WorldWideScience

Sample records for repair radiation-induced breaks

  1. Quantitation of the repair of gamma-radiation-induced double-strand DNA breaks in human fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.

    1981-01-01

    The quantitation and repair of double-strand DNA breaks in human fibroblasts has been determined using a method involving the nondenaturing elution of DNA from a filter. DNA from cells from two human fibroblast lines exposed to γ-radiation from 0 to 10000 rad showed increasing retention on a filter with decreasing radiation dose, and the data suggest a linear relationship between double-strand breaks induced and radiation dose. The ability of normal human fibroblasts to repair double-strand breaks with various doses of radiation was demonstrated, with a tsub(1/2) of 10 min for repair of 5000 rad exposure and 39 min for repair of 10000 rad damage. The kinetics of the DNA rejoining were not linear and suggest that, as in the repair of single-strand breaks, both an initial fast and a later slow mechanism may be involved. (Auth.)

  2. Repair and gamma radiation-induced single- and double-strand breaks in DNA of Escherichia coli

    International Nuclear Information System (INIS)

    Petrov, S.I.

    1981-01-01

    Studies in the kinetics of repair of γ-radiation-induced single- and double-strand breaks in DNA of E. coli cells showed that double-strand DNA breaks are rejoined by the following two ways. The first way is conditioned by repair of single-strand breaks and represents the repair of ''oblique'' double-strand breaks in DNA, whereas the second way is conditioned by functioning of the recombination mechanisms and, to all appearance, represents the repair of ''direct'' double-strand breaks in DNA

  3. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks

    International Nuclear Information System (INIS)

    Turney, Benjamin W.; Kerr, Martin; Chitnis, Meenali M.; Lodhia, Kunal; Wang, Yong; Riedemann, Johann; Rochester, Mark; Protheroe, Andrew S.; Brewster, Simon F.; Macaulay, Valentine M.

    2012-01-01

    Background and purpose: IGF-1R depletion sensitizes prostate cancer cells to ionizing radiation and DNA-damaging cytotoxic drugs. This study investigated the hypothesis that IGF-1R regulates DNA double strand break (DSB) repair. Methods: We tested effects of IGF-1R siRNA transfection on the repair of radiation-induced DSBs by immunoblotting and immunofluorescence for γH2AX, and pulsed-field gel electrophoresis. Homologous recombination (HR) was quantified by reporter assays, and cell cycle distribution by flow cytometry. Results: We confirmed that IGF-1R depletion sensitized DU145 and PC3 prostate cancer cells to ionizing radiation. DU145 control transfectants resolved radiation-induced DSBs within 24 h, while IGF-1R depleted cells contained 30–40% unrepaired breaks at 24 h. IGF-1R depletion induced significant reduction in DSB repair by HR, although the magnitude of the repair defect suggests additional contributory factors. Radiation-induced G2-M arrest was attenuated by IGF-1R depletion, potentially suppressing cell cycle-dependent processes required for HR. In contrast, IGF-1R depletion induced only minor radiosensitization in LNCaP cells, and did not influence repair. Cell cycle profiles were similar to DU145, so were unlikely to account for differences in repair responses. Conclusions: These data indicate a role for IGF-1R in DSB repair, at least in part via HR, and support use of IGF-1R inhibitors with DNA damaging cancer treatments.

  4. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks.

    Science.gov (United States)

    Turney, Benjamin W; Kerr, Martin; Chitnis, Meenali M; Lodhia, Kunal; Wang, Yong; Riedemann, Johann; Rochester, Mark; Protheroe, Andrew S; Brewster, Simon F; Macaulay, Valentine M

    2012-06-01

    IGF-1R depletion sensitizes prostate cancer cells to ionizing radiation and DNA-damaging cytotoxic drugs. This study investigated the hypothesis that IGF-1R regulates DNA double strand break (DSB) repair. We tested effects of IGF-1R siRNA transfection on the repair of radiation-induced DSBs by immunoblotting and immunofluorescence for γH2AX, and pulsed-field gel electrophoresis. Homologous recombination (HR) was quantified by reporter assays, and cell cycle distribution by flow cytometry. We confirmed that IGF-1R depletion sensitized DU145 and PC3 prostate cancer cells to ionizing radiation. DU145 control transfectants resolved radiation-induced DSBs within 24 h, while IGF-1R depleted cells contained 30-40% unrepaired breaks at 24 h. IGF-1R depletion induced significant reduction in DSB repair by HR, although the magnitude of the repair defect suggests additional contributory factors. Radiation-induced G2-M arrest was attenuated by IGF-1R depletion, potentially suppressing cell cycle-dependent processes required for HR. In contrast, IGF-1R depletion induced only minor radiosensitization in LNCaP cells, and did not influence repair. Cell cycle profiles were similar to DU145, so were unlikely to account for differences in repair responses. These data indicate a role for IGF-1R in DSB repair, at least in part via HR, and support use of IGF-1R inhibitors with DNA damaging cancer treatments. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Normal formation and repair of γ-radiation-induced single and double strand DNA breaks in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Steiner, M.E.; Woods, W.G.

    1982-01-01

    Fibroblasts from patients with Down syndrome (Trisomy 21) were examined for repair capability of γ-radiation-induced single strand and double strand DNA breaks. Formation and repair of DNA breaks were determined by DNA alkaline and non-denaturing elution techniques. Down syndrome fibroblasts were found to repair single strand and double strand breaks as well as fibroblasts from normal controls. (orig.)

  6. Radiation Induced G2 Chromatic Break and Repairs Kinetics in Human Lymphoblastoid Cells

    International Nuclear Information System (INIS)

    Seong, Jin Sil

    1993-01-01

    In understanding radiosensitivity a new concept of inherent radiosensitivity based on individuality and heterogeneity within a population has recently beer explored. There has been some discussion of possible mechanism underlying differences in radiosensitivity between cells. Ataxia telangiectasia(AT), a rare autosomal recessive genetic disorder, is characterized by hypersensitivity to lonizing radiation and other DNA damaging agents at the cellular level. There have been a lot of efforts to describe the cause of this hypersensitivity to radiation. At the cellular level, chromosome repair kinetics study would be an appropriate approach. The purpose of this study was to better understand radiosensitivity in an approach to investigate kinetics of induction and repair of G2 chromatic breaks using normal, AT heterozygous(ATH), and AT homozygous lymphoblastoid cell lines. In an attempt to estimate initial damage, 9-β-D-arabinosyl-2-fluoroadenine, an inhibitor of DNA synthesis and repair, was used in this study. It was found from this study that radiation induces higher chromatid breaks in AT than in normal and ATH cells. There was no significant differences of initial chromatid breaks between normal and ATH cells. Repair kinetics was the same for all. So the higher level of breaks in AT G2 cells is thought to be a reflection of the increased initial damage. The amount of initial damage correlated well with survival fraction at 2 Gy of cell survival curve following radiation. Therefore, the difference of radiosensitivity in terms of G2 chromosomal sensitivity is thought to result from the difference of initial damage

  7. Enhancing repair of radiation-induced strand breaks in cellular DNA as a radiotherapeutic potential

    International Nuclear Information System (INIS)

    Nair, C.K.K.

    2014-01-01

    Protection of mammalian organisms including man from deleterious effects of ionizing radiation is of paramount importance and development of effective approaches to combat radiation damages using non-toxic radioprotectors is of considerable interest for defence, nuclear industries, radiation accidents, space travels, etc., besides the protection of normal tissues during radiotherapy of tumours. Many synthetic as well as natural compounds have been investigated in the recent past for their efficacy to protect the biological systems from radiation induced damages. They include sulfhydryl compounds, antioxidants, plant extracts, immune-modulators, and other agents. However, the inherent toxicity of many of the synthetic agents at the effective radio-protective concentration warranted further search for safer and more effective radio-protectors. In this context, therapeutic radioprotectors which are effective on post irradiation administration are of special relevance. One of the property that can be applied while screening for such radiation protective therapeutics is their ability to enhance repair of radiation-induced lesions in cellular DNA in terms of cellular repair index based on the parameters of the DNA following comet assay. Post irradiation administration of some natural and synthetic agents have shown their potential to enhance repair of radiation-induced strand breaks in cellular DNA in mice. These include phytoceuticals such as gallic acid, sesamol etc., extracts of medicinal plants such as Andrographis panniculata, and a few synthetic compounds such as tocopherol-mono-glucoside. The talk will give an overview of the work on DNA repair enhancement by a few natural and synthetic agents. (author)

  8. Detection and Repair of Ionizing Radiation-Induced DNA Double Strand Breaks: New Developments in Nonhomologous End Joining

    International Nuclear Information System (INIS)

    Wang, Chen; Lees-Miller, Susan P.

    2013-01-01

    DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation

  9. Detection and Repair of Ionizing Radiation-Induced DNA Double Strand Breaks: New Developments in Nonhomologous End Joining

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chen [Departments of Biochemistry and Molecular Biology and Oncology, and Southern Alberta Cancer Research Institute, University of Calgary, Calgary (Canada); Lees-Miller, Susan P., E-mail: leesmill@ucalgary.ca [Departments of Biochemistry and Molecular Biology and Oncology, and Southern Alberta Cancer Research Institute, University of Calgary, Calgary (Canada)

    2013-07-01

    DNA damage can occur as a result of endogenous metabolic reactions and replication stress or from exogenous sources such as radiation therapy and chemotherapy. DNA double strand breaks are the most cytotoxic form of DNA damage, and defects in their repair can result in genome instability, a hallmark of cancer. The major pathway for the repair of ionizing radiation-induced DSBs in human cells is nonhomologous end joining. Here we review recent advances on the mechanism of nonhomologous end joining, as well as new findings on its component proteins and regulation.

  10. Repair pathways for heavy ion-induced complex DNA double strand breaks

    International Nuclear Information System (INIS)

    Yajima, Hirohiko; Nakajima, Nakako; Hirakawa, Hirokazu; Murakami, Takeshi; Okayasu, Ryuichi; Fujimori, Akira

    2012-01-01

    DNA double strand break (DSB) induced by ionizing radiation (IR) is a deleterious damage leading to cell death and genome instability if not properly repaired. It is well known that DSB is repaired by two major pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). It is also known that NHEJ is dominant throughout the cell cycle after X- or gamma-ray irradiation in mammalian cells, Meanwhile, it is thought that heavy-ion radiation (e.g., carbon-ions, iron-ions) gives rise to clustered DNA damages consisting of not only strand breaks but also aberrant bases in the vicinity of DSBs (complex DSBs). Our previous work suggested that the efficiency of NHEJ is diminished for repair of complex DSBs induced by heavy-ion radiation. We thought that this difficulty in NHEJ process associated with heavy ion induced complex DNA damage might be extended to HR process in cells exposed to heavy ions. In order to find out if this notion is true or not, exposed human cells to X-rays and heavy-ions, and studied HR associated processes at the molecular level. Our result indicates that complex DSBs induced by heavy ions effectively evoke DNA end resection activity during the HR process. Together with our results, a relevant recent progress in the field of DNA DSB repair will be discussed. (author)

  11. Genetics of x-ray induced double strand break repair in saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Budd, M.E.

    1982-07-01

    The possible fates of x-ray-induced double-strand breaks in Saccharomyces cerevisiae were examined. One possible pathway which breaks can follow, the repair pathway, was studied by assaying strains with mutations in the RAD51, RAD54, and RAD57 loci for double-strand break repair. In order of increasing radiation sensitivity one finds: rad57-1(23 0 )> rad51-1(30 0 )> rad54-3(36 0 ). At 36 0 , rad54-3 cells cannot repair double-strand breaks, while 23 0 , they can. Strains with the rad57-1 mutation can rejoin broken chromosomes at both temperatures. However, the low survival at 36 0 shows that the assay is not distinguishing large DNA fragments which allow cell survival from those which cause cell death. A rad51-1 strain could also rejoin broken chromosomes, and was thus capable of incomplete repair. The data can be explained with the hypothesis that rad54-3 cells are blocked in an early step of repair, while rad51-1 and rad57-1 strains are blocked in a later step of repair. The fate of double-strand breaks when they are left unrepaired was investigated with the rad54-3 mutation. If breaks are prevented from entering the RAD54 repair pathway they become uncommitted lesions. These lesions are repaired slower than the original breaks. One possible fate for an uncommitted lesion is conversion into a fixed lesion, which is likely to be an unrepairable or misrepaired double-strand break. The presence of protein synthesis after irradiation increases the probability that a break will enter the repair pathway. Evidence shows that increased probability of repair results from enhanced synthesis of repair proteins shortly after radiation

  12. DNA repair and radiation sensitivity in mammalian cells

    International Nuclear Information System (INIS)

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population

  13. A quantitative model of the major pathways for radiation-induced DNA double-strand break repair

    International Nuclear Information System (INIS)

    Belov, O.V.; Krasavin, E.A.; Lyashko, M.S.; Batmunkh, M.; Sweilam, N.H.

    2014-01-01

    We have developed a model approach to simulate the major pathways of DNA double-strand break (DSB) repair in mammalian and human cells. The proposed model shows a possible mechanistic explanation of the basic regularities of DSB processing through the nonhomologous end-joining (NHEJ), homologous recombination (HR), and single-strand annealing (SSA). It reconstructs the time-courses of radiation-induced foci specific to particular repair processes including the major intermediate stages. The model is validated for ionizing radiations of a wide range of linear energy transfer (0.2-236 keV/μm) including a relatively broad spectrum of heavy ions. The appropriate set of reaction rate constants was suggested to satisfy the kinetics of DSB rejoining for the considered types of exposure. The simultaneous assessment of three repair pathways allows one to describe their possible biological relations in response to radiation. With the help of the proposed approach, we reproduce several experimental data sets on γ-H2AX foci remaining in different types of cells including those defective in NHEJ, HR, or SSA functions.

  14. Adaptive repair induced by small doses of γ radiation in repair-defective human cells

    International Nuclear Information System (INIS)

    Zasukhina, G.D.; L'vova, G.N.; Vasil'eva, I.M.; Sinel'shchikova, T.A.; Semyachkina, A.N.

    1993-01-01

    Adaptive repair induced by small doses of gamma radiation was studied in repair-defective xeroderma pigmentosum, gout, and homocystinuria cells. The adaptation of cells induced by small doses of radiation was estimated after subsequent exposure to gamma radiation, 4-nitroquinoline-1-oxide, and N-methyl-N-nitro-N-nitrosoguanidine by three methods: (1) by the reduction in DNA breaks; (2) by induction of resistant DNA synthesis; and (3) by increased reactivation of vaccinia virus. The three cell types in response to the three different mutagens revealed differences in the mechanism of cell defense in excision repair, in the adaptive response, and in Weigl reactivation

  15. Effects of hyperthermia on repair of radiation-induced DNA strand breaks

    International Nuclear Information System (INIS)

    Mills, M.D.; Meyn, R.E.

    1981-01-01

    Previous reports have suggested a relationship between the heat-induced changes in nucleoprotein and the hyperthermic enhancement of radiation sensitivity. In an effort to further understand these relationships, we measured the level of initial DNA strand break damage and the DNA strand break rejoining kinetics in Chinese hamster ovary cells following combined hyperthermia and ionizing radiation treatments. The amount of protein associated with DNA measured as the ratio of [ 3 H)leucine to [ 14 C]thymidine was also compared in chromatin isolated from both heated and unheated cells. The results of these experiments show that the initial level of radiation-induced DNA strand breaks is significantly enhanced by a prior hyperthermia treatment of 43 0 C for 30 min. Treatments at higher temperatures and longer treatments at the same temperature magnified this effect. Hyperthermia was also shown to cause a substantial inhibition of the DNA strand break rejoining after irradiation. Both the initial level of DNA damage and the rejoining kinetics recovered to normal levels with incubation at 37 0 C between the hyperthermia and radiation treatments. Recovery of these parameters coincided with the return of the amount of protein associated with DNA to normal values, further suggesting a relationship between the changes in nucleoprotein and the hyperthermic enhancement of radiation sensivivity

  16. [Biomarkers of radiation-induced DNA repair processes].

    Science.gov (United States)

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  17. The effect of mitotic inhibitors on DNA strand size and radiation-associated break repair in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.; Steiner, M.E.; Kalvonjian, S.L.

    1985-01-01

    The effect of mitotic inhibitors on formation and repair of DNA breaks was studied in cultured fibroblasts from patients with Down syndrome in order to investigate the hypothesis that the karyotyping procedure itself may play a role in the increased chromosome breakage seen in these cells after gamma radiation exposure. Using the nondenaturing elution and alkaline elution techniques to examine fibroblasts from Down syndrome patients and from controls, no specific abnormalities in Down syndrome cells could be detected after exposure to mitotic inhibitors, including rate and extent of elution of DNA from filters as well as repair of radiation-induced DNA breaks. In both normal and Down syndrome cell strains, however, exposure to mitotic inhibitors was associated with a decrease in cellular DNA strand size, suggesting the presence of drug-induced DNA strand breaks. The mechanism of increased chromosome sensitivity of Down syndrome cells to gamma radiation remains unknown. (orig.)

  18. Repair of endogenous and ionizing radiation-induced DNA damages: mechanisms and biological functions

    International Nuclear Information System (INIS)

    Boiteux, S.

    2002-01-01

    The cellular DNA is continuously exposed to endogenous and exogenous stress. Oxidative stress due to cellular metabolism is the major cause of endogenous DNA damage. On the other hand, ionizing radiation (IR) is an important exogenous stress. Both induce similar DNA damages: damaged bases, abasic sites and strand breakage. Most of these lesions are lethal and/or mutagenic. The survival of the cell is managed by efficient and accurate DNA repair mechanisms that remove lesions before their replication or transcription. DNA repair pathways involved in the removal of IR-induced lesions are briefly described. Base excision repair (BER) is mostly involved in the removal of base damage, abasic sites and single strand breaks. In contrast, DNA double strand breaks are mostly repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). How DNA repair pathways prevent cancer process is also discussed. (author)

  19. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair

    International Nuclear Information System (INIS)

    Biedermann, K.A.; Sun, J.R.; Giaccia, A.J.; Tosto, L.M.; Brown, J.M.

    1991-01-01

    C.B-17 severe combined immunodeficient (scid) mice carry the scid mutation and are severely deficient in both T cell- and B cell-mediated immunity, apparently as a result of defective V(D)J joining of the immunoglobulin and T-cell receptor gene elements. In the present studies, we have defined the tissue, cellular, and molecular basis of another characteristic of these mice: their hypersensitivity to ionizing radiation. Bone marrow stem cells, intestinal crypt cells, and epithelial skin cells from scid mice are 2- to 3-fold more sensitive when irradiated in situ than are congenic BALB/c or C.B-17 controls. Two independently isolated embryo fibroblastic scid mouse cell lines display similar hypersensitivities to gamma-rays. In addition, these cell lines are sensitive to cell killing by bleomycin, which also produces DNA strand breaks, but not by the DNA crosslinking agent mitomycin C or UV irradiation. Measurement of the rejoining of gamma-ray-induced DNA double-strand breaks by pulsed-field gel electrophoresis indicates that these animals are defective in this repair system. This suggests that the gamma-ray sensitivity of the scid mouse fibroblasts could be the result of reduced repair of DNA double-strand breaks. Therefore, a common factor may participate in both the repair of DNA double-strand breaks as well as V(D)J rejoining during lymphocyte development. This murine autosomal recessive mutation should prove extremely useful in fundamental studies of radiation-induced DNA damage and repair

  20. Individual repair of radiation-induced DNA double-strand breaks in lymphocytes. Implications for radiation-induced dermatitis in breast cancer

    International Nuclear Information System (INIS)

    Melchior, Patrick Wilhelm

    2011-01-01

    Purpose: Adjuvant 'whole breast radiotherapy' (WBRT) is the standard of care after breast conserving surgery in women with breast cancer. Throughout different cancer stages the addition of WBRT leads to significantly improved rates of freedom from local failure and overall survival. WBRT is generally well tolerated. A 5-10%-rate of severe acute or long-term side effects is commonly observed. For both radiation-mediated tumor-cell-elimination and induction of side effects, DNA-double-strand-breaks (DSB) presumably play the decisive role. The intensity of normal tissue reactions in radiotherapy can, in part, be attributed to the intrinsic DSB repair-capacity. In this study in vivo and in vitro experiments are carried through in order to assess DSB repair-kinetics in blood lymphocytes of women with breast cancer. These findings are to be correlated with the degree of radiation-induced normal tissue toxicity. Patients and Methods: Eighteen patients with breast cancer, in whom WBRT was indicated, were examined. A total WBRT dose of 50 Gy (single dose 2 Gy) with an additional boost-radiotherapy to the initial tumor-region to a total dose of 60-66 Gy was administered. DSB repair was determined by means of counting γ-H2AX foci in blood lymphocytes at predefined points in time, i.e. before and 0.5 h; 2.5 h; 5 h and 24 h after in vivo irradiation (1st fraction of WBRT) and before and 0.5 h; 2.5 h and 5 h after in vitro irradiation with increasing radiation doses in the range of 10 - 500 mGy. Acute normal tissue toxicity was scored on the basis of a modified RTOG-classification (main aspects were erythema and dry or moist skin desquamation). Results: DSB repair-halflife-times did not differ between patients with a higher or lower than average incidence of acute side effects. In patients with 'above average' side effects larger irradiation volumes were treated (volume surrounded by the 50%-isodose). Adjusted for these, no single patients showed elevated residual γ-H2AX foci

  1. Correlation between cell survival and DNA single-strand break repair proficiency in the Chinese hamster ovary cell lines AA8 and EM9 irradiated with 365-nm ultraviolet-A radiation

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, M.E.; Peak, J.G.; Peak, M.J. (Argonne National Lab., IL (USA))

    1991-02-01

    Cell survival parameters and the induction and repair of DNA single-strand breaks were measured in two Chinese hamster ovary cell lines after irradiation with monochromatic UVA radiation of wavelength 365 nm. The radiosensitive mutant cell line EM9 is known to repair ionizing-radiation-induced single-strand breaks (SSB) more slowly than the parent line AA8. EM9 was determined to be 1.7-fold more sensitive to killing by 365-nm radiation than AA8 at the 10% survival level, and EM9 had a smaller shoulder region on the survival curve ({alpha} = 1.76) than AA8 ({alpha} = 0.62). No significant differences were found between the cell lines in the initial yields of SSB induced either by {gamma}-radiation (as determined by alkaline sucrose gradient sedimentation) or by 365-nm UVA (as determined by alkaline elution). For measurement of initial SSB, cells were irradiated at 0.5{sup o}C to minimize DNA repair processes. Rejoining of 365-nm induced SSB was measured by irradiating cells at 0.5{sup o}C, allowing them to repair at 37{sup o}C in full culture medium, and then quantitating the remaining SSB by alkaline elution. The repair of these breaks followed biphasic kinetics in both cell lines. EM9 repaired the breaks more slowly (T{sub 1/2} values of 1.3 and 61.3 min) than did AA8 (T{sub 1/2} values of 0.9 and 53.3 min), and EM9 also left more breaks unrepaired 90 min after irradiation (24% vs 8% for AA8). Thus, the sensitivity of EM9 to 365-nm radiation correlated with its deficiency in repairing DNA lesions revealed as SSB in alkaline elution. These results suggest that DNA may be a critical target in 365-nm induced cellular lethality and that the ability of AA8 and EM9 cells to repair DNA strand breaks may be related to their ability to survive 365-nm radiation. (author).

  2. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    International Nuclear Information System (INIS)

    Nokisalmi, Petri; Rajecki, Maria; Pesonen, Sari; Escutenaire, Sophie; Soliymani, Rabah; Tenhunen, Mikko; Ahtiainen, Laura; Hemminki, Akseli

    2012-01-01

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  3. Repair of X-ray-induced single-strand breaks by a cell-free system

    International Nuclear Information System (INIS)

    Seki, Shuji; Ikeda, Shogo; Tsutui, Ken; Teraoka, Hirobumi

    1990-01-01

    Repair of X-ray-induced single-strand breaks of DNA was studied in vitro using an exonuclease purified from mouse ascites sarcoma (SR-C3H/He) cells. X-ray-dose-dependent unscheduled DNA synthesis was primed by the exonuclease. Repair of X-ray-induced single-strand breaks in pUC19 plasmid DNA was demonstrated by agarose gel electrophoresis after incubating the damaged DNA with the exonuclease, DNA polymerase (Klenow fragment of DNA polymerase I or DNA polymerase β purified from SR-C3H/He cells), four deoxynucleoside triphosphates, ATP and DNA ligase (T4 DNA ligase or DNA ligase I purified from calf thymus). The present results suggested that the exonuclease is involved in the initiation of repair of X-ray-induced single-strand breaks in removing 3' ends of X-ray-damaged DNA. (author)

  4. Repair of single-strand breaks induced in the DNA of Proteus mirabilis by excision repair after UV-irradiation

    International Nuclear Information System (INIS)

    Stoerl, K.; Mund, C.

    1977-01-01

    Single-strand breaks have been produced in the DNA of P. mirabilis after UV-irradiation in dependence on the incident UV-doses. It has been found that there exists a discrepancy between the single-strand breaks estimated from sedimentation in alkaline sucrose gradients and the expected single-strand breaks approximated from measurements of dimer excision. The low number in incision breaks observed by sedimentation experiments is an indication that the cells are able to repair the excision-induced breaks as fast as they are formed. Toluenized cells have been used for investigation of the incision step independently of subsequent repair processes. In presence of NMN the appearance of more single-strand breaks in the DNA has been observed. Furthermore, the number of incision breaks in toluenized cells increased in presence of exogenous ATP. The completion of the excision repair process has been investigated by observing the rejoining of incision breaks. After irradiation with UV-doses higher than approximately 240 erg/mm 2 the number of single-strand breaks remaining unrepaired in the DNA increased. Studies of the influence of nutrition conditions on the repair process have shown approximately the same capacity for repair of single-strand breaks in growth medium as well as in buffer. Progress in the excision repair was also followed by investigation of the DNA synthesized at the template-DNA containing the pyrimidine dimers. In comparison with E. coli, P. mirabilis showed a somewhat lower efficiency for the repair of single-strand breaks during the excision repair. (author)

  5. Radiation damage and its repair in non-sporulating bacteria

    International Nuclear Information System (INIS)

    Moseley, B.E.B.

    1984-01-01

    A review is given of radiation damage and its repair in non-sporulating bacteria. The identification and measurement of radiation damage in the DNA of the bacteria after exposure to ultraviolet radiation and ionizing radiation is described. Measuring the extent of DNA repair and ways of isolating repair mutants are also described. The DNA repair mechanisms for UV-induced damage are discussed including photoreactivation repair, excision repair, post-replication recombination repair and induced error-prone repair. The DNA repair mechanisms for ionizing radiation damage are also discussed including the repair of both single and double-strand breaks. Other aspects discussed include the effects of growth, irradiation medium and recovery medium on survival, DNA repair in humans, the commercial use of UV and ionizing radiations and the future of ionizing irradiation as a food treatment process. (U.K.)

  6. Analysis of ionizing radiation-induced foci of DNA damage repair proteins

    International Nuclear Information System (INIS)

    Veelen, Lieneke R. van; Cervelli, Tiziana; Rakt, Mandy W.M.M. van de; Theil, Arjan F.; Essers, Jeroen; Kanaar, Roland

    2005-01-01

    Repair of DNA double-strand breaks by homologous recombination requires an extensive set of proteins. Among these proteins are Rad51 and Mre11, which are known to re-localize to sites of DNA damage into nuclear foci. Ionizing radiation-induced foci can be visualized by immuno-staining. Published data show a large variation in the number of foci-positive cells and number of foci per nucleus for specific DNA repair proteins. The experiments described here demonstrate that the time after induction of DNA damage influenced not only the number of foci-positive cells, but also the size of the individual foci. The dose of ionizing radiation influenced both the number of foci-positive cells and the number of foci per nucleus. Furthermore, ionizing radiation-induced foci formation depended on the cell cycle stage of the cells and the protein of interest that was investigated. Rad51 and Mre11 foci seemed to be mutually exclusive, though a small subset of cells did show co-localization of these proteins, which suggests a possible cooperation between the proteins at a specific moment during DNA repair

  7. Life forms employ different repair strategies of repair single- and double strand DNA breaks caused by different qualities of radiation: criticality of RecA mediated repair system

    International Nuclear Information System (INIS)

    Sharan, R.N.

    2013-01-01

    Different qualities of radiation, either through direct or indirect pathway, induce qualitative different spectrum of damages in DNA, which are also different in in vitro and in vivo systems. The single- and double strand breaks of DNA are of special interest as they lead to serious biological consequences. The implications of such damage to DNA and their processing by various inherent repair pathways together decide the fate of the living form

  8. Repair of near-UV (365nm or 313 nm) induced DNA strand breaks

    International Nuclear Information System (INIS)

    Miguel, A.G.

    1981-01-01

    The action of near-UV (365 nm or 313 nm) radiation in cellular inactivaton (biological measurements) and induction and repair of breaks (physical measurements) is studied in repair proficient strain and in pol A, rec A and uvr A deficient strains of Escherichia coli K-12. (M.A.C.) [pt

  9. Glutathione requirement for the rejoining of radiation-induced DNA breaks in misonidazole-treated cells

    International Nuclear Information System (INIS)

    Edgren, M.; Revesz, L.

    1985-01-01

    The role of glutathione (GSH) in the rejoining of radiation-induced single-strand DNA breaks (ssb) was studied in human fibroblast cultures sensitized to radiation by a 30 min treatment with 1 mM misonidazole (MISO). Hypoxically irradiated cells, deficient in GSH, either inherently, or due to a 16 h incubation with 1 mM buthionine sulphoximine (BSO), rejoined the breaks after MISO treatment at a lower rate and to a lesser extent than did GSH-proficient cells. Without MISO treatment, the hypoxically induced ssb were rejoined in the GSH-deficient cells as effectively as in the proficient cells. It is concluded that a large proportion of the breaks which arise after hypoxic irradiation in the presence of MISO are of a different type to those which arise in the absence of the drug, and require a particular GSH-dependent, enzymatic repair system. This requirement for rejoining in hypoxically irradiated, MISO-treated cells is similar to that seen earlier in MISO-untreated, oxically irradiated cells, and suggests that the ssb induced by radiation in the presence of MISO or oxygen are of a similar nature. (author)

  10. Radiation induced DNA double-strand breaks in radiology; Strahleninduzierte DNA-Doppelstrangbrueche in der Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Kuefner, M.A. [Dornbirn Hospital (Austria). Dept. of Radiology; Brand, M.; Engert, C.; Uder, M. [Erlangen University Hospital (Germany). Dept. of Radiology; Schwab, S.A. [Radiologis, Oberasbach (Germany)

    2015-10-15

    Shortly after the discovery of X-rays, their damaging effect on biological tissues was observed. The determination of radiation exposure in diagnostic and interventional radiology is usually based on physical measurements or mathematical algorithms with standardized dose simulations. γ-H2AX immunofluorescence microscopy is a reliable and sensitive method for the quantification of radiation induced DNA double-strand breaks (DSB) in blood lymphocytes. The detectable amount of these DNA damages correlates well with the dose received. However, the biological radiation damage depends not only on dose but also on other individual factors like radiation sensitivity and DNA repair capacity. Iodinated contrast agents can enhance the x-ray induced DNA damage level. After their induction DSB are quickly repaired. A protective effect of antioxidants has been postulated in experimental studies. This review explains the principle of the γ-H2AX technique and provides an overview on studies evaluating DSB in radiologic examinations.

  11. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A. (Queensland Univ., St. Lucia (Australia). Dept. of Biochemistry; Queensland Univ., St. Lucia (Australia). Dept. of Veterinary Pathology; Queensland Univ. St. Lucia (Australia). Dept. of Public Health)

    1982-05-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m/sup 2/. These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes.

  12. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    International Nuclear Information System (INIS)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A.; Queensland Univ., St. Lucia; Queensland Univ. St. Lucia

    1982-01-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m 2 . These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes. (author)

  13. Delayed repair of DNA single-strand breaks does not increase cytogenetic damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Djordjevic, M.C.; Jostes, R.F.; Pantelias, G.E.

    1985-01-01

    DNA damage and cytogenetic effects of ionizing radiation were investigated in Chinese hamster ovary (CHO) cells and unstimulated human peripheral blood lymphocytes. DNA damage and repair were analysed by alkaline elution under conditions that predominantly measured DNA single-strand breaks (ssb). X-radiation (2.5 Gy) induced ssb in both CHO cells and unstimulated lymphocytes, and the breaks were repaired within 30 and 90 min, respectively. This rapid repair was delayed by the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide (3AB). The cytogenetic effects of the 3AB-induced delay in DNA repair were examined by analysing sister chromatid exchange (SCE) frequency in CHO cells and fragmentation of prematurely condensed chromosomes (PCC) in unstimulated human lymphocytes after 2.5 Gy of X-rays. Although 3AB delayed the rejoining of DNA ssb, this delay did not result in increased cytogenetic damage manifested as either SCE or fragmentation of PCC. These results indicate that the rapidly rejoining DNA ssb are not important in the production of chromosome damage. (author)

  14. Current topics in DNA double-strand break repair

    International Nuclear Information System (INIS)

    Kobayashi, Junya; Takata, Minoru; Iwabuchi, Kuniyoshi; Miyagawa, Kiyoshi; Sonoda, Eiichiro; Suzuki, Keiji; Tauchi, Hiroshi

    2008-01-01

    DNA double strand break (DSB) is one of the most critical types of damage which is induced by ionizing radiation. In this review, we summarize current progress in investigations on the function of DSB repair-related proteins. We focused on recent findings in the analysis of the function of proteins such as 53BP1, histone H2AX, Mus81-Eme1, Fanc complex, and UBC13, which are found to be related to homologous recombination repair or to non-homologous end joining. In addition to the function of these proteins in DSB repair, the biological function of nuclear foci formation following DSB induction is discussed. (author)

  15. Repair of double-strand breaks in Micrococcus radiodurans

    International Nuclear Information System (INIS)

    Burrell, A.D.; Dean, C.J.

    1975-01-01

    Micrococcus radiodurans has been shown to sustain double-strand breaks in its DNA after exposure to x-radiation. Following sublethal doses of x-rays (200 krad in oxygen or less), the cells were able to repair these breaks, and an intermediate fast-sedimenting DNA component seemed to be involved in the repair process

  16. Radiation induced strand breaks and time scale for repair of broken strands in superinfecting phage lambda DNA in Escherichia coli lysogenic for lambda

    International Nuclear Information System (INIS)

    Johansen, I.; Boye, E.; Brustad, T.

    1975-01-01

    The production of the first radiation induced break in covalent lambda DNA molecules in pol + and pol A 1 lysogenic host cells was measured after exposure to electrons from a linear accelerator and transfer to alkaline detergent within 100 ms from the onset of irradiation. The results revealed the presence of an oxygen effect in DNA strand breakage. In both pol + and pol A 1 host cells the rate of production in nitrogen was 1.2x10 -12 DNA single strand breaks per rad per dalton as compared to 5x10 -12 in oxygen. The yields of strand breaks in lambda DNA in pol + host cells under oxygenated or anoxic conditions are independent of whether the cells are irradiated in buffer at room temperature, in buffer at ice temperature, or in growth medium at 37 0 C. These results indicate that enzymic repair of DNA strand breaks before analysis is insignificant in these experiments. The presence of an oxygen effect in DNA strand breakage under these conditions suggest that an actual difference exists between initial number of breaks produced in nitrogen and in oxygen. The kinetics of rejoining of broken molecules under optimal growth conditions was measured by incubating the irradiated host cells prior to lysis. In pol + host cells 50% of the lambda DNA molecules broken in presence of oxygen are rejoined within 10 to 20 seconds of incubation. A significantly lower recovery is seen in pol + host cells after irradiation in nitrogen. The rejoining of broken lambda DNA strands in pol A 1 host cells is impaired after irradiation in presence of oxygen as well as under anoxia. These results show that DNA polymerase I is needed for the rapid rejoining of radiation induced strand breaks in the DNA, and that oxygen promoted strand breaks are more easily rejoined than are those produced in nitrogen. (author)

  17. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    International Nuclear Information System (INIS)

    Eccles, Laura J.; O'Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a 'friend', leading to cell killing in tumour cells or as a 'foe', resulting in the formation of mutations and genetic instability in normal tissue.

  18. Measurement of DNA breakage and breakage repair in mice spleen cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Wang Qin; Xue Jingying; Li Jin; Mu Chuanjie; Fan Feiyue

    2007-01-01

    Objective: To investigate the radioresistance mechanism of IBM-2 mice through measuring DNA single-strand break(SSB) and double-strands break (DSB) as well as their repair. Methods: Pulsed-field gel electrophoresis was used to measure DSB and SSB in IRM-2 mice and their parental mice ICR/JCL and 615 mice after exposure to different doses of γ-ray at different postirradiation time. Results: The initial DNA damages, ie the quantities of DSB and SSB in unirradiation IRM-2 mice were less serious than that of their parental mice ICR/JCL and 615 alice(P<0.01). The percent- age of DSB and SSB in IBM -2 mice was significantly lower than that of ICB/JCL and 615 mice after exposure to various doses of γ-ray(P<0.01 and P<0.05). There were not statistic differences in DSB and SSB repair between IRM-2 mice and their parental mice after exposure to 2Gy radiation. The DNA damage repair rate induced by 4Gy and 8Gy radiation in IRM - 2 mice was rapid, ie the repair rate of SSB and DSB after 0.5h and 1h postirradiation in IRM-2 mice was higher than that of their' parental mice (P<0.01 and P<0.05). And remaining damages after repair in IRM-2 mice were lower than that of ICR/JCL and 615 mice. Conclusion: The DNA damages in IBM-2 mice were lower than that of their parental mice after exposure to ionizing radiation. Moreover, the repair rate of SSB and DSB was higher than that of their parental mice, which perhaps were the radioresistance causes of IBM-2 mice. Therefore IRM-2 mice are naturally resistant to DNA damages induced by ionizing radiation. (authors)

  19. Yield of radiation-induced DNA single-strand breaks in Escherichia coli and superinfecting phage lambda at different dose rates. Repair of strand breaks in different buffers

    International Nuclear Information System (INIS)

    Boye, E.; Johansen, I.; Brustad, T.

    1976-01-01

    Cells of E. coli K-12 strain AB 1886 were irradiated in oxygenated phosphate buffered saline at 2 0 C with electrons from a 4-MeV linear accelerator. The yield of DNA single-strand breaks was determined as a function of the dose rate between 2.5 and 21,000 krad/min. For dose rates over 100 krad/min the yield was found to be constant. Below 10 krad/min the yield of breaks decreases drastically. This is explained by rejoining of breaks during irradiation. Twenty percent of the breaks induced by acute exposure are repaired within 3 min at 2 0 C. Superinfecting phage lambda DNA is repaired at the same rate as chromosomal DNA. In contrast to the results obtained with phosphate-buffered saline, an increase in the number of breaks after irradiation is observed when the bacteria are suspended in tris buffer. It is suggested that buffers of low ionic strength facilitate the leakage through the membrane of a small-molecular-weight component(s) necessary for DNA strand rejoining

  20. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks

    DEFF Research Database (Denmark)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia

    2016-01-01

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose...... RAD52 facilitates repair of collapsed DNA replication forks in cancer cells....

  1. Effect of an aminothiol (WR-1065) on radiation-induced mutagenesis and cytotoxicity in two repair-deficient mammalian cell lines

    International Nuclear Information System (INIS)

    Grdina, D.J.; Nagy, B.; Meechan, P.J.

    1991-01-01

    WR-2721 and its free thiol WR-1065 have been found to effectively protect against radiation- and/or chemotherapy-induced mutagenesis, transformation and carcinogenesis. With respect to the antimutagenic effect, WR-1065 significantly reduced the frequency of HGPRT mutants even when it was administered up to three hours following exposure of cells to radiation. The mechanisms of action most often attributed to these agents include their ability to scavenge free radicals, enter into chemical repair processes through the donation of hydrogen atoms, and induce intracellular hypoxia by means of auto-oxidative processes. Although evidence exists for each of these processes, none is sufficiently satisfactory to account for the post-irradiation protection of WR-1065 against mutation induction in mammalian cells. The most elegant work describing the role of aminothiols on cellular enzymatic repair processes has focused on well-characterized repair-proficient and -deficient bacterial and yeast cell systems. Protection against radiation-induced cytotoxicity by the aminothiol cysteamine was absent in E. coli cell lines that were characterized as having genetically defective repair systems. Until recently, such studies could not be effectively performed with mammalian cells. However, with the isolation and characterization of rodent cell lines deficient in their ability to repair DNA damage, it is now possible to investigate the role of cell-mediated repair systems on aminothiol radioprotection. Specifically, the authors have investigated the effects of WR-1065 on radiation-induced mutagenesis and cytotoxicity in cell lines EM9 and xrs-5, which are defective in DNA single-strand break (SSB) and double-strand break (DSB) rejoining, respectively. Corresponding parental repair-proficient cell lines, AA8 and K1, were also studied for comparative purposes. 26 refs., 5 figs., 2 tabs

  2. Immediate and repair induced DNA double strand breaks in mammalian cells

    International Nuclear Information System (INIS)

    Bryant, P.E.

    1986-01-01

    It seems logical to postulate that double strand breaks (dsb) arising both at the time of irradiation and via repair processes are potentially equally damaging for a cell in terms of the potential to induce chromosomal aberrations. However, in some cell systems the repair of double es or es-ssb sites may run concurrently with the incision so that these lesions do not remain open for long: hence the lack of accumulation of dsb during repair. The rate of incision will thus determine both the accumulation and the probability of exchanges leading to chromosomal aberrations between these and other frank dsb. Rapid incision leading to a large additional pool of dsb appears to be the case in Chinese hamster V79 cells. Some evidence also exists for the conversion of base damage, via dsb, into deletion type chromatid aberrations which accumulate in irradiated G2 human cells treated with ara C. A small fraction of dsb, probably arising both at the time of irradiation as well as enzymatically during repair of base or sugar damage, appears to be either left unrepaired, yielding deletion type chromosomal aberrations, or is misrepaired, yielding exchange aberrations. The induction of these aberrations appears to be of central importance in the biological effects of ionizing radiation such as mutations, oncogenic transformation, and cell death. 52 refs., 5 figs

  3. 1,4 Naphthoquinone protects radiation induced cell death and DNA damage in lymphocytes by activation Nrf2/are pathway and enhancing DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nazir M; Sandur, Santosh K; Checker, Rahul; Sharma, Deepak; Poduval, T.B., E-mail: nazirbiotech@rediffmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai (India)

    2012-07-01

    1,4-Naphthoquinone (NQ) is the parent molecule of many clinically approved anticancer, anti-infective, and antiparasitic drugs such as anthracycline, mitomycin, daunorubicin, doxorubicin, diospyrin, and malarone. Presence of NQ during a-irradiation (4Gy) significantly reduced the death of irradiated murine splenic lymphocytes in a dose dependent manner (0.05-liM), with complete protection at liM as assessed by PI staining. Radioprotection by NQ was further confirmed by inhibition of caspase activation, decrease in cell size, DNA-fragmentation, nuclear-blebbing and clonogenic assay. All trans retinoic acid which is inhibitor of Nrf-2 pathway, completely abrogated the radioprotective effect of NQ, suggesting that radioprotective activity of NQ may be due to activation of Nrf-2 signaling pathways. Further, addition of NQ to lymphocytes activated Nrf-2 in time dependent manner as shown by confocal microscopy, electrophoretic mobility shift assay and quantitative real time PCR. It also increased the expression of Nrf-2 dependent cytoprotective genes like hemeoxygenase-1, MnSOD, catalse as demonstrated by real time PCR and flowcytometry. NQ protected lymphocytes significantly against radiation-induced cell death even when added after irradiation. Complete protection was observed by addition of NQ up to 2 h after irradiation. However, percentage protection decreased with increasing time interval. These results suggested that NQ may offer protection to lymphocytes activating repair pathways. Repair of radiation induced DNA strand breaks was studied by comet assay. Pretreatment of lymphocytes with NQ induced single strand breaks up to 6h but not double strand breaks in DNA. However, NQ mediated single strand breaks were repaired completely at longer time intervals. Addition of NQ to lymphocytes prior to 4 Gy a-radiation exposure showed decrease in the yield of DNA double strand breaks. The observed time-dependent decrease in the DNA strand breaks could be attributed to

  4. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages

    Science.gov (United States)

    Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E. W.; Greulich, K. O.; Cardoso, M. C.; Rapp, Alexander

    2012-01-01

    UVA (320–400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G1-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer. PMID:22941639

  5. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    Science.gov (United States)

    Eccles, Laura J.; O’Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a “friend”, leading to cell killing in tumour cells or as a “foe”, resulting in the formation of mutations and genetic instability in normal tissue. PMID:21130102

  6. Acid polypeptides as inhibitors of the repair of double-strand DNA breaks induced by γ-irradiation of Hela cells

    International Nuclear Information System (INIS)

    Medvedev, A.I.; Revina, G.I.; Kuzin, A.M.

    1990-01-01

    The effect of natural modificator's synthetic analogue -polyaspartylglytamate (AG) - on the repair of radiation-induced double-strand DNA breaks is studies. The radiation and modificator effects were determined by the criterion of the formation of chromosome recombinations and reproductive death of cells on Hela cell culture and in Chinese hamsters. It is shown that the incubation of Hela cells with AG doubles and triples the degradation effect of rdiation at 50 and 10 Gy doses. When radiation dose equals 1 Gy and repair time is G-22 h, 1.5 - 3 time - increased yield of chromotide and chromosome abberations is detected in Chinese hamster cells in the presence of the modificator during all periods of cell fixation. The effect of radiation mutagenic action enhancement by the modificator is not observed during the incubation of cells with AG 30-45 min after irradiation

  7. Radiation-induced mutagenicity in repair deficient Chinese hamster ovary (CHO) mutants

    International Nuclear Information System (INIS)

    Tesmer, J.G.; Saunders, E.H.; Chen, D.J.

    1987-01-01

    To determine if there is a relationship between DNA double-strand break repair and mutagenicity the authors utilized two x-ray sensitive mutants of Chinese hamster ovary cells along with the parental line K1. The two mutant lines xrs-5 and xrs-6, which have different DSB repair capabilities, were used to determine cell killing and 6-thioguanine resistance (6TG/sup r/) mutation frequencies induced by either x-rays of α-particles, x-ray survival data indicated the two mutant lines have similar sensitivity and are 5-7 fold more sensitive than the parental line K1. The mutant lines are also sensitive to α-particles but to a lesser extent. The authors' 6TG mutation data indicated that the two mutant lines are hypermutable. When mutation frequencies were plotted against the log of survival, mutation frequency at a given survival level was greater in mutant cell population than in parental K1 cells. Their results support the notion that repair of DSB play an important role in the expression of radiation-induced cell killing and mutagenicity

  8. Beyond repair foci: DNA double-strand break repair in euchromatic and heterochromatic compartments analyzed by transmission electron microscopy.

    Directory of Open Access Journals (Sweden)

    Yvonne Lorat

    Full Text Available DNA double-strand breaks (DSBs generated by ionizing radiation pose a serious threat to the preservation of genetic and epigenetic information. The known importance of local chromatin configuration in DSB repair raises the question of whether breaks in different chromatin environments are recognized and repaired by the same repair machinery and with similar efficiency. An essential step in DSB processing by non-homologous end joining is the high-affinity binding of Ku70-Ku80 and DNA-PKcs to double-stranded DNA ends that holds the ends in physical proximity for subsequent repair.Using transmission electron microscopy to localize gold-labeled pKu70 and pDNA-PKcs within nuclear ultrastructure, we monitored the formation and repair of actual DSBs within euchromatin (electron-lucent and heterochromatin (electron-dense in cortical neurons of irradiated mouse brain.While DNA lesions in euchromatin (characterized by two pKu70-gold beads, reflecting the Ku70-Ku80 heterodimer are promptly sensed and rejoined, DNA packaging in heterochromatin appears to retard DSB processing, due to the time needed to unravel higher-order chromatin structures. Complex pKu70-clusters formed in heterochromatin (consisting of 4 or ≥ 6 gold beads may represent multiple breaks in close proximity caused by ionizing radiation of highly-compacted DNA. All pKu70-clusters disappeared within 72 hours post-irradiation, indicating efficient DSB rejoining. However, persistent 53BP1 clusters in heterochromatin (comprising ≥ 10 gold beads, occasionally co-localizing with γH2AX, but not pKu70 or pDNA-PKcs, may reflect incomplete or incorrect restoration of chromatin structure rather than persistently unrepaired DNA damage.Higher-order organization of chromatin determines the accessibility of DNA lesions to repair complexes, defining how readily DSBs are detected and processed. DNA lesions in heterochromatin appear to be more complex, with multiple breaks in spatial vicinity inducing

  9. Repair of UVC induced DNA lesions in erythrocytes from Carassius auratus gibelio

    International Nuclear Information System (INIS)

    Bagdonas, E.; Zukas, K.

    2004-01-01

    The kinetics of UVC (254 nm) irradiation induced DNA single-strand breaks generated during the excision repair of UV induced DNA damage in erythrocytes from Carassius auratus gibelio were studied using alkaline comet assay. Nucleotide excision repair recognised DNA lesions such as UVC induced cyclobutane pyrimidine dimers and 6-4 pyrimidine-pyrimidone photoproducts and produced DNA single-stranded breaks that were easily detected by comet assay. After irradiation of erythrocytes with 58 j/m 2 UVC dose, there was an increase in comet tail moment (CTM) at 2 hours post-radiation, whereas at 4 hours post-radiation CTM decreased and did not differ significantly from the control level (P=0,127). When erythrocytes were exposed to 173 J/m 2 UVC dose, the excision repair delayed in the beginning (0 hours), reached maximum level at 2 hours post-radiation (CTM-54,8) and showed slightly decreased level at 4 hours post-radiation (CTM=18,5). (author)

  10. TALEN-Induced Double-Strand Break Repair of CTG Trinucleotide Repeats

    Directory of Open Access Journals (Sweden)

    Valentine Mosbach

    2018-02-01

    Full Text Available Trinucleotide repeat expansions involving CTG/CAG triplets are responsible for several neurodegenerative disorders, including myotonic dystrophy and Huntington’s disease. Because expansions trigger the disease, contracting repeat length could be a possible approach to gene therapy for these disorders. Here, we show that a TALEN-induced double-strand break was very efficient at contracting expanded CTG repeats in yeast. We show that RAD51, POL32, and DNL4 are dispensable for double-strand break repair within CTG repeats, the only required genes being RAD50, SAE2, and RAD52. Resection was totally abolished in the absence of RAD50 on both sides of the break, whereas it was reduced in a sae2Δ mutant on the side of the break containing the longest repeat tract, suggesting that secondary structures at double-strand break ends must be removed by the Mre11-Rad50 complex and Sae2. Following the TALEN double-strand break, single-strand annealing occurred between both sides of the repeat tract, leading to repeat contraction.

  11. The production and repair of double strand breaks in cells from normal humans and patients with ataxia telangiectasia

    International Nuclear Information System (INIS)

    Lehman, A.R.; Stevens, S.

    1977-01-01

    The production and repair of double strand breaks induced by γ-rays in the DNA of human fibroblasts have been measured by sedimentation in sucrose gradients under non-denaturing conditions. Unirradiated DNA formed a rapidly sedimenting gel. Low doses of radiation released freely sedimenting DNA molecules from this gel. Higher doses reduced the rate of sedimentation of the free DNA due to the introduction of double strand breaks. The breakage efficiency was 1 break/1.3x10 10 daltons of DNA/krad. Postirradiation incubation after a high dose of radiation resulted in an increase in molecular weight of the free DNA molecules, and after a low dose the rapidly-sedimenting gel was reformed. These data suggest that double strand breaks are repaired in human fibroblasts. No significant differences were found between fibroblasts from two normal donors and four patients with the radiosensitive disorder, ataxia telangiectasia, in either the production or repair of double strand breaks

  12. Repair-induced DNA double strand breaks after ultraviolet-light and either aphidocolin or 1-β-D-arabinofuranosylcytosine/hydroxyurea

    International Nuclear Information System (INIS)

    Bradley, M.O.; Taylor, V.I.

    1983-01-01

    A study was performed to determine whether 'repair-induced double strand breaks' (RDSBs) occur in IMR-90 cells at low u.v. doses and whether the RDSBs are themselves repairable by holding open the excision-repair induced gaps by inhibiting nucleotide polymerization after u.v. light with hydroxyurea/ara C or aphidocolin. The results show as little as 2.5 J.m -2 of u.v. light induces RDSBs during repair incubation when repair inhibitors are present. This suggests that 'hot spots' of high lesion frequency occur and the overlapping excision in these areas will produce RDSBs. Removing aphidocolin showed that RDSBs are only partially repairable with between 15 and 40% of the breaks unrepaired at 24 h. Because the lesions are partially repairable they should not always cause toxicity and may be involved in processes such as mutation, transformation, and chromosome or chromatid type aberrations of the sort associated with human tumors. (author)

  13. Differences in heavy-ion-induced DNA double-strand breaks in a mouse DNA repair-deficient mutant cell line (SL3-147) before and after chromatin proteolysis

    International Nuclear Information System (INIS)

    Murakami, Masahiro; Eguchi-Kasai, Kiyomi; Sato, Koki; Minohara, Shinichi; Kanai, Tatsuaki; Yatagai, Fumio.

    1995-01-01

    DNA double-strand breaks induced by X- or neon beam-irradiation in a DNA double-strand break-repair-deficient mutant cell line (SL3-147) were examined. The increase in the number of DNA double-strand breaks was dose-depend after irradiation with X-rays and neon beams and was enhanced by chromatin-proteolysis treatment before irradiation. These results suggest that the induction of DNA double-strand breaks by ionizing radiation, including heavy-ions, is influenced by the chromatin structure. (author)

  14. The use of recombinant DNA techniques to study radiation-induced damage, repair and genetic change in mammalian cells

    International Nuclear Information System (INIS)

    Thacker, J.

    1986-01-01

    A brief introduction is given to appropriate elements of recombinant DNA techniques and applications to problems in radiobiology are reviewed with illustrative detail. Examples are included of studies with both 254 nm ultraviolet light and ionizing radiation and the review progresses from the molecular analysis of DNA damage in vitro through to the nature of consequent cellular responses. The review is dealt with under the following headings: Molecular distribution of DNA damage, The use of DNA-mediated gene transfer to assess damage and repair, The DNA double strand break: use of restriction endonucleases to model radiation damage, Identification and cloning of DNA repair genes, Analysis of radiation-induced genetic change. (UK)

  15. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability.

    Science.gov (United States)

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-12-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  16. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    Warters, R.L.; Brizgys, L.M.; Lyons, B.W.

    1987-01-01

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 0 C and 45 0 C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 0 C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 37 0 C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 0 C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  17. Genes on chromosomes 1 and 4 in the mouse are associated with repair of radiation-induced chromatin damage.

    Science.gov (United States)

    Potter, M; Sanford, K K; Parshad, R; Tarone, R E; Price, F M; Mock, B; Huppi, K

    1988-04-01

    Early-passage skin fibroblasts from different inbred and congenic strains of mice were X-irradiated (1 Gy), and the number of chromatid breaks was determined at 2.0 h after irradiation. The cells from DBA/2N, C3H/HeN, STS/A, C57BL/6N, BALB/cJ, and AKR/N had 25 to 42 chromatid breaks per 100 metaphase cells (efficient repair phenotype). NZB/NJ had greater than 78 and BALB/cAn had 87 to 110 chromatid breaks per 100 cells (inefficient repair phenotype). Differences between BALB/cAn and BALB/c. DBA/2 congenic strains which carry less than 1% of the DBA/2 genome indicate that two genes, one on chromosome 1 linked to bcl-2-Pep-3 and the other on chromosome 4 closely linked to Fv-1, affect the efficiency with which the cells repair radiation-induced chromatin damage.

  18. Rejoining of x-ray induced chromosome breaks in human cells and its relationship to cellular repair

    International Nuclear Information System (INIS)

    Cornforth, M.N.

    1985-01-01

    A method was developed to improve the resolution for measuring breaks produced in interphase chromosomes by X-rays following the induction of premature chromosome condensation (PCC). It is based on the principle of 5-BrdU incorporation into the DNA of HeLa mitotic cells, which act as inducers of PCC when they are fused to diploid human fibroblasts. After a modified Fluorescence Plus Giemsa (FPG) protocol, the PCC stain intensely, while the mitotic inducer chromosomes stain faintly. The dose response for density inhibited (G 0 ) human cells was linear from 10.9 to 600 rad, with a slope of 0.06 breaks per cell per rad. Upon incubation at 37 0 C, half of the breaks disappeared in 2 hours. Following a dose of 600 rad the initial rate of break rejoining mirrored the rate of increase in survival from post-irradiation incubation, due to the repair of potentially lethal damage (PLD). The X-ray induced PCC rejoining characteristics from two ataxia telangiectasia (A-T) cell lines were compared to profiles obtained with normal cells. Both normal and A-T cells apparently sustained the same initial level of radiation damage, and both cell types rejoined breaks at the same rate. However, while normal cells eventually rejoined all but about 5% of the breaks produced by 600 rad, the A-T lines were left with 5-6 times the level of residual damage. These experiments demonstrate that progression of cells into S phase is not a necessary condition for the measured frequency of chromosome fragments observed in X-irradiated A-T cells

  19. Relationship between radiation induced activation of DNA repair genes and radiation induced apoptosis in human cell line A431

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Kim, Kyung Keun; Choi, Keun Hee

    2000-01-01

    The purpose of this study was to evaluate the relationship between radiation-induced acivation of DNA repair genes and radiation induced apoptosis in A431 cell line. Five and 25 Gys of gamma radiation were given to A431 cells by a Cs-137 cell irradiator. Apoptosis was evaluated by flow cytometry using annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression of DNA repair genes was evaluated by both Northern and Western blot analyses. The number of apoptotic cells increased with the increased radiation dose. It increased most significantly at 12 hours after irradiation. Expression of p53, p21, and ℎRAD50 reached the highest level at 12 hours after 5 Gy irradiation. In response to 25 Gy irradiation, ℎRAD50 and p21 were expressed maximally at 12 hours, but p53 and GADD45 genes showed the highest expression level after 12 hours. Induction of apoptosis and DNA repair by ionizing radiation were closely correlated. The peak time of inducing apoptosis and DNA repair was 12 hours in this study model. ℎRAD50, a recently discovered DNA repair gene, was also associated with radiation-induced apoptosis.=20

  20. Radiobiological study on DNA strand breaks and repair using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1994-01-01

    Single cell gel electrophoresis (SCGE) provides a novel method to measure DNA damage in individual cells and more importantly, to assess heterogeneity in response within a mixed population of cells. Cells embedded in agarose are lysed, subjected to electrophoresis, stained with a fluorescent DNA-specific dye, and viewed under a fluorescence microscope. Damaged cells display 'comets', broken DNA migrating farther to the anode in the electric field. We have previously used this technique to quantify DNA damage induced by moderate doses of low and high LET radiations in cultured Chinese hamster cells. The assay has been optimized in terms of lysing and electrophoresis conditions, and applied to analyse the DNA strand breaks, their repair kinetics and heterogeneity in response in individual Chinese hamster cells exposed to gamma-rays, and to KUR thermal neutrons with and without 10 B or to KEK PF monochromatic soft X-rays as well as to a radio-mimetic agent, neocarzinostatin. The DNA double-strand breaks induced by boron-neutron captured reactions were repaired at a slower rate, but a heterogeneity in response might not contribute to the difference. The neocarzinostatin-induced DNA damage were efficiently repaired in a dose-dependent fashion. The initial amount of gamma-ray induced DNA double-strand breaks was not significantly altered in cells pre-exposed to very low adapting dose. (author)

  1. Effects of expression level of DNA repair-related genes involved in the NHEJ pathway on radiation-induced cognitive impairment

    International Nuclear Information System (INIS)

    Zhang Liyuan; Chen Liesong; Sun Rui; Ji Shengjun; Ding Yanyan; Wu Jia; Tian Ye

    2013-01-01

    Cranial radiation therapy can induce cognitive decline. Impairments of hippocampal neurogenesis are thought to be a paramountly important mechanism underlying radiation-induced cognitive dysfunction. In the mature nervous system, DNA double-strand breaks (DSBs) are mainly repaired by non-homologous end-joining (NHEJ) pathways. It has been demonstrated that NHEJ deficiencies are associated with impaired neurogenesis. In our study, rats were randomly divided into five groups to be irradiated by single doses of 0 (control), 0 (anesthesia control), 2, 10, and 20 Gy, respectively. The cognitive function of the irradiated rats was measured by open field, Morris water maze and passive avoidance tests. Real-time PCR was also used to detect the expression level of DNA DSB repair-related genes involved in the NHEJ pathway, such as XRCC4, XRCC5 and XRCC6, in the hippocampus. The influence of different radiation doses on cognitive function in rats was investigated. From the results of the behavior tests, we found that rats receiving 20 Gy irradiation revealed poorer learning and memory, while no significant loss of learning and memory existed in rats receiving irradiation from 0-10 Gy. The real-time PCR and Western blot results showed no significant difference in the expression level of DNA repair-related genes between the 10 and 20 Gy groups, which may help to explain the behavioral results, id est (i.e.) DNA damage caused by 0-10 Gy exposure was appropriately repaired, however, damage induced by 20 Gy exceeded the body's maximum DSB repair ability. Ionizing radiation-induced cognitive impairments depend on the radiation dose, and more directly on the body's own ability to repair DNA DSBs via the NHEJ pathway. (author)

  2. The effect of 2-[(aminopropyl)amino] ethanethiol (WR 1065) on radiation-induced DNA damage and repair and cell progression in V79 cells

    International Nuclear Information System (INIS)

    Grdina, D.J.; Nagy, B.

    1986-01-01

    The radioprotector 2-[(aminopropyl)amino] ethanethiol (WR 1065) was investigated with respect to its ability to affect radiation-induced DNA damage and repair in V79 cells. At a concentration of 4mM, WR 1065 protected against the formation of single strand breaks (SSB), when present during irradiation. The protector appeared, however, to inhibit the subsequent postirradiation repair or rejoining of SSB. While repair was complete within 24h, the protector reduced the rate of repair by a factor of 3. This inhibitory effect on the rate of repair did not correlate with either measured differences in cell survival or mutagenesis. WR 1065 present in the growth medium inhibited the progression of cells through S-phase, and cell-doubling time following a 3h exposure to the protector was increased from 11 to 18h. These data are consistent with the property of thiols to inhibit DNA polymerase activity. It was concluded that, while the presence of WR 1065 during irradiation reduced SSB-DNA damage, its effect on the subsequent rejoining of these breaks could not be correlated with its observed effect on protecting against radiation-induced mutagenesis. (author)

  3. Ionizing radiation damage to the folded chromosome of Escherichia coli K-12: repair of double-strand breaks in deoxyribonucleic acid

    International Nuclear Information System (INIS)

    Ulmer, M.K.; Gomez, R.F.; Sinskevy, A.J.

    1979-01-01

    The extremely gentle lysis and unfolding procedures that have been developed for the isolation of nucleoid deoxyribonucleic acid yield undamaged, replicating genomes, thus permitting direct measurement of the formation and repair of DNA double-strand breaks at biologically significant doses of ionizing radiation. Repair of ionizing radiation damage to folded chromosomes of Escherichia coli K-12 strain AB2497 was observed within 2 to 3 h of post-irradiation incubation in growth medium. Such behavior was not observed after post-irradiation incubation in growth medium of a recA13 strain (strain AB2487). A model based on recombinational repair is proposed to explain the formation of 2,200 to 2,300S material during early stages of incubation and to explain subsequent changes in the gradient profiles. Association of unrepaired DNA with the plasma membrane is proposed to explain the formation of a peak of rapidly sedimenting material (greater than 3,100S) during the later stage of repair. Direct evidence of repair of double-strand breaks during post-irradiation incubation in growth medium was obtained from gradient profiles of DNA from ribonuclease-digested chromosomes. The sedimentation coefficient of broken molecules was restored to the value of unirradiated DNA after 2 to 3 h of incubation, and the fraction of the DNA repaired in this fashion was equal to the fraction of cells that survived at the same dose. An average of 2.7 double-strand breaks per genome per lethal event was observed, suggesting that one to two double-strand breaks per genome are repairable in E. coli K-12 strain AB2497

  4. Inhibition of DNA-double strand break repair by antimony compounds

    International Nuclear Information System (INIS)

    Takahashi, Sentaro; Sato, Hiroshi; Kubota, Yoshihisa; Utsumi, Hiroshi; Bedford, Joel S.; Okayasu, Ryuichi

    2002-01-01

    DNA double strand breaks (DSBs), induced by γ-irradiation in Chinese hamster ovary cells, were used to examine whether antimony compounds affect the repair of DNA damage. The cells were first incubated with antimony trichloride or antimony potassium tartrate (both Sb(III)) for 2 h, and then irradiated with γ-rays at a dose of 40 Gy. The DNA DSB was quantified with pulsed field gel electrophoresis immediately after irradiation (non-repair group) as well as at 30 min post-irradiation (repair group). The degree of repair inhibition was determined by the differences in the amount of DNA DSB between non-repair and repair groups. Both antimony compounds inhibited repair of DNA DSB in a dose dependent manner. In trichloride, 0.2 mM antimony significantly inhibited the rejoining of DSB, while 0.4 mM was necessary in potassium antimony tartrate. The mean lethal doses, D 0 , for the treatment with antimony trichloride and antimony potassium tartrate, were approximately 0.21 and 0.12 mM, respectively. This indicates that the repair inhibition by antimony trichloride occurred in the dose range near D 0 , but the antimony potassium tartrate inhibited the repair at doses where most cells lost their proliferating ability. This is the first report to indicate that antimony compounds may inhibit the repair of radiation-induced DNA DSB

  5. Repair of DNA double-strand breaks and cell killing by charged particles

    Science.gov (United States)

    Eguchi-Kasai, K.; Murakami, M.; Itsukaichi, H.; Fukutsu, K.; Yatagai, F.; Kanai, T.; Ohara, H.; Sato, K.

    It has been suggested that it is not simple double-strand breaks (dsb) but the non-reparable breaks which correlate well with the high biological effectiveness of high LET radiations for cell killing. We have compared the effects of charged particles on cell death in 3 pairs of cell lines which are normal or defective in the repair of DNA dsbs. For the cell lines SL3-147, M10, and SX10 which are deficient in DNA dsb repair, RBE values were close to unity for cell killing induced by charged particles with linear energy transfer (LET) up to 200 keV/mum and were even smaller than unity for the LET region greater than 300 keV/mum. The inactivation cross section (ICS) increased with LET for all 3 pairs. The ICS of dsb repair deficient mutants was always larger than that of their parents for all the LET ranges, but with increasing LET the difference in ICS between the mutant and its parent became smaller. Since a small difference in ICS remained at LET of about 300 keV/mum, dsb repair may still take place at this high LET, even if its role is apparently small. These results suggest that the DNA repair system does not play a major role in protection against the attack of high LET radiations and that a main cause of cell death is non-reparable dsb which are produced at a higher yield compared with low LET radiations. No correlation was observed between DNA content or nuclear area and ICS.

  6. Impact of charged particle exposure on homologous DNA double-strand break repair in human blood-derived cells

    Directory of Open Access Journals (Sweden)

    Melanie eRall

    2015-11-01

    Full Text Available Ionizing radiation generates DNA double-strand breaks (DSB which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC, potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL, particularly regarding homologous DSB repair (HR. Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET in HSPC versus PBL. For higher LET, 53BP1 foci kinetics were similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose-dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment.

  7. ErbB2 regulates NHEJ repair pathway by affecting erbB1-triggered IR-induced Akt activity

    International Nuclear Information System (INIS)

    Toulany, Mahmoud; Peter Rodemann, H.

    2009-01-01

    We have already reported that erbBl-PI3K-AKT signaling is an important pathway in regulating radiation sensitivity and DNA double strand break repair of human tumor cells. In the present study using small interfering RNA and pharmacological inhibitors in non-small cell lung cancer cell lines we investigated the role of Aktl on radiation-induced DNA-PKcs activity and DNA-double strand break (DNA-DSB) repair. Likewise, the function of erbB2 as hetrodimerization partner of erbBl in radiation-induced Akt activity and regulation of DNA-dsb repair through DNA-PKcs was evaluated. In A549 and H460 transfected with AKTl-siRNA radiation-induced phosphorylation of DNA-PKcs the key enzyme regulating NHEJ repair pathway was markedly inhibited. In both cell lines downregulation of Aktl led to a significant enhancement of residual DNA-DSB, i.e. impaired DNA-DSB repair. Interestingly, in cells transfected with DNA-PKcs-siRNA a lack of effect of AKTl-siRNA on enhancement of residual DNA-DSBs was observed. This results indicate that Aktl regulates NHEJ repair in a DNA-PKcs dependent manner

  8. Role for Artemis nuclease in the repair of radiation-induced DNA double strand breaks by alternative end joining.

    Science.gov (United States)

    Moscariello, Mario; Wieloch, Radi; Kurosawa, Aya; Li, Fanghua; Adachi, Noritaka; Mladenov, Emil; Iliakis, George

    2015-07-01

    Exposure of cells to ionizing radiation or radiomimetic drugs generates DNA double-strand breaks that are processed either by homologous recombination repair (HRR), or by canonical, DNA-PKcs-dependent non-homologous end-joining (C-NHEJ). Chemical or genetic inactivation of factors involved in C-NHEJ or HRR, but also their local failure in repair proficient cells, promotes an alternative, error-prone end-joining pathway that serves as backup (A-EJ). There is evidence for the involvement of Artemis endonuclease, a protein deficient in a human radiosensitivity syndrome associated with severe immunodeficiency (RS-SCID), in the processing of subsets of DSBs by HRR or C-NHEJ. It is thought that within HRR or C-NHEJ Artemis processes DNA termini at complex DSBs. Whether Artemis has a role in A-EJ remains unknown. Here, we analyze using pulsed-field gel electrophoresis (PFGE) and specialized reporter assays, DSB repair in wild-type pre-B NALM-6 lymphocytes, as well as in their Artemis(-/-), DNA ligase 4(-/-) (LIG4(-/-)), and LIG4(-/-)/Artemis(-/-) double mutant counterparts, under conditions allowing evaluation of A-EJ. Our results substantiate the suggested roles of Artemis in C-NHEJ and HRR, but also demonstrate a role for the protein in A-EJ that is confirmed in Artemis deficient normal human fibroblasts. We conclude that Artemis is a nuclease participating in DSB repair by all major repair pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Resistance to radiation, recombination, repair of DNA and chromosome organisation

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, H L [East Anglia Univ., Norwich (UK). School of Biological Sciences

    1981-01-01

    The model advanced here proposes that death is caused by destructive lesions, mainly double-strand breaks, in all the inter-repairable copies so close together that recombination repair cannot function. Death is related to the exponential of dose where r is the number of copies of the genome. A graph of ln(-ln survival) against ln dose is used to produce a linear dose-survival relationship, the slope of which gives the number of inter-repairable copies of the genome (= number of hits per lethal event). In Ustilago maydis it seems that unless all the chromatids are broken within a few thousand base pairs all ds breaks are repaired. The size of this critical target is similar to the size of a gene. Meiotic pairing in fungi starts outside the genes, and it is therefore suggested that specific pairing sites between genes define the ends of the targets. The model also describes the radiation-induced death of Micrococcus radiodurans and Sacchromyces cerevisiae. Cultured mammalian cells also show a linear ln(-ln survival)/ln dose relationship with a slope of 1.5 showing that both 1st and 2nd order killing occured. Sublethal radiation induces recombination in heterozygous diploid U. maydis proportional to the square of the dose. Sister-chromatid repair is preferred. Polyploid yeast can only use pairs of chromosomes for repair, showing that chromosome pairing is required for recombination repair, and mitotic pairing is restricted to bivalents in the same way that meiotic pairing is.

  10. Extensive and equivalent repair in both radiation-resistant and radiation-sensitive E. coli determined by a DNA-unwinding technique

    International Nuclear Information System (INIS)

    Ahnstroem, G.; George, A.M.; Cramp, W.A.

    1978-01-01

    The extent of strand breakage and repair in irradiated E. coli B/r and Bsub(s-l) was studied using a DNA-unwinding technique in denaturing conditions of weak alkali. Although these two strains showed widely different response to the lethal effects of ionizing radiation, they both had an equal capacity to repair radiation-induced breaks in DNA. Oxygen enhancement ratios for the killing of B/r and Bsub(s-l) were respectively 4 and 2; but after repair in non-nutrient or nutrient post-irradiation conditions, the oxygen enhancement values for the residual strand breaks were always the same for the two strains. The equal abilities of E.coli B/r and E.coli Bsub(s-l) to remove the strand breaks measured by this weak-alkali technqiue has led to the suggestion that some other type of damage to either DNA or another macromolecule may play a major role in determining whether or not the cells survive to proliferate. (author)

  11. Extensive and equivalent repair in both radiation-resistant and radiation-sensitive E. coli determined by a DNA-unwinding technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahnstroem, G [Stockholm Univ. (Sweden); George, A M; Cramp, W A

    1978-10-01

    The extent of strand breakage and repair in irradiated E. coli B/r and Bsub(s-l) was studied using a DNA-unwinding technique in denaturing conditions of weak alkali. Although these two strains showed widely different response to the lethal effects of ionizing radiation, they both had an equal capacity to repair radiation-induced breaks in DNA. Oxygen enhancement ratios for the killing of B/r and Bsub(s-l) were respectively 4 and 2; but after repair in non-nutrient or nutrient post-irradiation conditions, the oxygen enhancement values for the residual strand breaks were always the same for the two strains. The equal abilities of E.coli B/r and E.coli Bsub(s-l) to remove the strand breaks measured by this weak-alkali technqiue has led to the suggestion that some other type of damage to either DNA or another macromolecule may play a major role in determining whether or not the cells survive to proliferate.

  12. Radiatively induced breaking of conformal symmetry in a superpotential

    International Nuclear Information System (INIS)

    Arbuzov, A.B.; Cirilo-Lombardo, D.J.

    2016-01-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman–Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  13. Differential repair of radiation-induced DNA damage in cells of human squamous cell carcinoma and the effect of caffeine and cysteamine on induction and repair of DNA double-strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Smeets, M.F.M.A.; Mooren, E.H.M.; Abdel-Wahab, A.H.A.; Begg, A.C. [Netherlands Cancer Institute, Amsterdam (Netherlands)

    1994-11-01

    The goal of these experiments was to investigate further the relationship between DNA double-strand breaks and cell killing in human tumor cells, first by comparing different cell lines, and second by radiomodification studies. Field-inversion gel electrophoresis was used to quantify double-strand breaks. Two subclones of the radioresistant human squamous cell carcinoma line SQ20B (SQD9 and SQG6) were compared. These subclones differed in DNA index by a factor of 1.7 but showed the same resistance to radiation as cells of the parental cell line. It was found that, although induction of DSBs was not significantly different in the two cell lines, the t{sub 1/2} of the fast component of repair was significantly shorter for SQD9 cells, leading to greater overall repair which was not reflected in increased survival. Caffeine and cysteamine were tested as modifiers of radiosensitivity, using the radioresistant SQ20B line and the radiosensitive SCC61 cell line. No effect of caffeine was seen when the drug was present only during irradiation. Postirradiation incubations with caffeine, however, resulted in a dose reduction factor greater than 2.0 in cell survival for both cell lines. In contrast, induction of DSBs was reduced by caffeine, and no effect on DSB repair was observed. Cysteamine led to a dose protection factor greater than 1.8 in cell survival in both cell lines. A reduction in induced DSBs was found at high doses corresponding approximately with the increase in cell survival. Over the same (low) dose range, however, the correlation between DSB induction and cell killing was poor. These data indicate that DSB induction does not correlate well with cell killing either for different cell lines, for radiochemical modification (cysteamine) or for some other types of modification (caffeine). 31 refs., 8 figs.

  14. Double Strand Break Repair, one mechanism can hide another: Alternative non-homologous end joining

    International Nuclear Information System (INIS)

    Rass, E.; Grabarz, A.; Bertrand, P.; Lopez, B.S.

    2012-01-01

    DNA double strand breaks are major cytotoxic lesions encountered by the cells. They can be induced by ionizing radiation or endogenous stress and can lead to genetic instability. Two mechanisms compete for the repair of DNA double strand breaks: homologous recombination and non-homologous end joining (NHEJ). Homologous recombination requires DNA sequences homology and is initiated by single strand resection. Recently, advances have been made concerning the major steps and proteins involved in resection. NHEJ, in contrast, does not require sequence homology. The existence of a DNA double strand break repair mechanism, independent of KU and ligase IV, the key proteins of the canonical non homologous end joining pathway, has been revealed lately and named alternative non homologous end joining. The hallmarks of this highly mutagenic pathway are deletions at repair junctions and frequent use of distal micro-homologies. This mechanism is also initiated by a single strand resection of the break. The aim of this review is firstly to present recent data on single strand resection, and secondly the alternative NHEJ pathway, including a discussion on the fidelity of NHEJ. Based on current knowledge, canonical NHEJ does not appear as an intrinsically mutagenic mechanism, but in contrast, as a conservative one. The structure of broken DNA ends actually dictates the quality repair of the alternative NHEJ and seems the actual responsible for the mutagenesis attributed beforehand to the canonical NHEJ. The existence of this novel DNA double strand breaks repair mechanism needs to be taken into account in the development of radiosensitizing strategies in order to optimise the efficiency of radiotherapy. (authors)

  15. Resistance to radiation, recombination, repair of DNA and chromosome organisation

    International Nuclear Information System (INIS)

    Fletcher, H.L.

    1981-01-01

    The model advanced here proposes that death is caused by destructive lesions, mainly double-strand breaks, in all the inter-repairable copies so close together that recombination repair cannot function. Death is related to the exponential of dose where r is the number of copies of the genome. A graph of ln(-ln survival) against ln dose is used to produce a linear dose-survival relationship, the slope of which gives the number of inter-repairable copies of the genome (= number of hits per lethal event). In Ustilago maydis it seems that unless all the chromatids are broken within a few thousand base pairs all ds breaks are repaired. The size of this critical target is similar to the size of a gene. Meiotic pairing in fungi starts outside the genes, and it is therefore suggested that specific pairing sites between genes define the ends of the targets. The model also describes the radiation-induced death of Micrococcus radiodurans and Sacchromyces cerevisiae. Cultured mammalian cells also show a linear ln(-ln survival)/ln dose relationship with a slope of 1.5 showing that both 1st and 2nd order killing occured. Sublethal radiation induces recombination in heterozygous diploid U. maydis proportional to the square of the dose. Sister-chromatid repair is preferred. Polyploid yeast can only use pairs of chromosomes for repair, showing that chromosome pairing is required for recombination repair, and mitotic pairing is restricted to bivalents in the same way that meiotic pairing is. (orig./AJ)

  16. Role of DNA repair in repair of cytogenetic damages. Contribution of repair of single-strand DNA breaks to cytogenetic damages repair

    International Nuclear Information System (INIS)

    Rozanova, O.M.; Zaichkina, S.I.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    The comparison was made between the results of the effect of poly(ADP-ribosylation) ingibitors (e.g. nicotinamide and 3-aminobenzamide) and a chromatin proteinase ingibitor, phenylmethylsulfonylfluoride, on the cytogenetic damages repair, by a micronuclear test, and DNA repair in Chinese hamster fibroblasts. The values of the repair half-periods (5-7 min for the cytogenetic damages and 5 min for the rapidly repaired DNA damages) and a similar modyfying effect with regard to radiation cytogenetic damages and kynetics of DNA damages repair were found to be close. This confirms the contribution of repair of DNA single-strand breaks in the initiation of structural damages to chromosomes

  17. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks.

    Science.gov (United States)

    Stephanou, Nicolas C; Gao, Feng; Bongiorno, Paola; Ehrt, Sabine; Schnappinger, Dirk; Shuman, Stewart; Glickman, Michael S

    2007-07-01

    Bacterial nonhomologous end joining (NHEJ) is a recently described DNA repair pathway best characterized in mycobacteria. Bacterial NHEJ proteins LigD and Ku have been analyzed biochemically, and their roles in linear plasmid repair in vivo have been verified genetically; yet the contributions of NHEJ to repair of chromosomal DNA damage are unknown. Here we use an extensive set of NHEJ- and homologous recombination (HR)-deficient Mycobacterium smegmatis strains to probe the importance of HR and NHEJ in repairing diverse types of chromosomal DNA damage. An M. smegmatis Delta recA Delta ku double mutant has no apparent growth defect in vitro. Loss of the NHEJ components Ku and LigD had no effect on sensitivity to UV radiation, methyl methanesulfonate, or quinolone antibiotics. NHEJ deficiency had no effect on sensitivity to ionizing radiation in logarithmic- or early-stationary-phase cells but was required for ionizing radiation resistance in late stationary phase in 7H9 but not LB medium. In addition, NHEJ components were required for repair of I-SceI mediated chromosomal double-strand breaks (DSBs), and in the absence of HR, the NHEJ pathway rapidly mutates the chromosomal break site. The molecular outcomes of NHEJ-mediated chromosomal DSB repair involve predominantly single-nucleotide insertions at the break site, similar to previous findings using plasmid substrates. These findings demonstrate that prokaryotic NHEJ is specifically required for DSB repair in late stationary phase and can mediate mutagenic repair of homing endonuclease-generated chromosomal DSBs.

  18. Analysis of DNA double-strand break repair pathways in mice

    International Nuclear Information System (INIS)

    Brugmans, Linda; Kanaar, Roland; Essers, Jeroen

    2007-01-01

    During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues

  19. The use of caspase inhibitors in pulsed-field gel electrophoresis may improve the estimation of radiation-induced DNA repair and apoptosis

    International Nuclear Information System (INIS)

    Balart, Josep; Pueyo, Gemma; Llobet, Lara I de; Baro, Marta; Sole, Xavi; Marin, Susanna; Casanovas, Oriol; Mesia, Ricard; Capella, Gabriel

    2011-01-01

    Radiation-induced DNA double-strand break (DSB) repair can be tested by using pulsed-field gel electrophoresis (PFGE) in agarose-encapsulated cells. However, previous studies have reported that this assay is impaired by the spontaneous DNA breakage in this medium. We investigated the mechanisms of this fragmentation with the principal aim of eliminating it in order to improve the estimation of radiation-induced DNA repair. Samples from cancer cell cultures or xenografted tumours were encapsulated in agarose plugs. The cell plugs were then irradiated, incubated to allow them to repair, and evaluated by PFGE, caspase-3, and histone H2AX activation (γH2AX). In addition, apoptosis inhibition was evaluated through chemical caspase inhibitors. We confirmed that spontaneous DNA fragmentation was associated with the process of encapsulation, regardless of whether cells were irradiated or not. This DNA fragmentation was also correlated to apoptosis activation in a fraction of the cells encapsulated in agarose, while non-apoptotic cell fraction could rejoin DNA fragments as was measured by γH2AX decrease and PFGE data. We were able to eliminate interference of apoptosis by applying specific caspase inhibitors, and improve the estimation of DNA repair, and apoptosis itself. The estimation of radiation-induced DNA repair by PFGE may be improved by the use of apoptosis inhibitors. The ability to simultaneously determine DNA repair and apoptosis, which are involved in cell fate, provides new insights for using the PFGE methodology as functional assay

  20. Radiation-induced DNA damage and repair in radiosensitive and radioresistant human tumour cells measured by field inversion gel electrophoresis

    International Nuclear Information System (INIS)

    Smeets, M.F.M.A.; Mooren, E.H.M.; Begg, A.C.

    1993-01-01

    Radiation-induced DNA damage induction and repair was measured in two human squamous carcinoma cell lines with differing radiosensitivities. Experiments were carried out with field inversion gel electrophoresis (FIGE), adapted to measure DNA double strand break (DSB) induction and repair in unlabelled cells. The sensitivity of the method was increased by introducing a hybridization membrane into the agarose gel. Damaged DNA accumulated on one spot on the membrane resulting in high local concentrations. This DNA was quantified using radioactively-labelled total human DNA as a probe. Radiosensitivity differences at physiological temperatures could not be explained by differences in either induction or repair of DNA damage as measured by pulsed field gel electrophoresis. (author)

  1. Application of Laser Micro-irradiation for Examination of Single and Double Strand Break Repair in Mammalian Cells.

    Science.gov (United States)

    Holton, Nathaniel W; Andrews, Joel F; Gassman, Natalie R

    2017-09-05

    Highly coordinated DNA repair pathways exist to detect, excise and replace damaged DNA bases, and coordinate repair of DNA strand breaks. While molecular biology techniques have clarified structure, enzymatic functions, and kinetics of repair proteins, there is still a need to understand how repair is coordinated within the nucleus. Laser micro-irradiation offers a powerful tool for inducing DNA damage and monitoring the recruitment of repair proteins. Induction of DNA damage by laser micro-irradiation can occur with a range of wavelengths, and users can reliably induce single strand breaks, base lesions and double strand breaks with a range of doses. Here, laser micro-irradiation is used to examine repair of single and double strand breaks induced by two common confocal laser wavelengths, 355 nm and 405 nm. Further, proper characterization of the applied laser dose for inducing specific damage mixtures is described, so users can reproducibly perform laser micro-irradiation data acquisition and analysis.

  2. Role of DNA damage repair capacity in radiation induced adaptive response

    International Nuclear Information System (INIS)

    Yuan Dexiao; Pan Yan; Zhao Meijia; Chen Honghong; Shao Cunlin

    2009-01-01

    This work was to explore γ-ray induced radioadaptive response (RAR) in Chinese hamster ovary(CHO) cell lines of different DNA damage repair capacities. CHO-9 cells and the two repair-deficient strains, EM-C11(DNA single strand break repair deficient) and XR-C1(DNA double strand break repair deficient), were irradiated with a priming dose of 0.08 Gy or 0.016 Gy. After 4 or 7 hours, they were irradiated again with a challenging dose of 1 Gy. The micronucleus induction and plating efficiency of the cells were assayed. Under 0.08 Gy priming dose and 4-h interval, just the CHO-9 cells showed RAR, while with the 7-h interval the CHO-9 and EM-C11 showed RAR, but XR-C1 did not. When the cells were pretreated with a lower priming dose of 0.016 Gy in a 4-h time interval, all the three cell lines showed RAR to subsequent 1 Gy irradiation. It can be concluded that RAR is not only related to the priming dose and time interval, but also has close dependence on the ability of DNA damage repair. (authors)

  3. Radiation-induced strand-breaks and DNA-protein crosslinks depend predominantly on the dose, oxygen concentration and repair time

    International Nuclear Information System (INIS)

    Wheeler, K.T.; Miyagi, Y.; Zhang, H.

    1995-01-01

    It has been known for many years that the DNA damage produced by ionizing radiation depends upon the oxygen concentration around the DNA. For example, the number of DNA strand-breaks (SBs) formed per unit dose decreases at low oxygen concentrations, and the number of DNA-protein crosslinks formed per unit dose increases at low oxygen concentrations. If radiation-induced SBs and DPCs are to be useful for detecting and/or quantifying hypoxic cells in solid tumors, the formation of these lesions must depend predominantly on the oxygen concentration around the DNA. All other physical, biological, and physiological factors must either be controllable or have little influence on the assay used to measure these lesions. This paper is a summary of the authors' recent experiments to determine if the radiation-induced SBs and DPCs measured by alkaline elution may be used to estimate the hypoxic fraction or fractional hypoxic volume of solid tumors

  4. Nick translation detection in situ of cellular DNA strand break induced by radiation

    International Nuclear Information System (INIS)

    Maehara, Y.; Anai, H.; Kusumoto, T.; Sakaguchi, Y.; Sugimachi, K.

    1989-01-01

    DNA strand break in HeLa cells induced by radiation was detected using the in situ nick translation method. The cells were exposed to radiation of 3, 6, 12, 18, and 24 Gy in Lab-Tek tissue culture chamber/slides and were fixed with ethanol/acetic acid on the slide glass. The break sites in DNA were translated artificially in the presence of Escherichia coli DNA polymerase I and [ 3 H]-labeled dTTP. Autoradiographic observation was made of the level of break sites in the DNA. The DNA strand break appeared even with a 3 Gy exposure, increased 8.6 times at 24 Gy compared with the control cells, and this level correlated reciprocally to change in cell viability. This nick translation method provides a rapid in situ assay for determining radiation-induced DNA damage of cultured cells, in a semi-quantitative manner

  5. ATM is required for the repair of Topotecan-induced replication-associated double-strand breaks

    International Nuclear Information System (INIS)

    Köcher, Sabrina; Spies-Naumann, Anja; Kriegs, Malte; Dahm-Daphi, Jochen; Dornreiter, Irena

    2013-01-01

    Purpose: DNA replication is a promising target for anti-cancer therapies. Therefore, the understanding of replication-associated DNA repair mechanisms is of great interest. One key factor of DNA double-strand break (DSB) repair is the PIK kinase Ataxia-Telangiectasia Mutated (ATM) but it is still unclear whether ATM is involved in the repair of replication-associated DSBs. Here, we focused on the involvement of ATM in homology-directed repair (HDR) of indirect DSBs associated with replication. Material and methods: Experiments were performed using ATM-deficient and -proficient human cells. Replication-associated DSBs were induced with Topotecan (TPT) and compared with γ-irradiation (IR). Cell survival was measured by clonogenic assay. Overall DSB repair and HDR were evaluated by detecting residual γH2AX/53BP1 and Rad51 foci, respectively. Cell cycle distribution was analysed by flow cytometry and protein expression by Western blot. Results: ATM-deficiency leads to enhanced numbers of residual DSBs, resulting in a pronounced S/G2-block and decreased survival upon TPT-treatment. In common with IR, persisting Rad51 foci were detected following TPT-treatment. Conclusions: These results demonstrate that ATM is essentially required for the completion of HR-mediated repair of TPT-induced DSBs formed indirectly at replication forks

  6. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.

    Science.gov (United States)

    Karlsson, Asa; Deb-Basu, Debabrita; Cherry, Athena; Turner, Stephanie; Ford, James; Felsher, Dean W

    2003-08-19

    DNA repair mechanisms are essential for the maintenance of genomic integrity. Disruption of gene products responsible for DNA repair can result in chromosomal damage. Improperly repaired chromosomal damage can result in the loss of chromosomes or the generation of chromosomal deletions or translocations, which can lead to tumorigenesis. The MYC protooncogene is a transcription factor whose overexpression is frequently associated with human neoplasia. MYC has not been previously implicated in a role in DNA repair. Here we report that the overexpression of MYC disrupts the repair of double-strand DNA breaks, resulting in a several-magnitude increase in chromosomal breaks and translocations. We found that MYC inhibited the repair of gamma irradiation DNA breaks in normal human cells and blocked the repair of a single double-strand break engineered to occur in an immortal cell line. By spectral karyotypic analysis, we found that MYC even within one cell division cycle resulted in a several-magnitude increase in the frequency of chromosomal breaks and translocations in normal human cells. Hence, MYC overexpression may be a previously undescribed example of a dominant mutator that may fuel tumorigenesis by inducing chromosomal damage.

  7. DNA repair pathways involved in determining the level of cytotoxicity of environmentally relevant UV radiation

    International Nuclear Information System (INIS)

    Carpenter, L.

    2000-01-01

    The sensitivity of cell lines with defects in various DNA repair processes to different wavelengths of UV has been assessed in order to determine the importance of these repair pathways to the cytotoxicity of UV light. The cell lines used in this work were xrs-6 (a Chinese Hamster Ovary (CHO) cell line) mutant for XRCC5/Ku80, EM9 a CHO cell line mutant for XRCC1, UV61 a CHO cell line mutant for ERCC6/CSB, and E3p53-/-, a mouse embryonic fibroblast cell line null for p53. Xrs-6 (defective in Non Homologous End-Joining) was found to be sensitive to the cytotoxic effects of broadband UVA, but not narrowband UVA or narrowband UVB. EM9 (defective in Base Excision Repair/Single-Strand Break Repair) was not sensitive to the cytotoxic effects of both broadband and narrowband UVA, narrowband UVB or narrowband UVC. UV61 (defective in the Transcription Coupled Repair branch of Nucleotide Excision Repair) was sensitive to the cytotoxic effects of narrowband UVA, UVB and UVC. E3p53-/- was sensitive to the cytotoxic effects of narrowband UVA and UVB. Broadband UVA was found to induce high levels of chromosomal damage in xrs-6, as quantified by the micronucleus assay, most likely as a result of this cell lines inability to repair DNA double strand breaks. EM9 was found to be defective in the repair of broadband UVA-induced single strand breaks, as measured by the alkaline gel electrophoresis ('comet') assay. UV61 was unable to repair broadband UVB-induced DNA damage as measured by the alkaline gel electrophoresis ('comet') assay. These results provide evidence that: 1. DNA double-strand breaks contribute to the cytotoxicity of UVA to a greater extent than single-strand breaks. 2. Repair mechanisms that operate in response to UVA may be coupled to transcription. 3. UVB may directly induce SSBs. 4. P53 is involved in the response of the cell to both UVA and UVB radiation. (author)

  8. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asaithamby, Aroumougame, E-mail: Aroumougame.Asaithamy@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States); Chen, David J., E-mail: David.Chen@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States)

    2011-06-03

    Low-linear energy transfer (LET) radiation (i.e., {gamma}- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  9. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    International Nuclear Information System (INIS)

    Asaithamby, Aroumougame; Chen, David J.

    2011-01-01

    Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  10. Radioadaptive response. Efficient repair of radiation-induced DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji; Aritomi, Hisako; Morisita, Jun

    1996-01-01

    To verify the hypothesis that the induction of a novel, efficient repair mechanism for chromosomal DNA breaks may be involved in the radioadaptive response, the repair kinetics of DNA damage has been studied in cultured Chinese hamster V79 cells with single-cell gel electrophoresis. The cells were adapted by priming exposure with 5 cGy of γ-rays and 4-h incubation at 37C. There were no indication of any difference in the initial yields of DNA double-strand breaks induced by challenging doses from non-adapted cells and from adapted cells. The rejoining of DNA double-strand breaks was monitored over 120 min after the adapted cells were challenged with 5 or 1.5 Gy, doses at the same level to those used in the cytogenetical adaptive response. The rate of DNA damage repair in adapted cells was higher than that in non-adapted cells, and the residual damage was less in adapted cells than in non-adapted cells. These results indicate that the radioadaptive response may result from the induction of a novel, efficient DNA repair mechanism which leads to less residual damage, but not from the induction of protective functions that reduce the initial DNA damage

  11. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    Science.gov (United States)

    Jette, Nicholas; Lees-Miller, Susan P.

    2015-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  12. Repair of gamma radiation damage in wild type and a radiation sensitive mutant of Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Mizuma, Nagayo

    1989-01-01

    In an effort to examine production and repair of radiation-induced single and double strand breaks in the DNA, a repair-deficient wild type and a repair-deficient mutant, UV17, of Deinococcus radiodurans were subjected to Co-60 gamma irradiation at a dose rate of 6.3 kGy/hr for wild type and 3.9 kGy/hr for UV17 mutant. The shoulder of the curve of UV17 mutant was narrow but existed with the intercept of 0.7 kGy and the corresponding value of the wild type was 4.2 kGy. Mutant cells exhibited about 6 fold increases in sensitivity for the shoulder relative to the wild type. The D 37 doses in the wild type and the mutant were 0.57 kGy and 0.25 kGy, respectively. From the survival curves, difference in the sensitivity between two strains was mainly due to difference of repair capacity than the number of radiation sensitive target. Sedimentation rate of the main component in the irradiated cells of UV17 mutant increased almost to the level of unirradiated control by the postincubation at 30deg C for 3 hrs. The results indicated that this sensitive mutant also exhibited an ability to restore single strand breaks after exposure to a sublethal dose of 0.6 kGy. When restitution of double strand breaks was analyzed by sedimentation in a neutral sucrose gradient, the wild type showed restitution to DNA-membrane complex from large part of the breaks. For UV17 mutant, the apparent increase in DNA-membrane complex formation was seen after 3 hours incubation. Large part of the decrease in the activities of peak 2 was recovered in the peak 1 for the wild type. For the mutant, there was little restitution to peak 1. Almost free DNA component in UV17 mutant, therefore, was merely degraded into shorter pieces. Restoration of DNA-membrane complex from free DNA derived from gamma-ray induced double strand scission involved closely in the repair of gamma-induced damage and survival. (N.K.)

  13. Targeting abnormal DNA double strand break repair in cancer

    OpenAIRE

    Rassool, Feyruz V.; Tomkinson, Alan E.

    2010-01-01

    A major challenge in cancer treatment is the development of therapies that target cancer cells with little or no toxicity to normal tissues and cells. Alterations in DNA double strand break (DSB) repair in cancer cells include both elevated and reduced levels of key repair proteins and changes in the relative contributions of the various DSB repair pathways. These differences can result in increased sensitivity to DSB-inducing agents and increased genomic instability. The development of agent...

  14. Simultaneous demonstration of UV-type and ionizing radiation-type DNA repair by the nucleoid sedimentation technique

    International Nuclear Information System (INIS)

    Aldenhoff, P.; Sperling, K.

    1984-01-01

    The nucleoid sedimentation technique is one of the most sensitive methods for measuring DNA excision repair. With this technique, it is shown that both UV- and ionizing radiation-type repair (the latter induced by bleomycin) can be discriminated in HeLa and normal diploid cells using 1-β-D-arabinofuranosylcytosine. The latter compound inhibits UV-type repair synthesis, and thus causes DNA breaks due to enzymic incision to persist, but has no effect on rejoining DNA after ionizing radiation-type damage. It was then possible to prove that 4-nitroquinoline-1-oxide induces both types of lesions which are repaired simultaneously. This effect could be demonstrated in HeLa and normal human diploid cells in a single experimental set-up. (Auth.)

  15. Effect of Mercuric Nitrate on Repair of Radiation-induced DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Paneka, Agnieszka; Antonina, Cebulska Wasilewska [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Han, Min; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-10-15

    High concentrations of mercury can cause serious damage to the nervous system, immune system, kidneys and liver in humans. And mercury is toxic to developing embryos because mercury ions can penetrate the blood.placenta barrier to reach the embryo. Studies from human monitoring of occupational exposure to mercury vapours have shown that mercury can alter the ability of lymphocytes to repair radiation-induced DNA damage. The aim of this in vitro study was to investigate, on the molecular and cytogenetic levels, the effect of exposure to mercury ions on the kinetics of the repair process of DNA damage induced by ionising radiation.

  16. Possible role(s) of nuclear matrix and DNA loop organization in fixation or repair of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Malyapa, R.S.; Wright, W.D.; Roti Roti, J.L.

    1995-01-01

    DNA double-strand breaks produced by ionizing radiation are considered to be a critical radiation-induced lesion responsible, in part, for cell killing. However, the manner in which structures within the nucleus involving DNA organization contribute to the balance between fixation or repair of these critical lesions remains largely obscure. The repair process requires both functional enzymes and substrate availability, i.e., access to and orientation of damage sites. Therefore, the ability to repair damaged DNA could be influenced not only by DNA integrity but also by the spatial organization of DNA. Therefore, the authors investigated the possibility that radiation-induced DNA damage differentially affects DNA supercoiling ability in cells of differing radiosensitivities using radioresistant and radiosensitive mutants of different origins. This study was also designed to determine if differences in the composition of the nuclear matrix exist between cell lines of each origin. Results from these studies indicate that differences in the composition of the nuclear matrix proteins and DNA stability might be related to intrinsic radiation resistance

  17. Ionizing-radiation induced DNA double-strand breaks: A direct and indirect lighting up

    International Nuclear Information System (INIS)

    Vignard, Julien; Mirey, Gladys; Salles, Bernard

    2013-01-01

    The occurrence of DNA double-strand breaks (DSBs) induced by ionizing radiation has been extensively studied by biochemical or cell imaging techniques. Cell imaging development relies on technical advances as well as our knowledge of the cell DNA damage response (DDR) process. The DDR involves a complex network of proteins that initiate and coordinate DNA damage signaling and repair activities. As some DDR proteins assemble at DSBs in an established spatio-temporal pattern, visible nuclear foci are produced. In addition, post-translational modifications are important for the signaling and the recruitment of specific partners at damaged chromatin foci. We briefly review here the most widely used methods to study DSBs. We also discuss the development of indirect methods, using reporter expression or intra-nuclear antibodies, to follow the production of DSBs in real time and in living cells

  18. Cadmium inhibits repair of UV-, methyl methanesulfonate- and N-methyl-N-nitrosourea-induced DNA damage in Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Fatur, Tanja; Lah, Tamara T.; Filipic, Metka

    2003-01-01

    The co-genotoxic effects of cadmium are well recognized and it is assumed that most of these effects are due to the inhibition of DNA repair. We used the comet assay to analyze the effect of low, non-toxic concentrations of CdCl 2 on DNA damage and repair-induced in Chinese hamster ovary (CHO) cells by UV-radiation, by methyl methanesulfonate (MMS) and by N-methyl-N-nitrosourea (MNU). The UV-induced DNA lesions revealed by the comet assay are single-strand breaks which are the intermediates formed during nucleotide excision repair (NER). In cells exposed to UV-irradiation alone the formation of DNA strand breaks was rapid, followed by a fast rejoining phase during the first 60 min after irradiation. In UV-irradiated cells pre-exposed to CdCl 2 , the formation of DNA strand breaks was significantly slower, indicating that cadmium inhibited DNA damage recognition and/or excision. Methyl methanesulfonate and N-methyl-N-nitrosourea directly alkylate nitrogen and oxygen atoms of DNA bases. The lesions revealed by the comet assay are mainly breaks at apurinic/apyrimidinic (AP) sites and breaks formed as intermediates during base excision repair (BER). In MMS treated cells the initial level of DNA strand breaks did not change during the first hour of recovery; thereafter repair was detected. In cells pre-exposed to CdCl 2 the MMS-induced DNA strand breaks accumulated during the first 2 h of recovery, indicating that AP sites and/or DNA strand breaks were formed but that further steps of BER were blocked. In MNU treated cells the maximal level of DNA strand breaks was detected immediately after the treatment and the breaks were repaired rapidly. In CdCl 2 pre-treated cells the formation of MNU-induced DNA single-strand breaks was not affected, while the repair was slower, indicating inhibition of polymerization and/or the ligation step of BER. Cadmium thus affects the repair of UV-, MMS- and MNU-induced DNA damage, providing further evidence, that inhibition of DNA repair

  19. Double-Strand DNA Break Repair in Mycobacteria.

    Science.gov (United States)

    Glickman, Michael S

    2014-10-01

    Discontinuity of both strands of the chromosome is a lethal event in all living organisms because it compromises chromosome replication. As such, a diversity of DNA repair systems has evolved to repair double-strand DNA breaks (DSBs). In part, this diversity of DSB repair systems has evolved to repair breaks that arise in diverse physiologic circumstances or sequence contexts, including cellular states of nonreplication or breaks that arise between repeats. Mycobacteria elaborate a set of three genetically distinct DNA repair pathways: homologous recombination, nonhomologous end joining, and single-strand annealing. As such, mycobacterial DSB repair diverges substantially from the standard model of prokaryotic DSB repair and represents an attractive new model system. In addition, the presence in mycobacteria of a DSB repair system that can repair DSBs in nonreplicating cells (nonhomologous end joining) or when DSBs arise between repeats (single-strand annealing) has clear potential relevance to Mycobacterium tuberculosis pathogenesis, although the exact role of these systems in M. tuberculosis pathogenesis is still being elucidated. In this article we will review the genetics of mycobacterial DSB repair systems, focusing on recent insights.

  20. The rate of X-ray-induced DNA double-strand break repair in the embryonic mouse brain is unaffected by exposure to 50 Hz magnetic fields.

    Science.gov (United States)

    Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny

    2015-06-01

    Following in utero exposure to low dose radiation (10-200 mGy), we recently observed a linear induction of DNA double-strand breaks (DSB) and activation of apoptosis in the embryonic neuronal stem/progenitor cell compartment. No significant induction of DSB or apoptosis was observed following exposure to magnetic fields (MF). In the present study, we exploited this in vivo system to examine whether exposure to MF before and after exposure to 100 mGy X-rays impacts upon DSB repair rates. 53BP1 foci were quantified following combined exposure to radiation and MF in the embryonic neuronal stem/progenitor cell compartment. Embryos were exposed in utero to 50 Hz MF at 300 μT for 3 h before and up to 9 h after exposure to 100 mGy X-rays. Controls included embryos exposed to MF or X-rays alone plus sham exposures. Exposure to MF before and after 100 mGy X-rays did not impact upon the rate of DSB repair in the embryonic neuronal stem cell compartment compared to repair rates following radiation exposure alone. We conclude that in this sensitive system MF do not exert any significant level of DNA damage and do not impede the repair of X-ray induced damage.

  1. Suberoylanilide Hydroxyamic Acid Modification of Chromatin Architecture Affects DNA Break Formation and Repair

    International Nuclear Information System (INIS)

    Singh, Sheetal; Le Hongan; Shih, S.-J.; Ho, Bay; Vaughan, Andrew T.

    2010-01-01

    Purpose: Chromatin-modifying compounds that inhibit the activity of histone deacetylases have shown potency as radiosensitizers, but the action of these drugs at a molecular level is not clear. Here we investigated the effect of suberoylanilide hydroxyamic acid (SAHA) on DNA breaks and their repair and induction of rearrangements. Methods and Materials: The effect of SAHA on both clonogenic survival and repair was assessed using cell lines SCC-25, MCF7, and TK6. In order to study unique DNA double-strand breaks, anti-CD95 antibody was employed to introduce a DNA double-strand break at a known location within the 11q23 region. The effects of SAHA on DNA cleavage and rearrangements were analyzed by ligation-mediated PCR and inverse PCR, respectively. Results: SAHA acts as radiosensitizer at 1 μM, with dose enhancement factors (DEFs) at 10% survival of: SCC-25 - 1.24 ± 0.05; MCF7 - 1.16 ± 0.09 and TK6 - 1.17 ± 0.05, and it reduced the capacity of SCC-25 cells to repair radiation induced lesions. Additionally, SAHA treatment diffused site-specific fragmentation over at least 1 kbp in TK6 cells. Chromosomal rearrangements produced in TK6 cells exposed to SAHA showed a reduction in microhomology at the breakpoint between 11q23 and partner chromosomes. Conclusions: SAHA shows efficacy as a radiosensitizer at clinically obtainable levels. In its presence, targeted DNA strand breaks occur over an expanded region, indicating increased chromatin access. The rejoining of such breaks is degraded by SAHA when measured as rearrangements at the molecular level and rejoining that contributes to cell survival.

  2. Repair of single-strand breaks in normal and trisomic lymphocytes

    International Nuclear Information System (INIS)

    Leonard, J.C.; Merz, T.

    1982-01-01

    Recently, Athanasiou and colleagues (1981) reported a deficiency in the capacity of lymphocytes from persons with Down's syndrome to repair single-strand DNA breaks. They found that 1 h after exposure to 160 Gray, repair processes had restored the sedimentation profile of DNA from normal lymphocytes to control values, whereas the relative average molecular weight of DNA from irradiated lymphocytes from persons with Down's syndrome showed no increase during the repair interval. They have suggested that their data, in conjunction with the earlier data concerning the frequencies of induced chromosomal aberrations in lymphocytes from persons with Down's syndrome, reflect a decreased efficiency in some aspect of DNA repair in trisomic cells. However, for further studies of this hypothesis, it is more appropriate to study the rejoining of DNA single-strand breaks after doses comparable to those used in tests for chromosomal aberrations. (orig.)

  3. Inhibition of X-ray induced DNA strand break repair in polyamine-depleted HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.D.

    1989-05-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, alpha-difluoromethylornithine (DFMO) or methylglyoxal bis(guanylhydrazone) (MGBG), results in, depending on the conditions, partial or complete depletion of the cellular polyamines: putrescine, spermidine and spermine. In this compromised state cells exhibited a distinct deficiency in repair of X-ray-induced DNA strand breaks. The half-time for return of normal DNA sedimentation following 1.6 Gy was 9.5 min for untreated control cells and 22, 32 and 50 min for cells treated with MGBG, DFMO+MGBG and DFMO, respectively. Normal repair kinetics were restored to these cells upon a short incubation in media containing all three polyamines. The rapid early phase of repair following higher X-ray doses (16 Gy) was also delayed in polyamine-depleted cells but later repair occurring 1-4 h post-irradiation, representing chromatin reconstitution, was apparently normal. (author).

  4. Inhibition of X-ray induced DNA strand break repair in polyamine-depleted HeLa cells

    International Nuclear Information System (INIS)

    Snyder, R.D.

    1989-01-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, alpha-difluoromethylornithine (DFMO) or methylglyoxal bis(guanylhydrazone) (MGBG), results in, depending on the conditions, partial or complete depletion of the cellular polyamines: putrescine, spermidine and spermine. In this compromised state cells exhibited a distinct deficiency in repair of X-ray-induced DNA strand breaks. The half-time for return of normal DNA sedimentation following 1.6 Gy was 9.5 min for untreated control cells and 22, 32 and 50 min for cells treated with MGBG, DFMO+MGBG and DFMO, respectively. Normal repair kinetics were restored to these cells upon a short incubation in media containing all three polyamines. The rapid early phase of repair following higher X-ray doses (16 Gy) was also delayed in polyamine-depleted cells but later repair occurring 1-4 h post-irradiation, representing chromatin reconstitution, was apparently normal. (author)

  5. Molecular characterization of a complex site-specific radiation-induced DNA double-strand break

    International Nuclear Information System (INIS)

    Datta, K.; Dizdaroglu, M.; Jaruga, P.; Neumann, R.D.; Winters, T.A.

    2003-01-01

    Radiation lethality is a function of radiation-induced DNA double-strand breaks (DSB). Current models propose the lethality of a DSB to be a function of its structural complexity. We present here for the first time a map of damage associated with a site-specific double-strand break produced by decay of 125 I in a plasmid bound by a 125 I-labeled triplex forming oligonucleotide ( 125 I-TFO). The E. coli DNA repair enzymes, endonuclease IV (endo IV), endonuclease III (endo III), and formamidopyrimidine-DNA glycosylase (Fpg), which recognize AP sites, and pyrimidine and purine base damage respectively, were used as probes in this study. 125 I-TFO bound plasmid was incubated with and without DMSO at -80 deg C for 1 month. No significant difference in DSB yield was observed under these conditions. A 32 base pair fragment from the upstream side of the decay site was isolated by restriction digestion and enzymatically probed to identify damage sites. Endo IV treatment of the 5'-end labeled upper strand indicated clustering of AP sites within 3 bases downstream and 7 bases upstream of the targeted base. Also, repeated experiments consistently detected an AP site 4 bases upstream of the 125 Itarget base. This was further supported by complementary results with the 3'-end labeled upper strand. Endo IV analysis of the lower strand also shows clustering of AP sites near the DSB end. Endo III and Fpg probing demonstrated that base damage is also clustered near the targeted break site. DSBs produced in the absence of DMSO displayed a different pattern of enzyme sensitive damage than those produced in the presence of DMSO. Identification of specific base damage types within the restriction fragment containing the DSB end was achieved with GC/MS. Base damage consisted of 8-hydroguanine, 8-hydroxyadenine, and 5-hydroxycytosine. These lesions were observed at relative yields of 8-hydroguanine and 5-hydroxycytosine to 8-hydroxyadenine of 7.4:1 and 4.7:1, respectively, in the absence

  6. Radiation induced DNA damage and repair in mutagenesis

    International Nuclear Information System (INIS)

    Strniste, G.F.; Chen, D.J.; Okinaka, R.T.

    1987-01-01

    The central theme in cellular radiobiological research has been the mechanisms of radiation action and the physiological response of cells to this action. Considerable effort has been directed toward the characterization of radiation-induced DNA damage and the correlation of this damage to cellular genetic change that is expressed as mutation or initiating events leading to cellular transformation and ultimately carcinogenesis. In addition, there has been a significant advancement in their understanding of the role of DNA repair in the process of mutation leading to genetic change in cells. There is extensive literature concerning studies that address radiation action in both procaryotic and eucaryotic systems. This brief report will make no attempt to summarize this voluminous data but will focus on recent results from their laboratory of experiments in which they have examined, at both the cellular and molecular levels, the process of ionizing radiation-induced mutagenesis in cultured human cells

  7. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks.

    Science.gov (United States)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia; Evangelou, Konstantinos; Da-Ré, Caterina; Huber, Florian; Padayachy, Laura; Tardy, Sebastien; Nicati, Noemie L; Barriot, Samia; Ochs, Fena; Lukas, Claudia; Lukas, Jiri; Gorgoulis, Vassilis G; Scapozza, Leonardo; Halazonetis, Thanos D

    2016-12-15

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Kinetics and mechanism of DNA repair; Evaluation of caged compounds for use in studies of u. v. -induced DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, R.A.; Wharton, C.W. (Birmingham Univ. (UK). Dept. of Biochemistry); Shall, S. (Sussex Univ., Brighton (UK). School of Biological Sciences)

    1990-03-15

    Experiments are described in which the feasibility of using caged dideoxy and other nucleoside triphosphate analogues for trapping breaks induced by u.v. radiation damage to mammalian cell DNA is evaluated. These nucleotide analogues that have a photolabile 1-(2-nitrophenyl)ethyl-protecting group attached to the {gamma}-phosphate are placed in situ by permeabilizing cells by exposure to hypo-osmotic medium. The nucleoside triphosphate is released by a 351 nm u.v. laser pulse whence it may incorporate in the growing chain of DNA induced by the excision-repair process and terminate chain elongation. If the photoreleased dideoxynucleoside trisphosphate is isotopically labelled in the {alpha}-phosphate position the break is trapped and labelled. Incorporation of radioactivity into trichloroacetic acid insoluble material in these experiments confirms their potential for use in studies of the kinetics of mammalian cell DNA repair. (author).

  9. PFGE analysis of DNA double-strand breaks and DNA repair process in human osteosarcoma cells irradiated by X-ray

    International Nuclear Information System (INIS)

    Cao Jianping; Majima, H.; Yamaguchi, C.

    2000-01-01

    Objective: To study the induction of DNA double-strand breaks (DSBs) in human osteosarcoma cells irradiated by X-ray, the DNA DSBs repair process and the tumour cell radiosensitivity. Methods: Two cell lines of human osteosarcoma, Rho0 and 143. B were used. Initial DNA damage of DSBs by X-ray irradiation was measured using clamped homogeneous electrical field (CHEF) electrophoresis. Results: X-ray-induced DNA DSBs of human osteosarcoma cells after CHEF-electrophoresis increased linearly with the irradiation dose between 0 and 50 Gy. The repair of DNA DSBs in human osteosarcoma cells increased with the post-irradiation incubation time. In contrast to 14.3B cell line at the same dose point, much more DNA DSBs were induced in Rho0 cell line after X-ray irradiation. Conclusion: CHEF pulsed-field gel electrophoresis (PEGE) is a sensitive method for the determination of radiation-induced DNA DSBs in high molecular weight DNA of human osteosarcoma cells. Radiation-induced DNA DSBs of osteosarcoma increase with the dose in a linear manner. After incubation, both Rho0 cell line and 143. B cell line can repair the DNA DSBs. Between two cell lines of human osteosarcoma, Rho0 and 143.B, Rho0 cell line is more sensitive to ionizing radiation than 143.B line

  10. Induction and repair of DNA double-strand breaks in rat cerebellar cortex exposed to 60Co γ-rays

    Science.gov (United States)

    Bulanova, T. S.; Zadneprianetc, M. G.; Ježková, L.; Kruglyakova, E. A.; Smirnova, E. V.; Boreyko, A. V.

    2018-01-01

    The induction and repair of DNA double-strand breaks are studied using the immunohistochemical staining procedure of paraffin-embedded rat cerebellum tissues after exposure to γ-rays of 60Co. The dose dependence of radiation-induced colocalized γH2AX/53BP1 foci is studied and its linear character is established. It is shown that these foci are efficiently eliminated 24 h after irradiation.

  11. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    Science.gov (United States)

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Numt-mediated double-strand break repair mitigates deletions during primate genome evolution.

    Directory of Open Access Journals (Sweden)

    Einat Hazkani-Covo

    2008-10-01

    Full Text Available Non-homologous end joining (NHEJ is the major mechanism of double-strand break repair (DSBR in mammalian cells. NHEJ has traditionally been inferred from experimental systems involving induced double strand breaks (DSBs. Whether or not the spectrum of repair events observed in experimental NHEJ reflects the repair of natural breaks by NHEJ during chromosomal evolution is an unresolved issue. In primate phylogeny, nuclear DNA sequences of mitochondrial origin, numts, are inserted into naturally occurring chromosomal breaks via NHEJ. Thus, numt integration sites harbor evidence for the mechanisms that act on the genome over evolutionary timescales. We have identified 35 and 55 lineage-specific numts in the human and chimpanzee genomes, respectively, using the rhesus monkey genome as an outgroup. One hundred and fifty two numt-chromosome fusion points were classified based on their repair patterns. Repair involving microhomology and repair leading to nucleotide additions were detected. These repair patterns are within the experimentally determined spectrum of classical NHEJ, suggesting that information from experimental systems is representative of broader genetic loci and end configurations. However, in incompatible DSBR events, small deletions always occur, whereas in 54% of numt integration events examined, no deletions were detected. Numts show a statistically significant reduction in deletion frequency, even in comparison to DSBR involving filler DNA. Therefore, numts show a unique mechanism of integration via NHEJ. Since the deletion frequency during numt insertion is low, native overhangs of chromosome breaks are preserved, allowing us to determine that 24% of the analyzed breaks are cohesive with overhangs of up to 11 bases. These data represent, to the best of our knowledge, the most comprehensive description of the structure of naturally occurring DSBs. We suggest a model in which the sealing of DSBs by numts, and probably by other filler

  13. Mechanisms of radiation-induced neoplastic cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  14. Mechanisms of radiation-induced neoplastic cell transformation

    International Nuclear Information System (INIS)

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table

  15. Repair in unicellular green algae under the chronic action of mutagenic factors

    International Nuclear Information System (INIS)

    Sergeeva, S.A.; Ptitsina, S.N.; Shevchenko, V.A.

    1986-01-01

    Repair of single-standed DNA breaks in different strains of unicellular green Chlamidomonas reinhardii algae under the chronic action of mutagenic factors after γ-radiation was studied. It is shown, that the highest DNA break repair efficiency is observed in M γ mt++ strain, resistant to radiation. Strains, sensitive to UV-rays, possess the same repair efficiency as a wild type strain. UVS-1 strain demonstrated a higher repair efficiency, than a wild type strain. All that gives evidence of the difference in Chlamidomonas reinhardii of repair ways, leading to repair of damages, induced by γ-radiation and UV-rays

  16. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations.

    Science.gov (United States)

    Löbrich, Markus; Rief, Nicole; Kühne, Martin; Heckmann, Martina; Fleckenstein, Jochen; Rübe, Christian; Uder, Michael

    2005-06-21

    Ionizing radiation can lead to a variety of deleterious effects in humans, most importantly to the induction of cancer. DNA double-strand breaks (DSBs) are among the most significant genetic lesions introduced by ionizing radiation that can initiate carcinogenesis. We have enumerated gamma-H2AX foci as a measure for DSBs in lymphocytes from individuals undergoing computed tomography examination of the thorax and/or the abdomen. The number of DSBs induced by computed tomography examination was found to depend linearly on the dose-length product, a radiodiagnostic unit that is proportional to both the local dose delivered and the length of the body exposed. Analysis of lymphocytes sampled up to 1 day postirradiation provided kinetics for the in vivo loss of gamma-H2AX foci that correlated with DSB repair. Interestingly, in contrast to results obtained in vitro, normal individuals repair DSBs to background levels. A patient who had previously shown severe side effects after radiotherapy displayed levels of gamma-H2AX foci at various sampling times postirradiation that were several times higher than those of normal individuals. Gamma-H2AX and pulsed-field gel electrophoresis analysis of fibroblasts obtained from this patient confirmed a substantial DSB repair defect. Additionally, these fibroblasts showed significant in vitro radiosensitivity. These data show that the in vivo induction and repair of DSBs can be assessed in individuals exposed to low radiation doses, adding a further dimension to DSB repair studies and providing the opportunity to identify repair-compromised individuals after diagnostic irradiation procedures.

  17. Radiation- and drug-induced DNA repair in mammalian oocytes and embryos

    International Nuclear Information System (INIS)

    Pedersen, R.A.; Brandriff, B.

    1979-01-01

    A review of studies showing ultraviolet- or drug-induced unscheduled DNA synthesis in mammalian oocytes and embryos suggests that the female gamete has an excision repair capacity from the earliest stages of oocyte growth. The oocyte's demonstrable excision repair capacity decreases at the time of meiotic maturation for unknown reasons, but the fully mature oocyte maintans a repair capacity, in contrast to the mature sperm, and contributes this to the zygote. Early embryo cells maintain relatively constant levels of excision repair until late fetal stages, when they lose their capacity for excision repair. These apparent changes in excision repair capacity do not have a simple relationship to known differences in radiation sensitivity of germ cells and embryos

  18. The transcription fidelity factor GreA impedes DNA break repair.

    Science.gov (United States)

    Sivaramakrishnan, Priya; Sepúlveda, Leonardo A; Halliday, Jennifer A; Liu, Jingjing; Núñez, María Angélica Bravo; Golding, Ido; Rosenberg, Susan M; Herman, Christophe

    2017-10-12

    Homologous recombination repairs DNA double-strand breaks and must function even on actively transcribed DNA. Because break repair prevents chromosome loss, the completion of repair is expected to outweigh the transcription of broken templates. However, the interplay between DNA break repair and transcription processivity is unclear. Here we show that the transcription factor GreA inhibits break repair in Escherichia coli. GreA restarts backtracked RNA polymerase and hence promotes transcription fidelity. We report that removal of GreA results in markedly enhanced break repair via the classic RecBCD-RecA pathway. Using a deep-sequencing method to measure chromosomal exonucleolytic degradation, we demonstrate that the absence of GreA limits RecBCD-mediated resection. Our findings suggest that increased RNA polymerase backtracking promotes break repair by instigating RecA loading by RecBCD, without the influence of canonical Chi signals. The idea that backtracked RNA polymerase can stimulate recombination presents a DNA transaction conundrum: a transcription fidelity factor that compromises genomic integrity.

  19. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    International Nuclear Information System (INIS)

    Mattos, Jose Carlos Pelielo de; Motta, Ellen Serri da; Oliveira, Marcia Betania Nunes de; Dantas, Flavio Jose da Silva; Araujo, Adriano Caldeira de

    2008-01-01

    Reactive oxygen species (ROS) can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl 2 ) is a ROS generator, leading to lethality in Escherichia coli (E. coli), with the base excision repair (BER) mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl 2 in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl 2 was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms. (author)

  20. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Jose Carlos Pelielo de; Motta, Ellen Serri da; Oliveira, Marcia Betania Nunes de; Dantas, Flavio Jose da Silva; Araujo, Adriano Caldeira de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Dept. de Biofisica e Biometria. Lab. de Radio e Fotobiologia]. E-mail: jcmattos@uerj.br

    2008-12-15

    Reactive oxygen species (ROS) can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl{sub 2}) is a ROS generator, leading to lethality in Escherichia coli (E. coli), with the base excision repair (BER) mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl{sub 2} in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl{sub 2} was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms. (author)

  1. Behaviour of UV-sensitive mutants of Proteus mirabilis to repair incision breaks

    International Nuclear Information System (INIS)

    Stoerl, K.; Mund, C.

    1977-01-01

    In U.V.-sensitive mutants of P. mirabilis with the phenotype HCR, REC and EXR single-strand breaks appeared immediately after UV-irradiation. The behaviour of REC- and EXR-mutants was similar to the wildtype. The number of incision breaks observed by sedimentation analysis in these strains was very low. They could be joined during the excision repair process. From the ability of REC- and EXR-strains to rejoin most of the induced single-strand breaks it can be concluded that these strains have approximately the same capacity for excision repair as the wildtype. HCR-mutants of P. mirabilis produced single-strand breaks after UV-irradiation in contrast to HCR-mutants of E. coli. Therefore we suggest that HCR-mutants of P. mirabilis are not completely inhibited in the incision step. The single-strand breaks introduced in the DNA at the beginning of the repair process were not rejoined during further incubation. Experiments with toluenized cells led to the same results. The newly synthesized daughter DNA-strands of UV-irradiated HCR-mutants were of low molecular weight in comparison with those from unirradiated control cells during the repair period. This result is in agreement with the incapability of HCR-mutants to remove the pyrimidine dimers from the parental template strand. (author)

  2. Induction and repair of double- and single-strand DNA breaks in bacteriophage lambda superinfecting Escherichia coli

    International Nuclear Information System (INIS)

    Boye, E.; Krisch, R.E.

    1980-01-01

    Induction and repair of double-and single-strand DNA breaks have been measured after decays of 125 I and 3 H incorporated into the DNA and after external irradiation with 4 MeV electrons. For the decay experiments, cells of wild type Escherichia coli K-12 were superinfected with bacteriophage lambda DNA labelled with 5'-( 125 I)iodo-2'-deoxyuridine or with (methyl- 3 H)thymidine and frozen in liquid nitrogen. Aliquots were thawed at intervals and lysed at neutral pH, and the phage DNA was assayed for double- and single-strand breakage by neutral sucrose gradient centrifugation. The gradients used allowed measurements of both kinds of breaks in the same gradient. Decays of 125 I induced 0.39 single-strand breaks per double-strand break. No repair of either break type could be detected. Each 3 H disintegration caused 0.20 single-strand breaks and very few double-strand breaks. The single-strand breaks were rapidly rejoined after the cells were thawed. For irradiation with 4 MeV electrons, cells of wild type E. coli K-12 were superinfected with phage lambda and suspended in growth medium. Irradiation induced 42 single-strand breaks per double-strand break. The rates of break induction were 6.75 x 10 -14 (double-strand breaks) and 2.82 x 10 -12 (single-strand breaks) per rad and per dalton. The single-strand breaks were rapidly repaired upon incubation whereas the double-strand breaks seemed to remain unrepaired. It is concluded that double-strand breaks in superinfecting bacteriophage lambda DNA are repaired to a very small extent, if at all. (Author)

  3. DNA hybrids suggesting a recombination process repairing radiation-induced DNA double-strand breaks in Ehrlich Ascites tumor cells

    International Nuclear Information System (INIS)

    Barthel, H.R.

    1984-01-01

    The results presented suggest the possibility of repair of DNA double-strand breaks by recombination, at least in the S and G 2 -phases of the cell cycle, in mammalian cells. Further experiments with synchronized cell cultures will have to show whether this process may also occur in the G 1 -phase of the cell cycle. (orig./AJ) [de

  4. DNA double strand break repair pathway plays a significant role in determining the radiotherapy induced normal tissue toxicity among head-and-neck and breast cancer

    International Nuclear Information System (INIS)

    Sadashiva, Satish Rao Bola; Mumbrekar, Kamalesh Dattaram; Venkatesh, Goutham Hassan; Fernandes, Donald Jerard; Bejadi, Vadhiraja Manjunath; Kapaettu, Satyamoorthy

    2014-01-01

    The ability to predict individual risk of radiotherapy induced normal tissue complications prior to the therapy may give an opportunity to personalize the treatment aiming improved therapeutic effect and quality of life. Therefore, predicting the risk of developing acute reactions before the initiation of radiation therapy may serve as a potential biomarker. DNA double-strand break (DSB) induction and its repair kinetics in lymphocytes of Head-and-Neck (n = 183) and Breast cancer (n = 132) patients undergoing chemoradiation or radiation therapy alone were analyzed by performing γ-H2AX foci, neutral comet and a modified neutral filter elution assay. Candidate radioresponsive genes like DNA repair, antioxidant pathway, profibrotic cytokine genes were screened for the common variants for their association with normal tissue toxicity outcome. Patients were stratified as non-over responders (NOR) and over responders (OR) based on their Radiation Therapy Oncology Group grading for normal tissue adverse reactions. Our results suggest that DSB repair plays a major role in the development of normal tissue adverse reactions in H and N and Breast cancer patients. The cellular (γ-H2AX analysis) and SNP analysis may have the potential to be developed into a clinically useful predictive assay for identifying the normal tissue over reactors

  5. DN2 Thymocytes Activate a Specific Robust DNA Damage Response to Ionizing Radiation-Induced DNA Double-Strand Breaks

    Directory of Open Access Journals (Sweden)

    Irene Calvo-Asensio

    2018-06-01

    Full Text Available For successful bone marrow transplantation (BMT, a preconditioning regime involving chemo and radiotherapy is used that results in DNA damage to both hematopoietic and stromal elements. Following radiation exposure, it is well recognized that a single wave of host-derived thymocytes reconstitutes the irradiated thymus, with donor-derived thymocytes appearing about 7 days post BMT. Our previous studies have demonstrated that, in the presence of donor hematopoietic cells lacking T lineage potential, these host-derived thymocytes are able to generate a polyclonal cohort of functionally mature peripheral T cells numerically comprising ~25% of the peripheral T cell pool of euthymic mice. Importantly, we demonstrated that radioresistant CD44+ CD25+ CD117+ DN2 progenitors were responsible for this thymic auto-reconstitution. Until recently, the mechanisms underlying the radioresistance of DN2 progenitors were unknown. Herein, we have used the in vitro “Plastic Thymus” culture system to perform a detailed investigation of the mechanisms responsible for the high radioresistance of DN2 cells compared with radiosensitive hematopoietic stem cells. Our results indicate that several aspects of DN2 biology, such as (i rapid DNA damage response (DDR activation in response to ionizing radiation-induced DNA damage, (ii efficient repair of DNA double-strand breaks, and (iii induction of a protective G1/S checkpoint contribute to promoting DN2 cell survival post-irradiation. We have previously shown that hypoxia increases the radioresistance of bone marrow stromal cells in vitro, at least in part by enhancing their DNA double-strand break (DNA DSB repair capacity. Since the thymus is also a hypoxic environment, we investigated the potential effects of hypoxia on the DDR of DN2 thymocytes. Finally, we demonstrate for the first time that de novo DN2 thymocytes are able to rapidly repair DNA DSBs following thymic irradiation in vivo.

  6. Human lymphocytes exposed to low doses of ionizing radiations become refractory to high doses of radiation as well as to chemical mutagens that induce double-strand breaks in DNA

    International Nuclear Information System (INIS)

    Wolff, Sheldon; Afzal, Veena; Wiencke, J.K.; Olivieri, G.; Michaeli, A.

    1988-01-01

    The results indicate that prior exposure to 0.01 Gy of X-rays reduces the number of chromosome breaks induced by double-strand breaks, and perhaps even by cross-links, in DNA, but has the opposite effect on breaks induced by the alkylating agent MMS. The results also show that the induced repair mechanism is different from that observed in the adaptive reponse that follows exposure to low doses of alkylating agents. (author)

  7. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny

    OpenAIRE

    Leyla Vahidi Ferdousi; Pierre Rocheteau; Romain Chayot; Benjamin Montagne; Zayna Chaker; Patricia Flamant; Shahragim Tajbakhsh; Miria Ricchetti

    2014-01-01

    International audience; The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their...

  8. Radiative breaking of cosmologically acceptable grand unified theories

    International Nuclear Information System (INIS)

    Gato, B.; Leon, J.; Quiros, M.

    1984-01-01

    We present a cosmologically acceptable grand unified model where the breaking of SU(5) proceeds through radiative corrections induced by supergravity soft-breaking terms. The breaking scale is determined by dimensional transmutation. The model is compatible with the radiative breaking of SU(2)sub(L)xU(1)sub(Y) which provides an experimentally accessible low energy particle spectrum and small top quark mass. (orig.)

  9. DNA damage and repair in rabbit lens epithelial cells following UVA radiation

    International Nuclear Information System (INIS)

    Sidjanin, Duska; Zigman, Seymour; Reddan, John

    1993-01-01

    Since ultraviolet light may be a contributing factor to cataractogenesis, we investigated the response of the lens epithelium, a potential target for UV insult, to UVA radiation. Cell survival and the induction and repair of DNA single-strand breaks (SSBs) were measured in cultured rabbit lens epithelial cells following UVA exposure. A 30 min exposure to UVA (180 KJ/m 2 ) induced measurable SSBs. An increase in UVA fluenced measurable SSBs. An increase in UVA fluence brought about an increase in UVA fluence brought about an increase in the number of DNA SSBs. Rejoining of SSBs were measured after the cells were irradiated in Tyrode's for 2 hrs and allowed to repair in the dark for 4 hrs at 36 o C in MEM containing 10% serum. Eighty percent of the DNA SSBs were repaired within 4 hrs as determined by analysis of the alkaline elution profile. The repair kinetics were biphasic with an initial fast and subsequently slower component. The results indicate that UVA can induce SSBs in lens-induced SSBs, and that UVA treatment can be toxic to the epithelium. (Author)

  10. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome

    International Nuclear Information System (INIS)

    Leadon, S.A.; Copper, P.K.

    1993-01-01

    Cells from patients with Cockayne syndrome (CS), which are sensitive to killing by UV although overall damage removal appears normal, are specifically defective in repair of UV damage in actively transcribe genes. Because several CS strains display cross-sensitivity to killing by ionizing radiation, the authors examined whether ionizing radiation-induced damage in active genes is preferentially repaired by normal cells and whether the radiosensitivity of CS cells can be explained by a defect in this process. They found that ionizing radiation-induced damage was repaired more rapidly in the transcriptionally active metallothionein IIA (MTIIA) gene than in the inactive MTIIB gene or in the genome overall in normal cells as a result of faster repair on the transcribed strand of MTIIA. Cells of the radiosensitive CS strain CS1AN are completely defective in this strand-selective repair of ionizing radiation-induced damage, although their overall repair rate appears normal. CS3BE cells, which are intermediate in radiosensitivity, do exhibit more rapid repair of the transcribed strand but at a reduced rate compared to normal cells. Xeroderma pigmentosum complementation group A cells, which are hypersensitive to UV light because of a defect in the nucleotide excision repair pathway but do not show increased sensitivity to ionizing radiation, preferentially repair ionizing radiation-induced damage on the transcribed strand of MTIIA. Thus, the ability to rapidly repair ionizing radiation-induced damage in actively transcribing genes correlates with cell survival. The results extend the generality of preferential repair in active genes to include damage other than bulky lesions

  11. DNA Double Strand Break Response and Limited Repair Capacity in Mouse Elongated Spermatids

    Directory of Open Access Journals (Sweden)

    Emad A. Ahmed

    2015-12-01

    Full Text Available Spermatids are extremely sensitive to genotoxic exposures since during spermiogenesis only error-prone non homologous end joining (NHEJ repair pathways are available. Hence, genomic damage may accumulate in sperm and be transmitted to the zygote. Indirect, delayed DNA fragmentation and lesions associated with apoptotic-like processes have been observed during spermatid elongation, 27 days after irradiation. The proliferating spermatogonia and early meiotic prophase cells have been suggested to retain a memory of a radiation insult leading later to this delayed fragmentation. Here, we used meiotic spread preparations to localize phosphorylate histone H2 variant (γ-H2AX foci marking DNA double strand breaks (DSBs in elongated spermatids. This technique enabled us to determine the background level of DSB foci in elongated spermatids of RAD54/RAD54B double knockout (dko mice, severe combined immunodeficiency SCID mice, and poly adenosine diphosphate (ADP-ribose polymerase 1 (PARP1 inhibitor (DPQ-treated mice to compare them with the appropriate wild type controls. The repair kinetics data and the protein expression patterns observed indicate that the conventional NHEJ repair pathway is not available for elongated spermatids to repair the programmed and the IR-induced DSBs, reflecting the limited repair capacity of these cells. However, although elongated spermatids express the proteins of the alternative NHEJ, PARP1-inhibition had no effect on the repair kinetics after IR, suggesting that DNA damage may be passed onto sperm. Finally, our genetic mutant analysis suggests that an incomplete or defective meiotic recombinational repair of Spo11-induced DSBs may lead to a carry-over of the DSB damage or induce a delayed nuclear fragmentation during the sensitive programmed chromatin remodeling occurring in elongated spermatids.

  12. Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin

    International Nuclear Information System (INIS)

    Chiolo, Irene; Tang, Jonathan; Georgescu, Walter; Costes, Sylvain V.

    2013-01-01

    Repair of double strand breaks (DSBs) is essential for cell survival and genome integrity. While much is known about the molecular mechanisms involved in DSB repair and checkpoint activation, the roles of nuclear dynamics of radiation-induced foci (RIF) in DNA repair are just beginning to emerge. Here, we summarize results from recent studies that point to distinct features of these dynamics in two different chromatin environments: heterochromatin and euchromatin. We also discuss how nuclear architecture and chromatin components might control these dynamics, and the need of novel quantification methods for a better description and interpretation of these phenomena. These studies are expected to provide new biomarkers for radiation risk and new strategies for cancer detection and treatment

  13. Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin

    Energy Technology Data Exchange (ETDEWEB)

    Chiolo, Irene; Tang, Jonathan; Georgescu, Walter; Costes, Sylvain V.

    2013-10-01

    Repair of double strand breaks (DSBs) is essential for cell survival and genome integrity. While much is known about the molecular mechanisms involved in DSB repair and checkpoint activation, the roles of nuclear dynamics of radiation-induced foci (RIF) in DNA repair are just beginning to emerge. Here, we summarize results from recent studies that point to distinct features of these dynamics in two different chromatin environments: heterochromatin and euchromatin. We also discuss how nuclear architecture and chromatin components might control these dynamics, and the need of novel quantification methods for a better description and interpretation of these phenomena. These studies are expected to provide new biomarkers for radiation risk and new strategies for cancer detection and treatment.

  14. Silymarin protects epidermal keratinocytes from ultraviolet radiation-induced apoptosis and DNA damage by nucleotide excision repair mechanism.

    Directory of Open Access Journals (Sweden)

    Santosh K Katiyar

    Full Text Available Solar ultraviolet (UV radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum, inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells.

  15. Microdosimetrical calculations of the rate of repairable DNA - double strand breaks based on a model for the interpretation of experiments with different doses and radiation qualities

    International Nuclear Information System (INIS)

    Rosemann, M.; Regel, K.

    1990-01-01

    When comparing various DNA injuries induced by radiation double breaks were shown to play peculiar role in subsequent cell changes such as inactivation, aberrations, mutations and transformations. However it was proved that significant part of radiation-induced double breaks could be repaied within cell. 3 refs

  16. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    Directory of Open Access Journals (Sweden)

    Silvia Sterpone

    2010-01-01

    Full Text Available It is well known that ionizing radiation (IR can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER. In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  17. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair.

    Science.gov (United States)

    Sterpone, Silvia; Cozzi, Renata

    2010-07-25

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  18. Radiation-induced glycoside bond breaking in cellulose methyl ethers

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Boltromeyuk, V.V.; Kovalenko, N.I.; Shadyro, O.I.

    1988-01-01

    Radiation-induced destruction of cellulose methyl ethers of different degree of esterification in aqueous solutions with and without acceptors: (N 2 O, O 2 , H 2 O + , Co(2), Cu(2)) is investigated. It is established that OH radicals make main contribution into radiolytic transformations of cellulose ethers in aqueous solutions. Reactions of radicals with free valency on carbon atoms containing secondary nonsubstituted hydroxyl groups lead also to glycoside bond breaking besides the reaction of β-fragmentation and hydrolysis of radicals with an unpaired electron localized near C 1 , C 4 , C 5 aroms

  19. Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells.

    Science.gov (United States)

    Scanlon, Susan E; Scanlon, Christine D; Hegan, Denise C; Sulkowski, Parker L; Glazer, Peter M

    2017-06-01

    The heavy metal nickel is a known carcinogen, and occupational exposure to nickel compounds has been implicated in human lung and nasal cancers. Unlike many other environmental carcinogens, however, nickel does not directly induce DNA mutagenesis, and the mechanism of nickel-related carcinogenesis remains incompletely understood. Cellular nickel exposure leads to signaling pathway activation, transcriptional changes and epigenetic remodeling, processes also impacted by hypoxia, which itself promotes tumor growth without causing direct DNA damage. One of the mechanisms by which hypoxia contributes to tumor growth is the generation of genomic instability via down-regulation of high-fidelity DNA repair pathways. Here, we find that nickel exposure similarly leads to down-regulation of DNA repair proteins involved in homology-dependent DNA double-strand break repair (HDR) and mismatch repair (MMR) in tumorigenic and non-tumorigenic human lung cells. Functionally, nickel induces a defect in HDR capacity, as determined by plasmid-based host cell reactivation assays, persistence of ionizing radiation-induced DNA double-strand breaks and cellular hypersensitivity to ionizing radiation. Mechanistically, we find that nickel, in contrast to the metalloid arsenic, acutely induces transcriptional repression of HDR and MMR genes as part of a global transcriptional pattern similar to that seen with hypoxia. Finally, we find that exposure to low-dose nickel reduces the activity of the MLH1 promoter, but only arsenic leads to long-term MLH1 promoter silencing. Together, our data elucidate novel mechanisms of heavy metal carcinogenesis and contribute to our understanding of the influence of the microenvironment on the regulation of DNA repair pathways. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. The nature of radiolesions in deoxyribonucleic acid and their repair

    International Nuclear Information System (INIS)

    Moustacchi, E.

    1976-01-01

    The nature of different damages induced by ionizing radiations in DNA is described. The main lesions are single strand breaks, double strands breaks and base modifications. The principal enzymatic repair systems are recalled [fr

  1. The relationship of transcription and repair of radioinduced DNA damage

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.; Igusheva, O.A.

    1997-01-01

    The data are discussed which has become a basement of such important findings as involvement of transcription into repair or existence of transcription-coupling repair factors. Thymine glycols which are appear under ionizing radiation exposure, are repaired preferentially in transcribed DNA. In present review the preferential repair of ionizing radiation-induced singlestrand breaks (SSBa) in transcribed DNA of human cells. Discontinuous distribution of DNA repair along hole genome has a grate role in biological processes

  2. Compound Poisson Processes and Clustered Damage of Radiation Induced DNA Double Strand Breaks

    International Nuclear Information System (INIS)

    Gudowska-Nowak, E.; Ritter, S.; Taucher-Scholz, G.; Kraft, G.

    2000-01-01

    Recent experimental data have demonstrated that DNA damage induced by densely ionizing radiation in mammalian cells is distributed along the DNA molecule in the form of clusters. The principal constituent of DNA damage are double-strand breaks (DSB) which are formed when the breaks occur in both DNA strands and are directly opposite or separated by only a few base pairs. DSBs are believed to be most important lesions produced in chromosomes by radiation; interaction between DSBs can lead to cell killing, mutation or carcinogenesis. The paper discusses a model of clustered DSB formation viewed in terms of compound Poisson process along with the predictive essay of the formalism in application to experimental data. (author)

  3. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Ifigeneia V. Mavragani

    2017-07-01

    Full Text Available Cellular effects of ionizing radiation (IR are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs, single strand breaks (SSBs and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1 repair resistant, increasing genomic instability (GI and malignant transformation and (2 can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity. Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.

  4. Relation between four types of radiation damage and induced repair

    International Nuclear Information System (INIS)

    Radar, M.L.

    1977-08-01

    Four strains of Escherichia coli were exposed to uv and gamma radiation. Procedures are described for mutational studies, classification of revertants, inhibition of postirradiation DNA degradation and radioresistance. Comparisons were made of induction of the error-prone repair (epr) system with four mutagens; uv radiation, near uv radiation, gamma radiation, and DNA-protein crosslinks. An increase in the number of mutations was shown in every case. The observation that induction of mutagenesis, induction of inhibition of post-irradiation DNA degradation, and induction of radioresistance are closely parallel phenomena led to the investigation of the possibility that DNA-protein crosslinks which were known mutagens were also inducers of the epr system. The significance of the results is discussed

  5. The effects of radioprotective agents on the radiation-induced DNA single strand breaks

    International Nuclear Information System (INIS)

    Rhiu, Sung Ryul; Ko, Kyung Hwan; Jung, In Yong; Cho, Chul Ku; Kim, Tae Hwan; Park, Woo Wiun; Kim, Sung Ho; Ji, Young Hoon; Kim, Kyung Jung; Bang, Hio Chang; Jung, Young Suk; Choi, Moon Sik

    1992-04-01

    With the increased use of atomic energy in science, industry, medicine and public power production, the probability of nuclear accidents certainly appears to be on the increase. Therefore, early medical diagnosis and first-aid are needed urgently to establish an efficient treatment. We carried out the studies of radiation protector such as DDC, MEA, WR-2721 and variety of decontaminator with a view to establishing the protective measure and diagnostic standards for safety of worker and neighbors living around the radiation area in case of occurring the accidental contamination. In this experiment, we examined radiation-induced DNA single strand breaks as one of the study on molecular biology of the response of cells to radiation because an understanding of the radiation-induced damage in molecular level would add to our knowledge of radiation protection and treatment. (Author)

  6. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing.

    Science.gov (United States)

    Rübe, Claudia E; Grudzenski, Saskia; Kühne, Martin; Dong, Xiaorong; Rief, Nicole; Löbrich, Markus; Rübe, Christian

    2008-10-15

    Radiotherapy is an effective cancer treatment, but a few patients suffer severe radiation toxicities in neighboring normal tissues. There is increasing evidence that the variable susceptibility to radiation toxicities is caused by the individual genetic predisposition, by subtle mutations, or polymorphisms in genes involved in cellular responses to ionizing radiation. Double-strand breaks (DSB) are the most deleterious form of radiation-induced DNA damage, and DSB repair deficiencies lead to pronounced radiosensitivity. Using a preclinical mouse model, the highly sensitive gammaH2AX-foci approach was tested to verify even subtle, genetically determined DSB repair deficiencies known to be associated with increased normal tissue radiosensitivity. By enumerating gammaH2AX-foci in blood lymphocytes and normal tissues (brain, lung, heart, and intestine), the induction and repair of DSBs after irradiation with therapeutic doses (0.1-2 Gy) was investigated in repair-proficient and repair-deficient mouse strains in vivo and blood samples irradiated ex vivo. gammaH2AX-foci analysis allowed to verify the different DSB repair deficiencies; even slight impairments caused by single polymorphisms were detected similarly in both blood lymphocytes and solid tissues, indicating that DSB repair measured in lymphocytes is valid for different and complex organs. Moreover, gammaH2AX-foci analysis of blood samples irradiated ex vivo was found to reflect repair kinetics measured in vivo and, thus, give reliable information about the individual DSB repair capacity. gammaH2AX analysis of blood and tissue samples allows to detect even minor genetically defined DSB repair deficiencies, affecting normal tissue radiosensitivity. Future studies will have to evaluate the clinical potential to identify patients more susceptible to radiation toxicities before radiotherapy.

  7. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    OpenAIRE

    Sterpone, Silvia; Cozzi, Renata

    2010-01-01

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to de...

  8. Coalescence of DNA Double Strand Breaks Induced by Galactic Cosmic Radiation is Modulated by Genetics in 15 Inbred Strains of Mice

    Science.gov (United States)

    Penninckx, Sebastien; Ray, Shayoni; Staatz, Kevin; Degorre, Charlotte; Guiet, Elodie; Viger, Louise; Snijders, Antoine M.; Mao, Jian-Hua; Karpen, Gary; Costes, Sylvain V.

    2018-01-01

    In this manuscript we address the challenges associated with the ability to predict radiation sensitivity associated with exposure to either cosmic radiation or X-rays in a population study, by monitoring DNA damage sensing protein 53BP1 forming small nuclear radiation-induced foci (RIF) as a surrogate biomarker of DNA double strand breaks (DSB). 76 primary skin fibroblasts were isolated from 10 collaborative cross strains and five reference inbred mice (C57Bl/6, BALB/CByJ, B6C3, C3H and CBA/CaJ) and exposed to three different charged nuclei of increasing LET (350 MeV/n Si, 350 MeV/n Ar and 600 MeV/n Fe) and X-ray. Our data brings strong evidence against the classic "contact-first" model where DSBs are assumed to be immobile and repaired at the lesion site. In contrast, our model suggests nearby DSBs move into single repair unit characterized by large RIF before the repair machinery kicks in. Such model has the advantage of being much more efficient molecularly but is poorly suited to deal with cosmic radiation, where energy is concentrated along the particle trajectory, inducing a large density of DSBs along each particle track. In accordance with this model, RIF quantification after X-ray exposition showed a saturated dose response for early time points post-irradiation for all strains. Similarly, the high-LET response showed that RIF number matched the number of track per cell, not the number of expected DSB per cell (1). At the temporal level, we noted that the percentage of unrepaired high-LET tracks over a 48 hour time-course increased with LET, confirming that the DNA repair process becomes more difficult as more DSB coalesce into single RIF. There was also good agreement between persistent RIF levels measured in-vitro in the primary skin cultures and survival levels of T-cells and B-cells collected in blood samples from 10 CC strains 24 hours after 0.1 Gy whole-body dose of X-ray. This suggests that persistent RIF 24 hour post-IR is a good surrogate in

  9. Radiation-induced DNA damage and cellular lethality

    International Nuclear Information System (INIS)

    Sakai, K.; Okada, S.

    1984-01-01

    Radiation-induced DNA scissions and their repair were investigated in mammalian cells using an alkaline separation method. DNA breaks in mouse L5178Y cells and Chinese hamster V79 cells were grouped into three in terms of their repair profile; fast-reparable breaks (FRBs; T1/2 = 5 min), slow-reparable breaks (SRBs; T1/2 = 70 min) and non-reparable breaks (NRBs). The three types of DNA lesions were studied under conditions where cellular radiosensitivity was modified. The authors obtained the following results: 1. Cell cycle fluctuation: L5178Y showed maximum sensitivity at M and G/sub 1/-S boundary, and minimum sensitivity at G/sub 1/ and late S. Cycle dependency was not found for FRBs or SRBs, but NRBs showed bimodal fluctuation with peaks at M and G/sub 1/-S, and with bottoms at G/sub 1/ and late S. 2. Different sensitivity of L5178Y and V79: L5178Y cells were more sensitive to X-rays (D/sub ο/ = 0.9 Gy) than V79 (D/sub ο/ = 1.8 Gy). The amount of FRBs or SRBs was identical in the two cell lines. However, the amount of NRBs in L5178Y was greater than that in V79. 3. Split dose irradiation: The time interval between two doses resulted in a gradual decrease of NRBs. The time course of the decrease was similar to the split dose recovery in terms of cell death. The parallel relationship between NRBs and cell killing implies that NRBs could play an important role in radiation-induced cell death

  10. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR-induced

  11. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny

    Directory of Open Access Journals (Sweden)

    Leyla Vahidi Ferdousi

    2014-11-01

    Full Text Available The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs.

  12. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny.

    Science.gov (United States)

    Vahidi Ferdousi, Leyla; Rocheteau, Pierre; Chayot, Romain; Montagne, Benjamin; Chaker, Zayna; Flamant, Patricia; Tajbakhsh, Shahragim; Ricchetti, Miria

    2014-11-01

    The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs. Copyright © 2014. Published by Elsevier B.V.

  13. DNA polymerase I-mediated repair of 365 nm-induced single-strand breaks in the DNA of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Ley, R D; Sedita, B A; Boye, E [Argonne National Lab., Ill. (USA)

    1978-03-01

    Irradiation of closed circular phage lambda DNA in vivo at 365 nm results in the induction of single-strand breaks and alkali-labile lesions at rates of 1.1 x 10/sup -14/ and 0.2 x 10/sup -14//dalton/J/m/sup 2/, respectively. The sum of the induction rates is similar to the rate of induction of single-strand breaks plus alkali-labile lesions (1 x 10/sup -14//dalton/J/m/sup 2/) observed in the E. coli genome. Postirradiation incubation of wild-type cells in buffer results in rapid repair of the breaks (up to 80% repaired in 10 min). No repair was observed in a DNA polymerase I-deficient mutant of E.coli.

  14. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    International Nuclear Information System (INIS)

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-01-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO 3 ). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  15. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate.

    Science.gov (United States)

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO(3)). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    Energy Technology Data Exchange (ETDEWEB)

    Bajinskis, Ainars, E-mail: ainars.bajinskis@gmt.su.se [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden); Olsson, Gunilla; Harms-Ringdahl, Mats [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden)

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO{sub 3}). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  17. Aging impairs double-strand break repair by homologous recombination in Drosophila germ cells.

    Science.gov (United States)

    Delabaere, Laetitia; Ertl, Henry A; Massey, Dashiell J; Hofley, Carolyn M; Sohail, Faraz; Bienenstock, Elisa J; Sebastian, Hans; Chiolo, Irene; LaRocque, Jeannine R

    2017-04-01

    Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double-strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error-free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I-SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR-white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Break-induced ATR and Ddb1-Cul4(Cdt)² ubiquitin ligase-dependent nucleotide synthesis promotes homologous recombination repair in fission yeast

    DEFF Research Database (Denmark)

    Moss, Jennifer; Tinline-Purvis, Helen; Walker, Carol A

    2010-01-01

    Nucleotide synthesis is a universal response to DNA damage, but how this response facilitates DNA repair and cell survival is unclear. Here we establish a role for DNA damage-induced nucleotide synthesis in homologous recombination (HR) repair in fission yeast. Using a genetic screen, we found...... the Ddb1-Cul4(Cdt)² ubiquitin ligase complex and ribonucleotide reductase (RNR) to be required for HR repair of a DNA double-strand break (DSB). The Ddb1-Cul4(Cdt)² ubiquitin ligase complex is required for degradation of Spd1, an inhibitor of RNR in fission yeast. Accordingly, deleting spd1(+) suppressed...

  19. Molecular biological mechanisms I. DNA repair

    International Nuclear Information System (INIS)

    Friedl, A.A.

    2000-01-01

    Cells of all living systems possess a variety of mechanisms that allow to repair spontaneous and exogeneously induced DNA damage. DNA repair deficiencies may invoke enhanced sensitivity towards DNA-damaging agents such as ionizing radiation. They may also enhance the risk of cancer development, both spontaneously or after induction. This article reviews several DNA repair mechanisms, especially those dealing with DNA double-strand breaks, and describes hereditary diseases associated with DNA repair defects. (orig.) [de

  20. Biochemical studies of DNA strand break repair and molecular characterization of mei-41, a gene involved in DNA break repair

    International Nuclear Information System (INIS)

    Oliveri, D.R.

    1989-01-01

    The ability to repair X-irradiation induced single-strand DNA breaks was examined in mutagen-sensitive mutants of Drosophila melanogaster. This analysis demonstrated that examined stocks possess a normal capacity to repair X-ray induced single-strand breaks. One of the mutants in this study, mei-41, has been shown to be involved in a number of DNA metabolizing functions. A molecular characterization of this mutant is presented. A cDNA hybridizing to genomic DNA both proximal and distal to a P element inducing a mei-41 mutation was isolated from both embryonic and adult female recombinant lambda phage libraries. A 2.2 kilobase embryonic cDNA clone was sequenced; the sequence of an open reading frame was identified which would predict a protein of 384 amino acids with a molecular weight of 43,132 daltons. An examination of homologies to sequences in protein and nucleic acid data bases revealed no sequences with significant homology to mei-41, however, two potential Zinc-finger domains were identified. Analysis of RNA hybridizing to the embryonic cDNA demonstrated the existence of a major 2.2 kilobase transcript expressed primarily in embryos and adult flies. An examination of the transcription of this gene in mei-41 mutants revealed significant variation from wild-type, an indication that the embryonic cDNA does represent a mei-41 transcript. Expression in tissues from adult animals demonstrated that the 2.2 kilobase RNA is expressed primarily in reproductive tissues. A 3.8kb transcript is the major species of RNA in the adult head and thorax. Evidence is presented which implies that expression of the mei-41 gene is strongly induced by exposure of certain cells to mutagens

  1. An alternative mechanism for radioprotection by dimethyl sulfoxide. Possible facilitation of DNA double-strand break repair

    International Nuclear Information System (INIS)

    Kashino, Genro; Liu, Yong; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Yuko; Ono, Koji; Tano, Keizo; Watanabe, Masami

    2010-01-01

    The radioprotective effects of dimethyl sulfoxide (DMSO) have been known for many years, and the suppression of hydroxyl (OH) radicals induced by ionizing radiation has been thought to be the main cause of this effect. However, the DMSO concentration used was very high, and might be toxic, in earlier studies. In the present study, we administered a lower, non-toxic concentration (0.5%, id est (i.e.), 64 mM) of DMSO before irradiation and examined its radioprotective effects. Colony formation assay and micronucleus assay showed significant radioprotective effects in Chinese hamster ovary (CHO), but not in xrs5, which is defective in the repair function of DNA double-strand breaks. The levels of phosphorylated H2AX and the formation of 53BP1 foci 15 minutes after irradiation, which might reflect initial DNA double-strand breaks, in DMSO-treated CHO cells were similar to those in non-treated cells, suggesting that the radioprotective effects were not attributable to the suppression of general indirect action in the lower concentration of DMSO. On the other hand, 2 hours after irradiation, the average number of 53BP1 foci, which might reflect residual DNA double-strand breaks, was significantly decreased in DMSO-treated CHO cells compared to non-treated cells. The results indicated that low concentration of DMSO exerts radioprotective effects through the facilitation of DNA double-strand break repair rather than through the suppression of indirect action. (author)

  2. An alternative mechanism for radioprotection by dimethyl sulfoxide; possible facilitation of DNA double-strand break repair.

    Science.gov (United States)

    Kashino, Genro; Liu, Yong; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Yuko; Ono, Koji; Tano, Keizo; Watanabe, Masami

    2010-01-01

    The radioprotective effects of dimethyl sulfoxide (DMSO) have been known for many years, and the suppression of hydroxyl (OH) radicals induced by ionizing radiation has been thought to be the main cause of this effect. However, the DMSO concentration used was very high, and might be toxic, in earlier studies. In the present study, we administered a lower, non-toxic concentration (0.5%, i.e., 64 mM) of DMSO before irradiation and examined its radioprotective effects. Colony formation assay and micronucleus assay showed significant radioprotective effects in CHO, but not in xrs5, which is defective in the repair function of DNA double-strand breaks. The levels of phosphorylated H2AX and the formation of 53BP1 foci 15 minutes after irradiation, which might reflect initial DNA double-strand breaks, in DMSO-treated CHO cells were similar to those in non-treated cells, suggesting that the radioprotective effects were not attributable to the suppression of general indirect action in the lower concentration of DMSO. On the other hand, 2 hours after irradiation, the average number of 53BP1 foci, which might reflect residual DNA double-strand breaks, was significantly decreased in DMSO-treated CHO cells compared to non-treated cells. The results indicated that low concentration of DMSO exerts radioprotective effects through the facilitation of DNA double-strand break repair rather than through the suppression of indirect action.

  3. Influence of DNA conformation on radiation-induced single-strand breaks

    International Nuclear Information System (INIS)

    Barone, F.; Belli, M.; Mazzei, F.

    1994-01-01

    We performed experiments on two DNA fragments of about 300 bp having different conformation to test whether radiation-induced single-strand breakage is dependent on DNA conformation. Breakage analysis was carried out by denaturing polyacrylamide gel electrophoresis, which allows determination of the broken site at single nucleotide resolution. We found uniform cutting patterns in B-form regions. On the contrary, X- or γ-irradiation of curved fragments of kinetoplast DNA showed that the distribution of single-strand breaks was not uniform along the fragment, as the cleavage pattern was modulated in phase with the runs of A-T pairs. This modulation likely reflected the reduced accessibility of the sites which on hydroxyl-radical attack give rise to strand breaks. The cleavage pattern was phased with the runs of A-T pairs. Moreover, the overall yield of strand breaks was considerably lower in curved DNA fragments than in those with extended straight regions. The conformation effect found here indicates that the cleavage pattern reflects the fine structural features of DNA. (orig./MG)

  4. Damage to plasmid DNA produced by 60Co-gamma radiation and subsequent repair processes in E. coli with and without SOS induction

    International Nuclear Information System (INIS)

    Bien, M.

    1986-01-01

    This study was carried out to provide information on the question as to whether radiation-induced separation of double-stranded DNA in E. coli is followed by repair processes leading to the formation of replicable material. For the detection of those double-strand breaks, E. coli was first transformed using enzymatically linearised dBR 322-DNA. This served as a reference standard to compare the transformations using radiated DNA. DNA was either exposed to increasing doses of 60 Co-gamma radiation or separated into one oc-fraction and one lin-fraction following exposure to 30 Gy. The DNA samples thus obtained were then used to transform three different strains of E. coli (wild strain, SFX, SFXrecA - ). In order to improve the repair yield, the cells were additionally SOS-induced using ultraviolet radiation. The mutation rates were a measure of the number of errors occurring during the various repair processes. Restriction analysis was carried out to characterise the resulting mutants in greater detail. (orig./MG) [de

  5. In vivo repair of DNA damage induced by X-rays in the early stages of mouse fertilization, and the influence of maternal PARP1 ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pacchierotti, F., E-mail: francesca.pacchierotti@enea.it [Unit of Radiation Biology and Human Health, ENEA CR Casaccia, Via Anguillarese 301, 00123 Rome (Italy); Ranaldi, R. [Unit of Radiation Biology and Human Health, ENEA CR Casaccia, Via Anguillarese 301, 00123 Rome (Italy); Derijck, A.A.; Heijden, G.W. van der; Boer, P. de [Radboud University Nijmegen Medical Centre, Department of Obstetrics and Gynaecology, P.O. Box 9101, 6500 HB Nijmegen (Netherlands)

    2011-09-01

    Highlights: {yields} We measure {gamma}H2AX and chromosome aberrations in mouse zygotes irradiated in vivo. {yields} We compare effects between zygotes obtained from wild type or Parp1 knockout females. {yields} The rate of chromosome aberrations is as high as that previously induced in vitro. {yields} The rate of radiation-induced {gamma}H2AX foci is lower than that measured in other cells. {yields} Without Parp1 there are more {gamma}H2AX foci but chromosome aberration rate is unaffected. - Abstract: The early pronucleus stage of the mouse zygote has been characterised in vitro as radiosensitive, due to a high rate of induction of chromosome-type chromosome abnormalities (CA). We have investigated the repair of irradiation induced double strand DNA breaks in vivo by {gamma}H2AX foci and first cleavage metaphase analysis. Breaks were induced in sperm and in the early zygote stages comprising sperm chromatin remodelling and early pronucleus expansion. Moreover, the role of PARP1 in the formation and repair of spontaneous and radiation-induced double strand breaks in the zygote was evaluated by comparing observations in C57BL/6J and PARP1 genetically ablated females. The results confirmed in vivo that the rate of chromosome aberration induction by X-rays was approximately 3-fold higher in the zygote than in mouse lymphocytes. This finding was related to a diminished efficiency of double strand break signalling, as shown by a lower rate of {gamma}H2AX radiation-induced foci compared to that measured in most other somatic cell types. The spontaneous frequency of CA in PARP1 depleted zygotes was slightly but significantly higher than in wild type zygotes. Also, these zygotes showed some impairment of the radiation-induced DNA Damage Response when exposed closer to the start of S-phase, revealed by a higher number of {gamma}H2AX foci and a longer cell cycle delay. The rate of chromosome aberrations, however, was not elevated over that of wild type zygotes, possibly

  6. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    OpenAIRE

    Jette, Nicholas; Lees-Miller, Susan P.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemi...

  7. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    International Nuclear Information System (INIS)

    Wessendorf, Petra; Vijg, Jan; Nussenzweig, André; Digweed, Martin

    2014-01-01

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin

  8. Deficiency of the DNA repair protein nibrin increases the basal but not the radiation induced mutation frequency in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wessendorf, Petra [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Vijg, Jan [Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461 (United States); Nussenzweig, André [Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, 37 Convent Drive, Room 1106, Bethesda, MD 20892 (United States); Digweed, Martin, E-mail: martin.digweed@charite.de [Institute of Medical and Human Genetics, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2014-11-15

    Highlights: • lacZ mutant frequencies measured in vivo in mouse models of radiosensitive Nijmegen Breakage Syndrome. • Spontaneous mutation frequencies are increased in lymphatic tissue due to Nbn mutation. • Single base transitions, not deletions, dominate the mutation spectrum. • Radiation induced mutation frequencies are not increased due to Nbn mutation. - Abstract: Nibrin (NBN) is a member of a DNA repair complex together with MRE11 and RAD50. The complex is associated particularly with the repair of DNA double strand breaks and with the regulation of cell cycle check points. Hypomorphic mutation of components of the complex leads to human disorders characterised by radiosensitivity and increased tumour occurrence, particularly of the lymphatic system. We have examined here the relationship between DNA damage, mutation frequency and mutation spectrum in vitro and in vivo in mouse models carrying NBN mutations and a lacZ reporter plasmid. We find that NBN mutation leads to increased spontaneous DNA damage in fibroblasts in vitro and high basal mutation rates in lymphatic tissue of mice in vivo. The characteristic mutation spectrum is dominated by single base transitions rather than the deletions and complex rearrangements expected after abortive repair of DNA double strand breaks. We conclude that in the absence of wild type nibrin, the repair of spontaneous errors, presumably arising during DNA replication, makes a major contribution to the basal mutation rate. This applies also to cells heterozygous for an NBN null mutation. Mutation frequencies after irradiation in vivo were not increased in mice with nibrin mutations as might have been expected considering the radiosensitivity of NBS patient cells in vitro. Evidently apoptosis is efficient, even in the absence of wild type nibrin.

  9. DNA double-strand breaks as potential indicators for the biological effects of ionising radiation exposure from cardiac CT and conventional coronary angiography: a randomised, controlled study

    Energy Technology Data Exchange (ETDEWEB)

    Geisel, Dominik; Zimmermann, Elke; Rief, Matthias; Greupner, Johannes; Hamm, Bernd [Charite Medical School, Department of Radiology, Berlin (Germany); Laule, Michael; Knebel, Fabian [Charite Medical School, Department of Cardiology, Berlin (Germany); Dewey, Marc [Charite Medical School, Department of Radiology, Berlin (Germany); Charite, Institut fuer Radiologie, Berlin (Germany)

    2012-08-15

    To prospectively compare induced DNA double-strand breaks by cardiac computed tomography (CT) and conventional coronary angiography (CCA). 56 patients with suspected coronary artery disease were randomised to undergo either CCA or cardiac CT. DNA double-strand breaks were assessed in fluorescence microscopy of blood lymphocytes as indicators of the biological effects of radiation exposure. Radiation doses were estimated using dose-length product (DLP) and dose-area product (DAP) with conversion factors for CT and CCA, respectively. On average there were 0.12 {+-} 0.06 induced double-strand breaks per lymphocyte for CT and 0.29 {+-} 0.18 for diagnostic CCA (P < 0.001). This relative biological effect of ionising radiation from CCA was 1.9 times higher (P < 0.001) than the effective dose estimated by conversion factors would have suggested. The correlation between the biological effects and the estimated radiation doses was excellent for CT (r = 0.951, P < 0.001) and moderate to good for CCA (r = 0.862, P < 0.001). One day after radiation, a complete repair of double-strand breaks to background levels was found in both groups. Conversion factors may underestimate the relative biological effects of ionising radiation from CCA. DNA double-strand break assessment may provide a strategy for individualised assessments of radiation. (orig.)

  10. Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment.

    Science.gov (United States)

    van Oorschot, Bregje; Granata, Giovanna; Di Franco, Simone; Ten Cate, Rosemarie; Rodermond, Hans M; Todaro, Matilde; Medema, Jan Paul; Franken, Nicolaas A P

    2016-10-04

    Radiotherapy is based on the induction of lethal DNA damage, primarily DNA double-strand breaks (DSB). Efficient DSB repair via Non-Homologous End Joining or Homologous Recombination can therefore undermine the efficacy of radiotherapy. By suppressing DNA-DSB repair with hyperthermia (HT) and DNA-PKcs inhibitor NU7441 (DNA-PKcsi), we aim to enhance the effect of radiation.The sensitizing effect of HT for 1 hour at 42°C and DNA-PKcsi [1 μM] to radiation treatment was investigated in cervical and breast cancer cells, primary breast cancer sphere cells (BCSCs) enriched for cancer stem cells, and in an in vivo human tumor model. A significant radio-enhancement effect was observed for all cell types when DNA-PKcsi and HT were applied separately, and when both were combined, HT and DNA-PKcsi enhanced radio-sensitivity to an even greater extent. Strikingly, combined treatment resulted in significantly lower survival rates, 2 to 2.5 fold increase in apoptosis, more residual DNA-DSB 6 h post treatment and a G2-phase arrest. In addition, tumor growth analysis in vivo showed significant reduction in tumor growth and elevated caspase-3 activity when radiation was combined with HT and DNA-PKcsi compared to radiation alone. Importantly, no toxic side effects of HT or DNA-PKcsi were found.In conclusion, inhibiting DNA-DSB repair using HT and DNA-PKcsi before radiotherapy leads to enhanced cytotoxicity in cancer cells. This effect was even noticed in the more radio-resistant BCSCs, which are clearly sensitized by combined treatment. Therefore, the addition of HT and DNA-PKcsi to conventional radiotherapy is promising and might contribute to more efficient tumor control and patient outcome.

  11. Repair in schizosaccharomyces pombe as measured by recovery from caffeine enhancement of radiation-induced lethality

    International Nuclear Information System (INIS)

    Gentner, N.E.; Werner, M.M.

    1975-01-01

    Inhibition of DNA repair by caffeine is manifested in Schizosaccharomyces pombe wild-type cells as an enhancement of UV- or γ-irradiation-induced lethality. The progress of DNA repair processes involving one or more caffeine-sensitive steps may be conveniently followed by measuring the concomitant decrease of this lethal enhancement effect. By measuring, during post-irradiation incubation, the ability of cells to overcome susceptibility to repair inhibition by caffeine, we have determined the time course and requirements for repair in S. pombe. Recovery began immediately and took 150-200 min after γ-irradiation and more than 500 min after UV-irradiation, for exposures which gave about 10% survival in the absence of caffeine. An incubation medium capable of supporting growth was required for caffeine-sensitive repair; no recovery occurred under liquid holding conditions. Survival curves after various recovery times indicated that a logarithmic phase cell population was homogeneous with respect to caffeine-sensitive repair of both UV- and γ-ray-induced damage. Recovery from caffeine inhibition was compared for cells of different physiological states (logarithmic and stationary phase); although the importance of the physiological state was not the same for the two types of radiation, recovery was found to occur more rapidly in the more radiation-resistant state, in each case. (orig.) [de

  12. In normal human fibroblasts variation in DSB repair capacity cannot be ascribed to radiation-induced changes in the localisation, expression or activity of major NHEJ proteins

    DEFF Research Database (Denmark)

    Kasten-Pisula, Ulla; Vronskaja, Svetlana; Overgaard, Jens

    2008-01-01

    in the activity of the DNA-PK complex induced upon irradiation. CONCLUSIONS: For normal human fibroblasts, the level or activity of NHEJ proteins measured prior to or after irradiation cannot be used to predict the DSB repair capacity or cellular radiosensitivity. Udgivelsesdato: 2008-Mar......BACKGROUND AND PURPOSE: The aim of the present study was to test whether for normal human fibroblasts the variation in double-strand break (DSB) repair capacity results from radiation-induced differences in localisation, expression or activity of major non-homologous end-joining (NHEJ) proteins....... MATERIALS AND METHODS: Experiments were performed with 11 normal human fibroblast strains AF01-11. NHEJ proteins were determined by Western blot and DNA-PK activity by pulldown-assay. RESULTS: The four NHEJ proteins tested (Ku70, Ku80, XRCC4 and DNA-PKcs) were found to be localised almost exclusively...

  13. Inhibiting the repair of DNA damage induced by gamma irradiation in rat thymocytes

    International Nuclear Information System (INIS)

    Smit, J.A.; Stark, J.H.

    1994-01-01

    This study assessed the ability of 11 established and potential radiosensitizing agents to retard the repair of radiation-induced DNA damage with a view to enhancing the immunosuppressive effects of in vivo lymphoid irradiation. The capability of irradiated rat thymocytes to repair DNA damage was assessed by an adaptation of the fluorimetric unwinding method. Three compounds, 3-aminobenzamide (3-AB), novobiocin and flavone-8-acetic acid (FAA), inhibited repair significantly. We also report the effect of low-dose irradiation combined with repair inhibitors on the relationship between DNA strand breaks, fragmentation, cell viability and use of nicotinamide adenine dinucleotide (NAD). DNA fragmentation was increased by 1 mM/l FAA, 1 mM/l novobiocin and 50 μM/l RS-61443 within 3 h of incubation. The latter two compounds also proved cytotoxic. All three drugs augmented the effect of ionizing radiation on the use of NAD. Of the agents investigated, FAA showed the most promise for augmenting the immunosuppressive action of irradiation at nontoxic, pharmacokinetically achievable concentrations. 33 refs., 1 fig., 2 tabs

  14. Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomita, Masanori

    2010-01-01

    Exposure to ionizing radiation and hyperthermia results in important biological consequences, e.g. cell death, chromosomal aberrations, mutations, and DNA strand breaks. There is good evidence that the nucleus, specifically cellular DNA, is the principal target for radiation-induced cell lethality. DNA double-strand breaks (DSBs) are considered to be the most serious type of DNA damage induced by ionizing radiation. On the other hand, verifiable mechanisms which can lead to heat-induced cell death are damage to the plasma membrane and/or inactivation of heat-labile proteins caused by protein denaturation and subsequent aggregation. Recently, several reports have suggested that DSBs can be induced after hyperthermia because heat-induced phosphorylated histone H2AX (γ-H2AX) foci formation can be observed in several mammalian cell lines. In mammalian cells, DSBs are repaired primarily through two distinct and complementary mechanisms: non-homologous end joining (NHEJ), and homologous recombination (HR) or homology-directed repair (HDR). DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) are key players in the initiation of DSB repair and phosphorylate and/or activate many substrates, including themselves. These phosphorylated substrates have important roles in the functioning of cell cycle checkpoints and in cell death, as well as in DSB repair. Apoptotic cell death is a crucial cell suicide mechanism during development and in the defense of homeostasis. If DSBs are unrepaired or misrepaired, apoptosis is a very important system which can protect an organism against carcinogenesis. This paper reviews recently obtained results and current topics concerning the role of DNA-PK and ATM in heat- or radiation-induced apoptotic cell death. (author)

  15. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  16. The influence of chromatin structure on the frequency of radiation-induced DNA strand breaks: a study using nuclear and nucleoid monolayers

    International Nuclear Information System (INIS)

    Ljungman, M.

    1991-01-01

    To assess the influence of chromatin structure on the frequency of radiation-induced DNA strand breaks, the alkaline unwinding technique was applied to nuclear and nucleoid monolayers. These chromatin substrates were prepared by treating human fibroblasts grown as monolayers with the nonionic detergent Triton X-100 and varying concentrations of cations. The chromatin structure was modified either by a stepwise removal of DNA-bound proteins by extraction in increasing concentrations of monovalent salt, or by the addition or deletion of mono- and divalent cations to condense or decondense the chromatin, respectively. It was found that the stepwise removal of DNA-bound proteins from the chromatin dramatically increased the frequency of radiation-induced DNA strand breaks. The DNA-bound proteins showed a qualitative difference in their ability to protect the DNA where proteins removed by salt concentrations above 1.0 M exerted the greatest protection. Furthermore, the frequency of radiation-induced DNA strand breaks was found to be 6 times lower in condensed chromatin than in decondensed chromatin and about 80 times lower than in protein-depleted chromatin. It is concluded that the presence of DNA-bound proteins and the folding of the chromatin into higher-order structures protect the DNA against radiation-induced strand breaks

  17. A role for small RNAs in DNA double-strand break repair

    DEFF Research Database (Denmark)

    Wei, W.; Ba, Z.; Wu, Y.

    2012-01-01

    Eukaryotes have evolved complex mechanisms to repair DNA double-strand breaks (DSBs) through coordinated actions of protein sensors, transducers, and effectors. Here we show that ∼21-nucleotide small RNAs are produced from the sequences in the vicinity of DSB sites in Arabidopsis and in human cells....... We refer to these as diRNAs for DSB-induced small RNAs. In Arabidopsis, the biogenesis of diRNAs requires the PI3 kinase ATR, RNA polymerase IV (Pol IV), and Dicer-like proteins. Mutations in these proteins as well as in Pol V cause significant reduction in DSB repair efficiency. In Arabidopsis, di...

  18. Radiation-chemical discussion on inverse dose-rate effect observed in radiation-induced strand breaks of plasmid DNA

    International Nuclear Information System (INIS)

    Masuda, Takahiro

    1994-01-01

    Experimental results of inverse dose-rate effect, so-called Kada Effects, which was published by Takakura and her coworkers on radiation-induced strand breaks of plasmid DNA in aerated aqueous solution, have been kinetically analyzed and discussed on the basis of radiation chemistry. the kinetic analysis indicates that there are two possible mechanisms; 1) equilibrium mixture of O 2 - and HO 2 is responsible for strand breaks of DNA, and 2) peroxyl radical produced from citrate is effective for the strand breaks. However, the detailed kinetic analysis revealed that the latter is improbable because unimolecular decay of the peroxyl radical must be assumed to be negligible for its participation despite fast decay of analogous organic peroxyl radicals. The analysis has also given 9.93±0.10 dm 3 mol -1 s -1 per nucleotide unit, which corresponds to 7.62 x 10 4 dm 3 mol -1 s -1 per DNA molecule, as the rate constant for the reaction of the equilibrium mixture with plasmid pBR 322 DNA. Furthermore the probability that the reaction of the mixture with a nucleotide unit of DNA leads to strand breaks was obtained to be 3.36 x 10 -3 for gamma-irradiated system and 1.98 x 10 -3 for beta-irradiated system, respectively. (author)

  19. Cellular repair and its importance for UV-induced mutations

    Energy Technology Data Exchange (ETDEWEB)

    Slamenova, D [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1975-01-01

    Current knowledge is briefly surveyed of the mechanism of the biological repair of injuries induced in DNA cells by the action of various factors, mainly ultraviolet radiation. Genetic loci determining the sensitivity of cells to UV radiation are defined and principal reparation processes are explained; excision repair is described more fully. The role of biological repair is discussed in view of UV-induced mutations in DNA cells.

  20. Repair of the double-strand breaks produced by /sup 125/I disintegrations in the DNA of micrococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D K [Atomic Energy of Canada Ltd., Chalk River, Ontario. Chalk River Nuclear Labs.

    1978-01-01

    Wild-type M. radiodurans and two radiosensitive mutants were used to study the lethal effects of /sup 125/I disintegrations in their DNA. The relative sensitivities of these three strains to inactivation by ..gamma..-radiation were reflected in their relative sensitivities to inactivation by /sup 125/I decay. The number of double-strand (ds) breaks in the DNA appeared to be similar at levels of ..gamma..-radiation and of /sup 125/I decay that reduced survival to 10%. All three strains of M. radiodurans rapidly repaired ds breaks produced in their DNA by either ..gamma..-radiation or /sup 125/I disintegrations. If one ds break per cell is a lethal event (Krisch. et al., 1975), cells of the three strains tested would die when they had left unrepaired one ds break out of an initial 45, 600 or 1800 ds breaks per single cell.

  1. Correlations of DNA strand breaks and their repair with cell survival following acute exposure to mercury(II) and X-rays

    International Nuclear Information System (INIS)

    Cantoni, O.; Costa, M.

    1983-01-01

    Alkaline elution analysis demonstrates that both HgCl 2 and X-rays result in a rapid induction of DNA single-strand breaks at acutely cytotoxic doses (HgCl 2 , 25-100 microM for 60 min; X-rays, 150-600 rads) in cultured Chinese hamster ovary cells. Cytotoxicity, as measured by cell-plating efficiency, correlates linearly with the level of DNA breakage induced by both agents (HgCl 2 , r . 0.97; X-rays, r . 0.99), although a substantial difference in axis intercepts of the two linear regression lines indicates that a higher level of DNA damage was required by X-rays as compared with HgCl 2 to produce an equivalent level of cell killing. DNA damage induced by X-rays was rapidly repaired such that within 1 hr following treatment the elution rate of DNA from treated cells resembled that obtained in untreated cultures. In contrast, DNA damage after Hg 2+ insult was not repaired, and further damage was evident following a similar 1-hr recovery period. Addition of noncytotoxic, non-DNA-damaging concentrations of HgCl 2 (10 microM) to cells 15-45 min following treatment with X-rays greatly inhibited the repair of the DNA strand breaks. Thus, although both HgCl 2 and X-rays induce rapid and striking single-strand breaks in the DNA, persistence of Hg 2+ in the cell can inhibit the repair of these breaks. The inhibition of DNA repair by HgCl 2 may explain why this agent is not severely mutagenic or carcinogenic despite its ability to induce an X-ray-like DNA damage and why a lower level of mercury-induced DNA damage, compared with that induced by X-rays, was required to produce an equivalent level of cell death

  2. Caffeine potentiates or protects against radiation-induced DNA and chromosomal damage in human lymphocytes depending on temperature and concentration

    International Nuclear Information System (INIS)

    Stoilov, L.M.; Mullenders, L.H.F.; Natarajan, A.T.

    1994-01-01

    The effect of caffeine on radiation-induced chromosomal aberrations and DNA strand breaks in unstimulated human lymphocytes was investigated. When present prior to and during the radiation exposure, caffeine treatment was found to cause either potentiation or protection against induction of chromosomal aberrations depending on the concentration and temperature. When the nucleoid sedimentation technique was applied, enhancement or reduction of radiation-induced DNA strand breaks by caffeine was also found to be dependent on temperature and caffeine concentration. It is proposed that caffeine, in addition to its suspected ability to influence DNA repair, can also influence the induction of DNA damage, leading to alterations in the yield of chromosomal aberrations

  3. Caffeine potentiates or protects against radiation-induced DNA and chromosomal damage in human lymphocytes depending on temperature and concentration

    Energy Technology Data Exchange (ETDEWEB)

    Stoilov, L.M. (Department of Molecular Genetics, Institute of Genetics, Sofia (Bulgaria)); Mullenders, L.H.F.; Natarajan, A.T. (J.A. Cohen Institute, Interuniversity Research Institute for Radiopathology and Radiation Protection, Leiden (Netherlands))

    1994-12-01

    The effect of caffeine on radiation-induced chromosomal aberrations and DNA strand breaks in unstimulated human lymphocytes was investigated. When present prior to and during the radiation exposure, caffeine treatment was found to cause either potentiation or protection against induction of chromosomal aberrations depending on the concentration and temperature. When the nucleoid sedimentation technique was applied, enhancement or reduction of radiation-induced DNA strand breaks by caffeine was also found to be dependent on temperature and caffeine concentration. It is proposed that caffeine, in addition to its suspected ability to influence DNA repair, can also influence the induction of DNA damage, leading to alterations in the yield of chromosomal aberrations.

  4. Reduction in DNA repair capacity following differentiation of murine proadipocytes

    International Nuclear Information System (INIS)

    Tofilon, P.J.; Meyn, R.E.

    1988-01-01

    It has been suggested that terminally differentiated mammalian cells have a decreased DNA repair capacity, compared with proliferating stem cells. To investigate this hypothesis, we have examined γ-ray-induced DNA strand breaks and their repair in the murine proadipocyte stem cell line 3T3-T. By exposure to human plasma, 3T3-T cells can be induced to undergo nonterminal and then terminal differentiation. DNA strand breaks were evaluated using the technique of alkaline elution. No difference was detected among stem, nonterminally differentiated, and terminally differentiated cells in the initial levels of radiation-induced DNA strand breaks. Each of the strand break dose responses increased as a linear function of γ-ray dose. The strand breaks induced by 4 Gy rejoined following biphasic kinetics for each cell type. At each time point examined after irradiation, however, the percentage of strand breaks that had not rejoined in terminally differentiated cells was three to six times greater than in stem cells. The rate of strand break rejoining in nonterminally differentiated cells was of an intermediate value between that of the stem and of the terminally differentiated cells. These results indicate that, at least for 3T3-T cells, differentiated cells have a reduced capacity for DNA repair

  5. Repair of exogenous DNA double-strand breaks promotes chromosome synapsis in SPO11-mutant mouse meiocytes, and is altered in the absence of HORMAD1.

    Science.gov (United States)

    Carofiglio, Fabrizia; Sleddens-Linkels, Esther; Wassenaar, Evelyne; Inagaki, Akiko; van Cappellen, Wiggert A; Grootegoed, J Anton; Toth, Attila; Baarends, Willy M

    2018-03-01

    Repair of SPO11-dependent DNA double-strand breaks (DSBs) via homologous recombination (HR) is essential for stable homologous chromosome pairing and synapsis during meiotic prophase. Here, we induced radiation-induced DSBs to study meiotic recombination and homologous chromosome pairing in mouse meiocytes in the absence of SPO11 activity (Spo11 YF/YF model), and in the absence of both SPO11 and HORMAD1 (Spo11/Hormad1 dko). Within 30 min after 5 Gy irradiation of Spo11 YF/YF mice, 140-160 DSB repair foci were detected, which specifically localized to the synaptonemal complex axes. Repair of radiation-induced DSBs was incomplete in Spo11 YF/YF compared to Spo11 +/YF meiocytes. Still, repair of exogenous DSBs promoted partial recovery of chromosome pairing and synapsis in Spo11 YF/YF meiocytes. This indicates that at least part of the exogenous DSBs can be processed in an interhomolog recombination repair pathway. Interestingly, in a seperate experiment, using 3 Gy of irradiation, we observed that Spo11/Hormad1 dko spermatocytes contained fewer remaining DSB repair foci at 48 h after irradiation compared to irradiated Spo11 knockout spermatocytes. Together, these results show that recruitment of exogenous DSBs to the synaptonemal complex, in conjunction with repair of exogenous DSBs via the homologous chromosome, contributes to homology recognition. In addition, the data suggest a role for HORMAD1 in DNA repair pathway choice in mouse meiocytes. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Effect of microwave and ionizing radiation on formation of DNA of repair foci in lymphocytes from cord blood; Vplyv mikrovlnneho a ionizacneho ziarenia na tvorbu DNA opravnych fokusov v lymfocytoch z pupocnikovej krvi

    Energy Technology Data Exchange (ETDEWEB)

    Durdik, M.; Markova, E.; Belyaev, I. [Slovenska akademia vied, Ustav experimentalnej onkologie, 83391 Bratislava (Slovakia)

    2013-04-16

    Different types of radiation are affecting us nowadays. Electromagnetic radiation which is produced mainly by mobile phones, Wi-fi and base stations is affecting us practically all of the time. Long term effects of this type of radiation are not fully examined. It is very important to know effects of radiation that influence us so much like electromagnetic radiation. DNA double strand breaks (DSBs) are the most deleterious types of DNA damage. Several proteins involved in DNA repair and DNA damage signaling have been shown to produce discrete foci in response to ionizing radiation. These foci are believed to co-localize to DSB and referred to as ionizing radiation-induced foci or DNA repair foci. Ionizing radiation is known to induce formation of radiation induced foci which are very hard to analyze exactly. That's why the second aim of this work was to compare two automatized systems for analysis of DNA repair foci, METAFER and ImageStream. (authors)

  7. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  8. Repair of γ-irradiation-induced DNA single-strand breaks in human bone marrow cells. Analysis of unfractionated and CD34+ cells using single-cell gel electrophoresis

    International Nuclear Information System (INIS)

    Lankinen, Maarit H.; Vilpo, Juhani A.

    1997-01-01

    Human bone marrow mononuclear cells (BMMNCs) were separated by density gradient centrifugation, and a subpopulation of progenitor cells was further isolated using anti-CD34-coated magnetic beads. The cells were irradiated with γ-rays (0.93-5.43 Gy) from a 137 Cs source. The extent of DNA damage, i.e., single-strand breaks (SSBs) and alkali-labile lesions of individual cells, was investigated using the alkaline single-cell gel electrophoresis technique. The irradiation resulted in a dose-dependent increase in DNA migration, reflecting the number of detectable DNA lesions. An approximately similar extent of SSB formation was observed in BMMNCs and CD34+ cells. Damage was repaired when the cells were incubated at 37C: a fast initial repair phase was followed by a slower rejoining of SSBs in both BMMNC and CD34+ cell populations. A significantly longer time was required to repair the lesions caused by 5.43 Gy than those caused by 0.93 Gy. In the present work we report, for the first time, the induction and repair of DNA SSBs at the level of single human bone marrow cells when exposed to ionizing radiation at clinically relevant doses. These data, together with our previous results with human blood granulocytes and lymphocytes, indicate an approximately similar extent of formation and repair of γ-irradiation-induced DNA SSBs in immature and mature human hematopoietic cells

  9. Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants.

    Science.gov (United States)

    Adams, Bret R; Golding, Sarah E; Rao, Raj R; Valerie, Kristoffer

    2010-04-02

    The DNA double-strand break (DSB) is the most toxic form of DNA damage. Studies aimed at characterizing DNA repair during development suggest that homologous recombination repair (HRR) is more critical in pluripotent cells compared to differentiated somatic cells in which nonhomologous end joining (NHEJ) is dominant. We have characterized the DNA damage response (DDR) and quality of DNA double-strand break (DSB) repair in human embryonic stem cells (hESCs), and in vitro-derived neural cells. Resolution of ionizing radiation-induced foci (IRIF) was used as a surrogate for DSB repair. The resolution of gamma-H2AX foci occurred at a slower rate in hESCs compared to neural progenitors (NPs) and astrocytes perhaps reflective of more complex DSB repair in hESCs. In addition, the resolution of RAD51 foci, indicative of active homologous recombination repair (HRR), showed that hESCs as well as NPs have high capacity for HRR, whereas astrocytes do not. Importantly, the ATM kinase was shown to be critical for foci formation in astrocytes, but not in hESCs, suggesting that the DDR is different in these cells. Blocking the ATM kinase in astrocytes not only prevented the formation but also completely disassembled preformed repair foci. The ability of hESCs to form IRIF was abrogated with caffeine and siRNAs targeted against ATR, implicating that hESCs rely on ATR, rather than ATM for regulating DSB repair. This relationship dynamically changed as cells differentiated. Interestingly, while the inhibition of the DNA-PKcs kinase (and presumably non-homologous endjoining [NHEJ]) in astrocytes slowed IRIF resolution it did not in hESCs, suggesting that repair in hESCs does not utilize DNA-PKcs. Altogether, our results show that hESCs have efficient DSB repair that is largely ATR-dependent HRR, whereas astrocytes critically depend on ATM for NHEJ, which, in part, is DNA-PKcs-independent.

  10. DNA repair in modeled microgravity: Double strand break rejoining activity in human lymphocytes irradiated with γ-rays

    International Nuclear Information System (INIS)

    Mognato, Maddalena; Girardi, Cristina; Fabris, Sonia; Celotti, Lucia

    2009-01-01

    Cell response to ionising radiation depends, besides on genetic and physiological features of the biological systems, on environmental conditions occurring during DNA repair. Many data showed that microgravity, experienced by astronauts during space flights or modeled on Earth, causes apoptosis, cytoskeletal alteration, cell growth inhibition, increased frequency of mutations and chromosome aberrations. In this study, we analysed the progression of the rejoining of double strand breaks (DSBs) in human peripheral blood lymphocytes (PBLs) irradiated with γ-rays and incubated in static condition (1g) or in modeled microgravity (MMG). γ-H2AX foci formation and disappearance, monitored during the repair incubation, showed that the kinetics of DSBs rejoining was different in the two gravity conditions. The fraction of foci-positive cells decreased slower in MMG than in 1g at 6 and 24 h after irradiation (P < 0.01) and the mean number of γ-H2AX foci per nucleus was significantly higher in MMG than in 1g at the same time-points (P < 0.001). In the same samples we determined apoptotic level and the rate of DSB rejoining during post-irradiation incubation. A significant induction of apoptosis was observed in MMG at 24 h after irradiation (P < 0.001), whereas at shorter times the level of apoptosis was slightly higher in MMG respect to 1g. In accordance with the kinetics of γ-H2AX foci, the slower rejoining of radiation-induced DSBs in MMG was observed by DNA fragmentation analyses during the repair incubation; the data of pulsed-field gel electrophoresis assay showed that the fraction of DNA released in the gel was significantly higher in PBL incubated in MMG after irradiation with respect to cells maintained in 1g. Our results provide evidences that MMG incubation during DNA repair delayed the rate of radiation-induced DSB rejoining, and increased, as a consequence, the genotoxic effects of ionising radiation.

  11. DNA repair in modeled microgravity: Double strand break rejoining activity in human lymphocytes irradiated with {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Mognato, Maddalena, E-mail: maddalena.mognato@unipd.it [Dipartimento di Biologia, Universita di Padova, via U. Bassi 58 B, 35121 Padova (Italy); Girardi, Cristina; Fabris, Sonia [Dipartimento di Biologia, Universita di Padova, via U. Bassi 58 B, 35121 Padova (Italy); Celotti, Lucia [Dipartimento di Biologia, Universita di Padova, via U. Bassi 58 B, 35121 Padova (Italy); Laboratori Nazionali di Legnaro, INFN, Padova (Italy)

    2009-04-26

    Cell response to ionising radiation depends, besides on genetic and physiological features of the biological systems, on environmental conditions occurring during DNA repair. Many data showed that microgravity, experienced by astronauts during space flights or modeled on Earth, causes apoptosis, cytoskeletal alteration, cell growth inhibition, increased frequency of mutations and chromosome aberrations. In this study, we analysed the progression of the rejoining of double strand breaks (DSBs) in human peripheral blood lymphocytes (PBLs) irradiated with {gamma}-rays and incubated in static condition (1g) or in modeled microgravity (MMG). {gamma}-H2AX foci formation and disappearance, monitored during the repair incubation, showed that the kinetics of DSBs rejoining was different in the two gravity conditions. The fraction of foci-positive cells decreased slower in MMG than in 1g at 6 and 24 h after irradiation (P < 0.01) and the mean number of {gamma}-H2AX foci per nucleus was significantly higher in MMG than in 1g at the same time-points (P < 0.001). In the same samples we determined apoptotic level and the rate of DSB rejoining during post-irradiation incubation. A significant induction of apoptosis was observed in MMG at 24 h after irradiation (P < 0.001), whereas at shorter times the level of apoptosis was slightly higher in MMG respect to 1g. In accordance with the kinetics of {gamma}-H2AX foci, the slower rejoining of radiation-induced DSBs in MMG was observed by DNA fragmentation analyses during the repair incubation; the data of pulsed-field gel electrophoresis assay showed that the fraction of DNA released in the gel was significantly higher in PBL incubated in MMG after irradiation with respect to cells maintained in 1g. Our results provide evidences that MMG incubation during DNA repair delayed the rate of radiation-induced DSB rejoining, and increased, as a consequence, the genotoxic effects of ionising radiation.

  12. Effects of hyperthermia on radiation-induced chromosome breakage and loss in excision repair deficient Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mittler, S.

    1986-01-01

    Hyperthermia increased radiosensitivity with respect to γ-ray induced chromosome loss and breakage in all stages of spermatogenesis in the wild type Oregon R strain of Drosophila melanogaster, whereas hyperthermia increased radiosensitivity to a lesser extent in cn mus(2) 201sup(D1), an excision repair mutant with 0 per cent excision capacity and in mus(3) 308sup(D1), a strain with 24 per cent excision capacity. The differences in hyperthermia-induced radiation sensitivity between the excision repair mutants and the wild strain may be due to the hyperthermia affecting the excision repair mechanism, suggesting that one of the possible mechanisms involved in hyperthermia-increased radiosensitivity is an effect on excision repair. (author)

  13. The sensitivity of active and inactive chromatin to ionizing radiation-induced DNA strand breakage

    International Nuclear Information System (INIS)

    Chiu, S.-M.; Oleinick, N.L.

    1982-01-01

    The sensitivity of DNA in actively transcribing and inactive states has been compared with regard to γ-radiation-induced single-strand break (SSB) induction. The results indicate that chromatin organization is important in the determination of the sensitivity of cellular DNA toward γ-radiation: Not only the yield but also the rate of repair of SSB is greater in the actively transcribing genes than in the total nuclear DNA. (author)

  14. DNA repair gene polymorphisms in relation to chromosome aberration frequencies in retired radiation workers

    International Nuclear Information System (INIS)

    Wilding, Craig S.; Relton, Caroline L.; Rees, Gwen S.; Tarone, Robert E.; Whitehouse, Caroline A.; Tawn, E. Janet

    2005-01-01

    Polymorphic variation in DNA repair genes was examined in a group of retired workers from the British Nuclear Fuels plc facility at Sellafield in relation to previously determined translocation frequencies in peripheral blood lymphocytes. Variation at seven polymorphisms in four genes involved in the base excision repair (XRCC1 R194W, R399Q and a [AC] n microsatellite in the 3' UTR) and double strand break repair (XRCC3 T241M and a [AC] n microsatellite in intron 3 of XRCC3, XRCC4 I134T, and a GACTAn microsatellite located 120kb 5' of XRCC5) pathways was determined for 291 retired radiation workers who had received cumulative occupational external radiation doses of between 0 and 1873mSv. When the interaction between radiation dose and each DNA repair gene polymorphism was examined in relation to translocation frequency there was no evidence for any of the polymorphisms studied influencing the response to occupational exposure. A positive interaction observed between genotype (individuals with at least one allele >=20 repeat units) at a microsatellite locus in the XRCC3 gene and smoking status should be interpreted cautiously because interactions were investigated for seven polymorphisms and two exposures. Nonetheless, further research is warranted to examine whether this DNA repair gene variant might be associated with a sub-optimal repair response to smoking-induced DNA damage and hence an increased frequency of translocations

  15. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    Science.gov (United States)

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  16. Radiation-induced apoptosis in sensitive and resistant cells isolated from a mouse lymphoma

    International Nuclear Information System (INIS)

    Story, M.D.; Voehringer, D.W.; Malone, C.G.; Hobbs, M.L.; Meyn, R.E.

    1994-01-01

    Cells were isolated from a mouse lymphoma (LY-TH) and grown in vitro. They were susceptible to radiation-induced apoptosis after low doses with the appearance of endonucleolytically fragmented DNA 1 h after irradiation. Four hours after receiving 5 Gy, 80% of the DNA was endonucleolytically cleaved. Apoptosis induction by DNA double-strand break (dsb) formation was more effective compared with induction by single-strand break (ssb) formation. After long-term culturing, LY-TH cultures became refractory to apoptosis. Apoptosis-permissive cells (LY-as, cloned from LY-TH cells) were three times more radiosensitive than clonally expanded apoptosis-refractory cells (LY-ar). Low dose-rate irradiation and maintenance at 25 o C for 5 h postirradiation was sparing in LY-ar but not LY-as cells, suggesting a repair deficiency in LY-as cells. Analysis of dsb rejoining kinetics revealed no difference in the initial phase of dsb rejoining. After 1 h, however, relative dsbs in the LY-as variant increased as endonucleolytic cleavage was initiated. Signalling for radiation-induced apoptosis in LY-as cells was independent of the DNA dsb repair pathway and appeared determined by initial events, whereas in LY-ar cells, because of an inhibition in the apoptotic pathway, survival was enhanced and modifiable by repair processes. (author)

  17. Formation of radiation induced chromosome aberrations: involvement of telomeric sequences and telomerase

    International Nuclear Information System (INIS)

    Pirzio, L.

    2004-07-01

    As telomeres are crucial for chromosome integrity; we investigated the role played by telomeric sequences in the formation and in the transmission of radio-induced chromosome rearrangements in human cells. Starting from interstitial telomeric sequences (ITS) as putative region of breakage, we showed that the radiation sensitivity is not equally distributed along chromosomes and. is not affected by ITS. On the contrary, plasmid integration sites are prone to radio-induced breaks, suggesting a possible integration at sites already characterized by fragility. However plasmids do not preferentially insert at radio-induced breaks in human cells immortalized by telomerase. These cells showed remarkable karyotype stability even after irradiation, suggesting a role of telomerase in the genome maintenance despite functional telomeres. Finally, we showed that the presence of more breaks in a cell favors the repair, leading to an increase of transmissible rearrangements. (author)

  18. Double strand break repair: two mechanisms in competition but tightly linked to cell cycle

    International Nuclear Information System (INIS)

    Delacote, F.

    2002-11-01

    DNA double strand breaks (DSB) are highly toxic damage although they can be induced to create genetic diversity. Two distinct pathways can repair DSB: Homologous Recombination (HR) and Non Homologous End Joining (NHEJ). If un- or mis-repaired, this damage can lead to cancer. Thus, it is essential to investigate how these two pathways are regulated for DSB repair. NHEJ inhibition leads to HR DSB repair stimulation. However, this channeling to HR is tightly linked to cell cycle since NHEJ and HR are active in G1/early S and late S/G2, respectively. Our results suggest that G1-unrepaired DSB go through S phase to be repaired by HR in G2. Those results allow a better understanding of DSB repair mechanisms regulation. (author)

  19. Ionizing radiation-induced DNA double-strand break and repair assessed by γ-H2AX foci analysis in neurons in mice

    International Nuclear Information System (INIS)

    Dong Xiaorong; Wu Gang; Ruebe Claudia; Ruebe Christian

    2009-01-01

    Objective: To investigate if the γ-H2AX foci is a precise index for the DSB formation and repair in mature neurons of brain in vivo after clinically relevant doses irradiation. Methods: For the DSB formation experiment, the mature neurons in the neocortex of brain tissue of C57BL/6 mice were analyzed at 10 rain after whole-body irradiation with 0.1, 0.5 and 1.0 Gy. For the DSB repair kinetics experiment, the mature neurons in the neocortex of brain tissue of repair-proficient (C57BL/6 mice) and repair-deficient mouse strains (BALB/c, A-T and SCID mice) were analyzed at 0.5, 2.5, 5, 24 and 48 h after whole-body irradiation with 2 Gy. The mature neurons in the neocortex of brain tissue of sham-irradiated mice of each strain served as controls. γ-H2AX immunohistochemistry and γ-H2AX and NeuN double immunofluorescence analysis was used to measure DSBs formation and repair in the mature neurons in the neocortex of brain tissue of the different mouse strains. Results: For the DSB formation experiment, γ-H2AX foci levels with a clear linear close correlation and very low backgrounds in the nuclei in the neocortex of brain tissue were observed. Scoring the loss of γ-H2AX foci allowed us to verify the different, genetically determined DSB repair deficiencies, including the minor impairment of BALB/c mice. Repair-proficient C57BL/6 mice exhibited the fastest decrease in foci number with time, and displayed low levels of residual damage at 24 h and 48 h post-irradiation. In contrast, SCID mice showed highly increased γ-H2AX foci levels at all repair times (0.5 h to 48 h) while A-T mice exhibited a lesser defect which was most significant at later repair times (≥ 5 h). Radiosensitive BALB/c mice exhibited slightly elevated foci numbers compared with C57BL/6 mice at 5 h and 24 h but not at 48 h post-irradiation. Conclusion: Quantifying the γ-H2AX foci in normal tissue represents a sensitivie tool for the detection of induction and repair of radiation-induced DSBs at

  20. Disruption of Maternal DNA Repair Increases Sperm-DerivedChromosomal Aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Essers, Jeroun; Kanaar, Roland; Wyrobek,Andrew J.

    2007-02-07

    The final weeks of male germ cell differentiation occur in aDNA repair-deficient environment and normal development depends on theability of the egg to repair DNA damage in the fertilizing sperm. Geneticdisruption of maternal DNA double-strand break repair pathways in micesignificantly increased the frequency of zygotes with chromosomalstructural aberrations after paternal exposure to ionizing radiation.These findings demonstrate that radiation-induced DNA sperm lesions arerepaired after fertilization by maternal factors and suggest that geneticvariation in maternal DNA repair can modulate the risk of early pregnancylosses and of children with chromosomal aberrations of paternalorigin.

  1. Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair.

    Science.gov (United States)

    Löser, Dana A; Shibata, Atsushi; Shibata, Akiko K; Woodbine, Lisa J; Jeggo, Penny A; Chalmers, Anthony J

    2010-06-01

    As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.

  2. Detection and characterization of polymorphisms in XRCC DNA repair genes in human population

    International Nuclear Information System (INIS)

    Staynova, A.; Hadjidekova, V.; Savov, A.

    2004-01-01

    Human population is continuously exposed to low levels of ionizing radiation. The main contribution gives the exposure due to medical applications. Nevertheless, most of the damage induced is repaired shortly after exposure by cellular repair systems. The review is focused on the development and application of methods to estimate the character of polymorphisms in repair genes (XRCC1, APE1), involved in single strand breaks repair which is corresponding mainly to the repair of X-ray induced DNA damage. Since, DSB are major factor for chromosomal aberrations formation, the assays described in this review might be useful for the assessment of the radiation risk for human population. (authors)

  3. Repair of the radiation induced rectovaginal fistulas without or with interposition of the bulbocavernosus muscle (Martius procedure)

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, E.J.; Sindram, I.S.

    1988-04-01

    Two local repair procedures, one without (9) and the other with (14) a bulbocavernosus muscle graft were performed on 20 patients with a radiation induced rectovaginal fistula. Four patients had two procedures successively. The initial success rate of both procedures was 7/9 and 14/14 respectively. Though the initial result of the bulbocavernosus graft was obviously better, in many of the local repair procedures, subclinical radiation damage progressed, resulting in recurrence of rectovaginal fistula (5), rectovesical fistula (4), pararectal abscess (2) etc. After a mean follow up of around 10 years, the success rate of fistula repair decreased to 5/9 and 13/14 and only 2/9 and 6/14 finally remained without a colostomy. A local repair operation should be restricted to carefully selected cases. The musculus gracilis is proposed as a better vascular graft. If the general condition of the patient does not allow more aggressive reconstructive procedures, fistula repair is better cancelled because there is a high risk of subsequent radiation damage.

  4. Mammalian DNA single-strand break repair: an X-ra(y)ted affair.

    Science.gov (United States)

    Caldecott, K W

    2001-05-01

    The genetic stability of living cells is continuously threatened by the presence of endogenous reactive oxygen species and other genotoxic molecules. Of particular threat are the thousands of DNA single-strand breaks that arise in each cell, each day, both directly from disintegration of damaged sugars and indirectly from the excision repair of damaged bases. If un-repaired, single-strand breaks can be converted into double-strand breaks during DNA replication, potentially resulting in chromosomal rearrangement and genetic deletion. Consequently, cells have adopted multiple pathways to ensure the rapid and efficient removal of single-strand breaks. A general feature of these pathways appears to be the extensive employment of protein-protein interactions to stimulate both the individual component steps and the overall repair reaction. Our current understanding of DNA single-strand break repair is discussed, and testable models for the architectural coordination of this important process are presented. Copyright 2001 John Wiley & Sons, Inc.

  5. Effects of 3-Deoxyadenosine (Cordycepin) on the repair of X-ray-induced DNA single- and double-strand breaks in chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Hiraoka, Wakako; Kuwabara, Mikinori; Sato, Fumiaki

    1990-01-01

    The ability of cordycepin to inhibit the repair of DNA strand breaks was examined with X-irradiated Chinese hamster V79 cells in log-phase culture. A filter elution technique revealed that 70 μM cordycepin did not inhibit the repair of single-strand breaks but inhibited the repair of double-strand breaks. These findings confirmed the fact that the increase in the lethality of cordycepin in X-irradiated cultured mammalian cells was attributable to unrepaired DNA double-strand breaks. (author)

  6. Individual sensitivity to radiations and DNA repair proficiency: the comet assay contribution; Sensibilite individuelle aux radiations et reparation de l`ADN: apport du test des cometes

    Energy Technology Data Exchange (ETDEWEB)

    Alapetite, C. [Institut Curie, 75 - Paris (France)

    1998-09-01

    Some are hereditary syndromes demonstrate high cancer risk and hypersensitivity in response to exposures to agents such as ultraviolet or ionising radiation, and are characterized by a defective processing of DNA damage. They highlight the importance of the individual risk associated to exposures. The comet assay, a simple technique that detects DNA strand breaks, requires few cells and allows examination of DNA repair capacities in established cell lines, in blood samples or biopsies. The assay has been validated on cellular systems with known repair defects such as xeroderma pigmentosum defective in nucleotide excision repair, on mutant rodent cell lines defective in DNA single strand breaks rejoining (XRCC5/Ku80 and XRCC7/DNAPKcs) (neutral conditions). This assay does not allow to distinguish a defective phenotype in ataxia telangiectasia cells. It shows in homozygous mouse embryo fibroblasts Brca2-/- an impaired DNA double strand break rejoining. Simplicity, rapidity and sensitivity of the alkaline comet assay allow to examine the response of lymphocytes. It has been applied to the analysis of the role of DNA repair in the pathogenesis of collagen diseases, and the involvement of individual DNA repair proficiency in the thyroid tumorigenesis induced in some patients after therapeutic irradiation at childhood has been questioned. Preliminary results of these studies suggest that this type of approach could help for adapting treatment modalities and surveillance in subgroups of patients defective in DNA repair process. It could also have some incidence in the radioprotection field. (author)

  7. Trex2 enables spontaneous sister chromatid exchanges without facilitating DNA double-strand break repair.

    Science.gov (United States)

    Dumitrache, Lavinia C; Hu, Lingchuan; Son, Mi Young; Li, Han; Wesevich, Austin; Scully, Ralph; Stark, Jeremy; Hasty, Paul

    2011-08-01

    Trex2 is a 3' → 5' exonuclease that removes 3'-mismatched sequences in a biochemical assay; however, its biological function remains unclear. To address biology we previously generated trex2(null) mouse embryonic stem (ES) cells and expressed in these cells wild-type human TREX2 cDNA (Trex2(hTX2)) or cDNA with a single-amino-acid change in the catalytic domain (Trex2(H188A)) or in the DNA-binding domain (Trex2(R167A)). We found the trex2(null) and Trex2(H188A) cells exhibited spontaneous broken chromosomes and trex2(null) cells exhibited spontaneous chromosomal rearrangements. We also found ectopically expressed human TREX2 was active at the 3' ends of I-SceI-induced chromosomal double-strand breaks (DSBs). Therefore, we hypothesized Trex2 participates in DNA DSB repair by modifying 3' ends. This may be especially important for ends with damaged nucleotides. Here we present data that are unexpected and prompt a new model. We found Trex2-altered cells (null, H188A, and R167A) were not hypersensitive to camptothecin, a type-1 topoisomerase inhibitor that induces DSBs at replication forks. In addition, Trex2-altered cells were not hypersensitive to γ-radiation, an agent that causes DSBs throughout the cell cycle. This observation held true even in cells compromised for one of the two major DSB repair pathways: homology-directed repair (HDR) or nonhomologous end joining (NHEJ). Trex2 deletion also enhanced repair of an I-SceI-induced DSB by both HDR and NHEJ without affecting pathway choice. Interestingly, however, trex2(null) cells exhibited reduced spontaneous sister chromatid exchanges (SCEs) but this was not due to a defect in HDR-mediated crossing over. Therefore, reduced spontaneous SCE could be a manifestation of the same defect that caused spontaneous broken chromosomes and spontaneous chromosomal rearrangements. These unexpected data suggest Trex2 does not enable DSB repair and prompt a new model that posits Trex2 suppresses the formation of broken

  8. DNA single-strand breaks during repair of uv damage in human fibroblasts and abnormalities of repair in xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Kohn, K.W.; Kann, H.E. Jr.

    1976-01-01

    The method of DNA alkaline elution was applied to a study of the formation and resealing of DNA single-strand breaks after irradiation of human fibroblasts with ultraviolet light (UV). The general features of the results were consistent with current concepts of DNA excision repair, in that breaks appeared rapidly after uv, and resealed slowly in normal fibroblasts, whereas breaks did not appear in those cells of patients with xeroderma pigmentosum (XP) that are known to have defects in DNA repair synthesis. The appearance of breaks required a short post-uv incubation, consistent with the expected action of an endonuclease. Cells of the variant form of XP characterized by normal DNA repair synthesis exhibited normal production of breaks after uv, but were slower than normal cells in resealing these breaks. This difference was enhanced by caffeine. A model is proposed to relate this finding with a previously described defect in post-replication repair in these XP variant cells. DNA crosslinking appears to cause an underestimate in the measurement of DNA breakage after uv

  9. The alteration of chromatin domains during damage repair induced by ionizing radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Olson, K.M.; Olson, G.B.

    1995-01-01

    Several groups previously have reported the ability of chromatin structure to influence the production of damage induced by ionizing radiation. The authors' interest has been to determine whether chromatin structural alterations exist after ionizing radiation during a repair interval. The earlier work investigated this question using biochemical techniques. The crosslinking of nuclear structural proteins to DNA after ionizing radiation was observed. In addition, they found that the chromatin structure in vitro as measured by sucrose density gradient sedimentation, was altered after ionizing radiation. These observations added to earlier studies in which digital imaging techniques showed an alteration in feulgen-positive DNA after irradiation prompted the present study. The object of this study was to detect whether the higher order structure of DNA into chromatin domains within interphase human cells was altered in interphase cells in response to a radiation induced damage. The present study takes advantage of the advances in the detection of chromatin domains in situ using DNA specific dyes and digital image processing of established human T and B cell lines

  10. Modelling and testing the molecular mechanism of radiation-induced chromatid breaks

    International Nuclear Information System (INIS)

    Bryant, P. E.

    2001-01-01

    Chromatid breaks induced by ionizing radiation in the G2 phase of the cell cycle are considered as markers of individual human radiosensitivity and may indicate the presence of low-penetrance genes regulating susceptibility to breast and other cancers). Together with our own study of Scottish (Tayside) breast cancer patients and a group of normal controls these studies show an overall 10-fold variation in chromatid break frequency (the parameter defining individual chromosomal 'radiosensitivity'). Thus, an understanding of the mechanisms and genes involved in determining these widely different responses should help to clarify the reasons for individual radiosensitivity and may lead us to identify key genes involved in cancer susceptibility. The presence of colour-switches at around 16% of chromatid break points (detected in harlequin-stained chromosomes) indicates that this type of chromatid break is formed by a chromatin rearrangement involving one or more large chromatin domains of the order of 3 - 5 Mbp, possibly representing transcription 'factories'. The signal model of chromatid breaks assumes that all chromatid breaks are the result of chromatin rearrangements, and that the initiating DNA double-strand break (dsb) is itself not involved in the rearrangement but signals its presence (possibly via ATM protein or DNAPK) leading to the initiation of the chromatin rearrangement. Experimental evidence from radiosensitive cell lines (e.g. human AT and hamster irs2) and with the nucleoside analogue araA (9-β-D-arabinofuranosyladenine) demonstrates the lack of correspondence between the rejoining kinetics of dsb and that of disappearance of chromatid breaks, thus supporting the signal model. Coupled with the linear induction of chromatid breaks with dose in both human and rodent cell lines of various types, and the production of chromatid breaks by single dsb in genetically engineered cell lines the classical 'breakage-first' model of chromatid breaks is no longer

  11. Distributions of Low- and High-LET Radiation-Induced Breaks in Chromosomes are Associated with Inter- and Intrachromosome Exchanges

    Science.gov (United States)

    Hada, Megumi; Zhang, Ye; Feiveson, Alan; Cucinotta, Francis A.; Wu, Honglu

    2010-01-01

    To study the breakpoint along the length of the chromosome induced by low- and high-LET radiations, we exposed human epithelial cells in vitro to Cs-137 rays at both low and high dose rates, secondary neutrons at a low dose rate, and 600 MeV/u Fe ions at a high dose rate. The location of the breaks was identified using the multicolor banding in situ hybridization (mBAND) that paints Chromosome 3 in 23 different colored bands. The breakpoint distributions were found to be similar between rays of low and high dose rates and between the two high-LET radiation types. Detailed analysis of the chromosome break ends involved in inter- and intrachromosome exchanges revealed that only the break ends participating in interchromosome exchanges contributed to the hot spots found for low-LET. For break ends participating in intrachromosome exchanges, the distributions for all four radiation scenarios were similar with clusters of breaks found in three regions. Analysis of the locations of the two break ends in Chromosome 3 that joined to form an intrachromosome exchange demonstrated that two breaks with a greater genomic separation may be more likely to rejoin than two closer breaks, indicating that chromatin folding can play an important role in the rejoining of chromosome breaks. Our study demonstrated that the gene-rich regions do not necessarily contain more breaks. The breakpoint distribution depends more on the likelihood that a break will join with another break in the same chromosome or in a different chromosome.

  12. Analysis of DNA strand break induction and repair in plants from the vicinity of Chernobyl

    International Nuclear Information System (INIS)

    Syomov, A.B.; Ptitsyna, S.N.; Sergeeva, S.A.

    1992-01-01

    For 3 years following the Chernobyl accident DNA repair efficiency was studied in irradiated and control populations of various plan species. Compared with the control populations, some irradiated populations exhibited increases in the yield of DNA single-strand breaks per unit dose of challenge radiation. The effect was registered in low-dose-rate alpha-irradiated populations, but was absent in plant populations growing in conditions of low-dose-rate beta-irradiation. The efficiency of single-strand DNA repair was identical in control and irradiated populations and approximated 100%. (author). 12 refs.; 1 fig.; 2 tabs

  13. The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

    International Nuclear Information System (INIS)

    Averbeck, D.; Boucher, D.

    2006-01-01

    Monte Carlo calculations have shown that ionising radiations produce a specific type of clustered cell damage called locally multiply damaged sites or LMDS. These lesions consist of closely positioned single-strand breaks, (oxidative) base damage and DNA double-strand breaks (DSB) in between one helical turn of DNA. As specific markers of radiation-induced damage these lesions are likely to condition biological responses and are thus of great interest for radiation protection. Calculations indicate that there should be more LMDS induced by high than by low LET radiation, and they should be absent in un-irradiated cells. Processes like K-shell activation and local Auger electron emission can be expected to add complex DSB or LMDS, producing significant chromosomal damage. In the discussion of the specificity of ionising radiation in comparison to other genotoxic agents, many arguments have been put forward that these lesions should be particularly deleterious for living cells. Complex lesions of that type should represent big obstacles for DNA repair and give rise to high lethality. Moreover, cellular attempts to repair them could accentuate harm, leading to mutations, genetic instability and cancer. In vitro experiments with oligonucleotides containing an artificially introduced set of base damage and SSB in different combinations have shown that depending on the close positioning of the damage on DNA, repair enzymes, and even whole cell extracts, are unable to repair properly and may stimulate mis-repair. Pulsed field gel electrophoresis (PFGE) in conjunction with enzymatic treatments has been used to detect LMDS in mammalian cells after high and low LET radiation. In order to further define the importance of LMDS for radiation induced cellular responses, we studied the induction of LMDS as a function of radiation dose and dose rate in mammalian cells (CHO and MRC5) using 137 Cs gamma-radiation. Using PFGE and specific glycosylases to convert oxidative damage into

  14. The impact of locally multiply damaged sites (LMDS) induced by ionizing radiation in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D.; Boucher, D. [Institut Curie-Section de Recherche, UMR2027 CNRS, LCR-V28 du CEA, Centre Universitaire, 91405 Orsay Cedex (France)

    2006-07-01

    Monte Carlo calculations have shown that ionising radiations produce a specific type of clustered cell damage called locally multiply damaged sites or LMDS. These lesions consist of closely positioned single-strand breaks, (oxidative) base damage and DNA double-strand breaks (DSB) in between one helical turn of DNA. As specific markers of radiation-induced damage these lesions are likely to condition biological responses and are thus of great interest for radiation protection. Calculations indicate that there should be more LMDS induced by high than by low LET radiation, and they should be absent in un-irradiated cells. Processes like K-shell activation and local Auger electron emission can be expected to add complex DSB or LMDS, producing significant chromosomal damage. In the discussion of the specificity of ionising radiation in comparison to other genotoxic agents, many arguments have been put forward that these lesions should be particularly deleterious for living cells. Complex lesions of that type should represent big obstacles for DNA repair and give rise to high lethality. Moreover, cellular attempts to repair them could accentuate harm, leading to mutations, genetic instability and cancer. In vitro experiments with oligonucleotides containing an artificially introduced set of base damage and SSB in different combinations have shown that depending on the close positioning of the damage on DNA, repair enzymes, and even whole cell extracts, are unable to repair properly and may stimulate mis-repair. Pulsed field gel electrophoresis (PFGE) in conjunction with enzymatic treatments has been used to detect LMDS in mammalian cells after high and low LET radiation. In order to further define the importance of LMDS for radiation induced cellular responses, we studied the induction of LMDS as a function of radiation dose and dose rate in mammalian cells (CHO and MRC5) using {sup 137}Cs gamma-radiation. Using PFGE and specific glycosylases to convert oxidative damage

  15. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation.

    Science.gov (United States)

    Ponder, Rebecca G; Fonville, Natalie C; Rosenberg, Susan M

    2005-09-16

    Special mechanisms of mutation are induced in microbes under growth-limiting stress causing genetic instability, including occasional adaptive mutations that may speed evolution. Both the mutation mechanisms and their control by stress have remained elusive. We provide evidence that the molecular basis for stress-induced mutagenesis in an E. coli model is error-prone DNA double-strand break repair (DSBR). I-SceI-endonuclease-induced DSBs strongly activate stress-induced mutations near the DSB, but not globally. The same proteins are required as for cells without induced DSBs: DSBR proteins, DinB-error-prone polymerase, and the RpoS starvation-stress-response regulator. Mutation is promoted by homology between cut and uncut DNA molecules, supporting a homology-mediated DSBR mechanism. DSBs also promote gene amplification. Finally, DSBs activate mutation only during stationary phase/starvation but will during exponential growth if RpoS is expressed. Our findings reveal an RpoS-controlled switch from high-fidelity to mutagenic DSBR under stress. This limits genetic instability both in time and to localized genome regions, potentially important evolutionary strategies.

  16. Induction and repair of DNA base damage studied in X-irradiated CHO cells using the M. luteus extract

    International Nuclear Information System (INIS)

    Foehe, C.; Dikomey, E.

    1994-01-01

    DNA base damage was measured in Chinese hamster ovary cells X-irradiated under aerobic conditions using an extract of the bacterium Micrococcus luteus. The glycosylases and endonucleases present in this extract recognize damaged bases and convert them into strand breaks (termed endonuclease-sensitive sites, enss). Strand breaks were detected by the alkaline unwinding technique. The induction of enss was measured for X-ray doses ranging up to 45 Gy. The relative frequency of all enss related to all radiation induced strand breaks was 1.7 ± 0.4. Repair of enss was studied for a radiation dose of 45 Gy. The number of enss was found to decrease exponentially with time after irradiation with a half-time of τ enss = 37 ± 8 min. The repair kinetics that were also measured for all X-ray-induced DNA strand breaks were found to consist of three phases: fast, intermediate and slow. The intermediate phase was fitted under the assumption that this phase results from the information and repair of secondary single-strand breaks generated by enzymatic incision at the sites of base damage repair. (author)

  17. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    Science.gov (United States)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  18. DNA strand breaks, repair, and survival in x-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Dugle, D.L.; Gillespie, C.J.; Chapman, J.D.

    1976-01-01

    The yields of unrepairable single- and double-strand breaks in the DNA of x-irradiated Chinese hamster cells were measured by low-speed neutral and alkaline sucrose density gradient sedimentation in order to investigate the relation between these lesions and reproductive death. After maximal single-strand rejoining, at all doses, the number of residual single-strand breaks was twice the number of residual double-strand breaks. Both double-strand and unrepairable single-strand breaks were proportional to the square of absorbed dose, in the range 10-50 krad. No rejoining of double-strand breaks was observed. These observations suggest that, in mammalian cells, most double-strand breaks are not repairable, while all single-strand breaks are repaired except those that are sufficiently close on complementary strands to constitute double-strand breaks. Comparison with cell survival measurements at much lower doses suggests that loss of reproductive capacity corresponds to induction of approximately one double-strand break

  19. Un-repairable DNA damage in cell due to irradiation

    International Nuclear Information System (INIS)

    Yoshii, Giichi

    1992-01-01

    Radiation-induced cell reproductive deactivation is caused by damage to DNA. In a cell, cellular DNA radical reacts with diffusion controlled rate and generates DNA peroxide radical. The chemical repair of DNA radical with hydrogen donation by thiol competes with the reaction of oxygen with same radicals in the DNA molecules. From the point reaction rates, the prolongation of radical life time is not as great as expected from the reduction in the glutathione content of the cell. This indicates that further reducting compounds (protein bound thiol) are present in the cell. The residual radicals are altered to strand breaks, base damages and so on. The effective lesions for a number of endpoints is un-repaired double strand break, which has been discovered in a cluster. This event gives risk to high LET radiation or to a track end of X-rays. For X- or electron irradiations the strand breaks are frequently induced by the interactions between sublesions on two strands in DNA. A single strand break followed by radical action may be unstable excited state, because of remaining sugar radical action and of having negative charged phosphates, in which strands breaks will be rejoined in a short time to stable state. On the same time, a break in the double helix will be immediately produced if two breaks are on either or approximately opposite locations. The formation of a double strand break in the helix depends on the ion strength of the cell. The potassium ions are largely released from polyanionic strand during irradiation, which results in the induction of denatured region. Double strand break with the denatured region seems to be un-repairable DNA damage. (author)

  20. Predicting radiation effects on the development of leukemic stem cells based on studies of leukemias induced by high- and low-dose-rate radiation

    International Nuclear Information System (INIS)

    Hirouchi, Tokuhisa

    2012-01-01

    One of the most important causes of radiation-induced cancers, particularly leukemia, is gene mutations resulting from single and double strand breaks in the DNA. Tanaka et al. (2003) reported life shortening in specific pathogen free male and female B6C3F1 mice continuously exposed to γ rays at a low dose rate of 20 mGy/22 h/d for 400 days from 8 weeks of age. Early death due to cancer, mostly malignant lymphomas, was observed in both sexes. A significant increase in the incidence of myeloid leukemia, resulting in early death, was also reported in males. It is expected however, that at 20 mGy/22 h/d, which is equivalent to a dose of 15 μGy/min, DNA strand breaks induced in these cells are repaired soon after they occur. Murine leukemias induced by high-dose-rate radiation were also found in males, and 80% of the mice with leukemia had hemizygous deletions in chromosome 2 around the PU.1 gene and they appeared to be derived from DNA strand breaks. Majority of these leukemia showing hemizygous deletions in chromosome 2 revealed point mutations in the remaining alleles resulting in PU.1 inactivation, which was reported to be related to leukemogenesis. These point mutations are assumed to be independent of DNA strand breaks that occur immediately after irradiation, as they appear at later time after irradiation. This review discusses the effect of radiation-induced DNA strand breaks and also mutagenesis induced independently of DNA strand breaks in hematopoietic cells contributing to the development of the first leukemic stem cell. (author)

  1. Protracted radiation-induced alterations in hematopoietic repair and recovery

    International Nuclear Information System (INIS)

    Seed, T.M.; Fritz, T.E.

    1997-01-01

    Pathologic predisposition of beagle dogs under chronic, low daily dose (7.5 cGy day -1 ) whole-body gamma irradiation has been studied relative to molecular repair and hematopoietic competency. Molecular repair, assessed by a microscopy-based unscheduled DNA synthesis (UDS) response, was measured within proliferative and nonproliferative marrow myeloid elements of dogs with markedly different hematopoietic capacities (low capacity, aplasia-prone [AA + ] versus high capacity, myeloproliferative disease-prone [MPD + ]) under protracted radiation stress. Results indicated that protracted exposure elicited a net increase in UDS-repair capacity that was largely independent of exposure duration. This enhanced capacity resulted from the increased strength of the UDS signal together with an expanded number of positively responding cells. The combined response was strong in primitive blasts and weak in more differentiated myelocytic cells. The UDS repair response of the MPD + dogs was significantly greater than that of the AA + animals and was clearly modified relative to the controls. These results suggest that both resiliency and pathologic potential of the hematopoietic system under protracted radiation stress is, in part, associated with an augmentable DNA repair within the more primitive myeloid marrow elements. (author)

  2. Effect of nalidixic acid on repair of single-strand breaks in DNA induced by ionizing irradiation in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Francia, I [Debreceni Orvostudomanyi Egyetem (Hungary); Okos, A; Hernadi, F J [Institute of Pharmacology, Debrecen (Hungary)

    1978-09-30

    The incidence of DNA single-strand breaks induced by /sup 60/Co irradiation and their repair in E.coli K12 (AB 1157) rec/sup +/ cells were studied by the alkaline sucrose gradient sedimentation method described by McGrath and Williams. For the quantitative analysis of sedimentation profiles we used the s 1/2 values described by Veatch and Okada. The s 1/2 value of non-irradiated controls was 22.4, and after 20 krads irradiation it was found to be 11.7. A postirradiation incubation at 37 /sup 0/C for 60 min increasedthe s 1/2 value from 11.7 to 22.1. Nalidixic acid at low concentration (20-50 ..mu..g/ml) did not block, but at 100 ..mu..g/ml extensively inhibited the above repair process, exhibiting an s 1/2 value of 14.4.

  3. Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants.

    Directory of Open Access Journals (Sweden)

    Bret R Adams

    2010-04-01

    Full Text Available The DNA double-strand break (DSB is the most toxic form of DNA damage. Studies aimed at characterizing DNA repair during development suggest that homologous recombination repair (HRR is more critical in pluripotent cells compared to differentiated somatic cells in which nonhomologous end joining (NHEJ is dominant. We have characterized the DNA damage response (DDR and quality of DNA double-strand break (DSB repair in human embryonic stem cells (hESCs, and in vitro-derived neural cells. Resolution of ionizing radiation-induced foci (IRIF was used as a surrogate for DSB repair. The resolution of gamma-H2AX foci occurred at a slower rate in hESCs compared to neural progenitors (NPs and astrocytes perhaps reflective of more complex DSB repair in hESCs. In addition, the resolution of RAD51 foci, indicative of active homologous recombination repair (HRR, showed that hESCs as well as NPs have high capacity for HRR, whereas astrocytes do not. Importantly, the ATM kinase was shown to be critical for foci formation in astrocytes, but not in hESCs, suggesting that the DDR is different in these cells. Blocking the ATM kinase in astrocytes not only prevented the formation but also completely disassembled preformed repair foci. The ability of hESCs to form IRIF was abrogated with caffeine and siRNAs targeted against ATR, implicating that hESCs rely on ATR, rather than ATM for regulating DSB repair. This relationship dynamically changed as cells differentiated. Interestingly, while the inhibition of the DNA-PKcs kinase (and presumably non-homologous endjoining [NHEJ] in astrocytes slowed IRIF resolution it did not in hESCs, suggesting that repair in hESCs does not utilize DNA-PKcs. Altogether, our results show that hESCs have efficient DSB repair that is largely ATR-dependent HRR, whereas astrocytes critically depend on ATM for NHEJ, which, in part, is DNA-PKcs-independent.

  4. Determination and analysis of site-specific 125I decay-induced DNA double-strand break end-group structures.

    Science.gov (United States)

    Datta, Kamal; Weinfeld, Michael; Neumann, Ronald D; Winters, Thomas A

    2007-02-01

    End groups contribute to the structural complexity of radiation-induced DNA double-strand breaks (DSBs). As such, end-group structures may affect a cell's ability to repair DSBs. The 3'-end groups of strand breaks caused by gamma radiation, or oxidative processes, under oxygenated aqueous conditions have been shown to be distributed primarily between 3'-phosphoglycolate and 3'-phosphate, with 5'-phosphate ends in both cases. In this study, end groups of the high-LET-like DSBs caused by 125I decay were investigated. Site-specific DNA double-strand breaks were produced in plasmid pTC27 in the presence or absence of 2 M DMSO by 125I-labeled triplex-forming oligonucleotide targeting. End-group structure was assessed enzymatically as a function of the DSB end to serve as a substrate for ligation and various forms of end labeling. Using this approach, we have demonstrated 3'-hydroxyl (3'-OH) and 3'-phosphate (3'-P) end groups and 5'-ends (> or = 42%) terminated by phosphate. A 32P postlabeling assay failed to detect 3'-phosphoglycolate in a restriction fragment terminated by the 125I-induced DNA double-strand break, and this is likely due to restricted oxygen diffusion during irradiation as a frozen aqueous solution. Even so, end-group structure and relative distribution varied as a function of the free radical scavenging capacity of the irradiation buffer.

  5. Hematopoietic Stem Cells from Ts65Dn Mice Are Deficient in the Repair of DNA Double-Strand Breaks.

    Science.gov (United States)

    Wang, Yingying; Chang, Jianhui; Shao, Lijian; Feng, Wei; Luo, Yi; Chow, Marie; Du, Wei; Meng, Aimin; Zhou, Daohong

    2016-06-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra partial or whole copy of chromosome 21. In addition to musculoskeletal and neurodevelopmental abnormalities, children with DS exhibit various hematologic disorders and have an increased risk of developing acute lymphoblastic leukemia and acute megakaryocytic leukemia. Using the Ts65Dn mouse model, we investigated bone marrow defects caused by trisomy for 132 orthologs of the genes on human chromosome 21. The results showed that, although the total bone marrow cellularity as well as the frequency of hematopoietic progenitor cells (HPCs) was comparable between Ts65Dn mice and their age-matched euploid wild-type (WT) control littermates, human chromosome 21 trisomy led to a significant reduction in hematopoietic stem cell (HSC) numbers and clonogenic function in Ts65Dn mice. We also found that spontaneous DNA double-strand breaks (DSBs) were significantly increased in HSCs from the Ts65Dn mice, which was correlated with the significant reduction in HSC clonogenic activity compared to those from WT controls. Moreover, analysis of the repair kinetics of radiation-induced DSBs revealed that HSCs from Ts65Dn mice were less proficient in DSB repair than the cells from WT controls. This deficiency was associated with a higher sensitivity of Ts65Dn HSCs to radiation-induced suppression of HSC clonogenic activity than that of euploid HSCs. These findings suggest that an additional copy of genes on human chromosome 21 may selectively impair the ability of HSCs to repair DSBs, which may contribute to DS-associated hematological abnormalities and malignancies.

  6. 125IdUrd-induced chromosome fragments, assayed by premature chromosome condensation, and DNA double-strand breaks have similar repair kinetics in G1-phase CHO-cells

    International Nuclear Information System (INIS)

    Iliakis, George; Pantelias, G.E.; Okayasu, Ryuichi; Seaner, Robert

    1987-01-01

    The effect of 125 I-decay on cell lethality, and induction of chromosome and DNA damage, was studied in synchronous non-cycling, G 1 -phase CHO-cells. Neutral filter elution was used to assay repair of DNA double-strand breaks (dsbs), and premature chromosome condensation was used to assay repair of chromosome fragments and induction of ring chromosomes. The results indicate very little repair at the cell survival level (repair of PLD). At the DNA level an efficient repair of DNA dsbs was observed, with kinetics similar to those observed after exposure to X-rays. At the chromosome level a fast repair of prematurely condensed chromosome fragments was observed, with a concomitant increase in the number of ring chromosomes induced. The repair kinetics of chromosome fragments and DNA dsbs were very similar, suggesting that DNA dsbs may underlie chromosome fragmentation. (author)

  7. p53 regulates the repair of DNA double-strand breaks by both homologous and non-homologous recombination

    International Nuclear Information System (INIS)

    Willers, H.; Powell, S.N.; Dahm-Daphi, J.

    2003-01-01

    Full text: p53 is known to suppress spontaneous homologous recombination (HR), while its role in non-homologous recombination (NHR) remains to be clarified. Here, we sought to determine the influence of p53 on the repair of chromosomal double-strand breaks (DSBs) by HR or NHR using specially designed recombination substrates that integrate into the genome. Isogenic mouse fibroblast pairs with or without expression of exogenous p53 protein were utilized. A reporter plasmid carrying a mutated XGPRT gene was chromosomally integrated and DSBs were generated within the plasmid by the I-SceI endonuclease. Subsequent homology-mediated repair from an episomal donor resulted in XGPRT reconstitution and cellular resistance to a selection antibiotic. Analogously, the repair of chromosomal I-SceI breaks by NHR using another novel reporter plasmid restored XGPRT translation. For p53-null cells, the mean frequency of I-SceI break repair via HR was 5.5 x 10 -4 . The p53-Val135 mutant, which previously has been shown to suppress spontaneous HR by 14-fold employing the same cell system and reporter gene, only caused a 2- to 3-fold suppression of break-induced HR. In contrast, a dramatic effect of p53 on repair via NHR was found. Preliminary sequence analysis indicated that there was at least a 1000-fold reduction of illegitimate repair events resulting in loss of sequence at the break sites. The observed effects were mediated by p53 mutants defective in regulation of the cell-cycle and apoptosis. The main findings were: (1) p53 virtually blocked illegitimate rejoining of chromosomal ends. (2) The suppression of homologous DSB repair was less pronounced than the inhibition of spontaneous HR. We hypothesize that p53 allows to a certain extent error-free homology-dependent repair to proceed, while blocking error-prone NHR. The data support and extent a previous model, in which p53 maintains genomic stability by regulating recombination independently of its transactivation function

  8. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

    2010-06-29

    To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

  9. Homologous recombination contributes to the repair of DNA double-strand breaks induced by high-energy iron ions

    International Nuclear Information System (INIS)

    Zafar, Faria; Seidler, Sara B.; Kronenberg, Amy; Schild, David; Wiese, Claudia

    2010-01-01

    To test the contribution of homologous recombinational repair (HRR) in repairing DNA damaged sites induced by high-energy iron ions, we used: (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We show that in response to iron ions, HRR contributes to cell survival in rodent cells, and that HRR-deficiency abrogates RAD51 foci formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 foci formation. For human cells irradiated with iron ions, cell survival is decreased, and, in p53 mutant cells, the levels of mutagenesis are increased when HRR is impaired. Human cells synchronized in S phase exhibit more pronounced resistance to iron ions as compared with cells in G1 phase, and this increase in radioresistance is diminished by RAD51 knockdown. These results implicate a role for RAD51-mediated DNA repair (i.e. HRR) in removing a fraction of clustered lesions induced by charged particle irradiation. Our results are the first to directly show the requirement for an intact HRR pathway in human cells in ensuring DNA repair and cell survival in response to high-energy high LET radiation.

  10. Laser-induced radiation microbeam technology and simultaneous real-time fluorescence imaging in live cells.

    Science.gov (United States)

    Botchway, Stanley W; Reynolds, Pamela; Parker, Anthony W; O'Neill, Peter

    2012-01-01

    The use of nano- and microbeam techniques to induce and identify subcellular localized energy deposition within a region of a living cell provides a means to investigate the effects of low radiation doses. Particularly within the nucleus where the propagation and processing of deoxyribonucleic acid (DNA) damage (and repair) in both targeted and nontargeted cells, the latter being able to study cell-cell (bystander) effects. We have pioneered a near infrared (NIR) femtosecond laser microbeam to mimic ionizing radiation through multiphoton absorption within a 3D femtoliter volume of a highly focused Gaussian laser beam. The novel optical microbeam mimics both complex ionizing and UV-radiation-type cell damage including double strand breaks (DSBs). Using the microbeam technology, we have been able to investigate the formation of DNA DSB and subsequent recruitment of repair proteins to the submicrometer size site of damage introduced in viable cells. The use of a phosphorylated H2AX (γ-H2AX a marker for DSBs, visualized by immunofluorescent staining) and real-time imaging of fluorescently labeling proteins, the dynamics of recruitment of repair proteins in viable mammalian cells can be observed. Here we show the recruitment of ATM, p53 binding protein 1 (53BP1), and RAD51, an integral protein of the homologous recombination process in the DNA repair pathway and Ku-80-GFP involved in the nonhomologous end joining (NHEJ) pathway as exemplar repair process to show differences in the repair kinetics of DNA DSBs. The laser NIR multiphoton microbeam technology shows persistent DSBs at later times post laser irradiation which are indicative of DSBs arising at replication presumably from UV photoproducts or clustered damage containing single strand breaks (SSBs) that are also observed. Effects of the cell cycle may also be investigated in real time. Postirradiation and fixed cells studies show that in G1 cells a fraction of multiphoton laser-induced DSBs is persistent for >6h

  11. DNA repair in PHA stimulated human lymphocytes

    International Nuclear Information System (INIS)

    Catena, C.; Mattoni, A.

    1984-01-01

    Damage an repair of radiation induced DNA strand breaks were measured by alkaline lysis and hydroxyapatite chromatography. PHA stimulated human lymphocytes show that the rejoining process is complete within the first 50 min., afterwords secondary DNA damage and chromatid aberration. DNA repair, in synchronized culture, allows to evaluate individual repair capacity and this in turn can contribute to the discovery of individual who, although they do not demonstrate apparent clinical signs, are carriers of DNA repair deficiency. Being evident that a correlation exists between DNA repair capacity and carcinogenesis, the possibility of evaluating the existent relationship between DNA repair and survival in tumor cells comes therefore into discussion

  12. Participation of different genes in the ruptures repair of double chain in Escherichia coli stumps exposed to gamma radiation

    International Nuclear Information System (INIS)

    Serment G, J. H.; Martinez M, E.; Alcantara D, D.

    2013-01-01

    All living organisms are naturally exposed to radiation from different sources. Ionizing radiation produces a plethora of lesions upon DNA that can be categorized as single and double strand breaks and base damage. Among them, unrepaired double strand breaks (Dbs) have the greatest biological significance, since they are responsible of cell death. In Escherichia coli this kind of lesions are repaired mostly by homologous recombination. In this work the participation of some recombination genes in the repair of Dbs is evaluated. Escherichia coli defective strains were exposed to gamma radiation and incubated for different periods in ideal conditions. Both micro electrophoresis and pulse field gel electrophoresis techniques were used to evaluate the kinetics of repair of such lesions, reflecting the importance of each defective gene in the process. (Author)

  13. Ionizing radiation sensitivity of DNA polymerase lambda-deficient cells.

    NARCIS (Netherlands)

    Vermeulen, C.; Bertocci, B.; Begg, A.C.; Vens, C.

    2007-01-01

    Ionizing radiation induces a diverse spectrum of DNA lesions, including strand breaks and oxidized bases. In mammalian cells, ionizing radiation-induced lesions are targets of non-homologous end joining, homologous recombination, and base excision repair. In vitro assays show a potential involvement

  14. Radiation-induced DNA damage in tumors and normal tissues. III. Oxygen dependence of the formation of strand breaks and DNA-protein crosslinks

    International Nuclear Information System (INIS)

    Zhang, H.; Wallen, C.A.; Wheeler, K.T.; Joch, C.J.

    1995-01-01

    Results from several laboratories, including ours, have suggested that measurements of radiation-induced DNA strand breaks and DNA-protein crosslinks (DPCs) may be used to estimate the hypoxic fraction or fractional hypoxic volume of tumors and normal tissues. This suggestion has been predicated on both published and nonpublished information that (1) the oxygen dependence of the formation of strand breaks in irradiated mammalian cells is similar to the oxygen dependence of radiation-produced cell killing, and (2) the oxygen dependence of the formation of DPCs in irradiated mammalian cells is the mirror image of the oxygen dependence of radiation-induced cell killing. However, the published studies that attempted to determine the relationship between the oxygen dependence of the formation of strand breaks and the radiation sensitivity of mammalian cells were not performed at 37 degrees C, the exact oxygen concentrations were not always known, and the results were conflicting. In addition, most of the data on the oxygen dependence of the formation of DPCs are unpublished. Consequently, we have undertaken a comprehensive investigation of one cell line, 9L/Ro rat brain tumor cells, to determine if the shape of the oxygen dependence curve and the K m value for radiation-induced strand breaks and DPCs were similar when 9L cells were irradiated under both ideal gas-liquid equilibrium conditions at 4 degrees C and nonideal gas-liquid equilibrium conditions at 37 degrees C. At 4 degrees C under ideal gas-liquid equilibrium conditions, the K m for the formation of strand breaks was approximately 0.0045 mM, and Km for radiation sensitivity was approximately 0.005mM. A similar comparison for the formation of DPCs at 4 degrees C could not be made, because the efficiency of the formation of DPC was much lower at 4 degrees C than at 37 degrees C. 30 refs., 3 figs

  15. HIV-1 Tat depresses DNA-PKCS expression and DNA repair, and sensitizes cells to ionizing radiation

    International Nuclear Information System (INIS)

    Sun Yi; Huang Yuechen; Xu Qinzhi; Wang Huiping; Bai Bei; Sui Jianli; Zhou Pingkun

    2006-01-01

    Purpose There is accumulating evidence that cancer patients with human immmunodeficiency virus-1/acquired immunodeficency syndrome (HIV-1/AIDS) have more severe tissue reactions and often develop cutaneous toxic effects when subjected to radiotherapy. Here we explored the effects of the HIV-1 Tat protein on cellular responses to ionizing radiation. Methods and Materials Two Tat-expressing cell lines, TT2 and TE671-Tat, were derived from human rhabdomyosarcoma cells by transfecting with the HIV-1 tat gene. Radiosensitivity was determined using colony-forming ability. Gene expression was assessed by cDNA microarray and immunohybridization. The Comet assay and γ-H2AX foci were use to detect DNA double-strand breaks (DSBs) and repair. Radiation-induced cell cycle changes were detected by flow cytometry. Results The radiosensitivity of TT2 and TE671-Tat cells was significantly increased as compared with parental TE671 cells or the control TE671-pCI cells. Tat also increased proliferation activity. The comet assay and γH2AX foci detection revealed a decreased capacity to repair radiation-induced DNA DSBs in Tat-expressing cells. Microarray assay demonstrated that the DNA repair gene DNA-PKcs, and cell cycle-related genes Cdc20, Cdc25C, KIF2C and CTS1 were downregulated in Tat-expressing cells. Depression of DNA-PKcs in Tat-expressing cells was further confirmed by RT-PCR and immuno-hybridization analysis. Tat-expressing cells exhibited a prolonged S phase arrest after 4 Gy γ-irradiation, and a noticeable delay in the initiation and elimination of radiation-induced G 2 /M arrest as compared with parental cells. In addition, the G 2 /M arrest was incomplete in TT2 cells. Moreover, HIV-1 Tat resulted in a constitutive overexpression of cyclin B1 protein. Conclusion HIV-1 Tat protein sensitizes cells to ionizing radiation via depressing DNA repair and dysregulating cell cycle checkpoints. These observations provide new insight into the increased tissue reactions of AIDS

  16. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways.

    Science.gov (United States)

    Gupta, Richa; Barkan, Daniel; Redelman-Sidi, Gil; Shuman, Stewart; Glickman, Michael S

    2011-01-01

    Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in Escherichia coli and constitute the major pathway of error-free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via non-homologous end-joining (NHEJ) catalysed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways. © 2010 Blackwell Publishing Ltd.

  17. Inducible DNA-repair systems in yeast: competition for lesions.

    Science.gov (United States)

    Mitchel, R E; Morrison, D P

    1987-03-01

    DNA lesions may be recognized and repaired by more than one DNA-repair process. If two repair systems with different error frequencies have overlapping lesion specificity and one or both is inducible, the resulting variable competition for the lesions can change the biological consequences of these lesions. This concept was demonstrated by observing mutation in yeast cells (Saccharomyces cerevisiae) exposed to combinations of mutagens under conditions which influenced the induction of error-free recombinational repair or error-prone repair. Total mutation frequency was reduced in a manner proportional to the dose of 60Co-gamma- or 254 nm UV radiation delivered prior to or subsequent to an MNNG exposure. Suppression was greater per unit radiation dose in cells gamma-irradiated in O2 as compared to N2. A rad3 (excision-repair) mutant gave results similar to wild-type but mutation in a rad52 (rec-) mutant exposed to MNNG was not suppressed by radiation. Protein-synthesis inhibition with heat shock or cycloheximide indicated that it was the mutation due to MNNG and not that due to radiation which had changed. These results indicate that MNNG lesions are recognized by both the recombinational repair system and the inducible error-prone system, but that gamma-radiation induction of error-free recombinational repair resulted in increased competition for the lesions, thereby reducing mutation. Similarly, gamma-radiation exposure resulted in a radiation dose-dependent reduction in mutation due to MNU, EMS, ENU and 8-MOP + UVA, but no reduction in mutation due to MMS. These results suggest that the number of mutational MMS lesions recognizable by the recombinational repair system must be very small relative to those produced by the other agents. MNNG induction of the inducible error-prone systems however, did not alter mutation frequencies due to ENU or MMS exposure but, in contrast to radiation, increased the mutagenic effectiveness of EMS. These experiments demonstrate

  18. PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility

    International Nuclear Information System (INIS)

    Godon, C.; Cordelieres, F.P.; Giocanti, N.; Megnin-Chanet, F.; Hall, J.; Favaudon, V.; Godon, C.; Giocanti, N.; Megnin-Chanet, F.; Hall, J.; Favaudon, V.; Cordelieres, F.P.; Cordelieres, F.P.; Biard, D.

    2008-01-01

    The consequences of PARP-1 disruption or inhibition on DNA single-strand break repair (SSBR) and radio-induced lethality were determined in synchronized, iso-genic HeLa cells stably silenced or not for poly(ADP-ribose) polymerase-1 (PARP-1) (PARP-1(KD)) or XRCC1 (XRCC1(KD)). PARP-1 inhibition prevented XRCC1-YFP recruitment at sites of 405 nm laser micro irradiation, slowed SSBR 10-fold and triggered the accumulation of large persistent foci of GFP-PARP-1 and GFP-PCNA at photo damaged sites. These aggregates are presumed to hinder the recruitment of other effectors of the base excision repair (BER) pathway.PARP-1 silencing also prevented XRCC1-YFP recruitment but did not lengthen the lifetime of GFP-PCNA foci. Moreover, PARP-1(KD) and XRCC1(KD) cells in S phase completed SSBR as rapidly as controls, while SSBR was delayed in G1. Taken together, the data demonstrate that a PARP-1- and XRCC1-independent SSBR pathway operates when the short patch repair branch of the BER is deficient. Long patch repair is the likely mechanism, as GFP-PCNA recruitment at photo-damaged sites was normal in PARP-1(KD) cells. PARP-1 silencing elicited hyper-radiosensitivity, while radiosensitization by a PARP inhibitor reportedly occurs only in those cells treated in S phase. PARP-1 inhibition and deletion thus have different outcomes in terms of SSBR and radiosensitivity. (authors)

  19. Repair kinetics of DNA double-strand breaks and incidence of apoptosis in mouse neural stem/progenitor cells and their differentiated neurons exposed to ionizing radiation.

    Science.gov (United States)

    Kashiwagi, Hiroki; Shiraishi, Kazunori; Sakaguchi, Kenta; Nakahama, Tomoya; Kodama, Seiji

    2018-05-01

    Neuronal loss leads to neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and Huntington's disease. Because of their long lifespans, neurons are assumed to possess highly efficient DNA repair ability and to be able to protect themselves from deleterious DNA damage such as DNA double-strand breaks (DSBs) produced by intrinsic and extrinsic sources. However, it remains largely unknown whether the DSB repair ability of neurons is more efficient compared with that of other cells. Here, we investigated the repair kinetics of X-ray-induced DSBs in mouse neural cells by scoring the number of phosphorylated 53BP1 foci post irradiation. We found that p53-independent apoptosis was induced time dependently during differentiation from neural stem/progenitor cells (NSPCs) into neurons in culture for 48 h. DSB repair in neurons differentiated from NSPCs in culture was faster than that in mouse embryonic fibroblasts (MEFs), possibly due to the higher DNA-dependent protein kinase activity, but it was similar to that in NSPCs. Further, the incidence of p53-dependent apoptosis induced by X-irradiation in neurons was significantly higher than that in NSPCs. This difference in response of X-ray-induced apoptosis between neurons and NSPCs may reflect a difference in the fidelity of non-homologous end joining or a differential sensitivity to DNA damage other than DSBs.

  20. Protective Effect of Diphlorethohydroxycarmalol against Ultraviolet B Radiation-Induced DNA Damage by Inducing the Nucleotide Excision Repair System in HaCaT Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Mei Jing Piao

    2015-09-01

    Full Text Available We investigated the protective properties of diphlorethohydroxycarmalol (DPHC, a phlorotannin, against ultraviolet B (UVB radiation-induced cyclobutane pyrimidine dimers (CPDs in HaCaT human keratinocytes. The nucleotide excision repair (NER system is the pathway by which cells identify and repair bulky, helix-distorting DNA lesions such as ultraviolet (UV radiation-induced CPDs and 6-4 photoproducts. CPDs levels were elevated in UVB-exposed cells; however, this increase was reduced by DPHC. Expression levels of xeroderma pigmentosum complementation group C (XPC and excision repair cross-complementing 1 (ERCC1, which are essential components of the NER pathway, were induced in DPHC-treated cells. Expression of XPC and ERCC1 were reduced following UVB exposure, whereas DPHC treatment partially restored the levels of both proteins. DPHC also increased expression of transcription factor specificity protein 1 (SP1 and sirtuin 1, an up-regulator of XPC, in UVB-exposed cells. DPHC restored binding of the SP1 to the XPC promoter, which is reduced in UVB-exposed cells. These results indicate that DPHC can protect cells against UVB-induced DNA damage by inducing the NER system.

  1. Modulation of radiation-induced base excision repair pathway gene expression by melatonin

    Directory of Open Access Journals (Sweden)

    Saeed Rezapoor

    2017-01-01

    Full Text Available Objective: Approximately 70% of all cancer patients receive radiotherapy. Although radiotherapy is effective in killing cancer cells, it has adverse effects on normal cells as well. Melatonin (MLT as a potent antioxidant and anti-inflammatory agent has been proposed to stimulate DNA repair capacity. We investigated the capability of MLT in the modification of radiation-induced DNA damage in rat peripheral blood cells. Materials and Methods: In this experimental study, male rats (n = 162 were divided into 27 groups (n = 6 in each group including: irradiation only, vehicle only, vehicle with irradiation, 100 mg/kg MLT alone, 100 mg/kg MLT plus irradiation in 3 different time points, and control. Subsequently, they were irradiated with a single whole-body X-ray radiation dose of 2 and 8 Gy at a dose rate of 200 MU/min. Rats were given an intraperitoneal injection of MLT or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were also taken 8, 24, and 48 h postirradiation, in order to measure the 8-oxoguanine glycosylase1 (Ogg1, Apex1, and Xrcc1 expression using quantitative real-time-polymerase chain reaction. Results: Exposing to the ionizing radiation resulted in downregulation of Ogg1, Apex1, and Xrcc1 gene expression. The most obvious suppression was observed in 8 h after exposure. Pretreatments with MLT were able to upregulate these genes when compared to the irradiation-only and vehicle plus irradiation groups (P < 0.05 in all time points. Conclusion: Our results suggested that MLT in mentioned dose may result in modulation of Ogg1, Apex1, and Xrcc1 gene expression in peripheral blood cells to reduce X-ray irradiation-induced DNA damage. Therefore, administration of MLT may increase the normal tissue tolerance to radiation through enhancing the cell DNA repair capacity. We believed that MLT could play a radiation toxicity reduction role in patients who have undergone radiation treatment as a part of cancer radiotherapy.

  2. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells

    International Nuclear Information System (INIS)

    Campos-Nebel, Marcelo de; Larripa, Irene; Gonzalez-Cid, Marcela

    2008-01-01

    Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by γH2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU-induced DSB

  3. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Nebel, Marcelo de [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)], E-mail: mnebel@hematologia.anm.edu.ar; Larripa, Irene; Gonzalez-Cid, Marcela [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)

    2008-11-10

    Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by {gamma}H2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU-induced

  4. Kinetics and mechanism of DNA repair

    International Nuclear Information System (INIS)

    Meldrum, R.A.; Wharton, C.W.; Shall, S.

    1990-01-01

    Experiments are described in which the feasibility of using caged dideoxy and other nucleoside triphosphate analogues for trapping breaks induced by u.v. radiation damage to mammalian cell DNA is evaluated. These nucleotide analogues that have a photolabile 1-(2-nitrophenyl)ethyl-protecting group attached to the γ-phosphate are placed in situ by permeabilizing cells by exposure to hypo-osmotic medium. The nucleoside triphosphate is released by a 351 nm u.v. laser pulse whence it may incorporate in the growing chain of DNA induced by the excision-repair process and terminate chain elongation. If the photoreleased dideoxynucleoside trisphosphate is isotopically labelled in the α-phosphate position the break is trapped and labelled. Incorporation of radioactivity into trichloroacetic acid insoluble material in these experiments confirms their potential for use in studies of the kinetics of mammalian cell DNA repair. (author)

  5. The role of genes controlling the replication and cell division in the repair of radiation damage in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Zhestyanikov, V D; Svetlova, M P; Tomilin, N V; Savel' eva, G E [AN SSSR, Leningrad. Inst. Tsitologii

    1975-01-01

    Mutations in genes controlling the replication (dnaEsup(ts), dnaBsup(ts), dnaGsup(ts) and cell division (lon) in Escherichia coli prevent the rejoining of the gamma radiation-induced single-strand breaks (dnaE in combination with polA1 mutation and dnaG at the restrictive temperature) and effective postreplication DNA repair in UV-irradiated cells (dnaG at the non-permissive temperature and lon mutation) and decrease the survival of UV- and gamma-irradiated bacteria.

  6. Processing of radiation-induced clustered DNA damage generates DSB in mammalian cells

    International Nuclear Information System (INIS)

    Gulston, M.K.; De Lara, C.M.; Davis, E.L.; Jenner, T.J.; O'Neill, P.

    2003-01-01

    Full text: Clustered DNA damage sites, in which two or more lesions are formed within a few helical turns of the DNA after passage of a single radiation track, are signatures of DNA modifications induced by ionizing radiation in mammalian cell. With 60 Co-radiation, the abundance of clustered DNA damage induced in CHO cells is ∼4x that of prompt double strand breaks (DSB) determined by PFGE. Less is known about the processing of non-DSB clustered DNA damage induced in cells. To optimize observation of any additional DSB formed during processing of DNA damage at 37 deg C, xrs-5 cells deficient in non-homologous end joining were used. Surprisingly, ∼30% of the DSB induced by irradiation at 37 deg C are rejoined within 4 minutes in both mutant and wild type cells. No significant mis-repair of these apparent DSB was observed. It is suggested that a class of non-DSB clustered DNA damage is formed which repair correctly within 4 min but, if 'trapped' prior to repair, are converted into DSB during the lysis procedure of PFGE. However at longer times, a proportion of non-DSB clustered DNA damage sites induced by γ-radiation are converted into DSB within ∼30 min following post-irradiation incubation at 37 deg C. The corresponding formation of additional DSB was not apparent in wild type CHO cells. From these observations, it is estimated that only ∼10% of the total yield of non DSB clustered DNA damage sites are converted into DSB through cellular processing. The biological consequences that the majority of non-DSB clustered DNA damage sites are not converted into DSBs may be significant even at low doses, since a finite chance exists of these clusters being formed in a cell by a single radiation track

  7. Inhibition of DNA repair by whole body irradiation induced nitric oxide leads to higher radiation sensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Sharma, Deepak; Santosh Kumar, S.; Raghu, Rashmi; Maurya, D.K.; Sainis, K.B.

    2007-01-01

    Full text: It is well accepted that the sensitivity of mammalian cells is better following whole body irradiation (WBI) as compared to that following in vitro irradiation. However, the underlying mechanisms are not well understood. Following WBI, the lipid peroxidation and cell death were significantly higher in lymphocytes as compared to that in vitro irradiated lymphocytes. Further, WBI treatment of tumor bearing mice resulted in a significantly higher inhibition of EL-4 cell proliferation as compared to in vitro irradiation of EL-4 cells. The DNA repair was significantly slower in lymphocytes obtained from WBI treated mice as compared to that in the cells exposed to same dose of radiation in vitro. Generation of nitric oxide following irradiation and also its role in inhibition of DNA repair have been reported, hence, its levels were estimated under both WBI and in vitro irradiation conditions. Nitric oxide levels were significantly elevated in the plasma of WBI treated mice but not in the supernatant of in vitro irradiated cells. Addition of sodium nitroprusside (SNP), a nitric oxide donor to in vitro irradiated cells inhibited the repair of DNA damage and sensitized cells to undergo cell death. It also enhanced the radiation-induced functional impairment of lymphocytes as evinced from suppression of mitogen-induced IL-2, IFN-γ and bcl-2 mRNA expression. Administration of N G -nitro-L-arginine-methyl-ester(L-NAME), a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. Our results indicated that nitric oxide plays a role in the higher radiosensitivity of lymphocytes in vivo by inhibiting repair of DNA damage

  8. Contribution of sleep to the repair of neuronal DNA double-strand breaks: evidence from flies and mice.

    Science.gov (United States)

    Bellesi, Michele; Bushey, Daniel; Chini, Mattia; Tononi, Giulio; Cirelli, Chiara

    2016-11-10

    Exploration of a novel environment leads to neuronal DNA double-strand breaks (DSBs). These DSBs are generated by type 2 topoisomerase to relieve topological constrains that limit transcription of plasticity-related immediate early genes. If not promptly repaired, however, DSBs may lead to cell death. Since the induction of plasticity-related genes is higher in wake than in sleep, we asked whether it is specifically wake associated with synaptic plasticity that leads to DSBs, and whether sleep provides any selective advantage over wake in their repair. In flies and mice, we find that enriched wake, more than simply time spent awake, induces DSBs, and their repair in mice is delayed or prevented by subsequent wake. In both species the repair of irradiation-induced neuronal DSBs is also quicker during sleep, and mouse genes mediating the response to DNA damage are upregulated in sleep. Thus, sleep facilitates the repair of neuronal DSBs.

  9. Binding of a nitroxyl to radiation-induced DNA transients in repair and repair deficient of E. coli K-12

    Energy Technology Data Exchange (ETDEWEB)

    Wold, E; Brustad, T [Norsk Hydros Institutt for Kreftforskning, Oslo

    1975-01-01

    Binding of tritiated 2,2,6,6-tetramethyl-4-piperidone-N-oxyl (/sup 3/H-TAN) to radiation-induced DNA-transients in E. coli K-12 strains AB 1157 and JO 307 rec A uvr A has been studied under in vivo conditions. After irradiation the cells were washed and resuspended in growth medium and left overnight at 37 deg C. Within an uncertainty of about 10 %, no effect of repair could be detected on the yield of TAN bound to DNA for any of the strains. During the period after resuspension TAN or fragments of TAN leaked out of the irradiated cell samples. This leakage may be attributed to semi-permanent association between TAN and radiation-induced radicals within the cell. The relevance of different interactions between TAN and transients in DNA is discussed.

  10. The effect of modulators of radiation-induced G2 arrest on the repair of radiation-induced DNA damage detectable by neutral filter elution

    International Nuclear Information System (INIS)

    Rowley, R.; Kort, L.

    1988-01-01

    The influence of cycloheximide (50 μg/ml), caffeine (5 mM) and cordycepin (0.15 mM) on the repair of the damage detectable in DNA by neutral filter elution was determined. Chinese hamster ovary cells (CHO) were irradiated with X-ray doses of 20, 60 and 100 Gy then allowed to repair without drug treatment or in the presence of each drug for intervals up to 6 h. DNA damage repair proceeded in two phases. The fast component of the repair process (t 1/2 approx. 7 min) was not modified by drug treatment; the slow component (t 1/2 170 min) was unaffected by cycloheximide or cordycepin, but appeared to be inhibited by caffeine. It was concluded that: (a) the lesion which results in radiation-induced G 2 arrest is not the lesion which is detectable by neutral filter elution, and (b) the influence of caffeine on dsb repair is specific to caffeine and is not mediated by a reduction in the duration of G 2 arrest. (author)

  11. Genetic characterization of cells of homocystinuria patients with disrupted DNA repair system

    International Nuclear Information System (INIS)

    Sinel'shchikova, T.A.; L'vova, G.N.; Shoniya, N.N.; Zasukhina, G.D.

    1986-01-01

    Fibroblasts obtained from biopsy material and lymphocytes of patients with homocystinuria were investigated for repair activity according to the following criteria: rejoined DNA breaks, induced by 4-nitroquinoline-1-oxide and γ-radiation; indices of reactivation and induced mutagenesis of smallpox vaccine virus treated with these mutagens. In lymphocytes a defect of DNA repair was observed according to all criteria investigated. During passage of fibroblast cultures, inhibition of repair activity of cells was preserved according to γ-type. Increase in the number of spontaneous and γ-induced mutations of virus was noted according to degree of passage of fibroblasts

  12. The survival and repair of DNA single-strand breaks in gamma-irradiated Escherichia coli adapted to methyl methane sulfonate

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.; Savel'eva, G.E.

    1992-01-01

    The survival and repair of single-strand breaks of DNA in gamma-irradiated E.coli adapted to methyl methane sulfonate (MMS) (20 mkg/ml during 3 hours) have been investigated. It is shown that the survival of adapted bacteria of radioresistant strains B/r, H/r30, AB1157 and W3110 pol + increases with DMF (dose modification factor) ranging within 1.4-1.8 and in radiosensitive strains B s-1 , AB1157 recA13 and AB1157 lexA3 with DMF ranging within 1.3-1.4, and does not change in strains with mutation in poLA gene P3478 poLA1 and 016 res-3. The increase in radioresistance during the adaptation to MMS correlates with the acceleration of repair of gamma-ray-induced single-strand breaks in the radioresistant strains B/r and W3110 pol + and with the appearance of the ability to repair some part of DNA single-strand breaks in the mutant B s-1

  13. Lack of spontaneous and radiation-induced chromosome breakage at interstitial telomeric sites in murine scid cells.

    Science.gov (United States)

    Wong, H-P; Mozdarani, H; Finnegan, C; McIlrath, J; Bryant, P E; Slijepcevic, P

    2004-01-01

    Interstitial telomeric sites (ITSs) in chromosomes from DNA repair-proficient mammalian cells are sensitive to both spontaneous and radiation-induced chromosome breakage. Exact mechanisms of this chromosome breakage sensitivity are not known. To investigate factors that predispose ITSs to chromosome breakage we used murine scid cells. These cells lack functional DNA-PKcs, an enzyme involved in the repair of DNA double-strand breaks. Interestingly, our results revealed lack of both spontaneous and radiation-induced chromosome breakage at ITSs found in scid chromosomes. Therefore, it is possible that increased sensitivity of ITSs to chromosome breakage is associated with the functional DNA double-strand break repair machinery. To investigate if this is the case we used scid cells in which DNA-PKcs deficiency was corrected. Our results revealed complete disappearance of ITSs in scid cells with functional DNA-PKcs, presumably through chromosome breakage at ITSs, but their unchanged frequency in positive and negative control cells. Therefore, our results indicate that the functional DNA double-strand break machinery is required for elevated sensitivity of ITSs to chromosome breakage. Interestingly, we observed significant differences in mitotic chromosome condensation between scid cells and their counterparts with restored DNA-PKcs activity suggesting that lack of functional DNA-PKcs may cause a defect in chromatin organization. Increased condensation of mitotic chromosomes in the scid background was also confirmed in vivo. Therefore, our results indicate a previously unanticipated role of DNA-PKcs in chromatin organisation, which could contribute to the lack of ITS sensitivity to chromosome breakage in murine scid cells. Copyright 2003 S. Karger AG, Basel

  14. Molecular mechanism of short-patch repair of radiation-damaged DNA by in vitro reconstituted systems

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Kim, K.; Biade, S.

    1995-01-01

    Objective: Short-patch excision repair is the major pathway to correct DNA damage such as modified bases, apurinic/apyrimidinic (AP) sites and single-strand breaks. Recently this repair reaction was demonstrated to proceed by two alternative pathways: DNA polymerase β (pol β)-dependent pathway and proliferating cell nuclear antigen (PCNA)-dependent pathway. In this work, we focused to compare substrate specificity of these two repair pathways and elucidate their roles in cellular responses to radiation damage. Materials and Methods: Three protein fractions, AP endonuclease, pol β, and BE-1B, which are required for the pol β-dependent pathway, and five protein fractions, AP endonuclease, BE-1B (these two are common to the pol β-dependent pathway), PCNA, pol δ, and BE-2, which are essential for the PCNA-dependent pathway were obtained from Xenopus laevis ovaries through column chromatography. The circular DNA containing either one of the following three lesions: a natural AP site, its synthetic analog, 3-hydroxy-2-hydroxymethyltetrahydrofuran (tetrahydrofuran), and 5-iododeoxyuridine (IdU), was prepared by in vitro ligation of oligonucleotides to a gapped circular DNA. The IdU-containing DNA was irradiated with 312 nm UV light prior to repair reaction. In addition, DNA carrying a single-strand break was obtained by Cs-137 irradiation. Repair reactions of these substrate DNAs were conducted with either the reconstituted system for the pol β-dependent pathway or the one for the PCNA-dependent pathway. After the reaction, repaired and unrepaired DNAs were separated by gel electrophoresis and quantitated. Results: The pol β-dependent reconstituted system was able to repair natural AP sites but not tetrahydrofuran sites or UV-irradiated IdU. The single-strand breaks generated by γ-irradiation were partially repaired by thepol β-dependent pathway. The PCNA-dependent system was able to repair natural AP sites, tetrahydrofuran sites, and most of the single

  15. The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells

    International Nuclear Information System (INIS)

    Elsen, S.; Collin-Faure, V.; Gidrol, X.; Lemercier, C.

    2013-01-01

    Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design. (authors)

  16. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography.

    Science.gov (United States)

    Thompson, Larry H

    2012-01-01

    The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks.

    Science.gov (United States)

    Federico, María Belén; Vallerga, María Belén; Radl, Analía; Paviolo, Natalia Soledad; Bocco, José Luis; Di Giorgio, Marina; Soria, Gastón; Gottifredi, Vanesa

    2016-01-01

    Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.

  18. A new dimension in improved radiation protection by enhanced DNA repair

    International Nuclear Information System (INIS)

    Riklis, E.

    1997-01-01

    Radioprotection and photo protection were dependent until now on measures to reduce the amount of damage formed by ionizing and ultraviolet radiations. In both cases the measures are not completely satisfactory: the classical radioprotectors are toxic arid exert serious side effects, and afford a protection factor not higher than around 2. The sunscreens filters are effective for certain wavelength ranges only, and not enough is known about the possible effects of the filters when they absorb light and turn into other chemical entities. Both approaches do not give an answer to damages which are formed in spite of the partial reduction of damage. A new approach offered here is dealing with the damage on a cellular / molecular level, by enhancing the activity of the natural repair enzymes whose task is to remove radiation and photoproducts, rejoin DNA strand breaks and repair the DNA. A combination of vitamins and antioxidants is fulfilling these tasks and provides protection from both ionizing and ultraviolet radiations by enhancing several folds the repair of DNA in living cells. Such a combination which contains the repair enhancers niacinamide and nordihydroguaiaretic acid is employed in preparations named EDNAR ( Enhanced DNA Repair, Patent pending) which demonstrate excellent results of enhancing DNA repair as measured by repair synthesis, and protecting the skin from sunburns as well as skin burns following radiotherapy. These lotions and creams, when not containing any chemical filters yet demonstrating a protective effect, may be called 'the sunscreens without sunscreens'. (author)

  19. Repair of human DNA: radiation and chemical damage in normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Setlow, R.B.

    1976-01-01

    We present the experimental evidence we have gathered, using a particular assay for DNA repair in human cells, the photolysis of bromodeoxyuridine (BrdUrd) incorporated during repair. This assay characterizes the sequence of repair events that occur in human cells after radiation, both ultraviolet and ionizing, and permits an estimation of the size of the average repaired region after these physical insults to DNA. We will discuss chemical insults to DNA and attempt to liken the repair processes after chemical damages of various kinds to those repair processes that occur in human DNA after damage from physical agents. We will also show results indicating that, under certain conditions, repair events resembling those seen after uv-irradiation can be observed in normal human cells after ionizing radiation. Furthermore the XP cells, defective in the repair of uv-induced DNA damage, show defective repair of these uv-like DNA lesions induced by ionizing radiation

  20. Sensitivity of strains of Escherichia coli differing in repair capability to far UV, near UV and visible radiations

    International Nuclear Information System (INIS)

    Webb, R.B.; Brown, M.S.

    1976-01-01

    In stationary phase, strains of Escherichia coli deficient in excision (B/r Hcr) or recombination repair (K12 AB2463) were more sensitive than a repair proficient strain (B/r) to monochromatic near-ultraviolet (365nm) and visible (460 nm) radiations. The relative increase in sensitivity of mutants deficient in excision or recombination repair in comparison to the wildtype, was less at 365 nm than at 254 nm. However, a strain deficient in both excision and recombination repair (K12 AB2480) showed a large, almost equal, increase in sensitivity over mutants deficient in either excision or recombination repair at 365 nm and 254 nm. All strains tested were highly resistant to 650 nm radiation. Action spectra for lethality of strains B/r and B/r Hcr in stationary phase reveal small peaks or shoulders in the 330 to 340, 400 to 410 and 490 to 510 nm wavelength ranges. The presence of 5 micro g/ml acriflavine (an inhibitor of repair) in the plating medium greatly increased the sensitivity of strain B/r to radiation at 254, 365 and 460 nm, while strains E.coli B/r Hcr and K12 AB2463 were sensitized by small amounts. At each of the wavelengths tested, acriflavine in the plating medium had at most a small effect on E.coli K12 AB2480. Acriflavine failed to sensitize any strain tested at 650 nm. Evidence supports the interpretation that lesions induced in DNA by 365 nm and 460 nm radiations play the major role in the inactivation of E.coli by these wavelengths. Single-strand breaks (or alkali-labile bonds), but not pyrimidine dimers are candidates for the lethal DNA lesions in uvrA and repair proficient strains. At high fluences lethality may be enhanced by damage to the excision and recombination repair systems. (author)

  1. Sensitivity of strains of Escherichia coli differing in repair capability to far uv, near uv and visible radiations

    Energy Technology Data Exchange (ETDEWEB)

    Webb, R B; Brown, M S [Argonne National Lab., Ill. (USA)

    1976-11-01

    In stationary phase, strains of Escherichia coli deficient in excision (B/r Hcr) or recombination repair (K12 AB2463) were more sensitive than a repair proficient strain (B/r) to monochromatic near-ultraviolet (365nm) and visible (460 nm) radiations. The relative increase in sensitivity of mutants deficient in excision or recombination repair in comparison to the wildtype, was less at 365 nm than at 254 nm. However, a strain deficient in both excision and recombination repair (K12 AB2480) showed a large, almost equal, increase in sensitivity over mutants deficient in either excision or recombination repair at 365 nm and 254 nm. All strains tested were highly resistant to 650 nm radiation. Action spectra for lethality of strains B/r and B/r Hcr in stationary phase reveal small peaks or shoulders in the 330 to 340, 400 to 410 and 490 to 510 nm wavelength ranges. The presence of 5 micro g/ml acriflavine (an inhibitor of repair) in the plating medium greatly increased the sensitivity of strain B/r to radiation at 254, 365 and 460 nm, while strains E.coli B/r Hcr and K12 AB2463 were sensitized by small amounts. At each of the wavelengths tested, acriflavine in the plating medium had at most a small effect on E.coli K12 AB2480. Acriflavine failed to sensitize any strain tested at 650 nm. Evidence supports the interpretation that lesions induced in DNA by 365 nm and 460 nm radiations play the major role in the inactivation of E.coli by these wavelengths. Single-strand breaks (or alkali-labile bonds), but not pyrimidine dimers are candidates for the lethal DNA lesions in uvrA and repair proficient strains. At high fluences lethality may be enhanced by damage to the excision and recombination repair systems.

  2. Cellular Repair of DNA–DNA Cross-Links Induced by 1,2,3,4-Diepoxybutane

    Directory of Open Access Journals (Sweden)

    Lisa N. Chesner

    2017-05-01

    Full Text Available Xenobiotic-induced interstrand DNA–DNA cross-links (ICL interfere with transcription and replication and can be converted to toxic DNA double strand breaks. In this work, we investigated cellular responses to 1,4-bis-(guan-7-yl-2,3-butanediol (bis-N7G-BD cross-links induced by 1,2,3,4-diepoxybutane (DEB. High pressure liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI+-MS/MS assays were used to quantify the formation and repair of bis-N7G-BD cross-links in wild-type Chinese hamster lung fibroblasts (V79 and the corresponding isogenic clones V-H1 and V-H4, deficient in the XPD and FANCA genes, respectively. Both V-H1 and V-H4 cells exhibited enhanced sensitivity to DEB-induced cell death and elevated bis-N7G-BD cross-links. However, relatively modest increases of bis-N7G-BD adduct levels in V-H4 clones did not correlate with their hypersensitivity to DEB. Further, bis-N7G-BD levels were not elevated in DEB-treated human clones with defects in the XPA or FANCD2 genes. Comet assays and γ-H2AX focus analyses conducted with hamster cells revealed that ICL removal was associated with chromosomal double strand break formation, and that these breaks persisted in V-H4 cells as compared to control cells. Our findings suggest that ICL repair in cells with defects in the Fanconi anemia repair pathway is associated with aberrant re-joining of repair-induced double strand breaks, potentially resulting in lethal chromosome rearrangements.

  3. Visualization of DNA double-strand break repair: From molecules to cells

    NARCIS (Netherlands)

    Krawczyk, Przemek M.; Stap, Jan; Aten, Jacob A.

    2008-01-01

    DNA double-strand break (DSB) signaling and repair processes are positioned at the crossroad of nuclear pathways that regulate DNA replication, cell division, senescence and apoptosis. Importantly, errors in DSB repair may lead to lethal or potentially tumorigenic chromosome rearrangements.

  4. CD133 positive U87 glioma stem cell radiosensitivity and DNA double-strand break repair

    International Nuclear Information System (INIS)

    Li Ping; Zong Tianzhou; Ji Xiaoqin; Lu Xueguan

    2013-01-01

    Objective: To explore the radiosensitivity and DNA double-strand break repair of CD133 + U87 glioma stem cell. Methods: CD133 + and CD133 - cells were isolated from glioma U87 cell lines by flow cytometry sorter system. After irradiated vertically by 4 Gy X-rays, the radiosensitivity of cells was determined by clonogenic assay. The radiation-induced DNA double-strand break repair of CD133 + and CD133 - cells was determined by the neutral comet assay,and the expression of phosphorylated histone H2AX (γ-H2AX) and Rad51 foci were measured by immunofluorescence. Results: The clone forming rate of CD133 + cells was higher than CD133 - cells (t=3.66, P<0.01) with no radiation. The clone forming rate of CD133 + cells irradiated by 4 Gy X-rays has no significant changes compared to that of the non-irradiation cells (t=0.71, P>0.05), but for CD133 - cells, it decreased compared to non-irradiation cells (t=2.91, P<0.05). The tailmoment between CD133 + cells and CD133 - cells had no difference at 0.5 h after irradiation (t=1.44, P>0.05); the tailmoment of CD133 + cells was lower than CD133 - cells at 6 and 24 h after irradiation,respectively (t=5.31 and 8.09, P<0.01). There was no significant difference in the expression of γ-H2AX foci between CD133 + and CD133 - cells at 0.5 and 6 h after irradiation (t=0.12 and 0.99, P>0.05), γ-H2AX foci of CD133 + cells was significantly decreased compared to CD133 - cells at 24 h after irradiation (t=4.99, P<0.01). For Rad 51 foci, there was no difference between CD133 + and CD133 - cells at 0.5 h after irradiation (t=1.12, P>0.05). The expression of Rad 51 foci of CD133 - cells was decreased compared to that of CD133 + cells at 6 and 24 h after irradiation,respectively (t=22.88 and 12.43, P<0.01). And the expression of Rad51 foci of CD133 + cells had no significant changes at 6-24 h after irradiation. Conclusions: Glioma stem cells is more radioresistive than glioma non-stem cells. The probable mechanism is that the DNA double

  5. Differences in inhibition by beta-arabinofuranosyladenine (araA) of radiation induced DNA damage repair in exponentially growing and plateau-phase CHO-cells

    International Nuclear Information System (INIS)

    Iliakis, G.; Seaner, R.

    1988-01-01

    The effect of beta-arabinofuranosyladenine (araA) on the repair of radiation induced DNA damage, as measured by the DNA unwinding technique, was studied in exponentially growing and plateau-phase CHO-cells after exposure to X-rays. Induction of DNA damage by radiation was found to be similar in exponentially growing and plateau-phase cells. In the absence of araA, repair of radiation induced DNA damage proceeded with similar kinetics in exponentially growing and plateau-phase cells. AraA at concentrations between 0-1500 μM inhibited DNA repair both in exponentially growing and in plateau-phase cells. However, the degree of inhibition was significantly higher (by a factor of 3) in plateau-phase cells. A similar degree of repair inhibition by araA was observed in plateau-phase cells treated in their conditioned medium, as well as in plateau-phase cells that were transferred in fresh growth medium just before treatment initiation. These results indicate the importance of biochemical parameters associated with alterations in the growth state of the cells for the inhibitory effect of araA and may help in the elucidation of the molecular mechanism(s) underlying repair inhibition by inhibitors of DNA replication. (orig.)

  6. Spectroscopic approaches to study DNA damage induced in genome exposed to ionizing radiation and its enzymatic repair

    International Nuclear Information System (INIS)

    Yokoya, Akinari; Fujii, Kentaro; Oka, Toshitaka; Watanabe, Ritsuko

    2012-01-01

    Recent progress on spectroscopic study on physicochemical process of DNA damage induction will be reported. It has been predicted by computer track simulation studies that complex DNA damage, so called clustered DNA damage sites, is produced along the tack particularly of high Linear Energy Transfer (LET) ions. The clustered DNA damage, consisting of two or more isolated lesions such as single strand breaks or nucleobase lesions, is thought to compromise DNA repair enzymes. We have revealed that the nucleobase lesions produced by He 2+ ion impact to simple model DNA (plasmid) are hardly processed by base excision repair enzymes (E. coli DNA glycosylases). Using the third generation synchrotron radiation facility (SPring-8), we have studied unpaired electron species or desorbed ions as intermediates of DNA damage using an EPR apparatus or mass spectrometer installed in the soft X-ray beamline in SPring-8. These aspects are compared with the yields of final products of single- and double-strand breaks and base lesions revealed biochemical techniques. Models of complex DNA damage induction will be proposed considering various modification factors of the damage induction, ionization of valence and inner-shell electrons, OH radicals, hydration layer and the impact of secondary electrons. (author)

  7. Carboplatin enhances the production and persistence of radiation-induced DNA single-strand breaks

    International Nuclear Information System (INIS)

    Yang, L.; Douple, E.B.; O'Hara, J.A.; Wang, H.J.

    1995-01-01

    Fluorometric analysis of DNA unwinding and alkaline elution were used to investigate the production and persistence of DNA single-strand breaks (SSBs) in Chinese hamster V79 and xrs-5 cells treated with the chemotherapeutic agent carboplatin in combination with radiation. Carboplatin was administered to cells before irradiation in hypoxic conditions, or the drug was added immediately after irradiation during the postirradiation recovery period in air. The results of DNA unwinding studies suggest that carboplatin enhances the production of radiation-induced SSBs in hypoxic V79 cells and xrs-5 cells by a factor of 1.86 and 1.83, respectively, when combined with radiation compared to the SSBs produced by irradiation alone. Carboplatin alone did not produce a measureable number of SSBs. Alkaline elution profiles also indicated that the rate of elution of SSBs was higher in cells treated with the carboplatin is present after irradiation and during the postirradiation recovery period, the rejoining of radiation-induced SSBs by a factor of 1.46 in V79 cells with 20 Gy irradiation and by a factor of 2.02 in xrs-5 cells with 20 Gy irradiation. When carboplatin is present after irradiation and during the postirradiation recovery period, the rejoining of radiation-induced SSBs is inhibited during this postirradiation incubation period (radiopotentiation) with a relative inhibition factor at 1 h postirradiation of 1.25 in V79 cells and 1.15 in xrs-5 cells. An increased production and persistence of SSBs resulting from the interaction of carboplatin with radiation may be an important step in the mechanism responsible for the potentiated cell killing previously from studies in animal tumors and in cultured cells. 31 refs., 7 figs

  8. DNA repair in mutagen-injured higher plants

    International Nuclear Information System (INIS)

    Veleminsky, J.; Gichner, T.

    1978-01-01

    Data are summarized proving the occurrence of photoreactivation of UV-induced pyrimidine dimers in cells of Nicotiana tabucum, Gingko and carrot, the excision of dimers in cells of Nicotiana tabacum, Gingko and carrot, the excision of dimers in protoplasts of carrot and in embryos of Lathyrus sativus, and the repair of DNA single-strand breaks induced in carrot protoplasts and barley embryonic cells by ionizing radiation. In irradiated barley embryos the unscheduled DNA synthesis and higher accessibility of induced primers to DNA polymerase I of E. coli were observed preferentially in G 1 cells with diffused chromatin. These reactions were inhibited by caffeine and EDTA. Unscheduled DNA synthesis was also observed in synchronized irradiated root cuttings of Vicia faba and in barley embryos treated with 4-nitroquinoline oxide, the latter being inhibited by caffeine and hydroxyurea. Repair synthesis was also established in barley embryos treated with mutagenic N-methyl-N-nitrosourea under conditions that postponed the onset of germination after the treatment. The same conditions enhanced the repair of DNA single-strand breaks induced by this mutagen and several other monofunctional alkylating compounds. From tissues of barley and of Phaseolus multiflorus, endonucleases for apurinic sites were isolated and characterized. Some of them are located in chromatin, others in chloroplasts. The relation between DNA repair and genetic effects of mutagens in higher plants is also discussed. (Auth.)

  9. Radiation-induced DNA breaks detected by immuno labelling of poly(ADP-ribose) in CHO cells. Standardization by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Varlet, P.; Bidon, N.; Noel, G.; Averbeck, D.; Salamero, J.; DeMurcia, G.

    1998-01-01

    The poly (ADP-ribose) polymerase is an ubiquitous nuclear protein capable of binding specifically to DNA strand breaks. It synthesizes ADP-ribose polymers proportionally to DNA breaks. The actual method of reference to determine DNA double strand breaks is pulsed-field gel electrophoresis, but this requires many cells. It thus appeared of interest to use poly (ADP-ribos)ylation to follow and estimate γ-ray-induced DNA fragmentation at the level of isolated cells after γ-irradiation in chinese hamster ovary cells (CHO-K1). The results obtained by the immuno-labelling technique of ADP-ribose polymers were compared to those obtained by pulsed-field gel electrophoresis. They show that poly (ADP-ribos)ylation reflects the occurrence of radiation-induced DNA strand breaks. A clear relationship exists between the amount of ADP-ribose polymers detected and DNA double strand breaks after γ-irradiation. (authors)

  10. DNA replication and the repair of DNA strand breaks in nuclei of Physarum polycephalum. Terminal report, August 1, 1978-March 31, 1980

    International Nuclear Information System (INIS)

    Brewer, E.N.; Evans, T.E.

    1980-01-01

    Nuclei isolated from Physarum are able to replicate approximately 15% of the total genome in a manner which is qualitatively similar to the DNA replication process occurring in the intact organism. Such nuclei, however, are defective in the joining of Okazaki intermediates in vitro. Two DNA polymerase species, isolated from nuclei or intact plasmodia of this organism, can be separated by sucrose density gradient centrifugation. Total DNA polymerase activity is low in nuclei isolated during mitosis. A heat-stable glycoprotein material present in aqueous nuclear extracts stimulates DNA synthesis in well-washed nuclei. A sub-nuclear preparation active in DNA synthesis in vitro has been obtained from isolated nuclei of Physarum. Radiation-induced DNA double-strand breaks are rejoined in intact plasmodia and isolated nuclei of Physarum in a cell cycle-dependent manner. This phenomenon does not appear to be due to an intrinsic difference in nuclear DNA endonuclease activity at different times of the mitotic cycle. DNA strand breaks and repair induced by the carcinogen 4-nitroquinoline-1-oxide is similar in several respects to that resulting from exposure of the organism to ionizing radiation. Temperature sensitive strains of Physarum have been constructed and preliminary genetical and biochemical characterizations have been carried out. Two of the strains appear to be conditionally defective in DNA metabolism. An isogenic ploidal series of amoebae has been prepared and characterized as to uv and ionizing radiation sensitivity (in terms of cell survival). There is a direct relationship between ploidy and resistance to uv whereas ploidal change does not appear to affect the response to ionizing radiation

  11. Photosensitization by iodinated DNA minor groove binding ligands: Evaluation of DNA double-strand break induction and repair.

    Science.gov (United States)

    Briggs, Benjamin; Ververis, Katherine; Rodd, Annabelle L; Foong, Laura J L; Silva, Fernando M Da; Karagiannis, Tom C

    2011-05-03

    Iodinated DNA minor groove binding bibenzimidazoles represent a unique class of UVA photosensitizer and their extreme photopotency has been previously characterized. Earlier studies have included a comparison of three isomers, referred to as ortho-, meta- and para-iodoHoechst, which differ only in the location of the iodine substituent in the phenyl ring of the bibenzimidazole. DNA breakage and clonogenic survival studies in human erythroleukemic K562 cells have highlighted the higher photo-efficiency of the ortho-isomer (subsequently designated UV(A)Sens) compared to the meta- and para-isomers. In this study, the aim was to compare the induction and repair of DNA double-strand breaks induced by the three isomers in K562 cells. Further, we examined the effects of the prototypical broad-spectrum histone deacetylase inhibitor, Trichostatin A, on ortho-iodoHoechst/UVA-induced double-strand breaks in K562 cells. Using γH2AX as a molecular marker of the DNA lesions, our findings indicate a disparity in the induction and particularly, in the repair kinetics of double-strand breaks for the three isomers. The accumulation of γH2AX foci induced by the meta- and para-isomers returned to background levels within 24 and 48 h, respectively; the number of γH2AX foci induced by ortho-iodoHoechst remained elevated even after incubation for 96 h post-irradiation. These findings provide further evidence that the extreme photopotency of ortho-iodoHoechst is due to not only to the high quantum yield of dehalogenation, but also to the severity of the DNA lesions which are not readily repaired. Finally, our findings which indicate that Trichostatin A has a remarkable potentiating effect on ortho-iodoHoechst/UVA-induced DNA lesions are encouraging, particularly in the context of cutaneous T-cell lymphoma, for which a histone deacetylase inhibitor is already approved for therapy. This finding prompts further evaluation of the potential of combination therapies. Copyright © 2011

  12. The molecular basis of radiation action

    International Nuclear Information System (INIS)

    Smith, K.C.

    1985-01-01

    Before turning his full attention to research on oncogenic viruses, Henry S. Kaplan made seminal contributions to the field of molecular radiobiology during the years from 1960 to 1975. One of his first areas of interest in microbial radiobiology was the radiation sensitization of cells by the incorporation into DNA of analogs of the natural purines and pyrimidines. This fundamental work ultimately led to clinical trials using halogenated pyrimidines in conjunction with radiation therapy. Dr Kaplan published the first method for assaying for the formation and repair of DNA double-strand breaks, and made other major contributions to our understanding of the biological importance of X-ray-induced DNA strand breaks, and the modulation of their repair. The specifics of Dr. Kaplan's discoveries in these areas are discussed, as well as some recent work from the author's laboratory that unifies some of the earlier work of Dr. Kaplan on the repair of DNA strand breaks

  13. The repair of low dose UV light-induced damage to human skin DNA in condition of trace amount Mg 2+

    Science.gov (United States)

    Gao, Fang; Guo, Zhouyi; Zheng, Changchun; Wang, Rui; Liu, Zhiming; Meng, Pei; Zhai, Juan

    2008-12-01

    Ultraviolet light-induced damage to human skin DNA was widely investigated. The primary mechanism of this damage contributed to form cyclobutane pyrimidine dimmers (CPDs). Although the distribution of UV light-induced CPDs within a defined sequence is similar, the damage in cellular environment which shields the nuclear DNA was higher than that in organism in apparent dose. So we use low UVB light as main study agent. Low dose UV-irradiated HDF-a cells (Human Dermal Fibroblasts-adult cells) which is weaker than epidermic cells were cultured with DMEM at different trace amount of Mg2+ (0mmol/L , 0.1mmol/L , 0.2mmol/L, 0.4mmol/L, 0.8mmol/L, 1.2mmol/L) free-serum DMEM and the repair of DNA strands injured were observed. Treat these cells with DNA strand breaks detection, photoproducts detection and the repair of photoproducts detection. Then quantitate the role of trace amount Mg2+ in repair of UV light-induced damage to human skin. The experiment results indicated that epidermic cells have capability of resistance to UV-radiation at a certain extent. And Mg2+ can regulate the UV-induced damage repair and relative vitality. It can offer a rationale and experiment data to relieve UV light-induced skin disease.

  14. A comparison of G2 phase radiation-induced chromatid break kinetics using calyculin-PCC with those obtained using colcemid block.

    Science.gov (United States)

    Bryant, Peter E; Mozdarani, Hossein

    2007-09-01

    To study the possible influence of cell-cycle delay on cells reaching mitosis during conventional radiation-induced chromatid break experiments using colcemid as a blocking agent, we have compared the chromatid break kinetics following a single dose of gamma rays (0.75 Gy) in metaphase CHO cells using calyculin-induced premature chromosome condensation (PCC), with those using colcemid block. Calyculin-induced PCC causes very rapid condensation of G2 cell chromosomes without the need for a cell to progress to mitosis, hence eliminating any effect of cell-cycle checkpoint on chromatid break frequency. We found that the kinetics of the exponential first-order decrease in chromatid breaks with time after irradiation was similar (not significantly different) between the two methods of chromosome condensation. However, use of the calyculin-PCC technique resulted in a slightly increased rate of disappearance of chromatid breaks and thus higher frequencies of breaks at 1.5 and 2.5 h following irradiation. We also report on the effect of the nucleoside analogue ara A on chromatid break kinetics using the two chromosome condensation techniques. Ara A treatment of cells abrogated the decrease in chromatid breaks with time, both using the calyculin-PCC and colcemid methods. We conclude that cell-cycle delay may be a factor determining the absolute frequency of chromatid breaks at various times following irradiation of cells in G2 phase but that the first-order disappearance of chromatid breaks with time and its abrogation by ara A are not significantly influenced by the G2 checkpoint.

  15. Studies on the repair of double strand break of DNA and cellular carcinogenesis, and consideration on the concept of extinction of nuclear power

    International Nuclear Information System (INIS)

    Teraoka, Hirobumi

    2013-01-01

    This paper describes the relationship between the repair of double strand break (DSB) of DNA and cellular carcinogenesis mainly on author's investigations, and his recent thought aiming at the extinction of nuclear power. The molecular repairing system is explained about DNA DSB induced by radiation and chemicals. When DSB occurs, nucleosome consisting from 4 core-histones participates to link the broken ends and then repair mechanisms of homologous recombination (HRR) and non-homologous end joining (NHEJ) begin to work. The latter is dominant in mammalians. Thus the genetic defect in these systems of DSB response and repair is a course of disorders such as ataxia telangiectasia (AT) (DSB sensor defect), genetic breast cancer (HRR defect), and radiosensitive-severe combined immunodeficiency (RS-SCID) (NHEJ defect), all of which result in cancer formation. NHEJ repair is known to be error-prone. Against multi-step carcinogenesis where accumulated gene mutations lead to the cancer formation, the author thinks chromosomal instability is one of important carcinogenic causes: the instability can be a trigger of producing cancer stem cells because the cells can be yielded from mouse embryonic stem cells where DSB is shown to participate in the process. Low dose radiation produces a small amount of DSB, to which the repair response is less sensitive at G2/M checkpoint, ultimately leading to genomic instability. Considering effects of the low dose radiation exposure above, and of the internal exposure to 3 H-thymidine beta ray in cells, of indoor Rn participating 16% of lung cancer incidence (Canadian epidemiological data) and so on, together with moral and social responsibility of scientist and technologist, the author says to have attained to the concept of the ''Extinction of Nuclear Power''. (T.T)

  16. Relationship of DNA repair and chromosome aberrations to potentially lethal damage repair in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Nagasawa, H.; Little, J.B.

    1980-01-01

    By the alkaline elution technique, the repair of x-ray-induced DNA single strand breaks and DNA-protein cross-links was investigated in stationary phase, contact-inhibited mouse cells. During the first hour of repair, approximately 90% of x-ray induced single strand breaks were rejoined whereas most of the remaining breaks were rejoined more slowly during the next 5 h. The number of residual non-rejoined single strand breaks was approximately proportional to the x-ray dose at early repair times. DNA-protein cross-links were removed at a slower rate - T 1/2 approximately 10 to 12 h. Cells were subcultured at low density at various times after irradiation and scored for colony survival, and chromosome aberrations in the first mitosis after sub-culture. Both cell lethality and the frequency of chromosome aberrations decreased during the first several hours of repair, reaching a minimum level by 6 h; this decrease correlated temporally with the repair of the slowly rejoining DNA strand breaks. The possible relationship of DNA repair to changes in survival and chromosome aberrations is discussed

  17. γ-ray dose rate effect in DNA double-strand break repair deficient murine cells

    International Nuclear Information System (INIS)

    Li Liya; Li Peiwen

    2002-01-01

    Objective: To analyze the dose rate effect and potentially lethal damage repair in DNA double-strand break repair deficient murine cells (SCID) irradiated by γ-ray. Methods: The wild type (CB.17+/+) and SCID cells were exposed to γ-ray at high and low dose rates. The high dose rate exposure was fractionated into two equal doses at 24 h intervals. The survival rates of irradiated cells were calculated by clone-forming analysis. Results: When γ-ray was given to wild type (CB.17+/+) cells in two fractions at 24 h intervals, the survival rate was significantly higher than that when the same total dose was given singly. In contrast, there was no difference in the survival rates between the single and fractionated exposure in SCID cells. SCID cells were more sensitive than CB.17+/+ cells to both low and high dose rates γ-ray exposure for cell killing. The survival rate by low dose rate exposure was significantly higher than that by high dose rate exposure, not only in CB.17+/+ cells but also in SCID cells. Conclusions: SCID cells are deficient in repairing γ-ray induced double-strand breaks. There is dose rate effect in both SCID and CB.17+/+ cells

  18. Formation of double-strand breaks in DNA of γ-irradiated bacteria depending on the function of fast repair processes of DNA single-strand breaks

    International Nuclear Information System (INIS)

    Petrov, S.I.; Gaziev, A.I.

    1980-01-01

    The formation of double-strand breaks in DNA of γ-irradiated ( 60 Co)Ex coli bacteria depending on the function of fast repair processes of DNA single-strand breaks, is investigated. The profiles of sedimentation of DNA Ex coli cells, irradiated at 0-2 deg C in the salt medium and in EDTA-borate buffer, are presented. It is shown that when irradiating cells in EDTA-borate buffer, the output of single- and double strand breaks in DNA is much higher than in the case of their irradiation in the minimum salt medium. The dependence of output of single-strand and double-strand breaks depending on the radiatier doze of E coli cells in the salt medium and EDTA-borate buffer, is studied. The supposition is made on the presence of a regulative interaction between the accumulation of DNA single-breaks and their repair with the formation of double-strand breaks. The functionating of fast and superfast repair processes considerably affects the formation of double-strand breaks in DNA of a bacterium cell. A considerable amount of double-breaks registered immediately after irradiation forms due to a close position of single-strand breaks on the opposite DNA strands

  19. Role of DNA repair in repair of cytogenetic damages. Slowly repaired DNA injuries involved in cytogenetic damages repair

    International Nuclear Information System (INIS)

    Zaichkina, S.I.; Rozanova, O.M.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    Caffeine was used to study the kinetics of cytogenetic damages repair in Chinese hamster fibroblasts. Its half-time (90 min) was shown to correlate with that of repair of slowly repaired DNA damages. The caffeine-induced increase in the number of irreparable DNA damages, attributed to inhibition of double-strand break repair, is in a quantitative correlation with the effect of the cytogenetic damage modification

  20. Genetic variants in DNA double-strand break repair genes and risk of salivary gland carcinoma: a case-control study.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available DNA double strand break (DSB repair is the primary defense mechanism against ionizing radiation-induced DNA damage. Ionizing radiation is the only established risk factor for salivary gland carcinoma (SGC. We hypothesized that genetic variants in DSB repair genes contribute to individual variation in susceptibility to SGC. To test this hypothesis, we conducted a case-control study in which we analyzed 415 single nucleotide polymorphisms (SNPs in 45 DSB repair genes in 352 SGC cases and 598 controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs and 95% confidence intervals (CIs. Rs3748522 in RAD52 and rs13180356 in XRCC4 were significantly associated with SGC after Bonferroni adjustment; ORs (95% CIs for the variant alleles of these SNPs were 1.71 (1.40-2.09, P = 1.70 × 10(-7 and 0.58 (0.45-0.74, P = 2.00 × 10(-5 respectively. The genetic effects were modulated by histological subtype. The association of RAD52-rs3748522 with SGC was strongest for mucoepidermoid carcinoma (OR = 2.21, 95% CI: 1.55-3.15, P = 1.25 × 10(-5, n = 74, and the association of XRCC4-rs13180356 with SGC was strongest for adenoid cystic carcinoma (OR = 0.60, 95% CI: 0.42-0.87, P = 6.91 × 10(-3, n = 123. Gene-level association analysis revealed one gene, PRKDC, with a marginally significant association with SGC risk in non-Hispanic whites. To our knowledge, this study is the first to comprehensively evaluate the genetic effect of DSB repair genes on SGC risk. Our results indicate that genetic variants in the DSB repair pathways contribute to inter-individual differences in susceptibility to SGC and show that the impact of genetic variants differs by histological subtype. Independent studies are warranted to confirm these findings.

  1. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells

    International Nuclear Information System (INIS)

    Gedik, C.M.; Collins, A.R.; Ewen, S.W.B.

    1992-01-01

    The authors have adapted procedure of single cell gel electrophoresis (SCGE) for studying DNA damage and repair induced by UV-C-radiation, using HeLa cells. UV-C itself does not induce DNA breakage, and though cellular repair of UV-C damage produces DNA breaks as intermediates, these are too short-lived to be detected by SCGE. Incubation of UV-C-irradiated cells with the DNA synthesis inhibitor aphidicolin causes accumulation of incomplete repair sites to a level readily detected by SCGE even after doses as low as 0.5 J m -2 and incubation for as little as 5 min. The authors also studied UV-C-dependent incision, repair synthesis and ligation in permeable cells. Finally, key incubated permeable cells, after UV-C-irradiation, with exogenous UV endonuclease, examined consequent breaks both by SCGE and by alkaline unwinding to express results of the electrophoretic method in terms of DNA break frequencies. The sensitivity of the SCGE technique can thus be estimated; as few as 0.1 DNA breaks per 10 9 daltons are detected. (Author)

  2. RNF4 is required for DNA double-strand break repair in vivo

    DEFF Research Database (Denmark)

    Vyas, R; Kumar, R; Clermont, F

    2013-01-01

    for both homologous recombination (HR) and non-homologous end joining repair. To establish a link between Rnf4 and the DNA damage response (DDR) in vivo, we generated an Rnf4 allelic series in mice. We show that Rnf4-deficiency causes persistent ionizing radiation-induced DNA damage and signaling...

  3. DNA breaks and repair in interstitial telomere sequences: Influence of chromatin structure

    International Nuclear Information System (INIS)

    Revaud, D.

    2009-06-01

    Interstitial Telomeric Sequences (ITS) are over-involved in spontaneous and radiationinduced chromosome aberrations in chinese hamster cells. We have performed a study to investigate the origin of their instability, spontaneously or after low doses irradiation. Our results demonstrate that ITS have a particular chromatin structure: short nucleotide repeat length, less compaction of the 30 nm chromatin fiber, presence of G-quadruplex structures. These features would modulate breaks production and would favour the recruitment of alternative DNA repair mechanisms, which are prone to produce chromosome aberrations. These pathways could be at the origin of chromosome aberrations in ITS whereas NHEJ and HR Double Strand Break repair pathways are rather required for a correct repair in these regions. (author)

  4. Radiation-induced DNA Double Strand Breaks and Their Modulations by Treatments with Moringa oleifera Lam. Leaf Extracts: A Cancer Cell Culture Model

    International Nuclear Information System (INIS)

    Boonsirichai, K.; Jetawattana, S.

    2014-01-01

    Gamma radiation brings deleterious effects upon human cells by inducing oxidative stress and DNA damages. Antioxidants have been shown to confer protective effects on irradiated normal cells. Moringa oleifera Lam. is a widely used nutritional supplement with antioxidant activities. This report showed that antioxidant-containing supplements, in addition to protecting normal cells, could protect cancer cells against genotoxic effects of gamma radiation. γ-H2AX immunofluorescent foci were utilized as an indicator of radiation-induced DNA double strand breaks. MCF-7 human breast adenocarcinoma cells were irradiated with 2-8 Gy gamma radiation. A linear relationship between the formation of γ-H2AX foci and radiation dose was observed with an average of 10 foci per cell per Gy. A 30-minute pretreatment of the cells with either the aqueous or the ethanolic extract of M. oleifera leaves could partially protect the cells from radiation-induced DNA double strand breaks. A pretreatment with 500 µg/mL aqueous extract reduced the number of foci formed by 15% when assayed at 30 minutes post-irradiation. The ethanolic extract was more effective; 500 µg/mL of its concentration reduced the number of foci among irradiated cells by 30%. The results indicated that irradiated cancer cells responded similarly to nutritional supplements containing antioxidants as irradiated normal cells. These natural antioxidants could confer protective effects upon cancer cells against gamma radiation. (author)

  5. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks.

    Directory of Open Access Journals (Sweden)

    María Belén Federico

    2016-01-01

    Full Text Available Fanconi Anemia (FA is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs. FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.

  6. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

    Science.gov (United States)

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-01-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030

  7. Cell lines derived from a Medaka radiation-sensitive mutant have defects in DNA double-strand break responses

    International Nuclear Information System (INIS)

    Hidaka, Masayuki; Oda, Shoji; Mitani, Hiroshi; Kuwahara, Yoshikazu; Fukumoto, Manabu

    2010-01-01

    It was reported that the radiation-sensitive Medaka mutant 'ric1' has a defect in the repair of DNA double-strand breaks (DSBs) induced by γ-rays during early embryogenesis. To study the cellular response of a ric1 mutant to ionizing radiation (IR), we established the mutant embryonic cell lines RIC1-e9, RIC1-e42, RIC1-e43. Following exposure to γ-irradiation, the DSBs in wild-type cells were repaired within 1 h, while those in RIC1 cells were not rejoined even after 2 h. Cell death was induced in the wild-type cells with cell fragmentation, but only a small proportion of the RIC1 cells underwent cell death, and without cell fragmentation. Although both wild-type and RIC1 cells showed mitotic inhibition immediately after γ-irradiation, cell division was much slower to resume in the wild-type cells (20 h versus 12 h). In both wild-type and RIC1 cells, Ser139 phosphorylated H2AX (γH2AX) foci were formed after γ-irradiation, however, the γH2AX foci disappeared more quickly in the RIC1 cell lines. These results suggest that the instability of γH2AX foci in RIC1 cells cause an aberration of the DNA damage response. As RIC1 cultured cells showed similar defective DNA repair as ric1 embryos and RIC1 cells revealed defective cell death and cell cycle checkpoint, they are useful for investigating DNA damage responses in vitro. (author)

  8. Coincident resection at both ends of random, γ-induced double-strand breaks requires MRX (MRN, Sae2 (Ctp1, and Mre11-nuclease.

    Directory of Open Access Journals (Sweden)

    James W Westmoreland

    2013-03-01

    Full Text Available Resection is an early step in homology-directed recombinational repair (HDRR of DNA double-strand breaks (DSBs. Resection enables strand invasion as well as reannealing following DNA synthesis across a DSB to assure efficient HDRR. While resection of only one end could result in genome instability, it has not been feasible to address events at both ends of a DSB, or to distinguish 1- versus 2-end resections at random, radiation-induced "dirty" DSBs or even enzyme-induced "clean" DSBs. Previously, we quantitatively addressed resection and the role of Mre11/Rad50/Xrs2 complex (MRX at random DSBs in circular chromosomes within budding yeast based on reduced pulsed-field gel electrophoretic mobility ("PFGE-shift". Here, we extend PFGE analysis to a second dimension and demonstrate unique patterns associated with 0-, 1-, and 2-end resections at DSBs, providing opportunities to examine coincidence of resection. In G2-arrested WT, Δrad51 and Δrad52 cells deficient in late stages of HDRR, resection occurs at both ends of γ-DSBs. However, for radiation-induced and I-SceI-induced DSBs, 1-end resections predominate in MRX (MRN null mutants with or without Ku70. Surprisingly, Sae2 (Ctp1/CtIP and Mre11 nuclease-deficient mutants have similar responses, although there is less impact on repair. Thus, we provide direct molecular characterization of coincident resection at random, radiation-induced DSBs and show that rapid and coincident initiation of resection at γ-DSBs requires MRX, Sae2 protein, and Mre11 nuclease. Structural features of MRX complex are consistent with coincident resection being due to an ability to interact with both DSB ends to directly coordinate resection. Interestingly, coincident resection at clean I-SceI-induced breaks is much less dependent on Mre11 nuclease or Sae2, contrary to a strong dependence on MRX complex, suggesting different roles for these functions at "dirty" and clean DSB ends. These approaches apply to resection at

  9. Monte Carlo simulation of ionizing radiation induced DNA strand breaks utilizing coarse grained high-order chromatin structures.

    Science.gov (United States)

    Liang, Ying; Yang, Gen; Liu, Feng; Wang, Yugang

    2016-01-07

    Ionizing radiation threatens genome integrity by causing DNA damage. Monte Carlo simulation of the interaction of a radiation track structure with DNA provides a powerful tool for investigating the mechanisms of the biological effects. However, the more or less oversimplification of the indirect effect and the inadequate consideration of high-order chromatin structures in current models usually results in discrepancies between simulations and experiments, which undermine the predictive role of the models. Here we present a biophysical model taking into consideration factors that influence indirect effect to simulate radiation-induced DNA strand breaks in eukaryotic cells with high-order chromatin structures. The calculated yields of single-strand breaks and double-strand breaks (DSBs) for photons are in good agreement with the experimental measurements. The calculated yields of DSB for protons and α particles are consistent with simulations by the PARTRAC code, whereas an overestimation is seen compared with the experimental results. The simulated fragment size distributions for (60)Co γ irradiation and α particle irradiation are compared with the measurements accordingly. The excellent agreement with (60)Co irradiation validates our model in simulating photon irradiation. The general agreement found in α particle irradiation encourages model applicability in the high linear energy transfer range. Moreover, we demonstrate the importance of chromatin high-order structures in shaping the spectrum of initial damage.

  10. Monte Carlo simulation of ionizing radiation induced DNA strand breaks utilizing coarse grained high-order chromatin structures

    International Nuclear Information System (INIS)

    Liang, Ying; Yang, Gen; Liu, Feng; Wang, Yugang

    2016-01-01

    Ionizing radiation threatens genome integrity by causing DNA damage. Monte Carlo simulation of the interaction of a radiation track structure with DNA provides a powerful tool for investigating the mechanisms of the biological effects. However, the more or less oversimplification of the indirect effect and the inadequate consideration of high-order chromatin structures in current models usually results in discrepancies between simulations and experiments, which undermine the predictive role of the models. Here we present a biophysical model taking into consideration factors that influence indirect effect to simulate radiation-induced DNA strand breaks in eukaryotic cells with high-order chromatin structures. The calculated yields of single-strand breaks and double-strand breaks (DSBs) for photons are in good agreement with the experimental measurements. The calculated yields of DSB for protons and α particles are consistent with simulations by the PARTRAC code, whereas an overestimation is seen compared with the experimental results. The simulated fragment size distributions for 60 Co γ irradiation and α particle irradiation are compared with the measurements accordingly. The excellent agreement with 60 Co irradiation validates our model in simulating photon irradiation. The general agreement found in α particle irradiation encourages model applicability in the high linear energy transfer range. Moreover, we demonstrate the importance of chromatin high-order structures in shaping the spectrum of initial damage. (paper)

  11. Mycobacterial UvrD1 is a Ku-dependent DNA helicase that plays a role in multiple DNA repair events, including double-strand break repair.

    Science.gov (United States)

    Sinha, Krishna Murari; Stephanou, Nicolas C; Gao, Feng; Glickman, Michael S; Shuman, Stewart

    2007-05-18

    Mycobacterium tuberculosis and other bacterial pathogens have a Ku-dependent nonhomologous end joining pathway of DNA double-strand break repair. Here we identify mycobacterial UvrD1 as a novel interaction partner for Ku in a genome-wide yeast two-hybrid screen. UvrD1 per se is a vigorous DNA-dependent ATPase but a feeble DNA helicase. Ku stimulates UvrD1 to catalyze ATP-dependent unwinding of 3'-tailed DNAs. UvrD1, Ku, and DNA form a stable ternary complex in the absence of ATP. The Ku binding determinants are located in the distinctive C-terminal segment of UvrD1. A second mycobacterial paralog, UvrD2, is a vigorous Ku-independent DNA helicase. Ablation of UvrD1 sensitizes Mycobacterium smegmatis to killing by ultraviolet and ionizing radiation and to a single chromosomal break generated by I-SceI endonuclease. The physical and functional interactions of bacterial Ku and UvrD1 highlight the potential for cross-talk between components of nonhomologous end joining and nucleotide excision repair pathways.

  12. Enzymatic quantification of strand breaks of DNA induced by vacuum-UV radiation

    International Nuclear Information System (INIS)

    Ito, Takashi

    1986-01-01

    Hind3 digested plasmid DNA dried on an aluminum plate was irradiated by vacuum-UV at 160 and 195 nm using a synchrotron irradiation system. A change induced in the DNA, presumably a single strand break, was quantified by the aid of the strand break-derived stimulation of poly(ADP-ribose) synthetase activity. The end group of strand breaks so induced was recognized by the enzyme as effectively as that by DNase 1 treatment, suggesting a nicking as the major lesion inflicted on the DNA. The fluence (UV) dependent stimulation of poly(ADP-ribose) synthetase activity was much higher upon 160 nm irradiation than upon 195 nm irradiation. (Auth.)

  13. Nicotinamide enhances repair of arsenic and ultraviolet radiation-induced DNA damage in HaCaT keratinocytes and ex vivo human skin.

    Directory of Open Access Journals (Sweden)

    Benjamin C Thompson

    Full Text Available Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV radiation and affects DNA damage and repair. Nicotinamide (vitamin B3 reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2 solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer.

  14. Protection from ionizing radiation induced damages by phytoceuticals and nutraceuticals

    International Nuclear Information System (INIS)

    Nair, C.K.K.

    2012-01-01

    Exposure of living systems to ionizing radiation cause a variety of damages to DNA and membranes due to generation of free radicals and reactive oxygen species. The radiation induced lesions in the cellular DNA are mainly strand breaks, damage to sugar moiety, alterations and elimination of bases, cross links of the intra and inter strand type and cross links to proteins while peroxidation of the lipids and oxidation of proteins constitute the major lesions in the membranes. The radioprotectors elicit their action by various mechanisms such as i) by suppressing the formation of reactive species, ii) detoxification of radiation induced species, iii) target stabilization and iv) enhancing the repair and recovery processes. The radioprotective compounds are of importance in medical, industrial, environmental, military and space science applications. Radiation protection might offer a tactical advantage on the battlefield in the event of a nuclear warfare. Radioprotectors might reduce the cancer risk to populations exposed to radiations directly or indirectly through industrial and military applications. The antioxidant and radioprotective properties a few of these agents under in vitro and in vivo conditions in animal models will be discussed

  15. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Mirta M L Sousa

    Full Text Available Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs. Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ pathway of double-strand break (DSB repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel

  16. Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks.

    Science.gov (United States)

    Bañuelos, C A; Banáth, J P; MacPhail, S H; Zhao, J; Eaves, C A; O'Connor, M D; Lansdorp, P M; Olive, P L

    2008-09-01

    Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse, but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed strand breaks more rapidly. Consistent with more rapid dsb rejoining, H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs), an increase in dsb rejoining rate, and a decrease in Ku70/80. Unlike mouse ES, human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells, they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM, and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.

  17. A Role for BLM in Double-Strand Break Repair Pathway Choice: Prevention of CtIP/Mre11-Mediated Alternative Nonhomologous End-Joining

    DEFF Research Database (Denmark)

    Grabarz, Anastazja; Guirouilh-Barbat, Josée; Barascu, Aurelia

    2013-01-01

    The choice of the appropriate double-strand break (DSB) repair pathway is essential for the maintenance of genomic stability. Here, we show that the Bloom syndrome gene product, BLM, counteracts CtIP/MRE11-dependent long-range deletions (>200 bp) generated by alternative end-joining (A-EJ). BLM...... represses A-EJ in an epistatic manner with 53BP1 and RIF1 and is required for ionizing-radiation-induced 53BP1 focus assembly. Conversely, in the absence of 53BP1 or RIF1, BLM promotes formation of A-EJ long deletions, consistent with a role for BLM in DSB end resection. These data highlight a dual role...... for BLM that influences the DSB repair pathway choice: (1) protection against CtIP/MRE11 long-range deletions associated with A-EJ and (2) promotion of DNA resection. These antagonist roles can be regulated, according to cell-cycle stage, by interacting partners such as 53BP1 and TopIII, to avoid...

  18. Pathways for double-strand break repair in genetically unstable Z-DNA-forming sequences.

    Science.gov (United States)

    Kha, Diem T; Wang, Guliang; Natrajan, Nithya; Harrison, Lynn; Vasquez, Karen M

    2010-05-14

    DNA can adopt many structures that differ from the canonical B-form, and several of these non-canonical DNA structures have been implicated in genetic instability associated with human disease. Earlier, we found that Z-DNA causes DNA double-strand breaks (DSBs) in mammalian cells that can result in large-scale deletions and rearrangements. In contrast, the same Z-DNA-forming CG repeat in Escherichia coli resulted in only small contractions or expansions within the repeat. This difference in the Z-DNA-induced mutation spectrum between mammals and bacteria might be due to different mechanisms for DSB repair; in mammalian cells, non-homologous end-joining (NHEJ) is a major DSB repair pathway, while E. coli do not contain this system and typically use homologous recombination (HR) to process DSBs. To test the extent to which the different DSB repair pathways influenced the Z-DNA-induced mutagenesis, we engineered bacterial E.coli strains to express an inducible NHEJ system, to mimic the situation in mammalian cells. Mycobacterium tuberculosis NHEJ proteins Ku and ligase D (LigD) were expressed in E.coli cells in the presence or absence of HR, and the Z-DNA-induced mutations were characterized. We found that the presence of the NHEJ mechanism markedly shifted the mutation spectrum from small deletions/insertions to large-scale deletions (from 2% to 24%). Our results demonstrate that NHEJ plays a role in the generation of Z-DNA-induced large-scale deletions, suggesting that this pathway is associated with DNA structure-induced destabilization of genomes from prokaryotes to eukaryotes. (c) 2010 Elsevier Ltd. All rights reserved.

  19. The mRNA expression of XRCC repair genes in mice after γ-ray radiation

    International Nuclear Information System (INIS)

    Wang Qin; Yue Jingyin; Li Jin; Mu Chuanjie; Fan Feiyue

    2006-01-01

    Objective: To investigate the role of XRCC repair genes in radioresistance of IRM-2 inbred mice. Methods: Northern hybridization was used to measure mRNA expression of XRCC1 and XRCC5 genes in IRM-2 inbred mice. ICR/JCL and 615 after exposure to different doses of γ-ray radiation at different postirradiation time. Results: The levels of XRCC1 and XRCC5 mRNA expression in control IRM-2 mice were higher significantly than those in their control parental mice (P<0.01 and P<0.05). The mRNA expression of XRCC genes in ICR/JCL and 615 mice all increased to some extent after exposure 1, 2 and 4 Gy radiation. But the levels were significantly higher at 2h postirradiation (P<0.05) . The levels of XRCC mRNA expression in IRM-2 mice did not increase significnatly compared with the control mice after exposure 1 and 2 Gy radiation. But the levels of XRCC1 and XRCC5 mRNA expression increased markedly at 4Gy 1h postirradiation (P<0.05 and P<0.01). Conclusion: The basal levels of XRCC1 and XRCC5 mRNA expression in IRM-2 mice were high. The high level of XRCC5 mRNA expression was involved in the repair of DNA double strand breaks induced by higher dose radiation, which perhaps was one of radioresistance causes of IRM-2 mice. (authors)

  20. Phenotypic Analysis of ATM Protein Kinase in DNA Double-Strand Break Formation and Repair.

    Science.gov (United States)

    Mian, Elisabeth; Wiesmüller, Lisa

    2017-01-01

    Ataxia telangiectasia mutated (ATM) encodes a serine/threonine protein kinase, which is involved in various regulatory processes in mammalian cells. Its best-known role is apical activation of the DNA damage response following generation of DNA double-strand breaks (DSBs). When DSBs appear, sensor and mediator proteins are recruited, activating transducers such as ATM, which in turn relay a widespread signal to a multitude of downstream effectors. ATM mutation causes Ataxia telangiectasia (AT), whereby the disease phenotype shows differing characteristics depending on the underlying ATM mutation. However, all phenotypes share progressive neurodegeneration and marked predisposition to malignancies at the organismal level and sensitivity to ionizing radiation and chromosome aberrations at the cellular level. Expression and localization of the ATM protein can be determined via western blotting and immunofluorescence microscopy; however, detection of subtle alterations such as resulting from amino acid exchanges rather than truncating mutations requires functional testing. Previous studies on the role of ATM in DSB repair, which connects with radiosensitivity and chromosomal stability, gave at first sight contradictory results. To systematically explore the effects of clinically relevant ATM mutations on DSB repair, we engaged a series of lymphoblastoid cell lines (LCLs) derived from AT patients and controls. To examine DSB repair both in a quantitative and qualitative manners, we used an EGFP-based assay comprising different substrates for distinct DSB repair mechanisms. In this way, we demonstrated that particular signaling defects caused by individual ATM mutations led to specific DSB repair phenotypes. To explore the impact of ATM on carcinogenic chromosomal aberrations, we monitored chromosomal breakage at a breakpoint cluster region hotspot within the MLL gene that has been associated with therapy-related leukemia. PCR-based MLL-breakage analysis of HeLa cells

  1. Radiation-induced DNA Double Strand Breaks and Their Modulations by Treatments with Moringa oleifera Lam. Leaf Extracts: A Cancer Cell Culture Model

    Directory of Open Access Journals (Sweden)

    K. Boonsirichai

    2014-04-01

    Full Text Available Gamma radiation brings deleterious effects upon human cells by inducing oxidative stress and DNA damages. Antioxidants have been shown to confer protective effects on irradiated normal cells. Moringa oleifera Lam. is a widely used nutritional supplement with antioxidant activities. This report showed that antioxidant-containing supplements, in addition to protecting normal cells, could protect cancer cells against genotoxic effects of gamma radiation. -H2AX immunofluorescent foci were utilized as an indicator of radiation-induced DNA double strand breaks. MCF-7 human breast adenocarcinoma cells were irradiated with 2-8 Gy gamma radiation. A linear relationship between the formation of -H2AX foci and radiation dose was observed with an average of 10 foci per cell per Gy. A 30-minute pretreatment of the cells with either the aqueous or the ethanolic extract of M. oleifera leaves could partially protect the cells from radiation-induced DNA double strand breaks. A pretreatment with 500 µg/mL aqueous extract reduced the number of foci formed by 15% when assayed at 30 minutes post-irradiation. The ethanolic extract was more effective; 500 µg/mL of its concentration reduced the number of foci among irradiated cells by 30%. The results indicated that irradiated cancer cells responded similarly to nutritional supplements containing antioxidants as irradiated normal cells. These natural antioxidants could confer protective effects upon cancer cells against gamma radiation

  2. Histone Deacetylase Inhibitor Induced Radiation Sensitization Effects on Human Cancer Cells after Photon and Hadron Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Ariungerel Gerelchuluun

    2018-02-01

    Full Text Available Suberoylanilide hydroxamic acid (SAHA is a histone deacetylase inhibitor, which has been widely utilized throughout the cancer research field. SAHA-induced radiosensitization in normal human fibroblasts AG1522 and lung carcinoma cells A549 were evaluated with a combination of γ-rays, proton, and carbon ion exposure. Growth delay was observed in both cell lines during SAHA treatment; 2 μM SAHA treatment decreased clonogenicity and induced cell cycle block in G1 phase but 0.2 μM SAHA treatment did not show either of them. Low LET (Linear Energy Transfer irradiated A549 cells showed radiosensitization effects on cell killing in cycling and G1 phase with 0.2 or 2 μM SAHA pretreatment. In contrast, minimal sensitization was observed in normal human cells after low and high LET radiation exposure. The potentially lethal damage repair was not affected by SAHA treatment. SAHA treatment reduced the rate of γ-H2AX foci disappearance and suppressed RAD51 and RPA (Replication Protein A focus formation. Suppression of DNA double strand break repair by SAHA did not result in the differences of SAHA-induced radiosensitization between human cancer cells and normal cells. In conclusion, our results suggest SAHA treatment will sensitize cancer cells to low and high LET radiation with minimum effects to normal cells.

  3. Repair of radiation-induced DNA damage in rat epidermis as a function of age

    International Nuclear Information System (INIS)

    Sargent, E.V.; Burns, F.J.

    1985-01-01

    The rate of repair of radiation-induced DNA damage in proliferating rat epidermal cells diminished progressively with increasing age of the animal. The dorsal skin was irradiated with 1200 rad of 0.8 MeV electrons at various ages, and the amount of DNA damage was determined as a function of time after irradiation by the method of alkaline unwinding followed by S 1 nuclease digestion. The amount of DNA damage immediately after irradiation was not age dependent, while the rate of damage removal from the DNA decreased with increasing age. By fitting an exponential function to the relative amount of undamaged DNA as a function of time after irradiation, DNA repair halftimes of 20, 27, 69, and 107 min were obtained for 28, 100-, 200-, and 400-day-old animals, respectively

  4. Protective role of 3-nitrotyrosine against gamma radiation-induced DNA strand breaks: A comparison study with tyrosine

    International Nuclear Information System (INIS)

    Shi Weiqun; Ni Meinan; Kong Fuquan; Sui Li; Hu Jia; Xu Diandou; Li Yanmei

    2008-01-01

    3-Nitrotyrosine(3-NY) has been reported as a potential source of reactive oxygen species (ROSs). In this work, plasmid pBR322 DNA was irradiated by gamma rays in aqueous solution in presence and absence of 3-NY, DNA strand breaks were analyzed by neutral electrophoresis followed by quantification with image analysis software. It was found that the presence of 3-NY could effectively reduce radiation-induced DNA strand breaks. A side-by-side comparison was performed between 3-NY and tyrosine, the results showed that the protective role 3-NY was comparable with tyrosine, which might imply that protein tyrosine nitration might not significantly decrease its ability as a free radical scavenger

  5. Impaired DNA repair as assessed by the 'comet' assay in patients with thyroid tumors after a history of radiation therapy: A preliminary study

    International Nuclear Information System (INIS)

    Leprat, Frederic; Alapetite, Claire; Rosselli, Filippo; Ridet, Agnes; Schlumberger, Martin; Sarasin, Alain; Suarez, Horacio G.; Moustacchi, Ethel

    1998-01-01

    Purpose: Patients with a history of head and neck irradiation in childhood are at risk to develop thyroid tumors. The aim of this study was to determine if an impairment of DNA strand breaks repair could account for this observation. Methods and Materials: Circulating unstimulated lymphocytes of a group of 13 patients who developed thyroid tumors after radiotherapy were submitted to the alkaline single-cell gel electrophoresis assay (SCGE or 'comet' assay) after in vitro exposure to 2 and 5 Gy of γ-rays. A control group of 8 healthy donors and 2 cases with a history of neck irradiation who did not develop a thyroid tumor were also analysed. The immediate response was compared to that observed after 15, 30, and 60 min of postexposure incubation periods. Results: Induction of DNA strand breaks is a dose-dependent process. The SCGE assay parameters did not differ significantly between patients and controls immediately (t = 0) after irradiation at the two doses used. As compared to healthy donors, a slower kinetics of repair was found in the patients. The proportion of residual damage at 60 min postirradiation was significantly (p < 0.01) higher in patients than in controls, at both doses analysed. Flow cytometric analysis of apoptosis and p53 protein status studied before and after irradiation showed no apparent relationship with the repair capacity. Conclusion: This preliminary study suggests that a subgroup of patients who develop thyroid tumors after a history of irradiation are partially defective in the late restitution of in vitro radiation-induced DNA strand breaks. This deficiency could be a predisposing factor to radiation-associated thyroid tumorigenesis. Detection of susceptible individuals using the simple and rapid comet assay, especially children receiving radiotherapeutic treatment, may allow a preventive surveillance for radiation-associated epithelial thyroid tumor development

  6. Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks.

    Directory of Open Access Journals (Sweden)

    Satoshi Nakajima

    Full Text Available During the DNA damage response (DDR, ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5, a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.

  7. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    Directory of Open Access Journals (Sweden)

    José Carlos Pelielo de Mattos

    2008-12-01

    Full Text Available Reactive oxygen species (ROS can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl2 is a ROS generator, leading to lethality in Escherichia coli (E. coli, with the base excision repair (BER mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl2 in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl2 was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms.Espécies reativas de oxigênio (ERO podem induzir lesões em diferentes alvos celulares, incluindo o DNA. O cloreto estanoso (SnCl2 é um gerador de ERO que induz letalidade em E. coli, sendo o reparo por excisão de bases (BER um mecanismo importante neste processo. Técnicas como o ensaio cometa (em eucariotos e a eletroforese de DNA plasmidial em gel de agarose têm sido utilizadas para detectar genotoxicidade. No presente estudo, uma adaptação do método de eletroforese em gel alcalino de agarose foi usada para verificar a indução de quebras, pelo SnCl2, no DNA de E. coli, bem como a participação de enzimas do BER na restauração das lesões. Os resultados mostraram que o SnCl2 induziu quebras no DNA de todas as cepas testadas. Além disso, endonuclease IV e exonuclease III estão envolvidas na reparação dos danos. Em resumo, os dados obtidos indicam que a metodologia de eletroforese em gel alcalino de agarose pode ser empregada tanto para o estudo de quebras no DNA, quanto para avaliação dos

  8. Repair of ultraviolet radiation damage in xeroderma pigmentosum cells belonging to complementation group F

    International Nuclear Information System (INIS)

    Hayakawa, H.; Ishizaki, K.; Yagi, T.; Takebe, H.; Inoue, M.; Sekiguchi, M.; Kyoto Univ.

    1981-01-01

    DNA-repair characteristics of xeroderma pigmentosum belonging to complementation group F were investigated. The cells exhibited an intermediate level of repair as measured in terms of (1) disappearance of T4 endonuclease-V-susceptible sites from DNA, (2) formation of ultraviolet-induced strand breaks in DNA, and (3) ultraviolet-induced unscheduled DNA synthesis during post-irradiation incubation. The impaired ability of XP3YO to perform unscheduled DNA synthesis was restored, to half the normal level, by the concomitant treatment with T4 endonuclease V and ultraviolet-inactivated Sendai virus. It is suggested that xeroderma pigmentosum cells of group F may be defective, at least in part, in the incision step of excision repair. (orig.)

  9. Characterization of postreplication repair in mutagen-sensitive strains of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Boyd, J.B.; Setlow, R.B.

    1976-01-01

    Mutants of Drosophila melanogaster, with suspected repair deficiencies, were analyzed for their capacity to repair damage induced by x-rays, and uv radiation. Analysis was performed on cell cultures derived from embryos of homozygous mutant stocks. Postreplication repair following uv radiation has been analyzed in mutant stocks derived from a total of ten complementation groups. Cultures were irradiated, pulse-labeled, and incubated in the dark prior to analysis by alkaline sucrose gradient centrifugation. Kinetics of the molecular weight increase in newly synthesized DNA were assayed after cells had been incubated in the presence or absence of caffeine. Two separate pathways of postreplication repair have been tentatively identified by mutants derived from four complementation groups. The proposed caffeine sensitive pathway (CAS) is defined by mutants which also disrupt meiosis. The second pathway (CIS) is caffeine insensitive and is not yet associated with meiotic functions. All mutants deficient in postreplication repair are also sensitive to nitrogen mustard. The mutants investigated display a normal capacity to repair single-strand breaks induced in DNA by x-rays, although two may possess a reduced capacity to repair damage caused by localized incorporation of high specific activity thymidine- 3 H. The data have been employed to construct a model for repair of uv-induced damage in Drosophila DNA. Implications of the model for DNA repair in mammals are discussed

  10. Caffeine inhibits homology-directed repair of I-SceI-induced DNA double-strand breaks.

    Science.gov (United States)

    Wang, Huichen; Boecker, Wilfried; Wang, Hongyan; Wang, Xiang; Guan, Jun; Thompson, Larry H; Nickoloff, Jac A; Iliakis, George

    2004-01-22

    We recently reported that two Chinese hamster mutants deficient in the RAD51 paralogs XRCC2 and XRCC3 show reduced radiosensitization after treatment with caffeine, thus implicating homology-directed repair (HDR) of DNA double-strand breaks (DSBs) in the mechanism of caffeine radiosensitization. Here, we investigate directly the effect of caffeine on HDR initiated by DSBs induced by a rare cutting endonuclease (I-SceI) into one of two direct DNA repeats. The results demonstrate a strong inhibition by caffeine of HDR in wild-type cells, and a substantial reduction of this effect in HDR-deficient XRCC3 mutant cells. Inhibition of HDR and cell radiosensitization to killing shows similar dependence on caffeine concentration suggesting a cause-effect relationship between these effects. UCN-01, a kinase inhibitor that effectively abrogates checkpoint activation in irradiated cells, has only a small effect on HDR, indicating that similar to radiosensitization, inhibition of checkpoint signaling is not sufficient for HDR inhibition. Recombination events occurring during treatment with caffeine are characterized by rearrangements reminiscent to those previously reported for the XRCC3 mutant, and immunofluorescence microscopy demonstrates significantly reduced formation of IR-specific RAD51 foci after caffeine treatment. In summary, our results identify inhibition of HDR as a significant contributor to caffeine radiosensitization.

  11. Radiation dose response of strand breaks in SINPV-DNA

    International Nuclear Information System (INIS)

    Zhang Chunxiang; Luo Daling; Li Mianfeng; Liu Xiaowei; Zeng Rong; Wang Xunzhang

    1995-01-01

    The Spodoplera litura Nuclear Polyhedrosis Viruses (SINPV) is a kind of insectile virus with a simple structure, in which a double helix DNA is encapsulated in a protein coat and there is no function of enzymatic repair. The SINPV samples in dry powdered form held in sealed plastic tube were irradiated by 1-100 kGy gamma rays. The single strand breaks (SSB) and double strand breaks (DSB) induced in SINPV after irradiation were measured by neutral and alkaline agarose gel electrophoresis. A dose-response function combining the responses of one-hit and two-hit events was used to describe the SSB and DSB dose-response curves. It is shown that the SSB are one-hit events and the DSB are the combination of both one-hit, and two-hit events, and two-hit events are predominant in the DSB process

  12. RPA Stabilization of Single-Stranded DNA Is Critical for Break-Induced Replication.

    Science.gov (United States)

    Ruff, Patrick; Donnianni, Roberto A; Glancy, Eleanor; Oh, Julyun; Symington, Lorraine S

    2016-12-20

    DNA double-strand breaks (DSBs) are cytotoxic lesions that must be accurately repaired to maintain genome stability. Replication protein A (RPA) plays an important role in homology-dependent repair of DSBs by protecting the single-stranded DNA (ssDNA) intermediates formed by end resection and by facilitating Rad51 loading. We found that hypomorphic mutants of RFA1 that support intra-chromosomal homologous recombination are profoundly defective for repair processes involving long tracts of DNA synthesis, in particular break-induced replication (BIR). The BIR defects of the rfa1 mutants could be partially suppressed by eliminating the Sgs1-Dna2 resection pathway, suggesting that Dna2 nuclease attacks the ssDNA formed during end resection when not fully protected by RPA. Overexpression of Rad51 was also found to suppress the rfa1 BIR defects. We suggest that Rad51 binding to the ssDNA formed by excessive end resection and during D-loop migration can partially compensate for dysfunctional RPA. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Regulation of DNA repair processes in mammalian cell

    International Nuclear Information System (INIS)

    Bil'din, V.N.; Sergina, T.B.; Zhestyanikov, V.D.

    1992-01-01

    A study was made of the repair of ionizing radiation-induced DNA single-strand breaks (SSB) in proliferating and quiescent mouse Swiss 3T6 cells and in those stimulated from the quiet status by epidermal growth factor in combination with insulin, in the presence of specific inhibitors of DNA polymerase α and β (aphidicolin) and DNA polymerase β (2', 3'-dideoxythjymidine-5'-triphosphate). The repair of DNA SSB induced by X-ray-irradiation (10 Gy) or by γ-ray irradiation (150 Gy) is more sensitive to aphidicolin and mitogen-simulated cells three times stronger than in proliferating cells. The influence of 2', 3'-dideoxythymidine-5'-triphosphate on the rate of DNA SSB repair in cells of all the three types does not differ. Thus, the decrease in DNA repair efficiency in quiescent cells is connected with a decrease in the activity of aphidicolin-sensitive DNA polymerase, apparently DNA polymerase α

  14. Cell sensitivity to irradiation and DNA repair processes. II

    International Nuclear Information System (INIS)

    Kozubek, S.; Krasavin, E.A.

    1984-01-01

    A new model of DNA single-strand break (SSB) and double-strand break (DSB) induction by radiations of different linear energy transfer (LET) has been developed. Utilizing quadratic dependence of the dose that delta-electrons depart in the track of heavy particles the fraction of heavy particle energy deposited in the target of DNA dimensions has been calculated. SSBs arise from energy depositions in one strand of DNA, direct DSBs arise from two SSBs on opposite strands of DNA in the track of one particle. It is concluded that DSB's induced by γ-radiation are mostly of enzymatic origin, meanwhile DSB's induced by high-LET radiation are direct DSB's. The dependence of radiosensitivity D 0 -1 on LET (L) for isogenic mutants of E. coli with different sensitivity to γ-radiation has been determined on the bases of the model and considering microscopic energy fluctuations. The shape of D 0 -1 (L) function is formed both by physical characteristics of radiation and by the ability of cells to repair some types of DNA damage. The model provides a basis for further investigation. (author)

  15. B-L mediated SUSY breaking with radiative B-L symmetry breaking

    International Nuclear Information System (INIS)

    Kikuchi, Tatsuru; Kubo, Takayuki

    2008-01-01

    We explore a mechanism of radiative B-L symmetry breaking in analogous to the radiative electroweak symmetry breaking. The breaking scale of B-L symmetry is related to the neutrino masses through the see-saw mechanism. Once we incorporate the U(1) B-L gauge symmetry in SUSY models, the U(1) B-L gaugino, Z-tilde B-L appears, and it can mediate the SUSY breaking (Z-prime mediated SUSY breaking) at around the scale of 10 6 GeV. Then we find a links between the neutrino mass (more precisly the see-saw or B-L scale of order 10 6 GeV) and the Z-prime mediated SUSY breaking scale. It is also very interesting that the gluino at the weak scale becomes relatively light, and almost compressed mass spectra for the gaugino sector can be realized in this scenario, which is very interesting in scope of the LHC.

  16. TU-CD-303-02: Beyond Radiation Induced Double Strand Breaks - a New Horizon for Radiation Therapy Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S. [UNC School of Medicine (United States)

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  17. TU-CD-303-02: Beyond Radiation Induced Double Strand Breaks - a New Horizon for Radiation Therapy Research

    International Nuclear Information System (INIS)

    Chang, S.

    2015-01-01

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  18. Evidence for multiple repair pathways of double-strand DNA breaks in Chinese hamster cells

    International Nuclear Information System (INIS)

    Giaccia, A.J.; Weistein, R.; Stamato, T.D.; Roosa, R.

    1984-01-01

    XR-1 is a mutant of the Chinese hamster cell (CHO-K1) which is abnormally sensitive to killing by gamma rays in G/sub 1/ (D37 = 27 rads vs. 318 for parent) and early S phases of the cell cycle but has near normal resistance in late S and early G/sub 2/ (Somatic Cell Genetics, 9:165-173, 1983). Complementation studies between XR-1 and its parent indicate that this sensitivity to gamma rays is a recessive phenotype. Both the XR-1 and its parent cell are able to repair single strand DNA breaks. However, in comparison to its parental cell, the XR-1 cell is markedly deficient in the repair of double strand DNA breaks introduced by gamma irradiation during the sensitive G/sub 1/-early S period, while in the late S-G/sub 2/ resistant period the repair is similar in both cells. This correlation suggests that an unrepaired double strand DNA break is the lethal lesion and that at least two pathways for the repair of these lesions exist in mammalian cells

  19. Radiation biology as a basis for multidisciplinary cancer therapy

    International Nuclear Information System (INIS)

    Hosoya, N.

    2017-01-01

    The research field of radiation biology has progressed greatly thanks to the advances in molecular biology. DNA in the cell nucleus is the principal target of radiation. The biological effect of radiation can be determined by how the DNA damage is processed in the cell. In order to prevent deleterious biological effects due to DNA damage, the cells possess a system termed 'DNA damage response'. The DNA damage response finally induces cell cycle arrest, activation of DNA repair pathways, or cell death. If accurately repaired, DNA damage will result in survival of cells with no biological effects. If inaccurately repaired, DNA damage may result in survival of cells exhibiting genetic alterations, which can lead to the development of various diseases including cancer. If unrepaired, fatal DNA damage such as the DNA double-strand break will result in cell depth. Since radiation therapy and chemotherapy are designed to specifically kill cancer cells by inducing DNA double-strand breaks, it is important to take advantage of cancer-specific abnormalities in DNA damage response. In this review, I describe the impact of targeting DNA damage response in cancer therapy and show how progress in radiation biology has contributed to the development of novel therapeutic strategies. (author)

  20. Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage

    International Nuclear Information System (INIS)

    Noda, Taichi; Takahashi, Akihisa; Kondo, Natsuko; Mori, Eiichiro; Okamoto, Noritomo; Nakagawa, Yosuke; Ohnishi, Ken; Zdzienicka, Malgorzata Z.; Thompson, Larry H.; Helleday, Thomas; Asada, Hideo

    2011-01-01

    The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA -/- , FANCC -/- , FANCA -/- C -/- , FANCD2 -/- and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical γH2AX-staining assay. Although the sensitivity of FANCA -/- , FANCC -/- and FANCA -/- C -/- cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2 -/- cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, γH2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex. -- Research highlights: → We examined to clarify the repair pathways of formaldehyde-induced DNA damage. Formaldehyde induces DNA double strand breaks (DSBs). → DSBs are repaired through the Fanconi anemia (FA) repair pathway. → This pathway is independent of the FA nuclear core complex. → We also found that homologous recombination repair was induced by formaldehyde.

  1. Radiation repair models for clinical application.

    Science.gov (United States)

    Dale, Roger G

    2018-02-28

    A number of newly emerging clinical techniques involve non-conventional patterns of radiation delivery which require an appreciation of the role played by radiation repair phenomena. This review outlines the main models of radiation repair, focussing on those which are of greatest clinical usefulness and which may be incorporated into biologically effective dose assessments. The need to account for the apparent "slowing-down" of repair rates observed in some normal tissues is also examined, along with a comparison of the relative merits of the formulations which can be used to account for such phenomena. Jack Fowler brought valuable insight to the understanding of radiation repair processes and this article includes reference to his important contributions in this area.

  2. Repair of radiation damage in mammalian cells: its relevance to environmental effects

    International Nuclear Information System (INIS)

    Han, A.; Elkind, M.M.

    1979-01-01

    Assessment of the potential biological hazards associated with energy production technologies involves the quantitation of risk on the basis of dose-effect dependencies, from which, it is hoped, some safety guidelines can be developed. Our current knowledge of the biological importance of damage/repair processes stems by and large from radiation studies which clearly demonstrate that cellular response to radiation depends upon the ability of cells to repair the damage. Apparently, the same is true for cellular response to different chemical agents. Drawing upon our experiences from radiation studies, we demonstrate the relevance of ongoing repair processes, as evident in the studies of radiation induced cell killing and neoplastic transformation, to the type of risk estimates that might be associated with the hazards from energy production technologies. The effect of repair on cell survival is considered. It is evident from our studies that in the region of small doses, repair of damage relative to cell lethality is of importance in estimating the magnitude of effect. Aside from the cytotoxic effects in terms of cell killing, one of the greatest concerns associated with energy production is the potential of a given technology, or its effluents, to produce cancer. It is therefore of importance to quantify the risk in this context of damage registration and possible effect of repair on damage expression. It has been generally established that exposure of normal cells in culture to a variety of known carcinogens results in neoplastic transformation. Our observations with C3H/10T1/2 cells in culture lend direct evidence for the hypothesis that reduced tumor incidences at low dose rates of radiation could be due to the repair of induced damage

  3. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange

    NARCIS (Netherlands)

    H.B. Beverloo (Berna); R.D. Johnson (Roger); M. Jasin (Maria); R. Kanaar (Roland); J.H.J. Hoeijmakers (Jan); M.L.G. Dronkert (Mies)

    2000-01-01

    textabstractCells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we

  4. Alteration of cellular radiation response as a consequence of defective DNA mismatch repair

    International Nuclear Information System (INIS)

    Weese, Theodore L. de; Bucci, Jennifer M.; Larrier, Nicole A.; Cutler, Richard G.; Riele, Hein te; Nelson, William G.

    1997-01-01

    Purpose/Objective: A number of genes have been implicated in the response of mammalian cells to ionizing radiation. Among these include the genes P53 and P21. Disruption of these genes can alter the predicted cellular behavior following radiation-induced DNA damage. Similarly, cells defective in mismatch repair are known to be tolerant to the lethal effects of alkylating agents. We hypothesized that mammalian cells which are defective in mismatch repair and tolerant to alkylating DNA damage might also be tolerant to the effects of oxidative DNA damage inflicted by ionizing radiation. Materials and Methods: Mouse embryonic stem cells homozygous for disrupted Msh2 alleles (Msh2-/-), heterozygous for a disrupted Msh2 allele (Msh2+/-) or intact cells (Msh2+/+) were exposed to both acute dose (1 Gy/min) and low dose rate (LDR) radiation (0.004 Gy/min) and cell survival was determined by clonogenic assay. Apoptosis induced by LDR was assessed by a terminal transferase assay. Immunoblot analysis was performed in order to evaluate induction of the polypeptides p53 and p21. Another measure of radiation damage tolerance may be accumulation of oxidative DNA species. Therefore, we monitored levels of 8-hydroxyguanine (8-OHG) and 8-hydroxyadenine (8-OHA) by gas chromatography - mass spectrometry with selected ion monitoring (GC-MS/SIM). Results: Cells containing either one or two disrupted Msh2 alleles (Msh2+/-, Msh2-/-) were found to be less sensitive to LDR than cells containing a complete complement of Msh2 alleles (Msh2+/+). Interestingly, all three cell lines had a nearly identical radiosensitivity to acute dose ionizing radiation despite differences in mismatch repair capacity. Apoptosis after LDR also varied between cells, with the Msh2+/+ cells exhibiting higher levels of apoptosis as compared to either the Msh2+/- or Msh2-/- cell lines. In addition, GC-MS/SIM revealed the Msh2+/- and Msh2-/- cell lines to have an approximately ten fold greater accumulation of the

  5. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair

    DEFF Research Database (Denmark)

    McCord, Ronald A; Michishita, Eriko; Hong, Tao

    2009-01-01

    -PKcs) to chromatin in response to DNA damage and stabilizes DNA-PKcs at chromatin adjacent to an induced site-specific DSB. Abrogation of these SIRT6 activities leads to impaired resolution of DSBs. Together, these findings elucidate a mechanism whereby regulation of dynamic interaction of a DNA repair factor......-dependent protein kinase) and promotes DNA DSB repair. In response to DSBs, SIRT6 associates dynamically with chromatin and is necessary for an acute decrease in global cellular acetylation levels on histone H3 Lysine 9. Moreover, SIRT6 is required for mobilization of the DNA-PK catalytic subunit (DNA......, and SIRT6 knockout cells exhibit genomic instability and DNA damage hypersensitivity. However, the molecular mechanisms underlying these defects are not fully understood. Here, we show that SIRT6 forms a macromolecular complex with the DNA double-strand break (DSB) repair factor DNA-PK (DNA...

  6. Effect of the uvr D3 mutation on ultraviolet radiation-induced DNA-repair replication in Escherichia coli K12

    International Nuclear Information System (INIS)

    Carlson, K.M.; Smith, K.C.

    1981-01-01

    Ultraviolet-radiation-induced DNA-repair replication was measured in wild-type, polA1, uvrD3, and polA1 uvrD3 strains of Escherichia coli K 12. A large stimulation of repair replication was observed in the uvrD3 strain, compared to the wild-type and polA1 strains. This enhanced repair replication was reduced in the polA1 uvrD3 strain. Therefore, a uvrD3 mutation appears to affect the amount of repair replication performed by DNA polymerase I. In the polA1 strain, there also appears to be an effect of the uvrD3 mutation on the amount of repair replication performed by DNA polymerase III (and/or II). The enhanced repair replication observed for the uvrD3 strains appears to be in response to the enhanced DNA degradation observed for these strains. (orig.)

  7. Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways

    International Nuclear Information System (INIS)

    Mladenov, Emil; Iliakis, George

    2011-01-01

    A defining characteristic of damage induced in the DNA by ionizing radiation (IR) is its clustered character that leads to the formation of complex lesions challenging the cellular repair mechanisms. The most widely investigated such complex lesion is the DNA double strand break (DSB). DSBs undermine chromatin stability and challenge the repair machinery because an intact template strand is lacking to assist restoration of integrity and sequence in the DNA molecule. Therefore, cells have evolved a sophisticated machinery to detect DSBs and coordinate a response on the basis of inputs from various sources. A central function of cellular responses to DSBs is the coordination of DSB repair. Two conceptually different mechanisms can in principle remove DSBs from the genome of cells of higher eukaryotes. Homologous recombination repair (HRR) uses as template a homologous DNA molecule and is therefore error-free; it functions preferentially in the S and G2 phases. Non-homologous end joining (NHEJ), on the other hand, simply restores DNA integrity by joining the two ends, is error prone as sequence is only fortuitously preserved and active throughout the cell cycle. The basis of DSB repair pathway choice remains unknown, but cells of higher eukaryotes appear programmed to utilize preferentially NHEJ. Recent work suggests that when the canonical DNA-PK dependent pathway of NHEJ (D-NHEJ), becomes compromised an alternative NHEJ pathway and not HRR substitutes in a quasi-backup function (B-NHEJ). Here, we outline aspects of DSB induction by IR and review the mechanisms of their processing in cells of higher eukaryotes. We place particular emphasis on backup pathways of NHEJ and summarize their increasing significance in various cellular processes, as well as their potential contribution to carcinogenesis.

  8. Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells

    International Nuclear Information System (INIS)

    Bhatt, Anant Narayan; Chauhan, Ankit; Khanna, Suchit; Rai, Yogesh; Singh, Saurabh; Soni, Ravi; Kalra, Namita; Dwarakanath, Bilikere S

    2015-01-01

    Cancer cells exhibit increased glycolysis for ATP production (the Warburg effect) and macromolecular biosynthesis; it is also linked with therapeutic resistance that is generally associated with compromised respiratory metabolism. Molecular mechanisms underlying radio-resistance linked to elevated glycolysis remain incompletely understood. We stimulated glycolysis using mitochondrial respiratory modifiers (MRMs viz. di-nitro phenol, DNP; Photosan-3, PS3; Methylene blue, MB) in established human cell lines (HEK293, BMG-1 and OCT-1). Glucose utilization and lactate production, levels of glucose transporters and glycolytic enzymes were investigated as indices of glycolysis. Clonogenic survival, DNA repair and cytogenetic damage were studied as parameters of radiation response. MRMs induced the glycolysis by enhancing the levels of two important regulators of glucose metabolism GLUT-1 and HK-II and resulted in 2 fold increase in glucose consumption and lactate production. This increase in glycolysis resulted in resistance against radiation-induced cell death (clonogenic survival) in different cell lines at an absorbed dose of 5 Gy. Inhibition of glucose uptake and glycolysis (using fasentin, 2-deoxy-D-glucose and 3-bromopyruvate) in DNP treated cells failed to increase the clonogenic survival of irradiated cells, suggesting that radio-resistance linked to inhibition of mitochondrial respiration is glycolysis dependent. Elevated glycolysis also facilitated rejoining of radiation-induced DNA strand breaks by activating both non-homologous end joining (NHEJ) and homologous recombination (HR) pathways of DNA double strand break repair leading to a reduction in radiation-induced cytogenetic damage (micronuclei formation) in these cells. These findings suggest that enhanced glycolysis generally observed in cancer cells may be responsible for the radio-resistance, partly by enhancing the repair of DNA damage

  9. Effects of UV-B radiation on tetraspores of Chondrus ocellatus Holm (Rhodophyta), and effects of red and blue light on repair of UV-B-induced damage

    Science.gov (United States)

    Ju, Qing; Xiao, Hui; Wang, You; Tang, Xuexi

    2015-05-01

    We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels (0, 36, 72, 108, 144 and 180 J/m2), and thereafter subjected to PAR, darkness, or red or blue light during a 2-h repair stage, each day for 48 days. The diameters and cellular contents of cyclobutane pyrimidine dimmers (CPDs), chlorophyll a (Chl a), phycoerythrin, and UV-B-absorbing mycosporinelike amino acids (MAAs) contents of the tetraspores were determined. Our results show that low doses of UV-B radiation (36 and 72 J/m2) promoted the growth of C. ocellatus; however, increased UV-B radiation gradually reduced the C. ocellatus growth (greater than 72 J/m2). The MAAs (palythine and asterina-330) in C. ocellatus were detected and analyzed by LC/MS. Our results suggest that moderate red light could induce the growth of this alga in aquaculture. In addition, photorepair was inhibited by red light, so there may be some other DNA repair mechanism activated by red light. Blue light promoted the activity of DNA photolyase, greatly improving remediation efficiency. Red and blue lights were found to reduce the capacity of C. ocellatus to form MAAs. Therefore, PAR, red light, and blue light play different roles during the repair processes for damage induced by UV-B radiation.

  10. Photodynamic DNA damage induced by phycocyanin and its repair in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    M. Pádula

    1999-09-01

    Full Text Available In the present study, we analyzed DNA damage induced by phycocyanin (PHY in the presence of visible light (VL using a set of repair endonucleases purified from Escherichia coli. We demonstrated that the profile of DNA damage induced by PHY is clearly different from that induced by molecules that exert deleterious effects on DNA involving solely singlet oxygen as reactive species. Most of PHY-induced lesions are single strand breaks and, to a lesser extent, base oxidized sites, which are recognized by Nth, Nfo and Fpg enzymes. High pressure liquid chromatography coupled to electrochemical detection revealed that PHY photosensitization did not induce 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo at detectable levels. DNA repair after PHY photosensitization was also investigated. Plasmid DNA damaged by PHY photosensitization was used to transform a series of Saccharomyces cerevisiae DNA repair mutants. The results revealed that plasmid survival was greatly reduced in rad14 mutants, while the ogg1 mutation did not modify the plasmid survival when compared to that in the wild type. Furthermore, plasmid survival in the ogg1 rad14 double mutant was not different from that in the rad14 single mutant. The results reported here indicate that lethal lesions induced by PHY plus VL are repaired differently by prokaryotic and eukaryotic cells. Morever, nucleotide excision repair seems to play a major role in the recognition and repair of these lesions in Saccharomyces cerevisiae.

  11. DNA double strand break repair is enhanced by P53 following induction by DNA damage and is dependent on the C-terminal domain of P53

    International Nuclear Information System (INIS)

    Wei Tang; Powell, Simon N.

    1996-01-01

    Purpose: The tumor suppressor gene p53 can mediate cell cycle arrest or apoptosis in response to DNA damage. Accumulating evidence suggests that it may also directly or indirectly influence the DNA repair machinery. In the present study, we investigated whether p53, induced by DNA damage, could enhance the rejoining of double-strand DNA breaks. Materials and Methods: DNA double-strand breaks (dsb) were made by restriction enzyme digestion of a plasmid, between a promoter and a 'reporter' gene: luciferase (LUC) or chloramphenicol acetyl-transferase (CAT). Linear or circular plasmid DNA (LUC or CAT) was co-transfected with circular β-Gal plasmid (to normalize for uptake) into mouse embryonic fibroblasts genetically matched to be (+/+) or (-/-) for p53. Their ability to rejoin linearized plasmid was measured by the luciferase or CAT activity detected in rescued plasmids. The activity detected in cells transfected with linear plasmid was scored relative to the activity detected in cells transfected with circular plasmid. Results: Ionizing radiation (IR, 2 Gy) enhanced the dsb repair activity in wild type p53 cells; however, p53 null cells lose this effect, indicating that the enhancement of dsb repair was p53-dependent. REF cells with dominant-negative mutant p53 showed a similar induction compared with the parental REF cells with wild-type p53. This ala-143 mutant p53 prevents cell cycle arrest and transactivation of p21 WAF1/cip1) following IR, indicating that the p53-dependent enhancement of DNA repair is distinct from transactivation. Immortalized murine embryonic fibroblasts, 10(1)VasK1 cells, which express p53 cDNA encoding a temperature-sensitive mutant in the DNA sequence specific binding domain (ala135 to val135) with an alternatively spliced C-terminal domain (ASp53: amino-acids 360-381) and, 10(1)Val5 cells, which express the normal spliced p53 (NSp53) with the same temperature-sensitive mutant were compared. It was found that 10(1)VasK1 cells showed no DNA

  12. Radiation damage and repair in cells and cell components. Final report. Part 1

    International Nuclear Information System (INIS)

    Fluke, D.J.

    1984-01-01

    An overview of research into the direct action of ionizing radiation, especially the effect of radiation temperature, primarily upon enzymes, into induced repair, and into S.O.S.-related phenomena, is presented

  13. Effects of extracellular and intracellular pH on repair of potentially lethal damage, chromosome aberrations and DNA double-strand breaks in irradiated plateau-phase A549 cells

    International Nuclear Information System (INIS)

    Jayanth, V.R.; Bayne, M.T.; Varnes, M.E.

    1994-01-01

    Plateau-phage A549 cells exhibit a high capacity for repair of potentially lethal radiation damage (PLD). Previously it was found that PLD repair could be partially inhibited by increasing the extracellular pH (pH e ) of the spent medium from its normal value of 6.7-6.8 to 7.6 during postirradiation holding. This study shows that PLD repair is also inhibited by reducing the pH e of the spent medium to 6.0. The effects of altering pH e on rejoining of DNA double-strand breaks (DSBs) as measured by neutral filter elution and on mitotic delay and chromosome aberrations seen after releasing cells from the plateau phase were investigated. Neither increasing nor decreasing the pH e of the spent medium had an effect on radiation-induced mitotic delay. Rejoining of DSBs was significantly inhibited by holding at pH e 6.0 but not affected by holding at pH e 7.6. At 2 h after irradiation about 51% of unrejoined breaks remained at pH e 6.0, compared to about 15% at pH e 6.7 or 7.6. However, holding at pH e 7.6 appeared to cause a marginal change in the kinetics of rejoining of DSBs. Repair of lesions leading to dicentric and acentric chromosome aberrations did not occur when cells were held at pH e 6.0, since less than 10% of these aberrations disappeared from cells held for 24 h before subculture. In contrast, holding plateau-phase cells at pH e 7.6 vs 6.7 caused a small but significant reduction in the disappearance of dicentrics but had no effect on the rate or extent of the disappearance of acentrics. These data have led us to hypothesize that inhibition of PLD repair by holding at pH e 6.0 is related both to inhibition of pH-dependent DNA repair enzymes and to induction of changes in DNA which lead to misrepair when the cells are released from plateau phase. Inhibition of PLD repair by holding at pH e 7.6 is related primarily to changes in DNA structure which promote misrepair. 43 refs., 5 figs., 4 tabs

  14. A microhomology-mediated break-induced replication model for the origin of human copy number variation.

    Directory of Open Access Journals (Sweden)

    P J Hastings

    2009-01-01

    Full Text Available Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV. A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2-5 base pairs (bp. Third, endpoints occur near pre-existing low copy repeats (LCRs. Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR. Under these circumstances, single-strand 3' tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication.

  15. Control of radiation sensitivity of mammalian cells. Regulation of expression of DNA repair genes

    International Nuclear Information System (INIS)

    Yoshida, Kayo; Morita, Takashi

    2003-01-01

    This review describes authors' investigations concerning regulation of expression of DNA repair genes for the purpose of control of radiosensitivity of mammalian cells for cancer radiotherapy. One of their experiments concerns the enhancement of sensitivity to radiation and anti-tumor agents by suppressing the expression of mammalian Rad51 gene which playing a central role in recombination repair against DNA double-strand break, by RNA interference (RNAi). Described are the mode of action of RNAi, mechanism of suppression of Rad51 gene expression by it, enhancing effect in radiosensitivity, stable suppression and enhancement by hairpin RNA and its possible usefulness in cancer therapy. The other concerns the histone H2AX gene, which delivering the repair signal post phosphorylation in chromatin against the double-strand break. Experimental results of suppression of the histone H2AX gene by tet-off system, enhancement of radiosensitivity by the suppression and functional recovery by the gene transfer are described, and the radiosensitivity can be thus artificially controlled by tetracycline in authors' F9 2AX (tet/tet) cells. (N.I.)

  16. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    International Nuclear Information System (INIS)

    Gustafsson, Ann-Sofie; Abramenkovs, Andris; Stenerlöw, Bo

    2014-01-01

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  17. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Ann-Sofie, E-mail: ann-sofie.gustafsson@bms.uu.se; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-15

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  18. G2-chromatid breaks and rejoining in HO8910 cells induced by γ-rays

    International Nuclear Information System (INIS)

    Wang Zhuanzi; Liu Bing; Duan Xin

    2006-01-01

    The premature chromosome condensation technique was used to estimate the dosage effect on the G2-chromosome breaks in HO8910 after exposure to γ-rays, and to investigate the time effect on the rejoining of the G2-chromosome breaks. The results show that the number of G2 chromatid-type breaks linearly increased with doses and the number of G2 iso-chromatid breaks increased with dose in a linear-square manner. With the prolongation of culture time, G2 chromatid-type breaks obviously got repaired, and almost 65% chromatid-type breaks got repaired in the early 24 hour post-irradiation, whereas only about 20% iso-chromatid breaks got repaired during the same time. Furthermore, the rejoining of the two types of chromatid breaks occurred mostly in 2 hours after irradiation and from 12 to 24 hours after irradiation, the number of chromatid breaks was found to get stabilized basically, which indicates that the repairing process is over in the early 24 hours of post-irradiation. (authors)

  19. A link between double-strand break-related repair and V(D)J recombination: the scid mutation

    International Nuclear Information System (INIS)

    Hendrickson, E.A.; Qin, X.Q.; Bump, E.A.; Schatz, D.G.; Oettinger, M.; Weaver, D.T.

    1991-01-01

    We show here that mammalian site-specific recombination and DNA-repair pathways share a common factor. The effects of DNA-damaging agents on cell lines derived from mice homozygous for the scid (severe combined immune deficiency) mutation were studied. Surprisingly, all scid cell lines exhibited a profound hypersensitivity to DNA-damaging agents that caused double-strand breaks (x-irradiation and bleomycin) but not to other chemicals that caused single-strand breaks or cross-links. Neutral filter elution assays demonstrated that the x-irradiation hypersensitivity could be correlated with a deficiency in repairing double-strand breaks. These data suggest that the scid gene product is involved in two pathways: DNA repair of random double-strand breaks and the site-specific and lymphoid-restricted variable-(diversity)-joining [V(D)J] DNA rearrangement process. We propose that the scid gene product performs a similar function in both pathways and may be a ubiquitous protein

  20. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks

    NARCIS (Netherlands)

    Vriend, Lianne E. M.; Prakash, Rohit; Chen, Chun-Chin; Vanoli, Fabio; Cavallo, Francesca; Zhang, Yu; Jasin, Maria; Krawczyk, Przemek M.

    2016-01-01

    DNA double-strand breaks (DSBs) are known to be powerful inducers of homologous recombination (HR), but single-strand breaks (nicks) have also been shown to trigger HR. Both DSB- and nick-induced HR ((nick)HR) are exploited in advanced genome-engineering approaches based on the bacterial RNA-guided

  1. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    Science.gov (United States)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  2. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    International Nuclear Information System (INIS)

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-01-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. The gaps may represent single-strand breaks. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or beta-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

  3. Radiation protection of glutathion-deficient cells by thiol-containing compounds

    International Nuclear Information System (INIS)

    Ehdgren, M.; Modig, Kh.; Revez, L.

    1983-01-01

    Results of the experiments on the effect of aminothiols (under conditions of hypoxia and in the air) on radiation injury of glutathion-deficient human fibroblasts (criterionthe number of single-strand breaks in DNA) have been interpreted in the following way protection with eddogenous and exogenous aminothiols takes place to a great extent due to repair of radiation induced radicals by means of hydrogen loss by SH-group under conditions of competition with oxygen which registers the radiation injury. Repair of in uries formed under aeration conditions is accelerated by endogenoUs and exogenous aminothiols

  4. Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Taichi [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Takahashi, Akihisa [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Kondo, Natsuko [Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Mori, Eiichiro [Department of Biology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Okamoto, Noritomo [Department of Otorhinolaryngology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nakagawa, Yosuke [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ohnishi, Ken [Department of Biology, Ibaraki Prefectual University of Health Sciences, 4669-2 Ami, Ami-mati, Inasiki-gun, Ibaraki 300-0394 (Japan); Zdzienicka, Malgorzata Z. [Department of Molecular Cell Genetics, Collegium Medicum in Bydgoszcz, Nicolaus-Copernicus-University in Torun, ul. Sklodowskiej-Curie 9, 85-094 Bydgoszcz (Poland); Thompson, Larry H. [Biosciences and Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808 (United States); Helleday, Thomas [Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ (United Kingdom); Department of Genetics, Microbiology and Toxicology Stockholm University, SE-106 91 Stockholm (Sweden); Asada, Hideo [Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); and others

    2011-01-07

    The role of the Fanconi anemia (FA) repair pathway for DNA damage induced by formaldehyde was examined in the work described here. The following cell types were used: mouse embryonic fibroblast cell lines FANCA{sup -/-}, FANCC{sup -/-}, FANCA{sup -/-}C{sup -/-}, FANCD2{sup -/-} and their parental cells, the Chinese hamster cell lines FANCD1 mutant (mt), FANCGmt, their revertant cells, and the corresponding wild-type (wt) cells. Cell survival rates were determined with colony formation assays after formaldehyde treatment. DNA double strand breaks (DSBs) were detected with an immunocytochemical {gamma}H2AX-staining assay. Although the sensitivity of FANCA{sup -/-}, FANCC{sup -/-} and FANCA{sup -/-}C{sup -/-} cells to formaldehyde was comparable to that of proficient cells, FANCD1mt, FANCGmt and FANCD2{sup -/-} cells were more sensitive to formaldehyde than the corresponding proficient cells. It was found that homologous recombination (HR) repair was induced by formaldehyde. In addition, {gamma}H2AX foci in FANCD1mt cells persisted for longer times than in FANCD1wt cells. These findings suggest that formaldehyde-induced DSBs are repaired by HR through the FA repair pathway which is independent of the FA nuclear core complex. -- Research highlights: {yields} We examined to clarify the repair pathways of formaldehyde-induced DNA damage. Formaldehyde induces DNA double strand breaks (DSBs). {yields} DSBs are repaired through the Fanconi anemia (FA) repair pathway. {yields} This pathway is independent of the FA nuclear core complex. {yields} We also found that homologous recombination repair was induced by formaldehyde.

  5. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients

    International Nuclear Information System (INIS)

    Chistiakov, Dimitry A.; Voronova, Natalia V.; Chistiakov, Pavel A.

    2008-01-01

    Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population

  6. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Chistiakov, Dimitry A. (Dept. of Pathology, Univ. of Pittsburgh, Pittsburgh (US)); Voronova, Natalia V. (Dept. of Molecular Diagnostics, National Research Center GosNIIgenetika, Moscow (RU)); Chistiakov, Pavel A. (Dept. of Radiology, Cancer Research Center, Moscow (RU))

    2008-06-15

    Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population

  7. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations

    OpenAIRE

    Löbrich, Markus; Rief, Nicole; Kühne, Martin; Heckmann, Martina; Fleckenstein, Jochen; Rübe, Christian; Uder, Michael

    2005-01-01

    Ionizing radiation can lead to a variety of deleterious effects in humans, most importantly to the induction of cancer. DNA double-strand breaks (DSBs) are among the most significant genetic lesions introduced by ionizing radiation that can initiate carcinogenesis. We have enumerated γ-H2AX foci as a measure for DSBs in lymphocytes from individuals undergoing computed tomography examination of the thorax and/or the abdomen. The number of DSBs induced by computed tomography examination was fou...

  8. The studies of effects of 60Co γ-rays on DNA damage and repair in tumor cells

    International Nuclear Information System (INIS)

    Su Liaoyuan; Huang Hanxian; Cen Jiannong

    1997-06-01

    The effects of 60 Co γ-rays and its combination with hyperthermia on DNA strand breaks and their repair in L 5178y cells were studied using alkaline elution technique. When the cells were heated at 43 degree C for 30 min, there was obvious inhibition of repair of DNA damage caused by γ-irradiation. The hyperthermia before irradiation produced better inhibiting effect than that after irradiation. The effects of radiation on DNA strand breaks and its repair in HL-60 cells and HL-60 (VCR) cells were analyzed using technique of hydroxyapatite chromatography and the results sowed that the extent of DNA strand breaks in HL-60 cells and HL-60 (VCR) cells induced by irradiation was not markedly different, but the power of repair of strand breaks and the radioresistance of function of DNA synthesis in HL-60 (VCR) cells were higher than those in HL-60 cells. The difference was obvious. The results suggest that the heterogeneity of radiosensitivity of leukemia cells is correlated with its drug resistance. (10 refs., 3 tabs.)

  9. γH2AX foci as a marker for DNA double-strand breaks

    International Nuclear Information System (INIS)

    Deckbar, Dorothee

    2009-01-01

    Full text: The DNA double-strand break (DSB) is the most deleterious lesion of all DNA damages. Left unrepaired or being mis-rejoined it can lead to chromosome aberrations which compromise the genomic stability and carry the potential to initiate carcinogenesis. So DSB repair mechanisms are under intensive investigation for many years. As older techniques had to utilize non-physiological doses to monitor DSB repair, they did not allow repair studies on the cellular level or after in vivo irradiation. But during the last years, an upcoming method allows the detection of a single DSB after physiologically relevant doses. To maintain the genomic integrity after the occurrence of a DSB, cellular mechanisms have evolved that detect and repair DSBs and even halt cell cycle progression to provide time for repair. In these processes, one of the first steps is the phosphorylation of the histone H2AX at serine 139 (γH2AX). Within minutes after DSB induction, large numbers of H2AX molecules are phosphorylated around the break site leading to the accumulation of proteins involved in chromatin remodelling, to damage signal amplification, and eventually to checkpoint activation and DSB repair. The finding that DSB-surrounding proteins can be visualized as foci in immunofluorescence microscopy opened up new opportunities in cancer biology and radiation biology. It was now for the first time possible to measure DSB repair after physiologically relevant doses of ionizing radiation, i.e. after doses used for therapeutic as well as for diagnostic purposes. First reports even describe the measurement of DSB repair after in vivo irradiation in mice and humans. This did not only improve the basic research investigating the mechanisms of DSB repair but also the research on low-dose effects and radiation protection. So the potential of γH2AX foci analysis as a predictive marker for radiosensitivity or radiation induced side effects is actually discussed. (author)

  10. Dose rate effectiveness in radiation-induced teratogenesis in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Norimura, T.

    2000-01-01

    To investigate the role of p53 gene in tissue repair of teratogenic injury, we compared incidence of radiation-induced malformations in homozygous p53(-/-) mice, heterozygous p53(+/-) mice and wild-type p53(+/+) mice. After X-irradiation with 2 Gy at high dose rate on 9.5 days of gestation, p53(-/-) mice showed higher incidences of anomalies and higher resistance to prenatal deaths than p53(+/+) mice. This reciprocal relationship of radiosensitivity to anomalies and deaths supports the notion that embryos or fetuses have a p53-dependent 'guardian' that aborts cells bearing radiation-induced teratogenic DNA damage. In fact, after X-irradiation, the number of apoptotic cells was greatly increased in p53(+/+) fetuses but not in p53(-/-) fetuses. The same dose of γ-ray exposure at low dose rate on 9.5-10.5 day of gestation produced significant reduction of radiation-induced malformation in p53(+/+) and p53(+/-) mice, remained teratogenic for p53(-/-) mice. These results suggest that complete elimination of teratogenic damage from irradiated tissues requires the concerted cooperation of two mechanisms; proficient DNA repair and the p53-dependent apoptotic tissue repair. When concerted DNA repair and apoptosis functions efficiently, there is a threshold dose-rate for radiation-induced malformations. (author)

  11. A model treating the DNA double-strand break repair inhibition by damage clustering

    International Nuclear Information System (INIS)

    Rosemann, M.; Abel, H.; Regel, K.

    1992-01-01

    A microdosimetric model for the interpretation of radiation induced irreparable DNA double-strand breaks was applied to the biological endpoint of chromosomal aberrations. The model explains irreparable DNA double-strand breaks in terms of break clustering in DNA subunits. The model predicts quite good chromosomal aberrations in gamma- and X-ray irradiated V79 cells and human lymphocytes. In the case of α-particle irradiation the presumption had to be made, that only the cells with indirect events in the nucleus (due to delta-electrons) reach the metaphase and are analysed. With the help of this model we are able to explain the peculiar effectiveness of ultrasoft C-X-rays in human lymphocytes. In addition, an interpretation of experiments with accelerated and spatially correlated particles is given. (author)

  12. Double-strand break induction and DNA damage response after {sup 12}C ion and photon radiation in U87 glioblastoma cells; Doppelstrangbruch-Induktion und DNA-Schadensantwort nach {sup 12}C-Ionen- und Photonenstrahlung in U87 Glioblastomzellen

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Perez, Ramon

    2015-04-22

    Heavy ion radiation has greater biological effectiveness than the same physical dose of photon radiation. In this work the underlying reasons in the DNA damage response were analyzed in U87 glioblastoma cells. DNA double-strand breaks (DSBs) are the decicive lesions for the effectiveness of ionizing radiation. Their induction and repair was measured in the context of the cell cycle based on the DSB marker γH2AX (the phosphorylated form of the histone variant H2AX). Further, radiation-specific differences in choice of the DSB repair pathway was analyzed, as well as the consequences of repair failure. The results showed that in contrast to photons, {sup 12}C ion radiation produces more severe DSBs that are repaired delayed and with slower kinetics. Accordingly, stronger and longer lasting cell cycle delays, predominantly at the G2/M border, and a higher rate of apoptosis was detected for {sup 12}C ion radiation. Autophagy, an alternative mechanism of programmed cell death, was not relevant for neither of the two types of radiation. The effect of {sup 12}C ion radiation was less dependent on the cell cycle stage than for photon radiation. This became particularly evident in the DSB repair velocities during S- and G2-phase. After {sup 12}C ion radiation, cells were more dependent on homologous recombination repair (HRR) compared to photon radiation. The reason therefore that in contrast to photons, {sup 12}C ion radiation induced graver DSBs that were repaired slower and more dependent on HRR, was most probably enhanced clustering of DSBs due to the higher ionization density of {sup 12}C ion radiation. Microscopic inspection of immunofluorently stained γH2AX revealed that {sup 12}C ion radiation induced bigger DSB repair foci containing more γH2AX molecules (higher fluorescence intensity), although their initial number was smaller. Besides the foci, a weaker pan-nuclear γH2AX staining was observed that increased in a dose-dependent manner and was more pronounced

  13. Radiation-induced cell death by chromatin loss

    International Nuclear Information System (INIS)

    Campbell, I.R.; Warenius, H.M.

    1989-01-01

    A model is proposed which relates reproductive death of cells caused by radiation to loss of chromatin at cell division. This loss of chromatin can occur through chromosomal deletions or through the formation of asymmetrical chromosomal exchanges. It is proposed that smaller doses of radiation produce fewer chromatin breaks, which are more likely to be accurately repaired, compared with larger doses. Consequently, smaller doses of radiation are less efficient in causing cell death, leading to a shoulder on the cell survival curve. Experimental evidence supports this model, and the fit between the derived formula and experimental cell survival curves is good. The derived formula approximates to the linear-quadratic equation at low doses of radiation. (author)

  14. DNA repair in gamma-and UV-irradiated Escherichia coli treated with caffeine and acriflavine

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.; Savel'eva, G.E.

    1978-01-01

    A study is made of the postradiation effect of caffeine and acriflavine on the survival rate and DNA repair in E. coli exposed to γ- and UV-radiation. When added to postradiation growth medium caffeine and acriflavine lower the survival rate of γ-irradiated radioresistant strains, B/r and Bsub(s-1)γR, and UV-irradiated UV-resistant strain B/r, and do not appreciably influence the survival of strains that are sensitive to γ- and UV-radiation. The survival rate of UV-irradiated mutant BsUb(s-1) somewhat increases in the presence of caffeine. Caffeine and acriflavine inhibit repair of single-stranded DNA breaks induced in strain B/r by γ-radiation (slow repair) and UV light. Acriflavine arrests a recombination branch of postreplication repair of DNA in E. coli Bsub(s-1)γR Whereas caffeine does not influence this process

  15. IDN2 Interacts with RPA and Facilitates DNA Double-Strand Break Repair by Homologous Recombination in Arabidopsis.

    Science.gov (United States)

    Liu, Mingming; Ba, Zhaoqing; Costa-Nunes, Pedro; Wei, Wei; Li, Lanxia; Kong, Fansi; Li, Yan; Chai, Jijie; Pontes, Olga; Qi, Yijun

    2017-03-01

    Repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genome integrity. We previously showed that DSB-induced small RNAs (diRNAs) facilitate homologous recombination-mediated DSB repair in Arabidopsis thaliana Here, we show that INVOLVED IN DE NOVO2 (IDN2), a double-stranded RNA binding protein involved in small RNA-directed DNA methylation, is required for DSB repair in Arabidopsis. We find that IDN2 interacts with the heterotrimeric replication protein A (RPA) complex. Depletion of IDN2 or the diRNA binding ARGONAUTE2 leads to increased accumulation of RPA at DSB sites and mislocalization of the recombination factor RAD51. These findings support a model in which IDN2 interacts with RPA and facilitates the release of RPA from single-stranded DNA tails and subsequent recruitment of RAD51 at DSB sites to promote DSB repair. © 2017 American Society of Plant Biologists. All rights reserved.

  16. FGF2 mediates DNA repair in epidermoid carcinoma cells exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Marie, Melanie; Hafner, Sophie; Moratille, Sandra; Vaigot, Pierre; Rigaud, Odile; Martin, Michele T.; Mine, Solene

    2012-01-01

    Fibroblast growth factor 2 (FGF2) is a well-known survival factor. However, its role in DNA repair is poorly documented. The present study was designed to investigate in epidermoid carcinoma cells the potential role of FGF2 in DNA repair. The side population (SP) with cancer stem cell-like properties and the main population (MP) were isolated from human A431 squamous carcinoma cells. Radiation-induced DNA damage and repair were assessed using the alkaline comet assay. FGF2 expression was quantified by enzyme linked immunosorbent assay (ELISA). SP cells exhibited rapid repair of radiation induced DNA damage and a high constitutive level of nuclear FGF2. Blocking FGF2 signaling abrogated the rapid DNA repair. In contrast, in MP cells, a slower repair of damage was associated with low basal expression of FGF2. Moreover, the addition of exogenous FGF2 accelerated DNA repair in MP cells. When irradiated, SP cells secreted FGF2, whereas MP cells did not. FGF2 was found to mediate DNA repair in epidermoid carcinoma cells. We postulate that carcinoma stem cells would be intrinsically primed to rapidly repair DNA damage by a high constitutive level of nuclear FGF2. In contrast, the main population with a low FGF2 content exhibits a lower repair rate which can be increased by exogenous FGF2. (authors)

  17. What is DNA damage? Risk of double-strand break and its individual variation

    International Nuclear Information System (INIS)

    Hanaoka, Fumio

    2011-01-01

    The author discusses about the title subject in an aspect of possible spreading of Fukushima radioactive substances mainly in eastern north area of Japan where carcinogenic incidence may be increased as the ionizing radiation injures the gene (DNA). At first, explained is that cancer is a disease of genes with infinitive proliferation of cells, there are systems to prevent it by repairing the damaged DNA and by other mechanisms like exclusion of cells damaged too much or killing cancer cells with immunity, and individual difference of the repairing capability exists. DNA is always damaged even under ordinary living conditions by sunlight UV ray, cosmic radiation and chemicals externally and by active oxygen species and thermal water movement internally. Concomitantly, DNA damaged by many mechanisms like deletion, dimmer formation, chemical modification of bases, single and double strand breaks is always repaired by concerned enzymes. Double-strand damage by high-energy radiation like gamma ray is quite risky because its repair sometimes accompanies error as concerned enzymes are from more multiple genes. There are many syndromes derived from gene deficit of those repairing enzymes. The diseases concerned with repair of the double-strand damage teach that fetus and infant are more sensitive to radiation than adult as their young body cells are more actively synthesizing DNA, during which, if DNA is injured by radiation, risk of repairing error is higher as the double strand break more frequently occurs. It cannot be simply said that a certain radiation dose limit is generally permissible. There is an individual difference of radiation sensitivity and a possible method to find out an individual weak to radiation is the lymphocyte screening in vitro using anticancer bleomycin which breaks the double strand. (T.T.)

  18. DNA repair related to radiation therapy

    International Nuclear Information System (INIS)

    Klein, W.

    1979-01-01

    The DNA excision repair capacity of peripheral human lymphocytes after radiation therapy has been analyzed. Different forms of application of the radiation during the therapy have been taken into account. No inhibition of repair was found if cells were allowed a certain amount of accomodation to radiation, either by using lower doses or longer application times. (G.G.)

  19. X-ray induced DNA double strand break production and repair in mammalian cells as measured by neutral filter elution

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, M O; Kohn, K W [National Institutes of Health, Bethesda, MD (USA)

    1979-10-01

    A neutral filter elution method was used for detecting DNA double strand breaks in mouse L1210 cells after X-ray. The assay detected the number of double strand breaks induced by as little as 1000 rad of X-ray. The rate of DNA elution through the filters under neutral conditions increased with X-ray dose. Certain conditions for deproteinization, pH, and filter type were shown to increase the assay's sensitivity. Hydrogen peroxide and Bleomycin also induced apparent DNA double strand breaks, although the ratios of double to single strand breaks varied from those produced by X-ray. The introduction of double strand cuts by HpA I restriction endonuclease in DNA lysed on filters resulted in a rapid rate of elution under neutral conditions, implying that the method can detect double strand breaks if they exist in the DNA. The eluted DNA banded with a double stranded DNA marker in cesium chloride. This evidence suggested that the assay detected DNA double strand breaks. L1210 cells were shown to rejoin most of the DNA double strand breaks induced by 5-10 krad of X-ray with a half-time of about 40 minutes. (author).

  20. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei

    International Nuclear Information System (INIS)

    Beetstra, Sasja; Thomas, Philip; Salisbury, Carolyn; Turner, Julie; Fenech, Michael

    2005-01-01

    Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the 'normal' physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P < 0.0001, P = 0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy γ-rays) on day 9 relative to un-irradiated controls (P < 0.05). Folic acid deficiency and γ-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P 0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend < 0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage

  1. Postreplicational formation and repair of DNA double-strand breaks in UV-irradiated Escherichia coli uvrB cells

    International Nuclear Information System (INIS)

    Wang, Tzuchien V.; Smith, K.C.

    1986-01-01

    The number of DNA double-strand breaks formed in UV-irradiated uvrB recF recB cells correlates with the number of unrepaired DNA daughter-strand gaps, and is dependent on DNA synthesis after UV-irradiation. These results are consistent with the model that the DNA double-strand breaks that are produced in UV-irradiated excision-deficient cells occur as the result of breaks in the parental DNA opposite unrepaired DNA daughter-strand gaps. By employing a temperature-sensitive recA200 mutation, we have devised an improved assay for studying the formation and repair of these DNA double-strand breaks. Possible mechanisms for the postreplication repair of DNA double-strand breaks are discussed. (Auth.)

  2. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre

    DEFF Research Database (Denmark)

    Lisby, M.; Mortensen, Uffe Hasbro; Rothstein, R.

    2003-01-01

    DNA double-strand break repair (DSBR) is an essential process for preserving genomic integrity in all organisms. To investigate this process at the cellular level, we engineered a system of fluorescently marked DNA double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae to visualize in ...

  3. The role of DNA repair in the realization of oxygen effect in bacteria Escherichia coli irradiated with various types of radiation

    International Nuclear Information System (INIS)

    Kozubek, S.; Krasavin, E.A.

    1983-01-01

    The role of the balance of E. coli repair systems in the sensitivity to ionizing radiation of different LETs is considered. The influence of modifying factors on the balance between fast (2) and slow (3) repair systems is analysed. It is shown that in the case of γg-irradiation of aerobic cells the decreased power of repair 3 in some limits can be compensated by increased power of repair 2 so that the sensitivity remains constant. In anaerobic conditions decreasing power of repair 3 leads inevitably to markedly increased sensitivity. Different mechanisms of the action of radioprotectors on the repair balance in aerobic or anaerobic state are discussed. The role of repair balance in the radiosensitivity of irradiated wild type cells is shown to become unimportant for high LET radiation owing to the presence of markedly increased ratio of direct double-strand breaks

  4. DNA repair , cell repair and radiosensitivity

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.

    1983-01-01

    Data obtained in laboratory of radiation cytology and literature data testifying to a considerable role of DNA repair in cell sensitivity to radiation and chemical DNA-tropic agents have been considered. Data pointing to the probability of contribution of inducible repair of DNA into plant cells sensitivity to X-rays are obtained. Certain violations of DNA repair do not result in the increase of radiosensitivity. It is assumed that in the cases unknown mechanisms of DNA repair operate

  5. HDAC4 and HDAC6 sustain DNA double strand break repair and stem-like phenotype by promoting radioresistance in glioblastoma cells.

    Science.gov (United States)

    Marampon, Francesco; Megiorni, Francesca; Camero, Simona; Crescioli, Clara; McDowell, Heather P; Sferra, Roberta; Vetuschi, Antonella; Pompili, Simona; Ventura, Luca; De Felice, Francesca; Tombolini, Vincenzo; Dominici, Carlo; Maggio, Roberto; Festuccia, Claudio; Gravina, Giovanni Luca

    2017-07-01

    The role of histone deacetylase (HDAC) 4 and 6 in glioblastoma (GBM) radioresistance was investigated. We found that tumor samples from 31 GBM patients, who underwent temozolomide and radiotherapy combined treatment, showed HDAC4 and HDAC6 expression in 93.5% and 96.7% of cases, respectively. Retrospective clinical data analysis demonstrated that high-intensity HDAC4 and/or HDAC6 immunostaining was predictive of poor clinical outcome. In vitro experiments revealed that short hairpin RNA-mediated silencing of HDAC4 or HDAC6 radiosensitized U87MG and U251MG GBM cell lines by promoting DNA double-strand break (DSBs) accumulation and by affecting DSBs repair molecular machinery. We found that HDAC6 knock-down predisposes to radiation therapy-induced U251MG apoptosis- and U87MG autophagy-mediated cell death. HDAC4 silencing promoted radiation therapy-induced senescence, independently by the cellular context. Finally, we showed that p53 WT expression contributed to the radiotherapy lethal effects and that HDAC4 or HDAC6 sustained GBM stem-like radioresistant phenotype. Altogether, these observations suggest that HDAC4 and HDAC6 are guardians of irradiation-induced DNA damages and stemness, thus promoting radioresistance, and may represent potential prognostic markers and therapeutic targets in GBM. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cell cycle arrest induced by radiation

    International Nuclear Information System (INIS)

    Okaichi, Yasuo; Matsumoto, Hideki; Ohnishi, Takeo

    1994-01-01

    It is known that various chemical reactions, such as cell cycle arrest, DNA repair and cell killing, can occur within the cells when exposed to ionizing radiation and ultraviolet radiation. Thus protein dynamics involved in such chemical reactions has received considerable attention. In this article, cell cycle regulation is first discussed in terms of the G2/M-phase and the G1/S-phase. Then, radiation-induced cell cycle arrest is reviewed. Cell cycle regulation mechanism involved in the G2 arrest, which is well known to occur when exposed to radiation, has recently been investigated using yeasts. In addition, recent study has yielded a noticeable finding that the G1 arrest can occur with intracellular accumulation of p53 product following ionization radiation. p53 is also shown to play an extremely important role in both DNA repair and cell killing due to DNA damage. Studies on the role of genes in protein groups induced by radiation will hold promise for the elucidation of cell cycle mechanism. (N.K.) 57 refs

  7. A comparative study of radiation induced DNA damage and repair in buccal cells and lymphocytes assessed by single cell gel electrophoresis (comet) assay

    International Nuclear Information System (INIS)

    Dhillon, V.S.; Fenech, M.

    2003-01-01

    Full text: During the past few years, there has been increasing interest in epithelial cells from buccal mucosa for genotoxicity evaluation of different chemical and/or physical agents. In the present study we used the buccal and sublingual epithelial cells to detect both inter- and intra-individual variation in radiation induced DNA damage and repair. For this purpose we used the single cell gel electrophoresis assay which over the years has gained wide spread acceptance as a simple, sensitive and reliable assay to measure genotoxicity related effects as well as kinetics of DNA repair. Buccal and sublingual epithelial cells from six individuals (3 male and 3 females; 35-45 years old) were collected. Cells were then irradiated for 0, 2 and 4 Gy doses using 137 Cs-source (5.58 Gy min-1). After irradiation the cells were either placed immediately on ice or incubated at 37 deg C for 2 1/2 hour to allow cellular repair. We also studied G0 and G1 lymphocytes from the same individuals to compare the radiation-induced DNA damage and repair potential with the two types of buccal cells. Baseline DNA damage rate was significantly greater (p < 0.001) in buccal (28.18%) and sublingual epithelial cells (30.66) as compared to G0 (22.02%) and G1 (21.46%) lymphocytes. Radiation-induced DNA damage in buccal (19.34%, 2Gy; 21.41%, 4 Gy) and sublingual epithelial cells (18.11% and 20.60%) was very similar and significantly lower than that observed in lymphocytes (29.76%, 56.77% for G0 and 32.66%, 59.32% for G1). The extent of DNA repair in buccal and sublingual epithelial cells was significantly lower than that observed in lymphocytes. The results for buccal and sublingual epithelial cells were highly correlated with each other (r 0.9541) as were those of G0 and G1 lymphocytes (r 0.9868). The results suggest a much reduced capacity for cellular repair in buccal and sublingual epithelial cells

  8. Repair of radiation damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  9. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  10. Inhibition of repair activity induced by γ-radiation, UV-rays and radiomimetics in the in vitro cultured cells of patients wiyh schizophrenia

    International Nuclear Information System (INIS)

    Zasukhina, G.D.; Zharikov, N.M.; L'vova, G.N.; Vasil'eva, I.M.; Chekova, V.V.; Alekhina, N.I.; Ivanova, T.N.

    1986-01-01

    A study was made of the processes of repair, virus reactivation, and formation of sister chromatid exchages (SCE) in blood cells of patients with schizophrenia after the effect of γ-radiation and 4-nitroquinoline-1-oxide. These processes were estimated by 12 criteria. The mutagen-induced disturbances in the processes of repair and SCE formation were found in cells of patients with schizophrenia and were absent in the control cells of healthy donors

  11. Investigations of radiation-induced strand breaks of poly(U) in aqueous solutions

    International Nuclear Information System (INIS)

    Lemaire, D.G.E.

    1984-01-01

    DNA strand breaks induced by γ irradiation were studied in polyuridylic acid (Poly(U)), a single-strand model substance with a single base. Poly(U) in diluted, aqueous solution was irradiated in a Co-γ source, and the 100 eV yields of strand breaks (Cr values) were determined on the basis of the loss of molecular weight. The molecular weight was determined by small-angle laser light scattering. (orig./PW) [de

  12. Multiple repair pathways mediate cellular tolerance to resveratrol-induced DNA damage.

    Science.gov (United States)

    Liu, Ying; Wu, Xiaohua; Hu, Xiaoqing; Chen, Ziyuan; Liu, Hao; Takeda, Shunichi; Qing, Yong

    2017-08-01

    Resveratrol (RSV) has been reported to exert health benefits for the prevention and treatment of many diseases, including cancer. The anticancer mechanisms of RSV seem to be complex and may be associated with genotoxic potential. To better understand the genotoxic mechanisms, we used wild-type (WT) and a panel of isogenic DNA-repair deficient DT40 cell lines to identify the DNA damage effects and molecular mechanisms of cellular tolerance to RSV. Our results showed that RSV induced significant formation of γ-H2AX foci and chromosome aberrations (CAs) in WT cells, suggesting direct DNA damage effects. Comparing the survival of WT with isogenic DNA-repair deficient DT40 cell lines demonstrated that single strand break repair (SSBR) deficient cell lines of Parp1 -/- , base excision repair (BER) deficient cell lines of Polβ -/- , homologous recombination (HR) mutants of Brca1 -/- and Brca2 -/- and translesion DNA synthesis (TLS) mutants of Rev3 -/- and Rad18 -/- were more sensitive to RSV. The sensitivities of cells were associated with enhanced DNA damage comparing the accumulation of γ-H2AX foci and number of CAs of isogenic DNA-repair deficient DT40 cell lines with WT cells. These results clearly demonstrated that RSV-induced DNA damage in DT40 cells, and multiple repair pathways including BER, SSBR, HR and TLS, play critical roles in response to RSV- induced genotoxicity. Copyright © 2017. Published by Elsevier Ltd.

  13. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair.

    Science.gov (United States)

    Nowarski, Roni; Wilner, Ofer I; Cheshin, Ori; Shahar, Or D; Kenig, Edan; Baraz, Leah; Britan-Rosich, Elena; Nagler, Arnon; Harris, Reuben S; Goldberg, Michal; Willner, Itamar; Kotler, Moshe

    2012-07-12

    APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy.

  14. Single-strand breaks induced in Bacillus subtilis DNA by ultraviolet light: action spectrum and properties

    International Nuclear Information System (INIS)

    Peak, M.J.; Peak, J.G.

    1982-01-01

    The induction of single-strand breaks (alkali-labile bonds plus frank breaks) in the DNA of Bacillus subtilis irradiated in vivo by monochromatic UV light at wavelengths from 254 to 434nm was measured. The spectrum consists of a major far-UV (below 320nm) component and a minor near-UV shoulder. A mutant deficient in DNA polymerase I accumulates breaks caused by near-UV (above 320nm) wavelengths faster than the wild-type strain proficient in polymerase I. Measurable breaks in extracted DNA are induced at a higher frequency than those induced in vivo. Anoxia, glycerol, and diazobicyclo (2.2.2.) octane inhibit break formation in extracted DNA. Alkali-labile bonds induced by 365-nm UV radiation are largely (78%) covalent bond chain breaks, the remainder consists of true alkali-labile bonds, probably apurinic and apyrimidinic sites. (author)

  15. Potentially lethal damage and its repair

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi

    1989-01-01

    Two forms termed fast-and slow-potentially lethal lethal damage (PLD) are introduced and discussed. The effect on the survival of x-irradiated Chinese hamster cells (V79) of two different post-treatments is examined in plateau- and in log-phases of growth. The postirradiation treatments used : a) incubation in hypertonic solution, and b) incubation in conditioned medium obtained from plateau-phase. Similar reduction in survival was caused by postirradiation treatment with hypertonic phosphate buffered saline, and similar increased in survival was effected by treatment in conditioned medium in plateau- and in log-phases cells. However, repair of PLD sensitive to hypertonic treatment was faster (half time, 5-10 min)(f-PLD repair) and independent from the repair of PLD (half time, 1-2 hour)(s-PLD repair) observed in conditioned medium. The results indicate the induction of two forms of PLD by radiation. Induction of both PLD was found to decrease with increasing LET of the radiation used. Identification of the molecular processes underlying repair and fixation of PLD is a task of particular interest, since it may allow replacement of a phenomenological definition with a molecular definition. Evidence is reviewed indicating the DNA double strand breaks (directly or indirectly induced) may be the DNA lesions underlying PLD. (author)

  16. Basic aspects of radiation action on microorganisms. Progress report, April 1, 1975--March 31, 1976

    International Nuclear Information System (INIS)

    Pollard, E.C.

    1976-04-01

    Results of studies on the effects of irradiation on Escherichia coli showed that error-prone repair mutagenesis can be induced by ionizing radiation and uv light; induced single-strand DNA break repair has been confirmed and its characterization is in process; and there is clearly a separation between the induction of lambda and other phenomena. The dose-effect relationship differs and the phenomenon of radioresistance is removed. The action spectra for uv induced mutagenesis was plotted

  17. Feasibility of measuring radiation-induced DNA double strand breaks and their repair by pulsed field gel electrophoresis in freshly isolated cells from the mouse RIF-1 tumor

    International Nuclear Information System (INIS)

    Waarde, Maria A.W.H. van; Assen, Annette J. van; Konings, Antonius W.T.; Kampinga, Harm H.

    1996-01-01

    Purpose: To examine the technical feasibility of pulsed field gel electrophoresis (PFGE) as a predictive assay for the radio responsiveness of tumors. Induction and repair of DNA double strand breaks (DSBs) in a freshly prepared cell suspension from a RIF-1 tumor (irradiated ex vivo) was compared with DSB induction and repair in exponentially growing RIF-1 cells in culture (irradiated in vitro). Methods and Materials: A murine RIF-1 tumor grown in vivo was digested, and cells were exposed to x-rays (ex vivo) at doses of 1 to 75 Gy. DNA damage was measured using CHEF (clamped homogeneous electric fields) electrophoresis. Repair kinetics were studied at 37 deg. C for 4 h after irradiation. Radiosensitivity was determined by clonogenic assay, and cell cycle distributions by flow cytometry. For comparison, a trypsinized suspension of exponentially growing RIF-1 cells in vitro was run parallel with each ex vivo experiment. Results: Induction of DSBs, expressed as % DNA extracted from the plug, was similar in the in vitro and ex vivo irradiated cells. Compared to repair rates in in vitro cultured RIF-1 cells, repair kinetics in a freshly prepared cell suspension from the tumor were decreased, unrelated to differences in radiosensitivity. Differences in repair could not be explained by endogenous DNA degradation, nor by influences of enzymes used for digestion of the tumor. A lower plating efficiency and differences in ploidy (as revealed by flow cytometry) were the only reproducible differences between in vivo and in vitro grown cells that may explain the differences in repair kinetics. Conclusions: The current results do not support the idea that PFGE is a technique robust enough to be a predictive assay for the radiosensitivity of tumor cells

  18. DNA double-strand break repair: a tale of pathway choices

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Xingzhi Xu

    2016-01-01

    Deoxyribonucleic acid double-strand breaks (DSBs) are cytotoxic lesions that must be repaired either through homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways.DSB repair is critical for genome integrity,cellular homeostasis and also constitutes the biological foundation for radiotherapy and the majority of chemotherapy.The choice between HR and NHEJ is a complex yet not completely understood process that will entail more future efforts.Herein we review our current understandings about how the choice is made over an antagonizing balance between p53-binding protein 1 and breast cancer 1 in the context of cell cycle stages,downstream effects,and distinct chromosomal histone marks.These exciting areas of research will surely bring more mechanistic insights about DSB repair and be utilized in the clinical settings.

  19. Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks.

    Science.gov (United States)

    Tichy, Elisia D; Pillai, Resmi; Deng, Li; Liang, Li; Tischfield, Jay; Schwemberger, Sandy J; Babcock, George F; Stambrook, Peter J

    2010-11-01

    Embryonic stem (ES) cells give rise to all cell types of an organism. Since mutations at this embryonic stage would affect all cells and be detrimental to the overall health of an organism, robust mechanisms must exist to ensure that genomic integrity is maintained. To test this proposition, we compared the capacity of murine ES cells to repair DNA double-strand breaks with that of differentiated cells. Of the 2 major pathways that repair double-strand breaks, error-prone nonhomologous end joining (NHEJ) predominated in mouse embryonic fibroblasts, whereas the high fidelity homologous recombinational repair (HRR) predominated in ES cells. Microhomology-mediated end joining, an emerging repair pathway, persisted at low levels in all cell types examined. The levels of proteins involved in HRR and microhomology-mediated end joining were highly elevated in ES cells compared with mouse embryonic fibroblasts, whereas those for NHEJ were quite variable, with DNA Ligase IV expression low in ES cells. The half-life of DNA Ligase IV protein was also low in ES cells. Attempts to increase the abundance of DNA Ligase IV protein by overexpression or inhibition of its degradation, and thereby elevate NHEJ in ES cells, were unsuccessful. When ES cells were induced to differentiate, however, the level of DNA Ligase IV protein increased, as did the capacity to repair by NHEJ. The data suggest that preferential use of HRR rather than NHEJ may lend ES cells an additional layer of genomic protection and that the limited levels of DNA Ligase IV may account for the low level of NHEJ activity.

  20. Time-lapse crystallography snapshots of a double-strand break repair polymerase in action.

    Science.gov (United States)

    Jamsen, Joonas A; Beard, William A; Pedersen, Lars C; Shock, David D; Moon, Andrea F; Krahn, Juno M; Bebenek, Katarzyna; Kunkel, Thomas A; Wilson, Samuel H

    2017-08-15

    DNA polymerase (pol) μ is a DNA-dependent polymerase that incorporates nucleotides during gap-filling synthesis in the non-homologous end-joining pathway of double-strand break repair. Here we report time-lapse X-ray crystallography snapshots of catalytic events during gap-filling DNA synthesis by pol μ. Unique catalytic intermediates and active site conformational changes that underlie catalysis are uncovered, and a transient third (product) metal ion is observed in the product state. The product manganese coordinates phosphate oxygens of the inserted nucleotide and PP i . The product metal is not observed during DNA synthesis in the presence of magnesium. Kinetic analyses indicate that manganese increases the rate constant for deoxynucleoside 5'-triphosphate insertion compared to magnesium. The likely product stabilization role of the manganese product metal in pol μ is discussed. These observations provide insight on structural attributes of this X-family double-strand break repair polymerase that impact its biological function in genome maintenance.DNA polymerase (pol) μ functions in DNA double-strand break repair. Here the authors use time-lapse X-ray crystallography to capture the states of pol µ during the conversion from pre-catalytic to product complex and observe a third transiently bound metal ion in the product state.

  1. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks

    Directory of Open Access Journals (Sweden)

    Michael Van Meter

    2016-09-01

    Full Text Available The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6, promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK, phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose polymerase 1 (PARP1 to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  2. Radiation-induced adaptive response in fetal mice: a micro-array study

    International Nuclear Information System (INIS)

    Vares, G.; Bing, Wang; Mitsuru, Nenoi; Tetsuo, Nakajima; Kaoru, Tanaka; Isamu, Hayata

    2006-01-01

    may contribute to AR induction by shifting DSB end-joining activity from illegitimate error-prone rejoining to error-free direct ligation. For all these reasons, particular attention was given to the transcriptional behavior of p53-related genes in our model. Although average gene regulation fold was relatively small, a significant proportion of p53-related genes showed AR-specific modulation, indicating a role for directly and indirectly p53-related pathways in the induction of AR. Even though no evidence of specific DNA repair modulation at the transcriptional level was observed in adapted cells, a large amount of data suggested that induction of AR may result from modification of DNA repair activity. We studied H2AX kinetics following challenging irradiation in adapted and non-adapted cells. H2AX phosphorylation increased shortly after irradiation, and then decreased progressively during the subsequent 24 hours. No significant difference was observed between the rate of disappearance of H2AX in adapted and non-adapted cells, indicating that AR in this model seems not to be related with a modulation of DNA break rejoining speed. However, the peak of H2AX phosphorylation appeared slightly earlier in adapted than in non-adapted cells. In accordance with other data, these results are compatible with the hypothesis that the low adapting dose could induce a repair mechanism that, if activated at the time of challenging exposure with high doses of radiation, would lead to less residual damage. In conclusion, we observed transcriptional de-regulations resulting from exposure to low dose X-rays. Our results highlighted some specific transcriptional response of cells when the characteristics of irradiation were efficient for inducing AR, indicating that AR may result from specific molecular mechanisms induced b y exposure to priming dose of irradiation. To our knowledge and to date, this is the first report of AR-specific transcriptional de-regulations in fetal mouse

  3. Comparison of initial DNA (Chromosome) damage/repair in cells exposed to heavy ion particles and X-rays

    International Nuclear Information System (INIS)

    Okayasu, Ryuichi; Okada, Maki; Noguchi, Mitsuho; Saito, Shiori; Okabe, Atsushi; Takakura, Kahoru

    2005-01-01

    We have studied cell survival and chromosome damage/repair in normal and non homologous end-joining (NHEJ) deficient human cells exposed to carbon ions (290 MeV/u, ∼70 keV/um), iron ions (500 MeV/u, ∼200 keV/um) and X-rays. In order to examine the effect of heavy ion on double strand break (DSB) repair machinery, the auto-phosphorylation of DNA-PKcs was also investigated. The important discoveries made during this period are: 200 keV/um iron irradiation induced additional molecular damage beyond that 70 keV/um carbon did. Iron irradiation not only caused an inefficient G1 chromosome repair, but also induced non-repairable DSB/chromosome damage. The auto-phosphorylation of DNA-PKcs was significantly affected by high linear energy transfer (LET) irradiation when compared to X-rays. These results indicate NHEJ machinery was markedly disturbed by high LET radiation when compared to low LET radiation. (author)

  4. Persistence of Gamma-H2AX Foci in Irradiated Bronchial Cells Correlates with Susceptibility to Radiation Associated Lung Cancer in Mice

    Science.gov (United States)

    Ochola, Donasian O.; Sharif, Rabab; Bedford, Joel S.; Keefe, Thomas J.; Kato, Takamitsu A.; Fallgren, Christina M.; Demant, Peter; Costes, Sylvain V.; Weil, Michael M.

    2018-01-01

    The risk of developing radiation-induced lung cancer differs between different strains of mice, but the underlying cause of the strain differences is unknown. Strains of mice also differ in their ability to efficiently repair DNA double strand breaks resulting from radiation exposure. We phenotyped mouse strains from the CcS/Dem recombinant congenic strain set for their efficacy in repairing DNA double strand breaks during protracted radiation exposures. We monitored persistent gamma-H2AX radiation induced foci (RIF) 24 hours after exposure to chronic gamma-rays as a surrogate marker for repair deficiency in bronchial epithelial cells for 17 of the CcS/Dem strains and the BALB/cHeN founder strain. We observed a very strong correlation R2 = 79.18%, P cancer percent incidence measured in the same strains. Interestingly, spontaneous levels of foci in non-irradiated strains also showed good correlation with lung cancer incidence (R2=32.74%, P =0.013). These results suggest that genetic differences in DNA repair capacity largely account for differing susceptibilities to radiation-induced lung cancer among CcS/Dem mouse strains and that high levels of spontaneous DNA damage is also a relatively good marker of cancer predisposition. In a smaller pilot study, we found that the repair capacity measured in peripheral blood leucocytes also correlated well with radiogenic lung cancer susceptibility, raising the possibility that such phenotyping assay could be used to detect radiogenic lung cancer susceptibility in humans.

  5. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Sundarraj; Pal, Debojyoti; Sandur, Santosh K., E-mail: sskumar@barc.gov.in

    2015-09-15

    Highlights: • Nrf2 inhibition in A549 cells led to attenuated DNA repair and radiosensitization. • Influence of Nrf2 on DNA repair is not linked to its antioxidant function. • Nrf2 influences DNA repair through homologous recombination (HR) repair pathway. • Many genes involved in HR pathway show ARE sequences in their upstream region. - Abstract: Nrf2 is a redox sensitive transcription factor that is involved in the co-ordinated transcription of genes involved in redox homeostasis. But the role of Nrf2 in DNA repair is not investigated in detail. We have employed A549 and MCF7 cells to study the role of Nrf2 on DNA repair by inhibiting Nrf2 using all-trans retinoic acid (ATRA) or by knock down approach prior to radiation exposure (4 Gy). DNA damage and repair analysis was studied by γH2AX foci formation and comet assay. Results suggested that the inhibition of Nrf2 in A549 or MCF7 cells led to significant slowdown in DNA repair as compared to respective radiation controls. The persistence of residual DNA damage even in the presence of free radical scavenger N-acetyl cysteine, suggested that the influence of Nrf2 on DNA repair was not linked to its antioxidant functions. Further, its influence on non-homologous end joining repair pathway was studied by inhibiting both Nrf2 and DNA-PK together. This led to synergistic reduction of survival fraction, indicating that Nrf2 may not be influencing the NHEJ pathway. To investigate the role of homologous recombination repair (HR) pathway, RAD51 foci formation was monitored. There was a significant reduction in the foci formation in cells treated with ATRA or shRNA against Nrf2 as compared to their respective radiation controls. Further, Nrf2 inhibition led to significant reduction in mRNA levels of RAD51. BLAST analysis was also performed on upstream regions of DNA repair genes to identify antioxidant response element and found that many repair genes that are involved in HR pathway may be regulated by Nrf2

  6. Radiatively induced symmetry breaking and the conformally coupled magnetic monopole in AdS space

    Science.gov (United States)

    Edery, Ariel; Graham, Noah

    2013-11-01

    We implement quantum corrections for a magnetic monopole in a classically conformally invariant theory containing gravity. This yields the trace (conformal) anomaly and introduces a length scale in a natural fashion via the process of renormalization. We evaluate the one-loop effective potential and extract the vacuum expectation value (VEV) from it; spontaneous symmetry breaking is radiatively induced. The VEV is set at the renormalization scale M and we exchange the dimensionless scalar coupling constant for the dimensionful VEV via dimensional transmutation. The asymptotic (background) spacetime is anti-de Sitter (AdS) and its Ricci scalar is determined entirely by the VEV. We obtain analytical asymptotic solutions to the coupled set of equations governing gravitational, gauge and scalar fields that yield the magnetic monopole in an AdS spacetime.

  7. 125I-induced DNA double strand breaks: use in calibration of the neutral filter elution technique and comparison with X-ray induced breaks

    International Nuclear Information System (INIS)

    Radford, I.R.; Hodgson, G.S.

    1985-01-01

    The neutral filter elution assay, for measurement of DNA double strand breakage, has been calibrated using mouse L cells and Chinese hamster V79 cells labelled with [ 125 I]dUrd and then held at liquid nitrogen temperature to accumulate decays. The basis of the calibration is the observation that each 125 I decay, occurring in DNA, produces a DNA double strand break. Linear relationships between 125 I decays per cell and lethal lesions per cell (minus natural logarithm survival) and the level of elution, were found. Using the calibration data, it was calculated that the yield of DNA double strand breaks after X-irradiation of both cell types was from 6 to 9 x 10 -12 DNA double strand breaks per Gy per dalton of DNA, for doses greater than 6 Gy. Neutral filter elution and survival data for X-irradiated and 125 I-labelled cells suggested that the relationships between lethal lesions and DNA double strand breakage were significantly different for both cell types. An attempt was made to study the repair kinetics for 125 I-induced DNA double strand breaks, but was frustrated by the rapid DNA degradation which occurs in cells that have been killed by the freezing-thawing process. (author)

  8. Evidence for induction of DNA double strand breaks in the bystander response to targeted soft X-rays in repair deficient CHO cells

    International Nuclear Information System (INIS)

    Kashino, Genro; Suzuki, Keiji; Prise, K.M.

    2005-01-01

    Evidence is accumulating that irradiated cells produce some signals which interact with non-exposed cells in the same population. Here, we analysed the mechanism of such a bystander effect from targeted cells to non-targeted cells. Firstly, in order to investigate the bystander effect in Chinese hamster ovary (CHO) cell lines we irradiated a single cell within a population and scored the formation of micronuclei. When a single nucleus in the population, of double strand break repair deficient xrs5 cells, was targeted with 1 Gy of Al-K soft X-rays, elevated numbers of micronuclei were induced in the neighbouring unirradiated cells. The induction of micronuclei was also observed when conditioned medium was transferred from irradiated to non-irradiated xrs5 cells. These results suggest that DNA double strand breaks are caused by factors secreted in the medium from irradiated cells. To clarify the involvements of radical species in the bystander response, cells were treated with 0.5%DMSO 1 hour before irradiation and then bystander effects were estimated in xrs5 cells. The results showed clearly that DMSO treatment during X-irradiation suppress the induction of micronuclei in bystander xrs5 cells, when conditioned medium was transferred from irradiated xrs5 cells. Therefore, it is suggested that radical species induced by ionizing radiation are important for producing bystander signals. (author)

  9. A generalized linear-quadratic model incorporating reciprocal time pattern of radiation damage repair

    International Nuclear Information System (INIS)

    Huang, Zhibin; Mayr, Nina A.; Lo, Simon S.; Wang, Jian Z.; Jia Guang; Yuh, William T. C.; Johnke, Roberta

    2012-01-01

    Purpose: It has been conventionally assumed that the repair rate for sublethal damage (SLD) remains constant during the entire radiation course. However, increasing evidence from animal studies suggest that this may not the case. Rather, it appears that the repair rate for radiation-induced SLD slows down with increasing time. Such a slowdown in repair would suggest that the exponential repair pattern would not necessarily accurately predict repair process. As a result, the purpose of this study was to investigate a new generalized linear-quadratic (LQ) model incorporating a repair pattern with reciprocal time. The new formulas were tested with published experimental data. Methods: The LQ model has been widely used in radiation therapy, and the parameter G in the surviving fraction represents the repair process of sublethal damage with T r as the repair half-time. When a reciprocal pattern of repair process was adopted, a closed form of G was derived analytically for arbitrary radiation schemes. The published animal data adopted to test the reciprocal formulas. Results: A generalized LQ model to describe the repair process in a reciprocal pattern was obtained. Subsequently, formulas for special cases were derived from this general form. The reciprocal model showed a better fit to the animal data than the exponential model, particularly for the ED50 data (reduced χ 2 min of 2.0 vs 4.3, p = 0.11 vs 0.006), with the following gLQ parameters: α/β = 2.6-4.8 Gy, T r = 3.2-3.9 h for rat feet skin, and α/β = 0.9 Gy, T r = 1.1 h for rat spinal cord. Conclusions: These results of repair process following a reciprocal time suggest that the generalized LQ model incorporating the reciprocal time of sublethal damage repair shows a better fit than the exponential repair model. These formulas can be used to analyze the experimental and clinical data, where a slowing-down repair process appears during the course of radiation therapy.

  10. Single-strand breaks in supercoiled DNA induced by vacuum-UV radiation in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, Kaoru; Ishikawa, Mitsuo; Hieda, Kotaro; Kobayashi, Katsumi; Ito, Atsushi; Ito, Takashi

    1986-09-01

    The induction of single-strand breaks in the DNA of plasmid pBR 322 by vacuum-UV radiation above 145 nm in aqueous solutions was studied in relation to the production of OH-radicals in water. The similarity and dissimilarity were examined on the wavelength dependence between the two effects. The maximum of single strand breaks at 150 nm could be explained by the action of OH-radicals derived from direct water photolysis: the maximum at 180 nm remains unexplained. There was no indication that the direct absorption of photon by the DNA molecule plays an important role in the production of single-strand breaks.

  11. Single-strand breaks in supercoiled DNA induced by vacuum-UV radiation in aqueous solution

    International Nuclear Information System (INIS)

    Takakura, Kaoru; Ishikawa, Mitsuo; Hieda, Kotaro; Kobayashi, Katsumi; Ito, Atsushi; Ito, Takashi

    1986-01-01

    The induction of single-strand breaks in the DNA of plasmid pBR 322 by vacuum-UV radiation above 145 nm in aqueous solutions was studied in relation to the production of OH-radicals in water. The similarity and dissimilarity were examined on the wavelength dependence between the two effects. The maximum of single strand breaks at 150 nm could be explained by the action of OH-radicals derived from direct water photolysis: the maximum at 180 nm remains unexplained. There was no indication that the direct absorption of photon by the DNA molecule plays an important role in the production of single-strand breaks. (author)

  12. DNA-radiosensitivity and repair in mammolian cells

    International Nuclear Information System (INIS)

    Proskuryakov, S.Ya.; Ivannik, B.P.; Ryabchenko, N.I.

    1979-01-01

    Determination was made of the formation and repair of single-stranded DNA breaks (SB) in cells of rat thymus and liver and Ehrlich's ascites tumor (EAT) with the use of the method of low-gradient viscosimetry of alkaline cell lysates. The radiochemical yield of single-stranded breaks (Gsub(SB)) induced by irradiation of animals is 41.2 eV/break for hepatocytes, 96.8 eV/break, for thymocytes, and 129.7 eV/break, for EAT cells. The half-recovery time of single-stranded DNA breaks for cells of thymus and EAT exposed in vivo is 16.0 and 5.1 s -1 , correspondingly. In hepatocytes exposed in vivo and in vitro no repairs occurs for 3 h. Under conditions of inhibition of SB repair, when suspensions of thymocytes and hepatocytes were exposed in vitro at 4 deg C, Gsub(SB) is 35.5 and 38.7 eV/break, respectively. The analysis of the data obtained prompts the conclusion that under in vivo conditions, there is a correlation between DNA radiosensitivity and the rate of repair processes

  13. Modeling of the topology of energy deposits created by ionizing radiation on a nano-metric scale in cell nuclei in relation to radiation-induced early events

    International Nuclear Information System (INIS)

    Dos Santos, Morgane

    2013-01-01

    Ionizing radiations are known to induce critical damages on biological matter and especially on DNA. Among these damages, DNA double strand breaks (DSB) are considered as key precursor of lethal effects of ionizing radiations. Understand and predict how DNA double and simple strand breaks are created by ionizing radiation and repaired in cell nucleus is nowadays a major challenge in radiobiology research. This work presents the results on the simulation of the DNA double strand breaks produced from the energy deposited by the irradiation at the intracellular level. At the nano-metric scale, the only method to accurately simulate the topological details of energy deposited on the biological matter is the use of Monte Carlo codes. In this work, we used the Geant4 Monte Carlo code and, in particular, the low energy electromagnetic package extensions, referred as Geant4-DNA processes.In order to evaluate DNA radio-induced damages, the first objective of this work consisted in implementing a detailed geometry of the DNA on the Monte Carlo simulations. Two types of cell nuclei, representing a fibroblast and an endothelium, were described in order to evaluate the influence of the DNA density on the topology of the energy deposits contributing to strand breaks. Indeed, the implemented geometry allows the selection of energy transfer points that can lead to strand breaks because they are located on the backbone. Then, these energy transfer points were analysed with a clustering algorithm in order to reveal groups of aggregates and to study their location and complexity. In this work, only the physical interactions of ionizing radiations are simulated. Thus, it is not possible to achieve an absolute number of strand breaks as the creation and transportation of radical species which could lead to indirect DNA damages is not included. Nevertheless, the aim of this work was to evaluate the relative dependence of direct DNA damages with the DNA density, radiation quality, cell

  14. Enzymatic induction of DNA double-strand breaks in γ-irradiated Escherichia coli K-12

    International Nuclear Information System (INIS)

    Bonura, T.; Smith, K.C.; Kaplan, H.S.

    1975-01-01

    The polA1 mutation increases the sensitivity of E. coli K-12 to killing by γ-irradiation in air by a factor of 2.9 and increases the yield of DNA double-strand breaks by a factor of 2.5. These additional DNA double-strand breaks appear to be due to the action of nucleases in the polA1 strain rather than to the rejoining of radiation-induced double-strand breaks in the pol + strain. This conclusion is based upon the observation that γ-irradiation at 3 0 did not affect the yield of DNA double-strand breaks in the pol + strain, but decreased the yield in the polA1 strain by a factor of 2.2. Irradiation of the polA1 strain at 3 0 followed by incubation at 3 0 for 20 min before plating resulted in approximately a 1.5-fold increase in the D 0 . The yield of DNA double-strand breaks was reduced by a factor of 1.5. The pol + strain, however, did not show the protective effect of the low temperature incubation upon either survival or DNA double-strand breakage. We suggest that the increased yield of DNA double-strand breaks in the polA 1 strain may be the result of the unsuccessful excision repair of ionizing radiation-induced dna base damage

  15. A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast.

    Science.gov (United States)

    Yang, Yong; Gordenin, Dmitry A; Resnick, Michael A

    2010-08-05

    Localized hyper-mutability (LHM) can be important in evolution, immunity, and genetic diseases. We previously reported that single-strand DNA (ssDNA) can be an important source of damage-induced LHM in yeast. Here, we establish that the generation of LHM by methyl methanesulfonate (MMS) during repair of a chromosomal double-strand break (DSB) can result in over 0.2 mutations/kb, which is approximately 20,000-fold higher than the MMS-induced mutation density without a DSB. The MMS-induced mutations associated with DSB repair were primarily due to substitutions via translesion DNA synthesis at damaged cytosines, even though there are nearly 10 times more MMS-induced lesions at other bases. Based on this mutation bias, the promutagenic lesion dominating LHM is likely 3-methylcytosine, which is single-strand specific. Thus, the dramatic increase in mutagenesis at a DSB is concluded to result primarily from the generation of non-repairable lesions in ssDNA associated with DSB repair along with efficient induction of highly mutagenic ssDNA-specific lesions. These findings with MMS-induced LHM have broad biological implications for unrepaired damage generated in ssDNA and possibly ssRNA. Published by Elsevier B.V.

  16. Use of capillary GC-MS for identification of radiation-induced DNA base damage: Implications for base-excision repair of DNA

    International Nuclear Information System (INIS)

    Dizdaroglu, M.

    1985-01-01

    Application of GC-MS to characterization of radiation-induced base products of DNA and DNa base-amino acid crosslinks is presented. Samples of γ-irradiated DNa were hydrolyzed with formic acid, trimethylsilylated and subjected to GC-MS analysis using a fused silica capillary column. Hydrolysis conditions suitable for the simultaneous analysis of the radiation-induced products of all four DNA bases in a single run were determined. The trimethylsilyl derivatives of these products had excellent GC-properties and easily interpretable mass spectra. The complementary use of t-butyldimetylsilyl derivatives was also demonstrated. Moreover, the usefulness of this method for identification of radiation-induced DNA base-amino acid crosslinks was shown using γ-irradiated mixtures of thymine and tyrosine or phenylalanine. Because of the excellent resolving power of capillary GC and the instant and highly sensitive identification by MS, GC-MS is suggested as a suitable technique for identification of altered bases removed from DNA by base-excision repair enzymes

  17. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice.

    Science.gov (United States)

    Schipler, Agnes; Iliakis, George

    2013-09-01

    Although the DNA double-strand break (DSB) is defined as a rupture in the double-stranded DNA molecule that can occur without chemical modification in any of the constituent building blocks, it is recognized that this form is restricted to enzyme-induced DSBs. DSBs generated by physical or chemical agents can include at the break site a spectrum of base alterations (lesions). The nature and number of such chemical alterations define the complexity of the DSB and are considered putative determinants for repair pathway choice and the probability that errors will occur during this processing. As the pathways engaged in DSB processing show distinct and frequently inherent propensities for errors, pathway choice also defines the error-levels cells opt to accept. Here, we present a classification of DSBs on the basis of increasing complexity and discuss how complexity may affect processing, as well as how it may cause lethal or carcinogenic processing errors. By critically analyzing the characteristics of DSB repair pathways, we suggest that all repair pathways can in principle remove lesions clustering at the DSB but are likely to fail when they encounter clusters of DSBs that cause a local form of chromothripsis. In the same framework, we also analyze the rational of DSB repair pathway choice.

  18. Effects of aphidicolin on repair replication and induced chromosomal aberrations in mammalian cells

    International Nuclear Information System (INIS)

    Zeeland, A.A. van; Filon, A.R.; Natarajan, A.T.; Bussmann, C.J.M.; Degrassi, F.; Kesteren-van Leeuwen, A.C. van; Palitti, F.; Rome Univ.

    1982-01-01

    The influence of aphidicolin, an inhibitor of polymerase α, on UV-induced repair replication in human skin fibroblasts, as well as in HeLa cells, was determined. In growing fibroblasts and in HeLa cells, aphidicolin had a potentiating effect on UV-induced repair replication, whereas in fibroblasts grown to confluency, aphidicolin had an inhibitory effect. This inhibitory effect was stronger when measured in the presence of hydroxyurea. In HeLa cells the presence of both aphidicolin and hydroxyurea also had an inhibitory effect, but in the presence of hydroxyurea alone, UV-induced repair replication was enhanced. The results of these studies can be explained on the basis of differences in deoxyribonucleotide triphosphate pool sizes in growing and confluent cells. Post-treatment of X-irradiated human lymphocytes in the G 0 and G 1 stages with aphidicolin increased the frequencies of X-ray-induced chromosomal aberrations. Such an increase was not observed in G 1 cells of CHO after similar treatment with X-rays and aphidicolin. However, treatment with aphidicolin, in the G 2 stage, increased the frequencies of induced chromatid breaks. The significance of these results is discussed. (orig.)

  19. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL

    International Nuclear Information System (INIS)

    Do, To Uyen; Ho, Bay; Shih, Shyh-Jen; Vaughan, Andrew

    2012-01-01

    Highlights: ► A Zinc Finger Nuclease (ZFN) targeting a leukemogenic hot spot for rearrangement in MLL is created. ► The novel ZFN efficiently cleaves MLL exon 13. ► Despite MLL cleavage and evidence of mis-repair, no leukemogenic translocations were produced. ► MLL cleavage alone is insufficient to generate leukemogenic translocations. - Abstract: Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the Breakpoint Cluster Region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient

  20. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL

    Energy Technology Data Exchange (ETDEWEB)

    Do, To Uyen [Graduate Group in Immunology, University of California Davis, Davis, CA 95616 (United States); Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States); Ho, Bay; Shih, Shyh-Jen [Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States); Vaughan, Andrew, E-mail: Andrew.vaughan@ucdmc.ucdavis.edu [Graduate Group in Immunology, University of California Davis, Davis, CA 95616 (United States); Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States)

    2012-12-15

    Highlights: ► A Zinc Finger Nuclease (ZFN) targeting a leukemogenic hot spot for rearrangement in MLL is created. ► The novel ZFN efficiently cleaves MLL exon 13. ► Despite MLL cleavage and evidence of mis-repair, no leukemogenic translocations were produced. ► MLL cleavage alone is insufficient to generate leukemogenic translocations. - Abstract: Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the Breakpoint Cluster Region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient.

  1. Effect of radiation and freezing on [3H]DNA of Yersinia enterocolitica

    International Nuclear Information System (INIS)

    Grecz, N.; El-zawahry, Y.A.

    1984-01-01

    Freezing of the enteropathogenic bacterium Yersinia enterocolitica to -18 and -75 0 C caused 7 and 42% cell death, respectively, and 0.329 and 0.588 single-strand breaks per 10 8 daltons of DNA, respectively, while radiation to one D 10 dose (10% cell survival) combined with freezing to 2 to 0, -18 and -75 0 C induces 0.05, 0.75, and 5.04 single-strand breaks, respectively. The increase in the effectiveness of radiation with respect to the yield of single-strand breaks at -18 to -75 0 C is contrary to expectation and seems to be due to arrest of repair of single-strand breaks by these low temperatures. 27 references

  2. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lazović, S.; Maletić, D.; Puač, N.; Malović, G.; Petrović, Z. Lj. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Leskovac, A.; Filipović, J.; Joksić, G. [Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade (Serbia)

    2014-09-22

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of the treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.

  3. No interaction between X-ray induced lesions in maternal and paternal chromosomes in inseminated eggs of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Wuergler, F.E.; Graf, U.; Jeanneret, P.

    1978-01-01

    X-ray induced premutational lesions persist in mature gametes of drosophila until fertilization. Repairable lesions in sperm and oocyte chromosomes are repaired exclusively by maternal repair systems in the inseminated egg. Interactions between irradiated genomes in inseminated eggs might result in additional lethality if breaks induced in separate nuclei, which would normally be repaired, could interact to form dicentric chromosomes. Adult drosophila flies were X-irradiated (up to 5 kR), individual females crossed to three or four males, and the dose-response curves for dominant lethals (embryonic lethality) compared. The results indicate thet the potentially lethal damage present in irradiated sperm chromosomes was expressed independently of whether or not the oocyte was also irradiated. There were no (or only very few) interactions between maternal and paternal chromosome complements, and the maternal repair systems acting on radiation-induced chromosome breaks in sperm were resistant to X-rays. (U.K.)

  4. Bacterial and archaeal resistance to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Confalonieri, F; Sommer, S, E-mail: fabrice.confalonieri@u-psud.fr, E-mail: suzanne.sommer@u-psud.fr [University Paris-Sud, CNRS UMR8621, Institut de Genetique et Microbiologie, Batiments 400-409, Universite Paris-Sud, 91405 Orsay (France)

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in

  5. Atypical Role for PhoU in Mutagenic Break Repair under Stress in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Janet L Gibson

    Full Text Available Mechanisms of mutagenesis activated by stress responses drive pathogen/host adaptation, antibiotic and anti-fungal-drug resistance, and perhaps much of evolution generally. In Escherichia coli, repair of double-strand breaks (DSBs by homologous recombination is high fidelity in unstressed cells, but switches to a mutagenic mode using error-prone DNA polymerases when the both the SOS and general (σS stress responses are activated. Additionally, the σE response promotes spontaneous DNA breakage that leads to mutagenic break repair (MBR. We identified the regulatory protein PhoU in a genetic screen for functions required for MBR. PhoU negatively regulates the phosphate-transport and utilization (Pho regulon when phosphate is in excess, including the PstB and PstC subunits of the phosphate-specific ABC transporter PstSCAB. Here, we characterize the PhoU mutation-promoting role. First, some mutations that affect phosphate transport and Pho transcriptional regulation decrease mutagenesis. Second, the mutagenesis and regulon-expression phenotypes do not correspond, revealing an apparent new function(s for PhoU. Third, the PhoU mutagenic role is not via activation of the σS, SOS or σE responses, because mutations (or DSBs that restore mutagenesis to cells defective in these stress responses do not restore mutagenesis to phoU cells. Fourth, the mutagenesis defect in phoU-mutant cells is partially restored by deletion of arcA, a gene normally repressed by PhoU, implying that a gene(s repressed by ArcA promotes mutagenic break repair. The data show a new role for PhoU in regulation, and a new regulatory branch of the stress-response signaling web that activates mutagenic break repair in E. coli.

  6. Non-homologous end-joining genes are not inactivated in human radiation-induced sarcomas with genomic instability

    International Nuclear Information System (INIS)

    Lefevre, S.H.; Coquelle, A.; Gonin-Laurent, N.

    2005-01-01

    DNA double-strand break (DSB) repair pathways are implicated in the maintenance of genomic stability. However the alterations of these pathways, as may occur in human tumor cells with strong genomic instability, remain poorly characterized. We analyzed the loss of heterozygosity (LOH) and the presence of mutations for a series of genes implicated in DSB repair by non-homologous end-joining in five radiation-induced sarcomas devoid of both active Tp53 and Rb1. LOH was recurrently observed for 8 of the 9 studied genes (KU70, KU80, XRCC4, LIG4, Artemis, MRE11, RAD50, NBS1) but not for DNA-PKcs. No mutation was found in the remaining allele of the genes with LOH and the mRNA expression did not correlate with the allelic status. Our findings suggest that non-homologous end-joining repair pathway alteration is unlikely to be involved in the high genomic instability observed in these tumors. (author)

  7. Study on bone marrow mesenchymal stem cells in repairing of radiation induced acute liver injury of rats

    International Nuclear Information System (INIS)

    Bao Yongxing; Lou Fan; Zhao Huarong; Zhu Huhu; Ma Yan; Wen Hao

    2010-01-01

    Objective: To investigate the role of mesenchymal stem cells in the repair of radiation induced liver injury. Methods: 12 female SD rats were irradiated with 20 Gy 6 MV X-rays on the right lobe of the liver, to establish the model of radiation induced liver injury. The rats were divided randomly into two groups as invention group and control group, and transplanted with 1 ml male mesenchymal suspension or 1 ml normal saline in 4 hours after radiotherapy. The morphological changes of liver were observed. The existence of sex determining gene Y(SRY) and the level of alpha-smooth muscle actin (a-SMA) were detected. Results: Some injury of right lobe liver in two groups were observed, and the injury degree of right lobe liver in intervention group were lower than that of control group. The amount of SRY positive cells in the right lobe liver of intervention group was higher than that in the left lobe liver (t = 3.77, P <0.05). The positive expression rate of a-SMA in right lobe liver of intervention group was lower than that of control group. Conclusions: Acute radiation induced liver injury could lead BMSCs' homing in order to decrease the degree of liver fibrosis. (authors)

  8. Homologous Recombination Repair Signaling in Chemical Carcinogenesis: Prolonged Particulate Hexavalent Chromium Exposure Suppresses the Rad51 Response in Human Lung Cells

    Science.gov (United States)

    Qin, Qin; Xie, Hong; Wise, Sandra S.; Browning, Cynthia L.; Thompson, Kelsey N.; Holmes, Amie L.; Wise, John Pierce

    2014-01-01

    The aim of this study was to focus on hexavalent chromium, [Cr(VI)], a chemical carcinogen and major public health concern, and consider its ability to impact DNA double strand break repair. We further focused on particulate Cr(VI), because it is the more potent carcinogenic form of Cr(VI). DNA double strand break repair serves to protect cells against the detrimental effects of DNA double strand breaks. For particulate Cr(VI), data show DNA double strand break repair must be overcome for neoplastic transformation to occur. Acute Cr(VI) exposures reveal a robust DNA double strand break repair response, however, longer exposures have not been considered. Using the comet assay, we found longer exposures to particulate zinc chromate induced concentration-dependent increases in DNA double strand breaks indicating breaks were occurring throughout the exposure time. Acute (24 h) exposure induced DNA double strand break repair signaling by inducing Mre11 foci formation, ATM phosphorylation and phosphorylated ATM foci formation, Rad51 protein levels and Rad51 foci formation. However, longer exposures reduced the Rad51 response. These data indicate a major chemical carcinogen can simultaneously induce DNA double strand breaks and alter their repair and describe a new and important aspect of the carcinogenic mechanism for Cr(VI). PMID:25173789

  9. Heavy ion induced DNA strand breaks and their repair in diploid cells of the epithelium of the lens

    International Nuclear Information System (INIS)

    Heilman, J.

    1987-11-01

    This diploma thesis investigates by means of alkaline unwinding and neutral elution the induction of DNA strand breaks and of rejoining processes as an effect of irradiation with very heavy, accelerated ions. It is found that: The effectiveness of very heavy ions (Z > 18) increases per particle with higher ordinal number, and with increasing velocities. The relative biological effectiveness increases with higher particle masses and lower velocities. The effects of very heavy ions are determined both by the LET and by the particle track extension (specific energy) of the various particles. Heavy ions are much more effective than X-rays with regard to inducing double strand breaks, as compared to DNA single strand breaks induced. Rejoining processes induced by heavy ions have been found to be delayed and incomplete, as compared to the X-ray effects. The number of rejoining processes decreases with rising ordinal number. The experiments indicate that the irradiation with lead or uranium ions most probably makes rejoining impossible. (orig./MG) [de

  10. Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility

    International Nuclear Information System (INIS)

    Zhao, Peng; Zou, Peng; Zhao, Lin; Yan, Wei; Kang, Chunsheng; Jiang, Tao; You, Yongping

    2013-01-01

    Genetic variations in DNA double-strand break repair genes can influence the ability of a cell to repair damaged DNA and alter an individual’s susceptibility to cancer. We studied whether polymorphisms in DNA double-strand break repair genes are associated with an increased risk of glioma development. We genotyped 10 potentially functional single nucleotide polymorphisms (SNPs) in 7 DNA double-strand break repair pathway genes (XRCC3, BRCA2, RAG1, XRCC5, LIG4, XRCC4 and ATM) in a case–control study including 384 glioma patients and 384 cancer-free controls in a Chinese Han population. Genotypes were determined using the OpenArray platform. In the single-locus analysis there was a significant association between gliomas and the LIG4 rs1805388 (Ex2 +54C>T, Thr9Ile) TT genotype (adjusted OR, 3.27; 95% CI, 1.87-5.71), as well as the TC genotype (adjusted OR, 1.62; 95% CI, 1.20-2.18). We also found that the homozygous variant genotype (GG) of XRCC4 rs1805377 (IVS7-1A>G, splice-site) was associated with a significantly increased risk of gliomas (OR, 1.77; 95% CI, 1.12-2.80). Interestingly, we detected a significant additive and multiplicative interaction effect between the LIG4 rs1805388 and XRCC4 rs1805377 polymorphisms with an increasing risk of gliomas. When we stratified our analysis by smoking status, LIG4 rs1805388 was associated with an increased glioma risk among smokers. These results indicate for the first time that LIG4 rs1805388 and XRCC4 rs1805377, alone or in combination, are associated with a risk of gliomas

  11. Radiation-induced hyperproliferation of intestinal crypts results in elevated genome instability with inactive p53-related genomic surveillance.

    Science.gov (United States)

    Zhou, Xin; Ma, Xiaofei; Wang, Zhenhua; Sun, Chao; Wang, Yupei; He, Yang; Zhang, Hong

    2015-12-15

    Radiation-induced hyperproliferation of intestinal crypts is well documented, but its potential tumorigenic effects remain elusive. Here we aim to determine the genomic surveillance process during crypt hyperproliferation, and its consequential outcome after ionizing radiation. Crypt regeneration in the intestine was induced by a single dose of 12Gy abdominal irradiation. γ-H2AX, 53BP1 and DNA-PKcs were used as DNA repair surrogates to investigate the inherent ability of intestinal crypt cells to recognize and repair double-strand breaks. Ki67 staining and the 5-bromo-2'-deoxyuridine incorporation assay were used to study patterns of cell proliferation in regenerating crypts. Staining for ATM, p53, Chk1 and Chk2 was performed to study checkpoint activation and release. Apoptosis was evaluated through H&E staining and terminal deoxynucleotidyl transferase (dUTP) nick-end labeling. The ATM-p53 pathway was immediately activated after irradiation. A second wave of DSBs in crypt cells was observed in regenerating crypts, accompanied with significantly increased chromosomal bridges. The p53-related genomic surveillance pathway was not active during the regeneration phase despite DSBs and chromosomal bridges in the cells of regenerating crypts. Non-homologous end joining (NHEJ) DSBs repair was involved in the DSBs repair process, as indicated by p-DNA-PKcs staining. Intestinal crypt cells retained hyperproliferation with inactive p53-related genomic surveillance system. NHEJ was involved in the resultant genomic instability during hyperproliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Reduced repair of potentially lethal radiation damage in glutathione synthetase-deficient human fibroblasts after X-irradiation

    International Nuclear Information System (INIS)

    Midander, J.; Revesz, L.; Deschavanne, P.J.; Debieu, D.; Malaise, E.P.

    1986-01-01

    Using a human fibroblast strain deficient in glutathione synthetase and a related proficient control strain, the role of glutathione (GSH) in repair of potentially lethal damage (PLD) has been investigated in determining survival by plating cells immediately or 24 h after irradiation. After oxic or hypoxic irradiation, both cell strains repair radiation-induced damage. However, under hypoxic conditions, the proficient cells repair PLD as well as under oxic conditions while the deficient cells repair less PLD after irradiation under hypoxic than under oxic conditions. Therefore, the oxygen enhancement ratio (o.e.r.) for proficient cells is similar whether the cells are plated immediately or 24 h later (2.0 and 2.13, respectively). In contrast, the o.e.r. for deficient cells is lower when the cells are plated 24 h after irradiation than when they are plated immediately thereafter (1.16 as compared to 1.55). The results indicate that GSH is involved in PLD repair and, in particular, in the repair of damage induced by radiation delivered under hypoxic conditions. (author)

  13. DNA Double-Strand Break Rejoining in Complex Normal Tissues

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Dong, Xiaorong; Kuehne, Martin; Fricke, Andreas; Kaestner, Lars; Lipp, Peter; Ruebe, Christian

    2008-01-01

    Purpose: The clinical radiation responses of different organs vary widely and likely depend on the intrinsic radiosensitivities of their different cell populations. Double-strand breaks (DSBs) are the most deleterious form of DNA damage induced by ionizing radiation, and the cells' capacity to rejoin radiation-induced DSBs is known to affect their intrinsic radiosensitivity. To date, only little is known about the induction and processing of radiation-induced DSBs in complex normal tissues. Using an in vivo model with repair-proficient mice, the highly sensitive γH2AX immunofluorescence was established to investigate whether differences in DSB rejoining could account for the substantial differences in clinical radiosensitivity observed among normal tissues. Methods and Materials: After whole body irradiation of C57BL/6 mice (0.1, 0.5, 1.0, and 2.0 Gy), the formation and rejoining of DSBs was analyzed by enumerating γH2AX foci in various organs representative of both early-responding (small intestine) and late-responding (lung, brain, heart, kidney) tissues. Results: The linear dose correlation observed in all analyzed tissues indicated that γH2AX immunofluorescence allows for the accurate quantification of DSBs in complex organs. Strikingly, the various normal tissues exhibited identical kinetics for γH2AX foci loss, despite their clearly different clinical radiation responses. Conclusion: The identical kinetics of DSB rejoining measured in different organs suggest that tissue-specific differences in radiation responses are independent of DSB rejoining. This finding emphasizes the fundamental role of DSB repair in maintaining genomic integrity, thereby contributing to cellular viability and functionality and, thus, tissue homeostasis

  14. DNA single strand break in fibroblast from Down syndrome patients

    International Nuclear Information System (INIS)

    Rozga, B.

    1992-01-01

    The radiosensitivity of tree trisomic (trisomia +21) strains of human fibroblasts to gamma radiation has been investigated in vitro and the causes of induction and repair of single strand DNA breaks in these cells have been estimated. The single strand breaks in DNA of normal and trisomic cells have been found to be ameliorated with an approximately equal efficiency. Repair has been found to be three times slower in trisomic cells compared to their normal relevant, most likely due to their elevated sensitivity to ionizing radiation and the following mortality of trisomic cells, and/or the potential occurrence of a great number of chromosome aberrations in cells irradiated in vitro. (author). 28 refs, 4 figs, 1 tab

  15. Effect of chronic low dose natural radiation in human peripheral blood mononuclear cells: Evaluation of DNA damage and repair using the alkaline comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.R. Vivek, E-mail: prvkumar06@gmail.com [Low Level Radiation Research Laboratory, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, IRE Campus, Beach Road, Kollam 691 001, Kerala (India); Seshadri, M. [Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Jaikrishan, G. [Low Level Radiation Research Laboratory, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, IRE Campus, Beach Road, Kollam 691 001, Kerala (India); Das, Birajalaxmi [Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-05-15

    Highlights: • Effect of chronic low dose natural radiation in radio adaptive response studied. • PBMCs of subjects from NLNRA and HLNRA were challenged with gamma radiation. • DNA damage and repair in PBMCs was compared using the alkaline comet assay. • Significant reduction in DNA damage in subjects of high dose group from HLNRA noted. • Probable induction of an in vivo radio adaptive response in subjects from HLNRA. - Abstract: This study investigates whether peripheral blood mononuclear cells (PBMCs) from inhabitants of Kerala in southwest India, exposed to chronic low dose natural radiation in vivo (>1 mSv year{sup −1}), respond with a radioadaptive response to a challenging dose of gamma radiation. Toward this goal, PBMCs isolated from 77 subjects from high-level natural radiation areas (HLNRA) and 37 subjects from a nearby normal level natural radiation area (NLNRA) were challenged with 2 Gy and 4 Gy gamma radiation. Subjects from HLNRA were classified based on the mean annual effective dose received, into low dose group (LDG) and high dose group (HDG) with mean annual effective doses of 2.69 mSv (N = 43, range 1.07 mSv year{sup −1} to 5.55 mSv year{sup −1}) and 9.62 mSv (N = 34, range 6.07 mSv year{sup −1} to17.41 mSv year{sup −1}), respectively. DNA strand breaks and repair kinetics (at 7 min, 15 min and 30 min after 4 Gy) were evaluated using the alkaline single cell gel electrophoresis (comet) assay. Initial levels of DNA strand breaks observed after either a 2 Gy or a 4 Gy challenging dose were significantly lower in subjects of the HDG from HLNRA compared to subjects of NLNRA (2 Gy, P = 0.01; 4 Gy, P = 0.02) and LDG (2 Gy P = 0.01; 4 Gy, P = 0.05). Subjects of HDG from HLNRA showed enhanced rejoining of DNA strand breaks (HDG/NLNRA, P = 0.06) during the early stage of repair (within 7 min). However at later times a similar rate of rejoining of strand breaks was observed across the groups (HDG, LDG and NLNRA). Preliminary results from

  16. Radiation damage and repair in cells and cell components. Progress report: third new contract year

    International Nuclear Information System (INIS)

    Fluke, D.J.; Pollard, E.C.

    1980-01-01

    Research progress for 1979-1980 is reported. Projects discussed include the process of radiation-induced repair, Weigle-reactivation, induced radioresistance, the induction of the recA gene product, uv mutagenesis, and the induction of lambda

  17. Inhibition of radiation-induced DNA strand breaks by hoechst 33258: OH-radical scavenging and DNA radical quenching

    International Nuclear Information System (INIS)

    Adhikary, A.; Bothe, E.; Von Sonntag, C.; Adhikary, A.

    1997-01-01

    The minor-groove-binding dye Hoechst 33258 has been found to protect pBR322 DNA in aqueous solution against radiation-induced single-strand breaks (ssb). This protective effect has been assumed to be largely due to the scavenging of the strand-break-generating OH radicals by Hoechst. From D 37 values for ssb at different Hoechst concentrations the value of the OH radical scavenging constant of DNA-bound Hoechst has been estimated at k Ho/DNA = 2.7 * 10 11 dm 3 mol -1 . This unexpectedly high value has led us to study the reactions of OH radicals with Hoechst in the absence and in the presence of double-stranded calf thymus DNA (ds DNA) by pulse radiolysis, and the formation of radiation-induced ssb by low angle laser light scattering. The D 37 /D 37 0 values at different Hoechst concentrations agree with the values obtained by Martin and al. and demonstrate the protection. However, this protection cannot be explained on the basis of OH radical scavenging alone using the above rate constants. There must, in addition, be some quenching of DNA radicals. Hoechst radicals are formed in the later ms time range, i.e a long time after the disappearance of the OH radicals. This delayed Hoechst radical formation has been assigned to a a reaction of DNA radicals with Hoechst, thereby inhibiting strand breakage. In confirmation, pulse radiolysis of aqueous solution of nucleotides in the presence of Hoechst yields a similar delayed Hoechst radical formation. The data indicate that in DNA the cross-section of this quenching has a diameter of 3 to 4 base pairs per Hoechst molecule. (N.C.)

  18. Role of DNA damage and repair as predeterminant factor in the development of radiotherapy induced acute adverse reactions

    International Nuclear Information System (INIS)

    Satish Rao, B.S.; Kamalesh, D.M.; Goutham, H.V.; Donald, J.F.; Sharan, Krishna; Vadhiraja, B.M.; Satyamoorthy, K.

    2013-01-01

    Radiotherapy induced normal tissue toxicity is one of the major limitations for the compromised the therapeutic outcome and also worsens the quality of life of survivors. Further, the clinical experience demonstrated inter-individual variability with respect to their normal tissue toxicity. Therefore, the discovery of contributing key factors of variability or predicting the risk of developing acute reactions before the initiation of radiation therapy may serve as a powerful predictive biomarker for individualizing radiotherapy, anticipating increased therapeutic effect. DNA double-strand break (DSB) induction and its repair in lymphocytes of head-and-neck and breast cancer patients undergoing chemoradiation or radiation therapy alone were analyzed by performing γ-H2AX foci, neutral comet and a modified neutral filter elution assays. Treatment induced normal tissue adverse reactions (acute skin reaction, oral mucositis) were assessed by the criteria of Radiation Therapy Oncology Group. The residual damage (RD) at 6 hrs of post irradiation was used as parameters to measure cellular radiosensitivity and for its correlation with radiotherapy induced acute reactions in patients stratified as non-over responders (NOR) and over responders (OR). A large inter-individual variation in the radiosensitivity was observed in the cancer individuals with respect to their lymphocyte radiosensitivity and the severity of normal tissue adverse reactions. There was a significant difference in RD (p<0.05) between the NOR and OR in breast cancer radiotherapy. Further, the increased normal tissue toxicity such as oral mucositis and skin reactions was associated with the reduced DSB repair (p<0.05) in head-and-neck cancer patients. The percentile analysis was found to be useful in predicting the OR amongst the head-and-neck cancer patients. Our results suggest that γ-H2AX analysis may have its potential to be developed into a clinically useful predictive assay for identifying the

  19. Repair on the go: E. coli maintains a high proliferation rate while repairing a chronic DNA double-strand break.

    Directory of Open Access Journals (Sweden)

    Elise Darmon

    Full Text Available DNA damage checkpoints exist to promote cell survival and the faithful inheritance of genetic information. It is thought that one function of such checkpoints is to ensure that cell division does not occur before DNA damage is repaired. However, in unicellular organisms, rapid cell multiplication confers a powerful selective advantage, leading to a dilemma. Is the activation of a DNA damage checkpoint compatible with rapid cell multiplication? By uncoupling the initiation of DNA replication from cell division, the Escherichia coli cell cycle offers a solution to this dilemma. Here, we show that a DNA double-strand break, which occurs once per replication cycle, induces the SOS response. This SOS induction is needed for cell survival due to a requirement for an elevated level of expression of the RecA protein. Cell division is delayed, leading to an increase in average cell length but with no detectable consequence on mutagenesis and little effect on growth rate and viability. The increase in cell length caused by chronic DNA double-strand break repair comprises three components: two types of increase in the unit cell size, one independent of SfiA and SlmA, the other dependent of the presence of SfiA and the absence of SlmA, and a filamentation component that is dependent on the presence of either SfiA or SlmA. These results imply that chronic checkpoint induction in E. coli is compatible with rapid cell multiplication. Therefore, under conditions of chronic low-level DNA damage, the SOS checkpoint operates seamlessly in a cell cycle where the initiation of DNA replication is uncoupled from cell division.

  20. DNA excision repair as a component of adaptation to low doses of ionizing radiation Escherichia coli

    International Nuclear Information System (INIS)

    Huang, H.; Claycamp, H.G.

    1993-01-01

    In this study the authors examined whether or not DNA excision repair is a component of adaptation induced by very low-dose ionizing radiation in Escherichia coli, a well-characterized prokaryote, and investigated the relationship between enhanced excision repair and the SOS response. Their data suggest that there seems to be narrow 'windows' of dose-effect for the induction of SOS-independent DNA excision repair. Being similar to mammalian cell studies, the dose range for this effect was about 200-fold less than D 37 for radiation survival. (author)

  1. A robust network of double-strand break repair pathways governs genome integrity during C. elegans development.

    NARCIS (Netherlands)

    Pontier, D.B.; Tijsterman, M.

    2009-01-01

    To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs). Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ)

  2. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  3. Specific inhibition of Wee1 kinase and Rad51 recombinase: A strategy to enhance the sensitivity of leukemic T-cells to ionizing radiation-induced DNA double-strand breaks

    International Nuclear Information System (INIS)

    Havelek, Radim; Cmielova, Jana; Kralovec, Karel; Bruckova, Lenka; Bilkova, Zuzana; Fousova, Ivana; Sinkorova, Zuzana; Vavrova, Jirina; Rezacova, Martina

    2014-01-01

    Highlights: • Pre-treatment with the inhibitors increased the sensitivity of Jurkat cells to irradiation. • Combining both inhibitors together resulted in a G2 cell cycle arrest abrogation in Jurkat. • Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. • Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction in MOLT-4 cells. • When dosed together, the combination decreased MOLT-4 cell survival. - Abstract: Present-day oncology sees at least two-thirds of cancer patients receiving radiation therapy as a part of their anticancer treatment. The objectives of the current study were to investigate the effects of the small molecule inhibitors of Wee1 kinase II (681641) and Rad51 (RI-1) on cell cycle progression, DNA double-strand breaks repair and apoptosis following ionizing radiation exposure in human leukemic T-cells Jurkat and MOLT-4. Pre-treatment with the Wee1 681641 or Rad51 RI-1 inhibitor alone increased the sensitivity of Jurkat cells to irradiation, however combining both inhibitors together resulted in a further enhancement of apoptosis. Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. MOLT-4 cells were less affected by inhibitors application prior to ionizing radiation exposure. Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction; however Wee1 681641 increased ionizing radiation-induced cell death in MOLT-4 cells

  4. Variation in normal and tumor tissue sensitivity of mice to ionizing radiation-induced DNA strand breaks in vivo

    International Nuclear Information System (INIS)

    Meyn, R.E.; Jenkins, W.T.

    1983-01-01

    The efficiency of DNA strand break formation in normal and tumor tissues of mice was measured using the technique of alkaline elution coupled with a microfluorometric determination of DNA. This methodology allowed measurement of the DNA strand breaks produced in tissues irradiated in vivo with doses of radiation comparable to those used in radiotherapy (i.e., 1.0 gray) without the necessity for the cells to be dividing and incorporating radioactive precursors to label the DNA. The results showed that substantial differences existed among various tissues in terms of the amount of DNA strand break damage produced for a given dose of radiation. Of the normal tissues, the most breaks were produced in bone marrow and the least were produced in gut. Furthermore, strand break production was relatively inefficient in the tumor compared to the normal tissues. The efficiency of DNA strand break formation measured in the cells from the tissues irradiated in vitro was much more uniform and considerably greater than that measured in vivo, suggesting that the normal tissues in the animal may be radiobiologically hypoxic

  5. Multiple pathways of DNA double-strand break processing in a mutant Indian muntjac cell line

    International Nuclear Information System (INIS)

    Bouffler, S.D.; Jha, B.; Johnson, R.T.

    1990-01-01

    DNA break processing is compared in the Indian muntjac cell lines, SVM and DM. The initial frequencies and resealing of X-ray generated single- and double-strand breaks are similar in the two cell lines. Inhibiting the repair of UV damage leads to greater double-strand breakage in SVM than in DM, and some of these breaks are not repaired; however, repair-associated single-strand breakage and resealing are normal. Dimethylsulfate also induces excess double-strand breakage in SVM, and these breaks are irreparable. Restricted plasmids are reconstituted correctly in SVM at approximately 30% of the frequency observed in DM. Thus SVM has a reduced capacity to repair certain types of double-strand break. This defect is not due to a DNA ligase deficiency. We conclude that DNA double-strand breaks are repaired by a variety of pathways within mammalian cells and that the structure of the break or its mode of formation determines its subsequent fate

  6. Contribution of single-strand breaks and alkali-labile bonds to the loss of infectivity of γ-irradiated phiX174 RF-DNA in E. coli cells mutant in various repair functions

    International Nuclear Information System (INIS)

    McKee, R.H.

    1975-01-01

    Twenty-one radiation sensitive mutants have been examined for their capacity to support gamma-irradiated phiX174 RF-DNA. The survival of phiX174 RF-DNA was reduced in essentially all of the sensitive mutants. The irradiated phiX174 RF-DNA was then separated into populations containing either single-strand breaks or alkali-labile bonds to examine the capacity of the mutants to repair each of the classes of lesions. It was found that all E. coli strains are unable to repair 22 percent of the single-strand breaks and all sensitive mutants are unable to repair an additional 10 percent of the breaks. All the repair functions examined are involved in single-strand break repair and none are more or less necessary than any of the others. PhiX174 RF-DNA is also inactivated by alkali-labile bonds. In the normal strains the inactivation efficiency is 0.16 lethal events per lesion with a threshold dose of 15 to 20 krads. The mutants are divided into two classes by their sensitivity to alkali-labile bonds. Both classes of mutants are also inactivated by alkali-labile bonds with efficiencies of about 0.17 and 0.29 lethal events per lesion, respectively. It is proposed that the differences seen in survival curves of phiX174 measured in the sensitive mutants is due to this difference. Although in normal cells the efficiency of inactivation of phiX174 by single-strand breaks is 50 percent greater than by alkali-labile bonds, alkali-labile bonds are produced at approximately twice the rate of single-strand breaks so alkali-labile bonds account for about 61 percent of the overall inactivation. In the mutants of least sensitivity alkali-labile bonds account for about 54 percent of the inactivating events and in the most sensitive about 67 percent

  7. Possible radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro.

    Science.gov (United States)

    Padula, Gisel; Ponzinibbio, María Virginia; Seoane, Analia I

    2016-08-01

    Ionizing radiation (IR) induces DNA damage through production of single and double-strand breaks and reactive oxygen species (ROS). Folic acid (FA) prevents radiation-induced DNA damage by modification of DNA synthesis and/or repair and as a radical scavenger. We hypothesized that in vitro supplementation with FA will decrease the sensitivity of cells to genetic damage induced by low dose of ionizing radiation. Annexin V, comet and micronucleus assays were performed in cultured CHO cells. After 7 days of pre-treatment with 0, 100, 200 or 300 nM FA, cultures were exposed to radiation (100 mSv). Two un-irradiated controls were executed (0 and 100 nM FA). Data were statistically analyzed with X2-test and linear regression analysis (P 0.05). We observed a significantly decreased frequency of apoptotic cells with the increasing FA concentration (P <0.05). The same trend was observed when analyzing DNA damage and chromosomal instability (P <0.05 for 300 nM). Only micronuclei frequencies showed significant differences for linear regression analysis (R2=94.04; P <0.01). Our results have demonstrated the radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro; folate status should be taken into account when studying the effect of low dose radiation in environmental or occupational exposure.

  8. Cellular and molecular repair of X-ray-induced damage: dependence on oxygen tension and nutritional status

    International Nuclear Information System (INIS)

    Spiro, I.J.; Kennedy, K.A.; Stickler, R.; Ling, C.C.

    1985-01-01

    Cellular and molecular repair was studied at 23 0 C using split-dose recovery and alkaline elution techniques, respectively, as a function of cellular oxygen and nutrient conditions. Hypoxic cells in full medium showed a partial reduction in the level of sublethal damage (SLD) repair relative to aerated cells; the respective repair kinetics were similar with a common repair half-time of 30 min. Similarly, hypoxic cells showed a slight reduction in strand break rejoining capacity compared to aerated cells. Under nutrient deprivation, anoxic cells displayed no SLD repair or strand break repair, while aerated cells exhibited the same level of SLD and strand break repair as for well-fed cells. In addition, nutrient deprived cells at low O 2 levels displayed normal SLD and strand break repair capability. These results indicate that both nutrient and O 2 deprivation are necessary for complete inhibition of cellular and molecular repair, and low levels of O 2 can effectively reverse this inhibition

  9. Repair of chromosome damage induced by X-irradiation during G2 phase in a line of normal human fibroblasts and its malignant derivative

    International Nuclear Information System (INIS)

    Parshad, R.; Gantt, R.; Sanford, K.K.; Jones, G.M.; Tarone, R.E.

    1982-01-01

    A line of normal human skin fibroblasts (KD) differed from its malignant derivative (HUT-14) in the extent of cytogenetic damage induced by X-irradiation during G 2 phase. Malignant cells had significantly more chromatid breaks and gaps after exposure to 25, 50, or 100 rad. Results from alkaline elution of cellular DNA immediately after irradiation showed that the normal and malignant cells in asynchronous population were equally sensitive to DNA single-strand breakage by X-irradiation. Caffeine or #betta#-cytosine arabinoside (ara-C), inhibitors of DNA repair, when added directly following G 2 phase exposure, significantly increased the incidence of radiation-induced chromatid damage in the normal cells. In contrast, similar treatment of the malignant cells had little influence. Ara-C differed from caffeine in its effects; whereas both agents increased the frequency of chromatid breaks and gaps, only ara-C increased the frequency of gaps to the level observed in the irradiated malignant cells. Addition of catalase, which destroys H 2 O 2 , or mannitol, a scavenger of the derivative free hydroxyl radical (.OH), to the cultures of malignant cells before, during, and following irradiation significantly reduced the chromatid damage; and catalase prevented formation of chromatid gaps. The DNA damage induced by X-ray during G 2 phase in the normal KD cells was apparently repaired by a caffeine- and ara-C-sensitive mechanism(s) that was deficient or absent in their malignant derivatives

  10. Chromatin- and temperature-dependent modulation of radiation-induced double-strand breaks.

    Science.gov (United States)

    Elmroth, K; Nygren, J; Stenerlöw, B; Hultborn, R

    2003-10-01

    To investigate the influence of chromatin organization and scavenging capacity in relation to irradiation temperature on the induction of double-strand breaks (DSB) in structures derived from human diploid fibroblasts. Agarose plugs with different chromatin structures (intact cells+/-wortmannin, permeabilized cells with condensed chromatin, nucleoids and DNA) were prepared and irradiated with X-rays at 2 or 37 degrees C and lysed using two different lysis protocols (new ice-cold lysis or standard lysis at 37 degrees C). Induction of DSB was determined by constant-field gel electrophoresis. The dose-modifying factor (DMF(temp)) for irradiation at 37 compared with 2 degrees C was 0.92 in intact cells (i.e. more DSB induced at 2 degrees C), but gradually increased to 1.5 in permeabilized cells, 2.2 in nucleoids and 2.6 in naked DNA, suggesting a role of chromatin organization for temperature modulation of DNA damage. In addition, DMF(temp) was influenced by the presence of 0.1 M DMSO or 30 mM glutathione, but not by post-irradiation temperature. The protective effect of low temperature was correlated to the indirect effects of ionizing radiation and was not dependent on post-irradiation temperature. Reasons for a dose modifying factor <1 in intact cells are discussed.

  11. Age-dependent decline in rejoining of X-ray-induced DNA double-strand breaks in normal human lymphocytes

    International Nuclear Information System (INIS)

    Mayer, P.J.; Lange, C.S.; Bradley, M.O.; Nichols, W.W.

    1989-01-01

    Unstimulated human peripheral bloodlymphocytes (HPBL), separated by density centrifugation from anticoagulated whole blood, were X-irradiated on ice and incubated in medium at 37 0 C for repair times of 15, 30 and 120 min. Blood donors were 18 normotensive, non-smoking Caucasians aged 23-78, free from overt pathology and not taking any medications. Neutral filter elution was used to assay DNA double-strand break (DSB) induction and completeness of DSB rejoining. After 30 or 120 min repair incubation, the percentage of DSBs rejoined by cells from oder donors was less than half the percentage of DSBs rejoined by cells from younger donors. When data from the 3 age groups were pooled, the age-related decline in percent DSBs rejoined was significant for repair times 30 min and 120 min but not for 15 min. These age-related declines were observed even though DNA from older donors sustained fewer strand breaks as demonstrated by the negative correlation between donor age and DSB induction. These results suggest that the efficacy of X-ray-induced DSB repair diminishes with in vivo age in unstimulated HPBL. (author). 38 refs.; 2 figs.; 1 tab

  12. Repair of UV-induced DNA damage and its inhibition by etoposide in Sf9 insect cells: comparison with human cells

    International Nuclear Information System (INIS)

    Chandna, Sudhir; Dwarakanath, B.S.; Moorthy, Ganesh; Jain, Charu

    2004-01-01

    In the present investigation, the kinetics of DNA repair in a lepidopteran cell line Sf9 (derived from the ovaries of Spodoptera frugiperda) following UV-irradiation was compared with the responses in a human embryonic kidney cell. DNA repair was studied by analyzing the kinetics of induction and removal of repair related strand breaks using the alkaline single cell gel electrophoresis and Halo assays. Since topoisomerases play important roles in the cellular responses to UV-induced damage, the effects of etoposideon DNA repair kinetics was also studied

  13. Local changes of higher-order chromatin structure during DSB-repair

    International Nuclear Information System (INIS)

    Falk, M; Lukasova, E; Gabrielova, B; Ondrej, V; Kozubek, S

    2008-01-01

    We show that double-strand breaks (DSBs) induced in DNA of human cells by γ-radiation arise mainly in active, gene-rich, decondensed chromatin. We demonstrate that DSBs show limited movement in living cells, occasionally resulting in their permanent clustering, which poses a risk of incorrect DNA rejoining. In addition, some DSBs remain unrepaired for several days after irradiation, forming lesions repairable only with difficulty which are hazardous for genome stability. These 'late' DSBs colocalize with heterochromatin markers (dimethylated histone H3 at lysine 9, HP1 and CENP-A proteins), despite the low density of the surrounding chromatin. This indicates that there is epigenetic silencing of loci close to unrepaired DSBs and/or stabilization of damaged decondensed chromatin loops during repair and post-repair reconstitution of chromatin structure

  14. DNA Damage Signals and Space Radiation Risk

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  15. Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact

    International Nuclear Information System (INIS)

    Haeder, Donat-P.; Sinha, Rajeshwar P.

    2005-01-01

    Continuing depletion of stratospheric ozone and subsequent increases in deleterious ultraviolet (UV) radiation at the Earth's surface have fueled the interest in its ecological consequences for aquatic ecosystems. The DNA is certainly one of the key targets for UV-induced damage in a variety of aquatic organisms. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine pyrimidone photoproducts (6-4PPs) and their Dewar valence isomers. However, aquatic organisms have developed a number of repair and tolerance mechanisms to counteract the damaging effects of UV on DNA. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also play an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with the UV-induced DNA damage and repair in a number of aquatic organisms as well as methods of detecting DNA damage

  16. Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells.

    Directory of Open Access Journals (Sweden)

    Lyne Khair

    2015-08-01

    Full Text Available Activation-induced cytidine deaminase (AID is required for initiation of Ig class switch recombination (CSR and somatic hypermutation (SHM of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq. We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID.

  17. Lead exposure in radiator repair workers: a survey of Washington State radiator repair shops and review of occupational lead exposure registry data.

    Science.gov (United States)

    Whittaker, Stephen G

    2003-07-01

    Radiator repair workers in Washington State have the greatest number of very elevated (> or =60 microg/dL) blood lead levels of any other worker population. The goals of this study were to determine the number of radiator repair workers potentially exposed to lead; estimate the extent of blood lead data underreporting to the Occupational Lead Exposure Registry; describe current safety and health practices in radiator repair shops; and determine appropriate intervention strategies to reduce exposure and increase employer and worker awareness. Lead exposure in Washington State's radiator repair workers was assessed by reviewing Registry data and conducting a statewide survey of radiator repair businesses. This study revealed that a total of 226 workers in Washington State (including owner-operators and all employees) conduct repair activities that could potentially result in excessive exposures to lead. Approximately 26% of radiator repair workers with elevated blood lead levels (> or =25 microg/dL) were determined to report to Washington State's Registry. This study also revealed a lack of awareness of lead's health effects, appropriate industrial hygiene controls, and the requirements of the Lead Standard. Survey respondents requested information on a variety of workplace health and safety issues and waste management; 80% requested a confidential, free-of-charge consultation. Combining data derived from an occupational health surveillance system and a statewide mail survey proved effective at characterizing lead exposures and directing public health intervention in Washington State.

  18. Quantitation of ultraviolet-induced single-strand breaks using oligonucleotide chip

    International Nuclear Information System (INIS)

    Pal, Sukdeb; Kim, Min Jung; Choo, Jaebum; Kang, Seong Ho; Lee, Kyeong-Hee; Song, Joon Myong

    2008-01-01

    A simple, accurate and robust methodology was established for the direct quantification of ultraviolet (UV)-induced single-strand break (SSB) using oligonucleotide chip. Oligonucleotide chips were fabricated by covalently anchoring the fluorescent-labeled ssDNAs onto silicon dioxide chip surfaces. Assuming that the possibility of more than one UV-induced SSB to be generated in a small oligonucleotide is extremely low, SSB formation was investigated quantifying the endpoint probe density by fluorescence measurement upon UV irradiation. The SSB yields obtained based on the highly sensitive laser-induced fluorometric determination of fluorophore-labeled oligonucleotides were found to coincide well with that predicted from a theoretical extrapolation of the results obtained for plasmid DNAs using conventional agarose gel electrophoresis. The developed method has the potential to serve as a high throughput, sample-thrifty, and time saving tool to realize more realistic, and direct quantification of radiation and chemical-induced strand breaks. It will be especially useful for determining the frequency of SSBs or lesions convertible to SSBs by specific cleaving reagents or enzymes

  19. DNA strand breakage repair in ataxia telangiectasia fibroblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Jr, R A; Sheridan, III, R B; Huang, P C [Johns Hopkins Univ., Baltimore, Md. (USA). Dept. of Environmental and Biophysical Sciences

    1975-12-01

    Human diploid fibroblast-like cells derived from four patients with the genetic disease ataxia telangiectasia and from two non-mutant donors were examined for the repair of x-ray induced strand breaks in DNA. The ataxia telangiectasia cultures showed no significant differences from the non-mutant cultures in the kinetics and extent of strand repair. This suggests that the increased spontaneous and x-ray induced chromatid aberrations observed in ataxia telangiectasia cells are not caused by a defect in the repair of single strand breaks as might be suspected from a general model of aberration production.

  20. Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination

    Science.gov (United States)

    Nicolas, Laura; Cols, Montserrat; Choi, Jee Eun; Chaudhuri, Jayanta; Vuong, Bao

    2018-01-01

    Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity. PMID:29744038

  1. Human SNM1B is required for normal cellular response to both DNA interstrand crosslink-inducing agents and ionizing radiation.

    Science.gov (United States)

    Demuth, Ilja; Digweed, Martin; Concannon, Patrick

    2004-11-11

    DNA interstrand crosslinks (ICLs) are critical lesions for the mammalian cell since they affect both DNA strands and block transcription and replication. The repair of ICLs in the mammalian cell involves components of different repair pathways such as nucleotide-excision repair and the double-strand break/homologous recombination repair pathways. However, the mechanistic details of mammalian ICL repair have not been fully delineated. We describe here the complete coding sequence and the genomic organization of hSNM1B, one of at least three human homologs of the Saccharomyces cerevisiae PSO2 gene. Depletion of hSNM1B by RNA interference rendered cells hypersensitive to ICL-inducing agents. This requirement for hSNM1B in the cellular response to ICL has been hypothesized before but never experimentally verified. In addition, siRNA knockdown of hSNM1B rendered cells sensitive to ionizing radiation, suggesting the possibility of hSNM1B involvement in homologous recombination repair of double-strand breaks arising as intermediates of ICL repair. Monoubiquitination of FANCD2, a key step in the FANC/BRCA pathway, is not affected in hSNM1B-depleted HeLa cells, indicating that hSNM1B is probably not a part of the Fanconi anemia core complex. Nonetheless, similarities in the phenotype of hSNM1B-depleted cells and cultured cells from patients suffering from Fanconi anemia make hSNM1B a candidate for one of the as yet unidentified Fanconi anemia genes not involved in monoubiquitination of FANCD2.

  2. Repair-dependent cell radiation survival and transformation: an integrated theory

    International Nuclear Information System (INIS)

    Sutherland, John C

    2014-01-01

    The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete

  3. Biological radiolesions and repair

    International Nuclear Information System (INIS)

    Laskowski, W.

    1981-01-01

    In 7 chapters, the book answers the following questions: 1) What reactions are induced in biological matter by absorption of radiation energy. 2) In what parts of the cell do the radiation-induced reactions with detectable biological effects occur. 3) In which way are these cell components changed by different qualities of radiation. 4) What are the cell mechanisms by which radiation-induced changes can be repaired. 5) What is the importance of these repair processes for man, his life and evolution. At the end of each chapter, there is a bibliography of relevant publications in this field. (orig./MG) [de

  4. Inhibition of γ-radiation induced DNA damage in plasmid pBR322 by TMG, a water-soluble derivative of vitamin E

    International Nuclear Information System (INIS)

    Rajagopalan, R.; Nair, C.K.K.; Wani, K.; Huilgol, N.G.; Kagiya, Tsutomu V.

    2002-01-01

    Alpha-tocopherol monoglucoside (TMG), a water-soluble derivative of α-tocopherol, has been examined for its ability to protect DNA against radiation-induced strand breaks. Gamma radiation, up to a dose of 6 Gy (dose rate, 0.7 Gy/minute), induced a dose-dependent increase in single strand breaks (SSBs) in plasmid pBR322 DNA. TMG inhibited the formation of γ-radiation induced DNA single strand breaks (SSBs) in a concentration-dependent manner; 500 μM of TMG protected the single strand breaks completely. It also protected thymine glycol formation induced by γ-radiation in a dose-dependent manner, based on an estimation of thymine glycol by HPLC. (author)

  5. Inhibition of gamma-radiation induced DNA damage in plasmid pBR322 by TMG, a water-soluble derivative of vitamin E.

    Science.gov (United States)

    Rajagopalan, Rema; Wani, Khalida; Huilgol, Nagaraj G; Kagiya, Tsutomu V; Nair, Cherupally K Krishnan

    2002-06-01

    Alpha-tocopherol monoglucoside (TMG), a water-soluble derivative of alpha-tocopherol, has been examined for its ability to protect DNA against radiation-induced strand breaks. Gamma radiation, up to a dose of 6 Gy (dose rate, 0.7 Gy/minute), induced a dose-dependent increase in single strand breaks (SSBs) in plasmid pBR322 DNA. TMG inhibited the formation of gamma-radiation induced DNA single strand breaks (SSBs) in a concentration-dependent manner; 500 microM of TMG protected the single strand breaks completely. It also protected thymine glycol formation induced by gamma-radiation in a dose-dependent manner, based on an estimation of thymine glycol by HPLC.

  6. Inhibition of {gamma}-radiation induced DNA damage in plasmid pBR322 by TMG, a water-soluble derivative of vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, R.; Nair, C.K.K. [Bhabha Atomic Research Centre, Mumbai (India); Wani, K.; Huilgol, N.G. [Nanavati Hospital and MRC, Vile Parle (India); Kagiya, Tsutomu V. [Kinki Research Foundation, Kyoto (Japan)

    2002-06-01

    Alpha-tocopherol monoglucoside (TMG), a water-soluble derivative of {alpha}-tocopherol, has been examined for its ability to protect DNA against radiation-induced strand breaks. Gamma radiation, up to a dose of 6 Gy (dose rate, 0.7 Gy/minute), induced a dose-dependent increase in single strand breaks (SSBs) in plasmid pBR322 DNA. TMG inhibited the formation of {gamma}-radiation induced DNA single strand breaks (SSBs) in a concentration-dependent manner; 500 {mu}M of TMG protected the single strand breaks completely. It also protected thymine glycol formation induced by {gamma}-radiation in a dose-dependent manner, based on an estimation of thymine glycol by HPLC. (author)

  7. High LET radiation and mechanism of DNA damage repair

    International Nuclear Information System (INIS)

    Furusawa, Yoshiya

    2004-01-01

    Clarifying the mechanism of repair from radiation damage gives most important information on radiation effects on cells. Approximately 10% of biological experiments groups in Heavy Ion Medical Accelerator in Chiba (HIMAC) cooperative research group has performed the subject. They gave a lot of new findings on the mechanism, and solved some open questions. The reason to show the peak of relative biological effectiveness RBE at around 100-200 keV/μm causes miss-repair of DNA damage. Sub-lethal damage generated by high linear energy transfer (LET) radiation can be repaired fully. Potentially lethal damages by high-LET radiation also repaired, but the efficiency decreased with the LET, and so on. (author)

  8. Excess single-stranded DNA inhibits meiotic double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Rebecca Johnson

    2007-11-01

    Full Text Available During meiosis, self-inflicted DNA double-strand breaks (DSBs are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1. We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE, in cells lacking Dmc1 strand-exchange protein. Turnover and resection of the VDE-DSBs was assessed in two different reporter cassettes that can repair using flanking direct repeat sequences, thereby obviating the need for a Dmc1-dependent DNA strand invasion step. Access of the single-strand binding complex replication protein A, which is normally used in all modes of DSB repair, was checked in chromatin immunoprecipitation experiments, using antibody against Rfa1. Repair of the VDE-DSBs was severely inhibited in dmc1Delta cells, a defect that was associated with a reduction in the long tract resection required to initiate single-strand annealing between the flanking repeat sequences. Mutants that either reduce Spo11-DSB formation or abolish resection at Spo11-DSBs rescued the repair block. We also found that a replication protein A component, Rfa1, does not accumulate to expected levels at unrepaired single-stranded DNA (ssDNA in dmc1Delta cells. The requirement of Dmc1 for VDE-DSB repair using flanking repeats appears to be caused by the accumulation of large quantities of ssDNA that accumulate at Spo11-DSBs when Dmc1 is absent. We propose that these resected DSBs sequester both resection machinery and ssDNA binding proteins, which in wild-type cells would normally be recycled as Spo11-DSBs repair. The implication is that repair proteins are in limited supply, and this could reflect an underlying mechanism for regulating DSB repair in wild-type cells, providing protection from potentially harmful effects

  9. Specificity and completeness of inhibition of DNA repair by novobiocin and aphidicolin

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1982-01-01

    Novobiocin and aphidicolin were both potent inhibitors of excision repair of u.v.-induced damage to DNA in human embryonic fibroblasts, and both also inhibited semiconservative DNA replication even more strongly. The mechanism of action of these two drugs is, however, different. Novobiocin inhibited repair replication without accumulating single-strand breaks, but aphidicolin inhibited repair replication with the accumulation of numerous single-strand breaks. Novobiocin appears to inhibit repair at an earlier stage than aphidicolin, which may indicate that DNA topoisomerases play a role in eukaryotic DNA repair. Digestion of DNA by exonuclease III indicated that repair patches in novobiocin-treated cells contained no excess 3'OH termini, whereas up to 40% of the repaired DNA in aphidicolin-treated cells had free 3'OH termini. Therefore, although aphidicolin resulted in the accumulation of single-strand breaks, many of the repair events escaped inhibition and the number of breaks is an underestimate of the true number of repair events

  10. Molecular dynamics simulation studies of radiation damaged DNA. Molecules and repair enzymes

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    2004-12-01

    Molecular dynamics (MD) studies on several radiation damages to DNA and their recognition by repair enzymes are introduced in order to describe the stepwise description of molecular process observed at radiation lesion sites. MD studies were performed on pyrimidine (thymine dimer, thymine glycol) and purine (8-oxoguanine) lesions using an MD simulation code AMBER 5.0. The force field was modified for each lesion. In all cases the significant structural changes in the DNA double helical structure were observed; a) the breaking of hydrogen bond network between complementary bases and resulting opening of the double helix (8-oxoguanine); b) the sharp bending of the DNA helix centered at the lesion site (thymine dimer, thymine glycol); and c) the flipping-out base on the strand complementary to the lesion (8-oxoguanine). These changes were related to the overall collapsing double helical structure around the lesion and might facilitate the docking of the repair enzyme into the DNA and formation of DNA-enzyme complex. In addition to the structural changes, at lesion sites there were found electrostatic interaction energy values different from those at native sites (thymine dimer -10 kcal/mol, thymine glycol -26 kcal/mol, 8-oxoguanine -48 kcal/mol). These values of electrostatic energy may discriminate lesion from values at native sites (thymine 0 kcal/mol, guanine -37 kcal/mol) and enable a repair enzyme to recognize a lesion during scanning DNA surface. The observed specific structural conformation and energetic properties at the lesions sites are factors that guide a repair enzyme to discriminate lesions from non-damaged native DNA segments. (author)

  11. Breaks in plasmid DNA strand induced by laser radiation at a wavelength of 193 nm

    International Nuclear Information System (INIS)

    Gurzadyan, G.G.; Shul'te Frolinde, D.

    1996-01-01

    DNA of plasmid pB322 irradiated with laser at a wavelength of 193 nm was treated with an extract containing proteins from E.coli K12 AB1157 (wild-type). The enzymes were found to produce single- and double-strand DNA breaks, which was interpreted as a transformation of a portion of cyclobutane pyrimidine dimers and (6-4) photoproducts into nonrepairable single-strand DNA breaks. The products resulted from ionization of DNA, in particular, single-strand breaks, transform to double-strand breaks. A comparison of these data with the data on survival of plasmid upon transformation of E.coli K12 AB1157 enables one to assess the biological significance of single- and double-strand breaks. The inactivation of the plasmid is mainly determined by the number of directly formed laser-induced single-strand breaks. 26 refs.; 2 figs

  12. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Borrego-Soto, Gissela; Ortiz-Lopez, Rocio; Rojas-Martinez, Augusto, E-mail: arojasmtz@gmail.com, E-mail: augusto.rojasm@uanl.mx [Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León (Mexico)

    2015-10-15

    Breast cancer is the most common malignancy in women. Radiotherapy is frequently used in patients with breast cancer, but some patients may be more susceptible to ionizing radiation, and increased exposure to radiation sources may be associated to radiation adverse events. This susceptibility may be related to deficiencies in DNA repair mechanisms that are activated after cell-radiation, which causes DNA damage, particularly DNA double strand breaks. Some of these genetic susceptibilities in DNA-repair mechanisms are implicated in the etiology of hereditary breast/ovarian cancer (pathologic mutations in the BRCA 1 and 2 genes), but other less penetrant variants in genes involved in sporadic breast cancer have been described. These same genetic susceptibilities may be involved in negative radiotherapeutic outcomes. For these reasons, it is necessary to implement methods for detecting patients who are susceptible to radiotherapy-related adverse events. This review discusses mechanisms of DNA damage and repair, genes related to these functions, and the diagnosis methods designed and under research for detection of breast cancer patients with increased radiosensitivity. (author)

  13. Cell cycle age dependence for radiation-induced G2 arrest: evidence for time-dependent repair

    International Nuclear Information System (INIS)

    Rowley, R.

    1985-01-01

    Exponentially growing eucaryotic cells, irradiated in interphase, are delayed in progression to mitosis chiefly by arrest in G 2 . The sensitivity of Chinese hamster ovary cells to G 2 arrest induction by X rays increases through the cell cycle, up to the X-ray transition point (TP) in G 2 . This age response can be explained by cell cycle age-dependent changes in susceptibility of the target(s) for G 2 arrest and/or by changes in capability for postirradiation recovery from G 2 arrest damage. Discrimination between sensitivity changes and repair phenomena is possible only if the level of G 2 arrest-causing damage sustained by a cell at the time of irradiation and the level ultimately expressed as arrest can be determined. The ability of caffeine to ameliorate radiation-induced G 2 arrest, while inhibiting repair of G 2 arrest-causing damage makes such an analysis possible. In the presence of caffeine, progression of irradiated cells was relatively unperturbed, but on caffeine removal, G 2 arrest was expressed. The duration of G 2 arrest was independent of the length of the prior caffeine exposure. This finding indicates that the target for G 2 arrest induction is present throughout the cell cycle and that the level of G 2 arrest damage incurred is initially constant for all cell cycle phases. The data are consistent with the existence of a time-dependent recovery mechanism to explain the age dependence for radiation induction of G 2 arrest

  14. Effect of radiation and freezing on (/sup 3/H)DNA of Yersinia enterocolitica

    Energy Technology Data Exchange (ETDEWEB)

    Grecz, N.; El-zawahry, Y.A.

    1984-05-01

    Freezing of the enteropathogenic bacterium Yersinia enterocolitica to -18 and -75/sup 0/C caused 7 and 42% cell death, respectively, and 0.329 and 0.588 single-strand breaks per 10/sup 8/ daltons of DNA, respectively, while radiation to one D/sub 10/ dose (10% cell survival) combined with freezing to 2 to 0, -18 and -75/sup 0/C induces 0.05, 0.75, and 5.04 single-strand breaks, respectively. The increase in the effectiveness of radiation with respect to the yield of single-strand breaks at -18 to -75/sup 0/C is contrary to expectation and seems to be due to arrest of repair of single-strand breaks by these low temperatures. 27 references.

  15. Plasmid pKM101 mediated sensitization of Escherichia coli cells to ionizing radiation effect of the plasmid on viability and induced mutability

    International Nuclear Information System (INIS)

    Aleshkin, G.I.; Samojlenko, I.I.; Skavronskaya, A.G.

    1981-01-01

    Diploid wild yeast Saccharomyces cerevisae has a powerful system of dark repair of DNA single-strand breaks (SSB) induced by gamma-irradiation of cells. Mutations in RAD 54 gene of the yeast diploid cells do not practically change their ability to eliminate the damages to DNA. To repair the gamma-irradiation induced DNA double-strand breaks (DSB) in the wild yeast cells, an additional aeration is required. The haploid wild cells do not repair the DNA DSB under conditions in question. The DNA DSB repair in the yeast cells is suppressed by caffein during the 40 h incubation if the irradiated cells in phosphate buffer, which indicates that the recombination system participates in the process. Diploid yeast of a radiosensitive mutant RAD 54 strain does not repair the DNA DSB induced by gamma-irradiation of cells, which allows one to suppose that the mutation in RAD 54 gene involves the recombination system

  16. A role for the malignant brain tumour (MBT domain protein LIN-61 in DNA double-strand break repair by homologous recombination.

    Directory of Open Access Journals (Sweden)

    Nicholas M Johnson

    Full Text Available Malignant brain tumour (MBT domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR for the repair of DNA double-strand breaks (DSBs. lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT-deficient tumours may also have defective DSB repair.

  17. Breast cancer induced by protracted radiation exposures

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1997-01-01

    The experience at Hiroshima/Nagasaki demonstrated that breast cancer can be induced by single doses of ionizing radiation following latencies of 10-40 years. Several epidemiological studies, usually involving ancillary low-LET radiation to the breast, have demonstrated that breast cancer can be induced by protracted exposures, with similar latencies, and with similar dependencies on dose. Radiobiologically these results suggest that the target cells involved were deficient in repair of low-LET damage even when the protraction was over months to years. Since three-quarters of breast tumors originate in the ducts where their proliferation is controlled by menstrual-cycle timed estrogen/progesterone secretions, these cells periodically were in cycle. Thus, the two main elements of a conceptual model for radon-induced lung cancer -- kinetics and deficient repair -- are satisfied. The model indicates that breast cancer could be the cumulative effect of protracted small exposures, the risk from any one of which ordinarily would be quite small. (author)

  18. Radiation-induced adaptive response in human lymphoblast

    International Nuclear Information System (INIS)

    Yatagai, Fumio; Sugasawa, Kaoru

    2009-01-01

    Described are the genetic analysis of variant strains obtained by the optimal condition for radiation-induced adaptive response (AR), and molecular elucidation of the suppression of concomitant mutation. The TK6 cells (heterozygous thymidine kinase, +/-) were used for detection of mutation by loss of heterozygosity (LOH). The optimal conditions for reducing the mutation by subsequent irradiation (SI) to its rate of about 60% (vs control 100%, no PI) were found to be 5 cGy of pre-irradiation (PI) of X-ray and 2 Gy of SI with the interval of 6 hr, where mutated cells were of non-LOH type in around 25% and homo-LOH type by homologous recombination (HR) in 60%. By cDNA sequencing, the former cells having changed bases were found to be in variant strain ratio of 1/8 vs control 7/18, suggesting that the mutation was decreased mainly by suppression of base change. Expression of XPC protein, an important component for recognition of the base damage in global genome nucleotide excision repair, was studied by Western blotting as the possible mechanism of suppressing the mutation, which revealed different time dynamics of the protein in cells with PI+SI and SI alone (control). To see the effect of PI on the double strand break (DSB) repair, cells with PI were infected with restriction enzyme I-SceI vector to yield DSB instead of SI, which revealed more efficient repair (70% increase) by HR than control, without significant difference in non-homologous end-joining repair. Micro-array analysis to study the gene expression in the present experimental conditions for AR is in progress. The TK6 cells used here were thought useful for additional studies of the mechanism of AR as mutation by direct or indirect irradiation can be tested. (K.T.)

  19. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers

    DEFF Research Database (Denmark)

    Schwertman, Petra; Bekker-Jensen, Simon; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs...

  20. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  1. Binding of radiation-induced phenylalanine radicals to DNA

    International Nuclear Information System (INIS)

    Schans, G.P. van der; Rijn, C.J.S. van; Bleichrodt, J.F.

    1975-11-01

    When an aqueous solution of double-stranded DNA of bacteriophage PM2 containing phenylalanine and saturated with N 2 O is irradiated with γ-rays, radiation-induced phenylalanine radicals are bound covalently. Under the conditions used about 25 phenylalanine molecules may be bound per lethal hit. Also for single-stranded PM2 DNA, most of the phenylalanine radicals bound are non-lethal. Evidence is presented that in double-stranded DNA an appreciable fraction of the single-strand breaks is induced by phenylalanine radicals. Radiation products of phenylalanine and the phenylalanine bound to the DNA decrease the sensitivity of the DNA to the induction of single-strand breaks. There are indications that the high efficiency of protection by radiation products of phenylalanine is due to their positive charge, which will result in a relatively high concentration of these compounds in the vicinity of the negatively charged DNA molecules

  2. Radiation induced degradation of DNA in photodynamic therapy of cancer

    International Nuclear Information System (INIS)

    Ion, Rodica; Scarlat, F.; Niculescu, V.I.R.; Scarlat, Fl.; Gunaydin, Keriman

    2001-01-01

    DNA is a critical cellular target for oxidative processes induced by physical and chemical stresses. It is known that the direct effect of ionizing radiation on DNA results mainly in base ionization and may lead to mutation, carcinogenesis and cell death. The degradation of DNA induced by laser and ionizing radiation (electron and photon beam) is analyzed in this paper. The ionizing radiation degradation of DNA is a radical process. A series of lesions among the major base degradation product has been measured in isolated DNA exposed to gamma radiation in aerated aqueous solution. Degradation can be accounted for by the formation of hydroxyl radicals upon radiolysis of water (indirect effect). The production of DNA damage by ionizing radiation involves two mechanisms, direct and indirect effects. Direct effect leads to ionization and excitation of DNA molecules, while indirect effect is due to the interaction of reactive species, in particular of OH radicals produced by water radiolysis, with targets in DNA. The relative contribution of the two mechanisms in damaging DNA depends on the type of radiation. Single strand breaks and base damage seem to be mainly produced by the attack of hydroxyl radicals on DNA, whereas double strand breaks result predominantly of direct energy deposition. The four bases are degraded in high yield. Direct effect has been mimicked by photo-induced electron abstraction from the bases producing their radical cation. The base damage may also occur from the formation of radical cation of purine and pyrimidine components. When DNA is irradiated in solution, single strand breaks are mainly due to the abstraction of an H atom from the 4 ' position of 2 ' -deoxyribose by the attack of OH radicals produced by water radiolysis. Quantification of the modified bases showed the guanine is the preferential target. Ionizing radiation induces several types of DNA modifications, including chain breaks, DNA-protein cross-links, oxidized DNA bases

  3. Evidence that UV-inducible error-prone repair is absent in Haemophilus influenzae Rd, with a discussion of the relation to error-prone repair of alkylating-agent damage

    International Nuclear Information System (INIS)

    Kimball, R.F.; Boling, M.E.; Perdue, S.W.

    1977-01-01

    Haemophilus influenzae Rd and its derivatives are mutated either not at all or to only a very small extent by ultraviolet radiation, X-rays, methyl methanesulfonate, and nitrogen mustard, though they are readily mutated by such agents as N-methyl-N'-nitro-N-nitrosoguanidine, ethyl methanesulfonate, and nitrosocarbaryl (NC). In these respects H. influenzae Rd resembles the lexA mutants of Escherichia coli that lack the SOS or reclex UV-inducible error-prone repair system. This similarity is further brought out by the observation that chloramphenicol has little or no effect on post-replication repair after UV irradiation. In E. coli, chloramphenicol has been reported to considerably inhibit post-replication repair in the wild type but not in the lexA mutant. Earlier work has suggested that most or all the mutations induced in H. influenzae by NC result from error-prone repair. Combined treatment with NC and either X-rays or UV shows that the NC error-prone repair system does not produce mutations from the lesions induced by these radiations even while it is producing them from its own lesions. It is concluded that the NC error-prone repair system or systems and the reclex error-prone system are different

  4. Routine medicare and radiation exposure (3) biology about radiation exposure for its understanding

    International Nuclear Information System (INIS)

    Saito, Tsutomu; Hirata, Hideki

    2013-01-01

    Radiation-induced biological responses are easily explained as follows. The process of cancer formation is on the hypothesis of multi-step carcinogenesis of the initiation, promotion and progression. Radiation is an exogenous physical initiator. Physical process of ionization in biomaterials by radiation occurs within the time of 10 -12 sec order, which resulting in chemical process (10 -6 sec) leading to tissue response or to cancerous change (several tens hours to several decades). Direct and indirect effects on DNA are yielded with the high LET (linear energy transfer) radiation and low, through OH-radical formation, respectively. Double strand break of DNA induced by radiation is repaired by the error-free homologous recombination or error-prone non-homologous end-joining. At the early phase of the damage, DNA damage response begins to work for repairing, and when the response is inoperable, cellular response is induced to lead radiation apoptosis as an exclusion mechanism of abnormal cells. The biological effects differ even at the same dose of different radiations when their LET is different, and relative biological effectiveness (RBE) is used. For correction of the stochastic radiation effect, the radiation weighting factor (W R ) is used for conversion to the single photon beam dose that ICRP defines as the equivalent dose (H T , Sv). ICRP (Pub. 103) also recommends the use of RBE (Gy) for the definitive effect. Radiation effects are known to be modified by such phenomena as the bystander effect, cluster damage of DNA, radiation adaptation, hormesis, dose rate effect and non-tumor inducing dose. ICRP employs linear non-threshold (LNT) hypothesis for low dose and low dose rate carcinogenesis. (T.T.)

  5. APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion.

    Science.gov (United States)

    Nowarski, Roni; Kotler, Moshe

    2013-06-15

    High frequency of cytidine to thymidine conversions was identified in the genome of several types of cancer cells. In breast cancer cells, these mutations are clustered in long DNA regions associated with single-strand DNA (ssDNA), double-strand DNA breaks (DSB), and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs, and clustered mutations. Cancer Res; 73(12); 3494-8. ©2013 AACR. ©2013 AACR.

  6. Role of XRCC4 phosphorylation by DNA-PK in the regulation of NHEJ repair pathway of DNA double strand break

    International Nuclear Information System (INIS)

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Kamdar, Radhika P.; Sicheng, Liu; Wanotayan, Rujira; Matsumoto, Yoshihisa

    2014-01-01

    Non-homologous end-joining (NHEJ) is the predominant pathway of DNA double strand breaks in higher eukaryotes and is active throughout the cell cycle. NHEJ repair includes many factors as Ku70/86, DNA-PKcs, XRCC4-Ligase IV complex and XLF (also known as Cernunnos). In these factors, DNA-PKcs acts as central regulator in NHEJ repair. It recruited at the DNA damages site after DNA damage and after association with Ku its kinase activity is activated. It phosphorylates many of important NHEJ proteins in vitro including XRCC4, Ku 70/86, Artemis, and even DNA-PKcs but till now, very less studies have been done to know the role and significance of phosphorylation in the NHEJ repair. Studies by other researchers identified various phosphorylation sites in XRCC4 by DNA-PK using mass spectrometry but these phosphorylation sites were shown to be dispensable for DSB repair. In the present investigation, we identified 3 serine and one new threonine phosphorylation sites in XRCC4 protein by DNA-PK. In vivo phosphorylation at these sites was verified by generating phosphorylation specific antibodies and the requirement for DNA-PK therein was verified by using DNA-PK inhibitor and DNA-PK proficient and deficient cell lines in response to radiation and zeocin treatment. We have also found that phosphorylation at these sites showed dose dependency in response to radiation treatment. The two serine and one threonine phosphorylation site is also biological important as their mutation into alanine significantly elevated radiosensitivity as measured by colony formation assay. Neutral comet assay showed delayed kinetics in DSB repair of these mutants. Furthermore, we have found a protein, with putative DSB repair function, which interacts with domain including the phosphorylation sites.These results indicate that these phosphorylation sites would mediate functional link between XRCC4 and DNA-PK. (author)

  7. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Ian Hare

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs, the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16 at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation.

  8. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage.

    Science.gov (United States)

    Hare, Ian; Gencheva, Marieta; Evans, Rebecca; Fortney, James; Piktel, Debbie; Vos, Jeffrey A; Howell, David; Gibson, Laura F

    2016-01-01

    Mesenchymal stem cells (MSCs) are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs), the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16) at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ) transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR) transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation.

  9. The influence of bromodeoxyuridine on the induction and repair of DNA double-strand breaks in glioblastoma cells

    International Nuclear Information System (INIS)

    Nusser, N.N.; Bartkowiak, D.; Roettinger, E.M.

    2002-01-01

    Aims: To examine the dose response of DNA damage and its modification by the radiosensitizer, 5-bromo-2'-deoxyuridine (BrdU). The sensitizing mechanism is analyzed with regard to its influence on the induction and repair of DNA double-strand breaks (DSBs). Material and Methods: Cells from three different human glioblastoma lines, A7, LH and U87MG, were X-irradiated with and without exposure to BrdU. DNA fragments were separated by field-inversion gel electrophoresis (FIGE) and quantified by fluorometry immediately and 24 h after irradiation. Results: In all cell lines, the dose response followed a linear-quadratic rather than a purely linear function. BrdU-treated cells exhibited a significantly higher amount of mobile DNA. In repair experiments with and without BrdU, the amount of mobile DNA fell close to control values within 24 h. Conclusions: The linear-quadratic model appropriately describes the X-ray induced fragmentation of DNA. BrdU sensitizing acts predominantly by increasing DNA fragility, and not by impairing damage repair. The amount of DSBs persistent after 24 h of repair is minimal, even after highly cytotoxic doses. However, it appears to depend on the extent of initial damage, causing sensitized cells to retain more DSBs than unsensitized cells. (orig.)

  10. The Degree of Radiation-Induced DNA Strand Breaks Is Altered by Acute Sleep Deprivation and Psychological Stress and Is Associated with Cognitive Performance in Humans.

    Science.gov (United States)

    Moreno-Villanueva, Maria; von Scheven, Gudrun; Feiveson, Alan; Bürkle, Alexander; Wu, Honglu; Goel, Namni

    2018-03-27

    Sleep deprivation is associated with impaired immune responses, cancer, and morbidity and mortality, and can degrade cognitive performance, although individual differences exist in such responses. Sleep deprivation induces DNA strand breaks and DNA base oxidation in animals, and psychological stress is associated with increased DNA damage in humans. It remains unknown whether sleep deprivation or psychological stress in humans affects DNA damage response from environmental stressors, and whether these responses predict cognitive performance during sleep deprivation. Sixteen healthy adults (ages 29-52;mean age±SD, 36.4±7.1 years;7 women) participated in a 5-day experiment involving two 8 hour time-in-bed [TIB] baseline nights, followed by 39 hours total sleep deprivation (TSD), and two 8-10 hour TIB recovery nights. A modified Trier Social Stress Test was conducted on the day after TSD. Psychomotor Vigilance Tests measured behavioral attention. DNA damage was assessed in blood cells collected at 5 time points, and blood cells were irradiated ex-vivo. TSD, alone or in combination with psychological stress, did not induce significant increases in DNA damage. By contrast, radiation-induced DNA damage decreased significantly in response to TSD, but increased back to baseline when combined with psychological stress. Cognitively-vulnerable individuals had more radiation-induced DNA strand breaks before TSD, indicating their greater sensitivity to DNA damage from environmental stressors. Our results provide novel insights into the molecular consequences of sleep deprivation, psychological stress, and performance vulnerability. They are important for situations involving sleep loss, radiation exposure and cognitive deficits, including cancer therapy, environmental toxicology, and space medicine.

  11. DNA repair goes hip-hop: SMARCA and CHD chromatin remodellers join the break dance.

    Science.gov (United States)

    Rother, Magdalena B; van Attikum, Haico

    2017-10-05

    Proper signalling and repair of DNA double-strand breaks (DSB) is critical to prevent genome instability and diseases such as cancer. The packaging of DNA into chromatin, however, has evolved as a mere obstacle to these DSB responses. Posttranslational modifications and ATP-dependent chromatin remodelling help to overcome this barrier by modulating nucleosome structures and allow signalling and repair machineries access to DSBs in chromatin. Here we recap our current knowledge on how ATP-dependent SMARCA- and CHD-type chromatin remodellers alter chromatin structure during the signalling and repair of DSBs and discuss how their dysfunction impacts genome stability and human disease.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Authors.

  12. Clustered DNA lesion repair in eukaryotes: Relevance to mutagenesis and cell survival

    Energy Technology Data Exchange (ETDEWEB)

    Sage, Evelyne [Institut Curie, Bat. 110, Centre Universitaire, 91405 Orsay (France); CNRS UMR3348, Bat. 110, Centre Universitaire, 91405 Orsay (France); Harrison, Lynn, E-mail: lclary@lsuhsc.edu [Department of Molecular and Cellular Physiology, LSUHSC-S, 1501 Kings Highway, Shreveport, LA 71130 (United States)

    2011-06-03

    A clustered DNA lesion, also known as a multiply damaged site, is defined as {>=}2 damages in the DNA within 1-2 helical turns. Only ionizing radiation and certain chemicals introduce DNA damage in the genome in this non-random way. What is now clear is that the lethality of a damaging agent is not just related to the types of DNA lesions introduced, but also to how the damage is distributed in the DNA. Clustered DNA lesions were first hypothesized to exist in the 1990s, and work has progressed where these complex lesions have been characterized and measured in irradiated as well as in non-irradiated cells. A clustered lesion can consist of single as well as double strand breaks, base damage and abasic sites, and the damages can be situated on the same strand or opposing strands. They include tandem lesions, double strand break (DSB) clusters and non-DSB clusters, and base excision repair as well as the DSB repair pathways can be required to remove these complex lesions. Due to the plethora of oxidative damage induced by ionizing radiation, and the repair proteins involved in their removal from the DNA, it has been necessary to study how repair systems handle these lesions using synthetic DNA damage. This review focuses on the repair process and mutagenic consequences of clustered lesions in yeast and mammalian cells. By examining the studies on synthetic clustered lesions, and the effects of low vs high LET radiation on mammalian cells or tissues, it is possible to extrapolate the potential biological relevance of these clustered lesions to the killing of tumor cells by radiotherapy and chemotherapy, and to the risk of cancer in non-tumor cells, and this will be discussed.

  13. Determination of the adaptive response induced In vivo by gamma radiation and its relation with the sensibility to the damage induction in the DNA and with the repairing capacity

    International Nuclear Information System (INIS)

    Mendiola C, M.T.

    2002-01-01

    The kinetics of damage induction and repair at different doses as well as the adaptive response induced by gamma ray exposure were determined in murine leukocytes in vivo. The damage-repair kinetics were established after the exposure to 0.5, 1.0 or 2.0 Gy in a 137 Cs source. Peripheral blood samples were obtained from the tails of mice, the percentage of damaged cells and the DNA migration in each one were analyzed by the single cell gel electrophoresis (SCG) technique or comet assay. Results indicated that there was an induction of approximately 75% comets with the doses of 1.0 and 2.0 Gy, which was considerably reduced to 22% and 42% respectively during the first 15 minutes. This evidences the presence of a rapid repair process and suggests that leucocytes are genetically well prepared to repair this kind of damage. After 15 minutes, a second increase in the percentage of damaged cells that was proportional to dose occurred, which seems to represent the breaks produced during the repair of other kind of lesions. After that a second reduction was observed, reaching values near to the basal ones, except with the dose of 2.0 Gy. The kinetics obtained with the dose of 0.5 Gy was similar to that established with 1.0 Gy, but in this case the initial damage was 50 % lower. Besides, the adaptive response was observed after the exposure of the mice to an adaptive dose of 0.01 Gy and to a challenge dose of 1.0 Gy 60 minutes later. The pretreatment reduced the percentage of damaged cells caused by the challenge dose to one third approximately, and also diminished this parameter produced during the late repair process. This indicates that the early adaptive response is caused, instead of by an increment in repair, by the induction of a process that protects DNA from damage induction by radiation, i.e synthesis of substances that increase the scavenging of free radicals. (Author)

  14. DNA and chromosome breaks induced by 123I-estrogen in CHO cells

    International Nuclear Information System (INIS)

    Schwartz, J.L.

    1997-01-01

    The effects of the Auger electron-emitting isotope I-123, covalently bound to estrogen, on DNA single- and double-strand breakage and on chromosome breakage was determined in estrogen positive Chinese hamster ovary (CHO-ER) cells. Exposure to the 123 I-estrogen induced both single- and double-strand breaks with a ratio of single- to double-strand breaks of 2.2. The corresponding ratio with 60 Co gamma rays was 15.6. The dose-response was biphasic suggesting that either receptor sites are saturated at high does, or that there is a nonrandom distribution of breaks induced by the 123 I-estrogen. The 123 I-estrogen treatment induced chromosome aberrations with an efficiency of about 1 aberration for each 1,000 disintegrations per cell. This corresponds to the mean lethal dose of 123 I-estrogen for these cells suggesting that the lethal event induced by the Auger electron emitter bound to estrogen is a chromosome aberration. Most of the chromosome-type aberrations were dicentrics and rings, suggesting that 123 I-estrogen-induced chromosome breaks are rejoined. The F-ratio, the ratio of dicentrics to centric rings, was 5.8 ± 1.7, which is similar to that seen with high LET radiations. Their results suggest that I-123 bound to estrogen is an efficient clastogenic agent, that the cytotoxic damage produced by I-123 bound to estrogen is very like high LET-induced damage, and the I-123 in the estrogen-receptor-DNA complex is probably in close proximity to the sugar-phosphate backbone of the DNA

  15. Construction and isolation of radiation sensitive mutants of Escherichia Coli

    International Nuclear Information System (INIS)

    Cuapio P, P.

    1995-01-01

    Damage to DNA by ionizing radiation consists mainly of single (SSB) and double (DSB) strand breaks as well as several types of base alterations, all of which may be removed by different repair mechanisms. Radiation also induces the SOS response, a set of repair and/or damage tolerance genes involved in functions such as replication arrest, excision and recombination repair, increase of both spontaneous and induced mutation and prophage induction, among others. The degree of SOS induction is related to the type and amount of damage and may be easily determined by a simple colorimetric assay, the SOS chromo test. In order to investigate the role of protection and/or repair genes on bacterial radiosensitivity, E. coli strains defective in either oxyR, recJ or recO genes were constructed and their respective SOS response to radiation, duly examined. The results show that although lack of regulatory gene oxyR increases radiosensitivity, it is the deficiencies in recJ and recO which seem to be more important. Both genes appear to take part in the repair of DSB and according to SOS measurements, their role is related also to damage processing conducent to the SOS triggering signal. A hypothetical working mechanism for the purpose, partially supported by the data is proposed. (Author)

  16. Evaluation of the efficacy of radiation-modifying compounds using γH2AX as a molecular marker of DNA double-strand breaks.

    Science.gov (United States)

    Mah, Li-Jeen; Orlowski, Christian; Ververis, Katherine; Vasireddy, Raja S; El-Osta, Assam; Karagiannis, Tom C

    2011-01-25

    Radiation therapy is a widely used therapeutic approach for cancer. To improve the efficacy of radiotherapy there is an intense interest in combining this modality with two broad classes of compounds, radiosensitizers and radioprotectors. These either enhance tumour-killing efficacy or mitigate damage to surrounding non-malignant tissue, respectively. Radiation exposure often results in the formation of DNA double-strand breaks, which are marked by the induction of H2AX phosphorylation to generate γH2AX. In addition to its essential role in DDR signalling and coordination of double-strand break repair, the ability to visualize and quantitate γH2AX foci using immunofluorescence microscopy techniques enables it to be exploited as an indicator of therapeutic efficacy in a range of cell types and tissues. This review will explore the emerging applicability of γH2AX as a marker for monitoring the effectiveness of radiation-modifying compounds.

  17. Participation of different genes in the ruptures repair of double chain in Escherichia coli stumps exposed to gamma radiation; Participacion de diferentes genes en la reparacion de rupturas de doble cadena en cepas de Escherichia coli expuestas a radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Serment G, J. H.; Martinez M, E.; Alcantara D, D., E-mail: jorge.serment@inin.gob.mx [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-05-01

    All living organisms are naturally exposed to radiation from different sources. Ionizing radiation produces a plethora of lesions upon DNA that can be categorized as single and double strand breaks and base damage. Among them, unrepaired double strand breaks (Dbs) have the greatest biological significance, since they are responsible of cell death. In Escherichia coli this kind of lesions are repaired mostly by homologous recombination. In this work the participation of some recombination genes in the repair of Dbs is evaluated. Escherichia coli defective strains were exposed to gamma radiation and incubated for different periods in ideal conditions. Both micro electrophoresis and pulse field gel electrophoresis techniques were used to evaluate the kinetics of repair of such lesions, reflecting the importance of each defective gene in the process. (Author)

  18. Cells, targets, and molecules in radiation biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1979-01-01

    Cellular damage and repair are discussed with regard to inactivation models, dose-effect curves and cancer research, repair relative to damage accumulation, potentially lethal damage, repair of potentially lethal vs. sublethal damage, cell killing and DNA damage due to nonionizing radiation, and anisotonicity vs. lethality due to nonionizing radiation. Other topics discussed are DNA damage and repair in cells exposed to ionizing radiation, kinetics of repair of single-strand DNA breaks, effects of actinomycin D on x-ray survival curve of hamster cells, misrepair and lethality, and perspective and prospects

  19. Low-Energy Electron-Induced Strand Breaks in Telomere-Derived DNA Sequences-Influence of DNA Sequence and Topology.

    Science.gov (United States)

    Rackwitz, Jenny; Bald, Ilko

    2018-03-26

    During cancer radiation therapy high-energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low-energy (DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low-energy electron-induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G-rich sequences. Here, we use DNA origami platforms to expose G-rich telomere sequences to low-energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5'-(TTA GGG) 2 is more sensitive to low-energy electrons than an intermixed sequence 5'-(TGT GTG A) 2 confirming the unique electronic properties resulting from G-stacking. With increasing length of the oligonucleotide (i.e., going from 5'-(GGG ATT) 2 to 5'-(GGG ATT) 4 ), both the variety of topology and the electron-induced strand break cross sections increase. Addition of K + ions decreases the strand break cross section for all sequences that are able to fold G-quadruplexes or G-intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low-energy electron-induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Accumulation of DNA Double-Strand Breaks in Normal Tissues After Fractionated Irradiation

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Fricke, Andreas; Wendorf, Juliane; Stuetzel, Annika; Kuehne, Martin; Ong, Mei Fang; Lipp, Peter; Ruebe, Christian

    2010-01-01

    Purpose: There is increasing evidence that genetic factors regulating the recognition and/or repair of DNA double-strand breaks (DSBs) are responsible for differences in radiosensitivity among patients. Genetically defined DSB repair capacities are supposed to determine patients' individual susceptibility to develop adverse normal tissue reactions after radiotherapy. In a preclinical murine model, we analyzed the impact of different DSB repair capacities on the cumulative DNA damage in normal tissues during the course of fractionated irradiation. Material and Methods: Different strains of mice with defined genetic backgrounds (SCID -/- homozygous, ATM -/- homozygous, ATM +/- heterozygous, and ATM +/+ wild-type mice) were subjected to single (2 Gy) or fractionated irradiation (5 x 2 Gy). By enumerating γH2AX foci, the formation and rejoining of DSBs were analyzed in organs representative of both early-responding (small intestine) and late-responding tissues (lung, kidney, and heart). Results: In repair-deficient SCID -/- and ATM -/- homozygous mice, large proportions of radiation-induced DSBs remained unrepaired after each fraction, leading to the pronounced accumulation of residual DNA damage after fractionated irradiation, similarly visible in early- and late-responding tissues. The slight DSB repair impairment of ATM +/- heterozygous mice was not detectable after single-dose irradiation but resulted in a significant increase in unrepaired DSBs during the fractionated irradiation scheme. Conclusions: Radiation-induced DSBs accumulate similarly in acute- and late-responding tissues during fractionated irradiation, whereas the whole extent of residual DNA damage depends decisively on the underlying genetically defined DSB repair capacity. Moreover, our data indicate that even minor impairments in DSB repair lead to exceeding DNA damage accumulation during fractionated irradiation and thus may have a significant impact on normal tissue responses in clinical

  1. Crystal Structures of DNA-Whirly Complexes and Their Role in Arabidopsis Organelle Genome Repair

    Energy Technology Data Exchange (ETDEWEB)

    Cappadocia, Laurent; Maréchal, Alexandre; Parent, Jean-Sébastien; Lepage, Étienne; Sygusch, Jurgen; Brisson, Normand (Montreal)

    2010-09-07

    DNA double-strand breaks are highly detrimental to all organisms and need to be quickly and accurately repaired. Although several proteins are known to maintain plastid and mitochondrial genome stability in plants, little is known about the mechanisms of DNA repair in these organelles and the roles of specific proteins. Here, using ciprofloxacin as a DNA damaging agent specific to the organelles, we show that plastids and mitochondria can repair DNA double-strand breaks through an error-prone pathway similar to the microhomology-mediated break-induced replication observed in humans, yeast, and bacteria. This pathway is negatively regulated by the single-stranded DNA (ssDNA) binding proteins from the Whirly family, thus indicating that these proteins could contribute to the accurate repair of plant organelle genomes. To understand the role of Whirly proteins in this process, we solved the crystal structures of several Whirly-DNA complexes. These reveal a nonsequence-specific ssDNA binding mechanism in which DNA is stabilized between domains of adjacent subunits and rendered unavailable for duplex formation and/or protein interactions. Our results suggest a model in which the binding of Whirly proteins to ssDNA would favor accurate repair of DNA double-strand breaks over an error-prone microhomology-mediated break-induced replication repair pathway.

  2. Defense mechanisms against radiation induced teratogenic damage in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Nomoto, S.; Norimura, T.

    2002-01-01

    Experimental studies with mice have established that fetuses at midgestational stage are highly susceptible to malformation at high, but not low, doses of radiation. When DNA damage is produced by a small amount of radiation, it is efficiently eliminated by DNA repair. However, DNA repair is not perfect. There must be defense mechanisms other than DNA repair. In order to elucidate the essential role of p53 gene in apoptotic tissue repair, we compared the incidence of radiation-induced malformations and deaths (deaths after day 10) in wild-type p53 (+/+) mice and null p53 (-/-) mice. For p53 (+/+) mice, an X-ray dose of 2 Gy given at a high dose-rate (450 mGy/min) to fetuses at 9.5 days of gestation was highly lethal and considerably teratogenic whereas it was only slightly lethal but highly teratogenic for p53 (-/-) fetuses. This reciprocal relationship of radiosensitivity to malformations and deaths supports the notion that fetal tissues have a p53 -dependent idguardianln of the tissue that aborts cells bearing radiation-induced teratogenic DNA damage. When an equal dose of 2 Gy given at a 400-fold lower dose-rate (1.2 mGy/min), this dose became not teratogenic for p53 (+/+) fetuses exhibiting p53 -dependent apoptosis, whereas this dose remained teratogenic for p53 (-/-) fetuses unable to carry out apoptosis. Furthermore, when the dose was divided into two equal dose fractions (1+1 Gy) at high dose rate, separated by 24 hours, the incidences of malformations were equal with control level for p53 (+/+), but higher for p53 (-/-) mice. Hence, complete elimination of teratogenic damage from irradiated tissues requires a concerted cooperation of two mechanisms; proficient DNA repair and p53-dependent apoptotic tissue repair

  3. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Bootsma, D.; Friedberg, E.

    1975-01-01

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (uv) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either x-ray-like (i.e., they cause damage that XP cells can repair) or uv-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed. (U.S.)

  4. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Bootsma, D.; Friedberg, E.

    1975-01-01

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (UV) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either X-ray-like (i.e., they cause damage that XP cells can repair) or UV-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed

  5. Modification of the radiation sensitivity of human tumour cells by a bis-benzimidazole derivative

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P J; Anderson, C O [Medical Research Council, Cambridge (UK)

    1984-10-01

    A comparison was made of the ability of either X-radiation or a DNA-specific ligand (the vital bis-benzimidazole dye; Hoechst 33342) to induce: cell killing, inhibition of de novo DNA synthesis, DNA strand breakage and the delay of cell division in human colon adenocarcinoma cells in vitro. Unlike radiation-induced cell killing, ligand-induced cytotoxicity appeared to be positively correlated with the extent of inhibition of de novo DNA synthesis-a feature consistent with the persistent binding of ligand molecules to nuclear DNA. Ligand-induced DNA strand-breaks disappeared slowly although ligand-treated cells retained apparently normal capacities to repair discrete radiogenic DNA strand-breaks. Pre-treatment of cells with Hoechst 33342 resulted in a dose-modifying enhancement of radiation resistance not associated with altered dosimetry for strand-break induction. However, radioresistance was accompanied by the protracted retention of cells in the G/sub 2/ phase of the cell cycle. We suggest that the results provide direct evidence that the retention of cells in G/sub 2/ phase is a sparing phenomenon and is triggered by the responses of chromatin domains to the presence of DNA damage.

  6. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Lechner, J.F.; Grafstrom, R.C.; Harris, C.C.

    1982-01-01

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  7. Effects of motexafin gadolinium on DNA damage and X-ray-induced DNA damage repair, as assessed by the Comet assay

    International Nuclear Information System (INIS)

    Donnelly, Erling T.; Liu Yanfeng; Paul, Tracy K.; Rockwell, Sara

    2005-01-01

    Purpose: To investigate the effects of motexafin gadolinium (MGd) on the levels of reactive oxygen species (ROS), glutathione (GSH), and DNA damage in EMT6 mouse mammary carcinoma cells. The ability of MGd to alter radiosensitivity and to inhibit DNA damage repair after X-ray irradiation was also evaluated. Methods and Materials: Reactive oxygen species and GSH levels were assessed by 2,7-dichlorofluorescein fluorescence flow cytometry and the Tietze method, respectively. Cellular radiosensitivity was assessed by clonogenic assays. Deoxyribonucleic acid damage and DNA damage repair were assessed in plateau-phase EMT6 cells by the Comet assay and clonogenic assays. Results: Cells treated with 100 μmol/L MGd plus equimolar ascorbic acid (AA) had significantly increased levels of ROS and a 58.9% ± 3.4% decrease in GSH levels, relative to controls. Motexafin gadolinium plus AA treatment increased the hypoxic, but not the aerobic, radiosensitivity of EMT6 cells. There were increased levels of single-strand breaks in cells treated with 100 μmol/L MGd plus equimolar AA, as evidenced by changes in the alkaline tail moment (MGd + AA, 6 h: 14.7 ± 1.8; control: 2.8 ± 0.9). The level of single-strand breaks was dependent on the length of treatment. Motexafin gadolinium plus AA did not increase double-strand breaks. The repair of single-strand breaks at 2 h, but not at 4 h and 6 h, after irradiation was altered significantly in cells treated with MGd plus AA (MGd + AA, 2 h: 15.8 ± 3.4; control: 5.8 ± 0.6). Motexafin gadolinium did not alter the repair of double-strand breaks at any time after irradiation with 10 Gy. Conclusions: Motexafin gadolinium plus AA generated ROS, which in turn altered GSH homeostasis and induced DNA strand breaks. The MGd plus AA-mediated alteration of GSH levels increased the hypoxic, but not aerobic, radiosensitivity of EMT6 cells. Motexafin gadolinium altered the kinetics of single-strand break repair soon after irradiation but did not

  8. Evidence for a second 'Prereplicative G2' repair mechanism, specific for γ-induced damage, in wild-type schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Gentner, N.E.; Atomic Energy of Canada Ltd., Chalk River, Ontario. Chalk River Nuclear Labs.)

    1977-01-01

    The major part of the substantial γ-resistance of wild-type Schizosaccharomyces pombe appears to be due to prereplicative recombinational repair mechanisms. The existence of a second 'prereplicative G2' repair pathway, specific for γ-induced damage, has now been deduced from studies of the effect of the repair inhibitor caffeine on γ-irradiated G1 phase and G2 phase cells. Only G2 cells are additionally inactivated on exposure to caffeine after γ-irradiation. This shows that both known caffeine-sensitive γ-repair processes (Genter and Werner, Molec. gen. Genet. 145, 1-5 [1976]) are dependent on the presence of a duplicated genome (2c) at the time of radiation exposure. Pathway I is the known 'prereplicative G2' repair process (Fabre, Radiation Res. 56, 528-539 [1973]) which is involved in both UV- and γ-repair, and which requires post-irradiation protein synthesis for activity. Pathway II represents a second distinct 'prereplicative G2' repair mechanism; it differs from the first in that it is specific for repair of γ-induced damage and appears to be constitutive. (orig.) [de

  9. Frequency of intrachromosomal homologous recombination induced by UV radiation in normally repairing and excision repair-deficient human cells

    International Nuclear Information System (INIS)

    Tsujimura, T.; Maher, V.M.; McCormick, J.J.; Godwin, A.R.; Liskay, R.M.

    1990-01-01

    To investigate the role of DNA damage and nucleotide excision repair in intrachromosomal homologous recombination, a plasmid containing duplicated copies of the gene coding for hygromycin resistance was introduced into the genome of a repair-proficient human cell line, KMST-6, and two repair-deficient lines, XP2OS(SV) from xeroderma pigmentosum complementation group A and XP2YO(SV) from complementation group F. Neither hygromycin-resistance gene codes for a functional enzyme because each contains an insertion/deletion mutation at a unique site, but recombination between the two defective genes can yield hygromycin-resistant cells. The rates of spontaneous recombination in normal and xeroderma pigmentosum cell strains containing the recombination substrate were found to be similar. The frequency of UV-induced recombination was determined for three of these cell strains. At low doses, the group A cell strain and the group F cell strain showed a significant increase in frequency of recombinants. The repair-proficient cell strain required 10-to 20-fold higher doses of UV to exhibit comparable increases in frequency of recombinants. These results suggest that unexcised DNA damage, rather than the excision repair process per se, stimulates such recombination

  10. Lack of effect of inhibitors of DNA synthesis/repair on the ionizing radiation-induced chromosomal damage in G[sub 2] stage of ataxia telangiectasia cells

    Energy Technology Data Exchange (ETDEWEB)

    Antoccia, A. (Univ. ' La Sapienza' , Rome (Italy). Dipt. di Genetica e Biologia Molecolare); Palitti, F.; Raggi, T. (Univ. del Tuscia, Viterbo (Italy). Dipt. di Agrobiologia ed Agrochimica); Catena, C. (ENEA, Casaccia (Italy). Centro Ricerche Energia); Tanzarella, C. (Rome Univ. 3 (Italy). Dipt. di Biologia)

    1994-09-01

    The relationship between the repair processes occurring at the G[sub 2] phase of the cell cycle and cytogenetic damage in ataxia telangiectasia (AT) cells was studied. Lymphoblastoid cells derived from normal, heterozygote AT (HzAT) and three AT patients were exposed to X-rays or fission neutrons and post-treated with inhibitors of DNA synthesis/repair, such as inhibitors of DNA polymerases [alpha], [sigma] and [epsilon] (cytosine arabinoside, ara-C; aphidicolin, APC; buthylphenyl-guanine, BuPdG) or ribonucleotide reductase (hydroxyurea HU). A strong increase of radiation-induced chromosomal aberrations was observed in normal and HzAT cells post-treated with ara-C, APC and HU, but not in the presence of BuPdG. No enhancing effect was observed in cells derived from AT patients, except for HU post-irradiation treatment. These results suggest that the enzymes that can be inhibited by these agents are not directly involved in the repair of radiation damage induced in G[sub 2] cells from AT patients, indicating that probably the AT cells that we used lack the capability to transform the primary DNA lesions into reparable products, or that AT cells might contain a mutated form of DNA polymerase resistant to the inhibitors. (author).

  11. The role of the bacterial mismatch repair system in SOS-induced mutagenesis: a theoretical background

    International Nuclear Information System (INIS)

    Belov, O.V.; Kapralov, M.I.; Chuluunbaatar, O.; Sweilam, N.H.

    2012-01-01

    A theoretical study is performed of the possible role of the methyl-directed mismatch repair system in the ultraviolet-induced mutagenesis of Escherichia coli bacterial cells. For this purpose, a mathematical model of the bacterial mismatch repair system is developed. Within this model, the key pathways of this type of repair are simulated on the basis of modern experimental data related to its mechanisms. Here we have modelled in detail five main pathways of DNA misincorporation removal with different DNA exonucleases. Using our calculations, we have tested the hypothesis that the bacterial mismatch repair system is responsible for the removal of the nucleotides misincorporated by DNA polymerase V (the UmuD' 2 C complex) during ultraviolet-induced SOS response. For the theoretical analysis of the mutation frequency, we have combined the proposed mathematical approach with the model of SOS-induced mutagenesis in the E.coli bacterial cell developed earlier. Our calculations support the hypothesis that methyl-directed mismatch repair influences the mutagenic effect of ultraviolet radiation

  12. Radiation-induced DNA single-strand scission and its rejoining in spermatogonia and spermatozoa of mouse

    International Nuclear Information System (INIS)

    Ono, T.; Okada, S.

    1977-01-01

    Gamma-ray-induced DNA single-strand scissions and the ability to repair the scissions in spermatogonia from young mice and in spermatozoa from adult mice were studied quantitatively by an alkaline sucrose density-gradient centrifugation method. The average size of DNAs in non-irradiated spermatogonia was 2.6-3.0xx10 8 daltons, similar to those of a spermatid-rich population, and the size of DNA in non-irradiated spermatozoa was 1.2x10 8 daltons. In spermatogonia, the radiosensitivity of DNA was 0.42 single-strand breaks/10 12 daltons of DNA/rad in oxic conditions and only 0.24 under anoxic conditions. In spermatozoa the break efficiency of DNA was 0.22 single-strand breaks/10 12 daltons of DNA/rad under oxic conditions and altered little under anoxic irradiation. The DNA scissions were efficiently repaired in spermatogonia within 10 min, whereas the breaks in spermatozoa were not rejoined at all even after two days of post-irradiation time. The radiosensitivities of DNA, repair capability and non- and/or slowreparable DNA scissions were compared in spermatogonium-rich, spermatid-rich and spermatozoanrich populations

  13. Excision repair of gamma-ray-induced alkali-stable DNA lesions with the help of γ-endonuclease from Micrococcus luteus

    International Nuclear Information System (INIS)

    Tomilin, N.V.; Barenfeld, L.S.

    1979-01-01

    γ-endonuclease Y, an enzyme that hydrolyses phosphodiester bonds at alkali-stable lesions in γ-irradiated (N 2 , tris buffer) DNA, has been partially purified from Micrococcus luteus. The enzyme has a molecular weight of about 19 000, induces single-strand breaks with 3'OH-5'PO 4 termini and contains endonuclease activity towards DNA treated with 7-bromomethylbenz(a)anthracene. γ-endonuclease Y induces breaks in OsO 4 -treated poly(dA-dT) and apparently is specific towards γ-ray-induced base lesions of the t' type. The complete excision repair of γ-endonuclease Y substrate sites has been performed in vitro by γ-endonuclease Y, DNA polymerase and ligase. (author)

  14. Excision repair of gamma-ray-induced alkali-stable DNA lesions with the help of. gamma. -endonuclease from Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Tomilin, N V; Barenfeld, L S [AN SSSR, Leningrad. Inst. Tsitologii

    1979-03-01

    ..gamma..-endonuclease Y, an enzyme that hydrolyses phosphodiester bonds at alkali-stable lesions in ..gamma..-irradiated (N/sub 2/, tris buffer) DNA, has been partially purified from Micrococcus luteus. The enzyme has a molecular weight of about 19 000, induces single-strand breaks with 3'OH-5'PO/sub 4/ termini and contains endonuclease activity towards DNA treated with 7-bromomethylbenz(a)anthracene. ..gamma..-endonuclease Y induces breaks in OsO/sub 4/-treated poly(dA-dT) and apparently is specific towards ..gamma..-ray-induced base lesions of the t' type. The complete excision repair of ..gamma..-endonuclease Y substrate sites has been performed in vitro by ..gamma..-endonuclease Y, DNA polymerase and ligase.

  15. Protection against {sup 131}I-induced Double Strand DNA Breaks in Thyroid Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hershman, J.M.; Okunyan, A.; Cannon, S.; Hogen, V. [Endocrinology, UCLA-VA, Los Angeles (United States); Rivina, Y. [Radiation Biology, UCLA, Los Angeles (United States)

    2012-07-01

    Radioiodine-131 (I{sup 131}) released from nuclear reactor accidents has dramatically increased the incidence of papillary thyroid cancer in exposed individuals, especially young children. The accepted measure for prevention of radiation-induced thyroid cancer is potassium iodide tablets that contain 100 mg iodide taken daily to block thyroid uptake of I{sup 131}. The deposition of ionizing radiation in cells results in double-strand DNA breaks (DSB) at fragile sites, and this early event can generate oncogenic rearrangements that eventually cause the cancer. We have developed a thyroid cell model to quantify the mitogenic effect of I{sup 131}. I{sup 131} causes double strand DNA breaks in FRTL-5 cells detected by 53BP1 or gamma H2AX and had no effect on cells that do not transport iodide. Perchlorate, iodide, and thiocyanate protect against DSB induced by I{sup 131}. Preincubation with the anion or radioprotective compounds prevents DSB; delayed addition of the anion is much less effective. These data provide a basis for studies of radioprotection against DSB induced by I{sup 131} in animals in order to refine the prevention of thyroid cancer resulting from nuclear fallout

  16. Chromatin Structure and Radiation-Induced Intrachromosome Exchange

    Science.gov (United States)

    Mangala; Zhang, Ye; Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    We have recently investigated the location of breaks involved in intrachromosomal type exchange events, using the multicolor banding in situ hybridization (mBAND) technique for human chromosome 3. In human epithelial cells exposed to both low- and high-LET radiations in vitro, intrachromosome exchanges were found to occur preferentially between a break in the 3p21 and one in the 3q11. Exchanges were also observed between a break in 3p21 and one in 3q26, but few exchanges were observed between breaks in 3q11 and 3q26, even though the two regions were on the same arm of the chromosome. To explore the relationships between intrachromosome exchanges and chromatin structure, we used probes that hybridize the three regions of 3p21, 3q11 and 3q26, and measured the distance between two of the three regions in interphase cells. We further analyzed fragile sites on the chromosome that have been identified in various types of cancers. Our results demonstrated that the distribution of breaks involved in radiation-induced intrachromosome aberrations depends upon both the location of fragile sites and the folding of chromatins

  17. Radiation-induced apoptosis of chicken lymphocyte B-cell line DT40

    International Nuclear Information System (INIS)

    Furusawa, Y.; Aoki, M.; Takakura, K.

    2003-01-01

    Full text: Ionizing radiation causes lesions of DNA, cell cycle arrest, induced cell death, and apoptosis in the irradiated cells. Then it is easy to expect that those events would be increased in a cell line which is defective in DNA repair system. However, induction of apoptosis by irradiation takes so complicated process when the cells are defective of DNA repair system. Indeed by many recent studies it has been clarified that DNA repair gene is also concerned with apoptotic event and some study shows the contrary data. Thus, the relationship between the genetics of apoptosis and that of DNA repair is still unclear. In this study two kinds of DNA repair proteins, Rad54 and Ku70, were focused. Proteins of Rad54 and Ku70 have important role at two type of DNA repair systems called homologous recombination repair and non-homologous end joining repair, respectively. 4 phenotypes of DT40, parent type, ku70-/-, rad54-/- and ku70-/-/rad54-/- were used to study the radiation-induced apoptosis (Previous study shows that survival fraction of 4 phenotypes of DT40 is decreased in the cell line, in which DNA repair gene is defective). From the results in this study, two things are clarifies. One is that the dependence of apoptotic index on phenotypes is so different between at low dose and at high dose irradiation. The other is that Ku70 has effective role to induce apoptosis in DT40 irradiated with high dose X-rays

  18. Yield of DNA strand breaks and their relationship to DNA polymerase I-dependent repair synthesis and ligation following x-ray exposure of toluene-treated Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1981-01-01

    In Escherichia coli made permeable to nucleotides by toluene treatment, a DNA polymerase I-directed repair synthesis is observed. This is an exaggerated repair synthesis which can be abruptly terminated by the addition of the DNA ligase cofactor, nicotinamide adenine dinucleotide. This communication describes experiments which bear on the relationship between measurable strand breaks, DNA polymerase I-directed, exaggerated repair synthesis, and strand-break repair

  19. Hsp90α regulates ATM and NBN functions in sensing and repair of DNA double-strand breaks.

    Science.gov (United States)

    Pennisi, Rosa; Antoccia, Antonio; Leone, Stefano; Ascenzi, Paolo; di Masi, Alessandra

    2017-08-01

    The molecular chaperone heat shock protein 90 (Hsp90α) regulates cell proteostasis and mitigates the harmful effects of endogenous and exogenous stressors on the proteome. Indeed, the inhibition of Hsp90α ATPase activity affects the cellular response to ionizing radiation (IR). Although the interplay between Hsp90α and several DNA damage response (DDR) proteins has been reported, its role in the DDR is still unclear. Here, we show that ataxia-telangiectasia-mutated kinase (ATM) and nibrin (NBN), but not 53BP1, RAD50, and MRE11, are Hsp90α clients as the Hsp90α inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) induces ATM and NBN polyubiquitination and proteosomal degradation in normal fibroblasts and lymphoblastoid cell lines. Hsp90α-ATM and Hsp90α-NBN complexes are present in unstressed and irradiated cells, allowing the maintenance of ATM and NBN stability that is required for the MRE11/RAD50/NBN complex-dependent ATM activation and the ATM-dependent phosphorylation of both NBN and Hsp90α in response to IR-induced DNA double-strand breaks (DSBs). Hsp90α forms a complex also with ph-Ser1981-ATM following IR. Upon phosphorylation, NBN dissociates from Hsp90α and translocates at the DSBs, while phThr5/7-Hsp90α is not recruited at the damaged sites. The inhibition of Hsp90α affects nuclear localization of MRE11 and RAD50, impairs DDR signaling (e.g., BRCA1 and CHK2 phosphorylation), and slows down DSBs repair. Hsp90α inhibition does not affect DNA-dependent protein kinase (DNA-PK) activity, which possibly phosphorylates Hsp90α and H2AX after IR. Notably, Hsp90α inhibition causes H2AX phosphorylation in proliferating cells, this possibly indicating replication stress events. Overall, present data shed light on the regulatory role of Hsp90α on the DDR, controlling ATM and NBN stability and influencing the DSBs signaling and repair. © 2017 Federation of European Biochemical Societies.

  20. High levels of BRC4 induced by a Tet-On 3G system suppress DNA repair and impair cell proliferation in vertebrate cells.

    Science.gov (United States)

    Abe, Takuya; Branzei, Dana

    2014-10-01

    Transient induction or suppression of target genes is useful to study the function of toxic or essential genes in cells. Here we apply a Tet-On 3G system to DT40 lymphoma B cell lines, validating it for three different genes. Using this tool, we then show that overexpression of the chicken BRC4 repeat of the tumor suppressor BRCA2 impairs cell proliferation and induces chromosomal breaks. Mechanistically, high levels of BRC4 suppress double strand break-induced homologous recombination, inhibit the formation of RAD51 recombination repair foci, reduce cellular resistance to DNA damaging agents and induce a G2 damage checkpoint-mediated cell-cycle arrest. The above phenotypes are mediated by BRC4 capability to bind and inhibit RAD51. The toxicity associated with BRC4 overexpression is exacerbated by chemotherapeutic agents and reversed by RAD51 overexpression, but it is neither aggravated nor suppressed by a deficit in the non-homologous end-joining pathway of double strand break repair. We further find that the endogenous BRCA2 mediates the cytotoxicity associated with BRC4 induction, thus underscoring the possibility that BRC4 or other domains of BRCA2 cooperate with ectopic BRC4 in regulating repair activities or mitotic cell division. In all, the results demonstrate the utility of the Tet-On 3G system in DT40 research and underpin a model in which BRC4 role on cell proliferation and chromosome repair arises primarily from its suppressive role on RAD51 functions. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.