interestingly, the graded heterostructure thin films exhibited shift of the hysteresis loops on electric field and polarization axes depending upon the direction of an applied bias. A diode-like characteristics was observed in current-voltage behavior under forward and reverse bias. This modulated electrical behavior was attributed to the perturbed dynamics of charge carriers under internal bias (self-bias) generated due to the increased skewness of the potential wells. The cyclic sweeping of voltage further demonstrated memristor-like current-voltage behavior in functionally graded heterostructure devices. The presence of an internal bias assisted the generation of photocurrent by facilitating the separation of photogenerated charges. These novel findings provide opportunity to design new circuit components for the next generation of microelectronic device architectures.

  9. Ab-initio study of the relation between electric polarization and electric field gradients in ferroelectrics

    CERN Document Server

    Gonçalves, J N; Correia, J G; Butz, T; Picozzi, S; Fenta, A S; Amaral, V S

    2012-01-01

    The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO$_{3}$, KNbO$_{3}$, PbTiO$_{3}$ and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their relation with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study the ferroelectric order when standard techniques to measure polarization are not easily applied.

  10. Modulation Electric Field Intensity Sensor in a Conductive Medium

    Directory of Open Access Journals (Sweden)

    O. I. Miseyk

    2015-01-01

    Full Text Available The requirement to conduct measurements across the big water areas and in the ocean depths arises a problem of creating devices to measure an electric field, being either set on the high-speed mobile carriers, or implemented as the sounders, which investigate a vertical or horizontal structure of the electric field of ocean. Manufactured, designed, and hypothetical devices for measuring poor electric fields of the ocean were analyzed. The analysis allowed us to prove that there is a need in creation of modulation sensors (with modulation of a non-electric origin either with periodically changing capabilities of measuring bases, or with space-changing (and therefore, time-changing position of measuring base of primary converters, as the most effective in terms of allocation and measurement of the modulated signal from unmodulated noise.The paper considers the mathematical models of modulation sensors of electric field intensity in the ultralow-frequency range, which are set on the mobile carriers. It justifies a choice of two basic models of primary converters with a change of the measuring base in space, i.e. with the "changing" base and with the "rotating" base. A feature of the offered models with vertical sounding is the minimum value of noise because of rotation of measuring electrodes in a magnetic field of Earth, and hydrodynamic noise. The paper shows that noise caused by the relative movement of sensor and water completely disappears in two cases:1. for a vertical sounder in the autonomous mode or a horizontal sounder with zero buoyancy in the specified shape of water;2. in a case when the sensor has no component of measuring base in the considered area, for example, for the sensor with in-line array of electrodes located in the horizontal plane.The paper proves advantage of the model with "rotating" measuring base, which provides the maximum power transfer from the primary converter to loading for all relative positions of an external

  11. Laser-driven electron acceleration in a plasma channel with an additional electric field

    Science.gov (United States)

    Cheng, Li-Hong; Xue, Ju-Kui; Liu, Jie

    2016-05-01

    We examine the electron acceleration in a two-dimensional plasma channel under the action of a laser field and an additional static electric field. We propose to design an appropriate additional electric field (its direction and location), in order to launch the electron onto an energetic trajectory. We find that the electron acceleration strongly depends on the coupled effects of the laser polarization, the direction, and location of the additional electric field. The additional electric field affects the electron dynamics by changing the dephasing rate. Particularly, a suitably designed additional electric field leads to a considerable energy gain from the laser pulse after the interaction with the additional electric field. The electron energy gain from the laser with the additional electric field can be much higher than that without the additional electric field. This engineering provides a possible means for producing high energetic electrons.

  12. Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field

    Institute of Scientific and Technical Information of China (English)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with monovacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed.

  13. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-04-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques. Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and temperature fields with those from experiment. With sub-critical AC applied to the baseline flames, particle image velocimetry (PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the

  14. Multidirectional colloidal assembly in concurrent electric and magnetic fields.

    Science.gov (United States)

    Bharti, Bhuvnesh; Kogler, Florian; Hall, Carol K; Klapp, Sabine H L; Velev, Orlin D

    2016-10-07

    Dipolar interactions between nano- and micron sized colloids lead to their assembly into domains with well-defined local order. The particles with a single dipole induced by an external field assemble into linear chains and clusters. However, to achieve the formation of multidirectionally organized nano- or microassemblies with tunable physical characteristics, more sophisticated interaction tools are needed. Here we demonstrate that such complex interactions can be introduced in the form of two independent, non-interacting dipoles (double-dipoles) within a microparticle. We show how this can be achieved by the simultaneous application of alternating current (AC)-electric field and uniform magnetic field to dispersions of superparamagnetic microspheres. Depending on their timing and intensity, concurrent electric and magnetic fields lead to the formation of bidirectional particle chains, colloidal networks, and discrete crystals. We investigate the mechanistic details of the assembly process, and identify and classify the non-equilibrium states formed. The morphologies of different experimental states are in excellent correlation with our theoretical predictions based on Brownian dynamics simulations combined with a structural analysis based on local energy parameters. This novel methodology of introducing and interpreting double-dipolar particle interactions may assist in the assembly of colloidal coatings, dynamically reconfigurable particle networks, and bidirectional active structures.

  15. Electric charge catalysis by magnetic fields and isospin chemical potential

    CERN Document Server

    Bruckmann, F; Sulejmanpasic, T

    2013-01-01

    We describe a generic mechanism by which a system of Dirac fermions which carry an additional quantum number (isospin) acquires electric charge when the system is subject to an isospin chemical potential and a superposition of a normal magnetic field and a magnetic field which distinguishes the isospin. A nontrivial feature of fermions in the background of such gauge fields is that the electric charge appears due to nonzero isospin chemical potential and vice versa. The charge is accumulated since the degeneracies of occupied lowest Landau levels for particles of positive isospin and anti-particles of negative isospin are different. We discuss two physical systems where this phenomenon can be realized. One is monolayer graphene where the isospin is associated with two valleys in the Brillouin zone and the strain-induced pseudo-magnetic field acts differently on charge carriers in different valleys. Another is hot QCD, for which the role of isospin is played by the color of quarks. In the latter case the descr...

  16. Electric-Field-Assisted Droplet Dispensing on Immiscible Fluids

    Science.gov (United States)

    Uhm, Taewoong; Hong, Jiwoo; Lee, Sang Joon; Kang, In Seok

    2014-11-01

    Dispensing tiny droplets is a basic and crucial process in numerous practical applications, such as printed electronics, DNA microarray, and digital microfluidics. The precise positioning with demanded size of droplets is the main issue of dispensing tiny droplets. Furthermore, capability of dispensing charged droplets on the immiscible fluids could bring out more utilities. In this work, we demonstrate the droplet dispensing on immiscible fluids by means of electrical charge concentration (ECC). This results from the fact that the droplet is generated by electric force caused by electric induction between the surface of droplet and the immiscible fluid. The temporal evolution of the droplet-dispensing process was observed consecutively with a high-speed camera. In addition, the relationship between the size of dispensed droplet and the parameters, such as physical properties of fluids and electrical field strength, is established. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant Number: 2013R1A1A2011956).

  17. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    CERN Document Server

    AUTHOR|(CDS)2067623

    2016-01-01

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, Micromega detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  18. A Comprehensive Method of Estimating Electric Fields from Vector Magnetic Field and Doppler Measurements

    CERN Document Server

    Kazachenko, Maria D; Welsch, Brian T

    2014-01-01

    Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic models of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal (PTD) decomposition of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the "{\\bf P}TD-{\\bf D}oppler-{\\bf F}LCT {\\bf I}deal" (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the \\texttt{FISHPACK} software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (\\te...

  19. Regulation of tissue repair and regeneration by electric fields

    Institute of Scientific and Technical Information of China (English)

    WANG En-tong; ZHAO Min

    2010-01-01

    Endogenous electric fields(Efs)have been detected at wounds and damaged tissues.The potential roles of Efs in tissue repair and regeneration have been an intriguing topic for centuries.Recent researches have provided significant insights into how naturally occurring Efs may participate in the control of tissue repair and regeneration.Applied Efs equivalent to the size of fields measured in vivo direct cell migration,cell proliferation and nerve sprouting at wounds.More remarkably,physiological Efs are a guidance cue that directs cell migration which overrides other well accepted directional signals including initial injury stimulation,wound void,contact inhibition release,population pressure and chemotaxis.Efs activate many intracellular signaling pathways in a directional manner.Modulation of endogenous wound Efs affects epithelial cell migration,cell proliferation,and nerve growth at cornea wounds in vivo.Electric stimulation is being tested clinically for the treatments of bone fracture,wound healing and spinal cord injury.Efs thus may represent a novel type of signaling paradigm in tissue repair and regeneration.Combination of the electric stimulation and other well understood biochemical regulatory mechanisms may offer powerful and effective therapies for tissue repair and regeneration.This review introduces experimental evidence for the existence of endogenous Efs and discusses their roles in tissue repair and regeneration.

  20. Regulation of tissue repair and regeneration by electric fields.

    Science.gov (United States)

    Wang, En-tong; Zhao, Min

    2010-02-01

    Endogenous electric fields (EFs) have been detected at wounds and damaged tissues. The potential roles of EFs in tissue repair and regeneration have been an intriguing topic for centuries. Recent researches have provided significant insights into how naturally occurring EFs may participate in the control of tissue repair and regeneration. Applied EFs equivalent to the size of fields measured in vivo direct cell migration, cell proliferation and nerve sprouting at wounds. More remarkably, physiological EFs are a guidance cue that directs cell migration which overrides other well accepted directional signals including initial injury stimulation, wound void, contact inhibition release, population pressure and chemotaxis. EFs activate many intracellular signaling pathways in a directional manner. Modulation of endogenous wound EFs affects epithelial cell migration, cell proliferation, and nerve growth at cornea wounds in vivo. Electric stimulation is being tested clinically for the treatments of bone fracture, wound healing and spinal cord injury. EFs thus may represent a novel type of signaling paradigm in tissue repair and regeneration. Combination of the electric stimulation and other well understood biochemical regulatory mechanisms may offer powerful and effective therapies for tissue repair and regeneration. This review introduces experimental evidence for the existence of endogenous EFs and discusses their roles in tissue repair and regeneration.