WorldWideScience

Sample records for repair genes dietary

  1. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  2. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Likui Wang

    2014-09-01

    Full Text Available Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2 called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE, which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.

  3. DNA repair phenotype and dietary antioxidant supplementation

    DEFF Research Database (Denmark)

    Guarnieri, Serena; Loft, Steffen; Riso, Patrizia

    2008-01-01

    -release vitamin C tablets had increased DNA repair activity (27 (95 % CI 12, 41) % higher incision activity). These subjects also benefited from the supplementation by reduced levels of oxidised guanines in MNBC. In conclusion, nutritional status, DNA repair activity and DNA damage are linked, and beneficial...

  4. Targeted gene repair – in the arena

    OpenAIRE

    2003-01-01

    The development of targeted gene repair is under way and, despite some setbacks, shows promise as an alternative form of gene therapy. This approach uses synthetic DNA molecules to activate and direct the cell’s inherent DNA repair systems to correct inborn errors. The progress of this technique and its therapeutic potential are discussed in relation to the treatment of genetic diseases.

  5. DNA repair genes in the Megavirales pangenome.

    Science.gov (United States)

    Blanc-Mathieu, Romain; Ogata, Hiroyuki

    2016-06-01

    The order 'Megavirales' represents a group of eukaryotic viruses with a large genome encoding a few hundred up to two thousand five hundred genes. Several members of Megavirales possess genes involved in major DNA repair pathways. Some of these genes were likely inherited from an ancient virus world and some others were derived from the genomes of their hosts. Here we examine molecular phylogenies of key DNA repair enzymes in light of recent hypotheses on the origin of Megavirales, and propose that the last common ancestors of the individual families of the order Megavirales already possessed DNA repair functions to achieve and maintain a moderately large genome and that this repair capacity gradually increased, in a family-dependent manner, during their recent evolution.

  6. Transactivation of repair genes by BRCA1.

    Science.gov (United States)

    El-Deiry, Wafik S

    2002-01-01

    Recent studies have identified a link between the BRCA1 tumor suppressor and transcriptional regulation of a group of genes involved in nucleotide excision repair. There is some controversy regarding the precise mechanism of upregulation of XPE DDB2 or XPC by BRCA1, with some evidence suggesting that p53 is involved in their regulation. Some evidence suggests BRCA1 may stabilize p53 and direct regulation of DNA repair genes, although how BRCA1 stabilizes p53 remains unclear and whether BRCA1 can upregulate DNA repair genes in a p53-independent manner remains a possibility. A transcriptional component to the action of BRCA1 and involvement of XP genes brings up new and interesting questions about breast cancer development and therapy.

  7. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

    Directory of Open Access Journals (Sweden)

    Rajendran Praveen

    2011-10-01

    Full Text Available Abstract Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies.

  8. Gene Therapy for Fracture Repair

    Science.gov (United States)

    2007-05-01

    case, the external catheter hub is visible (D), though the internal tubing cannot be visualized by X-Ray. 11 MLV-based vector with BMP-2/4...catheter) injection. Top: A fluoroscope was used to visualize a radio- opaque contrast dye during a percutaneous injection from the lateral aspect...analysis was performed using ImaGene software (BioDiscovery, El Segundo, CA), that used an internal statistical analysis of the signal intensity of

  9. Epigenetic changes of DNA repair genes in cancer

    Institute of Scientific and Technical Information of China (English)

    Christoph Lahtz; Gerd P. Pfeifer

    2011-01-01

    'Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, and genetic deficiencies in specific DNA repair genes are associated with tumor-prone phenotypes. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes may promote tumorigenesis. This review will summarize current knowledge of the epigenetic inactivation of different DNA repair components in human cancer.

  10. Polymorphisms in nucleotide excision repair genes, smoking and intake of fruit and vegetables in relation to lung cancer

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, Ole; Sørensen, Mette; Overvad, Kim

    2007-01-01

    Polymorphisms in nucleotide excision repair genes have been associated with risk for lung cancer. We examined gene-environment interactions in relation to lung cancer in 430 cases and 790 comparison persons identified within a prospective cohort of 57,053 persons. We included polymorphisms...... in the XPC, XPA and XPD genes involved in the nucleotide excision DNA repair pathway and analysed possible interactions with smoking and dietary intake of fruit and vegetables in relation to risk for lung cancer. We found that intake of fruit was associated with lower risk for lung cancer only among carriers...

  11. Dynamic regulation of cerebral DNA repair genes by psychological stress

    DEFF Research Database (Denmark)

    Forsberg, Kristin; Aalling, Nadia; Wörtwein, Gitta

    2015-01-01

    for maintaining genomic integrity. The aim of the present study was to characterize the pattern of cerebral DNA repair enzyme regulation after stress through the quantification of a targeted range of gene products involved in different types of DNA repair. 72 male Sprague-Dawley rats were subjected to either...... was seen in HC, but with overall smaller effects and without the induction after acute stress. Nuclear DNA damage from oxidation as measured by the comet assay was unaffected by stress in both regions. We conclude that psychological stress have a dynamic influence on brain DNA repair gene expression...

  12. Control of gene editing by manipulation of DNA repair mechanisms.

    Science.gov (United States)

    Danner, Eric; Bashir, Sanum; Yumlu, Saniye; Wurst, Wolfgang; Wefers, Benedikt; Kühn, Ralf

    2017-04-03

    DNA double-strand breaks (DSBs) are produced intentionally by RNA-guided nucleases to achieve genome editing through DSB repair. These breaks are repaired by one of two main repair pathways, classic non-homologous end joining (c-NHEJ) and homology-directed repair (HDR), the latter being restricted to the S/G2 phases of the cell cycle and notably less frequent. Precise genome editing applications rely on HDR, with the abundant c-NHEJ formed mutations presenting a barrier to achieving high rates of precise sequence modifications. Here, we give an overview of HDR- and c-NHEJ-mediated DSB repair in gene editing and summarize the current efforts to promote HDR over c-NHEJ.

  13. DNA Repair and Cancer Therapy: Targeting APE1/Ref-1 Using Dietary Agents

    Directory of Open Access Journals (Sweden)

    Julian J. Raffoul

    2012-01-01

    Full Text Available Epidemiological studies have demonstrated the cancer protective effects of dietary agents and other natural compounds isolated from fruits, soybeans, and vegetables on neoplasia. Studies have also revealed the potential for these natural products to be combined with chemotherapy or radiotherapy for the more effective treatment of cancer. In this paper we discuss the potential for targeting the DNA base excision repair enzyme APE1/Ref-1 using dietary agents such as soy isoflavones, resveratrol, curcumin, and the vitamins ascorbate and α-tocopherol. We also discuss the potential role of soy isoflavones in sensitizing cancer cells to the effects of radiotherapy. A comprehensive review of the dual nature of APE1/Ref-1 in DNA repair and redox activation of cellular transcription factors, NF-κB and HIF-1α, is also discussed. Further research efforts dedicated to delineating the role of APE1/Ref-1 DNA repair versus redox activity in sensitizing cancer cells to conventional treatment are warranted.

  14. Suppressed expression of non-DSB repair genes inhibits gamma-radiation-induced cytogenetic repair and cell cycle arrest.

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H; Emami, Kamal; Hammond, Dianne; Casey, Rachael; Mehta, Satish K; Jeevarajan, Antony S; Pierson, Duane L; Wu, Honglu

    2008-11-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in regulating DSB repair and cell cycle progression. In this study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequency of micronuclei (MN) formation and chromosome aberrations were measured to determine efficiency of cytogenetic repair, especially DSB repair. In response to IR, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR-induced biological consequences. Furthermore, eight non-DBS repair genes showed involvement in regulating DSB repair, indicating that

  15. Targeted gene repair: the ups and downs of a promising gene therapy approach.

    Science.gov (United States)

    de Semir, David; Aran, Josep M

    2006-08-01

    As a novel form of molecular medicine based on direct actions over the genes, targeted gene repair has raised consideration recently above classical gene therapy strategies based on genetic augmentation or complementation. Targeted gene repair relies on the local induction of the cell's endogenous DNA repair mechanisms to attain a therapeutic gene conversion event within the genome of the diseased cell. Successful repair has been achieved both in vitro and in vivo with a variety of corrective molecules ranging from oligonucleotides (chimeraplasts, modified single-stranded oligonucleotides, triplex-forming oligonucleotides), to small DNA fragments (small fragment homologous replacement (SFHR)), and even viral vectors (AAV-based). However, controversy on the consistency and lack of reproducibility of early experiments regarding frequencies and persistence of targeted gene repair, particularly for chimeraplasty, has flecked the field. Nevertheless, several hurdles such as inefficient nuclear uptake of the corrective molecules, and misleading assessment of targeted repair frequencies have been identified and are being addressed. One of the key bottlenecks for exploiting the overall potential of the different targeted gene repair modalities is the lack of a detailed knowledge of their mechanisms of action at the molecular level. Several studies are now focusing on the assessment of the specific repair pathway(s) involved (homologous recombination, mismatch repair, etc.), devising additional strategies to increase their activity (using chemotherapeutic drugs, chimeric nucleases, etc.), and assessing the influence of the cell cycle in the regulation of the repair process. Until therapeutic correction frequencies for single gene disorders are reached both in cellular and animal models, precision and undesired side effects of this promising gene therapy approach will not be thoroughly evaluated.

  16. Molecular cloning of the human excision repair gene ERCC-6.

    NARCIS (Netherlands)

    C. Troelstra (Christine); H. Odijk (Hanny); J. de Wit (Jan); A. Westerveld (Andries); L.H. Thompson; D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1990-01-01

    textabstractThe UV-sensitive, nucleotide excision repair-deficient Chinese hamster mutant cell line UV61 was used to identify and clone a correcting human gene, ERCC-6. UV61, belonging to rodent complementation group 6, is only moderately UV sensitive in comparison with mutant lines in groups 1 to 5

  17. Mismatch-mediated error prone repair at the immunoglobulin genes.

    Science.gov (United States)

    Chahwan, Richard; Edelmann, Winfried; Scharff, Matthew D; Roa, Sergio

    2011-12-01

    The generation of effective antibodies depends upon somatic hypermutation (SHM) and class-switch recombination (CSR) of antibody genes by activation induced cytidine deaminase (AID) and the subsequent recruitment of error prone base excision and mismatch repair. While AID initiates and is required for SHM, more than half of the base changes that accumulate in V regions are not due to the direct deamination of dC to dU by AID, but rather arise through the recruitment of the mismatch repair complex (MMR) to the U:G mismatch created by AID and the subsequent perversion of mismatch repair from a high fidelity process to one that is very error prone. In addition, the generation of double-strand breaks (DSBs) is essential during CSR, and the resolution of AID-generated mismatches by MMR to promote such DSBs is critical for the efficiency of the process. While a great deal has been learned about how AID and MMR cause hypermutations and DSBs, it is still unclear how the error prone aspect of these processes is largely restricted to antibody genes. The use of knockout models and mice expressing mismatch repair proteins with separation-of-function point mutations have been decisive in gaining a better understanding of the roles of each of the major MMR proteins and providing further insight into how mutation and repair are coordinated. Here, we review the cascade of MMR factors and repair signals that are diverted from their canonical error free role and hijacked by B cells to promote genetic diversification of the Ig locus. This error prone process involves AID as the inducer of enzymatically-mediated DNA mismatches, and a plethora of downstream MMR factors acting as sensors, adaptors and effectors of a complex and tightly regulated process from much of which is not yet well understood.

  18. DNA repair and gene therapy: implications for translational uses.

    Science.gov (United States)

    Limp-Foster, M; Kelley, M R

    2000-01-01

    Gene therapy has been proposed to have implications in the treatment of cancer. By genetically manipulating the hematopoietic stem cell compartment with genes that confer resistance to chemotherapeutic agents, the dose escalation that is necessary to effectively treat the cancers could potentially be achieved. DNA repair genes are some of the potential candidates to confer increased resistance to chemotherapeutic agents. Although initial focus in this area has been on the direct reversal protein (MGMT), its protective ability is limited to those agents that produce O(6)-methylGuanine cross-links-agents that are not extensively used clinically (e.g., nitrosoureas). Furthermore, most alkylating agents attack more sites in DNA other than O(6)-methylGuanine, such that the protections afforded by MGMT may prevent the initial cytotoxicity, but at a price of increased mutational burden and potential secondary leukemias. Therefore, some of the genes that are being tested as candidates for gene transfer are base excision repair (BER) genes. We and others have found that overexpression of selective BER genes confers resistance to chemotherapeutic agents such as thiotepa, ionizing radiation, bleomycin, and other agents. As these "proof of concept" analyses mature, many more clinically relevant chemotherapeutic agents can be tested for BER protective ability.

  19. Gene therapy and peripheral nerve repair: a perspective

    Directory of Open Access Journals (Sweden)

    Stefan A. Hoyng

    2015-07-01

    Full Text Available Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan’s, Parkinson’s and Alzheimer’s disease, retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral vectors (AAV and the first AAV-based therapeutic, a vector encoding lipoprotein lipase, is now marketed in Europe under the name Glybera. These remarkable advances may become relevant to translational research on gene therapy to promote peripheral nervous system (PNS repair. This short review first summarizes the results of gene therapy in animal models for peripheral nerve repair. Secondly, we identify key areas of future research in the domain of PNS-gene therapy. Finally, a perspective is provided on the path to clinical translation of PNS gene therapy for traumatic nerve injuries. In the latter section we discuss the route and mode of delivery of the vector to human patients, the efficacy and safety of the vector, and the choice of the patient population for a first possible proof-of-concept clinical study.

  20. Induction of a mutant phenotype in human repair proficient cells after overexpression of a mutated human DNA repair gene.

    NARCIS (Netherlands)

    P.B.G.M. Belt; M.F. van Oostenrijk; H. Odijk (Hanny); J.H.J. Hoeijmakers (Jan); C.M.P. Backendorf (Claude)

    1991-01-01

    textabstractAntisense and mutated cDNA of the human excision repair gene ERCC-1 were overexpressed in repair efficient HeLa cells by means of an Epstein-Barr-virus derived CDNA expression vector. Whereas antisense RNA did not influence the survival of the transfected cells, a mutated cDNA generating

  1. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  2. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  3. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells

    OpenAIRE

    Johnson, Roger D.; Jasin, Maria

    2000-01-01

    In mammalian cells, repair of DNA double-strand breaks (DSBs) occurs by both homologous and non-homologous mechanisms. By definition, homologous recombination requires a template with sufficient sequence identity to the damaged molecule in order to direct repair. We now show that the sister chromatid acts as a repair template in a substantial proportion of DSB repair events. The outcome of sister chromatid repair is primarily gene conversion unassociated with reciprocal exchange. This contras...

  4. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  5. Regulation of the Saccharomyces cerevisiae DNA repair gene RAD16.

    Science.gov (United States)

    Bang, D D; Timmermans, V; Verhage, R; Zeeman, A M; van de Putte, P; Brouwer, J

    1995-05-25

    The RAD16 gene product has been shown to be essential for the repair of the silenced mating type loci [Bang et al. (1992) Nucleic Acids Res. 20, 3925-3931]. More recently we demonstrated that the RAD16 and RAD7 proteins are also required for repair of non-transcribed strands of active genes in Saccharomyces cerevisiae [Waters et al. (1993) Mol. Gen. Genet. 239, 28-32]. We have studied the regulation of the RAD16 gene and found that the RAD16 transcript levels increased up to 7-fold upon UV irradiation. Heat shock at 42 degrees C also results in elevated levels of RAD16 mRNA. In sporulating MAT alpha/MATa diploid cells RAD16 mRNA is also induced. The basal level of the RAD16 transcript is constant during the mitotic cell cycle. G1-arrested cells show normal induction of RAD16 mRNA upon UV irradiation demonstrating that the induction is not a secondary consequence of G2 cell cycle arrest following UV irradiation. However, in cells arrested in G1 the induction of RAD16 mRNA after UV irradiation is not followed by a rapid decline as occurs in normal growing cells suggesting that the down regulation of RAD16 transcription is dependent on progression into the cell cycle.

  6. Double-strand break damage and associated DNA repair genes predispose smokers to gene methylation

    OpenAIRE

    Leng, Shuguang; Stidley, Christine A.; Willink, Randy; Bernauer, Amanda; Do, Kieu; Picchi, Maria A.; Sheng, Xin; Frasco, Melissa, A.; Berg, David Van Den; Gilliland, Frank D.; Zima, Christopher; Crowell, Richard E.; Belinsky, Steven A.

    2008-01-01

    Gene promoter hypermethylation in sputum is a promising biomarker for predicting lung cancer. Identifying factors that predispose smokers to methylation of multiple gene promoters in the lung could impact strategies for early detection and chemoprevention. This study evaluated the hypothesis that double-strand break repair capacity and sequence variation in genes in this pathway are associated with a high methylation index in a cohort of current and former cancer-free smokers. A 50% reduction...

  7. Simulated microgravity influenced the expression of DNA damage repair genes

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Jiawei, Liu; Wang, Ting

    2016-07-01

    Ionizing radiation and microgravity were considered to be the most important stress factors of space environmental the respective study of the biological effects of the radiation and microgravity carried out earlier, but the interaction of the effects of radiation with microgravity started later, and due to difference of the materials and methods the result of this experiment were not consistent. To further investigate the influence of microgravity on the expression of the radiation damage repair genes, the seed of Arabidopsis (Col) and its gravity-insensitive mutant (PIN2) were exposed to 0.1Gy of the dose of energetic carbon-ion beam radiation (LET = 30KeV / μm), and the germinated seed were than fixed in the 3D random positioning apparatus immediately for a 10-day simulated microgravity. By measuring the deflection angle of root tip and the changes of the expression of Ku70 and RAD51 protein, we investigated the impact of microgravity effect on radiation damage repair systems. The results shown that radiation, microgravity and microgravity with radiation could increase the angle of the root of the Col significantly, but no obvious effect on PIN2 type. The radiation could increase the expression of Ku70 significantly in both Col and PIN2, microgravity does not affect the expression, but the microgravity with radiation could decrease the expression of Ku70. This result shown that the microgravity could influence the radiation damage repair systems in molecular level. Moreover, our findings were important to understand the molecular mechanism of the impact of microgravity effect on radiation damage repair systems in vivo.

  8. Polymorphism of the DNA Base Excision Repair Genes in Keratoconus

    Directory of Open Access Journals (Sweden)

    Katarzyna A. Wojcik

    2014-10-01

    Full Text Available Keratoconus (KC is a degenerative corneal disorder for which the exact pathogenesis is not yet known. Oxidative stress is reported to be associated with this disease. The stress may damage corneal biomolecules, including DNA, and such damage is primarily removed by base excision repair (BER. Variation in genes encoding BER components may influence the effectiveness of corneal cells to cope with oxidative stress. In the present work we genotyped 5 polymorphisms of 4 BER genes in 284 patients and 353 controls. The A/A genotype of the c.–1370T>A polymorphism of the DNA polymerase γ (POLG gene was associated with increased occurrence of KC, while the A/T genotype was associated with decreased occurrence of KC. The A/G genotype and the A allele of the c.1196A>G polymorphism of the X-ray repair cross-complementing group 1 (XRCC1 were associated with increased, and the G/G genotype and the G allele, with decreased KC occurrence. Also, the C/T and T as well as C/C genotypes and alleles of the c.580C>T polymorphism of the same gene displayed relationship with KC occurrence. Neither the g.46438521G>C polymorphism of the Nei endonuclease VIII-like 1 (NEIL1 nor the c.2285T>C polymorphism of the poly(ADP-ribose polymerase-1 (PARP-1 was associated with KC. In conclusion, the variability of the XRCC1 and POLG genes may play a role in KC pathogenesis and determine the risk of this disease.

  9. Evolution and mutagenesis of the mammalian excision repair gene ERCC-1

    NARCIS (Netherlands)

    M. van Duin (Mark); J. van den Tol; P. Warmerdam (Peter); H. Odijk (Hanny); D.N. Meijer (Dies); A. Westerveld (Andries); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1988-01-01

    textabstractThe human DNA excision repair protein ERCC-1 exhibits homology to the yeast RADIO repair protein and its longer C-terminus displays similarity to parts of the E.coli repair proteins uvrA and uvrC. To study the evolution of this 'mosaic' ERCC-1 gene we have isolated the mouse homologue.

  10. The action of a dietary retinoid on gene expression and cancer induction in electron-irradiated rat skin

    Energy Technology Data Exchange (ETDEWEB)

    Burns, F.J.; Chen, S.; Xu, G.; Wu, F.; Tang, M.S. [New York Univ., NY (United States). School of Medicine

    2002-12-01

    Current models of radiation carcinogenesis generally assume that the DNA is damaged in a variety of ways by the radiation and that subsequent cell divisions contribute to the conversion of the damage to heritable mutations. Cancer may seem complex and intractable, but its complexity provides multiple opportunities for preventive interventions. Mitotic inhibitors are among the strongest cancer preventive agents, not only slowing the growth rate of preneoplasias but also increasing the fidelity of DNA repair processes. Ionizing radiation, including electrons, is a strong inducer of cancer in rat skin, and dietary retinoids have shown potent cancer preventive activity in the same system. A non-toxic dietary dose of retinyl acetate altered gene expression levels 24 hours after electron irradiation of rat skin. Of the 8740 genes on an Affymetrix rat expression array, the radiation significantly (5 fold or higher) altered 188, while the retinoid altered 231, including 16 radiation-altered genes that were reversely altered. While radiation strongly affected the expression of stress response, immune/inflammation and nucleic acid metabolism genes, the retinoid most strongly affected proliferation-related genes, including some significant reversals, such as, keratin 14, retinol binding protein, and calcium binding proteins. These results point to reversal of proliferation-relevant genes as a likely basis for the anti-radiogenic effects of dietary retinyl acetate. (author)

  11. The action of a dietary retinoid on gene expression and cancer induction in electron-irradiated rat skin

    Science.gov (United States)

    Burns, Fredric J.; Chen, Shuaili; Xu, Guijuan; Wu, Feng; Tang, Moon-Shong

    2002-01-01

    Current models of radiation carcinogenesis generally assume that the DNA is damaged in a variety of ways by the radiation and that subsequent cell divisions contribute to the conversion of the damage to heritable mutations. Cancer may seem complex and intractable, but its complexity provides multiple opportunities for preventive interventions. Mitotic inhibitors are among the strongest cancer preventive agents, not only slowing the growth rate of preneoplasias but also increasing the fidelity of DNA repair processes. Ionizing radiation, including electrons, is a strong inducer of cancer in rat skin, and dietary retinoids have shown potent cancer preventive activity in the same system. A non-toxic dietary dose of retinyl acetate altered gene expression levels 24 hours after electron irradiation of rat skin. Of the 8740 genes on an Affymetrix rat expression array, the radiation significantly (5 fold or higher) altered 188, while the retinoid altered 231, including 16 radiation-altered genes that were reversely altered. While radiation strongly affected the expression of stress response, immune/inflammation and nucleic acid metabolism genes, the retinoid most strongly affected proliferation-related genes, including some significant reversals, such as, keratin 14, retinol binding protein, and calcium binding proteins. These results point to reversal of proliferation-relevant genes as a likely basis for the anti-radiogenic effects of dietary retinyl acetate.

  12. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    Science.gov (United States)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at pmetabolism

  13. Interaction of DNA repair gene polymorphisms and aflatoxin B1 in the risk of hepatocellular carcinoma

    OpenAIRE

    2014-01-01

    Aflatoxin B1 (AFB1) is an important environmental carcinogen and can induce DNA damage and involve in the carcinogenesis of hepatocellular carcinoma (HCC). The deficiency of DNA repair capacity related to the polymorphisms of DNA repair genes might play a central role in the process of HCC tumorigenesis. However, the interaction of DNA repair gene polymorphisms and AFB1 in the risk of hepatocellular carcinoma has not been elucidated. In this study, we investigated whether six polymorphisms (i...

  14. Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and aminoacid homology with the yeast DNA repair gene RAD10.

    NARCIS (Netherlands)

    M. van Duin (Mark); J. de Wit (Jan); H. Odijk (Hanny); A. Westerveld (Andries); A. Yasui (Akira); M.H.M. Koken (Marcel); J.H.J. Hoeijmakers (Jan); D. Bootsma (Dirk)

    1986-01-01

    textabstractThe human excision repair gene ERCC-7 was cloned after DNA mediated gene transfer to the CHO mutant 43-38, which is sensitive to ultraviolet light and mitomycin-C. We describe the cloning and sequence analysis of the ERCC-7 cDNA and partial characterization of the gene. ERCC.1 has a size

  15. Analysis of DNA repair gene polymorphisms and survival in low-grade and anaplastic gliomas

    DEFF Research Database (Denmark)

    Berntsson, Shala Ghaderi; Wibom, Carl; Sjöström, Sara;

    2011-01-01

    The purpose of this study was to explore the variation in DNA repair genes in adults with WHO grade II and III gliomas and their relationship to patient survival. We analysed a total of 1,458 tagging single-nucleotide polymorphisms (SNPs) that were selected to cover DNA repair genes, in 81 grade ...

  16. Transfection of the cloned human excision repair gene ERCC-1 to UV-sensitive CHO mutants only corrects the repair defect in complementation group 2 mutants.

    NARCIS (Netherlands)

    M. van Duin (Mark); J.H. Janssen; J. de Wit (Jan); J.H.J. Hoeijmakers (Jan); L.H. Thompson; D. Bootsma (Dirk); A. Westerveld (Andries)

    1988-01-01

    textabstractThe human DNA-excision repair gene ERCC-1 is cloned by its ability to correct the excision-repair defect of the ultraviolet light- and mitomycin-C-sensitive CHO mutant cell line 43-3B. This mutant is assigned to complementation group 2 of the excision-repair-deficient CHO mutants. In ord

  17. Gene expression of the mismatch repair gene MSH2 in primary colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Kuramochi, Hidekazu; Crüger, Dorthe Gylling

    2011-01-01

    Microsatellite instability (MSI) is caused by defective mismatch repair (MMR) and is one of the very few molecular markers with proven clinical importance in colorectal cancer with respect to heredity, prognosis, and treatment effect. The gene expression of the MMR gene MSH2 may be a quantitative...... marker for the level of MMR and a potential molecular marker with clinical relevance. The aim was to investigate the gene expression of MSH2 in primary operable colorectal cancer in correlation with MSI, protein expression, and promoter hypermethylation. In a cohort of 210 patients, the primary tumor...... and lymphnode metastases were analyzed with immunohistochemistry, methylation and MSI analyses, and quantitative polymerase chain reaction (PCR). The median gene expression of MSH2 was 1.00 (range 0.16-11.2, quartiles 0.70-1.51) and there was good agreement between the gene expression in primary tumor and lymph...

  18. Triple Negative Breast Cancers Have a Reduced Expression of DNA Repair Genes

    Science.gov (United States)

    Andreis, Daniele; Bertoni, Ramona; Giardini, Roberto; Fox, Stephen B.; Broggini, Massimo; Bottini, Alberto; Zanoni, Vanessa; Bazzola, Letizia; Foroni, Chiara; Generali, Daniele; Damia, Giovanna

    2013-01-01

    DNA repair is a key determinant in the cellular response to therapy and tumor repair status could play an important role in tailoring patient therapy. Our goal was to evaluate the mRNA of 13 genes involved in different DNA repair pathways (base excision, nucleotide excision, homologous recombination, and Fanconi anemia) in paraffin embedded samples of triple negative breast cancer (TNBC) compared to luminal A breast cancer (LABC). Most of the genes involved in nucleotide excision repair and Fanconi Anemia pathways, and CHK1 gene were significantly less expressed in TNBC than in LABC. PARP1 levels were higher in TNBC than in LABC. In univariate analysis high level of FANCA correlated with an increased overall survival and event free survival in TNBC; however multivariate analyses using Cox regression did not confirm FANCA as independent prognostic factor. These data support the evidence that TNBCs compared to LABCs harbour DNA repair defects. PMID:23825533

  19. Polymorphisms of the DNA repair genes XRCC1 and XRCC3 in a Brazilian population

    Directory of Open Access Journals (Sweden)

    Duarte Márcia Cristina

    2005-01-01

    Full Text Available In several DNA repair genes, polymorphisms may result in reduced repair capacity, which has been implicated as a risk factor for various types of cancer. The frequency of the polymorphic alleles varies among populations, suggesting an ethnic distribution of genotypes. We genotyped 300 healthy Southeastern Brazilian individuals (262 of European ancestry and 38 of African ancestry for polymorphisms of codons 194 and 399 of the XRCC1 base excision repair pathway gene and of codon 241 of the XRCC3 homologous recombination repair pathway gene. The allele frequencies were 0.07 for the Arg194Trp and 0.33 for the Arg399Gln codons of the XRCC1 gene and 0.35 for the Thr241Met codon of the XRCC3 gene. The genotypic frequencies were within Hardy-Weinberg equilibrium. These frequencies showed ethnic variability when compared with those obtained for different populations from several countries.

  20. DNA repair in human cells: from genetic complementation to isolation of genes.

    NARCIS (Netherlands)

    D. Bootsma (Dirk); A. Westerveld (Andries); J.H.J. Hoeijmakers (Jan)

    1988-01-01

    textabstractThe genetic disease xeroderma pigmentosum (XP) demonstrates the association between defective repair of DNA lesions and cancer. Complementation analysis performed on XP cell strains and on repair deficient rodent cell lines has revealed that at least nine and possibly more than 13 genes

  1. Cloning and characterization of the human DNA-excision repair gene ERCC-1

    NARCIS (Netherlands)

    M. van Duin (Michel)

    1988-01-01

    textabstractIt is the aim of the work described in this thesis to isolate and characterize human genes involved DNA excision repair. This will facilitate the understanding of the mechanism of this repair process whereas it also provides an important step to better understand the relationship

  2. Cloning and characterization of the human DNA-excision repair gene ERCC-1

    NARCIS (Netherlands)

    M. van Duin (Michel)

    1988-01-01

    textabstractIt is the aim of the work described in this thesis to isolate and characterize human genes involved DNA excision repair. This will facilitate the understanding of the mechanism of this repair process whereas it also provides an important step to better understand the relationship between

  3. DNA repair in human cells: from genetic complementation to isolation of genes.

    NARCIS (Netherlands)

    D. Bootsma (Dirk); A. Westerveld (Andries); J.H.J. Hoeijmakers (Jan)

    1988-01-01

    textabstractThe genetic disease xeroderma pigmentosum (XP) demonstrates the association between defective repair of DNA lesions and cancer. Complementation analysis performed on XP cell strains and on repair deficient rodent cell lines has revealed that at least nine and possibly more than 13 genes

  4. SELECTIVE-INHIBITION OF REPAIR OF ACTIVE GENES BY HYPERTHERMIA IS DUE TO INHIBITION OF GLOBAL AND TRANSCRIPTION COUPLED REPAIR PATHWAYS

    NARCIS (Netherlands)

    SAKKERS, RJ; FILON, AR; BRUNSTING, JF; KAMPINGA, HH; KONINGS, AWT; MULLENDERS, LHF

    1995-01-01

    Hyperthermia specifically inhibits the repair of UV-induced DNA photolesions in transcriptionally active genes, To define more precisely which mechanisms underlie the heat-induced inhibition of repair of active genes, removal of cyclobutane pyrimidine dimers (CPDs) was studied in human fibroblasts w

  5. Differential expression of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease

    National Research Council Canada - National Science Library

    Gosselink, John V; Hayashi, Shizu; Elliott, W Mark; Xing, Li; Chan, Becky; Yang, Luojia; Wright, Claire; Sin, Don; Paré, Peter D; Pierce, John A; Pierce, Richard A; Patterson, Alex; Cooper, Joel; Hogg, James C

    2010-01-01

    .... The expression of 54 genes associated with repair of repetitively damaged tissue was measured in 136 paired samples of small bronchioles and surrounding lung tissue separated by laser capture microdissection...

  6. Genomic survey and expression analysis of DNA repair genes in the genus Leptospira.

    Science.gov (United States)

    Martins-Pinheiro, Marinalva; Schons-Fonseca, Luciane; da Silva, Josefa B; Domingos, Renan H; Momo, Leonardo Hiroyuki Santos; Simões, Ana Carolina Quirino; Ho, Paulo Lee; da Costa, Renata M A

    2016-04-01

    Leptospirosis is an emerging zoonosis with important economic and public health consequences and is caused by pathogenic leptospires. The genus Leptospira belongs to the order Spirochaetales and comprises saprophytic (L. biflexa), pathogenic (L. interrogans) and host-dependent (L. borgpetersenii) members. Here, we present an in silico search for DNA repair pathways in Leptospira spp. The relevance of such DNA repair pathways was assessed through the identification of mRNA levels of some genes during infection in animal model and after exposition to spleen cells. The search was performed by comparison of available Leptospira spp. genomes in public databases with known DNA repair-related genes. Leptospires exhibit some distinct and unexpected characteristics, for instance the existence of a redundant mechanism for repairing a chemically diverse spectrum of alkylated nucleobases, a new mutS-like gene and a new shorter version of uvrD. Leptospira spp. shares some characteristics from Gram-positive, as the presence of PcrA, two RecQ paralogs and two SSB proteins; the latter is considered a feature shared by naturally competent bacteria. We did not find a significant reduction in the number of DNA repair-related genes in both pathogenic and host-dependent species. Pathogenic leptospires were enriched for genes dedicated to base excision repair and non-homologous end joining. Their evolutionary history reveals a remarkable importance of lateral gene transfer events for the evolution of the genus. Up-regulation of specific DNA repair genes, including components of SOS regulon, during infection in animal model validates the critical role of DNA repair mechanisms for the complex interplay between host/pathogen.

  7. Transcript RNA supports precise repair of its own DNA gene.

    Science.gov (United States)

    Keskin, Havva; Meers, Chance; Storici, Francesca

    2016-01-01

    The transfer of genetic information from RNA to DNA is considered an extraordinary process in molecular biology. Despite the fact that cells transcribe abundant amount of RNA with a wide range of functions, it has been difficult to uncover whether RNA can serve as a template for DNA repair and recombination. An increasing number of experimental evidences suggest a direct role of RNA in DNA modification. Recently, we demonstrated that endogenous transcript RNA can serve as a template to repair a DNA double-strand break (DSB), the most harmful DNA lesion, not only indirectly via formation of a DNA copy (cDNA) intermediate, but also directly in a homology driven mechanism in budding yeast. These results point out that the transfer of genetic information from RNA to DNA is more general than previously thought. We found that transcript RNA is more efficient in repairing a DSB in its own DNA (in cis) than in a homologous but ectopic locus (in trans). Here, we summarize current knowledge about the process of RNA-driven DNA repair and recombination, and provide further data in support of our model of DSB repair by transcript RNA in cis. We show that a DSB is precisely repaired predominately by transcript RNA and not by residual cDNA in conditions in which formation of cDNA by reverse transcription is inhibited. Additionally, we demonstrate that defects in ribonuclease (RNase) H stimulate precise DSB repair by homologous RNA or cDNA sequence, and not by homologous DNA sequence carried on a plasmid. These results highlight an antagonistic role of RNase H in RNA-DNA recombination. Ultimately, we discuss several questions that should be addressed to better understand mechanisms and implications of RNA-templated DNA repair and recombination.

  8. DNA repair gene polymorphisms in relation to chromosome aberration frequencies in retired radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Wilding, Craig S. [Genetics Department, Westlakes Research Institute, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3JY (United Kingdom)]. E-mail: craig.wilding@westlakes.ac.uk; Relton, Caroline L. [Genetics Department, Westlakes Research Institute, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3JY (United Kingdom); Paediatric and Lifecourse Epidemiology Research Group, School of Clinical Medical Sciences (Child Health), Newcastle University, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle-upon-Tyne NE1 4LP (United Kingdom); Rees, Gwen S. [Genetics Department, Westlakes Research Institute, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3JY (United Kingdom); Tarone, Robert E. [International Epidemiology Institute, 1455 Research Boulevard, Suite 550, Rockville, MD 20850 (United States); Whitehouse, Caroline A. [Genetics Department, Westlakes Research Institute, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3JY (United Kingdom); Tawn, E. Janet [Genetics Department, Westlakes Research Institute, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3JY (United Kingdom)

    2005-02-15

    Polymorphic variation in DNA repair genes was examined in a group of retired workers from the British Nuclear Fuels plc facility at Sellafield in relation to previously determined translocation frequencies in peripheral blood lymphocytes. Variation at seven polymorphisms in four genes involved in the base excision repair (XRCC1 R194W, R399Q and a [AC]{sub n} microsatellite in the 3' UTR) and double strand break repair (XRCC3 T241M and a [AC]{sub n} microsatellite in intron 3 of XRCC3, XRCC4 I134T, and a GACTAn microsatellite located 120kb 5' of XRCC5) pathways was determined for 291 retired radiation workers who had received cumulative occupational external radiation doses of between 0 and 1873mSv. When the interaction between radiation dose and each DNA repair gene polymorphism was examined in relation to translocation frequency there was no evidence for any of the polymorphisms studied influencing the response to occupational exposure. A positive interaction observed between genotype (individuals with at least one allele >=20 repeat units) at a microsatellite locus in the XRCC3 gene and smoking status should be interpreted cautiously because interactions were investigated for seven polymorphisms and two exposures. Nonetheless, further research is warranted to examine whether this DNA repair gene variant might be associated with a sub-optimal repair response to smoking-induced DNA damage and hence an increased frequency of translocations.

  9. Chromosomal Aberrations and DNA Repair Gene Variants in a Radon-exposed Population

    Energy Technology Data Exchange (ETDEWEB)

    Kiuru, A.; Lindholm, C.; Koivistoinen, A.; Salomaa, S.

    2004-07-01

    Polymorphisms of XRCC1 (X-ray repair cross-complementing group 1), XRCC3 (X-ray repair cross-complementing group 3), and hOGG1 (the human homologue of the yeast OGG1 gene) DNA repair genes have been associated with altered DNA repair capacity and risk of various cancers. In the present study our goal was to clarify the influence of various DNA repair gene variants on the frequency of chromosomal aberrations (CA) in subjects exposed to residential radon. The study group of 84 non-smoking, healthy individuals exposed to domestic radon were analysed using the fluorescence in-situ hybridization (FISH) technique. No association between radon concentration and CA frequencies was observed. However, a significant increase with age was shown as well as a large variability in translocation frequencies between individuals within the same age group. In order to investigate the role of individual susceptibility to this variation genotypes of DNA repair genes XRCC1 (codons 194, 280 and 399), XRCC3 (codon 241) and hOGG1 (codon 326) were determined from leukocyte DNA using methods based on polymerase chain reaction. Multiple regression analysis was applied to evaluate the effect of the polymorphisms and the other confounding factors (age, exposure to randon etc) to the frequency of CA. The preliminary statistical analyses showed that the different gene appeared not to be related to a pronounced increase in chromosome aberration frequencies observed by FISH painting. However, the analysis indicated that the homozygous variant of XRCC3 codon 241 was associated (P<0.05) with two-ways translocations in conjunction with age. Larger studies, both with regard to the cohort and the number of gene variants are needed to elucidate the influence of other DNA repair variants to the yield of chromosomal aberrations. The results indicate that the chromosomal translocations accumulated by age (spontaneous background) may be partly explained by defects in homologous recombination repair. (Author

  10. Genome analysis of DNA repair genes in the alpha proteobacterium Caulobacter crescentus

    Directory of Open Access Journals (Sweden)

    Menck Carlos FM

    2007-03-01

    Full Text Available Abstract Background The integrity of DNA molecules is fundamental for maintaining life. The DNA repair proteins protect organisms against genetic damage, by removal of DNA lesions or helping to tolerate them. DNA repair genes are best known from the gamma-proteobacterium Escherichia coli, which is the most understood bacterial model. However, genome sequencing raises questions regarding uniformity and ubiquity of these DNA repair genes and pathways, reinforcing the need for identifying genes and proteins, which may respond to DNA damage in other bacteria. Results In this study, we employed a bioinformatic approach, to analyse and describe the open reading frames potentially related to DNA repair from the genome of the alpha-proteobacterium Caulobacter crescentus. This was performed by comparison with known DNA repair related genes found in public databases. As expected, although C. crescentus and E. coli bacteria belong to separate phylogenetic groups, many of their DNA repair genes are very similar. However, some important DNA repair genes are absent in the C. crescentus genome and other interesting functionally related gene duplications are present, which do not occur in E. coli. These include DNA ligases, exonuclease III (xthA, endonuclease III (nth, O6-methylguanine-DNA methyltransferase (ada gene, photolyase-like genes, and uracil-DNA-glycosylases. On the other hand, the genes imuA and imuB, which are involved in DNA damage induced mutagenesis, have recently been described in C. crescentus, but are absent in E. coli. Particularly interesting are the potential atypical phylogeny of one of the photolyase genes in alpha-proteobacteria, indicating an origin by horizontal transfer, and the duplication of the Ada orthologs, which have diverse structural configurations, including one that is still unique for C. crescentus. Conclusion The absence and the presence of certain genes are discussed and predictions are made considering the particular

  11. Preferential repair of DNA double-strand break at the active gene in vivo.

    Science.gov (United States)

    Chaurasia, Priyasri; Sen, Rwik; Pandita, Tej K; Bhaumik, Sukesh R

    2012-10-19

    Previous studies have demonstrated transcription-coupled nucleotide/base excision repair. We report here for the first time that DNA double-strand break (DSB) repair is also coupled to transcription. We generated a yeast strain by introducing a homing (Ho) endonuclease cut site followed by a nucleotide sequence for multiple Myc epitopes at the 3' end of the coding sequence of a highly active gene, ADH1. This yeast strain also contains the Ho cut site at the nearly silent or poorly active mating type α (MATα) locus and expresses Ho endonuclease under the galactose-inducible GAL1 promoter. Using this strain, DSBs were generated at the ADH1 and MATα loci in galactose-containing growth medium that induced HO expression. Subsequently, yeast cells were transferred to dextrose-containing growth medium to stop HO expression, and the DSB repair was monitored at the ADH1 and MATα loci by PCR, using the primer pairs flanking the Ho cut sites. Our results revealed a faster DSB repair at the highly active ADH1 than that at the nearly silent MATα locus, hence implicating a transcription-coupled DSB repair at the active gene in vivo. Subsequently, we extended this study to another gene, PHO5 (carrying the Ho cut site at its coding sequence), under transcriptionally active and inactive growth conditions. We found a fast DSB repair at the active PHO5 gene in comparison to its inactive state. Collectively, our results demonstrate a preferential DSB repair at the active gene, thus supporting transcription-coupled DSB repair in living cells.

  12. Polymorphisms in human DNA repair genes and head and neck squamous cell carcinoma

    Indian Academy of Sciences (India)

    Rim Khlifi; Ahmed Rebai; Amel Hamza-Chaffai

    2012-12-01

    Genetic polymorphisms in some DNA repair proteins are associated with a number of malignant transformations like head and neck squamous cell carcinoma (HNSCC). Xeroderma pigmentosum group D (XPD) and X-ray repair cross-complementing proteins 1 (XRCC1) and 3 (XRCC3) genes are involved in DNA repair and were found to be associated with HNSCC in numerous studies. To establish our overall understanding of possible relationships between DNA repair gene polymorphisms and development of HNSCC, we surveyed the literature on epidemiological studies that assessed potential associations with HNSCC risk in terms of gene–environment interactions, genotype-induced functional defects in enzyme activity and/or protein expression, and the influence of ethnic origin on these associations.We conclude that large, well-designed studies of common polymorphisms in DNA repair genes are needed. Such studies may benefit from analysis of multiple genes or polymorphisms and from the consideration of relevant exposures that may influence the likelihood of HNSCC when DNA repair capacity is reduced.

  13. Approaches to diagnose DNA mismatch repair gene defects in cancer

    DEFF Research Database (Denmark)

    Peña-Diaz, Javier; Rasmussen, Lene Juel

    2016-01-01

    The DNA repair pathway mismatch repair (MMR) is responsible for the recognition and correction of DNA biosynthetic errors caused by inaccurate nucleotide incorporation during replication. Faulty MMR leads to failure to address the mispairs or insertion deletion loops (IDLs) left behind...... already been well defined and their pathogenicity assessed. Despite this substantial wealth of knowledge, the effects of a large number of alterations remain uncharacterized (variants of uncertain significance, VUSs). The advent of personalized genomics is likely to increase the list of VUSs found in MMR...

  14. Modulation of DNA-induced damage and repair capacity in humans after dietary intervention with lutein-enriched fermented milk.

    Directory of Open Access Journals (Sweden)

    Carmen Herrero-Barbudo

    Full Text Available Dietary factors provide protection against several forms of DNA damage. Additionally, consumer demand for natural products favours the development of bioactive food ingredients with health benefits. Lutein is a promising biologically active component in the food industry. The EFSA Panel on Dietetic Products, Nutrition and Allergies considers that protection from oxidative damage may be a beneficial physiological effect but that a cause and effect relationship has not been established. Thus, our aim was to evaluate the safety and potential functional effect of a lutein-enriched milk product using the Comet Assay in order to analyze the baseline, the induced DNA-damage and the repair capacity in the lymphocytes of 10 healthy donors before and after the intake of the mentioned product. Our data suggest that the regular consumption of lutein-enriched fermented milk results in a significant increase in serum lutein levels and this change is associated with an improvement in the resistance of DNA to damage and the capacity of DNA repair in lymphocytes. Our results also support the lack of a genotoxic effect at the doses supplied as well as the absence of interactions and side effects on other nutritional and biochemicals markers.

  15. Assignment of ten DNA repair genes from Schizosaccharomyces pombe to chromosomal NotI restriction fragments

    NARCIS (Netherlands)

    B.C. Broughton; N.C. Barbet; J. Murray (Johanne); F.Z. Watts (Felicity); M.H.M. Koken (Marcel); A.R. Lehmann (Alan); A.M. Carr (Anthony)

    1991-01-01

    textabstractTen DNA repair (rad) genes from the fission yeast, Schizosaccharomyces pombe were mapped to the 17 NotI fragments of the three chromosomes. Nine of the genes map to chromosome I, but there is no evidence for significant clustering.

  16. Oligonucleotide microarray analysis of dietary-induced hyperlipidemia gene expression profiles in miniature pigs.

    Directory of Open Access Journals (Sweden)

    Junko Takahashi

    Full Text Available BACKGROUND: Hyperlipidemia animal models have been established, but complete gene expression profiles of the transition from normal lipid levels have not been obtained. Miniature pigs are useful model animals for gene expression studies on dietary-induced hyperlipidemia because they have a similar anatomy and digestive physiology to humans, and blood samples can be obtained from them repeatedly. METHODOLOGY: Two typical dietary treatments were used for dietary-induced hyperlipidemia models, by using specific pathogen-free (SPF Clawn miniature pigs. One was a high-fat and high-cholesterol diet (HFCD and the other was a high-fat, high-cholesterol, and high-sucrose diet (HFCSD. Microarray analyses were conducted from whole blood samples during the dietary period and from white blood cells at the end of the dietary period to evaluate the transition of expression profiles of the two dietary models. PRINCIPAL FINDINGS: Variations in whole blood gene expression intensity within the HFCD or the HFCSD group were in the same range as the controls provide with normal diet at all periods. This indicates uniformity of dietary-induced hyperlipidemia for our dietary protocols. Gene ontology- (GO based functional analyses revealed that characteristics of the common changes between HFCD and HFCSD were involved in inflammatory responses and reproduction. The correlation coefficient between whole blood and white blood cell expression profiles at 27 weeks with the HFCSD diet was significantly lower than that of the control and HFCD diet groups. This may be due to the effects of RNA originating from the tissues and/or organs. CONCLUSIONS: No statistically significant differences in fasting plasma lipids and glucose levels between the HFCD and HFCSD groups were observed. However, blood RNA analyses revealed different characteristics corresponding to the dietary protocols. In this study, whole blood RNA analyses proved to be a useful tool to evaluate transitions in

  17. FISH comets show that the salvage enzyme TK1 contributes to gene-specific DNA repair

    Directory of Open Access Journals (Sweden)

    Stephen eDownes

    2014-08-01

    Full Text Available Thymidine kinase 1 (TK1 is a salvage enzyme that phosphorylates thymidine, imported from surrounding fluids, to create dTMP, which is further phosphorylated to the DNA precursor dTTP. TK1 deficiency has for a long time been known to cause increased cellular sensitivity to DNA damage. We have examined preferential strand break repair of DNA domains in TK1+ and TK1- clones of the Raji cell line, by the Comet-FISH technique, in bulk DNA and in the actively transcribed tumour suppressor (TP53 and human telomerase reverse transcriptase (hTERT gene regions, over 1 hour after 5Gy γ-irradiation. Results showed that repair of the TP53 and hTERT gene regions was more efficient in TK1+ compared to TK1- cells, while levels of genomic DNA repair were consistant between the two cell-lines. The targeted gene-specific repair in TK+ cells occurred rapidly, mainly over the first 15 minute repair-period. Therefore, TK1 is needed for preferential repair of actively transcribed regions, through a previously unsuspected mechanism. In principle, TK1 could exert its protective effects through supply of a supplementary dTTP pool for accurate repair of damaged genes; but Raji TK1+ cells in thymidine free media still show preferential repair of transcribed regions. TK1 therefore does not exert its protective effects through dTTP pools, but through another unidentified mechanism, which affects sensitivity to and mutagenicity by DNA damaging agents.

  18. FISH comets show that the salvage enzyme TK1 contributes to gene-specific DNA repair

    Science.gov (United States)

    McAllister, Katherine A.; Yasseen, Akeel A.; McKerr, George; Downes, C. S.; McKelvey-Martin, Valerie J.

    2014-01-01

    Thymidine kinase 1 (TK1) is a salvage enzyme that phosphorylates thymidine, imported from surrounding fluids, to create dTMP, which is further phosphorylated to the DNA precursor dTTP. TK1 deficiency has for a long time been known to cause increased cellular sensitivity to DNA damage. We have examined preferential strand break repair of DNA domains in TK1+ and TK1- clones of the Raji cell line, by the Comet-FISH technique, in bulk DNA and in the actively transcribed tumor suppressor (TP53) and human telomerase reverse transcriptase (hTERT) gene regions, over 1 h after 5Gy γ-irradiation. Results showed that repair of the TP53 and hTERT gene regions was more efficient in TK1+ compared to TK1- cells, a trend also reflected to a lesser degree in genomic DNA repair between the cell-lines. The targeted gene-specific repair in TK+ cells occurred rapidly, mainly over the first 15 min repair-period. Therefore, TK1 is needed for preferential repair of actively transcribed regions, through a previously unsuspected mechanism. In principle, TK1 could exert its protective effects through supply of a supplementary dTTP pool for accurate repair of damaged genes; but Raji TK1+ cells in thymidine free media still show preferential repair of transcribed regions. TK1 therefore does not exert its protective effects through dTTP pools, but through another unidentified mechanism, which affects sensitivity to and mutagenicity by DNA damaging agents. PMID:25152750

  19. 'Hide-then-hit' to explain the importance of genotypic polymorphism of DNA repair genes in determining susceptibility to cancer

    Institute of Scientific and Technical Information of China (English)

    Pei-Ei Wu; Chen-Yang Shen

    2011-01-01

    Interindividual variations in DNA repair capacity/efficiency linked to the presence of polymorphisms in DNA repair-related genes have been suggested to account for different risk of developing cancers. In this review article, on the basis of breast cancer formation as a model, we propose a 'hide-then-hit' hypothesis indicating the importance of escaping checkpoint surveillance for sub-optimal DNA repair variants to cause cancer. Therefore, only cells with subtle defects in repair capacity arising from low-penetrance variants of DNA repair genes would have the opportunity to grow and accumulate the genetic changes needed for cancer formation, without triggering cell-cycle checkpoint surveillance. Furthermore, distinct from high-penetrance alleles, these polymorphic alleles of DNA repair genes would predispose carriers to a higher risk of developing cancer but would not necessarily cause cancer. To examine this,we simultaneously genotyped multiple SNPs of cell-cycle checkpoint genes and the DNA repair genes. Support for the hypothesis came from observations that breast cancer risk associated with variant genotypes of DNA repair genes became more significant in be confirmed by biological evidence in which a cause-effect relationship has to be established. However, based on this, possible gene-gene interaction is considered to play an important role in modifying the cancer risk associated with genotypic polymorphism of DNA repair gene in different study populations.

  20. Genetic variants of the DNA repair genes from Exome Aggregation Consortium (EXAC) database: significance in cancer.

    Science.gov (United States)

    Das, Raima; Ghosh, Sankar Kumar

    2017-04-01

    DNA repair pathway is a primary defense system that eliminates wide varieties of DNA damage. Any deficiencies in them are likely to cause the chromosomal instability that leads to cell malfunctioning and tumorigenesis. Genetic polymorphisms in DNA repair genes have demonstrated a significant association with cancer risk. Our study attempts to give a glimpse of the overall scenario of the germline polymorphisms in the DNA repair genes by taking into account of the Exome Aggregation Consortium (ExAC) database as well as the Human Gene Mutation Database (HGMD) for evaluating the disease link, particularly in cancer. It has been found that ExAC DNA repair dataset (which consists of 228 DNA repair genes) comprises 30.4% missense, 12.5% dbSNP reported and 3.2% ClinVar significant variants. 27% of all the missense variants has the deleterious SIFT score of 0.00 and 6% variants carrying the most damaging Polyphen-2 score of 1.00, thus affecting the protein structure and function. However, as per HGMD, only a fraction (1.2%) of ExAC DNA repair variants was found to be cancer-related, indicating remaining variants reported in both the databases to be further analyzed. This, in turn, may provide an increased spectrum of the reported cancer linked variants in the DNA repair genes present in ExAC database. Moreover, further in silico functional assay of the identified vital cancer-associated variants, which is essential to get their actual biological significance, may shed some lights in the field of targeted drug development in near future. Copyright © 2017. Published by Elsevier B.V.

  1. Gene Expression in Experimental Aortic Coarctation and Repair: Candidate Genes for Therapeutic Intervention?

    Science.gov (United States)

    LaDisa, John F; Bozdag, Serdar; Olson, Jessica; Ramchandran, Ramani; Kersten, Judy R; Eddinger, Thomas J

    2015-01-01

    Coarctation of the aorta (CoA) is a constriction of the proximal descending thoracic aorta and is one of the most common congenital cardiovascular defects. Treatments for CoA improve life expectancy, but morbidity persists, particularly due to the development of chronic hypertension (HTN). Identifying the mechanisms of morbidity is difficult in humans due to confounding variables such as age at repair, follow-up duration, coarctation severity and concurrent anomalies. We previously developed an experimental model that replicates aortic pathology in humans with CoA without these confounding variables, and mimics correction at various times using dissolvable suture. Here we present the most comprehensive description of differentially expressed genes (DEGs) to date from the pathology of CoA, which were obtained using this model. Aortic samples (n=4/group) from the ascending aorta that experiences elevated blood pressure (BP) from induction of CoA, and restoration of normal BP after its correction, were analyzed by gene expression microarray, and enriched genes were converted to human orthologues. 51 DEGs with >6 fold-change (FC) were used to determine enriched Gene Ontology terms, altered pathways, and association with National Library of Medicine Medical Subject Headers (MeSH) IDs for HTN, cardiovascular disease (CVD) and CoA. The results generated 18 pathways, 4 of which (cell cycle, immune system, hemostasis and metabolism) were shared with MeSH ID's for HTN and CVD, and individual genes were associated with the CoA MeSH ID. A thorough literature search further uncovered association with contractile, cytoskeletal and regulatory proteins related to excitation-contraction coupling and metabolism that may explain the structural and functional changes observed in our experimental model, and ultimately help to unravel the mechanisms responsible for persistent morbidity after treatment for CoA.

  2. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Aurélie [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Sarasin, Alain, E-mail: alain.sarasin@gustaveroussy.fr [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Service de Génétique, Institut Gustave Roussy (France)

    2015-06-15

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  3. Effects of dietary intake and genetic factors on hypermethylation of the hMLH1 gene promoter in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Hong-Mei Nan; Young-Jin Song; Hyo-Yung Yun; Joo-Seung Park; Heon Kim

    2005-01-01

    AIM: Hypermethylation of the promoter of the hMLH1gene, which plays an important role in mismatch repair during DNA replication, occurs in more than 30% of human gastric cancer tissues. The purpose of this study was to investigate the effects of environmental factors, genetic polymorphisms of major metabolic enzymes, and microsatellite instability on hypermethylation of the promoter of the hMLH1 gene in gastric cancer.METHODS: Data were obtained from a hospital-based,case-control study of gastric cancer. One hundred and ten gastric cancer patients and 220 age- and sex-matched control patients completed a structured questionnaire regarding their exposure to environmental risk factors.Hypermethylation of the hMLH1 gene promoter,polymorphisms of the GSTM1, GSTT1, CYP1A1, CYP2E1,ALDH2 and L-myc genes, microsatellite instability and mutations of p53 and Ki-ras genes were investigated.RESULTS: Both smoking and alcohol consumption were associated with a higher risk of gastric cancer with hypermethylation of the hMLH1 gene promoter. High intake of vegetables and low intake of potato were associated with increased likelihood of gastric cancer with hypermethylation of the hMLH1 gene promoter. Genetic polymorphisms of the GSTM1, GSTT1, CYP1A1, CYP2E1,ALDH2, and L-mycgenes were not significantly associated with the risk of gastric cancer either with or without hypermethylation in the promoter of the hMLH1 gene.Hypermethylation of the hMLH1 promoter was significantly associated with microsatellite instability (MSI): 10 of the 14 (71.4%) MSI-positive tumors showed hypermethylation,whereas 28 of 94 (29.8%) the MSI-negative tumors were hypermethylated at the hMLH1 promoter region.Hypermethylation of the hMLH1 gene promoter was significantly inversely correlated with mutation of the p53gene.CONCLUSION: These results suggest that cigarette smoking and alcohol consumption may influence the development of hMLH1-positive gastric cancer. Most dietary factors and polymorphisms of GSTM1

  4. A multistep genomic screen identifies new genes required for repair of DNA double-strand breaks in Saccharomyces cerevisiae.

    Science.gov (United States)

    McKinney, Jennifer Summers; Sethi, Sunaina; Tripp, Jennifer DeMars; Nguyen, Thuy N; Sanderson, Brian A; Westmoreland, James W; Resnick, Michael A; Lewis, L Kevin

    2013-04-15

    Efficient mechanisms for rejoining of DNA double-strand breaks (DSBs) are vital because misrepair of such lesions leads to mutation, aneuploidy and loss of cell viability. DSB repair is mediated by proteins acting in two major pathways, called homologous recombination and nonhomologous end-joining. Repair efficiency is also modulated by other processes such as sister chromatid cohesion, nucleosome remodeling and DNA damage checkpoints. The total number of genes influencing DSB repair efficiency is unknown. To identify new yeast genes affecting DSB repair, genes linked to gamma radiation resistance in previous genome-wide surveys were tested for their impact on repair of site-specific DSBs generated by in vivo expression of EcoRI endonuclease. Eight members of the RAD52 group of DNA repair genes (RAD50, RAD51, RAD52, RAD54, RAD55, RAD57, MRE11 and XRS2) and 73 additional genes were found to be required for efficient repair of EcoRI-induced DSBs in screens utilizing both MATa and MATα deletion strain libraries. Most mutants were also sensitive to the clastogenic chemicals MMS and bleomycin. Several of the non-RAD52 group genes have previously been linked to DNA repair and over half of the genes affect nuclear processes. Many proteins encoded by the protective genes have previously been shown to associate physically with each other and with known DNA repair proteins in high-throughput proteomics studies. A majority of the proteins (64%) share sequence similarity with human proteins, suggesting that they serve similar functions. We have used a genetic screening approach to detect new genes required for efficient repair of DSBs in Saccharomyces cerevisiae. The findings have spotlighted new genes that are critical for maintenance of genome integrity and are therefore of greatest concern for their potential impact when the corresponding gene orthologs and homologs are inactivated or polymorphic in human cells.

  5. Polymorphisms in base excision repair genes: Breast cancer risk and individual radiosensitivity

    Science.gov (United States)

    Patrono, Clarice; Sterpone, Silvia; Testa, Antonella; Cozzi, Renata

    2014-01-01

    Breast cancer (BC) is the most common cancer among women worldwide. The aetiology and carcinogenesis of BC are not clearly defined, although genetic, hormonal, lifestyle and environmental risk factors have been established. The most common treatment for BC includes breast-conserving surgery followed by a standard radiotherapy (RT) regimen. However, radiation hypersensitivity and the occurrence of RT-induced toxicity in normal tissue may affect patients’ treatment. The role of DNA repair in cancer has been extensively investigated, and an impaired DNA damage response may increase the risk of BC and individual radiosensitivity. Single nucleotide polymorphisms (SNPs) in DNA repair genes may alter protein function and modulate DNA repair efficiency, influencing the development of various cancers, including BC. SNPs in DNA repair genes have also been studied as potential predictive factors for the risk of RT-induced side effects. Here, we review the literature on the association between SNPs in base excision repair (BER) genes and BC risk. We focused on X-ray repair cross complementing group 1 (XRCC1), which plays a key role in BER, and on 8-oxoguanine DNA glycosylase 1, apurinic/apyrimidinic endonuclease 1 and poly (ADP-ribose) polymerase-1, which encode three important BER enzymes that interact with XRCC1. Although no association between SNPs and radiation toxicity has been validated thus far, we also report published studies on XRCC1 SNPs and variants in other BER genes and RT-induced side effects in BC patients, emphasising that large well-designed studies are needed to determine the genetic components of individual radiosensitivity. PMID:25493225

  6. Gene therapy and peripheral nerve repair : a perspective

    NARCIS (Netherlands)

    Hoyng, Stefan A; de Winter, Fred; Tannemaat, Martijn R; Blits, Bas; Malessy, Martijn J A; Verhaagen, J.

    2015-01-01

    Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan's, Parkinson's (PD) and Alzheimer's disease (AD), retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral

  7. Gene therapy and peripheral nerve repair : a perspective

    NARCIS (Netherlands)

    Hoyng, Stefan A; de Winter, Fred; Tannemaat, Martijn R; Blits, Bas; Malessy, Martijn J A; Verhaagen, J.

    2015-01-01

    Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan's, Parkinson's (PD) and Alzheimer's disease (AD), retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral

  8. Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination.

    NARCIS (Netherlands)

    D.F.R. Muris; O.Y. Bezzubova (Olga); J-M. Buerstedde; K. Vreeken; A.S. Balajee; C.J. Osgood; C. Troelstra (Christine); J.H.J. Hoeijmakers (Jan); K. Ostermann; H. Schmidt (Henning); A.T. Natarajan; J.C.J. Eeken; P.H.M. Lohmann (Paul); A. Pastink (Albert)

    1994-01-01

    textabstractThe RAD52 gene of Saccharomyces cerevisiae is required for recombinational repair of double-strand breaks. Using degenerate oligonucleotides based on conserved amino acid sequences of RAD52 and rad22, its counterpart from Schizosaccharomyces pombe, RAD52 homologs from man and mouse were

  9. Chromosomal localization of three repair genes: the xeroderma pigmentosum group C gene and two human homologs of yeast RAD23.

    NARCIS (Netherlands)

    P.J. van der Spek (Peter); E.M.E. Smit (Elisabeth); H.B. Beverloo (Berna); K. Sugasawa (Kaoru); C. Matsutani; F. Hanaoka (Fumio); J.H.J. Hoeijmakers (Jan); A. Hagemeier

    1994-01-01

    textabstractThe nucleotide excision repair (NER) disorder xeroderma pigmentosum (XP) is characterized by sun (UV) sensitivity, predisposition to skin cancer, and extensive genetic heterogeneity. Recently, we reported the cloning and analysis of three human NER genes, XPC, HHR23A, and HHR23B. The

  10. Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6.

    NARCIS (Netherlands)

    M.H.M. Koken (Marcel); P. Reynolds (Paul); I. Jaspers-Dekker (Iris); L. Prakash; S. Prakash; D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1991-01-01

    textabstractThe RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin-conjugating enzyme (E2) that is required for DNA repair, damage-induced mutagenesis, and sporulation. We have cloned the two human RAD6 homologs, designated HHR6A and HHR6B. The two 152-amino acid human proteins share 95% sequ

  11. Comprehensive analysis of DNA repair gene variants and risk of meningioma

    DEFF Research Database (Denmark)

    Bethke, L.; Murray, A.; Webb, E.

    2008-01-01

    of meningioma and exposure to ionizing radiation is also well known and led us to examine whether variants in DNA repair genes contribute to disease susceptibility. METHODS: We analyzed 1127 tagging single-nucleotide polymorphisms (SNPs) that were selected to capture most of the common variation in 136 DNA...

  12. Semiconservative replication, genetic repair, and many-gened genomes: Extending the quasispecies paradigm to living systems

    Science.gov (United States)

    Tannenbaum, Emmanuel; Shakhnovich, Eugene I.

    2005-12-01

    Quasispecies theory has emerged as an important tool for modeling the evolutionary dynamics of biological systems. We review recent advances in the field, with an emphasis on the quasispecies dynamics of semiconservatively replicating genomes. Applications to cancer and adult stem cell growth are discussed. Additional topics, such as genetic repair and many-gene genomes, are covered as well.

  13. A Database to Support the Interpretation of Human Mismatch Repair Gene Variants

    NARCIS (Netherlands)

    Ou, Jianghua; Niessen, Renee C.; Vonk, Jan; Westers, Helga; Hofstra, Robert M. W.; Sijmons, Rolf H.

    2008-01-01

    Germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2 can cause Lynch syndrome. This syndrome, also known as hereditary nonpolyposis colorectal cancer (HNPCC), is an autosomal dominantly-inherited disorder predominantly characterized by colorectal and endometrial cancer. Tr

  14. The Relationship between Dietary Fatty Acids and Inflammatory Genes on the Obese Phenotype and Serum Lipids

    OpenAIRE

    Yael T. Joffe; Malcolm Collins; Goedecke, Julia H.

    2013-01-01

    Obesity, a chronic low-grade inflammatory condition is associated with the development of many comorbidities including dyslipidemia. This review examines interactions between single nucleotide polymorphisms (SNP) in the inflammatory genes tumor necrosis alpha (TNFA) and interleukin-6 (IL-6) and dietary fatty acids, and their relationship with obesity and serum lipid levels. In summary, dietary fatty acids, in particular saturated fatty acids and the omega-3 and omega-6 polyunsaturated fatty a...

  15. Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes.

    Science.gov (United States)

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR-essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR-essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR-essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR-essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR-induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple organisms led

  16. Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes.

    Directory of Open Access Journals (Sweden)

    Daniel Wuttke

    Full Text Available Dietary restriction (DR, limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR-essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/. To dissect the interactions of DR-essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR-essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR-essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2 had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR-induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of

  17. Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes

    Science.gov (United States)

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR–essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR–essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR–essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR–essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR–induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple

  18. Loss of transcription factor early growth response gene 1 results in impaired endochondral bone repair.

    Science.gov (United States)

    Reumann, Marie K; Strachna, Olga; Yagerman, Sarah; Torrecilla, Daniel; Kim, Jihye; Doty, Stephen B; Lukashova, Lyudmila; Boskey, Adele L; Mayer-Kuckuk, Philipp

    2011-10-01

    Transcription factors that play a role in ossification during development are expected to participate in postnatal fracture repair since the endochondral bone formation that occurs in embryos is recapitulated during fracture repair. However, inherent differences exist between bone development and fracture repair, including a sudden disruption of tissue integrity followed by an inflammatory response. This raises the possibility that repair-specific transcription factors participate in bone healing. Here, we assessed the consequence of loss of early growth response gene 1 (EGR-1) on endochondral bone healing because this transcription factor has been shown to modulate repair in vascularized tissues. Model fractures were created in ribs of wild type (wt) and EGR-1(-/-) mice. Differences in tissue morphology and composition between these two animal groups were followed over 28 post fracture days (PFDs). In wt mice, bone healing occurred in healing phases characteristic of endochondral bone repair. A similar healing sequence was observed in EGR-1(-/-) mice but was impaired by alterations. A persistent accumulation of fibrin between the disconnected bones was observed on PFD7 and remained pronounced in the callus on PFD14. Additionally, the PFD14 callus was abnormally enlarged and showed increased deposition of mineralized tissue. Cartilage ossification in the callus was associated with hyper-vascularity and -proliferation. Moreover, cell deposits located in proximity to the callus within skeletal muscle were detected on PFD14. Despite these impairments, repair in EGR-1(-/-) callus advanced on PFD28, suggesting EGR-1 is not essential for healing. Together, this study provides genetic evidence that EGR-1 is a pleiotropic regulator of endochondral fracture repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Polymorphisms in DNA Repair Genes and MDR1 and the Risk for Non-Hodgkin Lymphoma

    Directory of Open Access Journals (Sweden)

    Hee Nam Kim

    2014-04-01

    Full Text Available The damage caused by oxidative stress and exposure to cigarette smoke and alcohol necessitate DNA damage repair and transport by multidrug resistance-1 (MDR1. To explore the association between polymorphisms in these genes and non-Hodgkin lymphoma risk, we analyzed 15 polymorphisms of 12 genes in a population-based study in Korea (694 cases and 1700 controls. Four genotypes of DNA repair pathway genes (XRCC1 399 GA, OGG1 326 GG, BRCA1 871 TT, and WRN 787 TT were associated with a decreased risk for NHL [odds ratio (ORXRCC1 GA = 0.80, p = 0.02; OROGG1 GG = 0.70, p = 0.008; ORBRCA1 TT = 0.71, p = 0.048; ORWRN TT = 0.68, p = 0.01]. Conversely, the MGMT 115 CT genotype was associated with an increased risk for NHL (OR = 1.25, p = 0.04. In the MDR1 gene, the 1236 CC genotype was associated with a decreased risk for NHL (OR = 0.74, p = 0.04, and the 3435 CT and TT genotypes were associated with an increased risk (OR3435CT = 1.50, p < 0.0001; OR3435TT = 1.43, p = 0.02. These results suggest that polymorphisms in the DNA repair genes XRCC1, OGG1, BRCA1, WRN1, and MGMT and in the MDR1 gene may affect the risk for NHL in Korean patients.

  20. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  1. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  2. Mutagen sensitivity and DNA repair of the EGFR gene in oropharyngeal cancer.

    Science.gov (United States)

    Reiter, Maximilian; Welz, Christian; Baumeister, Philipp; Schwenk-Zieger, Sabina; Harréus, Ulrich

    2010-07-01

    Epidermal growth factor receptor (EGFR) is overexpressed in several epithelial malignancies, including head and neck squamous cell cancer. Up to 90% of the tumour cases in this area exhibit EGFR overexpression. The reasons for overexpression are still not clear. Mutagen sensitivity, pre-existing conditions for genotoxic damage, gene amplification, and reduced DNA repair of the EGFR gene are possible causes for EGFR protein overexpression. DNA damage in macroscopically healthy pharyngeal mucosal tissue of 30 patients with (15) and without cancer (15) of the oropharynx was evaluated after incubation with Benz[a]pyren-7,8-diol-9,10-epoxid (BPDE), a tobacco-associated carcinogen. Emerging DNA fragmentation of the EGFR gene located on chromosome 7 was evaluated. The centromere of the chromosome served as a reference gene. Comet FISH was applied to assess the mutagen sensitivity in these regions. The extent of DNA repair was evaluated in the same samples after a 24-h repair-period. Differences in gene amplification and protein expression between the two groups were analysed by Interphase-FISH (I-FISH) and immunohistochemistry (IHC), respectively. BPDE caused significant DNA damage compared to the negative control in oropharyngeal mucosa cells of patients with- and without carcinoma. DNA fragmentation of the EGFR gene in the two groups was comparable. Mutagen sensitivity was significantly higher in the EGFR gene than in the reference gene, but fragmentation of the EGFR gene was not enhanced compared to the DNA damage of the entire DNA. The DNA repair period led to a significant reduction in DNA damage levels in all groups, without preference for any of the groups or genes. EGFR amplification was found in 7.7% of the tumour patients but not in control patients. Of the patients with oropharyngeal carcinoma, 66.6% showed enhanced expression of EGFR protein (grades 2 and 3), whereas only 13% of tumour-free patients showed such protein expression. No significant differences in

  3. Evaluating the effects of genetic variants of DNA repair genes using cytogenetic mutagen sensitivity approaches.

    Science.gov (United States)

    Abdel-Rahman, Sherif Z; El-Zein, Randa A

    2011-08-01

    Mutagen sensitivity, measured in short-term cultures of peripheral blood lymphocytes by cytogenetic endpoints, is an indirect measure for DNA repair capacity and has been used for many years as a biomarker for intrinsic susceptibility for cancer. In this article, we briefly give an overview of the different cytogenetic mutagen sensitivity approaches that have been used successfully to evaluate the biological effects of polymorphisms in DNA repair genes based on a current review of the literature and based on the need for biomarkers that would allow the characterization of the biological and functional significance of such polymorphisms. We also address some of the future challenges facing this emerging area of research.

  4. Determining the functional significance of mismatch repair gene missense variants using biochemical and cellular assays

    DEFF Research Database (Denmark)

    Heinen, Christopher D; Juel Rasmussen, Lene

    2012-01-01

    provided an important experimental tool for studying the functional consequences of VUS. However, beyond this repair assay, a number of other experimental methods have been developed that allow us to test the effect of a VUS on discrete biochemical steps or other aspects of MMR function. Here, we describe......ABSTRACT: With the discovery that the hereditary cancer susceptibility disease Lynch syndrome (LS) is caused by deleterious germline mutations in the DNA mismatch repair (MMR) genes nearly 20 years ago, genetic testing can now be used to diagnose this disorder in patients. A definitive diagnosis...

  5. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts.

    Science.gov (United States)

    da Silva Neto Trajano, Larissa Alexsandra; Stumbo, Ana Carolina; da Silva, Camila Luna; Mencalha, Andre Luiz; Fonseca, Adenilson S

    2016-08-01

    Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions.

  6. Enhanced gene repair mediated by methyl-CpG-modified single-stranded oligonucleotides

    Science.gov (United States)

    Bertoni, Carmen; Rustagi, Arjun; Rando, Thomas A.

    2009-01-01

    Gene editing mediated by oligonucleotides has been shown to induce stable single base alterations in genomic DNA in both prokaryotic and eukaryotic organisms. However, the low frequencies of gene repair have limited its applicability for both basic manipulation of genomic sequences and for the development of therapeutic approaches for genetic disorders. Here, we show that single-stranded oligodeoxynucleotides (ssODNs) containing a methyl-CpG modification and capable of binding to the methyl-CpG binding domain protein 4 (MBD4) are able to induce >10-fold higher levels of gene correction than ssODNs lacking the specific modification. Correction was stably inherited through cell division and was confirmed at the protein, transcript and genomic levels. Downregulation of MBD4 expression using RNAi prevented the enhancement of gene correction efficacy obtained using the methyl-CpG-modified ssODN, demonstrating the specificity of the repair mechanism being recruited. Our data demonstrate that efficient manipulation of genomic targets can be achieved and controlled by the type of ssODN used and by modulation of the repair mechanism involved in the correction process. This new generation of ssODNs represents an important technological advance that is likely to have an impact on multiple applications, especially for gene therapy where permanent correction of the genetic defect has clear advantages over viral and other nonviral approaches currently being tested. PMID:19854937

  7. DNA-repair gene variants are associated with glioblastoma survival

    DEFF Research Database (Denmark)

    Wibom, Carl; Sjöström, Sara; Henriksson, Roger

    2012-01-01

    genes, in 138 glioblastoma samples from Sweden and Denmark. We confirmed our findings in an independent cohort of 121 glioblastoma patients from the UK. Our analysis revealed nine SNPs annotating MSH2, RAD51L1 and RECQL4 that were significantly (p

  8. Chromosomal localization of three repair genes: The xeroderma pigmentosum group C gene and two human homologs of yeast RAD23

    Energy Technology Data Exchange (ETDEWEB)

    Spek, P.J. van der; Smit, E.M.E.; Beverloo, H.B. [Erasmus Univ., Rotterdam (Netherlands)] [and others

    1994-10-01

    The nucleotide excision repair (NER) disorder xeroderma pigmentosum (XP) is characterized by sun (UV) sensitivity, predisposition to skin cancer, and extensive genetic heterogeneity. Recently, we reported the cloning and analysis of three human NER genes, XPC, HHR23A, and HHR23B. The previously cloned XPC gene is involved in the common XP complementation group C, which is defective in excision repair of nontranscribed sequences in the genome. The XPC protein was found to be complexed with the product of HHR23B, one of the two human homologs of the Saccharomyes cerevisiae NER gene RAD23. Here we present the chromosomal localization by in situ hybridization using haptenized probes of all three genes. The HHR23A gene was assigned to chromosome 19p13.2. Interestingly, the HHR23B and XPC genes, the product of which forms a tight complex, were found to colocalize on band 3p25.1. Pulsed-field gel electrophoresis revealed that the HHR23B and XPC genes possibly share a MluI restriction fragment of about 625 kb. Potential involvement of the HHR23 genes in human genetic disorders is discussed. 53 refs., 4 figs., 2 tabs.

  9. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  10. A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related

    Directory of Open Access Journals (Sweden)

    Vasieva Olga

    2011-01-01

    Full Text Available Abstract Background The ageing of the worldwide population means there is a growing need for research on the biology of ageing. DNA damage is likely a key contributor to the ageing process and elucidating the role of different DNA repair systems in ageing is of great interest. In this paper we propose a data mining approach, based on classification methods (decision trees and Naive Bayes, for analysing data about human DNA repair genes. The goal is to build classification models that allow us to discriminate between ageing-related and non-ageing-related DNA repair genes, in order to better understand their different properties. Results The main patterns discovered by the classification methods are as follows: (a the number of protein-protein interactions was a predictor of DNA repair proteins being ageing-related; (b the use of predictor attributes based on protein-protein interactions considerably increased predictive accuracy of attributes based on Gene Ontology (GO annotations; (c GO terms related to "response to stimulus" seem reasonably good predictors of ageing-relatedness for DNA repair genes; (d interaction with the XRCC5 (Ku80 protein is a strong predictor of ageing-relatedness for DNA repair genes; and (e DNA repair genes with a high expression in T lymphocytes are more likely to be ageing-related. Conclusions The above patterns are broadly integrated in an analysis discussing relations between Ku, the non-homologous end joining DNA repair pathway, ageing and lymphocyte development. These patterns and their analysis support non-homologous end joining double strand break repair as central to the ageing-relatedness of DNA repair genes. Our work also showcases the use of protein interaction partners to improve accuracy in data mining methods and our approach could be applied to other ageing-related pathways.

  11. The relationship between dietary fatty acids and inflammatory genes on the obese phenotype and serum lipids.

    Science.gov (United States)

    Joffe, Yael T; Collins, Malcolm; Goedecke, Julia H

    2013-05-21

    Obesity, a chronic low-grade inflammatory condition is associated with the development of many comorbidities including dyslipidemia. This review examines interactions between single nucleotide polymorphisms (SNP) in the inflammatory genes tumor necrosis alpha (TNFA) and interleukin-6 (IL-6) and dietary fatty acids, and their relationship with obesity and serum lipid levels. In summary, dietary fatty acids, in particular saturated fatty acids and the omega-3 and omega-6 polyunsaturated fatty acids, impact the expression of the cytokine genes TNFA and IL-6, and alter TNFα and IL-6 production. In addition, sequence variants in these genes have also been shown to alter their gene expression and plasma levels, and are associated with obesity, measures of adiposity and serum lipid concentrations. When interactions between dietary fatty acids and TNFA and IL-6 SNPs on obesity and serum lipid were analyzed, both the quantity and quality of dietary fatty acids modulated the relationship between TNFA and IL-6 SNPs on obesity and serum lipid profiles, thereby impacting the association between phenotype and genotype. Researching these diet-gene interactions more extensively, and understanding the role of ethnicity as a confounder in these relationships, may contribute to a better understanding of the inter-individual variability in the obese phenotype.

  12. DNA Repair Gene Polymorphisms in Relation to Non-Small Cell Lung Cancer Survival

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    2015-07-01

    Full Text Available Background: Single nucleotide polymorphisms (SNPs in the DNA repair genes are suspected to be related to the survival of lung cancer patients due to their possible influence on DNA repair capacity (DRC. However, the study results are inconsistent. Methods: A follow-up study of 610 non-small cell lung cancer (NSCLC patients was conducted to investigate genetic polymorphisms associated with the DNA repair genes in relation to NSCLC survival; 6 SNPs were genotyped, including XRCC1 (rs25487 G>A, hOGG1 (rs1052133 C>G, MUTYH (rs3219489 G>C, XPA (rs1800975 G>A, ERCC2 (rs1799793 G>A and XRCC3 (rs861539 C>T. Kaplan-Meier survival curve and Cox proportional hazards regression analyses were performed. SNP-SNP interaction was also examined using the survival tree analysis. Results: Advanced disease stage and older age at diagnosis were associated with poor prognosis of NSCLC. Patients with the variant ‘G' allele of hOGG1 rs1052133 had poor overall survival compared with those with the homozygous wild ‘CC' genotype, especially in female patients, adenocarcinoma histology, early stage, light smokers and without family history of cancer. For never smoking female lung cancer patients, individuals carrying homozygous variant ‘AA' genotype of XPA had shorter survival time compared to those with wild ‘G' alleles. Furthermore, females carrying homozygous variant XPA and hOGG1 genotypes simultaneously had 2.78-fold increased risk for death. Among all 6 polymorphisms, the homozygous variant ‘AA' of XPA carriers had poor prognosis compared to the carriers of wild ‘G' alleles of XPA together with other base excision repair (BER polymorphisms. Conclusions: Besides disease stage and age, the study found DNA repair gene polymorphisms were associated with lung cancer survival.

  13. Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma.

    Science.gov (United States)

    Betti, Marta; Casalone, Elisabetta; Ferrante, Daniela; Aspesi, Anna; Morleo, Giulia; Biasi, Alessandra; Sculco, Marika; Mancuso, Giuseppe; Guarrera, Simonetta; Righi, Luisella; Grosso, Federica; Libener, Roberta; Pavesi, Mansueto; Mariani, Narciso; Casadio, Caterina; Boldorini, Renzo; Mirabelli, Dario; Pasini, Barbara; Magnani, Corrado; Matullo, Giuseppe; Dianzani, Irma

    2017-10-01

    Malignant pleural mesothelioma (MPM) is a rare, aggressive cancer caused by asbestos exposure. An inherited predisposition has been suggested to explain multiple cases in the same family and the observation that not all individuals highly exposed to asbestos develop the tumor. Germline mutations in BAP1 are responsible for a rare cancer predisposition syndrome that includes predisposition to mesothelioma. We hypothesized that other genes involved in hereditary cancer syndromes could be responsible for the inherited mesothelioma predisposition. We investigated the prevalence of germline variants in 94 cancer-predisposing genes in 93 MPM patients with a quantified asbestos exposure. Ten pathogenic truncating variants (PTVs) were identified in PALB2, BRCA1, FANCI, ATM, SLX4, BRCA2, FANCC, FANCF, PMS1 and XPC. All these genes are involved in DNA repair pathways, mostly in homologous recombination repair. Patients carrying PTVs represented 9.7% of the panel and showed lower asbestos exposure than did all the other patients (p = 0.0015). This suggests that they did not efficiently repair the DNA damage induced by asbestos and leading to carcinogenesis. This study shows that germline variants in several genes may increase MPM susceptibility in the presence of asbestos exposure and may be important for specific treatment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    Science.gov (United States)

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  15. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    Science.gov (United States)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  16. Dietary proanthocyanidins prevent ultraviolet radiation-induced non-melanoma skin cancer through enhanced repair of damaged DNA-dependent activation of immune sensitivity.

    Science.gov (United States)

    Katiyar, Santosh K; Pal, Harish C; Prasad, Ram

    2017-04-12

    Numerous plant products have been used to prevent and manage a wide variety of diseases for centuries. These products are now considered as promising options for the development of more effective and less toxic alternatives to the systems of medicine developed primarily in developed countries in the modern era. Grape seed proanthocyanidins (GSPs) are of great interest due to their anti-carcinogenic effects that have been demonstrated using various tumor models including ultraviolet (UV) radiation-induced non-melanoma skin cancer. In a pre-clinical mouse model supplementation of a control diet (AIN76A) with GSPs at concentrations of 0.2% and 0.5% (w/w) significantly inhibits the growth and multiplicity of UVB radiation-induced skin tumors. In this review, we summarize the evidence that this inhibition of UVB-induced skin tumor development by dietary GSPs is mediated by a multiplicity of coordinated effects including: (i) Promotion of the repair of damaged DNA by nuclear excision repair mechanisms, and (ii) DNA repair-dependent stimulation of the immune system following the functional activation of dendritic cells and effector T cells. Dietary GSPs hold promise for the development of an effective alternative strategy for the prevention of excessive solar UVB radiation exposure-induced skin diseases including the risk of non-melanoma skin cancer in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. [Argonne National Lab., IL (United States); Libertin, C.R. [Loyola Univ., Maywood, IL (United States)

    1992-11-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{sm_bullet} mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/{sm_bullet} and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  18. DNA repair gene ERCC2 polymorphisms and associations with breast and ovarian cancer risk

    Directory of Open Access Journals (Sweden)

    Rabiau Nadège

    2008-05-01

    Full Text Available Abstract Breast and ovarian cancers increased in the last decades. Except rare cases with a genetic predisposition and high penetrance, these pathologies are viewed as a polygenic disease. In this concept, association studies look for genetic variations such as polymorphisms in low penetrance genes, i.e. genes in interaction with environmental factors. DNA repair systems that protect the genome from deleterious endogenous and exogenous damages have been shown to have significantly reduced. In particular, enzymes of the nucleotide excision repair pathway are suspected to be implicated in cancer. In this study, 2 functional polymorphisms in a DNA repair gene ERCC2 were analyzed. The population included 911 breast cancer cases, 51 ovarian cancer cases and 1000 controls. The genotyping of 2 SNP (Single Nucleotide Polymorphism was carried out on the population with the MGB (Minor Groove Binder probe technique which consists of the use of the allelic discrimination with the Taqman® method. This study enabled us to show an increase in risk of breast cancer with no oral contraceptive users and with women exhibiting a waist-to-hip ratio (WHR > 0.85 for Asn homozygous for ERCC2 312.

  19. Mutation mismatch repair gene deletions in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Couronné, Lucile; Ruminy, Philippe; Waultier-Rascalou, Agathe; Rainville, Vinciane; Cornic, Marie; Picquenot, Jean-Michel; Figeac, Martin; Bastard, Christian; Tilly, Hervé; Jardin, Fabrice

    2013-05-01

    To further unravel the molecular pathogenesis of diffuse large B-cell lymphoma (DLBCL), we performed high-resolution comparative genomic hybridization on lymph node biopsies from 70 patients. With this strategy, we identified microdeletions of genes involved in the mutation mismatch repair (MMR) pathway in two samples. The first patient presented with a homozygous deletion of MSH2-MSH6 due to duplication of an unbalanced pericentric inversion of chromosome 2. The other case showed a PMS2 heterozygous deletion. PMS2 and MSH2-MSH6 abnormalities, respectively, resulted in a decrease and complete loss of gene expression. However, unlike tumors associated with the hereditary non-polyposis colorectal cancer syndrome or immunodeficiency-related lymphomas, no microsatellite instability was detected. Mutational profiles revealed especially in one patient an aberrant hypermutation without a clear activation-induced cytidine deaminase signature, indicating a breakdown of the high-fidelity repair in favor of the error-prone repair pathway. Our findings suggest that in a rare subset of patients, inactivation of the genes of the MMR pathway is likely an important step in the molecular pathogenesis of DLBCL and does not involve the same molecular mechanisms as other common neoplasms with MMR deficiency.

  20. Dietary Nitrate Is a Modifier of Vascular Gene Expression in Old Male Mice

    Directory of Open Access Journals (Sweden)

    Christos Rammos

    2015-01-01

    Full Text Available Aging leads to a number of disadvantageous changes in the cardiovascular system. Deterioration of vascular homoeostasis with increase in oxidative stress, chronic low-grade inflammation, and impaired nitric oxide bioavailability results in endothelial dysfunction, increased vascular stiffness, and compromised arterial-ventricular interactions. A chronic dietary supplementation with the micronutrient nitrate has been demonstrated to improve vascular function. Healthy dietary patterns may regulate gene expression profiles. However, the mechanisms are incompletely understood. The changes that occur at the gene expression level and transcriptional profile following a nutritional modification with nitrate have not been elucidated. To determine the changes of the vascular transcriptome, we conducted gene expression microarray experiments on aortas of old mice, which were treated with dietary nitrate. Our results highlight differentially expressed genes overrepresented in gene ontology categories. Molecular interaction and reaction pathways involved in the calcium-signaling pathway and the detoxification system were identified. Our results provide novel insight to an altered gene-expression profile in old mice following nitrate supplementation. This supports the general notion of nutritional approaches to modulate age-related changes of vascular functions and its detrimental consequences.

  1. A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair

    Directory of Open Access Journals (Sweden)

    Leclerc Xavier

    2009-04-01

    Full Text Available Abstract Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1. Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments.

  2. Adipose gene expression prior to weight loss can differentiate and weakly predict dietary responders.

    Directory of Open Access Journals (Sweden)

    David M Mutch

    Full Text Available BACKGROUND: The ability to identify obese individuals who will successfully lose weight in response to dietary intervention will revolutionize disease management. Therefore, we asked whether it is possible to identify subjects who will lose weight during dietary intervention using only a single gene expression snapshot. METHODOLOGY/PRINCIPAL FINDINGS: The present study involved 54 female subjects from the Nutrient-Gene Interactions in Human Obesity-Implications for Dietary Guidelines (NUGENOB trial to determine whether subcutaneous adipose tissue gene expression could be used to predict weight loss prior to the 10-week consumption of a low-fat hypocaloric diet. Using several statistical tests revealed that the gene expression profiles of responders (8-12 kgs weight loss could always be differentiated from non-responders (<4 kgs weight loss. We also assessed whether this differentiation was sufficient for prediction. Using a bottom-up (i.e. black-box approach, standard class prediction algorithms were able to predict dietary responders with up to 61.1%+/-8.1% accuracy. Using a top-down approach (i.e. using differentially expressed genes to build a classifier improved prediction accuracy to 80.9%+/-2.2%. CONCLUSION: Adipose gene expression profiling prior to the consumption of a low-fat diet is able to differentiate responders from non-responders as well as serve as a weak predictor of subjects destined to lose weight. While the degree of prediction accuracy currently achieved with a gene expression snapshot is perhaps insufficient for clinical use, this work reveals that the comprehensive molecular signature of adipose tissue paves the way for the future of personalized nutrition.

  3. Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes.

    Science.gov (United States)

    Kavitha, K; Thiyagarajan, P; Rathna Nandhini, J; Mishra, Rajakishore; Nagini, S

    2013-08-01

    Identifying agents that activate nuclear factor erythroid-2 related factor-2 (Nrf2), a key regulator of various cytoprotective antioxidant, and detoxifying enzymes has evolved as a promising strategy for cancer chemoprevention. In the present study, we investigated the effect of dietary supplementation of structurally diverse phytochemicals- astaxanthin, blueberry, chlorophyllin, ellagic acid, and theaphenon-E on Nrf2 signaling, and xenobiotic-metabolizing and antioxidant enzymes in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model. We observed that these phytochemicals induce nuclear accumulation of Nrf2 while downregulating its negative regulator, Keap-1. This was associated with reduced expression of CYP1A1 and CYP1B1, the cytochrome P450 isoforms involved in the activation of DMBA, and the oxidative stress marker 8-hydroxy-2'-deoxyguanosine coupled with upregulation of the phase II detoxification enzymes glutathione S-transferases and NAD(P)H:quinone oxidoreductase 1 and the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. In addition, these dietary phytochemicals also enhanced the DNA repair enzymes 8-oxoguanine glycosylase 1 (OGG1), xeroderma pigmentosum D (XPD), xeroderma pigmentosum G (XPG), and x-ray repair cross complementing group 1 (XRCC1). Our data provide substantial evidence that the dietary phytochemicals inhibit the development of HBP carcinomas through the activation of Nrf2/Keap-1 signaling and by upregulating cytoprotective enzymes. The extent of the chemopreventive effects of the phytochemicals was in the order: chlorophyllin > blueberry > ellagic acid > astaxanthin > theaphenon-E. Thus these dietary phytochemicals that function as potent activators of Nrf2 and its orchestrated response are novel candidates for cancer chemoprevention.

  4. Diet-gene interactions between dietary fat intake and common polymorphisms in determining lipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Corella, D.

    2009-07-01

    Current dietary guidelines for fat intake have not taken into consideration the possible genetic differences underlying the individual variability in responsiveness to dietary components. Genetic variability has been identified in humans for all the known lipid metabolism-related genes resulting in a plethora of candidate genes and genetic variants to examine in diet-gene interaction studies focused on fat consumption. Some examples of fat-gene interaction are reviewed. These include: the interaction between total intake and the 14C/T in the hepatic lipase gene promoter in determining high-density lipoprotein cholesterol (HDL-C) metabolism; the interaction between polyunsaturated fatty acids (PUFA) and the 5G/A polymorphism in the APOA1 gene plasma HDL-C concentrations; the interaction between PUFA and the L162V polymorphism in the PPARA gene in determining triglycerides and APOC3 concentrations; and the interaction between PUFA intake and the -1131T>C in the APOA5 gene in determining triglyceride metabolism. Although hundreds of diet-gene interaction studies in lipid metabolism have been published, the level of evidence to make specific nutritional recommendations to the population is still low and more research in nutrigenetics has to be undertaken. (Author) 31 refs.

  5. Assessment by Southern blot analysis of UV-induced damage and repair in human immunoglobulin genes.

    Science.gov (United States)

    Bianchi, M S; Bianchi, N O; de la Chapelle, A

    1990-09-01

    Irradiation of DNA with UV light induces pyrimidine dimers and (6-4) photoproducts. The presence of one of these photolesions in the restriction site of a given endonuclease inhibits DNA cleavage and induces the formation of fragments by incomplete DNA digestion which appear as additional, facultative bands in Southern hybridization autoradiograms. The number and size of these fragments show a positive correlation with the UV dose. The response to UV light of immunoglobulin light-chain constant kappa and heavy-chain constant mu genes was analyzed with 2 specific probes. Constant kappa and mu genes when irradiated as part of the chromatin of living lymphocytes showed a UV sensitivity similar to that of naked DNA. The same genes from granulocytes had 50-60 times lower UV sensitivity. When cells were allowed to repair photolesions for 24 h the facultative bands from granulocytes disappeared indicating that these cells were able to remove photolesions from constant kappa and mu genes. Facultative bands from lymphocytes showed a smaller decrease of density after 24 h repair. This suggests that lymphocytes are less efficient than granulocytes in removing UV damage from constant kappa and mu genes.

  6. Effect of dietary phosphorus and its interaction with genetic background on global gene expression in porcine muscle.

    Science.gov (United States)

    Qu, A; Rothschild, M F; Stahl, C H

    2007-08-01

    Environmental concerns and costs associated with dietary phosphorus (P) supplementation have lead to attempts to minimize the amount of P added to swine diets. In addition to its requirement for bone growth, dietary P is also necessary for muscular growth. To examine the effects of genetic background and dietary P on global gene expression in the muscle of young pigs, we utilized muscle tissue from 36 gilts sired from two different sire lines. These animals were fed either a P adequate, P deficient or P repletion diets for 14 days and showed differences in growth performance and bone integrity in response to the interaction of genetic background and dietary P. Total RNA from the loin muscle of these animals was obtained for microarray analysis. Significant differences (p<0.01) in gene expression were seen based on the effect of sire line (339 genes), dietary P (18 genes) and the interaction between sire line and dietary P (31 genes). The microarray data were validated by semi-quantitative real-time PCR. These results support our hypothesis that genetic background and dietary P treatment can affect the homeorhetic control of P metabolism in pigs. Genes identified as differentially expressed in this study may be excellent candidate genes for additional work to elucidate genotype specific P requirements as well as to identify a genetic background that can maintain superior growth in a more environmentally friendly manner.

  7. Human nutrigenomics of gene regulation by dietary fatty acids

    NARCIS (Netherlands)

    Afman, L.A.; Muller, M.R.

    2012-01-01

    Nutrigenomics employs high-throughput genomics technologies to unravel how nutrients modulate gene and protein expression and ultimately influence cellular and organism metabolism. The most often-applied genomics technique so far is transcriptomics, which allows quantifying genome-wide changes in ge

  8. Tissue repair genes: the TiRe database and its implication for skin wound healing.

    Science.gov (United States)

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E

    2016-04-19

    Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org.

  9. Reduced Activity of Double-Strand Break Repair Genes in Prostate Cancer Patients With Late Normal Tissue Radiation Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Oorschot, Bregje van, E-mail: b.vanoorschot@amc.uva.nl [Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Hovingh, Suzanne E. [Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Moerland, Perry D. [Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Medema, Jan Paul; Stalpers, Lukas J.A. [Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Vrieling, Harry [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Franken, Nicolaas A.P. [Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands)

    2014-03-01

    Purpose: To investigate clinical parameters and DNA damage response as possible risk factors for radiation toxicity in the setting of prostate cancer. Methods and Materials: Clinical parameters of 61 prostate cancer patients, 34 with (overresponding, OR) and 27 without (non-responding, NR) severe late radiation toxicity were assembled. In addition, for a matched subset the DNA damage repair kinetics (γ-H2AX assay) and expression profiles of DNA repair genes were determined in ex vivo irradiated lymphocytes. Results: Examination of clinical data indicated none of the considered clinical parameters to be correlated with the susceptibility of patients to develop late radiation toxicity. Although frequencies of γ-H2AX foci induced immediately after irradiation were similar (P=.32), significantly higher numbers of γ-H2AX foci were found 24 hours after irradiation in OR compared with NR patients (P=.03). Patient-specific γ-H2AX foci decay ratios were significantly higher in NR patients than in OR patients (P<.0001). Consequently, NR patients seem to repair DNA double-strand breaks (DSBs) more efficiently than OR patients. Moreover, gene expression analysis indicated several genes of the homologous recombination pathway to be stronger induced in NR compared with OR patients (P<.05). A similar trend was observed in genes of the nonhomologous end-joining repair pathway (P=.09). This is congruent with more proficient repair of DNA DSBs in patients without late radiation toxicity. Conclusions: Both gene expression profiling and DNA DSB repair kinetics data imply that less-efficient repair of radiation-induced DSBs may contribute to the development of late normal tissue damage. Induction levels of DSB repair genes (eg, RAD51) may potentially be used to assess the risk for late radiation toxicity.

  10. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  11. Proteasome inhibition enhances resistance to DNA damage via upregulation of Rpn4-dependent DNA repair genes.

    Science.gov (United States)

    Karpov, Dmitry S; Spasskaya, Daria S; Tutyaeva, Vera V; Mironov, Alexander S; Karpov, Vadim L

    2013-09-17

    The 26S proteasome is an ATP-dependent multi-subunit protease complex and the major regulator of intracellular protein turnover and quality control. However, its role in the DNA damage response is controversial. We addressed this question in yeast by disrupting the transcriptional regulation of the PRE1 proteasomal gene. The mutant strain has decreased proteasome activity and is hyper-resistant to various DNA-damaging agents. We found that Rpn4-target genes MAG1, RAD23, and RAD52 are overexpressed in this strain due to Rpn4 stabilisation. These genes represent three different pathways of base excision, nucleotide excision and double strand break repair by homologous recombination (DSB-HR). Consistently, the proteasome mutant displays increased DSB-HR activity. Our data imply that the proteasome may have a negative role in DNA damage response.

  12. Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Yawei; Spitz, Margaret R.; Guo Zhaozheng; Hadeyati, Mohammad; Grossman, Lawrence; Kraemer, Kenneth H.; Wei Qingyi

    2002-11-30

    As DNA repair plays an important role in genetic susceptibility to cancer, assessment of the DNA repair phenotype is critical for molecular epidemiological studies of cancer. In this report, we compared use of the luciferase (luc) reporter gene in a host-cell reactivation (HCR) (LUC) assay of repair of ultraviolet (UV) damage to DNA to use of the chloramphenicol (cat) gene-based HCR (CAT) assay we used previously for case-control studies. We performed both the assays on cryopreserved lymphocytes from 102 healthy non-Hispanic white subjects. There was a close correlation between DNA repair capacity (DRC) as measured by the LUC and CAT assays. Although these two assays had similar variation, the LUC assay was faster and more sensitive. We also analyzed the relationship between DRC and the subjects' previously determined genotypes for four polymorphisms of two nucleotide-excision repair (NER) genes (in intron 9 of xeroderma pigmentosum (XP) C and exons 6, 10 and 23 of XPD) and one polymorphism of a base-excision repair gene in exon 10 of X-ray complementing group 1 (XRCC1). The DRC was significantly lower in subjects homozygous for one or more polymorphisms of the two NER genes than in subjects with other genotypes (P=0.010). In contrast, the polymorphic XRCC1 allele had no significant effect on DRC. These results suggest that the post-UV LUC assay measures NER phenotype and that polymorphisms of XPC and XPD genes modulate DRC. For population studies of the DNA repair phenotype, many samples need to be evaluated, and so the LUC assay has several advantages over the CAT assay: the LUC assay was more sensitive, had less variation, was not radioactive, was easier to perform, and required fewer cryopreserved cells. These features make the LUC-based HCR assay suitable for molecular epidemiological studies.

  13. Rearrangement of RAG-1 recombinase gene in DNA-repair deficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Libertin, C.R.; Weaver, P. [Loyola Univ., Chicago, IL (United States); Churchill, M.; Chang-Liu, C.M. [Argonne National Lab., IL (United States)

    1993-11-01

    Mice recessive for the autosomal gene ``wasted`` wst display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-l/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot}mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot}mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  14. Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032.

    Directory of Open Access Journals (Sweden)

    Jason Gioia

    Full Text Available BACKGROUND: Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, gamma-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. PRINCIPAL FINDINGS: The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. SIGNIFICANCE: This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.

  15. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.

    Science.gov (United States)

    Jasin, Maria; Haber, James E

    2016-08-01

    DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occurs by homologous recombination, which relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution.

  16. Specific targeted gene repair using single-stranded DNA oligonucleotides at an endogenous locus in mammalian cells uses homologous recombination.

    Science.gov (United States)

    McLachlan, Jennifer; Fernandez, Serena; Helleday, Thomas; Bryant, Helen E

    2009-12-03

    The feasibility of introducing point mutations in vivo using single-stranded DNA oligonucleotides (ssON) has been demonstrated but the efficiency and mechanism remain elusive and potential side effects have not been fully evaluated. Understanding the mechanism behind this potential therapy may help its development. Here, we demonstrate the specific repair of an endogenous non-functional hprt gene by a ssON in mammalian cells, and show that the frequency of such an event is enhanced when cells are in S-phase of the cell cycle. A potential barrier in using ssONs as gene therapy could be non-targeted mutations or gene rearrangements triggered by the ssON. Both the non-specific mutation frequencies and the frequency of gene rearrangements were largely unaffected by ssONs. Furthermore, we find that the introduction of a mutation causing the loss of a functional endogenous hprt gene by a ssON occurred at a similarly low but statistically significant frequency in wild type cells and in cells deficient in single strand break repair, nucleotide excision repair and mismatch repair. However, this mutation was not induced in XRCC3 mutant cells deficient in homologous recombination. Thus, our data suggest ssON-mediated targeted gene repair is more efficient in S-phase and involves homologous recombination.

  17. Expression of DNA repair genes in burned skin exposed to low-level red laser.

    Science.gov (United States)

    Trajano, Eduardo Tavares Lima; Mencalha, Andre Luiz; Monte-Alto-Costa, Andréa; Pôrto, Luís Cristóvão; de Souza da Fonseca, Adenilson

    2014-11-01

    Although red laser lights lie in the region of non-ionizing radiations in the electromagnetic spectrum, there are doubts whether absorption of these radiations causes lesions in the DNA molecule. Our aim was to investigate the expression of the genes involved with base excision and nucleotide excision repair pathways in skin tissue submitted to burn injury and exposed to low-level red laser. Wistar rats were divided as follows: control group-rats burned and not irradiated, laser group-rats burned and irradiated 1 day after injury for five consecutive days, and later laser group-rats injured and treated 4 days after injury for five consecutive days. Irradiation was performed according to a clinical protocol (20 J/cm(2), 100 mW, continuous wave emission mode). The animals were sacrificed on day 10, and scarred tissue samples were withdrawn for total RNA extraction, complementary DNA (cDNA) synthesis, and evaluation of gene expression by quantitative polymerase chain reaction. Low-level red laser exposure (1) reduces the expression of APE1 messenger (mRNA), (2) increases the expression of OGG1 mRNA, (3) reduces the expression of XPC mRNA, and (4) increases the expression of XPA mRNA both in laser and later laser groups. Red laser exposure at therapeutic fluences alters the expression of genes related to base excision and nucleotide excision pathways of DNA repair during wound healing of burned skin.

  18. Are SNP-Smoking Association Studies Needed in Controls? DNA Repair Gene Polymorphisms and Smoking Intensity.

    Science.gov (United States)

    Verde, Zoraida; Reinoso, Luis; Chicharro, Luis Miguel; Resano, Pilar; Sánchez-Hernández, Ignacio; Rodríguez González-Moro, Jose Miguel; Bandrés, Fernando; Gómez-Gallego, Félix; Santiago, Catalina

    2015-01-01

    Variations in tobacco-related cancers, incidence and prevalence reflect differences in tobacco consumption in addition to genetic factors. Besides, genes related to lung cancer risk could be related to smoking behavior. Polymorphisms altering DNA repair capacity may lead to synergistic effects with tobacco carcinogen-induced lung cancer risk. Common problems in genetic association studies, such as presence of gene-by-environment (G x E) correlation in the population, may reduce the validity of these designs. The main purpose of this study was to evaluate the independence assumption for selected SNPs and smoking behaviour in a cohort of 320 healthy Spanish smokers. We found an association between the wild type alleles of XRCC3 Thr241Met or KLC3 Lys751Gln and greater smoking intensity (OR = 12.98, 95% CI = 2.86-58.82 and OR=16.90, 95% CI=2.09-142.8; respectively). Although preliminary, the results of our study provide evidence that genetic variations in DNA-repair genes may influence both smoking habits and the development of lung cancer. Population-specific G x E studies should be carried out when genetic and environmental factors interact to cause the disease.

  19. Are SNP-Smoking Association Studies Needed in Controls? DNA Repair Gene Polymorphisms and Smoking Intensity.

    Directory of Open Access Journals (Sweden)

    Zoraida Verde

    Full Text Available Variations in tobacco-related cancers, incidence and prevalence reflect differences in tobacco consumption in addition to genetic factors. Besides, genes related to lung cancer risk could be related to smoking behavior. Polymorphisms altering DNA repair capacity may lead to synergistic effects with tobacco carcinogen-induced lung cancer risk. Common problems in genetic association studies, such as presence of gene-by-environment (G x E correlation in the population, may reduce the validity of these designs. The main purpose of this study was to evaluate the independence assumption for selected SNPs and smoking behaviour in a cohort of 320 healthy Spanish smokers. We found an association between the wild type alleles of XRCC3 Thr241Met or KLC3 Lys751Gln and greater smoking intensity (OR = 12.98, 95% CI = 2.86-58.82 and OR=16.90, 95% CI=2.09-142.8; respectively. Although preliminary, the results of our study provide evidence that genetic variations in DNA-repair genes may influence both smoking habits and the development of lung cancer. Population-specific G x E studies should be carried out when genetic and environmental factors interact to cause the disease.

  20. A systematic gene-gene and gene-environment interaction analysis of DNA repair genes XRCC1, XRCC2, XRCC3, XRCC4, and oral cancer risk.

    Science.gov (United States)

    Yang, Cheng-Hong; Lin, Yu-Da; Yen, Ching-Yui; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2015-04-01

    Oral cancer is the sixth most common cancer worldwide with a high mortality rate. Biomarkers that anticipate susceptibility, prognosis, or response to treatments are much needed. Oral cancer is a polygenic disease involving complex interactions among genetic and environmental factors, which require multifaceted analyses. Here, we examined in a dataset of 103 oral cancer cases and 98 controls from Taiwan the association between oral cancer risk and the DNA repair genes X-ray repair cross-complementing group (XRCCs) 1-4, and the environmental factors of smoking, alcohol drinking, and betel quid (BQ) chewing. We employed logistic regression, multifactor dimensionality reduction (MDR), and hierarchical interaction graphs for analyzing gene-gene (G×G) and gene-environment (G×E) interactions. We identified a significantly elevated risk of the XRCC2 rs2040639 heterozygous variant among smokers [adjusted odds ratio (OR) 3.7, 95% confidence interval (CI)=1.1-12.1] and alcohol drinkers [adjusted OR=5.7, 95% CI=1.4-23.2]. The best two-factor based G×G interaction of oral cancer included the XRCC1 rs1799782 and XRCC2 rs2040639 [OR=3.13, 95% CI=1.66-6.13]. For the G×E interaction, the estimated OR of oral cancer for two (drinking-BQ chewing), three (XRCC1-XRCC2-BQ chewing), four (XRCC1-XRCC2-age-BQ chewing), and five factors (XRCC1-XRCC2-age-drinking-BQ chewing) were 32.9 [95% CI=14.1-76.9], 31.0 [95% CI=14.0-64.7], 49.8 [95% CI=21.0-117.7] and 82.9 [95% CI=31.0-221.5], respectively. Taken together, the genotypes of XRCC1 rs1799782 and XRCC2 rs2040639 DNA repair genes appear to be significantly associated with oral cancer. These were enhanced by exposure to certain environmental factors. The observations presented here warrant further research in larger study samples to examine their relevance for routine clinical care in oncology.

  1. Nucleotide Excision Repair in Cellular Chromatin: Studies with Yeast from Nucleotide to Gene to Genome

    Directory of Open Access Journals (Sweden)

    Simon Reed

    2012-09-01

    Full Text Available Here we review our development of, and results with, high resolution studies on global genome nucleotide excision repair (GGNER in Saccharomyces cerevisiae. We have focused on how GGNER relates to histone acetylation for its functioning and we have identified the histone acetyl tranferase Gcn5 and acetylation at lysines 9/14 of histone H3 as a major factor in enabling efficient repair. We consider results employing primarily MFA2 as a model gene, but also those with URA3 located at subtelomeric sequences. In the latter case we also see a role for acetylation at histone H4. We then go on to outline the development of a high resolution genome-wide approach that enables one to examine correlations between histone modifications and the nucleotide excision repair (NER of UV-induced cyclobutane pyrimidine dimers throughout entire genomes. This is an approach that will enable rapid advances in understanding the complexities of how compacted chromatin in chromosomes is processed to access DNA damage and then returned to its pre-damaged status to maintain epigenetic codes.

  2. Dietary intake alters gene expression in colon tissue: possible underlying mechanism for the influence of diet on disease.

    Science.gov (United States)

    Pellatt, Andrew J; Slattery, Martha L; Mullany, Lila E; Wolff, Roger K; Pellatt, Daniel F

    2016-06-01

    Although the association between diet and disease is well documented, the biologic mechanisms involved have not been entirely elucidated. In this study, we evaluate how dietary intake influences gene expression to better understand the underlying mechanisms through which diet operates. We used data from 144 individuals who had comprehensive dietary intake and gene expression data from RNAseq using normal colonic mucosa. Using the DESeq2 statistical package, we identified genes that showed statistically significant differences in expression between individuals in high-intake and low-intake categories for several dietary variables of interest adjusting for age and sex. We examined total calories, total fats, vegetable protein, animal protein, carbohydrates, trans-fatty acids, mutagen index, red meat, processed meat, whole grains, vegetables, fruits, fiber, folate, dairy products, calcium, and prudent and western dietary patterns. Using a false discovery rate of less than 0.1, meat-related foods were statistically associated with 68 dysregulated genes, calcium with three dysregulated genes, folate with four dysregulated genes, and nonmeat-related foods with 65 dysregulated genes. With a more stringent false discovery rate of less than 0.05, there were nine meat-related dysregulated genes and 23 nonmeat-related genes. Ingenuity pathway analysis identified three major networks among genes identified as dysregulated with respect to meat-related dietary variables and three networks among genes identified as dysregulated with respect to nonmeat-related variables. The top networks (Ingenuity Pathway Analysis network score >30) associated with meat-related genes were (i) cancer, organismal injury, and abnormalities, tumor morphology, and (ii) cellular function and maintenance, cellular movement, cell death, and survival. Among genes related to nonmeat consumption variables, the top networks were (i) hematological system development and function, nervous system development

  3. Dietary patterns and colorectal adenomas in Lynch syndrome: the GEOLynch cohort study

    NARCIS (Netherlands)

    Botma, A.; Vasen, H.F.; Duijnhoven, F.J.B. van; Kleibeuker, J.H.; Nagengast, F.M.; Kampman, E.

    2013-01-01

    BACKGROUND: Patients with Lynch syndrome (LS) have a high risk of developing colorectal cancer due to mutations in mismatch repair genes. Because dietary factors, alone and in combination, influence sporadic colorectal carcinogenesis, the association of dietary patterns with colorectal adenomas in L

  4. Dietary Patterns and Colorectal Adenomas in Lynch Syndrome The GEOLynch Cohort Study

    NARCIS (Netherlands)

    Botma, Akke; Vasen, Hans F. A.; van Duijnhoven, Franzel J. B.; Kleibeuker, Jan H.; Nagengast, Fokko M.; Kampman, Ellen

    2013-01-01

    BACKGROUND: Patients with Lynch syndrome (LS) have a high risk of developing colorectal cancer due to mutations in mismatch repair genes. Because dietary factors, alone and in combination, influence sporadic colorectal carcinogenesis, the association of dietary patterns with colorectal adenomas in L

  5. Histopathologic alterations associated with global gene expression due to chronic dietary TCDD exposure in juvenile zebrafish.

    Science.gov (United States)

    Liu, Qing; Spitsbergen, Jan M; Cariou, Ronan; Huang, Chun-Yuan; Jiang, Nan; Goetz, Giles; Hutz, Reinhold J; Tonellato, Peter J; Carvan, Michael J

    2014-01-01

    The goal of this project was to investigate the effects and possible developmental disease implication of chronic dietary TCDD exposure on global gene expression anchored to histopathologic analysis in juvenile zebrafish by functional genomic, histopathologic and analytic chemistry methods. Specifically, juvenile zebrafish were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb, and fish were sampled following 0, 7, 14, 28 and 42 d after initiation of the exposure. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb) and male (18.04 ppb) fish at 28 d post exposure. Dietary TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of nasal neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Importantly, lesions in nasal epithelium and evidence of endocrine disruption based on alternatively spliced vasa transcripts are two novel and significant results of this study. Microarray gene expression analysis comparing vehicle control to dietary TCDD revealed dysregulated genes involved in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential mechanisms of developmental dysfunctions induced by TCDD and vasa as a biomarker for ovarian developmental disruption.

  6. Histopathologic alterations associated with global gene expression due to chronic dietary TCDD exposure in juvenile zebrafish.

    Directory of Open Access Journals (Sweden)

    Qing Liu

    Full Text Available The goal of this project was to investigate the effects and possible developmental disease implication of chronic dietary TCDD exposure on global gene expression anchored to histopathologic analysis in juvenile zebrafish by functional genomic, histopathologic and analytic chemistry methods. Specifically, juvenile zebrafish were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb, and fish were sampled following 0, 7, 14, 28 and 42 d after initiation of the exposure. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb and male (18.04 ppb fish at 28 d post exposure. Dietary TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of nasal neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Importantly, lesions in nasal epithelium and evidence of endocrine disruption based on alternatively spliced vasa transcripts are two novel and significant results of this study. Microarray gene expression analysis comparing vehicle control to dietary TCDD revealed dysregulated genes involved in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential mechanisms of developmental dysfunctions induced by TCDD and vasa as a biomarker for ovarian developmental disruption.

  7. Early passage bone marrow stromal cells express genes involved in nervous system development supporting their relevance for neural repair

    NARCIS (Netherlands)

    Nandoe, R.D.S.; Bossers, K.; Ritfeld, G.J.; Blits, B.; Grotenhuis, J.A.; Verhaagen, J.; Oudega, M.

    2011-01-01

    PURPOSE: The assessment of the capacity of bone marrow stromal cells (BMSC) to repair the nervous system using gene expression profiling. The evaluation of effects of long-term culturing on the gene expression profile of BMSC. METHODS: Fourty four k whole genome rat microarrays were used to study

  8. Dietary intake alters gene expression in colon tissue: possible underlying mechanism for the influence of diet on disease

    OpenAIRE

    Pellatt, Andrew J.; Slattery, Martha L.; Mullany, Lila E.; Wolff, Roger K.; Pellatt, Daniel F.

    2016-01-01

    Background Although the association between diet and disease is well documented, the biologic mechanisms involved have not been entirely elucidated. In this study, we evaluate how dietary intake influences gene expression to better understand the underlying mechanisms through which diet operates. Methods We used data from 144 individuals who had comprehensive dietary intake and gene expression data from RNAseq using normal colonic mucosa. Using the DESeq2 statistical package, we identified ge...

  9. Effects of Dietary Soybean Stachyose and Phytic Acid on Gene Expressions of Serine Proteases in Japanese Flounder (Paralichthys olivaceus)

    Institute of Scientific and Technical Information of China (English)

    MI Haifeng; MAI Kangsen; ZHANG Wenbing; WU Chenglong; CAI Yinghua

    2011-01-01

    Soybean stachyose (SBS) and phytic acid (PA) are anti-nutritional factors (ANF) which have deleterious effects on the growth and digestibility in fish.The present research studied the effects of dietary SBS and PA on the expression of three serine protease genes in the liver of Japanese flounder (Paralichthys olivaceus).These genes are trypsinogen 1 (poTRY),elastase 1 (poEL) and chymotrypsinogen 1 (poCTRY).Eight artificial diets with graded levels of supplemented ANFs were formulated to 4 levels of SBS (0.00,0.40,0.80 and 1.50%),4 levels of PA (0.00,0.20,0.40 and 0.80),respectively.Japanese flounder (initial weight 2.45 g±0.01 g)were fed with these diets for 10 weeks with three replications per treatment.At the end of 10 weeks,supplementation of 0.40% of dietary SBS or PA significantly increased the gene expression ofpoTRY and poCTRY (P<0.05).The same level of dietary SBS significantly decreased the gene expression of poEL.In comparison with the control group (ANF-free),dietary PA (0.2% and 0.8%)significantly decreased the gene expression ofpoTRY,poCTRY and poEL (P<0.05).However,excessive supplement of dietary SBS (1.5%) has no significant effects on these gene expressions (P>0.05).These results suggested that dietary SBS and dietary PA could directly affect the serine protease genes at the transcriptional level in Japanese flounder,and these genes' expression was more sensitive to dietary PA than to SBS under the current experimental conditions.

  10. Synergistic interactions between RAD5, RAD16, and RAD54, three partially homologous yeast DNA repair genes each in a different repair pathway

    Energy Technology Data Exchange (ETDEWEB)

    Glassner, B.J. [Univ. of California, Berkeley, CA (United States); Mortimer, R.K. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1994-07-01

    Considerable homology has recently been noted between the proteins encoded by the RAD5, RAD16 and RAD54 genes of Saccharomyces cerevisiae. These genes are members of the RAD6, RAD3 and RAD50 epistasis groups, respectively, which correspond to the three major DNA repair pathways in yeast. These proteins also share homology with other eucaryotic proteins, including those encoded by SNF2 and MO1 of yeast, brahma and lodestar of Drosophila and the human ERCC6 gene. The homology shares features with known helicases, suggesting a newly identified helicase subfamily. We have constructed a series of congenic single-, double- and triple-deletion mutants involving RAD5, RAD16 and RAD54 to examine the interactions between these genes. Each deletion mutation alone has only a moderate effect on survival after exposure to UV radiation. Each pairwise-double mutant exhibits marked synergism. The triple-deletion mutant displays further synergism. These results confirm the assignment of the RAD54 gene to the RAD50 epistasis group and suggest that the RAD16 gene plays a larger role in DNA repair after exposure to UV radiation than has been suggested previously. Additionally, the proteins encoded by RAD5, RAD16, and RAD54 may compete for the same substrate after damage induced by UV radiation, possibly at an early step in their respective pathways. 49 refs., 6 figs., 2 tabs.

  11. Haplotype analyses of DNA repair gene polymorphisms and their role in ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Avinash Bardia

    Full Text Available Ulcerative colitis (UC is a major clinical form of inflammatory bowel disease. UC is characterized by mucosal inflammation limited to the colon, always involving the rectum and a variable extent of the more proximal colon in a continuous manner. Genetic variations in DNA repair genes may influence the extent of repair functions, DNA damage, and thus the manifestations of UC. This study thus evaluated the role of polymorphisms of the genes involved in DNA repair mechanisms. A total of 171 patients and 213 controls were included. Genotyping was carried out by ARMS PCR and PCR-RFLP analyses for RAD51, XRCC3 and hMSH2 gene polymorphisms. Allelic and genotypic frequencies were computed in both control & patient groups and data was analyzed using appropriate statistical tests. The frequency of 'A' allele of hMSH2 in the UC group caused statistically significant increased risk for UC compared to controls (OR 1.64, 95% CI 1.16-2.31, p = 0.004. Similarly, the CT genotype of XRCC3 gene was predominant in the UC group and increased the risk for UC by 1.75 fold compared to controls (OR 1.75, 95% CI 1.15-2.67, p = 0.03, further confirming the risk of 'T' allele in UC. The GC genotype frequency of RAD51 gene was significantly increased (p = 0.02 in the UC group (50.3% compared to controls (38%. The GC genotype significantly increased the risk for UC compared to GG genotype by 1.73 fold (OR 1.73, 95% CI 1.14-2.62, p = 0.02 confirming the strong association of 'C' allele with UC. Among the controls, the SNP loci combination of hMSH2:XRCC3 were in perfect linkage. The GTC and ACC haplotypes were found to be predominant in UC than controls with a 2.28 and 2.93 fold significant increase risk of UC.

  12. Polymorphisms in genes controlling inflammation and tissue repair in rheumatoid arthritis: a case control study

    Directory of Open Access Journals (Sweden)

    de Vogel Lisette

    2011-03-01

    Full Text Available Abstract Background Various cytokines and inflammatory mediators are known to be involved in the pathogenesis of rheumatoid arthritis (RA. We hypothesized that polymorphisms in selected inflammatory response and tissue repair genes contribute to the susceptibility to and severity of RA. Methods Polymorphisms in TNFA, IL1B, IL4, IL6, IL8, IL10, PAI1, NOS2a, C1INH, PARP, TLR2 and TLR4 were genotyped in 376 Caucasian RA patients and 463 healthy Caucasian controls using single base extension. Genotype distributions in patients were compared with those in controls. In addition, the association of polymorphisms with the need for anti-TNF-α treatment as a marker of RA severity was assessed. Results The IL8 781 CC genotype was associated with early onset of disease. The TNFA -238 G/A polymorphism was differentially distributed between RA patients and controls, but only when not corrected for age and gender. None of the polymorphisms was associated with disease severity. Conclusions We here report an association between IL8 781 C/T polymorphism and age of onset of RA. Our findings indicate that there might be a role for variations in genes involved in the immune response and in tissue repair in RA pathogenesis. Nevertheless, additional larger genomic and functional studies are required to further define their role in RA.

  13. Repair of spinal cord injury by neural stem cells modified with BDNF gene in rats

    Institute of Scientific and Technical Information of China (English)

    Wei LI; Wen-Qin CAI; Cheng-Ren LI

    2006-01-01

    Objective To explore repair of spinal cord injury by neural stem cells (NSCs) modified with brain derived neurotrophic factor (BDNF) gene (BDNF-NSCs) in rats. Methods Neural stem cells modified with BDNF gene were transplanted into the complete transection site of spinal cord at the lumbar 4 (L4) level in rats. Motor function of rats'hind limbs was observed and HE and X-gal immunocytochemical staining, in situ hybridization, and retrograde HRP tracing were also performed. Results BDNF-NSCs survived and integrated well with host spinal cord. In the transplant group, some X-gal positive, NF-200 positive, GFAP positive, BDNF positive, and BDNF mRNA positive cells, and many NF-200 positive nerve fibers were observed in the injury site. Retrograde HRP tracing through sciatic nerve showed some HRP positive cells and nerve fibers near the rostral side of the injury one month after transplant and with time, they increased in number. Examinations on rats' motor function and behavior demonstrated that motor function of rats' hind limbs improved better in the transplant group than the injury group. Conclusion BDNF-NSCs can survive, differentiate,and partially integrate with host spinal cord, and they significantly ameliorate rats ' motor function of hind limbs, indicating their promising role in repairing spinal cord injury.

  14. Role of APC and DNA mismatch repair genes in the development of colorectal cancers

    Directory of Open Access Journals (Sweden)

    Roy Deodutta

    2003-12-01

    Full Text Available Abstract Colorectal cancer is the third most common cause of cancer-related death in both men and women in the western hemisphere. According to the American Cancer Society, an estimated 105,500 new cases of colon cancer with 57,100 deaths will occur in the U.S. in 2003, accounting for about 10% of cancer deaths. Among the colon cancer patients, hereditary risk contributes approximately 20%. The main inherited colorectal cancers are the familial adenomatous polyposis (FAP and the hereditary nonpolyposis colorectal cancers (HNPCC. The FAP and HNPCC are caused due to mutations in the adenomatous polyposis coli (APC and DNA mismatch repair (MMR genes. The focus of this review is to summarize the functions of APC and MMR gene products in the development of colorectal cancers.

  15. Repairing DNA damage in xeroderma pigmentosum: T4N5 lotion and gene therapy.

    Science.gov (United States)

    Zahid, Sarwar; Brownell, Isaac

    2008-04-01

    Patients with xeroderma pigmentosum (XP) have defective DNA repair and are at a high risk for cutaneous malignancies. Standard treatments for XP are limited in scope and effectiveness. Understanding the molecular etiology of XP has led to the development of novel therapeutic approaches, including enzyme and gene therapies. One new topical treatment utilizing bacteriophage T4 endonuclease 5 (T4N5) in a liposomal lotion is currently in clinical trials and has received a Fast Track designation from the FDA. Gene therapy for XP, while making leaps in preclinical studies, has been slower to develop due to tactical hurdles, but seems to have much potential for future treatment. If these treatments prove effective in lowering the risk of cancer in patients with XP, they may also be found useful in reducing skin cancers in other at-risk patient populations.

  16. Effect of Dietary Fat on Gene Expression in Poultry, A Review.

    Science.gov (United States)

    Navidshad, Bahman; Royan, M

    2016-01-01

    Traditionally, poultry farmers aimed to produce birds with high body weight and feed conversion ratio. However, in line with current developments, there are other traits that must be taken into account as well. These include producing poultry meat with lower body fat content and improving the nutritional quality of the poultry meat to appeal to consumer requirements. The interrelated importance of human diet and health status is an ancient subject. Human foods as a lifestyle factor is involved in the incidence of many types of diseases, such as cardiovascular diseases and cancer. Recent reports suggest that not only the quantity but also the composition of dietary fat is an important factor to prevent these metabolic diseases in human populations. It has been reported that some dietary fats are able to reduce lipid synthesis and increase fatty acid oxidation and diet-mediated thermogenesis. The outcome of this change is a superior animal product with lower fat content. There is evidence of dissimilar mechanisms of action of n-3 and n-6 fatty acids. Dietary fatty acids have various effects on cellular metabolism, and many of these effects are carried out through the alteration of gene expression. This review will focus on the control of body fat by gene expression in avians.

  17. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds.

    Science.gov (United States)

    Reiter, Taylor; Jagoda, Evelyn; Capellini, Terence D

    2016-01-01

    Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR), phytanol-CoA 2-hydroxylase (PHYH), and pancreatic α-amylase 2B (AMY2B). These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs.

  18. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds.

    Directory of Open Access Journals (Sweden)

    Taylor Reiter

    Full Text Available Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR, phytanol-CoA 2-hydroxylase (PHYH, and pancreatic α-amylase 2B (AMY2B. These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs.

  19. Mutation screening of mismatch repair gene Mlh3 in familial esophageal cancer

    Institute of Scientific and Technical Information of China (English)

    Hong-Xu Liu; Yu Li; Xue-Dong Jiang; Hong-Nian Yin; Lin Zhang; Yu Wang; Jun Yang

    2006-01-01

    AIM: To shed light on the possible role of mismatch repair gene Mlh3 in familial esophageal cancer (FEC).METHODS: A total of 66 members from 10 families suggestive of a genetic predisposition to hereditary esophageal cancer were screened for germline mutations in Mlh3 with denaturing high performance liquid chromatography (DHPLC), a newly developed method of comparative sequencing based on heteroduplex detection. For all samples exhibiting abnormal DHPLC profiles,sequence changes were evaluated by cycle sequencing.For any mutation in family members, we conducted a segregation study to compare its prevalence in sporadic esophageal cancer patients and normal controls.RESULTS: Exons of Mlh3 in all samples were successfully examined. Overall, 4 missense mutations and 3 polymorphisms were identified in 4 families. Mlh3 missense mutations in families 9 and 10 might be pathogenic, but had a reduced penetrance. While in families 1 and 7,there was no sufficient evidence supporting the monogenic explanations of esophageal cancers in families.The mutations were found in 33% of high-risk families and 50% of low-risk families.CONCLUSION: Mlh3 is a high risk gene with a reduced penetrance in some families. However, it acts as a low risk gene for esophageal cancer in most families. Mutations of Mlh3 may work together with other genes in an accumulated manner and result in an increased risk of esophageal tumor. DHPLC is a robust and sensitive technique for screening gene mutations.

  20. Tissue-engineering strategies to repair joint tissue in osteoarthritis: nonviral gene-transfer approaches.

    Science.gov (United States)

    Madry, Henning; Cucchiarini, Magali

    2014-10-01

    Loss of articular cartilage is a common clinical consequence of osteoarthritis (OA). In the past decade, substantial progress in tissue engineering, nonviral gene transfer, and cell transplantation have provided the scientific foundation for generating cartilaginous constructs from genetically modified cells. Combining tissue engineering with overexpression of therapeutic genes enables immediate filling of a cartilage defect with an engineered construct that actively supports chondrogenesis. Several pioneering studies have proved that spatially defined nonviral overexpression of growth-factor genes in constructs of solid biomaterials or hydrogels is advantageous compared with gene transfer or scaffold alone, both in vitro and in vivo. Notably, these investigations were performed in models of focal cartilage defects, because advanced cartilage-repair strategies based on the principles of tissue engineering have not advanced sufficiently to enable resurfacing of extensively degraded cartilage as therapy for OA. These studies serve as prototypes for future technological developments, because they raise the possibility that cartilage constructs engineered from genetically modified chondrocytes providing autocrine and paracrine stimuli could similarly compensate for the loss of articular cartilage in OA. Because cartilage-tissue-engineering strategies are already used in the clinic, combining tissue engineering and nonviral gene transfer could prove a powerful approach to treat OA.

  1. Fibrin patch-based insulin-like growth factor-1 gene-modified stem cell transplantation repairs ischemic myocardium

    OpenAIRE

    Li, Jun; Zhu, Kai; Yang, Shan; WANG, YULIN; Guo, Changfa; Yin, Kanhua; Wang, Chunsheng; Lai, Hao

    2015-01-01

    Bone marrow mesenchymal stem cells (BMSCs), tissue-engineered cardiac patch, and therapeutic gene have all been proposed as promising therapy strategies for cardiac repair after myocardial infarction. In our study, BMSCs were modified with insulin-like growth factor-1 (IGF-1) gene, loaded into a fibrin patch, and then transplanted into a porcine model of ischemia/reperfusion (I/R) myocardium injury. The results demonstrated that IGF-1 gene overexpression could promote proliferation of endothe...

  2. PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression

    Directory of Open Access Journals (Sweden)

    Bosch-Vermeulen Hanneke

    2008-05-01

    Full Text Available Abstract Background The selective absorption of nutrients and other food constituents in the small intestine is mediated by a group of transport proteins and metabolic enzymes, often collectively called 'intestinal barrier proteins'. An important receptor that mediates the effects of dietary lipids on gene expression is the peroxisome proliferator-activated receptor alpha (PPARα, which is abundantly expressed in enterocytes. In this study we examined the effects of acute nutritional activation of PPARα on expression of genes encoding intestinal barrier proteins. To this end we used triacylglycerols composed of identical fatty acids in combination with gene expression profiling in wild-type and PPARα-null mice. Treatment with the synthetic PPARα agonist WY14643 served as reference. Results We identified 74 barrier genes that were PPARα-dependently regulated 6 hours after activation with WY14643. For eicosapentaenoic acid (EPA, docosahexaenoic acid (DHA and oleic acid (OA these numbers were 46, 41, and 19, respectively. The overlap between EPA-, DHA-, and WY14643-regulated genes was considerable, whereas OA treatment showed limited overlap. Functional implications inferred form our data suggested that nutrient-activated PPARα regulated transporters and phase I/II metabolic enzymes were involved in a fatty acid oxidation, b cholesterol, glucose, and amino acid transport and metabolism, c intestinal motility, and d oxidative stress defense. Conclusion We identified intestinal barrier genes that were PPARα-dependently regulated after acute activation by fatty acids. This knowledge provides a better understanding of the impact dietary fat has on the barrier function of the gut, identifies PPARα as an important factor controlling this key function, and underscores the importance of PPARα for nutrient-mediated gene regulation in intestine.

  3. Horizontal gene transfer regulation in bacteria as a "spandrel" of DNA repair mechanisms.

    Directory of Open Access Journals (Sweden)

    Saliou Fall

    Full Text Available Horizontal gene transfer (HGT is recognized as the major force for bacterial genome evolution. Yet, numerous questions remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of prokaryote homologous genes families detected 151 genes (13.3% of foreign origin in the R. solanacearum genome and tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous recombination. Significant transformation frequency differences were observed among these positions tested regardless of the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic "hot spots", which contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics study correlated recombination "hot-spots" to the presence of Chi-like signature sequences with which recombination might be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with homologous and homeologous DNA happens in the environment

  4. Stimulation of proteoglycan synthesis by glucuronosyltransferase-I gene delivery: a strategy to promote cartilage repair.

    Science.gov (United States)

    Venkatesan, N; Barré, L; Benani, A; Netter, P; Magdalou, J; Fournel-Gigleux, S; Ouzzine, M

    2004-12-28

    Osteoarthritis is a degenerative joint disease characterized by a progressive loss of articular cartilage components, mainly proteoglycans (PGs), leading to destruction of the tissue. We investigate a therapeutic strategy based on stimulation of PG synthesis by gene transfer of the glycosaminoglycan (GAG)-synthesizing enzyme, beta1,3-glucuronosyltransferase-I (GlcAT-I) to promote cartilage repair. We previously reported that IL-1beta down-regulated the expression and activity of GlcAT-I in primary rat chondrocytes. Here, by using antisense oligonucleotides, we demonstrate that GlcAT-I inhibition impaired PG synthesis and deposition in articular cartilage explants, emphasizing the crucial role of this enzyme in PG anabolism. Thus, primary chondrocytes and cartilage explants were engineered by lipid-mediated gene delivery to efficiently overexpress a human GlcAT-I cDNA. Interestingly, GlcAT-I overexpression significantly enhanced GAG synthesis and deposition as evidenced by (35)S-sulfate incorporation, histology, estimation of GAG content, and fluorophore-assisted carbohydrate electrophoresis analysis. Metabolic labeling and Western blot analyses further suggested that GlcAT-I expression led to an increase in the abundance rather than in the length of GAG chains. Importantly, GlcAT-I delivery was able to overcome IL-1beta-induced PG depletion and maintain the anabolic activity of chondrocytes. Moreover, GlcAT-I also restored PG synthesis to a normal level in cartilage explants previously depleted from endogenous PGs by IL-1beta-treatment. In concert, our investigations strongly indicated that GlcAT-I was able to control and reverse articular cartilage defects in terms of PG anabolism and GAG content associated with IL-1beta. This study provides a basis for a gene therapy approach to promote cartilage repair in degenerative joint diseases.

  5. Polymorphisms in DNA Repair Genes and Susceptibility to Glioma in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Jun-Hong Guan

    2013-02-01

    Full Text Available The excision repair cross-complementing rodent repair deficiency complementation group 1 (ERCC1, and X-ray repair cross-complementing group 1 (XRCC1 genes appear to protect mammalian cells from the harmful effects of ionizing radiation. We conducted a large case-control study to investigate the association of polymorphisms in ERCC1 C118T, ERCC1 C8092A, XRCC1 A194T, XRCC1 A194T, and XRCC3 C241T, with glioma risk in a Chinese population. Five single nucleotide polymorphisms (SNPs were genotyped, using the MassARRAY IPLEX platform, in 443 glioma cases and 443 controls. Association analyses based on an χ2 test and binary logistic regression were performed to determine the odds ratio (OR and a 95% confidence interval (95% CI for each SNP. For XRCC1 Arg194Trp, the variant genotype T/T was strongly associated with a lower risk of glioma cancer when compared with the wild type C/C (OR = 2.45, 95% CI = 1.43–4.45. Individuals carrying the XRCC1 399A allele had an increased risk of glioma (OR = 1.33, 95% CI = 1.02–1.64. The XRCC3 241T/T genotype was associated with a strong increased glioma risk (OR = 3.78, 95% CI = 1.86–9.06. Further analysis of the interactions of two susceptibility-associated SNPs, XRCC1 Arg194Trp and XRCC3 Thr241Met, showed that the combination of the XRCC1 194T and XRCC3 241T alleles brought a large increase in glioma risk (OR = 2.75, 95% CI = 1.54–4.04. XRCC1 Arg194Trp, XRCC1 Arg399Gln, and XRCC3 C241T, appear to be associated with susceptibility to glioma in a Chinese population.

  6. Fibrin patch-based insulin-like growth factor-1 gene-modified stem cell transplantation repairs ischemic myocardium

    Science.gov (United States)

    Li, Jun; Zhu, Kai; Yang, Shan; Wang, Yulin; Guo, Changfa; Yin, Kanhua; Wang, Chunsheng

    2015-01-01

    Bone marrow mesenchymal stem cells (BMSCs), tissue-engineered cardiac patch, and therapeutic gene have all been proposed as promising therapy strategies for cardiac repair after myocardial infarction. In our study, BMSCs were modified with insulin-like growth factor-1 (IGF-1) gene, loaded into a fibrin patch, and then transplanted into a porcine model of ischemia/reperfusion (I/R) myocardium injury. The results demonstrated that IGF-1 gene overexpression could promote proliferation of endothelial cells and cardiomyocyte-like differentiation of BMSCs in vitro. Four weeks after transplantation of fibrin patch loaded with gene-modified BMSCs, IGF-1 overexpression could successfully promote angiogenesis, inhibit remodeling, increase grafted cell survival and reduce apoptosis. In conclusion, the integrated strategy, which combined fibrin patch with IGF-1 gene modified BMSCs, could promote the histological cardiac repair for a clinically relevant porcine model of I/R myocardium injury. PMID:25767192

  7. Vascular endothelial growth factor gene transfection to enhance the repair of avascular necrosis of the femoral head of rabbit

    Institute of Scientific and Technical Information of China (English)

    杨操; 杨述华; 杜靖远; 李进; 许伟华; 熊宇芳

    2003-01-01

    Objective To explore a new method for the therapy of avascular necrosis of the femoral head.Methods The recombinant plasmid pCD-hVEGF165 was mixed with collagen and was implanted in the necrotic femoral head. The expression of vascular endothelial growth factor (VEGF) was examined by RNA dot hybridization and immunohistochemical techniques. Repair of the femoral head was observed by histological and histomorphometric analysis.Results The expression of VEGF was detected in the femoral head transfected with the VEGF gene. The femoral head transfected with the VEGF gene showed a significant increase in angiogenesis 2 and 4 weeks after gene transfection and a significant increase in bone formation 6 and 8 weeks after gene transfection on histomorphometric analysis (P<0.01).Conclusions Transfection of the VEGF gene enhances bone tissue angiogenesis. Repair of osteonecrosis could be accelerated accordingly, thus providing a potential method for therapy of osteonecrosis.

  8. Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains.

    Science.gov (United States)

    Di Bernardo, Giovanni; Del Gaudio, Stefania; Cammarota, Marcella; Galderisi, Umberto; Cascino, Antonino; Cipollaro, Marilena

    2002-02-15

    Ancient DNA (aDNA) samples extracted from the bone remains of six equids buried by the Vesuvius eruption in 79 AD were investigated to test pre-amplification and enzymatic repair procedures designed to enhance the rescue of nuclear genes. The extracts, which proved all positive for Equidae mtDNA amplification, proved positive only four times out of 18 when tested for single-copy Equidae nuclear genes (epsilon globin, p53 and gamma interferon). Pre-amplification did not change the number of retrieved aDNA sequences but 10 times out of 14 enzymatic repair restored the amplifiability of the genes analysed, proving that repair increases the rate of successful rescue from 22 to alpha(lambda)mu(omicron)sigma(tau) 80%. These findings support the hypothesis that some of these cross-linked aDNA molecules, which are not completely separated when DNA is extracted under denaturing conditions, become homoduplex substrates for Pol I and/or T4 ligase action upon renaturation. aDNA authenticity is proved by the homology of the nucleotide sequences of loci tested to the corresponding modern Equidae sequences. Data also indicate that cross-linked homoduplex molecules selected by denaturation of the extract are repaired without any chimera formation. The general features of aDNA amplification with and without denaturation and enzymatic repair are discussed.

  9. p53 Gene repair with zinc finger nucleases optimised by yeast 1-hybrid and validated by Solexa sequencing.

    Directory of Open Access Journals (Sweden)

    Frank Herrmann

    Full Text Available The tumor suppressor gene p53 is mutated or deleted in over 50% of human tumors. As functional p53 plays a pivotal role in protecting against cancer development, several strategies for restoring wild-type (wt p53 function have been investigated. In this study, we applied an approach using gene repair with zinc finger nucleases (ZFNs. We adapted a commercially-available yeast one-hybrid (Y1H selection kit to allow rapid building and optimization of 4-finger constructs from randomized PCR libraries. We thus generated novel functional zinc finger nucleases against two DNA sites in the human p53 gene, near cancer mutation 'hotspots'. The ZFNs were first validated using in vitro cleavage assays and in vivo episomal gene repair assays in HEK293T cells. Subsequently, the ZFNs were used to restore wt-p53 status in the SF268 human cancer cell line, via ZFN-induced homologous recombination. The frequency of gene repair and mutation by non-homologous end-joining was then ascertained in several cancer cell lines, using a deep sequencing strategy. Our Y1H system facilitates the generation and optimisation of novel, sequence-specific four- to six-finger peptides, and the p53-specific ZFN described here can be used to mutate or repair p53 in genomic loci.

  10. p53 Gene Repair with Zinc Finger Nucleases Optimised by Yeast 1-Hybrid and Validated by Solexa Sequencing

    Science.gov (United States)

    Herrmann, Frank; Garriga-Canut, Mireia; Baumstark, Rebecca; Fajardo-Sanchez, Emmanuel; Cotterell, James; Minoche, André; Himmelbauer, Heinz; Isalan, Mark

    2011-01-01

    The tumor suppressor gene p53 is mutated or deleted in over 50% of human tumors. As functional p53 plays a pivotal role in protecting against cancer development, several strategies for restoring wild-type (wt) p53 function have been investigated. In this study, we applied an approach using gene repair with zinc finger nucleases (ZFNs). We adapted a commercially-available yeast one-hybrid (Y1H) selection kit to allow rapid building and optimization of 4-finger constructs from randomized PCR libraries. We thus generated novel functional zinc finger nucleases against two DNA sites in the human p53 gene, near cancer mutation ‘hotspots’. The ZFNs were first validated using in vitro cleavage assays and in vivo episomal gene repair assays in HEK293T cells. Subsequently, the ZFNs were used to restore wt-p53 status in the SF268 human cancer cell line, via ZFN-induced homologous recombination. The frequency of gene repair and mutation by non-homologous end-joining was then ascertained in several cancer cell lines, using a deep sequencing strategy. Our Y1H system facilitates the generation and optimisation of novel, sequence-specific four- to six-finger peptides, and the p53-specific ZFN described here can be used to mutate or repair p53 in genomic loci. PMID:21695267

  11. Ndrg3 gene regulates DSB repair during meiosis through modulation the ERK signal pathway in the male germ cells

    Science.gov (United States)

    Pan, Hongjie; Zhang, Xuan; Jiang, Hanwei; Jiang, Xiaohua; Wang, Liu; Qi, Qi; Bi, Yuan; Wang, Jian; Shi, Qinghua; Li, Runsheng

    2017-01-01

    The N-myc downstream regulated gene (NDRG) family consists of 4 members, NDRG-1, -2, -3, -4. Physiologically, we found Ndrg3, a critical gene which led to homologous lethality in the early embryo development, regulated the male meiosis in mouse. The expression of Ndrg3 was enhanced specifically in germ cells, and reached its peak level in the pachytene stage spermatocyte. Haplo-insufficiency of Ndrg3 gene led to sub-infertility during the male early maturation. In the Ndrg3+/− germ cells, some meiosis events such as DSB repair and synaptonemal complex formation were impaired. Disturbances on meiotic prophase progression and spermatogenesis were observed. In mechanism, the attenuation of pERK1/2 signaling was detected in the heterozygous testis. With our primary spermatocyte culture system, we found that lactate promoted DSB repair via ERK1/2 signaling in the male mouse germ cells in vitro. Deficiency of Ndrg3 gene attenuated the activation of ERK which further led to the aberrancy of DSB repair in the male germ cells in mouse. Taken together, we reported that Ndrg3 gene modulated the lactate induced ERK pathway to facilitate DSB repair in male germ cells, which further regulated meiosis and subsequently fertility in male mouse. PMID:28290521

  12. Ndrg3 gene regulates DSB repair during meiosis through modulation the ERK signal pathway in the male germ cells.

    Science.gov (United States)

    Pan, Hongjie; Zhang, Xuan; Jiang, Hanwei; Jiang, Xiaohua; Wang, Liu; Qi, Qi; Bi, Yuan; Wang, Jian; Shi, Qinghua; Li, Runsheng

    2017-03-14

    The N-myc downstream regulated gene (NDRG) family consists of 4 members, NDRG-1, -2, -3, -4. Physiologically, we found Ndrg3, a critical gene which led to homologous lethality in the early embryo development, regulated the male meiosis in mouse. The expression of Ndrg3 was enhanced specifically in germ cells, and reached its peak level in the pachytene stage spermatocyte. Haplo-insufficiency of Ndrg3 gene led to sub-infertility during the male early maturation. In the Ndrg3(+/-) germ cells, some meiosis events such as DSB repair and synaptonemal complex formation were impaired. Disturbances on meiotic prophase progression and spermatogenesis were observed. In mechanism, the attenuation of pERK1/2 signaling was detected in the heterozygous testis. With our primary spermatocyte culture system, we found that lactate promoted DSB repair via ERK1/2 signaling in the male mouse germ cells in vitro. Deficiency of Ndrg3 gene attenuated the activation of ERK which further led to the aberrancy of DSB repair in the male germ cells in mouse. Taken together, we reported that Ndrg3 gene modulated the lactate induced ERK pathway to facilitate DSB repair in male germ cells, which further regulated meiosis and subsequently fertility in male mouse.

  13. Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1.

    Science.gov (United States)

    Sargent, R G; Rolig, R L; Kilburn, A E; Adair, G M; Wilson, J H; Nairn, R S

    1997-11-25

    Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RADIO gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogenous APRT locus in ERCC1- and ERCC1+ cells. To detect the full spectrum of gene-altering events, we used a loss-of-function assay in which the parental APRT+ tandem duplication could give rise to APRT- cells by homologous recombination, gene rearrangement, or point mutation. Measurement of rates and analysis of individual APRT- products indicated that gene rearrangements (principally deletions) were increased at least 50-fold, whereas homologous recombination was affected little. The formation of deletions is not caused by a general effect of the ERCC1 deficiency on gene stability, because ERCC1- cell lines with a single wild-type copy of the APRT gene yielded no increase in deletions. Thus, deletion formation is dependent on the tandem duplication, and presumably the process of homologous recombination. Recombination-dependent deletion formation in ERCC1- cells is supported by a significant decrease in a particular class of crossover products that are thought to arise by repair of a heteroduplex intermediate in recombination. We suggest that the ERCC1 gene product in mammalian cells is involved in the processing of heteroduplex intermediates in recombination and that the misprocessed intermediates in ERCC1- cells are repaired by illegitimate recombination.

  14. Dietary conjugated linoleic acid modify gene expression in liver, muscles, and fat tissues of finishing pigs

    DEFF Research Database (Denmark)

    Tous, Nuria; Theil, Peter Kappel; Lauridsen, Charlotte

    2012-01-01

    in these tissues, except for SM intermuscular fat. Dietary CLA increased PPARγ in LT muscle (P fat. Transcription of genes related to FA synthesis was reduced by CLA in SM muscle and liver (SREBP1......, both P muscle and reduced (P increased (P muscle and intermuscular fat. Saturated FA were increased in all studied tissues (P ... (LPL), delta-6-desaturase (D6D), and stearoyl CoA desaturase (SCD) were determined by real-time PCR in longissimus thoracis (LT) and semimembranosus (SM) muscles, LT subcutaneous and SM intermuscular fat, and in the liver. Fatty acid (FA) composition was analyzed using gas chromatography...

  15. Dietary conjugated linoleic acid modify gene expression in liver, muscles, and fat tissues of finishing pigs.

    Science.gov (United States)

    Tous, N; Theil, P K; Lauridsen, C; Lizardo, R; Vilà, B; Esteve-Garcia, E

    2012-12-01

    The aim of this study was to investigate underlying mechanisms of dietary conjugated linoleic acid (CLA) on lipid metabolism in various tissues of pigs. Sixteen gilts (73 ± 3 kg) were fed a control (containing sunflower oil) or an experimental diet in which 4% of sunflower oil was replaced by CLA, and slaughtered at an average BW of 117 ± 4.9 kg. Transcription of peroxisome proliferator-activated receptor alpha (PPARα), peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FAS), sterol regulatory element binding protein (SREBP1), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL), delta-6-desaturase (D6D), and stearoyl CoA desaturase (SCD) were determined by real-time PCR in longissimus thoracis (LT) and semimembranosus (SM) muscles, LT subcutaneous and SM intermuscular fat, and in the liver. Fatty acid (FA) composition was analyzed using gas chromatography in these tissues, except for SM intermuscular fat. Dietary CLA increased PPARγ in LT muscle (P tissues studied (P muscle and liver (SREBP1, both P muscle and reduced (P muscle and intermuscular fat. Saturated FA were increased in all studied tissues (P tissue-specific way by CLA. It was concluded that dietary CLA affected transcription of genes and fat metabolism in a tissue-specific manner.

  16. Alteration of gene expression in mammary gland tissue of dairy cows in response to dietary unsaturated fatty acids

    NARCIS (Netherlands)

    Mach Casellas, N.; Jacobs, A.A.A.; Kruijt, L.; Baal, van J.; Smits, M.C.J.

    2014-01-01

    The aim of this study was to determine the effects of unprotected dietary unsaturated fatty acids (UFA) from different plant oils on gene expression in the mammary gland of grazing dairy cows. Milk composition and gene expression in the mammary gland tissue were evaluated in grazing dairy cows suppl

  17. The Gene Targeting Approach of Small Fragment Homologous Replacement (SFHR Alters the Expression Patterns of DNA Repair and Cell Cycle Control Genes

    Directory of Open Access Journals (Sweden)

    Silvia Pierandrei

    2016-01-01

    Full Text Available Cellular responses and molecular mechanisms activated by exogenous DNA that invades cells are only partially understood. This limits the practical use of gene targeting strategies. Small fragment homologous replacement (SFHR uses a small exogenous wild-type DNA fragment to restore the endogenous wild-type sequence; unfortunately, this mechanism has a low frequency of correction. In this study, we used a mouse embryonic fibroblast cell line with a stably integrated mutated gene for enhanced green fluorescence protein. The restoration of a wild-type sequence can be detected by flow cytometry analysis. We quantitatively analyzed the expression of 84 DNA repair genes and 84 cell cycle control genes. Peculiar temporal gene expression patterns were observed for both pathways. Different DNA repair pathways, not only homologous recombination, as well as the three main cell cycle checkpoints appeared to mediate the cellular response. Eighteen genes were selected as highly significant target/effectors of SFHR. We identified a wide interconnection between SFHR, DNA repair, and cell cycle control. Our results increase the knowledge of the molecular mechanisms involved in cell invasion by exogenous DNA and SFHR. Specific molecular targets of both the cell cycle and DNA repair machineries were selected for manipulation to enhance the practical application of SFHR.

  18. A peek into the possible future of management of articular cartilage injuries: gene therapy and scaffolds for cartilage repair.

    Science.gov (United States)

    Kim, Hubert T; Zaffagnini, Stefano; Mizuno, Shuichi; Abelow, Stephen; Safran, Marc R

    2006-10-01

    Two rapidly progressing areas of research will likely contribute to cartilage repair procedures in the foreseeable future: gene therapy and synthetic scaffolds. Gene therapy refers to the transfer of new genetic information to cells that contribute to the cartilage repair process. This approach allows for manipulation of cartilage repair at the cellular and molecular level. Scaffolds are the core technology for the next generation of autologous cartilage implantation procedures in which synthetic matrices are used in conjunction with chondrocytes. This approach can be improved further using bioreactor technologies to enhance the production of extracellular matrix proteins by chondrocytes seeded onto a scaffold. The resulting "neo-cartilage implant" matures within the bioreactor, and can then be used to fill cartilage defects.

  19. Phenotypic Heterogeneity by Germline Mismatch Repair Gene Defect in Lynch Syndrome Patients.

    Science.gov (United States)

    Hernâni-Eusébio, Jorge; Barbosa, Elisabete

    2016-10-01

    Introdução: A síndrome de Lynch é a forma hereditária mais comum de cancro colo-rectal, sendo também responsável por cancro do endométrio e de outros tipos. Associa-se a mutações germinativas nos genes de mismatch repair do ADN e a instabilidade de microssatélites. As mutações MLH1 e MSH2 têm um fenótipo de síndrome de Lynch ‘clássico’, sendo o MSH2 mais associado a cancro extra-cólico. Mutações do MSH6 e PMS2 têm um fenótipo atípico. A expressão clínica é heterogénea, existindo uma correlação entre o gene mismatch repair mutado e o padrão fenotípico. Material e Métodos: Análise retrospetiva dos dados clínicos de doentes que cumpriam os critérios de Amesterdão ou que tinha mutações nos genes mismatch repair, entre setembro de 2012 e outubro de 2015. Resultados: Identificámos 28 doentes. Dezassete tinham cancro colo-rectal sendo a localização no cólon direito predominante. Cinco tiveram cancro do endométrio (mediana da idade de diagnóstico – 53), sem qualquer mutação no MSH6. Cinco desenvolveram outros cancros. Todos os casos com mutações mismatch repair estudados tinham instabilidade de microssatélites. Discussão: Na maioria dos casos foi encontrada mutação no MSH2 apesar de o MLH1 ser descrito na literatura como o gene mais frequentemente mutado. Interessa dizer que os doentes com cancro colo-rectal não evidenciam uma tendência para ter muito infiltrado inflamatório. Na maioria dos casos foi realizada colectomia parcial apesar da incidência elevada de lesões síncronas e metácronas associadas. Histerectomia e anexectomia profilática foi realizada em doentes em menopausa/perimenopausa. Conclusão: O registo standardizado dos dados dos doentes poderá levar a um melhor acompanhamento e conhecimento desta síndrome. O uso das Guidelines de Bethesda poderá identificar novos casos que escapam aos critérios de Amesterdão. A pesquisa de instabilidade de microssatélites deve ser feita em muito maior n

  20. Detailed transcriptomics analysis of the effect of dietary fatty acids on gene expression in the heart.

    Science.gov (United States)

    Georgiadi, Anastasia; Boekschoten, Mark V; Müller, Michael; Kersten, Sander

    2012-03-19

    Fatty acids comprise the primary energy source for the heart and are mainly taken up via hydrolysis of circulating triglyceride-rich lipoproteins. While most of the fatty acids entering the cardiomyocyte are oxidized, a small portion is involved in altering gene transcription to modulate cardiometabolic functions. So far, no in vivo model has been developed enabling study of the transcriptional effects of specific fatty acids in the intact heart. In the present study, mice were given a single oral dose of synthetic triglycerides composed of one single fatty acid. Hearts were collected 6 h thereafter and used for whole genome gene expression profiling. Experiments were conducted in wild-type and peroxisome proliferator-activated receptor (PPAR)α-/- mice to allow exploration of the specific contribution of PPARα. It was found that: 1) C18:3 had the most pronounced effect on cardiac gene expression. 2) The largest similarity in gene regulation was observed between C18:2 and C18:3. Large similarity was also observed between PPARα agonist Wy14643 and C22:6. 3) Many genes were regulated by one particular treatment only. Genes regulated by one particular treatment showed large functional divergence. 4) The majority of genes responding to fatty acid treatment were regulated in a PPARα-dependent manner, emphasizing the importance of PPARα in mediating transcriptional regulation by fatty acids in the heart. 5) Several genes were robustly regulated by all or many of the fatty acids studied, mostly representing well-described targets of PPARs (e.g., Acot1, Angptl4, Ucp3) but also including Zbtb16/PLZF, a transcription factor crucial for natural killer T cell function. 6) Deletion and activation of PPARα had a major effect on expression of numerous genes involved in metabolism and immunity. Our analysis demonstrates the marked impact of dietary fatty acids on gene regulation in the heart via PPARα.

  1. Effects of dietary soybean stachyose and phytic acid on gene expressions of serine proteases in Japanese flounder ( Paralichthys olivaceus)

    Science.gov (United States)

    Mi, Haifeng; Mai, Kangsen; Zhang, Wenbing; Wu, Chenglong; Cai, Yinghua

    2011-09-01

    Soybean stachyose (SBS) and phytic acid (PA) are anti-nutritional factors (ANF) which have deleterious effects on the growth and digestibility in fish. The present research studied the effects of dietary SBS and PA on the expression of three serine protease genes in the liver of Japanese flounder ( Paralichthys olivaceus). These genes are trypsinogen 1 (poTRY), elastase 1 (poEL) and chymotrypsinogen 1 (poCTRY). Eight artificial diets with graded levels of supplemented ANFs were formulated to 4 levels of SBS (0.00, 0.40, 0.80 and 1.50%), 4 levels of PA (0.00, 0.20, 0.40 and 0.80), respectively. Japanese flounder (initial weight 2.45 g ± 0.01 g) were fed with these diets for 10 weeks with three replications per treatment. At the end of 10 weeks, supplementation of 0.40% of dietary SBS or PA significantly increased the gene expression of poTRY and poCTRY ( P0.05). These results suggested that dietary SBS and dietary PA could directly affect the serine protease genes at the transcriptional level in Japanese flounder, and these genes' expression was more sensitive to dietary PA than to SBS under the current experimental conditions.

  2. Effects of dietary fat saturation on fatty acid composition and gene transcription in different tissues of Iberian pigs.

    Science.gov (United States)

    Benítez, R; Núñez, Y; Fernández, A; Isabel, B; Fernández, A I; Rodríguez, C; Barragán, C; Martín-Palomino, P; López-Bote, C; Silió, L; Óvilo, C

    2015-04-01

    The effect of two diets, respectively enriched with SFA (S) and PUFA (P), on FA tissue composition and gene expression was studied in fattened Iberian pigs. The FA composition of adipose, muscular and liver tissues was affected by dietary treatment. S group showed higher MUFA and MUFA/SFA ratio and lower PUFA and n-6/n-3 ratio than P group in all analyzed tissues. In muscle and liver the extracted lipids were separated into neutral lipids and polar lipid fractions which showed significantly different responses to the dietary treatment, especially in liver where no significant effect of diet was observed in NL fraction. The expression of six candidate genes related to lipogenesis and FA oxidation was analyzed by qPCR. In liver, stearoyl CoA desaturase (SCD), acetyl CoA carboxylase alpha (ACACA) and malic enzyme 1 (ME1) genes showed higher expression in S group. SCD, ACACA, ME1, and fatty acid synthase (FASN) gene expression levels showed a wide variation across the tested tissues, with much higher expression levels observed in adipose tissue than other tissues. Tissue FA profile and gene expression results support the deposition of dietary FA, the lipogenic effect of dietary saturated fat in liver and the employment of saturated dietary fat for endogenous synthesis of MUFA in all the analyzed tissues.

  3. XRCC1 and XPD DNA repair gene polymorphisms: a potential risk factor for glaucoma in the Pakistani population

    NARCIS (Netherlands)

    Yousaf, S.; Khan, M.I.; Micheal, S.; Akhtar, F.; Ali, S.H.; Riaz, M.; Ali, M.; Lall, P.; Waheed, N.K.; Hollander, A.I. den; Ahmed, A.; Qamar, R.

    2011-01-01

    PURPOSE: The present study was designed to determine the association of polymorphisms of the DNA repair genes X-ray cross-complementing group 1 (XRCC1) (c.1316G>A [rs25487]) and xeroderma pigmentosum complementation group D (XPD) (c.2298A>C [rs13181]) with primary open-angle glaucoma (POAG) an

  4. Cloning, comparative mapping, and RNA expression of the mouse homologues of the Saccharomyces cerevisiae nucleotide excision repair gene RAD23.

    NARCIS (Netherlands)

    P.J. van der Spek (Peter); C.E. Visser (Cécile); F. Hanaoka (Fumio); B. Smit (Bep); A. Hagemeijer (Anne); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1996-01-01

    textabstractThe Saccharomyces cerevisiae RAD23 gene is involved in nucleotide excision repair (NER). Two human homologs of RAD23, HHR23A and HHR23B (HGMW-approved symbols RAD23A and RAD23B), were previously isolated. The HHR23B protein is complexed with the protein defective in the cancer-prone

  5. Conserved pattern of antisense overlapping transcription in the homologous ERCC-1 and yeast RAD10 DNA repair gene regions.

    NARCIS (Netherlands)

    M. van Duin (Mark); J. van den Tol; J.H.J. Hoeijmakers (Jan); D. Bootsma (Dirk); I.P. Rupp; P. Reynolds (Paul); L. Prakash; S. Prakash

    1989-01-01

    textabstractWe report that the genes for the homologous Saccharomyces cerevisiae RAD10 and human ERCC-1 DNA excision repair proteins harbor overlapping antisense transcription units in their 3' regions. Since naturally occurring antisense transcription is rare in S. cerevisiae and humans (this is

  6. Genetic Variation in Base Excision Repair Pathway Genes, Pesticide Exposure, and Prostate Cancer Risk

    National Research Council Canada - National Science Library

    Kathryn Hughes Barry; Stella Koutros; Sonja I. Berndt; Gabriella Andreotti; Jane A. Hoppin; Dale P. Sandler; Laurie A. Burdette; Meredith Yeager; Laura E. Beane Freeman; Jay H. Lubin; Xiaomei Ma; Tongzhang Zheng; Michael C. R. Alavanja

    2011-01-01

    .... OBJECTIVES: Because base excision repair (BER) is the predominant pathway involved in repairing oxidative damage, we evaluated interactions between 39 pesticides and 394 tag single-nucleotide polymorphisms (SNPs...

  7. Impact of improving dietary amino acid balance for lactating sows on efficiency of dietary amino acid utilization and transcript abundance of genes encoding lysine transporters in mammary tissue.

    Science.gov (United States)

    Huber, L; de Lange, C F M; Ernst, C W; Krogh, U; Trottier, N L

    2016-11-01

    Lactating multiparous Yorkshire sows ( = 64) were used in 2 experiments to test the hypothesis that reducing dietary CP intake and improving AA balance through crystalline AA (CAA) supplementation improves apparent dietary AA utilization efficiency for milk production and increases transcript abundance of genes encoding Lys transporter proteins in mammary tissue. In Exp. 1, 40 sows were assigned to 1 of 4 diets: 1) high CP (HCP; 16.0% CP, as-fed basis; analyzed concentration), 2) medium-high CP (MHCP; 15.7% CP), 3) medium-low CP (MLCP; 14.3% CP), and 4) low CP (LCP; 13.2% CP). The HCP diet was formulated using soybean meal and corn as the only Lys sources. The reduced-CP diets contained CAA to meet estimated requirements for essential AA that became progressively limiting with reduction in CP concentration, that is, Lys, Ile, Met + Cys, Thr, Trp, and Val. Dietary standardized ileal digestible (SID) Lys concentration was 80% of the estimated requirement. In Exp. 2, 24 sows were assigned to the HCP or LCP diets. In Exp. 1, blood samples were postprandially collected 15 h on d 3, 7, 14, and 18 of lactation and utilization efficiency of dietary AA for milk production was calculated during early (d 3 to 7) and peak (d 14 to 18) lactation. Efficiency values were estimated from daily SID AA intakes and milk AA yield, with corrections for maternal AA requirement for maintenance and AA contribution from body protein losses. In Exp. 2, mammary tissue was biopsied on d 4 and 14 of lactation to determine the mRNA abundance of genes encoding Lys transporter proteins. In peak lactation, Lys, Thr, Trp, and Val utilization efficiency increased with decreasing dietary CP (linear for Trp and Val, sows fed the MHCP diet vs. sows fed the HCP diet for Lys and Thr, sows fed the LCP and HCP diets. Feeding lactating sows low-CP diets supplemented with CAA increases the efficiency of utilizing dietary Lys, Thr, Trp, and Val for milk protein production but is unrelated to abundance in m

  8. SNPs in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation

    OpenAIRE

    2012-01-01

    Abstract Background The aim of this study was to evaluate the potential association between single nucleotide polymorphisms related response to radiotherapy injury, such as genes related to DNA repair or enzymes involved in anti-oxidative activities. The paper aims to identify marker genes able to predict an increased risk of late toxicity studying our group of patients who underwent a Single Shot 3D-CRT PBI (SSPBI) after BCS (breast conserving surgery). Methods A total of 57 breast cancer pa...

  9. DNA Damage/Repair and Polymorphism of the hOGG1 Gene in Lymphocytes of AMD Patients

    Directory of Open Access Journals (Sweden)

    Katarzyna Wozniak

    2009-01-01

    Full Text Available Oxidative stress is thought to play a role in the pathogenesis of age-related macular degeneration (AMD. We determined the extent of oxidative DNA damage and the kinetics of its removal as well as the genotypes of the Ser326Cys polymorphism of the hOGG1 gene in lymphocytes of 30 wet AMD patients and 30 controls. Oxidative DNA damage induced by hydrogen peroxide and its repair were evaluated by the comet assay and DNA repair enzymes. We observed a higher extent of endogenous oxidative DNA damage and a lower efficacy of its repair in AMD patients as compared with the controls. We did not find any correlation between the extent of DNA damage and efficacy of DNA repair with genotypes of the Ser326Cys polymorphism. The results obtained suggest that oxidative DNA damage and inefficient DNA repair can be associated with AMD and the variability of the hOOG1 gene may not contribute to this association.

  10. DNA repair and gene targeting in plant end-joining mutants

    NARCIS (Netherlands)

    Jia, Qi

    2011-01-01

    DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or by non-homologous end joining (NHEJ). The latter mechanism is the major route for DSB repair in the somatic cells of higher eukaryotes, including plants. If we could manipulate the balance of the DSB repair pathways

  11. DNA repair and gene targeting in plant end-joining mutants

    NARCIS (Netherlands)

    Jia, Qi

    2011-01-01

    DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or by non-homologous end joining (NHEJ). The latter mechanism is the major route for DSB repair in the somatic cells of higher eukaryotes, including plants. If we could manipulate the balance of the DSB repair pathways

  12. Effect of increased intake of dietary animal fat and fat energy on oxidative damage, mutation frequency, DNA adduct level and DNA repair in rat colon and liver

    DEFF Research Database (Denmark)

    Vogel, Ulla; Daneshvar, Bahram; Autrup, Herman;

    2003-01-01

    was observed. Intake of lard fat resulted in increased ascorbate synthesis and affected markers of oxidative damage to proteins in liver cytosol, but not in plasma. The effect was observed at all lard doses and was not dose-dependent. However, no evidence of increased oxidative DNA damage was found in liver...... supplemented with 0, 3, 10 or 30% w/w lard. After 3 weeks, the mutation frequency, DNA repair gene expression, DNA damage and oxidative markers were determined in liver, colon and plasma. The mutation frequency of the lambda gene cII did not increase with increased fat or energy intake in colon or liver....... The DNA-adduct level measured by 32P-postlabelling decreased in both liver and colon with increased fat intake. In liver, this was accompanied by a 2-fold increase of the mRNA level of nucleotide excision repair (NER) gene ERCC1. In colon, a non-statistically significant increase in the ERCC1 mRNA levels...

  13. Effect of increased intake of dietary animal fat and fat energy on oxidative damage, mutation frequency, DNA adduct level and DNA repair in rat colon and liver

    DEFF Research Database (Denmark)

    Vogel, Ulla Birgitte; Danesvar, B.; Autrup, H.;

    2003-01-01

    was observed. Intake of lard fat resulted in increased ascorbate synthesis and affected markers of oxidative damage to proteins in liver cytosol, but not in plasma. The effect was observed at all lard doses and was not dose-dependent. However, no evidence of increased oxidative DNA damage was found in liver...... supplemented with 0, 3, 10 or 30% w/w lard. After 3 weeks, the mutation frequency, DNA repair gene expression, DNA damage and oxidative markers were determined in liver, colon and plasma. The mutation frequency of the lambda gene cII did not increase with increased fat or energy intake in colon or liver....... The DNA-adduct level measured by P-32-postlabelling decreased in both liver and colon with increased fat intake. In liver, this was accompanied by a 2-fold increase of the mRNA level of nucleotide excision repair (NER) gene ERCC1. In colon, a non-statistically significant increase in the ERCC1 mRNA levels...

  14. Mismatch repair genes of Streptococcus pneumoniae: HexA confers a mutator phenotype in Escherichia coli by negative complementation.

    Science.gov (United States)

    Prudhomme, M; Méjean, V; Martin, B; Claverys, J P

    1991-11-01

    DNA repair systems able to correct base pair mismatches within newly replicated DNA or within heteroduplex molecules produced during recombination are widespread among living organisms. Evidence that such generalized mismatch repair systems evolved from a common ancestor is particularly strong for two of them, the Hex system of the gram-positive Streptococcus pneumoniae and the Mut system of the gram-negative Escherichia coli and Salmonella typhimurium. The homology existing between HexA and MutS and between HexB and MutL prompted us to investigate the effect of expressing hex genes in E. coli. Complementation of mutS or mutL mutations, which confer a mutator phenotype, was assayed by introducing on a multicopy plasmid the hexA and hexB genes, under the control of an inducible promoter, either individually or together in E. coli strains. No decrease in mutation rate was conferred by either hexA or hexB gene expression. However, a negative complementation effect was observed in wild-type E. coli cells: expression of hexA resulted in a typical Mut- mutator phenotype. hexB gene expression did not increase the mutation rate either individually or in conjunction with hexA. Since expression of hexA did not affect the mutation rate in mutS mutant cells and the hexA-induced mutator effect was recA independent, it is concluded that this effect results from inhibition of the Mut system. We suggest that HexA, like its homolog MutS, binds to mismatches resulting from replication errors, but in doing so it protects them from repair by the Mut system. In agreement with this hypothesis, an increase in mutS gene copy number abolished the hexA-induced mutator phenotype. HexA protein could prevent repair either by being unable to interact with Mut proteins or by producing nonfunctional repair complexes.

  15. Combined effects of dietary polyunsaturated fatty acids and parasite exposure on eicosanoid-related gene expression in an invertebrate model.

    Science.gov (United States)

    Schlotz, Nina; Roulin, Anne; Ebert, Dieter; Martin-Creuzburg, Dominik

    2016-11-01

    Eicosanoids derive from essential polyunsaturated fatty acids (PUFA) and play crucial roles in immunity, development, and reproduction. However, potential links between dietary PUFA supply and eicosanoid biosynthesis are poorly understood, especially in invertebrates. Using Daphnia magna and its bacterial parasite Pasteuria ramosa as model system, we studied the expression of genes coding for key enzymes in eicosanoid biosynthesis and of genes related to oogenesis in response to dietary arachidonic acid and eicosapentaenoic acid in parasite-exposed and non-exposed animals. Gene expression related to cyclooxygenase activity was especially responsive to the dietary PUFA supply and parasite challenge, indicating a role for prostanoid eicosanoids in immunity and reproduction. Vitellogenin gene expression was induced upon parasite exposure in all food treatments, suggesting infection-related interference with the host's reproductive system. Our findings highlight the potential of dietary PUFA to modulate the expression of key enzymes involved in eicosanoid biosynthesis and reproduction and thus underpin the idea that the dietary PUFA supply can influence invertebrate immune functions and host-parasite interactions.

  16. Basic fibroblast growth factor gene transfection in repair of internal carotid artery aneurysm wall

    Institute of Scientific and Technical Information of China (English)

    Lei Jiao; Ming Jiang; Jinghai Fang; Yinsheng Deng; Zejun Chen; Min Wu

    2012-01-01

    Surgery or interventional therapy has some risks in the treatment of cerebral aneurysm. We established an internal carotid artery aneurysm model by dripping elastase in the crotch of the right internal and external carotid arteries of New Zealand rabbits. Following model induction, lentivirus carrying basic fibroblast growth factor was injected through the ear vein. We found that the longer the action time of the lentivirus, the smaller the aneurysm volume. Moreover, platelet-derived growth factor expression in the aneurysm increased, but smooth muscle 22 alpha and hypertension-related gene 1 mRNA expression decreased. At 1, 2, 3, and 4 weeks following model establishment, following 1 week of injection of lentivirus carrying basic fibroblast growth factor, the later the intervention time, the more severe the blood vessel damage, and the bigger the aneurysm volume, the lower the smooth muscle 22 alpha and hypertension-related gene 1 mRNA expression. Simultaneously, platelet-derived growth factor expression decreased. These data suggest that recombinant lentivirus carrying basic fibroblast growth factor can repair damaged cells in the aneurysmal wall and inhibit aneurysm dynamic growth, and that the effect is dependent on therapeutic duration.

  17. Cell and gene therapy for arrhythmias: Repair of cardiac conduction damage

    Institute of Scientific and Technical Information of China (English)

    Yong-Fu Xiao

    2011-01-01

    Action potentials generated in the sinoatrial node(SAN)dominate the rhythm and rate of a healthy human heart.Subsequently,these action potentials propagate to the whole heart via its conduction system .Abnormalities of impulse generation and/or propagation in a heart can cause arrhythmias.For example,SAN dysfunction or conduction block of the atrioventricular node can lead to serious bradycardia which is currently treated with an implanted electronic pacemaker.On the other hand conduction damage may cause reentrant tachyarrhythmias which are primarily treated pharmacologically or by medical device-based therapies,including defibrillation and tissue ablation.However,drug therapies sometimes may not be effective or are associated with serious side effects.Device-based therapies for cardiac arrhythmias,even with well developed technology,still face inadequacies,limitations,hardware complications,and other challenges.Therefore,scientists are actively seeking other alternatives for antiarrhythmic therapy.In particular,cells and genes used for repairing cardiac conduction damage/defect have been investigated in various studies both in vitro and in vivo.Despite the complexities of the excitation and conduction systems of the heart,cell and gene-based strategies provide novel alternatives for treatment or cure of cardiac anhythmias.This review summarizes some highlights of recent research progress in this field.

  18. Expression Silence of DNA Repair Gene hMGMT Induced by RNA Interference

    Institute of Scientific and Technical Information of China (English)

    LI Xiu-ying; LAI Yan-dong

    2007-01-01

    Objective: MGMT protein expression has been associated with tumor resistance to alkylating agents. The objective of this paper is to construct the RNA interference vector which can specifically induce the expression silence of human DNA repair gene hMGMT. Methods: The hMGMT specific siRNA expression cassette was made by two steps PCR, linked with pUC19 to get pU6-MGMTi, co-transfected with pEGFP-C1 into 16HBE and screened by G418. The MGMT mRNA and protein levels were detected by RT-PCR and Western Blot respectively. Results: hMGMT specific RNA interfere vector pU6-MGMTi was constructed successfully. In transfected 16HBE cells MGMT mRNA level could hardly be detected and the protein level was only 10% of control. Conclusion: MGMT specific RNAi expression cassette can effectively inhibit MGMT expression. MGMT silence cell line was built by co-transfection technology, which offered condition for studying the gene function of MGMT.

  19. Characterisation of the promoter region of the human DNA-repair gene Rad51.

    Science.gov (United States)

    Hasselbach, L; Haase, S; Fischer, D; Kolberg, H C; Stürzbecher, H W

    2005-01-01

    Regulatory elements of the 5'-flanking region of the DNA-repair gene Rad51 were analysed to characterise pathological alterations of Rad51 mRNA expression during tumour development. Various fragments of the Rad51 promoter were cloned into the pGL3 reporter vector and the respective promoter activity was determined by luciferase assays in transfected U2-OS cells. Transcription factor binding was identified using Protein/DNA arrays. The region encompassing base pairs -204 to -58 was identified as crucial for Rad51 gene transcription. Down regulator sequences are present upstream (-305 to -204) and downstream (-48 and +204) of this core promoter element. Promoter activity is significantly enhanced by substituting G at the polymorphic positions +135 and +172 for C and T, respectively. Transcription factors Ets1/PEA3, E2F1, p53, EGR1, and Stat5 were identified as relevant for regulating expression of Rad51. We identified three separate cis-sequence elements within the Rad51 transcriptional promoter, one ensuring basal levels of expression and two elements limiting expression to relatively low levels. The characterisation of transcription factor binding might help to explain high-level expression of Rad51 in a variety of solid tumours. The polymorphic sites appear important for the increased risk of breast and/or ovarian cancer for BRCA2 mutation carriers.

  20. The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Veronica L Martinez-Marignac

    Full Text Available Over-expression of DNA repair genes has been associated with resistance to radiation and DNA-damage induced by chemotherapeutic agents such as cisplatin. More recently, based on the analysis of genome expression profiling, it was proposed that over-expression of DNA repair genes enhances the invasive behaviour of tumour cells. In this study we present experimental evidence utilizing functional assays to test this hypothesis. We assessed the effect of the DNA repair proteins known as X-ray complementing protein 3 (XRCC3 and RAD51, to the invasive behavior of the MCF-7 luminal epithelial-like and BT20 basal-like triple negative human breast cancer cell lines. We report that stable or transient over-expression of XRCC3 but not RAD51 increased invasiveness in both cell lines in vitro. Moreover, XRCC3 over-expressing MCF-7 cells also showed a higher tumorigenesis in vivo and this phenotype was associated with increased activity of the metalloproteinase MMP-9 and the expression of known modulators of cell-cell adhesion and metastasis such as CD44, ID-1, DDR1 and TFF1. Our results suggest that in addition to its' role in facilitating repair of DNA damage, XRCC3 affects invasiveness of breast cancer cell lines and the expression of genes associated with cell adhesion and invasion.

  1. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene

    Science.gov (United States)

    Win, Aung Ko; Reece, Jeanette C.; Buchanan, Daniel D.; Clendenning, Mark; Young, Joanne P.; Cleary, Sean P.; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G.; MacInnis, Robert J.; Tucker, Katherine M.; Winship, Ingrid M.; Macrae, Finlay A.; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W.; Newcomb, Polly A.; Thibodeau, Stephen N.; Lindor, Noralane M.; Hopper, John L.; Gallinger, Steven; Jenkins, Mark A.

    2015-01-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understanding the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95 % confidence interval (CI) 9.19–50.1; p colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative. PMID:26202870

  2. Interaction of Dietary Composition and PYY Gene Expression in Diet-induced Obesity in Rats

    Institute of Scientific and Technical Information of China (English)

    YANG Nianhong; WANG Chongjian; XU Mingjia; MAO Limei; LIU Liegang; SUN Xiufa

    2005-01-01

    Summary: The interaction of high-fat diet and the peptide YY (PYY) gene expression in diet-induced obesity and the mechanisms which predisposed some individuals to become obese on high-fat diet were explored. Thirty-six male SD rats were randomly divided into high-fat diet group (n=27) and chow fed control group (n=9). After 15 weeks of either a high-fat diet or chew fed diet, the high-fat diet group was subdivided into dietary induced obesity (DIO) and dietary induced obesity resistant (DIR) group according to the final body weight. Then the DIO rats were subdivided into two groups for a 8-week secondary dietary intervention. One of the group was switched to chew fed diet, whereas the other DIO and DIR rats continued on the initial high-fat diet. Weight gain and food intake were measured, food efficiency was calculated, and the concentrations of plasma neuropeptide Y (NPY) and PYY were assayed. Hypothalamic NPY mRNA expression and PYY mRNA expression in ileum and colon was detected by RT-PCR. The results showed that at the end of 15th week, the levels of body weight and caloric intake were significantly higher in DIO group than in DIR or control group (P0.05). The concentration of plasma PYY was significantly higher in DIR group than in DIO and CF group, while no significant difference was found between DIO and CF group (P<0.01). After switching the DIO rats to chow fed diet, their body weight gains were significantly lower than that of the DIO-HF group. The expression of PYY mRNA was increased in DIO-HF/CF rats than in DIO-HF rats, and the expression of hypothalamic NPY mRNA was decreased in DIO-HF/CF rats than in DIO-HF group. It was concluded that both dietary composition and PYY gene expression could potently alter the hypothalamic NPY expression and result in different susceptibility to obese and overeating. The decreased PYY was associated with the increased NPY expression and their predisposal to obese and overeating in rats.

  3. Gene and pathway level analyses of germline DNA-repair gene variants and prostate cancer susceptibility using the iCOGS-genotyping array

    DEFF Research Database (Denmark)

    Saunders, Edward J; Dadaev, Tokhir; Leongamornlert, Daniel A

    2016-01-01

    BACKGROUND: Germline mutations within DNA-repair genes are implicated in susceptibility to multiple forms of cancer. For prostate cancer (PrCa), rare mutations in BRCA2 and BRCA1 give rise to moderately elevated risk, whereas two of B100 common, low-penetrance PrCa susceptibility variants identif...

  4. Assessment of single nucleotide polymorphisms in screening 52 DNA repair and cell cycle control genes in Fanconi anemia patients

    Directory of Open Access Journals (Sweden)

    Petrović Sandra

    2015-01-01

    Full Text Available Fanconi anemia (FA is a rare genetically heterogeneous disorder associated with bone marrow failure, birth defects and cancer susceptibility. Apart from the disease- causing mutations in FANC genes, the identification of specific DNA variations, such as single nucleotide polymorphisms (SNPs, in other candidate genes may lead to a better clinical description of this condition enabling individualized treatment with improvement of the prognosis. In this study, we have assessed 95 SNPs located in 52 key genes involved in base excision repair (BER, nucleotide excision repair (NER, mismatch repair (MMR, double strand break (DSB repair and cell cycle control using a DNA repair chip (Asper Biotech, Estonia which includes most of the common variants for the candidate genes. The SNP genotyping was performed in five FA-D2 patients and in one FA-A patient. The polymorphisms studied were synonymous (n=10, nonsynonymous (missense (n=52 and in non-coding regions of the genome (introns and 5 ‘and 3’ untranslated regions (UTR (n=33. Polymorphisms found at the homozygous state are selected for further analysis. Our results have shown a significant inter-individual variability among patients in the type and the frequency of SNPs and also elucidate the need for further studies of polymorphisms located in ATM, APEX APE 1, XRCC1, ERCC2, MSH3, PARP4, NBS1, BARD1, CDKN1B, TP53 and TP53BP1 which may be of great importance for better clinical description of FA. In addition, the present report recommends the use of SNPs as predictive and prognostic genetic markers to individualize therapy of FA patients. [Projekat Ministarstva nauke Republike Srbije, br. 173046

  5. Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor.

    Directory of Open Access Journals (Sweden)

    Sushant K Kachhap

    Full Text Available BACKGROUND: Histone deacetylase inhibitors (HDACis re-express silenced tumor suppressor genes and are currently undergoing clinical trials. Although HDACis have been known to induce gene expression, an equal number of genes are downregulated upon HDAC inhibition. The mechanism behind this downregulation remains unclear. Here we provide evidence that several DNA repair genes are downregulated by HDAC inhibition and provide a mechanism involving the E2F1 transcription factor in the process. METHODOLOGY/PRINCIPAL FINDINGS: Applying Analysis of Functional Annotation (AFA on microarray data of prostate cancer cells treated with HDACis, we found a number of genes of the DNA damage response and repair pathways are downregulated by HDACis. AFA revealed enrichment of homologous recombination (HR DNA repair genes of the BRCA1 pathway, as well as genes regulated by the E2F1 transcription factor. Prostate cancer cells demonstrated a decreased DNA repair capacity and an increased sensitization to chemical- and radio-DNA damaging agents upon HDAC inhibition. Recruitment of key HR repair proteins to the site of DNA damage, as well as HR repair capacity was compromised upon HDACi treatment. Based on our AFA data, we hypothesized that the E2F transcription factors may play a role in the downregulation of key repair genes upon HDAC inhibition in prostate cancer cells. ChIP analysis and luciferase assays reveal that the downregulation of key repair genes is mediated through decreased recruitment of the E2F1 transcription factor and not through active repression by repressive E2Fs. CONCLUSIONS/SIGNIFICANCE: Our study indicates that several genes in the DNA repair pathway are affected upon HDAC inhibition. Downregulation of the repair genes is on account of a decrease in amount and promoter recruitment of the E2F1 transcription factor. Since HDAC inhibition affects several pathways that could potentially have an impact on DNA repair, compromised DNA repair upon HDAC

  6. Gene polymorphisms of the DNA Repairing Genes APE1 and XRCC1 among Smoking Lung Cancer Egyptians

    Directory of Open Access Journals (Sweden)

    Rezk Ahmed Abd-ellateef Elbaz, Salim Abd-elhady Habib, Maha Ebraheem Esmael Ebraheem, Gamal Kamel EL-Ebidy, Lamiaa Mohamed Mahmoud Ramadan and Ahmed Settin

    2012-04-01

    Full Text Available Lung cancer is the leading cause of cancer-related mortality worldwide and is thus a major public health problem. DNA base damage or losses caused by endogenous and exogenous agents occur constantly at a high frequency in human cells. The removal or repair of damaged bases is an important mechanism in protecting the integrity of the genome. APE1 (Apurinic/Apyrimidinic Endonuclease 1 and XRCC1 (X-ray cross-complementing group1 are DNA repair proteins that play important roles in the base excision repair (BER pathway. The focus of this work is limited to the association between polymorphisms in the DNA repair genes, (APE1 Asp148Glu (2197 T→G and XRCC1 Arg399Gln (28152 G→A genotypes, cigarette smoking and lung cancer. This study has included 131 cases affected with lung cancers include; 33cases with small cell carcinoma (25.2% and 98 cases with non-small cell carcinoma (74.8%. They were recruited from oncology Center, Mansoura University, Egypt; in the period between April 2008 to March 2010. For comparison, a negative control group including 150 healthy individuals randomly selected from blood donors. Controls were selected by random sampling cancer-free individuals without a past history of cancer, who visited Mansoura University hospitals and provided peripheral blood between April 2008 and March 2010. DNA was extracted from the whole peripheral blood using generation DNA purification capture column kit (Gentra system, USA and genotyping for APE1 Glu148Asp and XRCC1 Arg399Gln polymorphisms was performed by a PCR--CTPP (PCR with confronting two-pair primers method. The collected data were organized and statistically analyzed using SPSS statistical computer package version 10 software. we observed that, There were no significant differences in the frequencies of the APE1 Asp148Glu (2197 T→G polymorphism of all genotypes and alleles in all lung cancer cases compared to all healthy controls. Also, there were no significant differences in the

  7. Association of common variants in mismatch repair genes and breast cancer susceptibility: a multigene study

    Directory of Open Access Journals (Sweden)

    Pina Julieta

    2009-09-01

    Full Text Available Abstract Background MMR is responsible for the repair of base-base mismatches and insertion/deletion loops. Besides this, MMR is also associated with an anti-recombination function, suppressing homologous recombination. Losses of heterozygosity and/or microsatellite instability have been detected in a large number of skin samples from breast cancer patients, suggesting a potential role of MMR in breast cancer susceptibility. Methods We carried out a hospital-based case-control study in a Caucasian Portuguese population (287 cases and 547 controls to estimate the susceptibility to non-familial breast cancer associated with some polymorphisms in mismatch repair genes (MSH3, MSH4, MSH6, MLH1, MLH3, PMS1 and MUTYH. Results Using unconditional logistic regression we found that MLH3 (L844P, G>A polymorphism GA (Leu/Pro and AA (Pro/Pro genotypes were associated with a decreased risk: OR = 0.65 (0.45-0.95 (p = 0.03 and OR = 0.62 (0.41-0.94 (p = 0.03, respectively. Analysis of two-way SNP interaction effects on breast cancer revealed two potential associations to breast cancer susceptibility: MSH3 Ala1045Thr/MSH6 Gly39Glu - AA/TC [OR = 0.43 (0.21-0.83, p = 0.01] associated with a decreased risk; and MSH4 Ala97Thr/MLH3 Leu844Pro - AG/AA [OR = 2.35 (1.23-4.49, p = 0.01], GG/AA [OR = 2.11 (1.12-3,98, p = 0.02], and GG/AG [adjusted OR = 1.88 (1.12-3.15, p = 0.02] all associated with an increased risk for breast cancer. Conclusion It is possible that some of these common variants in MMR genes contribute significantly to breast cancer susceptibility. However, further studies with a large sample size will be needed to support our results.

  8. Cloning of the hexA mismatch-repair gene of Streptococcus pneumoniae and identification of the product.

    Science.gov (United States)

    Martin, B; Prats, H; Claverys, J P

    1985-01-01

    The hexA mismatch repair gene of Streptococcus pneumoniae has been cloned into multicopy plasmid vectors. The cloned hexA gene is expressed as judged from its ability to complement various chromosomal hexA- alleles. Its direction of transcription was defined and the functional limits were localized by original methods relying on homology-dependent integration of nonautonomous chimeric plasmids carrying chromosomal inserts into the chromosome. Comparison of the proteins encoded by recombinant plasmids and by restriction fragments allowed us to identify an Mr 94 000 protein as the probable product of the hexA gene.

  9. Use of the comet-FISH assay to compare DNA damage and repair in p53 and hTERT genes following ionizing radiation.

    Directory of Open Access Journals (Sweden)

    Declan J McKenna

    Full Text Available The alkaline single cell gel electrophoresis (comet assay can be combined with fluorescent in situ hybridisation (FISH methodology in order to investigate the localisation of specific gene domains within an individual cell. The number and position of the fluorescent signal(s provides information about the relative damage and subsequent repair that is occurring in the targeted gene domain(s. In this study, we have optimised the comet-FISH assay to detect and compare DNA damage and repair in the p53 and hTERT gene regions of bladder cancer cell-lines RT4 and RT112, normal fibroblasts and Cockayne Syndrome (CS fibroblasts following γ-radiation. Cells were exposed to 5Gy γ-radiation and repair followed for up to 60 minutes. At each repair time-point, the number and location of p53 and hTERT hybridisation spots was recorded in addition to standard comet measurements. In bladder cancer cell-lines and normal fibroblasts, the p53 gene region was found to be rapidly repaired relative to the hTERT gene region and the overall genome, a phenomenon that appeared to be independent of hTERT transcriptional activity. However, in the CS fibroblasts, which are defective in transcription coupled repair (TCR, this rapid repair of the p53 gene region was not observed when compared to both the hTERT gene region and the overall genome, proving the assay can detect variations in DNA repair in the same gene. In conclusion, we propose that the comet-FISH assay is a sensitive and rapid method for detecting differences in DNA damage and repair between different gene regions in individual cells in response to radiation. We suggest this increases its potential for measuring radiosensitivity in cells and may therefore have value in a clinical setting.

  10. Impaired barrier function by dietary fructo-oligosaccharides (FOS in rats is accompanied by increased colonic mitochondrial gene expression

    Directory of Open Access Journals (Sweden)

    Kramer Evelien

    2008-03-01

    Full Text Available Abstract Background Dietary non-digestible carbohydrates stimulate the gut microflora and are therefore presumed to improve host resistance to intestinal infections. However, several strictly controlled rat infection studies showed that non-digestible fructo-oligosaccharides (FOS increase, rather than decrease, translocation of Salmonella towards extra-intestinal sites. In addition, it was shown that FOS increases intestinal permeability already before infection. The mechanism responsible for this adverse effect of FOS is unclear. Possible explanations are altered mucosal integrity due to changes in tight junctions or changes in expression of defense molecules such as antimicrobials and mucins. To examine the mechanisms underlying weakening of the intestinal barrier by FOS, a controlled dietary intervention study was performed. Two groups of 12 rats were adapted to a diet with or without FOS. mRNA was collected from colonic mucosa and changes in gene expression were assessed for each individual rat using Agilent rat whole genome microarrays. Results Among the 997 FOS induced genes we observed less mucosal integrity related genes than expected with the clear permeability changes. FOS did not induce changes in tight junction genes and only 8 genes related to mucosal defense were induced by FOS. These small effects are unlikely the cause for the clear increase in intestinal permeability that is observed. FOS significantly increased expression of 177 mitochondria-related genes. More specifically, induced expression of genes involved in all five OXPHOS complexes and the TCA cycle was observed. These results indicate that dietary FOS influences intestinal mucosal energy metabolism. Furthermore, increased expression of 113 genes related to protein turnover, including proteasome genes, ribosomal genes and protein maturation related genes, was seen. FOS upregulated expression of the peptide hormone proglucagon gene, in agreement with previous studies, as

  11. Stimulation of DNA repair and increased light output in response to UV irradiation in Escherichia coli expressing lux genes.

    Science.gov (United States)

    Cutter, Kerry L; Alloush, Habib M; Salisbury, Vyv C

    2007-01-01

    It has previously been suggested that the evolutionary drive of bacterial bioluminescence is a mechanism of DNA repair. By assessing the UV sensitivity of Escherichia coli, it is shown that the survival of UV-irradiated E. coli constitutively expressing luxABCDE in the dark is significantly better than either a strain with no lux gene expression or the same strain expressing only luciferase (luxAB) genes. This shows that UV resistance is dependent on light output, and not merely on luciferase production. Also, bacterial survival was found to be dependent on the conditions following UV irradiation, as bioluminescence-mediated repair was not as efficient as repair in visible light. Moreover, photon emission revealed a dose-dependent increase in light output per cell after UV exposure, suggesting that increased lux gene expression correlates with UV-induced DNA damage. This phenomenon has been previously documented in organisms where the lux genes are under their natural luxR regulation but has not previously been demonstrated under the regulation of a constitutive promoter.

  12. c-Myc directly regulates the transcription of the NBS1 gene involved in DNA double-strand break repair.

    Science.gov (United States)

    Chiang, Yu-Chi; Teng, Shu-Chun; Su, Yi-Ning; Hsieh, Fon-Jou; Wu, Kou-Juey

    2003-05-23

    The c-myc proto-oncogene encodes a ubiquitous transcription factor involved in the control of cell growth and implicated in inducing tumorigenesis. Understanding the function of c-Myc and its role in cancer depends upon the identification of c-Myc target genes. Nijmegen breakage syndrome (NBS) is a chromosomal-instability syndrome associated with cancer predisposition, radiosensitivity, and chromosomal instability. The NBS gene product, NBS1 (p95 or nibrin), is a part of the hMre11 complex, a central player associated with double-strand break (DSB) repair. NBS1 contains domains characteristic for proteins involved in DNA repair, recombination, and replication. Here we show that c-Myc directly activates NBS1. c-Myc-mediated induction of NBS1 gene transcription occurs in different tissues, is independent of cell proliferation, and is mediated by a c-Myc binding site in the intron 1 region of NBS1 gene. Overexpression of NBS1 in Rat1a cells increased cell proliferation. These results indicate that NBS1 is a direct transcriptional target of c-Myc and links the function of c-Myc to the regulation of DNA DSB repair pathway operating during DNA replication.

  13. Gypenosides causes DNA damage and inhibits expression of DNA repair genes of human oral cancer SAS cells.

    Science.gov (United States)

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Tang, Nou-Ying; Lu, Pei-Jung; Weng, Jing-Ru; Chung, Jing-Gung

    2010-01-01

    Gypenosides (Gyp) are the major components of Gynostemma pentaphyllum Makino, a Chinese medical plant. Recently, Gyp has been shown to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information to address the effects of Gyp on DNA damage and DNA repair-associated gene expression in human oral cancer cells. Therefore, we investigated whether Gyp induced DNA damage and DNA repair gene expression in human oral cancer SAS cells. The results from flow cytometric assay indicated that Gyp-induced cytotoxic effects led to a decrease in the percentage of viable SAS cells. The results from comet assay revealed that the incubation of SAS cells with Gyp led to a longer DNA migration smear (comet tail) when compared with control and this effect was dose-dependent. The results from real-time PCR analysis indicated that treatment of SAS cells with 180 mug/ml of Gyp for 24 h led to a decrease in 14-3-3sigma, DNA-dependent serine/threonine protein kinase (DNAPK), p53, ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and breast cancer gene 1 (BRCA1) mRNA expression. These observations may explain the cell death caused by Gyp in SAS cells. Taken together, Gyp induced DNA damage and inhibited DNA repair-associated gene expressions in human oral cancer SAS cells in vitro.

  14. Manipulation of cell cycle progression can counteract the apparent loss of correction frequency following oligonucleotide-directed gene repair

    Directory of Open Access Journals (Sweden)

    Kmiec Eric B

    2007-02-01

    Full Text Available Abstract Background Single-stranded oligonucleotides (ssODN are used routinely to direct specific base alterations within mammalian genomes that result in the restoration of a functional gene. Despite success with the technique, recent studies have revealed that following repair events, correction frequencies decrease as a function of time, possibly due to a sustained activation of damage response signals in corrected cells that lead to a selective stalling. In this study, we use thymidine to slow down the replication rate to enhance repair frequency and to maintain substantial levels of correction over time. Results First, we utilized thymidine to arrest cells in G1 and released the cells into S phase, at which point specific ssODNs direct the highest level of correction. Next, we devised a protocol in which cells are maintained in thymidine following the repair reaction, in which the replication is slowed in both corrected and non-corrected cells and the initial correction frequency is retained. We also present evidence that cells enter a senescence state upon prolonged treatment with thymidine but this passage can be avoided by removing thymidine at 48 hours. Conclusion Taken together, we believe that thymidine may be used in a therapeutic fashion to enable the maintenance of high levels of treated cells bearing repaired genes.

  15. Contribution of DNA double-strand break repair gene XRCC3 genotypes to oral cancer susceptibility in Taiwan.

    Science.gov (United States)

    Tsai, Chia-Wen; Chang, Wen-Shin; Liu, Juhn-Cherng; Tsai, Ming-Hsui; Lin, Cheng-Chieh; Bau, Da-Tian

    2014-06-01

    The DNA repair gene X-ray repair cross complementing protein 3 (XRCC3) is thought to play a major role in double-strand break repair and in maintaining genomic stability. Very possibly, defective double-strand break repair of cells can lead to carcinogenesis. Therefore, a case-control study was performed to reveal the contribution of XRCC3 genotypes to individual oral cancer susceptibility. In this hospital-based research, the association of XRCC3 rs1799794, rs45603942, rs861530, rs3212057, rs1799796, rs861539, rs28903081 genotypes with oral cancer risk in a Taiwanese population was investigated. In total, 788 patients with oral cancer and 956 age- and gender-matched healthy controls were genotyped. The results showed that there was significant differential distribution among oral cancer and controls in the genotypic (p=0.001428) and allelic (p=0.0013) frequencies of XRCC3 rs861539. As for the other polymorphisms, there was no difference between case and control groups. In gene-lifestyle interaction analysis, we have provided the first evidence showing that there is an obvious joint effect of XRCC3 rs861539 genotype with individual areca chewing habits on oral cancer risk. In conclusion, the T allele of XRCC3 rs861539, which has an interaction with areca chewing habit in oral carcinogenesis, may be an early marker for oral cancer in Taiwanese.

  16. Diet-gene interactions between dietary fat intake and common polymorphisms in determining lipid metabolism

    Directory of Open Access Journals (Sweden)

    Corella, Dolores

    2009-03-01

    Full Text Available Current dietary guidelines for fat intake have not taken into consideration the possible genetic differences underlying the individual variability in responsiveness to dietary components. Genetic variability has been identified in humans for all the known lipid metabolim-related genes resulting in a plethora of candidate genes and genetic variants to examine in diet-gene interaction studies focused on fat consumption. Some examples of fat-gene interaction are reviewed. These include: the interaction between total intake and the 514C/T in the hepatic lipase gene promoter in determining high-density lipoprotein cholesterol (HDL-C metabolism; the interaction between polyunsaturated fatty acids (PUFA and the 75G/A polymorphism in the APOA1 gene plasma HDL-C concentrations; the interaction between PUFA and the L162V polymorphism in the PPARA gene in determining triglycerides and APOC3 concentrations; and the interaction between PUFA intake and the 1131TC in the APOA5 gene in determining triglyceride metabolism. Although hundreds of diet-gene interaction studies in lipid metabolism have been published, the level of evidence to make specific nutritional recommendations to the population is still low and more research in nutrigenetics has to be undertaken.Las recomendaciones dietéticas actuales referentes al consumo de grasas en la dieta han sido realizadas sin tener en cuenta las posibles diferencias genéticas de las personas que podrían ser las responsables de las diferentes respuestas interindividuales que frecuentemente se observan ante la misma dieta. La presencia de variabilidad genética ha sido puesta de manifiesto para todos los genes relacionados con el metabolismo lipídico, por lo que existe un ingente número de genes y de variantes genéticas para ser incluidas en los estudios sobre interacciones dieta-genotipo en el ámbito específico del consumo de grasas y aceites. Se revisarán algunos ejemplos sobre interacciones grasa

  17. Escherichia coli radD (yejH) gene: a novel function involved in radiation resistance and double-strand break repair

    OpenAIRE

    Chen, Stefanie H.; Byrne, Rose T.; Wood, Elizabeth A; Cox, Michael M.

    2015-01-01

    A transposon insertion screen implicated the yejH gene in the repair of ionizing radiation-induced damage. The yejH gene, which exhibits significant homology to the human transcription-coupled DNA repair gene XPB, is involved in the repair of double strand DNA breaks. Deletion of yejH significantly sensitized cells to agents that cause double strand breaks (ionizing radiation, UV radiation, ciprofloxacin). In addition, deletion of both yejH and radA hypersensitized the cells to ionizing radia...

  18. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Wataru Mizunoya

    Full Text Available Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA-rich, fish oil (n-3 PUFA-rich, or lard (low in PUFAs were administered to the rats for 4 weeks. Myosin heavy chain (MyHC isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.

  19. Mating-type suppression of the DNA-repair defect of the yeast rad6 delta mutation requires the activity of genes in the RAD52 epistasis group.

    Science.gov (United States)

    Yan, Y X; Schiestl, R H; Prakash, L

    1995-06-01

    The RAD6 gene of Saccharomyces cerevisiae is required for post-replication repair of UV-damaged DNA, UV mutagenesis, and sporulation. Here, we show that the radiation sensitivity of a MATa rad6 delta strain can be suppressed by the MAT alpha 2 gene carried on a multicopy plasmid. The a1-alpha 2 suppression is specific to the RAD6 pathway, as mutations in genes required for nucleotide excision repair or for recombinational repair do not show such mating-type suppression. The a1-alpha 2 suppression of the rad6 delta mutation requires the activity of the RAD52 group of genes, suggesting that suppression occurs by channelling of post-replication gaps present in the rad6 delta mutant into the RAD52 recombinational repair pathway. The a1-alpha 2 repressor could mediate this suppression via an enhancement in the expression, or the activity, of recombination genes.

  20. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles.

    Directory of Open Access Journals (Sweden)

    Ella R Thompson

    2012-09-01

    Full Text Available Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome. In total, screening of all exons in these genes in 438 breast cancer families identified three with truncating mutations in FANCC and two with truncating mutations in BLM. Additional screening of FANCC mutation hotspot exons identified one pathogenic mutation among an additional 957 breast cancer families. Importantly, none of the deleterious mutations were identified among 464 healthy controls and are not reported in the 1,000 Genomes data. Given the rarity of Fanconi Anemia and Bloom syndrome disorders among Caucasian populations, the finding of multiple deleterious mutations in these critical DNA repair genes among high-risk breast cancer families is intriguing and suggestive of a predisposing role. Our data demonstrate the utility of intra-family exome-sequencing approaches to uncover cancer predisposition genes, but highlight the major challenge of definitively validating candidates where the incidence of sporadic disease is high, germline mutations are not fully penetrant, and individual predisposition genes may only account for a tiny proportion of breast cancer families.

  1. Polymorphism of the DNA repair gene XPA and susceptibility to lung cancer

    Institute of Scientific and Technical Information of China (English)

    Jinfu Zhu; Zhibin Hu; Hongxia Ma; Xiang Huo; Lin Xu; Jiannong Zhou; Hongbing Shen; Yijiang Chen

    2005-01-01

    Objective: To study the relationship between one polymorphism in the promoter of the DNA repair gene XPA and the susceptibility to lung cancer. Methods: Genotypes were determined by the PCR-restriction fragment length polymorphism (PCR-RFLP)method in 310 histologically-confirmed lung cancer cases and 341 age and sex frequency-matched cancer-free controls. Results: The XPA A23G genotype frequencies were 27.1% (AA), 42.9% (AG), and 30.0% (GG) in case patients and 21.1% (AA), 52.8% (AG),and 26.1% (GG) in control subjects. Multivariate logistic regression analysis revealed that individuals carrying at least one 23G variant allele (AG + GG genotypes) had a significantly decreased risk for lung cancer (adjusted OR = 0.66; 95% CI = 0.44- 0.98) compared with the wild-type genotype (23AA). Stratified analysis showed that the protective effect was more evident in subjects with a family history of cancer. Conclusion: These results suggest that the XPA A23G polymorphism may have a role in lung cancer susceptibility in this study population.

  2. Does Short-Term Dietary Omega-3 Fatty Acid Supplementation Influence Brain Hippocampus Gene Expression of Zinc Transporter-3?

    Directory of Open Access Journals (Sweden)

    Nur Farhana Ahmad Sopian

    2015-07-01

    Full Text Available Dietary omega-3 fatty acids have been recognized to improve brain cognitive function. Deficiency leads to dysfunctional zinc metabolism associated with learning and memory impairment. The objective of this study is to explore the effect of short-term dietary omega-3 fatty acids on hippocampus gene expression at the molecular level in relation to spatial recognition memory in mice. A total of 24 male BALB/c mice were randomly divided into four groups and fed a standard pellet as a control group (CTL, n = 6, standard pellet added with 10% (w/w fish oil (FO, n = 6, 10% (w/w soybean oil (SO, n = 6 and 10% (w/w butter (BT, n = 6. After 3 weeks on the treatment diets, spatial-recognition memory was tested on a Y-maze. The hippocampus gene expression was determined using a real-time PCR. The results showed that 3 weeks of dietary omega-3 fatty acid supplementation improved cognitive performance along with the up-regulation of α-synuclein, calmodulin and transthyretin genes expression. In addition, dietary omega-3 fatty acid deficiency increased the level of ZnT3 gene and subsequently reduced cognitive performance in mice. These results indicate that the increased the ZnT3 levels caused by the deficiency of omega-3 fatty acids produced an abnormal zinc metabolism that in turn impaired the brain cognitive performance in mice.

  3. Alteration of gene expression in mammary gland tissue of dairy cows in response to dietary unsaturated fatty acids

    NARCIS (Netherlands)

    Mach Casellas, N.; Jacobs, A.A.A.; Kruijt, L.; Baal, van J.; Smits, M.A.

    2011-01-01

    The aim of this study was to determine the effects of supplementing unprotected dietary unsaturated fatty acids (UFAs) from different plant oils on gene expression in the mammary gland of grazing dairy cows. A total of 28 Holstein–Friesian dairy cows in mid-lactation were blocked according to parity

  4. Human INO80 chromatin-remodelling complex contributes to DNA double-strand break repair via the expression of Rad54B and XRCC3 genes.

    Science.gov (United States)

    Park, Eun-Jung; Hur, Shin-Kyoung; Kwon, Jongbum

    2010-10-15

    Recent studies have shown that the SWI/SNF family of ATP-dependent chromatin-remodelling complexes play important roles in DNA repair as well as in transcription. The INO80 complex, the most recently described member of this family, has been shown in yeast to play direct role in DNA DSB (double-strand break) repair without affecting the expression of the genes involved in this process. However, whether this function of the INO80 complex is conserved in higher eukaryotes has not been investigated. In the present study, we found that knockdown of hINO80 (human INO80) confers DNA-damage hypersensitivity and inefficient DSB repair. Microarray analysis and other experiments have identified the Rad54B and XRCC3 (X-ray repair complementing defective repair in Chinese-hamster cells 3) genes, implicated in DSB repair, to be repressed by hINO80 deficiency. Chromatin immunoprecipitation studies have shown that hINO80 binds to the promoters of the Rad54B and XRCC3 genes. Re-expression of the Rad54B and XRCC3 genes rescues the DSB repair defect in hINO80-deficient cells. These results suggest that hINO80 assists DSB repair by positively regulating the expression of the Rad54B and XRCC3 genes. Therefore, unlike yeast INO80, hINO80 can contribute to DSB repair indirectly via gene expression, suggesting that the mechanistic role of this chromatin remodeller in DSB repair is evolutionarily diversified.

  5. Clinical features and mismatch repair gene mutation screening in Chinese patients with hereditary nonpolyposis colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Shan-Run Liu; Bo Zhao; Zhen-Jun Wang; Yuan-Lian Wan; Yan-Ting Huang

    2004-01-01

    AIM: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominantly- inherited cancer-susceptibility syndrome that confers an increased risk for colorectal cancer and a variety of other tumors at a young age. It has been associated with germline mutations in five mismatch repair (MMR) genes (hMSH2, hMLH1, hPMS1, hPMS2, and hMSH6/GTBP). The great majority of germline mutations were found in hMSH2 and hMLH1. The purpose of this study was to analyze the clinical features of Chinese HNPCC patients and to screen hMSH2 and hMLH1 gene mutations. METHODS: Twenty-eight independent Chinese families were collected, of which 15 met Amsterdam criteria I and 13 met the Japanese clinical diagnosis criteria. The data were recorded including sex, site of colorectal cancer (CRC),age of diagnosis, history of synchronous and/or metachronous CRC, instance of extracolonic cancers, and histopathology of tumors. Peripheral blood samples were collected from all pedigrees after formal written consents were signed. PCR and denaturing high-performance liquid chromatography (DHPLC) were used to screen the coding regions of hMSH2 and hMLH1 genes. The samples showing abnormal DHPLC profiles were sequenced by a 377 DNA sequencer.RESULTS: One hundred and seventy malignant neoplasms were found in one hundred and twenty-six patients (multiple cancer in twenty-three), including one hundred and twentyseven CRCs, fifteen gastric, seven endometrial, and five esophageal cancers. Seventy-seven point eight percent of the patients had CRCs, sharing the features of early occurrence (average age of onset, 45.9 years) and of the right-sided predominance reported in the literature. In Chinese HNPCC patients, gastric cancer occurred more frequently, accounting for 11.9% of all cancers patients and ranking second in the spectrum of HNPCC predisposing cancers. Synchronous CRCs occurred less frequently, only accounting for 3.1% of the total CRCs. Twenty percent of the colorectal patients had

  6. Dietary cholesterol fails to stimulate the human cholesterol 7alpha-hydroxylase gene (CYP7A1) in transgenic mice.

    Science.gov (United States)

    Agellon, Luis B; Drover, Victor A B; Cheema, Sukhinder K; Gbaguidi, G Franck; Walsh, Annemarie

    2002-06-07

    Dietary cholesterol has been shown to have a stimulatory effect on the murine cholesterol 7alpha-hydroxylase gene (Cyp7a1), but its effect on human cholesterol 7alpha-hydroxylase gene (CYP7A1) expression in vivo is not known. A transgenic mouse strain harboring the human CYP7A1 gene and homozygous for the disrupted murine Cyp7a1 gene was created. Cholesterol feeding increased the expression of the endogenous modified Cyp7a1 allele but failed to stimulate the human CYP7A1 transgene. In transfected hepatoma cells, 25-hydroxycholesterol increased murine Cyp7a1 gene promoter activity, whereas the human CYP7A1 gene promoter was unresponsive. Electrophoretic mobility shift assays demonstrated the interaction of the liver X receptor alpha (LXRalpha): retinoid X receptor (RXR) heterodimer, a transcription factor complex that is activated by oxysterols, with the murine Cyp7a1 gene promoter, whereas no binding to the human CYP7A1 gene promoter was detected. The results demonstrate that the human CYP7A1 gene is not stimulated by dietary cholesterol in the intact animal, and this is attributable to the inability of the CYP7A1 gene promoter to interact with LXRalpha:RXR.

  7. Association between DNA damage response and repair genes and risk of invasive serous ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Joellen M Schildkraut

    Full Text Available BACKGROUND: We analyzed the association between 53 genes related to DNA repair and p53-mediated damage response and serous ovarian cancer risk using case-control data from the North Carolina Ovarian Cancer Study (NCOCS, a population-based, case-control study. METHODS/PRINCIPAL FINDINGS: The analysis was restricted to 364 invasive serous ovarian cancer cases and 761 controls of white, non-Hispanic race. Statistical analysis was two staged: a screen using marginal Bayes factors (BFs for 484 SNPs and a modeling stage in which we calculated multivariate adjusted posterior probabilities of association for 77 SNPs that passed the screen. These probabilities were conditional on subject age at diagnosis/interview, batch, a DNA quality metric and genotypes of other SNPs and allowed for uncertainty in the genetic parameterizations of the SNPs and number of associated SNPs. Six SNPs had Bayes factors greater than 10 in favor of an association with invasive serous ovarian cancer. These included rs5762746 (median OR(odds ratio(per allele = 0.66; 95% credible interval (CI = 0.44-1.00 and rs6005835 (median OR(per allele = 0.69; 95% CI = 0.53-0.91 in CHEK2, rs2078486 (median OR(per allele = 1.65; 95% CI = 1.21-2.25 and rs12951053 (median OR(per allele = 1.65; 95% CI = 1.20-2.26 in TP53, rs411697 (median OR (rare homozygote = 0.53; 95% CI = 0.35 - 0.79 in BACH1 and rs10131 (median OR( rare homozygote = not estimable in LIG4. The six most highly associated SNPs are either predicted to be functionally significant or are in LD with such a variant. The variants in TP53 were confirmed to be associated in a large follow-up study. CONCLUSIONS/SIGNIFICANCE: Based on our findings, further follow-up of the DNA repair and response pathways in a larger dataset is warranted to confirm these results.

  8. FRAGILE HISTIDINE TRIAD GENE EXPRESSION AND ITS CORRALATION WITH MISMATCH REPAIR PROTEIN IN HUMAN SPORADIC COLORECTAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    姚成才; 林从尧

    2004-01-01

    Objective: To investigate the expression of fragile histidine triad (FHIT) gene and its correlation with clinicopathological features and correlation with mismatch repair protein (mainly MLH1 and MSH2) in human sporadic colorectal carcinoma (SCC). Methods:Immunohistochemistry SP method was used to determine the expression of FHIT, MLH1 and MSH2 protein in surgically resected specimens of 84 human SCC. Results:The positive rates of FHIT, MLH1 and MSH2 protein expression were 48.81%, 92.86% and 100% respectively.Loss or reduced expression of FHIT protein was not related with tumors clinicopathological features such as age, gender,tumors site and histological type (P>0.05), but was correlated with tumors invade depth, degree of the differentiation, Ducks' stage and metastasis (P<0.05). There was no relationship between FHIT gene expression and MLH1 protein (r=0.0991, P>0.05) and MSH2 protein (r=0.0000, P=l.00) expression in human SCC. Conclusion:Absent or reduction of FHIT gene expression consists of high proportion and is a frequent event in SCC. FHIT gene is involved in the development and progression of human SCC and may be a candidate tumors suppressor gene. The relationship between alteration of FHIT gene expression and mismatch repair protein (mainly MLH1 and MSH2)deserved further study in human SCC.

  9. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient wasted'' mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. (Argonne National Lab., IL (United States)); Libertin, C.R. (Loyola Univ., Maywood, IL (United States))

    1992-01-01

    Mice recessive for the autosomal gene wasted'' (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/[sm bullet] mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/[sm bullet] and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  10. Gene expression and pathologic alterations in juvenile rainbow trout due to chronic dietary TCDD exposure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qing [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI 53204 (United States); Rise, Matthew L. [Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John' s, NL, A1C 5S7 (Canada); Spitsbergen, Jan M. [Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR 97331 (United States); Hori, Tiago S. [Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John' s, NL, A1C 5S7 (Canada); Mieritz, Mark; Geis, Steven [Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706 (United States); McGraw, Joseph E. [School of Pharmacy, Concordia University Wisconsin, 12800 North Lake Shore Drive, Mequon, WI 53097 (United States); Goetz, Giles [School of Aquatic and Fishery Sciences, University of Washington, 1122 Northeast Boat Street, Seattle, WA 98195 (United States); Larson, Jeremy; Hutz, Reinhold J. [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); Carvan, Michael J., E-mail: carvanmj@uwm.edu [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI 53204 (United States)

    2013-09-15

    Highlights: •First report of the effects of dietary TCDD in juvenile trout smaller than 20 g. •TCDD uptake was estimated using published models and confirmed by GC. •First report of dietary TCDD-induced lesions in nasal epithelium in any species. •Several useful biomarkers are identified from microarray-based transcriptomics analysis. -- Abstract: The goal of this project was to use functional genomic methods to identify molecular biomarkers as indicators of the impact of TCDD exposure in rainbow trout. Specifically, we investigated the effects of chronic dietary TCDD exposure on whole juvenile rainbow trout global gene expression associated with histopathological analysis. Juvenile rainbow trout were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb (ng TCDD/g food), and fish were sampled from each group at 7, 14, 28 and 42 days after initiation of feeding. 100 ppb TCDD caused 100% mortality at 39 days. Fish fed with 100 ppb TCDD food had TCDD accumulation of 47.37 ppb (ng TCDD/g fish) in whole fish at 28 days. Histological analysis from TCDD-treated trout sampled from 28 and 42 days revealed that obvious lesions were found in skin, oropharynx, liver, gas bladder, intestine, pancreas, nose and kidney. In addition, TCDD caused anemia in peripheral blood, decreases in abdominal fat, increases of remodeling of fin rays, edema in pericardium and retrobulbar hemorrhage in the 100 ppb TCDD-treated rainbow trout compared to the control group at 28 days. Dose- and time-dependent global gene expression analyses were performed using the cGRASP 16,000 (16K) cDNA microarray. TCDD-responsive whole body transcripts identified in the microarray experiments have putative functions involved in various biological processes including growth, cell proliferation, metabolic process, and immune system processes. Nine microarray-identified genes were selected for QPCR validation. CYP1A3 and CYP1A1 were common up-regulated genes and HBB1 was a common down

  11. Polymorphisms in DNA repair genes, smoking, and bladder cancer risk: findings from the International Consortium of Bladder Cancer

    Science.gov (United States)

    Stern, Mariana C.; Lin, Jie; Figueroa, Jonine D.; Kelsey, Karl T.; Kiltie, Anne E.; Yuan, Jian-Min; Matullo, Giuseppe; Fletcher, Tony; Benhamou, Simone; Taylor, Jack A.; Placidi, Donatella; Zhang, Zuo-Feng; Steineck, Gunnar; Rothman, Nathaniel; Kogevinas, Manolis; Silverman, Debra; Malats, Nuria; Chanock, Stephen; Wu, Xifeng; Karagas, Margaret R.; Andrew, Angeline S.; Nelson, Heather H.; Bishop, D. Timothy; Sak, Sei Chung; Choudhury, Ananya; Barrett, Jennifer H; Elliot, Faye; Corral, Román; Joshi, Amit D.; Gago-Dominguez, Manuela; Cortessis, Victoria K.; Xiang, Yong-Bing; Vineis, Paolo; Sacerdote, Carlotta; Guarrera, Simonetta; Polidoro, Silvia; Allione, Alessandra; Gurzau, Eugen; Koppova, Kvetoslava; Kumar, Rajiv; Rudnai, Peter; Porru, Stefano; Carta, Angela; Campagna, Marcello; Arici, Cecilia; Park, SungShim Lani; Garcia-Closas, Montserrat

    2009-01-01

    Tobacco smoking is the most important and well-established bladder cancer risk factor, and a rich source of chemical carcinogens and reactive oxygen species that can induce damage to DNA in urothelial cells. Therefore, common variation in DNA repair genes might modify bladder cancer risk. In this study we present results from meta- and pooled analyses conducted as part of the International Consortium of Bladder Cancer. We included data on 10 single nucleotide polymorphisms corresponding to 7 DNA repair genes from 13 studies. Pooled- and meta-analyses included 5,282 cases and 5,954 controls of non-Latino white origin. We found evidence for weak but consistent associations with ERCC2 D312N (rs1799793) (per allele OR = 1.10; 95% CI = 1.01–1.19; p = 0.021), NBN E185Q (rs1805794) (per allele OR = 1.09; 95% CI = 1.01–1.18; p = 0.028), and XPC A499V (rs2228000) (per allele OR = 1.10; 95% CI = 1.00–1.21, p = 0.044). The association with NBN E185Q was limited to ever smokers (interaction p = 0.002), and was strongest for the highest levels of smoking dose and smoking duration. Overall, our study provides the strongest evidence to date for a role of common variants in DNA repair genes in bladder carcinogenesis. PMID:19706757

  12. Targeted Modification of Gene Function Exploiting Homology-Directed Repair of TALEN-Mediated Double-Strand Breaks in Barley.

    Science.gov (United States)

    Budhagatapalli, Nagaveni; Rutten, Twan; Gurushidze, Maia; Kumlehn, Jochen; Hensel, Goetz

    2015-07-06

    Transcription activator-like effector nucleases open up new opportunities for targeted mutagenesis in eukaryotic genomes. Similar to zinc-finger nucleases, sequence-specific DNA-binding domains can be fused with effector domains like the nucleolytically active part of FokI to induce double-strand breaks and thereby modify the host genome on a predefined target site via nonhomologous end joining. More sophisticated applications of programmable endonucleases involve the use of a DNA repair template facilitating homology-directed repair (HDR) so as to create predefined rather than random DNA sequence modifications. The aim of this study was to demonstrate the feasibility of editing the barley genome by precisely modifying a defined target DNA sequence resulting in a predicted alteration of gene function. We used gfp-specific transcription activator-like effector nucleases along with a repair template that, via HDR, facilitates conversion of gfp into yfp, which is associated with a single amino acid exchange in the gene product. As a result of co-bombardment of leaf epidermis, we detected yellow fluorescent protein accumulation in about three of 100 mutated cells. The creation of a functional yfp gene via HDR was unambiguously confirmed by sequencing of the respective genomic site. In addition to the allele conversion accomplished in planta, a readily screenable marker system is introduced that might be useful for optimization approaches in the field of genome editing.

  13. The Mutyh base excision repair gene influences the inflammatory response in a mouse model of ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Ida Casorelli

    Full Text Available BACKGROUND: The Mutyh DNA glycosylase is involved in the repair of oxidized DNA bases. Mutations in the human MUTYH gene are responsible for colorectal cancer in familial adenomatous polyposis. Since defective DNA repair genes might contribute to the increased cancer risk associated with inflammatory bowel diseases, we compared the inflammatory response of wild-type and Mutyh(-/- mice to oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: The severity of colitis, changes in expression of genes involved in DNA repair and inflammation, DNA 8-oxoguanine levels and microsatellite instability were analysed in colon of mice treated with dextran sulfate sodium (DSS. The Mutyh(-/- phenotype was associated with a significant accumulation of 8-oxoguanine in colon DNA of treated mice. A single DSS cycle induced severe acute ulcerative colitis in wild-type mice, whereas lesions were modest in Mutyh(-/- mice, and this was associated with moderate variations in the expression of several cytokines. Eight DSS cycles caused chronic colitis in both wild-type and Mutyh(-/- mice. Lymphoid hyperplasia and a significant reduction in Foxp3(+ regulatory T cells were observed only in Mutyh(-/- mice. CONCLUSIONS: The findings indicate that, in this model of ulcerative colitis, Mutyh plays a major role in maintaining intestinal integrity by affecting the inflammatory response.

  14. New single nucleotide polymorphisms (SNPs) in homologous recombination repair genes detected by microarray analysis in Polish breast cancer patients.

    Science.gov (United States)

    Romanowicz, Hanna; Strapagiel, Dominik; Słomka, Marcin; Sobalska-Kwapis, Marta; Kępka, Ewa; Siewierska-Górska, Anna; Zadrożny, Marek; Bieńkiewicz, Jan; Smolarz, Beata

    2016-11-30

    Breast cancer is the most common cause of malignancy and mortality in women worldwide. This study aimed at localising homologous recombination repair (HR) genes and their chromosomal loci and correlating their nucleotide variants with susceptibility to breast cancer. In this study, authors analysed the association between single nucleotide polymorphisms (SNPs) in homologous recombination repair genes and the incidence of breast cancer in the population of Polish women. Blood samples from 94 breast cancer patients were analysed as test group. Individuals were recruited into the study at the Department of Oncological Surgery and Breast Diseases of the Institute of the Polish Mother's Memorial Hospital in Lodz, Poland. Healthy controls (n = 500) were obtained from the Biobank Laboratory, Department of Molecular Biophysics, University of Lodz. Then, DNA of breast cancer patients was compared with one of the disease-free women. The test was supported by microarray analysis. Statistically significant correlations were identified between breast cancer and 3 not described previously SNPs of homologous recombination repair genes BRCA1 and BRCA2: rs59004709, rs4986852 and rs1799950. Further studies on larger groups are warranted to support the hypothesis of correlation between the abovementioned genetic variants and breast cancer risk.

  15. Transplantation of erythropoietin gene-modified neural stem cells improves the repair of injured spinal cord

    Directory of Open Access Journals (Sweden)

    Min-fei Wu

    2015-01-01

    Full Text Available The protective effects of erythropoietin on spinal cord injury have not been well described. Here, the eukaryotic expression plasmid pcDNA3.1 human erythropoietin was transfected into rat neural stem cells cultured in vitro. A rat model of spinal cord injury was established using a free falling object. In the human erythropoietin-neural stem cells group, transfected neural stem cells were injected into the rat subarachnoid cavity, while the neural stem cells group was injected with non-transfected neural stem cells. Dulbecco′s modified Eagle′s medium/F12 medium was injected into the rats in the spinal cord injury group as a control. At 1-4 weeks post injury, the motor function in the rat lower limbs was best in the human erythropoietin-neural stem cells group, followed by the neural stem cells group, and lastly the spinal cord injury group. At 72 hours, compared with the spinal cord injury group, the apoptotic index and Caspase-3 gene and protein expressions were apparently decreased, and the bcl-2 gene and protein expressions were noticeably increased, in the tissues surrounding the injured region in the human erythropoietin-neural stem cells group. At 4 weeks, the cavities were clearly smaller and the motor and somatosensory evoked potential latencies were remarkably shorter in the human erythropoietin-neural stem cells group and neural stem cells group than those in the spinal cord injury group. These differences were particularly obvious in the human erythropoietin-neural stem cells group. More CM-Dil-positive cells and horseradish peroxidase-positive nerve fibers and larger amplitude motor and somatosensory evoked potentials were found in the human erythropoietin-neural stem cells group and neural stem cells group than in the spinal cord injury group. Again, these differences were particularly obvious in the human erythropoietin-neural stem cells group. These data indicate that transplantation of erythropoietin gene-modified neural stem

  16. Transplantation of erythropoietin gene-modified neural stem cells improves the repair of injured spinal cord.

    Science.gov (United States)

    Wu, Min-Fei; Zhang, Shu-Quan; Gu, Rui; Liu, Jia-Bei; Li, Ye; Zhu, Qing-San

    2015-09-01

    The protective effects of erythropoietin on spinal cord injury have not been well described. Here, the eukaryotic expression plasmid pcDNA3.1 human erythropoietin was transfected into rat neural stem cells cultured in vitro. A rat model of spinal cord injury was established using a free falling object. In the human erythropoietin-neural stem cells group, transfected neural stem cells were injected into the rat subarachnoid cavity, while the neural stem cells group was injected with non-transfected neural stem cells. Dulbecco's modified Eagle's medium/F12 medium was injected into the rats in the spinal cord injury group as a control. At 1-4 weeks post injury, the motor function in the rat lower limbs was best in the human erythropoietin-neural stem cells group, followed by the neural stem cells group, and lastly the spinal cord injury group. At 72 hours, compared with the spinal cord injury group, the apoptotic index and Caspase-3 gene and protein expressions were apparently decreased, and the bcl-2 gene and protein expressions were noticeably increased, in the tissues surrounding the injured region in the human erythropoietin-neural stem cells group. At 4 weeks, the cavities were clearly smaller and the motor and somatosensory evoked potential latencies were remarkably shorter in the human erythropoietin-neural stem cells group and neural stem cells group than those in the spinal cord injury group. These differences were particularly obvious in the human erythropoietin-neural stem cells group. More CM-Dil-positive cells and horseradish peroxidase-positive nerve fibers and larger amplitude motor and somatosensory evoked potentials were found in the human erythropoietin-neural stem cells group and neural stem cells group than in the spinal cord injury group. Again, these differences were particularly obvious in the human erythropoietin-neural stem cells group. These data indicate that transplantation of erythropoietin gene-modified neural stem cells into the

  17. Transplantation of erythropoietin gene-modiifed neural stem cells improves the repair of injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Min-fei Wu; Shu-quan Zhang; Rui Gu; Jia-bei Liu; Ye Li; Qing-san Zhu

    2015-01-01

    The protective effects of erythropoietin on spinal cord injury have not been well described. Here, the eukaryotic expression plasmid pcDNA3.1 human erythropoietin was transfected into rat neural stem cells culturedin vitro. A rat model of spinal cord injury was established using a free falling object. In the human erythropoietin-neural stem cells group, transfected neural stem cells were injected into the rat subarachnoid cavity, while the neural stem cells group was inject-ed with non-transfected neural stem cells. Dulbecco’s modified Eagle’s medium/F12 medium was injected into the rats in the spinal cord injury group as a control. At 1–4 weeks post injury, the motor function in the rat lower limbs was best in the human erythropoietin-neural stem cells group, followed by the neural stem cells group, and lastly the spinal cord injury group. At 72 hours, compared with the spinal cord injury group, the apoptotic index and Caspase-3 gene and protein expressions were apparently decreased, and the bcl-2 gene and protein expressions were noticeably increased, in the tissues surrounding the injured region in the human erythro-poietin-neural stem cells group. At 4 weeks, the cavities were clearly smaller and the motor and somatosensory evoked potential latencies were remarkably shorter in the human erythropoi-etin-neural stem cells group and neural stem cells group than those in the spinal cord injury group. These differences were particularly obvious in the human erythropoietin-neural stem cells group. More CM-Dil-positive cells and horseradish peroxidase-positive nerve fibers and larger amplitude motor and somatosensory evoked potentials were found in the human erythro-poietin-neural stem cells group and neural stem cells group than in the spinal cord injury group. Again, these differences were particularly obvious in the human erythropoietin-neural stem cells group. These data indicate that transplantation of erythropoietin gene-modified neural stem cells into the

  18. Alcohol Consumption and the Risk of Colorectal Cancer for Mismatch Repair Gene Mutation Carriers.

    Science.gov (United States)

    Dashti, S Ghazaleh; Buchanan, Daniel D; Jayasekara, Harindra; Ait Ouakrim, Driss; Clendenning, Mark; Rosty, Christophe; Winship, Ingrid M; Macrae, Finlay A; Giles, Graham G; Parry, Susan; Casey, Graham; Haile, Robert W; Gallinger, Steven; Le Marchand, Loïc; Thibodeau, Stephen N; Lindor, Noralane M; Newcomb, Polly A; Potter, John D; Baron, John A; Hopper, John L; Jenkins, Mark A; Win, Aung Ko

    2017-03-01

    Background: People with germline mutation in one of the DNA mismatch repair (MMR) genes have increased colorectal cancer risk. For these high-risk people, study findings of the relationship between alcohol consumption and colorectal cancer risk have been inconclusive.Methods: 1,925 MMR gene mutations carriers recruited into the Colon Cancer Family Registry who had completed a questionnaire on lifestyle factors were included. Weighted Cox proportional hazard regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between alcohol consumption and colorectal cancer.Results: Colorectal cancer was diagnosed in 769 carriers (40%) at a mean (SD) age of 42.6 (10.3) years. Compared with abstention, ethanol consumption from any alcoholic beverage up to 14 g/day and >28 g/day was associated with increased colorectal cancer risk (HR, 1.50; 95% CI, 1.09-2.07 and 1.69; 95% CI, 1.07-2.65, respectively; Ptrend = 0.05), and colon cancer risk (HR, 1.78; 95% CI, 1.27-2.49 and 1.94; 95% CI, 1.19-3.18, respectively; Ptrend = 0.02). However, there was no clear evidence for an association with rectal cancer risk. Also, there was no evidence for associations between consumption of individual alcoholic beverage types (beer, wine, spirits) and colorectal, colon, or rectal cancer risk.Conclusions: Our data suggest that alcohol consumption, particularly more than 28 g/day of ethanol (∼2 standard drinks of alcohol in the United States), is associated with increased colorectal cancer risk for MMR gene mutation carriers.Impact: Although these data suggested that alcohol consumption in MMR carriers was associated with increased colorectal cancer risk, there was no evidence of a dose-response, and not all types of alcohol consumption were associated with increased risk. Cancer Epidemiol Biomarkers Prev; 26(3); 366-75. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Heteroduplex DNA mismatch repair system of Streptococcus pneumoniae: cloning and expression of the hexA gene.

    OpenAIRE

    Balganesh, T S; Lacks, S A

    1985-01-01

    Mutations affecting heteroduplex DNA mismatch repair in Streptococcus pneumoniae were localized in two genes, hexA and hexB, by fractionation of restriction fragments carrying mutant alleles. A fragment containing the hexA4 allele was cloned in the S. pneumoniae cloning system, and the hexA+ allele was introduced into the recombinant plasmid by chromosomal facilitation of plasmid transfer. Subcloning localized the functional hexA gene to a 3.5-kilobase segment of the cloned pneumococcal DNA. ...

  20. Topoisomerase-1 and -2A gene copy numbers are elevated in mismatch repair-proficient colorectal cancers

    DEFF Research Database (Denmark)

    Sønderstrup, Ida Marie Heeholm; Nygård, Sune Boris; Poulsen, Tim Svenstrup

    2015-01-01

    (MMR) subtypes of CRC have been associated with benefit from adjuvant chemotherapy of primary CRC. Given the involvement of the topoisomerase enzymes in DNA replication and repair, we raised the hypothesis that an association may exist between TOP gene copy numbers and MMR proficiency/deficiency in CRC...... patients with deficient MMR (dMMR) CRC. TOP1 and TOP2A gene copy numbers and their ratios per nucleus were correlated with MMR status using the Mann-Whitney test. Validation cohort: FFPE samples from 154 patients with primary stage III CRC (originally included in the RANX05 study) were classified according...

  1. Two DNA repair and recombination genes in Saccharomyces cerevisiae, RAD52 and RAD54, are induced during meiosis

    Energy Technology Data Exchange (ETDEWEB)

    Cole, G.M.; Mortimer, R.K. (Univ. of California, Berkeley (United States)); Schild, D. (Lawrence Berkeley Lab., CA (United States))

    1989-07-01

    The DNA repair and recombination genes of Saccharomyces cerevisiae, RAD52 and RAD54, were transcriptionally induced approximately 10- to 15-fold in sporulating MATa/{alpha} cells. Congenic MATa/a cells, which did not sporulate, did not show similar increases. Assays of {beta}-galactosidase activity in strains harboring either a RAD52- or RAD54-lacZ gene fusion indicated that this induction occurred at a time concomitant with a commitment to meiotic recombination, as measured by prototroph formation from his1 heteroalleles.

  2. A small interfering RNA screen of genes involved in DNA repair identifies tumor-specific radiosensitization by POLQ knockdown

    DEFF Research Database (Denmark)

    Higgins, Geoff S; Prevo, Remko; Lee, Yin-Fai

    2010-01-01

    radiosensitivity are largely unknown. We have conducted a small interfering RNA (siRNA) screen of 200 genes involved in DNA damage repair aimed at identifying genes whose knockdown increased tumor radiosensitivity. Parallel siRNA screens were conducted in irradiated and unirradiated tumor cells (SQ20B...... polymerase ) as a potential tumor-specific target. Subsequent investigations showed that POLQ knockdown resulted in radiosensitization of a panel of tumor cell lines from different primary sites while having little or no effect on normal tissue cell lines. These findings raise the possibility that POLQ...

  3. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ivanov, E L; Haber, J E

    1995-04-01

    HO endonuclease-induced double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae can be repaired by the process of gap repair or, alternatively, by single-strand annealing if the site of the break is flanked by directly repeated homologous sequences. We have shown previously (J. Fishman-Lobell and J. E. Haber, Science 258:480-484, 1992) that during the repair of an HO-induced DSB, the excision repair gene RAD1 is needed to remove regions of nonhomology from the DSB ends. In this report, we present evidence that among nine genes involved in nucleotide excision repair, only RAD1 and RAD10 are required for removal of nonhomologous sequences from the DSB ends. rad1 delta and rad10 delta mutants displayed a 20-fold reduction in the ability to execute both gap repair and single-strand annealing pathways of HO-induced recombination. Mutations in RAD2, RAD3, and RAD14 reduced HO-induced recombination by about twofold. We also show that RAD7 and RAD16, which are required to remove UV photodamage from the silent HML, locus, are not required for MAT switching with HML or HMR as a donor. Our results provide a molecular basis for understanding the role of yeast nucleotide excision repair gene and their human homologs in DSB-induced recombination and repair.

  4. Epigenetic effects of dietary zinc on the porcine ZIP4 gene expression

    Directory of Open Access Journals (Sweden)

    Diana Karweina

    2015-02-01

    Full Text Available Dietary zinc supplementation has been shown to improve piglets’ health. We examined, if the gut epithelial ZIP4 transporter is affected by the zinc concentration in the diet through epigenetic modifications of the ZIP4 gene. In an experiment with 30 piglets that were fed diets with 57 (LZn , 164 (NZn or 2425 (HZn mg zinc/kg feed over until four weeks, we found a reduced expression of the gene in the gut epithelium with higher zinc concentration in the feed (P ≤ 0.008. The methylation status of two CpGs in exon 2 and intron 2 were decreased in the LZn compared to the NZn group (P ≤ 0.01. The increase of the methylation at another CpG in exon 2 led to a decrease of the ZIP4 mRNA amount (P < 0.05. The fact, that only one CpG had a significant effect on ZIP4 expression, led us to the assumption that methylation changes play a minor role for the transcriptional regulation of ZIP4.

  5. The dietary isothiocyanate sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer

    Directory of Open Access Journals (Sweden)

    Ball Richard Y

    2010-07-01

    Full Text Available Abstract Background Dietary or therapeutic interventions to counteract the loss of PTEN expression could contribute to the prevention of prostate carcinogenesis or reduce the rate of cancer progression. In this study, we investigate the interaction between sulforaphane, a dietary isothiocyanate derived from broccoli, PTEN expression and gene expression in pre malignant prostate tissue. Results We initially describe heterogeneity in expression of PTEN in non-malignant prostate tissue of men deemed to be at risk of prostate cancer. We subsequently use the mouse prostate-specific PTEN deletion model, to show that sulforaphane suppresses transcriptional changes induced by PTEN deletion and induces additional changes in gene expression associated with cell cycle arrest and apoptosis in PTEN null tissue, but has no effect on transcription in wild type tissue. Comparative analyses of changes in gene expression in mouse and human prostate tissue indicate that similar changes can be induced in humans with a broccoli-rich diet. Global analyses of exon expression demonstrated that sulforaphane interacts with PTEN deletion to modulate alternative gene splicing, illustrated through a more detailed analysis of DMBT1 splicing. Conclusion To our knowledge, this is the first report of how diet may perturb changes in transcription induced by PTEN deletion, and the effects of diet on global patterns of alternative gene splicing. The study exemplifies the complex interaction between diet, genotype and gene expression, and the multiple modes of action of small bioactive dietary components.

  6. Repair genes expression profile of MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers.

    Science.gov (United States)

    Alves, Mônica Ghislaine Oliveira; Carta, Celina Faig Lima; de Barros, Patrícia Pimentel; Issa, Jaqueline Scholz; Nunes, Fábio Daumas; Almeida, Janete Dias

    2017-01-01

    The aim of this study was to evaluate the effect of chronic smoking on the expression profile of the repair genes MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers and never smokers. The sample consisted of thirty exfoliative cytology smears per group obtained from Smokers and Never Smokers. Total RNA was extracted and expression of the MLH1, MSH2 and ATM genes were evaluated by quantitative real-time and immunocytochemistry. The gene and protein expression data were correlated to the clinical data. Gene expression was analyzed statistically using the Student t-test and Pearson's correlation coefficient, with pexpression of MLH1, MSH2, ATM and age, number of cigarettes consumed per day, time of smoking during life, smoking history or levels of CO in expired air. The expression of genes and proteins related to DNA repair mechanism MLH1, MSH2 and ATM in the normal oral mucosa of chronic smokers was reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. DNA repair and damage pathway related cancer suppressor genes in low-dose-rate irradiated AKR/J an IR mice

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hyun Soon; Bong, Jin Jong; Kang, Yumi; Choi, Moo Hyun; Lee, Hae Un; Yoo, Jae Young; Choi, Seung Jin; Kim, Hee Sun [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Gyeongju (Korea, Republic of); Lee, Kyung Mi [Global Research Lab, BAERI Institute, Dept. of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    It has been reported that low-dose-rate radiation stimulates the immune response, prolongs life span and inhibits carcinogenesis. The high dose-rate radiation influences the expression of DNA repair and damage-related genes. In contrast, DNA repair and damage signaling triggered by low-dose-rate irradiation remain unclear. In the present study, we investigated the differential expression of DNA repair and damage pathway related genes in the thymus of AKR/J and ICR mice after 100th day low-dose-rate irradiation. Our findings demonstrated that low-dose-rate γ -radiation suppressed tumorigenesis.

  8. Prognostic impact of mismatch repair genes germline defects in colorectal cancer patients: are all mutations equal?

    Science.gov (United States)

    Maccaroni, Elena; Bracci, Raffaella; Giampieri, Riccardo; Bianchi, Francesca; Belvederesi, Laura; Brugiati, Cristiana; Pagliaretta, Silvia; Del Prete, Michela; Scartozzi, Mario; Cascinu, Stefano

    2015-01-01

    Background Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome, caused by germline mutations in MisMatch Repair (MMR) genes, particularly in MLH1, MSH2 and MSH6. Patients with LS seem to have a more favourable prognosis than those with sporadic CRC, although the prognostic impact of different mutation types is unknown. Aim of our study is to compare survival outcomes of different types of MMR mutations in patients with LS-related CRC. Methods 302 CRC patients were prospectively selected on the basis of Amsterdam or Revised Bethesda criteria to undergo genetic testing: direct sequencing of DNA and MLPA were used to examine the entire MLH1, MSH2 and MSH6 coding sequence. Patients were classified as mutation-positive or negative according to the genetic testing result. Results A deleterious MMR mutation was found in 38/302 patients. Median overall survival (OS) was significantly higher in mutation-positive vs mutation-negative patients (102.6 vs 77.7 months, HR:0.63, 95%CI:0.46–0.89, p = 0.0083). Different types of mutation were significantly related with OS: missense or splicing-site mutations were associated with better OS compared with rearrangement, frameshift or non-sense mutations (132.5 vs 82.5 months, HR:0.46, 95%CI:0.16–0.82, p = 0.0153). Conclusions Our study confirms improved OS for LS-patients compared with mutation-negative CRC patients. In addition, not all mutations could be considered equal: the better prognosis in CRC patients with MMR pathogenic missense or splicing site mutation could be due to different functional activity of the encoded MMR protein. This matter should be investigated by use of functional assays in the future. PMID:26485756

  9. Failure to induce a DNA repair gene, RAD54, in Saccharomyces cerevisiae does not affect DNA repair or recombination phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Cole, G.M.; Mortimer, R.K. (Univ. of California, Berkeley (USA))

    1989-08-01

    The Saccharomyces cerevisiae RAD54 gene is transcriptionally regulated by a broad spectrum of DNA-damaging agents. Induction of RAD54 by DNA-damaging agents is under positive control. Sequences responsible for DNA damage induction (the DRS element) lie within a 29-base-pair region from -99 to -70 from the most proximal transcription start site. This inducible promoter element is functionally separable from a poly(dA-dT) region immediately downstream which is required for constitutive expression. Deletions which eliminate induction of RAD54 transcription by DNA damage but do not affect constitutive expression have no effect on growth or survival of noninducible strains relative to wild-type strains in the presence of DNA-damaging agents. The DRS element is also not required for homothallic mating type switching, transcriptional induction of RAD54 during meiosis, meiotic recombination, or spontaneous or X-ray-induced mitotic recombination. We find no phenotype for a lack of induction of RAD54 message via the damage-inducible DRS, which raises significant questions about the physiology of DNA damage induction in S. cerevisiae.

  10. Homology Requirements and Competition between Gene Conversion and Break-Induced Replication during Double-Strand Break Repair.

    Science.gov (United States)

    Mehta, Anuja; Beach, Annette; Haber, James E

    2017-02-02

    Saccharomyces cerevisiae mating-type switching is initiated by a double-strand break (DSB) at MATa, leaving one cut end perfectly homologous to the HMLα donor, while the second end must be processed to remove a non-homologous tail before completing repair by gene conversion (GC). When homology at the matched end is ≤150 bp, efficient repair depends on the recombination enhancer, which tethers HMLα near the DSB. Thus, homology shorter than an apparent minimum efficient processing segment can be rescued by tethering the donor near the break. When homology at the second end is ≤150 bp, second-end capture becomes inefficient and repair shifts from GC to break-induced replication (BIR). But when pol32 or pif1 mutants block BIR, GC increases 3-fold, indicating that the steps blocked by these mutations are reversible. With short second-end homology, absence of the RecQ helicase Sgs1 promotes gene conversion, whereas deletion of the FANCM-related Mph1 helicase promotes BIR. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  12. Evaluation of cell proliferation, apoptosis, and DNA-repair genes as potential biomarkers for ethanol-induced CNS alterations.

    Science.gov (United States)

    Hicks, Steven D; Lewis, Lambert; Ritchie, Julie; Burke, Patrick; Abdul-Malak, Ynesse; Adackapara, Nyssa; Canfield, Kelly; Shwarts, Erik; Gentile, Karen; Meszaros, Zsuzsa Szombathyne; Middleton, Frank A

    2012-10-25

    Alcohol use disorders (AUDs) lead to alterations in central nervous system (CNS) architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs) produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs) of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP) assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1) was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5) showed a highly significant correlation with AUD-induced decreases in the volume of the left parietal supramarginal gyrus and

  13. The potential of dietary polyunsaturated fatty acids to modulate eicosanoid synthesis and reproduction in Daphnia magna: a gene expression approach.

    Science.gov (United States)

    Schlotz, Nina; Sørensen, Jesper Givskov; Martin-Creuzburg, Dominik

    2012-08-01

    Nutritional ecology of the aquatic model genus Daphnia has received much attention in past years in particular with regard to dietary polyunsaturated fatty acids (PUFAs) which are crucial for growth and reproduction. Besides their significant role as membrane components, C20 PUFAs serve as precursors for eicosanoids, hormone-like mediators of reproduction, immunity and ion transport physiology. In the present study we investigate transcriptomic changes in Daphnia magna in response to different algal food organisms substantially differing in their PUFA composition using quantitative real-time PCR and relate them to concomitantly documented life history data. The selection of target genes includes representatives that have previously been shown to be responsive to the eicosanoid biosynthesis inhibitor ibuprofen. The beneficial effect of C20 PUFA-rich food on reproduction and population growth rates was accompanied by an increased vitellogenin (DmagVtg1) gene expression in D. magna. Additionally, genes involved in eicosanoid signaling were particularly influenced by dietary C20 PUFA availability. For example, the cyclooxygenase gene (Cox), coding for a central enzyme in the eicosanoid pathway, was highly responsive to the food treatments. Our results suggest that dietary PUFAs are fundamental in D. magna physiology as substrate for eicosanoid synthesis and that these eicosanoids are important for D. magna reproduction.

  14. Deficiency in nucleotide excision repair family gene activity, especially ERCC3, is associated with non-pigmented hair fiber growth.

    Directory of Open Access Journals (Sweden)

    Mei Yu

    Full Text Available We conducted a microarray study to discover gene expression patterns associated with a lack of melanogenesis in non-pigmented hair follicles (HF by microarray. Pigmented and non-pigmented HFs were collected and micro-dissected into the hair bulb (HB and the upper hair sheaths (HS including the bulge region. In comparison to pigmented HS and HBs, nucleotide excision repair (NER family genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, XPA, NTPBP, HCNP, DDB2 and POLH exhibited statistically significantly lower expression in non- pigmented HS and HBs. Quantitative PCR verified microarray data and identified ERCC3 as highly differentially expressed. Immunohistochemistry confirmed ERCC3 expression in HF melanocytes. A reduction in ERCC3 by siRNA interference in human melanocytes in vitro reduced their tyrosinase production ability. Our results suggest that loss of NER gene function is associated with a loss of melanin production capacity. This may be due to reduced gene transcription and/or reduced DNA repair in melanocytes which may eventually lead to cell death. These results provide novel information with regard to melanogenesis and its regulation.

  15. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair.

    Science.gov (United States)

    Mikhed, Yuliya; Görlach, Agnes; Knaus, Ulla G; Daiber, Andreas

    2015-08-01

    Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.

  16. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair

    Directory of Open Access Journals (Sweden)

    Yuliya Mikhed

    2015-08-01

    Full Text Available Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α and mRNA binding proteins (e.g. GAPDH, HuR is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications. By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.

  17. Gene expression and pathologic alterations in juvenile rainbow trout due to chronic dietary TCDD exposure.

    Science.gov (United States)

    Liu, Qing; Rise, Matthew L; Spitsbergen, Jan M; Hori, Tiago S; Mieritz, Mark; Geis, Steven; McGraw, Joseph E; Goetz, Giles; Larson, Jeremy; Hutz, Reinhold J; Carvan, Michael J

    2013-09-15

    The goal of this project was to use functional genomic methods to identify molecular biomarkers as indicators of the impact of TCDD exposure in rainbow trout. Specifically, we investigated the effects of chronic dietary TCDD exposure on whole juvenile rainbow trout global gene expression associated with histopathological analysis. Juvenile rainbow trout were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb (ngTCDD/g food), and fish were sampled from each group at 7, 14, 28 and 42 days after initiation of feeding. 100 ppb TCDD caused 100% mortality at 39 days. Fish fed with 100 ppb TCDD food had TCDD accumulation of 47.37 ppb (ngTCDD/g fish) in whole fish at 28 days. Histological analysis from TCDD-treated trout sampled from 28 and 42 days revealed that obvious lesions were found in skin, oropharynx, liver, gas bladder, intestine, pancreas, nose and kidney. In addition, TCDD caused anemia in peripheral blood, decreases in abdominal fat, increases of remodeling of fin rays, edema in pericardium and retrobulbar hemorrhage in the 100 ppb TCDD-treated rainbow trout compared to the control group at 28 days. Dose- and time-dependent global gene expression analyses were performed using the cGRASP 16,000 (16K) cDNA microarray. TCDD-responsive whole body transcripts identified in the microarray experiments have putative functions involved in various biological processes including growth, cell proliferation, metabolic process, and immune system processes. Nine microarray-identified genes were selected for QPCR validation. CYP1A3 and CYP1A1 were common up-regulated genes and HBB1 was a common down-regulated gene among each group based on microarray data, and their QPCR validations are consistent with microarray data for the 10 and 100 ppb TCDD treatment groups after 28 days exposure (pppb group at 28 days, expression of complement component C3-1 and trypsin-1 precursor have a more than 10-fold induction from the microarray experiments, and their QPCR

  18. DNA Repair Gene Polymorphisms in the Nucleotide Excision Repair Pathway and Lung Cancer Risk: A Meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Chao-rong Mei; Meng Luo; Hong-mei Li; Wen-jun Deng; Qing-hua Zhou

    2011-01-01

    Objective: A number of studies have reported the association of “XPA”, “XPC”, “XPD/ERCC2” gene polymorphisms with lung cancer risk. However, the results were conflict. To clarify the impact of polymorphisms of “XPA”, “XPC”; “XPD/ERCC2”, on lung cancer risk, a meta-analysis was performed in this study. Methods: The electronic databases PubMed and Embase were retrieved for studies included in this meta-analysis by “XPA”; “XPC”, “XPD/ERCC2”, “lung”, “cancer/neoplasm/tumor/carcinoma”, “polymorphism” (An upper date limit of October, 31, 2009). A meta-analysis was performed to evaluate the relationship among XPA, XPC and XPD polymorphism and lung cancer risks. Results: A total of 31 publications retrieved from Pubmed and Embase included in this study. XPC A939C CC genotype increased lung cancer risk in total population (recessive genetic model: OR=1.23, 95% Cl:1.05-1.44;homozygote comparison: OR=1.21,95%Cl:1.02-1.43and CC vs. CA contrast: OR=1.25,95%Cl:1.06-1.48), except in Asians. XPD A751C, 751C allele and CC genotype also increased lung cancer risk in total population and in Caucasians (recessive genetic model: Total population: OR=1.20, 95%Cl:1.07-1.35). No significant correlation was found between XPD A751C and lung cancer risk in Asians and African Americans. XPD G312A AA genotype increased lung cancer risk in total population, in Asians and Caucasians(recessive genetic model: Total population: OR=1.20, 95%Cl:1.06-1.36). No significant association was found between XPA G23A, XPC C499T, XPD C156A and lung cancer risk. Conclusion: Our results suggest that the polymorphisms in XPC and XPD involve in lung cancer risks. XPA polymorphisms is less related to lung cancer risk.

  19. Association Between Polymorphisms of DNA Repair Gene XRCC1 and DNA Damage in Asbestos-Exposed Workers

    Institute of Scientific and Technical Information of China (English)

    XIAO-HONG ZHAO; GUANG JIA; YONG-QUAN LIU; SHAO-WEI LIU; LEI YAN; YU JIN; NIAN LIU

    2006-01-01

    Objective To compare the asbestos-induced DNA damage and repair capacities of DNA damage between 104 asbestos exposed workers and 101 control workers in Qingdao City of China and to investigate the possible association between polymorphisms in codon 399 of XRCC1 and susceptibility to asbestosis. Methods DNA damage levels in peripheral bloodlymphocytes were determined by comet assay, and XRCC 1 genetic polymorphisms of DNA samples from 51 asbestosis cases and 53 non-asbestosis workers with a similar asbestos exposure history were analyzed by PCR/RFLP. Results The basal comet scores (3.95±2.95) were significantly higher in asbestos-exposed workers than in control workers (0.10±0.28). After 1 h H2O2 stimulation, DNA damage of lymphocytes exhibited different increases. After a 4 h repair period, the comet scores were 50.98±19.53 in asbestos-exposed workers and 18.32±12.04 in controls. The residual DNA damage (RD) was significantly greater (P<0.01) in asbestos-exposed workers (35.62%) than in controls (27.75%). XRCC1 genetic polymorphism in 104 asbestos-exposed workers was not associated with increased risk of asbestosis. But compared with polymorphisms in the DNA repair gene XRCC1 (polymorphisms in codon 399) and the DNA damage induced by asbestos, the comet scores in asbestosis cases with Gln/Gln, Gln/Arg, and Arg/Arg were 40.26±18.94, 38.03±28.22, and 32.01±11.65, respectively, which were higher than those in non-asbestosis workers with the same genotypes (25.58±11.08, 37.08±14.74, and 29.38±10.15). There were significant differences in the comet scores between asbestosis cases and non-asbestosis workers with Gln/Gln by Student's t-test (P<0.05 or 0.01). The comet scores were higher in asbestosis workers with Gln/Gln than in those with Arg/Arg and in non-asbestosis workers exposed to asbestos, but without statistically significant difference. Conclusions Exposure to asbestos may be related to DNA damage or the capacity of cells to repair H2O2-induced

  20. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Weeda, G.; Donker, I.; Vermeulen, W. [Erasmus Univ., Rotterdam (Netherlands)] [and others

    1997-02-01

    Trichothiodystrophy (TTD) is a rare, autosomal recessive disorder characterized by sulfur-deficient brittle hair and nails, mental retardation, impaired sexual development, and ichthyosis. Photosensitivity has been reported in {approximately}50% of the cases, but no skin cancer is associated with TTD. Virtually all photosensitive TTD patients have a deficiency in the nucleotide excision repair (NER) of UV-induced DNA damage that is indistinguishable from that of xeroderma pigmentosum (XP) complementation group D (XP-D) patients. DNA repair defects in XP-D are associated with two additional, quite different diseases; XP, a sun-sensitive and cancer-prone repair disorder, and Cockayne syndrome (CS), a photosensitive condition characterized by physical and mental retardation and wizened facial appearance. One photosensitive TTD case constitutes a new repair-deficient complementation group, TTD-A. Remarkably, both TTD-A and XP-D defects are associated with subunits of TFIIH, a basal transcription factor with a second function in DNA repair. Thus, mutations in TFIIH components may, on top of a repair defect, also cause transcriptional insufficiency, which may explain part of the non-XP clinical features of TTD. To date, three patients with the remarkable conjunction of XP and CS but not TM have been assigned to XP complementation group B (XP-B). Here we present the characterization of the NER defect in two mild TTD patients (TTD6VI and TTD4VI) and confirm the assignment to X-PB. The causative mutation was found to be a single base substitution resulting in a missense mutation (T119P) in a region of the XPB protein. These findings define a third TTD complementation group, extend the clinical heterogeneity associated with XP-B, stress the exclusive relationship between TTD and mutations in subunits of repair/transcription factor TFIIH, and strongly support the concept of {open_quotes}transcription syndromes.{close_quotes} 46 refs., 6 figs., 2 tabs.

  1. Gene Expression Profiling in the Injured Spinal Cord of Trachemys scripta elegans: An Amniote with Self-Repair Capabilities

    Science.gov (United States)

    Valentin-Kahan, Adrián; García-Tejedor, Gabriela B.; Robello, Carlos; Trujillo-Cenóz, Omar; Russo, Raúl E.; Alvarez-Valin, Fernando

    2017-01-01

    Slider turtles are the only known amniotes with self-repair mechanisms of the spinal cord that lead to substantial functional recovery. Their strategic phylogenetic position makes them a relevant model to investigate the peculiar genetic programs that allow anatomical reconnection in some vertebrate groups but are absent in others. Here, we analyze the gene expression profile of the response to spinal cord injury (SCI) in the turtle Trachemys scripta elegans. We found that this response comprises more than 1000 genes affecting diverse functions: reaction to ischemic insult, extracellular matrix re-organization, cell proliferation and death, immune response, and inflammation. Genes related to synapses and cholesterol biosynthesis are down-regulated. The analysis of the evolutionary distribution of these genes shows that almost all are present in most vertebrates. Additionally, we failed to find genes that were exclusive of regenerating taxa. The comparison of expression patterns among species shows that the response to SCI in the turtle is more similar to that of mice and non-regenerative Xenopus than to Xenopus during its regenerative stage. This observation, along with the lack of conserved “regeneration genes” and the current accepted phylogenetic placement of turtles (sister group of crocodilians and birds), indicates that the ability of spinal cord self-repair of turtles does not represent the retention of an ancestral vertebrate character. Instead, our results suggest that turtles developed this capability from a non-regenerative ancestor (i.e., a lineage specific innovation) that was achieved by re-organizing gene expression patterns on an essentially non-regenerative genetic background. Among the genes activated by SCI exclusively in turtles, those related to anoxia tolerance, extracellular matrix remodeling, and axonal regrowth are good candidates to underlie functional recovery. PMID:28223917

  2. PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Binkova, Blanka [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Chvatalova, Irena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Lnenickova, Zdena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Milcova, Alena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Tulupova, Elena [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic); Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester (United Kingdom); Farmer, Peter B. [Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester (United Kingdom); Sram, Radim J. [Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR and Health Institute of Central Bohemia, Videnska 1083, 14220 Prague (Czech Republic)]. E-mail: sram@biomed.cas.cz

    2007-07-01

    Epidemiologic studies indicate that prolonged exposure to particulate air pollution may be associated with increased risk of cardiovascular diseases and cancer in general population. These effects may be attributable to polycyclic aromatic hydrocarbons (PAHs) adsorbed to respirable air particles. It is expected that metabolic and DNA repair gene polymorphisms may modulate individual susceptibility to PAH exposure. This study investigates relationships between exposure to PAHs, polymorphisms of these genes and DNA adducts in group of occupationally exposed policemen (EXP, N = 53, males, aged 22-50 years) working outdoors in the downtown area of Prague and in matched 'unexposed' controls (CON, N = 52). Personal exposure to eight carcinogenic PAHs (c-PAHs) was evaluated by personal samplers during working shift prior to collection of biological samples. Bulky-aromatic DNA adducts were analyzed in lymphocytes by {sup 32}P-postlabeling assay. Polymorphisms of metabolizing (GSTM1, GSTP1, GSTT1, EPHX1, CYP1A1-MspI) and DNA repair (XRCC1, XPD) genes were determined by PCR-based RFLP assays. As potential modifiers and/or cofounders, urinary cotinine levels were analyzed by radioimmunoassay, plasma levels of vitamins A, C, E and folates by HPLC, cholesterol and triglycerides using commercial kits. During the sampling period ambient particulate air pollution was as follows: PM10 32-55 {mu}g/m{sup 3}, PM2.5 27-38 {mu}g/m{sup 3}, c-PAHs 18-22 ng/m{sup 3}; personal exposure to c-PAHs: 9.7 ng/m{sup 3} versus 5.8 ng/m{sup 3} (P < 0.01) for EXP and CON groups, respectively. The total DNA adduct levels did not significantly differ between EXP and CON groups (0.92 {+-} 0.28 adducts/10{sup 8} nucleotides versus 0.82 {+-} 0.23 adducts/10{sup 8} nucleotides, P = 0.065), whereas the level of the B[a]P-'like' adduct was significantly higher in exposed group (0.122 {+-} 0.036 adducts/10{sup 8} nucleotides versus 0.099 {+-} 0.035 adducts/10{sup 8} nucleotides, P = 0

  3. Altered gene expression of epigenetic modifying enzymes in response to dietary supplementation with linseed oil.

    Science.gov (United States)

    Li, Ran; Ibeagha-Awemu, Eveline M

    2017-05-01

    Recently we showed that 5% linseed oil (LSO) and 5% safflower oil (SFO) supplementation of cow's diets reduced milk fat yield by 30·38 and 32·42% respectively, accompanied by differential expression of genes and regulation by microRNAs (miRNA). This research communication addresses the hypothesis that epigenetic regulation could be involved in the observed milk fat reduction. Thus, this study investigated the gene expression pattern of major epigenetic modifying enzymes in response to dietary supplementation with LSO or SFO. Twenty-six Canadian Holstein cows in mid lactation were randomly assigned to two groups (13/group) and fed a control diet for 28 d (day -28 to -1) (control period- CP) followed by a treatment period (TP) (control diet supplemented with 5% LSO (LSO treatment) or 5% SFO (SFO treatment) of 28 d (day +1 to +28). After treatment, cows in the two groups were returned to the control diet for another 28 d (day +29 to +56) (post treatment period-PTP). Milk samples were collected on day -1 (CP), +7, +28 (TP) and +56 (PTP) for RNA isolation and measurement of the expression of thirteen epigenetic modifying genes including two DNA methytrasferases (DNMT1, DNMT3A), four histone acetylases (HAT1, KAT2A, KAT5 and CREBBP), five histone deacetylases (HDAC1, HDAC2, HDAC3, SIRT1 and SIRT2) and two histone methytransferases (EHMT2 and PRMT1) by qPCR. Linseed oil supplementation significantly repressed the expression of EHMT2, HDAC2 and HDAC3 on day +7 (P < 0·05) and KAT2A and SIRT2 on day +28 (P < 0·05) as compared with the control period (day -1) while SFO had no effect. When LSO was withdrawn, the expression of some of the genes increased slightly but did not reach control (day -1) levels at the end of the PTP. Our study demonstrated a significant role of LSO in the epigenetic regulation of fatty acid synthesis as compared to SFO. The effect of LSO may be related to its higher degree of unsaturation and might represent a different regulatory mechanism which

  4. Prepartal dietary energy level affects peripartal bovine blood neutrophil metabolic, antioxidant, and inflammatory gene expression.

    Science.gov (United States)

    Zhou, Z; Bu, D P; Vailati Riboni, M; Khan, M J; Graugnard, D E; Luo, J; Cardoso, F C; Loor, J J

    2015-08-01

    During the dry period, cows can easily overconsume higher-grain diets, a scenario that could impair immune function during the peripartal period. Objectives were to investigate the effects of energy overfeeding on expression profile of genes associated with inflammation, lipid metabolism, and neutrophil function, in 12 multiparous Holstein cows (n=6/dietary group) fed control [CON, 1.34 Mcal/kg of dry matter (DM)] or higher-energy (HE, 1.62 Mcal/kg of DM) diets during the last 45 d of pregnancy. Blood was collected to evaluate 43 genes in polymorphonuclear neutrophil leukocytes (PMNL) isolated at -14, 7, and 14 d relative to parturition. We detected greater expression of inflammatory-related cytokines (IL1B, STAT3, NFKB1) and eicosanoid synthesis (ALOX5AP and PLA2G4A) in HE cows than in CON cows. Around parturition, all cows had a close balance in mRNA expression of the pro-inflammatory IL1B and the anti-inflammatory IL10, with greater expression of both in cows fed HE than CON. The expression of CCL2, LEPR, TLR4, IL6, and LTC4S was undetectable. Cows in the HE group had greater expression of genes involved in PMNL adhesion, motility, migration, and phagocytosis, which was similar to expression of genes related to the pro-inflammatory cytokine. This response suggests that HE cows experienced a chronic state of inflammation. The greater expression of G6PD in HE cows could have been associated with the greater plasma insulin, which would have diverted glucose to other tissues. Cows fed the HE diet also had greater expression of transcription factors involved in metabolism of long-chain fatty acids (PPARD, RXRA), suggesting that immune cells might be predisposed to use endogenous ligands such as nonesterified fatty acids available in the circulation when glucose is in high demand for milk synthesis. The lower overall expression of SLC2A1 postpartum than prepartum supports this suggestion. Targeting interleukin-1β signaling might be of value in terms of controlling

  5. Dietary energy source largely affects tissue fatty acid composition but has minor influence on gene transcription in Iberian pigs.

    Science.gov (United States)

    Óvilo, C; Benítez, R; Fernández, A; Isabel, B; Núñez, Y; Fernández, A I; Rodríguez, C; Daza, A; Silió, L; López-Bote, C

    2014-03-01

    A trial was performed to compare the effects of different dietary sources of MUFA on the fatty acid (FA) composition, lipid metabolism, and gene transcription in different tissues of Iberian pigs. Twenty-seven Iberian male pigs of 28 kg live weight (LW) were divided in 2 groups and fed with 1 of 2 isocaloric diets: a standard diet with carbohydrates as energy source (CH) and a diet enriched with high-oleic sunflower oil (HO). Ham adipose tissue was sampled by biopsy at 44 and 70 kg LW. At 110 kg LW pigs were slaughtered and backfat, loin, and liver tissues were sampled. Animals of the HO group showed higher MUFA content and lower SFA in all the analyzed tissues (P dietary groups (PP < 0.01), 37 genes were considered differentially expressed (DE). Gene ontology allowed relating them with several biological functions including lipid metabolic processes. Quantitative PCR confirmed several DE genes in adipose tissue (RXRG, LEP, and ME1; P < 0.0001, P < 0.05, and P < 0.0001, respectively), but no DE gene was found in loin or liver tissues. Joint results agree with a metabolic adjustment of adipose tissue FA levels by the subtle effect of the diet on the regulation of several lipid metabolism pathways, mainly FA oxidation and prostanoid synthesis, with LEP, RXRG, and PTGS2 genes playing mayor roles.

  6. Mediterranean dietary pattern and VEGF +405 G/C gene polymorphisms in patients with metabolic syndrome: An aspect of gene-nutrient interaction

    Science.gov (United States)

    Hajiluian, Ghazaleh; Abbasalizad Farhangi, Mahdieh; Jahangiry, Leila

    2017-01-01

    Aims To evaluate the relationship between Mediterranean dietary pattern, anthropometric and metabolic biomarkers and vascular endothelial growth factor (VEGF) +405 G/C gene polymorphism in patient with metabolic syndrome (Mets). Materials and methods In this study 150 patients with Mets and 50 healthy subjects were enrolled. Dietary intakes were evaluated with a semi-quantitative food-frequency questionnaire (FFQ) and Mediterranean dietary quality index (Med-DQI) was assessed. Anthropometric assessments and blood pressure measurement were performed. Biochemical assays including fasting serum glucose (FSG), matrix metalloproteinase-3 (MMP-3), liver enzymes and lipid profiles were also assessed. Polymorphism of +405 G/C VEGF gene was determined utilizing polymerase chain reaction-restriction fragments length polymorphism (PCR-RFLP) method. Results Serum high density lipoprotein-cholesterol (HDL-C) was significantly lower and low density lipoprotein cholesterol (LDL-C), triglyceride (TG), total cholesterol (TC) concentrations and FSG were significantly higher in metabolic syndrome patients compared with control group (P LDL concentrations. In metabolic syndrome patients with CC genotype, mean score of “saturated fatty acid” subgroup was significantly higher compared with other genotypes; whereas, in healthy individuals, mean score of “fruit-vegetable” subgroup in individuals of CC and GG genotype was significantly higher (P<0.05). Conclusion Our findings indicated a significant relationship between Mediterranean dietary quality index and both anthropometric and metabolic risk factors. We also indicated a higher “saturated fatty acid” intake in CC genotype among metabolic syndrome patients. PMID:28212431

  7. A common polymorphism near the interleukin-6 gene modifies the association between dietary fat intake and insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Cuda C

    2012-01-01

    Full Text Available Cristina Cuda1, Bibiana Garcia-Bailo1,2, Mohamed Karmali1,2, Ahmed El-Sohemy1, Alaa Badawi21Department of Nutritional Sciences, University of Toronto, 2Office of Biotechnology, Genomics and Population Health, Public Health Agency of Canada, Toronto, Ontario, CanadaBackground: Increasing evidence suggests a role for inflammation in the development of type 2 diabetes. Elevated levels of inflammatory cytokines, including interleukin-6, have been associated with insulin resistance, and dietary lipids can increase cytokine production. The objective of this study was to determine whether a single nucleotide polymorphism near the IL6 gene (rs7801406 modifies the relationship between dietary fat and markers of insulin sensitivity.Methods: Subjects were healthy men and women aged 20–29 years from the Toronto Nutrigenomics and Health Study. Dietary intake was estimated using a one-month semiquantitative food frequency questionnaire. Fasting blood samples were taken for genotyping and biomarker measurement.Results: The single nucleotide polymorphism was not associated with any of the measures of insulin sensitivity. However, it modified the relationship between total dietary fat and the homeostasis model assessment of insulin resistance (P = 0.053 for interaction. Total fat intake was positively related to HOMA-IR in individuals homozygous for the G allele (ß = 0.005 ± 0.002, P = 0.03, but not among heterozygotes. There was an inverse relationship between total fat intake and HOMA-IR in individuals who were homozygous for the A allele (β= –0.012 ± 0.006, P = 0.047.Conclusion: These findings suggest that dietary fat influences insulin sensitivity differently depending on genotype.Keywords: interleukin-6, insulin sensitivity, nutrigenomics, dietary fat

  8. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gang [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Xu, Zhenjiang [Biofrontiers Institute, University of Colorado, Boulder, CO (United States); Tian, Xiangli, E-mail: xianglitian@ouc.edu.cn [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Dong, Shuanglin [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Peng, Mo [School of Animal Science and Technology, Jiangxi Agricultural University (China)

    2015-02-27

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota. - Highlights: • Dietary β-glucan supplementation increases the abundance of Rhodobacteraceae and Verrucomicrobiaceae in the intestine. • Dietary β-glucan supplementation changes the topological roles of OTUs in the ecological network. • Dietary β-glucan supplementation has a positive impact on the immune response of intestine of sea cucumber.

  9. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    Science.gov (United States)

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  10. DNA repair gene XRCC3 241Met variant and breast cancer susceptibility of Azeri population in Iranian

    Directory of Open Access Journals (Sweden)

    Gohari-Lasaki Sahar

    2015-01-01

    Full Text Available DNA-repair systems are essential for repairing damage that occurs when there is recombination between homologous chromosomes. The gene XRCC3 (X-ray cross complementing group 3 encodes a member of the RecA/Rad51-related protein family that participates in homologous recombination to maintain chromosome stability and repair DNA damage. The Thr241Met XRCC3-18067C>T, rs861539 substitution, a C to T transition at codon 241 in exon7, thus plays critical roles in cancer development. The aim of this study was association between XRCC3 Thr241Met polymorphism and risk of sporadic breast cancer in Azari population. We analysed DNA samples from 100 sporadic breast cancer patients and 100 healthy women, for XRCC3 Thr241Met polymorphism using PCR-RFLP. Genotype specific risks were tested using chi-test with 95% confident intervals. Frequency of Thr/Thr at codon 241was 69% in controls and 70% in patients, Thr/Met frequency was 22% in controls and 13 % in patients, the Met/Met genotype was 9% incontrols and 17% in patients. No correlation between the genotype and allele distribution and increased susceptibility for breast Cancer. Our results suggested that in pre-menopausal women, breast cancer riskis not significantly associated with rs861539 in Azari population.

  11. Zebrafish with mutations in mismatch repair genes develop neurofibromas and other tumors.

    NARCIS (Netherlands)

    Feitsma, H.; Kuiper, R.V.; Korving, J.; Nijman, I.J.; Cuppen, E.

    2008-01-01

    Defective mismatch repair (MMR) in humans causes hereditary nonpolyposis colorectal cancer. This genetic predisposition to colon cancer is linked to heterozygous familial mutations, and loss-of-heterozygosity is necessary for tumor development. In contrast, the rare cases with biallelic MMR

  12. Impaired Cytogenetic Damage Repair and Cell Cycle Regulation in Response to Ionizing Radiation in Human Fibroblast Cells with Individual Knock-down of 25 Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry; Emami, Kamal; Hammond, Dianne; Casey, Rachael; Mehta, Satish; Jeevarajan, Antony; Pierson, Duane; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have demonstrated that genes with upregulated expression induced by IR may play important roles in DNA damage sensing, cell cycle checkpoint and chromosomal repair, the relationship between the regulation of gene expression by IR and its impact on cytogenetic responses to ionizing radiation has not been systematically studied. In our present study, the expression of 25 genes selected based on their transcriptional changes in response to IR or from their known DNA repair roles were individually knocked down by siRNA transfection in human fibroblast cells. Chromosome aberrations (CA) and micronuclei (MN) formation were measured as the cytogenetic endpoints. Our results showed that the yield of MN and/or CA formation were significantly increased by suppressed expression of 5 genes that included Ku70 in the DSB repair pathway; XPA in the NER pathway; RPA1 in the MMR pathway; RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes including MRE11A, RAD51 in the DSB pathway, and SESN1 and SUMO1 showed significant inhibition of cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, p21 and MLH1 expression resulted in both enhanced cell cycle progression and significantly higher yield of cytogenetic damage, indicating the involvement of these gene products in both cell cycle control and DNA damage repair. Of these 11 genes that affected the cytogenetic response, 9 were up-regulated in the cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulating the biological consequences after IR. Failure to express these IR-responsive genes, such as by gene mutation, could seriously change the outcome of the post IR scenario and lead to carcinogenesis.

  13. Dietary approaches to stop hypertension influence on insulin receptor substrate-1gene expression: A randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Marzieh Kafeshani

    2015-01-01

    Full Text Available Background: Insulin receptor substrate (IRS Type 1 is a main substrate for the insulin receptor, controls insulin signaling in skeletal muscle, adipose tissue, and the vascular, so it is an important candidate gene for insulin resistance (IR. We aimed to compare the effects of the Dietary Approaches to Stop Hypertension (DASH and Usual Dietary Advices (UDA on IRS1 gene expression in women at risk for cardiovascular disease. Materials and Methods: A randomized controlled clinical trial was performed in 44 women at risk for cardiovascular disease. Participants were randomly assigned to a UDA diet or the DASH diet. The DASH diet was rich in fruits, vegetables, whole grains, and low-fat dairy products and low in saturated fat, total fat, cholesterol, refined grains, and sweets, with a total of 2400 mg/day sodium. The UDA diet was a regular diet with healthy dietary advice. Gene expression was assessed by the real-time polymerase chain reaction at the first of study and after 12 weeks. Independent sample t-test and paired-samples t-test were used to compare means of all variables within and between two groups respectively. Results: IRS1 gene expression was increased in DASH group compared with UDA diet (P = 0.00. Weight and waist circumference decreased in DASH group significantly compared to the UDA group (P < 0.05 but the results between the two groups showed no significant difference. Conclusion: DASH diet increased IRS1 gene expression and probably has beneficial effects on IR risks.

  14. Phenotypic plasticity, trade-offs and gene expression changes accompanying dietary restriction and switches in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae).

    Science.gov (United States)

    Chen, Er-Hu; Hou, Qiu-Li; Wei, Dan-Dan; Jiang, Hong-Bo; Wang, Jin-Jun

    2017-05-16

    In this study, we investigated the effects of dietary restriction (DR) and variable diets on phenotypes and gene expression in oriental fruit fly, Bactrocera dorsalis (Hendel), one of the most economically important pests in the family Tephritidae around the world. As expected, we found that DR altered the B. dorsalis phenotypes by significantly increasing stress resistance and lifespan, but reduced egg production when compared with the control diet. The results suggested a trade-off between reproduction versus somatic maintenance (stress resistance) and lifespan in B. dorsalis. Diet also had a significant effect on hatchability, and DR could increase the egg hatching success of B. dorsalis. Furthermore, DR up-regulated metabolic pathways involved in energy homeostasis and down-regulated pathways in egg production, which might mediate trade-offs between somatic maintenance and reproduction under DR regimes. The gene expression profiles in response to the acute dietary switches indicated that the digestive and metabolic pathways maybe involved in the adaptability of flies to variable dietary resources. In summary, the research facilitates a better understanding of the molecular mechanisms responsible for the B. dorsalis' phenotypic adjustments to the different qualities of the available diets.

  15. SNPs in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation

    Directory of Open Access Journals (Sweden)

    Falvo Elisabetta

    2012-01-01

    Full Text Available Abstract Background The aim of this study was to evaluate the potential association between single nucleotide polymorphisms related response to radiotherapy injury, such as genes related to DNA repair or enzymes involved in anti-oxidative activities. The paper aims to identify marker genes able to predict an increased risk of late toxicity studying our group of patients who underwent a Single Shot 3D-CRT PBI (SSPBI after BCS (breast conserving surgery. Methods A total of 57 breast cancer patients who underwent SSPBI were genotyped for SNPs (single nucleotide polymorphisms in XRCC1, XRCC3, GST and RAD51 by Pyrosequencing technology. Univariate analysis (ORs and 95% CI was performed to correlate SNPs with the risk of developing ≥ G2 fibrosis or fat necrosis. Results A higher significant risk of developing ≥ G2 fibrosis or fat necrosis in patients with: polymorphic variant GSTP1 (Ile105Val (OR = 2.9; 95%CI, 0.88-10.14, p = 0.047. Conclusions The presence of some SNPs involved in DNA repair or response to oxidative stress seem to be able to predict late toxicity. Trial Registration ClinicalTrials.gov: NCT01316328

  16. Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes.

    Science.gov (United States)

    Palii, Carmen G; Vulesevic, Branka; Fraineau, Sylvain; Pranckeviciene, Erinija; Griffith, Alexander J; Chu, Alphonse; Faralli, Hervé; Li, Yuhua; McNeill, Brian; Sun, Jie; Perkins, Theodore J; Dilworth, F Jeffrey; Perez-Iratxeta, Carol; Suuronen, Erik J; Allan, David S; Brand, Marjorie

    2014-05-01

    A major goal of cell therapy for vascular diseases is to promote revascularization through the injection of endothelial stem/progenitor cells. The gene regulatory mechanisms that underlie endothelial progenitor-mediated vascular repair, however, remain elusive. Here, we identify the transcription factor TAL1/SCL as a key mediator of the vascular repair function of primary human endothelial colony-forming cells (ECFCs). Genome-wide analyses in ECFCs demonstrate that TAL1 activates a transcriptional program that promotes cell adhesion and migration. At the mechanistic level, we show that TAL1 upregulates the expression of migratory and adhesion genes through recruitment of the histone acetyltransferase p300. Based on these findings, we establish a strategy that enhances the revascularization efficiency of ECFCs after ischemia through ex vivo priming with the histone deacetylase inhibitor TSA. Thus, small molecule epigenetics drugs are effective tools for modifying the epigenome of stem/progenitor cells prior to transplantation as a means to enhance their therapeutic potential.

  17. Three-dimensionally Specific Inhibition of DNA Repair-Related Genes by Activated KRAS in Colon Crypt Model

    Directory of Open Access Journals (Sweden)

    Toshiyuki Tsunoda

    2010-05-01

    Full Text Available Growth and differentiation of colonic epithelium are regulated in the three-dimensional (3D physiological architecture, colonic crypt, and deregulation of 3D interactions is involved in tumorigenesis. Cell-based 3D culture systems provide a suitable approach bridging the gap between two-dimensional (2D culture and animal models. KRAS mutations are found at high frequencies in human colorectal cancer (CRC; however, KRAS-targeted cancer therapy has not been developed. Here, we have established a 3D cell culture model resembling the colonic crypt by use of HKe3 cells, human CRC HCT116 cells disrupted at activated KRAS. In this 3D colonic crypt model, HKe3 cells showed the features of time course-dependent transit-amplifying and terminal-differentiated stages, which are characteristic of normal colonic crypt. On the basis of the features of HCT116 cells, activated KRAS inhibited normal cell polarity and apoptosis in 3D culture. The expression of DNA repair-related tumor suppressor genes including TP53, BRCA1, BRCA2, and EXO-1 was markedly suppressed by activated KRAS in 3D culture but not in 2D culture. These results together suggest that activated KRAS plays critical roles in the accumulation of genetic alterations through inhibition of DNA repair genes and apoptosis and that this 3D culture model will provide a useful tool for investigating the molecular mechanisms of CRC development.

  18. Regulated expression of the Saccharomyces cerevisiae DNA repair gene RAD7 in response to DNA damage and during sporulation.

    Science.gov (United States)

    Jones, J S; Prakash, L; Prakash, S

    1990-06-11

    The RAD7 gene of Saccharomyces cerevisiae affects the proficiency of excision repair of DNA damaged by UV light. Here, we report our studies on the regulation of the RAD7 gene in response to UV irradiation and during sporulation. RAD7 transcript levels increased 6-fold within 40 min of exposure of cells to 37 J/m2 of UV light. Higher UV doses also elicited rapid increases in the level of RAD7 mRNA. RAD7 mRNA levels increased in sporulating MATa/MAT alpha diploid cells, but not in the asporogenous MATa/MATa strain exposed to sporulation conditions. The increase in RAD7 mRNA level in MATa/MAT alpha cells was 15-fold after 6 h and 9-fold after 7 h in sporulation medium; thereafter, RAD7 mRNA levels declined. Periodic transcription of RAD7 during sporulation suggests a role for RAD7 in this process.

  19. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia.

    Science.gov (United States)

    Basu, Sanmitra; Majumder, Subhadipa; Bhowal, Ankur; Ghosh, Alip; Naskar, Sukla; Nandy, Sumit; Mukherjee, Subhabrata; Sinha, Rajan Kumar; Basu, Keya; Karmakar, Dilip; Banerjee, Soma; Sengupta, Sanghamitra

    2015-01-01

    Prostate cancer is one of the leading causes of mortality among aging males. There is an unmet requirement of clinically useful biomarkers for early detection of prostate cancer to reduce the liabilities of overtreatment and accompanying morbidity. The present population-based study investigates the factors disrupting expression of multiple functionally related genes of DNA mismatch repair pathway in prostate cancer patients to identify molecular attributes distinguishing adenocarcinoma from benign hyperplasia of prostate. Gene expression was compared between tissue samples from prostate cancer and benign prostatic hyperplasia using real-time-PCR, western blot and immunohistochemistry. Assessment of genotypes of seven single-nucleotide-polymorphisms of three MMR genes was conducted using PCR-coupled RFLP and sequencing. Promoter methylation was interrogated by methylation-specific-PCR and bisulfite-sequencing. Interaction between microRNAs and MMR genes was verified by 3'UTR-based dual luciferase assays. Concurrent reduction of three MMR genes namely hMLH1, hMSH6 and hMSH2 (34-85%, Pprostate cancer tissues. hMSH6 polymorphism rs1800932(Pro92Pro) conferred a borderline protection in cancer patients (OR = 0.33, 95% CI = 0.15-0.75). Relative transcript level of hMLH1 was inversely related (r = -0.59, Pprostate cancer. This comparative study reflects that microRNA expression level, particularly hsa-miR-155, exhibits predictive signature of prostate adenocarcinoma.

  20. Dietary Methionine Affect Meat Qulity and Myostatin Gene Exon 1 Region Methylation in Skeletal Muscle Tissues of Broilers

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-qing; ZONG Kai; ZHANG Li-li; CAO Shu-qing

    2010-01-01

    Dietary amino acids imbalance will result in stunted broiler performance and deteriorated meat quality,which are involved in various biochemical cycles in vivo.In this study,the effects of dietary methionine on meat quality and methylation of myostatin exon 1 were investigated.Drip loss of the broilers fed with diet of high methionine levels(0.2%)increased from(6.3±0.1)%(control group)to(10.1±1.0)%,and the muscle shearing force increased from(22.8±1.9)N(control group)to(26.3±2.3)N.Moreover,many CpG sites were found at the myostatin exon 1 region(nucleotides 2360-2540 bp).To further understand the regulation of broiler myostatin expression,the methylation status of broiler myostatin exon 1 and its mRNA expression were analyzed.At the myostatin exon 1 region where CG enriches(nucleotides 2360-2540 bp),the percentages of methylation were 46 and 84% in low Met and high Met content groups after 55-d feeding,respectively.In skeletal muscle tissues,the exon 1 hypermethylation status of myostatin gene was found to be negatively correlated with the gene expression.These results suggested that methylation of this gene is a dynamic process,which plays a dominant role in regulating gene expression for development of individuals.

  1. The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer.

    Science.gov (United States)

    Podlutsky, Andrej; Valcarcel-Ares, Marta Noa; Yancey, Krysta; Podlutskaya, Viktorija; Nagykaldi, Eszter; Gautam, Tripti; Miller, Richard A; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2017-02-23

    Experimental, clinical, and epidemiological findings support the concept of developmental origins of health and disease (DOHAD), suggesting that early-life hormonal influences during a sensitive period around adolescence have a powerful impact on cancer morbidity later in life. The endocrine changes that occur during puberty are highly conserved across mammalian species and include dramatic increases in circulating GH and IGF-1 levels. Importantly, patients with developmental IGF-1 deficiency due to GH insensitivity (Laron syndrome) do not develop cancer during aging. Rodents with developmental GH/IGF-1 deficiency also exhibit significantly decreased cancer incidence at old age, marked resistance to chemically induced carcinogenesis, and cellular resistance to genotoxic stressors. Early-life treatment of GH/IGF-1-deficient mice and rats with GH reverses the cancer resistance phenotype; however, the underlying molecular mechanisms remain elusive. The present study was designed to test the hypothesis that developmental GH/IGF-1 status impacts cellular DNA repair mechanisms. To achieve that goal, we assessed repair of γ-irradiation-induced DNA damage (single-cell gel electrophoresis/comet assay) and basal and post-irradiation expression of DNA repair-related genes (qPCR) in primary fibroblasts derived from control rats, Lewis dwarf rats (a model of developmental GH/IGF-1 deficiency), and GH-replete dwarf rats (GH administered beginning at 5 weeks of age, for 30 days). We found that developmental GH/IGF-1 deficiency resulted in persisting increases in cellular DNA repair capacity and upregulation of several DNA repair-related genes (e.g., Gadd45a, Bbc3). Peripubertal GH treatment reversed the radiation resistance phenotype. Fibroblasts of GH/IGF-1-deficient Snell dwarf mice also exhibited improved DNA repair capacity, showing that the persisting influence of peripubertal GH/IGF-1 status is not species-dependent. Collectively, GH/IGF-1 levels during a critical period

  2. Effects of dietary cadmium exposure on tissue-specific cadmium accumulation, iron status and expression of iron-handling and stress-inducible genes in rainbow trout: Influence of elevated dietary iron

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, Raymond W.M. [Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3 (Canada); Andres, Jose A. [Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2 (Canada); Niyogi, Som, E-mail: som.niyogi@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2 (Canada)

    2011-03-15

    Recent evidences suggest that dietary cadmium (Cd) uptake likely occurs via the dietary iron (Fe) uptake pathway in freshwater fish, at least in part. The present study investigated the interactive effects of dietary Cd and Fe in juvenile rainbow trout (Oncorhynchus mykiss). Fish were treated for four weeks with four different diets: normal Fe, high Fe, normal Fe plus Cd, and high Fe plus Cd. Physiological parameters, tissue-specific Fe and Cd level, plasma Fe status, and tissue-specific mRNA expression of transferrin, metallothioneins (MT-A and MT-B) and heat shock proteins 70 (HSP70a and HSP70b) were analyzed. Exposure to dietary Cd increased Cd burden in the following order: intestine > kidney > stomach > liver > gill > carcass. Interestingly, high dietary Fe reduced Cd accumulation in the stomach and intestine as well as in the wholebody of fish. Dietary Cd increased hepatic transferrin mRNA expression and total Fe binding capacity in the plasma, indicating the effect of Cd on Fe handling in fish. The mRNA expression of MTs and HSP70s was also increased in various tissues following dietary Cd exposure, however the response profile of different MT and HSP70 genes was not consistent among different tissues. In general, MT-A was more responsive to Cd exposure in the intestine and liver, whereas MT-B was more responsive in the kidney. Similarly, HSP70a expression was more sensitive to Cd exposure than HSP70b, particularly in the intestine. Interestingly, high Fe diet suppressed Cd-induced induction of transferrin, MT and HSP70 genes in various tissues. Overall, our study suggests that elevated dietary Fe can reduce Cd accumulation and ameliorate Cd-induced stress responses in freshwater fish.

  3. Effects of dietary cadmium exposure on tissue-specific cadmium accumulation, iron status and expression of iron-handling and stress-inducible genes in rainbow trout: influence of elevated dietary iron.

    Science.gov (United States)

    Kwong, Raymond W M; Andrés, Jose A; Niyogi, Som

    2011-03-01

    Recent evidences suggest that dietary cadmium (Cd) uptake likely occurs via the dietary iron (Fe) uptake pathway in freshwater fish, at least in part. The present study investigated the interactive effects of dietary Cd and Fe in juvenile rainbow trout (Oncorhynchus mykiss). Fish were treated for four weeks with four different diets: normal Fe, high Fe, normal Fe plus Cd, and high Fe plus Cd. Physiological parameters, tissue-specific Fe and Cd level, plasma Fe status, and tissue-specific mRNA expression of transferrin, metallothioneins (MT-A and MT-B) and heat shock proteins 70 (HSP70a and HSP70b) were analyzed. Exposure to dietary Cd increased Cd burden in the following order: intestine>kidney>stomach>liver>gill>carcass. Interestingly, high dietary Fe reduced Cd accumulation in the stomach and intestine as well as in the wholebody of fish. Dietary Cd increased hepatic transferrin mRNA expression and total Fe binding capacity in the plasma, indicating the effect of Cd on Fe handling in fish. The mRNA expression of MTs and HSP70s was also increased in various tissues following dietary Cd exposure, however the response profile of different MT and HSP70 genes was not consistent among different tissues. In general, MT-A was more responsive to Cd exposure in the intestine and liver, whereas MT-B was more responsive in the kidney. Similarly, HSP70a expression was more sensitive to Cd exposure than HSP70b, particularly in the intestine. Interestingly, high Fe diet suppressed Cd-induced induction of transferrin, MT and HSP70 genes in various tissues. Overall, our study suggests that elevated dietary Fe can reduce Cd accumulation and ameliorate Cd-induced stress responses in freshwater fish.

  4. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair.

    Science.gov (United States)

    Mulo, Paula; Sakurai, Isamu; Aro, Eva-Mari

    2012-01-01

    The Photosystem (PS) II of cyanobacteria, green algae and higher plants is prone to light-induced inactivation, the D1 protein being the primary target of such damage. As a consequence, the D1 protein, encoded by the psbA gene, is degraded and re-synthesized in a multistep process called PSII repair cycle. In cyanobacteria, a small gene family codes for the various, functionally distinct D1 isoforms. In these organisms, the regulation of the psbA gene expression occurs mainly at the level of transcription, but the expression is fine-tuned by regulation of translation elongation. In plants and green algae, the D1 protein is encoded by a single psbA gene located in the chloroplast genome. In chloroplasts of Chlamydomonas reinhardtii the psbA gene expression is strongly regulated by mRNA processing, and particularly at the level of translation initiation. In chloroplasts of higher plants, translation elongation is the prevalent mechanism for regulation of the psbA gene expression. The pre-existing pool of psbA transcripts forms translation initiation complexes in plant chloroplasts even in darkness, while the D1 synthesis can be completed only in the light. Replacement of damaged D1 protein requires also the assistance by a number of auxiliary proteins, which are encoded by the nuclear genome in green algae and higher plants. Nevertheless, many of these chaperones are conserved between prokaryotes and eukaryotes. Here, we describe the specific features and fundamental differences of the psbA gene expression and the regeneration of the PSII reaction center protein D1 in cyanobacteria, green algae and higher plants. This article is part of a Special Issue entitled Photosystem II.

  5. DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition.

    Science.gov (United States)

    Ollier, Marie; Radosevic-Robin, Nina; Kwiatkowski, Fabrice; Ponelle, Flora; Viala, Sandrine; Privat, Maud; Uhrhammer, Nancy; Bernard-Gallon, Dominique; Penault-Llorca, Frédérique; Bignon, Yves-Jean; Bidet, Yannick

    2015-01-01

    Among breast cancers, 10 to 15% of cases would be due to hereditary risk. In these familial cases, mutations in BRCA1 and BRCA2 are found in only 15% to 20%, meaning that new susceptibility genes remain to be found. Triple-negative breast cancers represent 15% of all breast cancers, and are generally aggressive tumours without targeted therapies available. Our hypothesis is that some patients with triple negative breast cancer could share a genetic susceptibility different from other types of breast cancers. We screened 36 candidate genes, using pyrosequencing, in all the 50 triple negative breast cancer patients with familial history of cancer but no BRCA1 or BRCA2 mutation of a population of 3000 families who had consulted for a familial breast cancer between 2005 and 2013. Any mutations were also sequenced in available relatives of cases. Protein expression and loss of heterozygosity were explored in tumours. Seven deleterious mutations in 6 different genes (RAD51D, MRE11A, CHEK2, MLH1, MSH6, PALB2) were observed in one patient each, except the RAD51D mutation found in two cases. Loss of heterozygosity in the tumour was found for 2 of the 7 mutations. Protein expression was absent in tumour tissue for 5 mutations. Taking into consideration a specific subtype of tumour has revealed susceptibility genes, most of them in the homologous recombination DNA repair pathway. This may provide new possibilities for targeted therapies, along with better screening and care of patients.

  6. Polysaccharides of Aloe vera induce MMP-3 and TIMP-2 gene expression during the skin wound repair of rat.

    Science.gov (United States)

    Tabandeh, Mohammad Reza; Oryan, Ahmad; Mohammadalipour, Adel

    2014-04-01

    Polysaccharides are the main macromolecules of Aloe vera gel but no data about their effect on extracellular matrix (ECM) elements are available. Here, mannose rich Aloe vera polysaccharides (AVP) with molecular weight between 50 and 250 kDa were isolated and characterized. Open cutaneous wounds on the back of 45 rats (control and treated) were daily treated with 25mg (n=15) and 50 mg (n=15) AVP for 30 days. The levels of MMP-3 and TIMP-2 gene expression were analyzed using real time PCR. The levels of n-acetyl glucosamine (NAGA), n-acetyl galactosamine (NAGLA) and collagen contents were also measured using standard biochemical methods. Faster wound closure was observed at day 15 post wounding in AVP treated animals in comparison with untreated group. At day 10 post wounding, AVP inhibited MMP-3 gene expression, while afterwards MMP-3 gene expression was upregulated. AVP enhanced TIMP-2 gene expression, collagen, NAGLA and NAGA synthesis in relation to untreated wounds. Our results suggest that AVP has positive effects on the regulation of ECM factor synthesis, which open up new perspectives for the wound repair activity of Aloe vera polysaccharide at molecular level.

  7. Genomic structure and characterization of the Drosophila S3 ribosomal/DNA repair gene and mutant alleles.

    Science.gov (United States)

    Kelley, M R; Xu, Y; Wilson, D M; Deutsch, W A

    2000-03-01

    The Drosophila S3 protein is known to be associated with ribosomes, where it is thought to play a role in the initiation of protein translation. The S3 protein also contains a DNA repair activity, efficiently processing 8-oxoguanine residues in DNA via an N-glycosylase/apurinic-apyrimidinic (AP) lyase activity. The gene that encodes S3 has previously been localized to one of the Minute loci on chromosome 3 in Drosophila. This study focused on the genomic organization of S3 at M(3)95A, initial promoter characterization, and analysis of three mutant alleles at this locus. The S3 gene was found to be a single-copy gene 2 to 3 kb in length and containing a single intron. The upstream 1.6-kb region was analyzed for promoter activity, identifying a presumptive regulatory domain containing potential enhancer and suppressor elements. This finding is of interest, as the S3 gene is constitutively expressed throughout development and mRNA is most likely maternally inherited. Lastly, three Minute alleles from the same locus were sequenced and two alleles found to contain a 22-bp deletion in exon 2, resulting in a truncated S3 protein, although wildtype levels of S3 mRNA and protein were detected in the viable heterozygous Minute alleles, possibly reflecting dosage compensation.

  8. Variation in the FGFR2 gene and the effect of a low-fat dietary pattern on invasive breast cancer.

    Science.gov (United States)

    Prentice, Ross L; Huang, Ying; Hinds, David A; Peters, Ulrike; Cox, David R; Beilharz, Erica; Chlebowski, Rowan T; Rossouw, Jacques E; Caan, Bette; Ballinger, Dennis G

    2010-01-01

    The Women's Health Initiative dietary modification (DM) trial provided suggestive evidence of a benefit of a low-fat dietary pattern on breast cancer risk, with stronger evidence among women whose baseline diet was high in fat. Single nucleotide polymorphisms (SNP) in the FGFR2 gene relate strongly to breast cancer risk and could influence intervention effects. All 48,835 trial participants were postmenopausal and ages 50 to 79 years at enrollment (1993-1998). We interrogated eight SNPs in intron 2 of the FGFR2 gene for 1,676 women who developed breast cancer during trial follow-up (1993-2005). Case-only analyses were used to estimate odds ratios for the DM intervention in relation to SNP genotype. Odds ratios for the DM intervention did not vary significantly with the genotype for any of the eight FGFR2 SNPs (P > or = 0.18). However, odds ratios varied (P or =36.8%). This variation is most evident for SNP rs3750817, with odds ratios for the DM intervention at 0, 1, and 2 minor SNP alleles of 1.06 [95% confidence intervals (95% CI), 0.80-1.41], 0.53 (95% CI, 0.38-0.74), and 0.62 (95% CI, 0.33-1.15). The nominal significance level for this interaction is P = 0.005, and P = 0.03 following multiple testing adjustment, with most evidence deriving from hormone receptor-positive tumors. Invasive breast cancer odds ratios for a low-fat dietary pattern, among women whose usual diets are high in fat, seem to vary with SNP rs3750817 in the FGFR2 gene.

  9. RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability

    Energy Technology Data Exchange (ETDEWEB)

    Park, E.; Prakash, L. (Univ. of Rochester School of Medicine, NY (United States)); Guzder, S.N.; Prakash, S. (Univ. of Rochester, NY (United States)); Koken, M.H.M.; Jaspers-Dekker, I.; Weeda, G.; Hoeijmakers, H.J. (Erasmus Univ., Rotterdam (Netherlands))

    1992-12-01

    Xeroderma pigmentosum (XP) patients are extremely sensitive to ultraviolet (UV) light and suffer from a high incidence of skin cancers, due to a defect in nucleotide excision repair. The disease is genetically heterogeneous, and seven complementation groups, A-G, have been identified. Homologs of human excision repair genes ERCC1, XPDC/ERCC2, and XPAC have been identified in the yeast Saccharomyces cerevisiae. Since no homolog of human XPBC/ERCC3 existed among the known yeast genes, we cloned the yeast homolog by using XPBC cDNA as a hybridization probe. The yeast homolog, RAD25 (SSL2), encodes a protein of 843 amino acids (M[sub r] 95,356). The RAD25 (SSL2)- and XPCX-encoded proteins share 55% identical and 72% conserved amino acid residues, and the two proteins resemble one another in containing the conserved DNA helicase sequence motifs. A nonsense mutation at codon 799 that deletes the 45 C-terminal amino acid residues in RAD25 (SSL2) confers UV sensitivity. This mutation shows epistasis with genes in the excision repair group, whereas a synergistic increase in UN sensitivity occurs when it is combined with mutations in genes in other DNA repair pathways, indicating that RAD25 (SSL2) functions in excision repair but not in other repair pathways. We also show that RAD25 (SSL2) is an essential gene. A mutation of the Lys[sup 392] residue to arginine in the conserved Walker type A nucleotide-binding motif is lethal, suggesting an essential role of the putative RAD 25 (SSL2) ATPase/DNA helicase activity in viability. 40 refs., 3 figs., 1 tab.

  10. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    Science.gov (United States)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  11. High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs

    OpenAIRE

    2015-01-01

    Background Dietary zinc oxide is used in pig nutrition to combat post weaning diarrhoea. Recent data suggests that high doses (2.5 g/kg feed) increase the bacterial antibiotic resistance development in weaned pigs. Therefore, the aim of this study was to investigate the development of enterobacterial antibiotic resistance genes in the intestinal tract of weaned pigs. Findings Weaned pigs were fed diets for 4 weeks containing 57 (low), 164 (intermediate) or 2425 (high) mg kg−1 analytical grade...

  12. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation.

    Science.gov (United States)

    Yang, Gang; Xu, Zhenjiang; Tian, Xiangli; Dong, Shuanglin; Peng, Mo

    2015-02-27

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota.

  13. Human longevity and variation in DNA damage response and repair: study of the contribution of sub-processes using competitive gene-set analysis.

    Science.gov (United States)

    Debrabant, Birgit; Soerensen, Mette; Flachsbart, Friederike; Dato, Serena; Mengel-From, Jonas; Stevnsner, Tinna; Bohr, Vilhelm A; Kruse, Torben A; Schreiber, Stefan; Nebel, Almut; Christensen, Kaare; Tan, Qihua; Christiansen, Lene

    2014-09-01

    DNA-damage response and repair are crucial to maintain genetic stability, and are consequently considered central to aging and longevity. Here, we investigate whether this pathway overall associates to longevity, and whether specific sub-processes are more strongly associated with longevity than others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning and mitochondrial DNA processes. The study population was 1089 long-lived and 736 middle-aged Danes. A self-contained set-based test of all SNPs displayed association with longevity (P-value=9.9 × 10(-5)), supporting that the overall pathway could affect longevity. Investigation of the nine sub-processes using the competitive gene-set analysis by Wang et al indicated that BER, HRR and RECQ associated stronger with longevity than the respective remaining genes of the pathway (P-values=0.004-0.048). For HRR and RECQ, only one gene contributed to the significance, whereas for BER several genes contributed. These associations did, however, generally not pass correction for multiple testing. Still, these findings indicate that, of the entire pathway, variation in BER might influence longevity the most. These modest sized P-values were not replicated in a German sample. This might, though, be due to differences in genotyping procedures and investigated SNPs, potentially inducing differences in the coverage of gene regions. Specifically, five genes were not covered at all in the German data. Therefore, investigations in additional study populations are needed before final conclusion can be drawn.

  14. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function

    Energy Technology Data Exchange (ETDEWEB)

    Xi, T; Jones, I M; Mohrenweiser, H W

    2003-11-03

    Over 520 different amino acid substitution variants have been previously identified in the systematic screening of 91 human DNA repair genes for sequence variation. Two algorithms were employed to predict the impact of these amino acid substitutions on protein activity. Sorting Intolerant From Tolerant (SIFT) classified 226 of 508 variants (44%) as ''Intolerant''. Polymorphism Phenotyping (PolyPhen) classed 165 of 489 amino acid substitutions (34%) as ''Probably or Possibly Damaging''. Another 9-15% of the variants were classed as ''Potentially Intolerant or Damaging''. The results from the two algorithms are highly associated, with concordance in predicted impact observed for {approx}62% of the variants. Twenty one to thirty one percent of the variant proteins are predicted to exhibit reduced activity by both algorithms. These variants occur at slightly lower individual allele frequency than do the variants classified as ''Tolerant'' or ''Benign''. Both algorithms correctly predicted the impact of 26 functionally characterized amino acid substitutions in the APE1 protein on biochemical activity, with one exception. It is concluded that a substantial fraction of the missense variants observed in the general human population are functionally relevant. These variants are expected to be the molecular genetic and biochemical basis for the associations of reduced DNA repair capacity phenotypes with elevated cancer risk.

  15. Dietary intake in the Personalized Medicine Research Project: a resource for studies of gene-diet interaction

    Directory of Open Access Journals (Sweden)

    Kitchner Terrie

    2011-01-01

    Examination Survey (NHANES. Findings suggest a possible correlation between the use of supplements and APOE4. The PMRP dietary data can benefit studies of gene-environment interactions and the development of common diseases.

  16. Associations of polymorphisms in DNA repair genes and MDR1 gene with chemotherapy response and survival of non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Yan Du

    Full Text Available OBJECTIVES: We aimed to determine the associations of genetic polymorphisms of excision repair cross-complementation group 1 (ERCC1 rs11615, xeroderma pigmentosum group D (XPD/ERCC2 rs13181, X-ray repair cross complementing group 1 (XRCC1 rs25487, XRCC3 rs1799794, and breast cancer susceptibility gene 1 (BRCA1 rs1799966 from the DNA repair pathway and multiple drug resistance 1 (MDR1/ABCB1 rs1045642 with response to chemotherapy and survival of non-small cell lung cancer (NSCLC in a Chinese population. MATERIALS AND METHODS: A total of 352 NSCLC patients were enrolled to evaluate the associations of the six SNPs with response to chemotherapy and overall survival. Logistic regressions were applied to test the associations of genetic polymorphisms with response to chemotherapy in 161 advanced NSCLC patients. Overall survival was analyzed in 161 advanced and 156 early stage NSCLC patients using the Kaplan-Meier method with log-rank test, respectively. Multivariate Cox proportional hazards model was performed to determine the factors independently associated with NSCLC prognosis. RESULTS: BRCA1 rs1799966 minor allele C (TC+CC vs. TT, OR = 0.402, 95% CI = 0.204-0.794, p = 0.008 and MDR1/ABCB1 rs1045642 minor allele A (GA +AA vs. GG, OR = 0.478, 95% CI = 0.244-0.934, p = 0.030 were associated with a better response to chemotherapy in advanced NSCLC patients. Survival analyses indicated that BRCA1 rs1799966 TC+CC genotypes were associated with a decreased risk of death (HR = 0.617, 95% CI = 0.402-0.948, p = 0.028 in advanced NSCLC patients, and the association was still significant after the adjustment for covariates. Multivariate Cox regression analysis showed that ERCC1 rs11615 AA genotype (P = 0.020 and smoking (p = 0.037 were associated with increased risks of death in early stage NSCLC patients after surgery. CONCLUSIONS: Polymorphisms of genes in DNA repair pathway and MDR1 could contribute to chemotherapy response and survival of patients with

  17. New Genes Tied to Endocrine, Metabolic, and Dietary Regulation of Lifespan from a Caenorhabditis elegans Genomic RNAi Screen.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Most of our knowledge about the regulation of aging comes from mutants originally isolated for other phenotypes. To ask whether our current view of aging has been affected by selection bias, and to deepen our understanding of known longevity pathways, we screened a genomic Caenorhabditis elegans RNAi library for clones that extend lifespan. We identified 23 new longevity genes affecting signal transduction, the stress response, gene expression, and metabolism and assigned these genes to specific longevity pathways. Our most important findings are (i that dietary restriction extends C. elegans' lifespan by down-regulating expression of key genes, including a gene required for methylation of many macromolecules, (ii that integrin signaling is likely to play a general, evolutionarily conserved role in lifespan regulation, and (iii that specific lipophilic hormones may influence lifespan in a DAF-16/FOXO-dependent fashion. Surprisingly, of the new genes that have conserved sequence domains, only one could not be associated with a known longevity pathway. Thus, our current view of the genetics of aging has probably not been distorted substantially by selection bias.

  18. Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes.

    Science.gov (United States)

    Dragileva, Ella; Hendricks, Audrey; Teed, Allison; Gillis, Tammy; Lopez, Edith T; Friedberg, Errol C; Kucherlapati, Raju; Edelmann, Winfried; Lunetta, Kathryn L; MacDonald, Marcy E; Wheeler, Vanessa C

    2009-01-01

    Modifying the length of the Huntington's disease (HD) CAG repeat, the major determinant of age of disease onset, is an attractive therapeutic approach. To explore this we are investigating mechanisms of intergenerational and somatic HD CAG repeat instability. Here, we have crossed HD CAG knock-in mice onto backgrounds deficient in mismatch repair genes, Msh3 and Msh6, to discern the effects on CAG repeat size and disease pathogenesis. We find that different mechanisms predominate in inherited and somatic instability, with Msh6 protecting against intergenerational contractions and Msh3 required both for increasing CAG length and for enhancing an early disease phenotype in striatum. Therefore, attempts to decrease inherited repeat size may entail a full understanding of Msh6 complexes, while attempts to block the age-dependent increases in CAG size in striatal neurons and to slow the disease process will require a full elucidation of Msh3 complexes and their function in CAG repeat instability.

  19. Dietary patterns, genes, and health: Challenges and obstacles to be overcome

    Science.gov (United States)

    Several dietary approaches have been proposed to prevent the onset of chronic diseases. As yet, no single approach has emerged as having the most consistent health benefits. This arises, in part, due to the fact that diet influences health in the context of individual factors with genetic components...

  20. Mapping the diverse functions of dietary fatty acids via target gene regulation

    NARCIS (Netherlands)

    Georgiadi, A.

    2012-01-01

    Dietary fat is a strong predictor of chronic diseases, such as cardiovascular diseases, obesity, diabetes, dyslipidemia and metabolic syndrome. A great number of epidemiological and observational studies clearly show that in addition to the amount of fat consumed in a diet, fat composition is an

  1. Mapping the diverse functions of dietary fatty acids via target gene regulation

    NARCIS (Netherlands)

    Georgiadi, A.

    2012-01-01

    Dietary fat is a strong predictor of chronic diseases, such as cardiovascular diseases, obesity, diabetes, dyslipidemia and metabolic syndrome. A great number of epidemiological and observational studies clearly show that in addition to the amount of fat consumed in a diet, fat composition is an equ

  2. Adipose gene expression response of lean and obese mice to short-term dietary restriction.

    NARCIS (Netherlands)

    Schothorst, Evert M van; Keijer, Jaap; Pennings, Jeroen L A; Opperhuizen, Antoon; Brom, Charissa E van den; Kohl, Thomas; Franssen-van Hal, Nicole L W; Hoebee, Barbara

    2006-01-01

    Overweight and obesity lead to higher morbidity risks, which are alleviated even by mild weight loss. To gain insight in the molecular effects of weight loss in adipose tissue, we analyzed the effects of short-term dietary restriction (DR) on mice fed a low-fat diet (lean mice) or a high-fat diet (o

  3. Adipose gene expression response of lean and obese mice to short-term dietary restriction

    NARCIS (Netherlands)

    Schothorst, van E.M.; Keijer, J.; Pennings, J.L.A.; Opperhuizen, A.; Brom, van den C.E.; Kohl, T.; Franssen-Hal, van N.L.W.; Hoebee, B.

    2006-01-01

    Overweight and obesity lead to higher morbidity risks, which are alleviated even by mild weight loss. To gain insight in the molecular effects of weight loss in adipose tissue, we analyzed the effects of short-term dietary restriction (DR) on mice fed a low-fat diet (lean mice) or a high-fat diet (o

  4. Adipose gene expression response of lean and obese mice to short-term dietary restriction.

    NARCIS (Netherlands)

    Schothorst, Evert M van; Keijer, Jaap; Pennings, Jeroen L A; Opperhuizen, Antoon; Brom, Charissa E van den; Kohl, Thomas; Franssen-van Hal, Nicole L W; Hoebee, Barbara

    2006-01-01

    Overweight and obesity lead to higher morbidity risks, which are alleviated even by mild weight loss. To gain insight in the molecular effects of weight loss in adipose tissue, we analyzed the effects of short-term dietary restriction (DR) on mice fed a low-fat diet (lean mice) or a high-fat diet

  5. Deproteinized bone with VEGF gene transfer to facilitate the repair of early avascular necrosis of femoral head of rabbit

    Institute of Scientific and Technical Information of China (English)

    CAO Kai; HUANG Wei; AN Hong; JIANG Dian-ming; SHU Yong; HAN Zhi-min

    2009-01-01

    Objective: To explore a new method for early avascular necrosis of femoral head (AVNFH) therapy.Methods: Sixty-nine AVNFH New Zealand adult rabbits were randomly divided into three groups with equal number. In Group A, deproteinized bone (DPB) that absorbed with recombinant plasmid pcDNA3.1-hVEGF165 was implanted into the drilled tunnel of necrotic femoral head. In Group B, only DPB was implanted. In Group C, only tunnel was drilled without DPB or plasmid implanted. Femoral head specimens were obtained at postoperative 1, 2, 4, 8, 16 weeks. The expression of VEGF165 and collagen I was detected by immunohistochemistry. Bone formation was detected generally by X-ray. Angiogenesis and the repair of the femoral head were observed histologically.Results: The expression of VEGF 165 could be detected 2 weeks after implantation in Group A, but it was not observed in other groups. The result of collagen I expression had a significantly difference 2, 4 and 8 weeks after operation in Group A from those in other groups (P<0.01).X-ray results indicated that there was more bone formation in Group A than in other groups. The regenerated capillary vessels staining result of necrotic femoral head in Group A was significantly different from those in other groups at postoperative 2 and 4 weeks (P<0.01).Conclusions: Transfection ofhVEGF165 gene enhances local angiogenesis and DPB-VEGF compound improves the repair of necrotic femoral head. Deproteinized bone grafting with VEGF gene transfer provides a potential method for the treatment of osteonecrosis.

  6. Sequence and stress-response analyses of the DNA mismatch repair gene hexA in Lactococcus lactis.

    Science.gov (United States)

    Ren, J; Park, J H; Dunn, N W; Kim, W S

    2001-10-01

    The DNA mismatch repair gene hexA was identified in Lactococcus lactis by PCR amplification by using a pair of primers homologous to the DNA-binding Dps protein. The gene in its entirety, including the regulatory regions, was sequenced, by using a strategy of chromosomal walking based on two PCR protocols. The open reading frame of 2526 bp was preceded by a strong ribosome-binding site (AGGAAG) and was followed by a potential transcription terminator (hairpin loop structure). The 5' terminus of the hexA mRNA was located 135 bp upstream of the start codon, and putative -10 and -35 regions were identified. The deduced amino acid sequence revealed two motifs, the ATP/GTP-binding site (P-loop) and the "MutS family signature". The hexA promoter was cloned into pMU1327, which contained a promoter-less CAT reporter gene, and the promoter activity was examined under oxidative-stress conditions. It appears that the promoter activity is down-shifted by H2O2 at 4 mM.

  7. Ultraviolet B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat shock protein gene expression in the monogonont rotifer, Brachionus sp

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ryeo-Ok [Department of Chemistry, and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Rhee, Jae-Sung [Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791 (Korea, Republic of); Won, Eun-Ji [Department of Environmental Marine Sciences, College of Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Kyun-Woo [Department of Chemistry, and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Kang, Chang-Mo [Laboratory of Cytogenetics and Tissue Regeneration, Korea Institute of Radiological and Medical Science, Seoul 139-709 (Korea, Republic of); Lee, Young-Mi [Department of Green Life Science, College of Convergence, Sangmyung University, Seoul 110-743 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@hanyang.ac.kr [Department of Chemistry, and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2011-02-15

    Ultraviolet B (UV-B) radiation causes direct cellular damage by breakage of DNA strands and oxidative stress induction in aquatic organisms. To understand the effect of UV-B radiation on the rotifer, Brachionus sp., several parameters including 24-h survival rate, population growth rate, and ROS level were measured after exposure to a wide range of UV-B doses. To check the expression of other important inducible genes such as replication protein A (RPA), DNA-dependent protein kinase (DNA-PK), Ku70, Ku80, and heat shock proteins (hsps) after UV-B radiation, we observed dose- and time-dependency at 2 kJ/m{sup 2}. We also examined 13 hsp genes for their roles in the UV-B damaged rotifer. Results showed that UV-B remarkably inhibited the population growth of Brachionus sp. The level of intracellular reactive oxygen species (ROS) was high at 2 kJ/m{sup 2}, suggesting that 2 kJ/m{sup 2} would already be toxic. This result was supported by other enzymatic activities, such as GSH levels, glutathione peroxidase, glutathione S-transferase, and glutathione reductase. For dose dependency, low doses of UV-B radiation (2, 4, and 6 kJ/m{sup 2}) significantly up-regulated the examined genes (e.g. RPA, DNA-PK, Ku70, and Ku80). For the time course study, RPA genes showed immediate up-regulation but returned to basal or lower expression levels compared to the control 3 h after UV-B exposure. The DNA-PK and Ku70/80 genes significantly increased, indicating that they may be involved in repairing processes against a low dose of UV-B exposure (2 kJ/m{sup 2}). At the basal level, the hsp90{alpha}1 gene showed the highest expression, and followed by hsp10, hsp30, hsp60, and hsc70, and hsp90{beta} in adults (w/o egg). In eggs, the hsp10 gene was expressed the highest, and followed by hsp30, hsp27, hsp90{alpha}1, and hsp60 genes. In real-time RT-PCR array on rotifer hsp genes, low doses of UV-B radiation (2 and 4 kJ/m{sup 2}) showed up-regulation of several hsp genes but most of the hsp

  8. Identification of mismatch repair gene mutations in young patients with colorectal cancer and in patients with multiple tumours associated with hereditary non-polyposis colorectal cancer

    NARCIS (Netherlands)

    Niessen, R C; Berends, M J W; Wu, Y; Sijmons, R H; Hollema, H; Ligtenberg, M J L; de Walle, H E K; de Vries, E G E; Karrenbeld, A; Buys, C H C M; van der Zee, A G J; Hofstra, R M W; Kleibeuker, J H

    2006-01-01

    Background: Patients with early-onset colorectal cancer (CRC) or those with multiple tumours associated with hereditary non-polyposis colorectal cancer (HNPCC) raise suspicion of the presence of germline DNA mismatch repair (MMR) gene mutations. Aim: To analyse the value of family history,

  9. Identification of mismatch repair gene mutations in young patients with colorectal cancer and in patients with multiple tumours associated with hereditary non-polyposis colorectal cancer.

    NARCIS (Netherlands)

    Niessen, R.C.; Berends, M.J.; Wu, Y.; Sijmons, R.H.; Hollema, H.; Ligtenberg, M.J.L.; Walle, H.E. de; Vries, E.G.F. de; Karrenbeld, A.; Buys, C.H.C.M.; Zee, A.G. van der; Hofstra, R.M.; Kleibeuker, J.H.

    2006-01-01

    BACKGROUND: Patients with early-onset colorectal cancer (CRC) or those with multiple tumours associated with hereditary non-polyposis colorectal cancer (HNPCC) raise suspicion of the presence of germline DNA mismatch repair (MMR) gene mutations. AIM: To analyse the value of family history,

  10. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Chistiakov, Dimitry A. (Dept. of Pathology, Univ. of Pittsburgh, Pittsburgh (US)); Voronova, Natalia V. (Dept. of Molecular Diagnostics, National Research Center GosNIIgenetika, Moscow (RU)); Chistiakov, Pavel A. (Dept. of Radiology, Cancer Research Center, Moscow (RU))

    2008-06-15

    Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population

  11. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia.

    Directory of Open Access Journals (Sweden)

    Sanmitra Basu

    Full Text Available Prostate cancer is one of the leading causes of mortality among aging males. There is an unmet requirement of clinically useful biomarkers for early detection of prostate cancer to reduce the liabilities of overtreatment and accompanying morbidity. The present population-based study investigates the factors disrupting expression of multiple functionally related genes of DNA mismatch repair pathway in prostate cancer patients to identify molecular attributes distinguishing adenocarcinoma from benign hyperplasia of prostate. Gene expression was compared between tissue samples from prostate cancer and benign prostatic hyperplasia using real-time-PCR, western blot and immunohistochemistry. Assessment of genotypes of seven single-nucleotide-polymorphisms of three MMR genes was conducted using PCR-coupled RFLP and sequencing. Promoter methylation was interrogated by methylation-specific-PCR and bisulfite-sequencing. Interaction between microRNAs and MMR genes was verified by 3'UTR-based dual luciferase assays. Concurrent reduction of three MMR genes namely hMLH1, hMSH6 and hMSH2 (34-85%, P<0.05 was observed in prostate cancer tissues. hMSH6 polymorphism rs1800932(Pro92Pro conferred a borderline protection in cancer patients (OR = 0.33, 95% CI = 0.15-0.75. Relative transcript level of hMLH1 was inversely related (r = -0.59, P<0.05 with methylation quotient of its promoter which showed a significantly higher methylation density (P = 0.008, Z = -2.649 in cancer patients. hsa-miR-155, hsa-miR-141 and hsa-miR-21 gene expressions were significantly elevated (66-85%, P<0.05 in tumor specimens and negatively correlated (r = -0.602 to -0.527, P<0.05 with that of MMR genes. hsa-miR-155 & hsa-miR-141 and hsa-miR-155 & hsa-miR-21 were demonstrated to bind to their putative seed sequences in hMLH1 and hMSH6 3'UTRs respectively. Relatively higher expression of DNA methyl-transferases (DNMT1 and DNMT3b and HIF-1α genes (34-50%, P<0.05 were also detected in tumor

  12. The Saccharomyces cerevisiae RAD7 and RAD16 genes are required for inducible excision of endonuclease III sensitive-sites, yet are not needed for the repair of these lesions following a single UV dose.

    Science.gov (United States)

    Scott, A D; Waters, R

    1997-01-31

    The RAD7 and RAD16 genes of Saccharomyces cerevisiae have roles in the repair of UV induced CPDs in nontranscribed genes [1], and in the repair of CPDs in the nontranscribed strand of transcribed genes [2]. Previously, we identified an inducible component to nucleotide excision repair (NER), which is absent in a rad16 delta strain [3]. We have examined the repair of UV induced endonuclease III sensitive-sites (EIIISS), and have shown repair of these lesions to proceed by NER but their removal from nontranscribed regions is independent of RAD7 and RAD16. Furthermore, EIIISS are repaired with equal efficiency from both transcribed and nontranscribed genes [4]. In order to dissect the roles of RAD7 and RAD16 in the above processes we examined the repair of EIIISS in the MAT alpha and HML alpha loci, which are, respectively, transcriptionally active and inactive in alpha haploid cells. These loci have elevated levels of these lesions after UV (in genomic DNA EIIISS constitute about 10% of total lesions, whereas CPDs are about 70% of total lesions). We have shown that excision of UV induced EIIISS is enhanced following a prior UV irradiation. No enhancement of repair was detected in either the rad7 delta or the rad16 delta mutant. The fact that RAD7 and RAD16 are not required for the repair of EIIISS per se yet are required for the enhanced excision of these lesions from MAT alpha and HML alpha suggests two possibilities. These genes have two roles in NER, namely in the repair of CPDs from nontranscribed sequences, and in enhancing NER itself regardless of whether these genes' products are required for the excision of the specific lesion being repaired. In the latter case, the induction of RAD7 and RAD16 may increase the turnover of complexes stalled in nontranscribed DNA so as to increase the availability of NER proteins for the repair of CPDs and EIIISS in all regions of the genome.

  13. Promoter Hypermethylation of DNA Repair Gene MGMT in Laryngeal Squamous Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The relationship between hypermethylation of CpG islands in the promoter regions of O6methylguanine DNA methyltransferase (MGMT)genes and laryngeal squamous cell carcinoma was explored. Methylation-specific PCR and semi-quantitative RT-PCR were used to study the promoter methylation and mRNA expression of the MGMT gene in laryngeal carcinoma tissues, t issues adjacent to the tumor and normal laryngeal tissues. Hypermethylation of MGMT gene was detected in 16 samples of 46 (34.8 %) laryngeal squamous cell carcinoma samples. However, the MGMT hypermethylation was not detected in all tissues adjacent to the tumors and normal tissues. No significant difference in MGMT gene hypermethylation was found in samples with different histological grades (x2= 3. 130, P=0. 077) or in samples from patients with different TNM status (x2=3. 957, P=0. 138). No expression of MGMT mRNA was detected in all hypermethylated laryngeal carcinoma tissues. The expression of MGMT mRNA was detected in all unmethylated laryngeal carcinoma tissues, tissues adjacent to the tumors and normal tissues. It suggests that MGMT gene promoter hypermethylation is associated with MGMT gene transcription loss in laryngeal carcinoma tissues and possibly plays an important role in carcinogenesis of laryngeal tissues.

  14. Immunoglobulin genes undergo legitimate repair in human B cells not only after cis- but also frequent trans-class switch recombination.

    Science.gov (United States)

    Laffleur, B; Bardet, S M; Garot, A; Brousse, M; Baylet, A; Cogné, M

    2014-01-01

    Immunoglobulin (Ig) genes specifically recruit activation-induced deaminase (AID) for 'on-target' DNA deamination, initiating either variable (V) region somatic hypermutation, or double-strand break intermediates of class switch recombination (CSR). Such breaks overwhelmingly undergo legitimate intra-Ig repair rather than rare illegitimate and potentially oncogenic junctions outside of Ig loci. We show that in human B cells, legitimate synapsis and repair efficiently join Ig genes whether physically linked on one chromosome or located apart on both alleles. This indicates mechanisms faithfully recognizing and/or pairing loci with homology in structure and accessibility, thus licensing interchromosomal trans-CSR junctions while usually preventing illegitimate interchromosomal recombination with AID off-target genes. Physical linkage of IgH genes in cis on the same allele just increases the likelihood of legitimate repair by another fourfold. The strongest force driving CSR might thus be recognition of legitimate target genes. Formation of IgH intra-allelic loops along this process would then constitute a consequence rather than a pre-requisite of this gene-pairing process.

  15. Genetic variants in DNA double-strand break repair genes and risk of salivary gland carcinoma: a case-control study.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available DNA double strand break (DSB repair is the primary defense mechanism against ionizing radiation-induced DNA damage. Ionizing radiation is the only established risk factor for salivary gland carcinoma (SGC. We hypothesized that genetic variants in DSB repair genes contribute to individual variation in susceptibility to SGC. To test this hypothesis, we conducted a case-control study in which we analyzed 415 single nucleotide polymorphisms (SNPs in 45 DSB repair genes in 352 SGC cases and 598 controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs and 95% confidence intervals (CIs. Rs3748522 in RAD52 and rs13180356 in XRCC4 were significantly associated with SGC after Bonferroni adjustment; ORs (95% CIs for the variant alleles of these SNPs were 1.71 (1.40-2.09, P = 1.70 × 10(-7 and 0.58 (0.45-0.74, P = 2.00 × 10(-5 respectively. The genetic effects were modulated by histological subtype. The association of RAD52-rs3748522 with SGC was strongest for mucoepidermoid carcinoma (OR = 2.21, 95% CI: 1.55-3.15, P = 1.25 × 10(-5, n = 74, and the association of XRCC4-rs13180356 with SGC was strongest for adenoid cystic carcinoma (OR = 0.60, 95% CI: 0.42-0.87, P = 6.91 × 10(-3, n = 123. Gene-level association analysis revealed one gene, PRKDC, with a marginally significant association with SGC risk in non-Hispanic whites. To our knowledge, this study is the first to comprehensively evaluate the genetic effect of DSB repair genes on SGC risk. Our results indicate that genetic variants in the DSB repair pathways contribute to inter-individual differences in susceptibility to SGC and show that the impact of genetic variants differs by histological subtype. Independent studies are warranted to confirm these findings.

  16. Loss of genes related to Nucleotide Excision Repair (NER) and implications for reductive genome evolution in symbionts of deep-sea vesicomyid clams

    Science.gov (United States)

    Shimamura, Shigeru; Kaneko, Takashi; Ozawa, Genki; Matsumoto, Mamiko Nishino; Koshiishi, Takeru; Takaki, Yoshihiro; Kato, Chiaki; Takai, Ken; Yoshida, Takao; Fujikura, Katsunori; Barry, James P.

    2017-01-01

    Intracellular thioautotrophic symbionts of deep-sea vesicomyid clams lack some DNA repair genes and are thought to be undergoing reductive genome evolution (RGE). In this study, we addressed two questions, 1) how these symbionts lost their DNA repair genes and 2) how such losses affect RGE. For the first question, we examined genes associated with nucleotide excision repair (NER; uvrA, uvrB, uvrC, uvrD, uvrD paralog [uvrDp] and mfd) in 12 symbionts of vesicomyid clams belonging to two clades (5 clade I and 7 clade II symbionts). While uvrA, uvrDp and mfd were conserved in all symbionts, uvrB and uvrC were degraded in all clade I symbionts but were apparently intact in clade II symbionts. UvrD was disrupted in two clade II symbionts. Among the intact genes in Ca. Vesicomyosocius okutanii (clade I), expressions of uvrD and mfd were detected by reverse transcription-polymerase chain reaction (RT-PCR), but those of uvrA and uvrDp were not. In contrast, all intact genes were expressed in the symbiont of Calyptogena pacifica (clade II). To assess how gene losses affect RGE (question 2), genetic distances of the examined genes in symbionts from Bathymodiolus septemdierum were shown to be larger in clade I than clade II symbionts. In addition, these genes had lower guanine+cytosine (GC) content and higher repeat sequence densities in clade I than measured in clade II. Our results suggest that NER genes are currently being lost from the extant lineages of vesicomyid clam symbionts. The loss of NER genes and mutY in these symbionts is likely to promote increases in genetic distance and repeat sequence density as well as reduced GC content in genomic genes, and may have facilitated reductive evolution of the genome. PMID:28199404

  17. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair.

    Directory of Open Access Journals (Sweden)

    Olga Mestre

    Full Text Available BACKGROUND: The Beijing family is a successful group of M. tuberculosis strains, often associated with drug resistance and widely distributed throughout the world. Polymorphic genetic markers have been used to type particular M. tuberculosis strains. We recently identified a group of polymorphic DNA repair replication and recombination (3R genes. It was shown that evolution of M. tuberculosis complex strains can be studied using 3R SNPs and a high-resolution tool for strain discrimination was developed. Here we investigated the genetic diversity and propose a phylogeny for Beijing strains by analyzing polymorphisms in 3R genes. METHODOLOGY/PRINCIPAL FINDINGS: A group of 3R genes was sequenced in a collection of Beijing strains from different geographic origins. Sequence analysis and comparison with the ones of non-Beijing strains identified several SNPs. These SNPs were used to type a larger collection of Beijing strains and allowed identification of 26 different sequence types for which a phylogeny was constructed. Phylogenetic relationships established by sequence types were in agreement with evolutionary pathways suggested by other genetic markers, such as Large Sequence Polymorphisms (LSPs. A recent Beijing genotype (Bmyc10, which included 60% of strains from distinct parts of the world, appeared to be predominant. CONCLUSIONS/SIGNIFICANCE: We found SNPs in 3R genes associated with the Beijing family, which enabled discrimination of different groups and the proposal of a phylogeny. The Beijing family can be divided into different groups characterized by particular genetic polymorphisms that may reflect pathogenic features. These SNPs are new, potential genetic markers that may contribute to better understand the success of the Beijing family.

  18. The stability and degradation of dietary DNA in the gastrointestinal tract of mammals: implications for horizontal gene transfer and the biosafety of GMOs.

    Science.gov (United States)

    Rizzi, Aurora; Raddadi, Noura; Sorlini, Claudia; Nordgrd, Lise; Nielsen, Kaare Magne; Daffonchio, Daniele

    2012-01-01

    The fate of dietary DNA in the gastrointestinal tract (GIT) of animals has gained renewed interest after the commercial introduction of genetically modified organisms (GMO). Among the concerns regarding GM food, are the possible consequences of horizontal gene transfer (HGT) of recombinant dietary DNA to bacteria or animal cells. The exposure of the GIT to dietary DNA is related to the extent of food processing, food composition, and to the level of intake. Animal feeding studies have demonstrated that a minor amount of fragmented dietary DNA may resist the digestive process. Mammals have been shown to take up dietary DNA from the GIT, but stable integration and expression of internalized DNA has not been demonstrated. Despite the ability of several bacterial species to acquire external DNA by natural transformation, in vivo transfer of dietary DNA to bacteria in the intestine has not been detected in the few experimental studies conducted so far. However, major methodological limitations and knowledge gaps of the mechanistic aspects of HGT calls for methodological improvements and further studies to understand the fate of various types of dietary DNA in the GIT.

  19. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor {beta}{sub 1} gene

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng Qixin [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yang Shuhua [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Shao Zengwu [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yuan Quan [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Pan Zhengqi [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Tang Shuo [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Liu Kai [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Quan Daping [Institute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2006-12-15

    Articular cartilage repair remains a clinical and scientific challenge with increasing interest focused on the combined techniques of gene transfer and tissue engineering. Transforming growth factor beta 1 (TGF-{beta}{sub 1}) is a multifunctional molecule that plays a central role in promotion of cartilage repair, and inhibition of inflammatory and alloreactive immune response. Cell mediated gene therapy can allow a sustained expression of TGF-{beta}{sub 1} that may circumvent difficulties associated with growth factor delivery. The objective of this study was to investigate whether TGF-{beta}{sub 1} gene modified mesenchymal stem cells (MSCs) could enhance the repair of full-thickness articular cartilage defects in allogeneic rabbits. The pcDNA{sub 3}-TGF-{beta}{sub 1} gene transfected MSCs were seeded onto biodegradable poly-L-lysine coated polylactide (PLA) biomimetic scaffolds in vitro and allografted into full-thickness articular cartilage defects in 18 New Zealand rabbits. The pcDNA{sub 3} gene transfected MSCs/biomimetic scaffold composites and the cell-free scaffolds were taken as control groups I and II, respectively. The follow-up times were 2, 4, 12 and 24 weeks. Macroscopical, histological and ultrastructural studies were performed. In vitro SEM studies found that abundant cartilaginous matrices were generated and completely covered the interconnected pores of the scaffolds two weeks post-seeding in the experimental groups. In vivo, the quality of regenerated tissue improved over time with hyaline cartilage filling the chondral region and a mixture of trabecular and compact bone filling the subchondral region at 24 weeks post-implantation. Joint repair in the experimental groups was better than that of either control group I or II, with respect to: (1) synthesis of hyaline cartilage specific extracellular matrix at the upper portion of the defect; (2) reconstitution of the subchondral bone at the lower portion of the defect and (3) inhibition of

  20. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining.

    OpenAIRE

    Lewis, L K; Westmoreland, J W; Resnick, M A

    1999-01-01

    Repair of double-strand breaks (DSBs) in chromosomal DNA by nonhomologous end-joining (NHEJ) is not well characterized in the yeast Saccharomyces cerevisiae. Here we demonstrate that several genes associated with NHEJ perform essential functions in the repair of endonuclease-induced DSBs in vivo. Galactose-induced expression of EcoRI endonuclease in rad50, mre11, or xrs2 mutants, which are deficient in plasmid DSB end-joining and some forms of recombination, resulted in G2 arrest and rapid ce...

  1. Cobalt-induced genotoxicity in male zebrafish (Danio rerio), with implications for reproduction and expression of DNA repair genes

    Energy Technology Data Exchange (ETDEWEB)

    Reinardy, Helena C.; Syrett, James R. [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Jeffree, Ross A. [Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007 (Australia); Henry, Theodore B., E-mail: ted.henry@plymouth.ac.uk [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996 (United States); Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996. USA (United States); Jha, Awadhesh N. [School of Biomedical and Biological Sciences, The University of Plymouth (United Kingdom)

    2013-01-15

    Although cobalt (Co) is an environmental contaminant of surface waters in both radioactive (e.g. {sup 60}Co) and non-radioactive forms, there is relatively little information about Co toxicity in fishes. The objective of this study was to investigate acute and chronic toxicity of Co in zebrafish, with emphasis on male genotoxicity and implications for reproductive success. The lethal concentration for 50% mortality (LC{sub 50}) in larval zebrafish exposed (96 h) to 0-50 mg l{sup -1} Co was 35.3 {+-} 1.1 (95% C.I.) mg l{sup -1} Co. Adult zebrafish were exposed (13 d) to sub-lethal (0-25 mg l{sup -1}) Co and allowed to spawn every 4 d and embryos were collected. After 12-d exposure, fertilisation rate was reduced (6% total eggs fertilised, 25 mg l{sup -1}) and embryo survival to hatching decreased (60% fertilised eggs survived, 25 mg l{sup -1}). A concentration-dependent increase in DNA strand breaks was detected in sperm from males exposed (13 d) to Co, and DNA damage in sperm returned to control levels after males recovered for 6 d in clean water. Induction of DNA repair genes (rad51, xrcc5, and xrcc6) in testes was complex and not directly related to Co concentration, although there was significant induction in fish exposed to 15 and 25 mg l{sup -1} Co relative to controls. Induction of 4.0 {+-} 0.9, 2.5 {+-} 0.7, and 3.1 {+-} 0.7-fold change (mean {+-} S.E.M. for rad51, xrcc5, and xrcc6, respectively) was observed in testes at the highest Co concentration (25 mg l{sup -1}). Expression of these genes was not altered in offspring (larvae) spawned after 12-d exposure. Chronic exposure to Co resulted in DNA damage in sperm, induction of DNA repair genes in testes, and indications of reduced reproductive success.

  2. Integration-defective lentiviral vector mediates efficient gene editing through homology-directed repair in human embryonic stem cells.

    Science.gov (United States)

    Wang, Yebo; Wang, Yingjia; Chang, Tammy; Huang, He; Yee, Jiing-Kuan

    2016-11-28

    Human embryonic stem cells (hESCs) are used as platforms for disease study, drug screening and cell-based therapy. To facilitate these applications, it is frequently necessary to genetically manipulate the hESC genome. Gene editing with engineered nucleases enables site-specific genetic modification of the human genome through homology-directed repair (HDR). However, the frequency of HDR remains low in hESCs. We combined efficient expression of engineered nucleases and integration-defective lentiviral vector (IDLV) transduction for donor template delivery to mediate HDR in hESC line WA09. This strategy led to highly efficient HDR with more than 80% of the selected WA09 clones harboring the transgene inserted at the targeted genomic locus. However, certain portions of the HDR clones contained the concatemeric IDLV genomic structure at the target site, probably resulted from recombination of the IDLV genomic input before HDR with the target. We found that the integrase protein of IDLV mediated the highly efficient HDR through the recruitment of a cellular protein, LEDGF/p75. This study demonstrates that IDLV-mediated HDR is a powerful and broadly applicable technology to carry out site-specific gene modification in hESCs.

  3. Methylation and protein expression of DNA repair genes: association with chemotherapy exposure and survival in sporadic ovarian and peritoneal carcinomas

    Directory of Open Access Journals (Sweden)

    Walsh Tom

    2009-07-01

    Full Text Available Abstract Background DNA repair genes critically regulate the cellular response to chemotherapy and epigenetic regulation of these genes may be influenced by chemotherapy exposure. Restoration of BRCA1 and BRCA2 mediates resistance to platinum chemotherapy in recurrent BRCA1 and BRCA2 mutated hereditary ovarian carcinomas. We evaluated BRCA1, BRCA2, and MLH1 protein expression in 115 sporadic primary ovarian carcinomas, of which 31 had paired recurrent neoplasms collected after chemotherapy. Additionally, we assessed whether promoter methylation of BRCA1, MLH1 or FANCF influenced response to chemotherapy or explained alterations in protein expression after chemotherapy exposure. Results Of 115 primary sporadic ovarian carcinomas, 39 (34% had low BRCA1 protein and 49 (42% had low BRCA2 expression. BRCA1 and BRCA2 protein expression were highly concordant (p Conclusion Low BRCA1 expression in primary sporadic ovarian carcinoma is associated with prolonged survival. Recurrent ovarian carcinomas commonly have increased BRCA1 and/or BRCA2 protein expression post chemotherapy exposure which could mediate resistance to platinum based therapies. However, alterations in expression of these proteins after chemotherapy are not commonly mediated by promoter methylation, and other regulatory mechanisms are likely to contribute to these alterations.

  4. Defects in the DNA repair and transcription gene ERCC2(XPD) in trichothiodystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, K.; Salazar, E.P.; Thompson, L.H. [Lawrence Livermore National Lab., CA (United States)] [and others

    1996-02-01

    Trichothiodystrophy (TTD) is a rare autosomal recessive disorder characterized by brittle hair with reduced sulfur content, ichthyosis, peculiar face, and mental and growth retardation. Clinical photosensitivity is present in {approximately}50% of TTD patients but is not associated with an elevated frequency of cancers. Previous complementation studies show that the photosensitivity in nearly all of the studied patients is due to a defect in the same genetic locus that underlies the cancer-prone genetic disorder xeroderma pigmentosum group D (XP-D). Nucleotide-sequence analysis of the ERCC2 cDNA from three TTD cell strains (TTD1VI, TTD3VI, and TTD1RO) revealed mutations within the region from amino acid 713-730 and within previously identified helicase functional domains. The various clinical presentations and DNA repair characteristics of the cell strains can be correlated with the particular mutations found in the ERCC2 locus. Mutations of Arg658 to either His or Cys correlate with TTD cell strains with intermediate UV-sensitivity, mutation of Arg722 to Trp correlates with highly UV-sensitive TTD cell strains, and mutation of Arg683 to Trp correlates with XP-D. Alleles with mutation of Arg616 to Pro or with the combined mutation of Leu461 to Val and deletion of 716-730 are found in both XP-D and TTD cell strains. 39 refs., 2 figs., 3 tabs.

  5. Dietary flavanols modulate the transcription of genes associated with cardiovascular pathology without changes in their DNA methylation state.

    Directory of Open Access Journals (Sweden)

    Dragan Milenkovic

    Full Text Available BACKGROUND: In a recent intervention study, the daily supplementation with 200 mg monomeric and oligomeric flavanols (MOF from grape seeds for 8 weeks revealed a vascular health benefit in male smokers. The objective of the present study was to determine the impact of MOF consumption on the gene expression profile of leukocytes and to assess changes in DNA methylation. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression profiles were determined using whole genome microarrays (Agilent and DNA methylation was assessed using HumanMethylation450 BeadChips (Illumina. MOF significantly modulated the expression of 864 genes. The majority of the affected genes are involved in chemotaxis, cell adhesion, cell infiltration or cytoskeleton organisation, suggesting lower immune cell adhesion to endothelial cells. This was corroborated by in vitro experiments showing that MOF exposure of monocytes attenuates their adhesion to TNF-α-stimulated endothelial cells. Nuclear factor kappa B (NF-κB reporter gene assays confirmed that MOF decrease the activity of NF-κB. Strong inter-individual variability in the leukocytes' DNA methylation was observed. As a consequence, on group level, changes due to MOF supplementation could not be found. CONCLUSION: Our study revealed that an 8 week daily supplementation with 200 mg MOF modulates the expression of genes associated with cardiovascular disease pathways without major changes of their DNA methylation state. However, strong inter-individual variation in leukocyte DNA methylation may obscure the subtle epigenetic response to dietary flavanols. Despite the lack of significant changes in DNA methylation, the modulation of gene expression appears to contribute to the observed vascular health effect of MOF in humans.

  6. Candidate driver genes involved in genome maintenance and DNA repair in Sézary syndrome.

    Science.gov (United States)

    Woollard, Wesley J; Pullabhatla, Venu; Lorenc, Anna; Patel, Varsha M; Butler, Rosie M; Bayega, Anthony; Begum, Nelema; Bakr, Farrah; Dedhia, Kiran; Fisher, Joshua; Aguilar-Duran, Silvia; Flanagan, Charlotte; Ghasemi, Aria A; Hoffmann, Ricarda M; Castillo-Mosquera, Nubia; Nuttall, Elisabeth A; Paul, Arisa; Roberts, Ceri A; Solomonidis, Emmanouil G; Tarrant, Rebecca; Yoxall, Antoinette; Beyers, Carl Z; Ferreira, Silvia; Tosi, Isabella; Simpson, Michael A; de Rinaldis, Emanuele; Mitchell, Tracey J; Whittaker, Sean J

    2016-06-30

    Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and represents an ideal model for study of T-cell transformation. We describe whole-exome and single-nucleotide polymorphism array-based copy number analyses of CD4(+) tumor cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases. A total of 824 somatic nonsynonymous gene variants were identified including indels, stop-gain/loss, splice variants, and recurrent gene variants indicative of considerable molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which has not been previously reported in CTCL; and TP53 and DNMT3A, which were also identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of tumors including novel variants not previously described in SS. This study is also the first to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in PRKCQ were found to occur in 20% of tumors highlighting selection for activation of T-cell receptor/NF-κB signaling. A complex but consistent pattern of copy number variants (CNVs) was detected and many CNVs involved genes identified as putative drivers. Frequent defects involving the POT1 and ATM genes responsible for telomere maintenance were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-κB signaling; epigenetic regulation (DNMT3A, ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment.

  7. Improved generation of rat gene knockouts by target-selected mutagenesis in mismatch repair-deficient animals

    Directory of Open Access Journals (Sweden)

    van Roekel Henk S

    2008-10-01

    Full Text Available Abstract Background The laboratory rat (Rattus norvegicus is one of the preferred model organisms in physiological and pharmacological research, although the availability of specific genetic models, especially gene knockouts, is limited. N-ethyl-N-nitrosourea (ENU-driven target-selected mutagenesis is currently the most successful method in rats, although it is still very laborious and expensive. Results As ENU-induced DNA damage is normally recognized by the mismatch repair (MMR system, we hypothesized that the effectiveness of the target-selected mutagenesis approach could be improved by using a MMR-deficient genetic background. Indeed, Msh6 knockout rats were found to be more sensitive to ENU treatment and the germ line mutation rate was boosted more than two-fold to 1 mutation per 585 kb. In addition, the molecular mutation spectrum was found to be changed in favor of generating knockout-type alleles by ~20%, resulting in an overall increase in efficiency of ~2.5 fold. The improved effectiveness was demonstrated by high throughput mutation discovery in 70 Mb of sequence in a set of only 310 mutant F1 rats. This resulted in the identification of 89 mutations of which four introduced a premature stopcodon and 64 resulted in amino acid changes. Conclusion Taken together, we show that the use of a MMR-deficient background considerably improves ENU-driven target-selected mutagenesis in the rat, thereby reducing animal use as well as screening costs. The use of a mismatch repair-deficient genetic background for improving mutagenesis and target-selected knockout efficiency is in principle applicable to any organism of interest.

  8. Improved generation of rat gene knockouts by target-selected mutagenesis in mismatch repair-deficient animals

    Science.gov (United States)

    van Boxtel, Ruben; Toonen, Pim W; Verheul, Mark; van Roekel, Henk S; Nijman, Isaac J; Guryev, Victor; Cuppen, Edwin

    2008-01-01

    Background The laboratory rat (Rattus norvegicus) is one of the preferred model organisms in physiological and pharmacological research, although the availability of specific genetic models, especially gene knockouts, is limited. N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis is currently the most successful method in rats, although it is still very laborious and expensive. Results As ENU-induced DNA damage is normally recognized by the mismatch repair (MMR) system, we hypothesized that the effectiveness of the target-selected mutagenesis approach could be improved by using a MMR-deficient genetic background. Indeed, Msh6 knockout rats were found to be more sensitive to ENU treatment and the germ line mutation rate was boosted more than two-fold to 1 mutation per 585 kb. In addition, the molecular mutation spectrum was found to be changed in favor of generating knockout-type alleles by ~20%, resulting in an overall increase in efficiency of ~2.5 fold. The improved effectiveness was demonstrated by high throughput mutation discovery in 70 Mb of sequence in a set of only 310 mutant F1 rats. This resulted in the identification of 89 mutations of which four introduced a premature stopcodon and 64 resulted in amino acid changes. Conclusion Taken together, we show that the use of a MMR-deficient background considerably improves ENU-driven target-selected mutagenesis in the rat, thereby reducing animal use as well as screening costs. The use of a mismatch repair-deficient genetic background for improving mutagenesis and target-selected knockout efficiency is in principle applicable to any organism of interest. PMID:18840264

  9. Prevalence of Germline Mutations in Genes Engaged in DNA Damage Repair by Homologous Recombination in Patients with Triple-Negative and Hereditary Non-Triple-Negative Breast Cancers.

    Directory of Open Access Journals (Sweden)

    Pawel Domagala

    Full Text Available This study sought to assess the prevalence of common germline mutations in several genes engaged in the repair of DNA double-strand break by homologous recombination in patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers. Tumors deficient in this type of DNA damage repair are known to be especially sensitive to DNA cross-linking agents (e.g., platinum drugs and to poly(ADP-ribose polymerase (PARP inhibitors.Genetic testing was performed for 36 common germline mutations in genes engaged in the repair of DNA by homologous recombination, i.e., BRCA1, BRCA2, CHEK2, NBN, ATM, PALB2, BARD1, and RAD51D, in 202 consecutive patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers.Thirty five (22.2% of 158 patients in the triple-negative group carried mutations in genes involved in DNA repair by homologous recombination, while 10 (22.7% of the 44 patients in the hereditary non-triple-negative group carried such mutations. Mutations in BRCA1 were most frequent in patients with triple-negative breast cancer (18.4%, and mutations in CHEK2 were most frequent in patients with hereditary non-triple-negative breast cancers (15.9%. In addition, in the triple-negative group, mutations in CHEK2, NBN, and ATM (3.8% combined were found, while mutations in BRCA1, NBN, and PALB2 (6.8% combined were identified in the hereditary non-triple-negative group.Identifying mutations in genes engaged in DNA damage repair by homologous recombination other than BRCA1/2 can substantially increase the proportion of patients with triple-negative breast cancer and hereditary non-triple-negative breast cancer who may be eligible for therapy using PARP inhibitors and platinum drugs.

  10. Polymorphisms in DNA repair genes XRCC2 and XRCC3 risk of gastric cancer in Turkey

    Directory of Open Access Journals (Sweden)

    İlhami Gok

    2014-09-01

    Full Text Available We studied the prevalence of polymorphisms in genes XRCC2 and XRCC3 in stomach cancer patients who lived in North Eastern Turkey. A total of 61 cancer patients and 78 controls were included in this study. Single nucleotide changes were studied in XRCC2 and XRCC3 genes at locus Arg188His and Thr241Met. Blood samples were taken from the patients and controls, and DNA was isolated. The regions of interest were amplified using a polymerase chain reaction method. After amplification, we used restriction enzymes (HphI and NcoI to digest the amplified product. Digested product was then run through gel electrophoresis. We identified changes in the nucleotides in these specific regions. It was found that the Arg188His polymorphism of the XRCC2 gene was about 39% (24 out of the 61 among cancer patients. However, only 15% (12 out of 78 of the control group indicated this polymorphism. We also observed that 18 of the 61 cancer patients (29% carried the Thr241Met polymorphism of the XRCC3 gene whereas 11 of the 78 (14% individuals in the control group had the polymorphism. Our results showed a significant difference in polymorphism ratios between the cancer patients and health control group for the regions of interest. This result clearly showed that these polymorphisms increase the risk of stomach cancer and might be a strong marker for early diagnosis of gastric cancer.

  11. DNA mismatch repair gene MSH6 implicated in determining age at natural menopause

    DEFF Research Database (Denmark)

    Perry, John R B; Hsu, Yi-Hsiang; Chasman, Daniel I

    2014-01-01

    The length of female reproductive lifespan is associated with multiple adverse outcomes, including breast cancer, cardiovascular disease and infertility. The biological processes that govern the timing of the beginning and end of reproductive life are not well understood. Genetic variants are kno...... to contribute to ∼50% of the variation in both age at menarche and menopause, but to date the known genes explain...

  12. Effects of dietary energy level on lipid metabolism-related gene expression in subcutaneous adipose tissue of Yellow breed x Simmental cattle.

    Science.gov (United States)

    Zhang, Haibo; Zhang, Xiangfei; Wang, ZhiSheng; Dong, Xianwen; Tan, Cui; Zou, Huawei; Peng, Quanhui; Xue, Bai; Wang, Lizhi; Dong, Guozhong

    2015-04-01

    This study was conducted to estimate the effect of dietary energy level on lipid metabolism-related gene expression of subcutaneous adipose tissue in Yellow breed × Simmental cattle. The experiment was conducted for 60 days. The results showed that final weight, average daily gain, average backfat thickness, (testicles + kidney + pelvic) fat percentage and subcutaneous fat percentage in the high and medium energy groups were significantly higher than in the low-energy group but that the feed conversion ratio was significantly lower. The glucose, triglycerides, cholesterol, high-density lipoprotein and low-density lipoprotein in the high-energy group were significantly higher than in the low-energy group. With dietary energy increasing the activities of lipoprotein lipase (LPL), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) significantly increased, whereas hormone-sensitive lipase (HSL) and carnitine palmitoyltransferase-1 (CPT-1) significantly diminished. Peroxisome proliferator-activated receptor γ (PPARγ), LPL, FAS, sterol regulatory element binding protein 1 (SREBP-1), ACC, stearoyl-CoA desaturase (SCD) and adipocyte-fatty acid binding proteins (A-FABP) gene expression were significantly increased by dietary energy increasing, and HSL and CPT-1 gene expression were significantly decreased. These results indicated that with dietary energy increasing, the subcutaneous fat accumulation mainly increased due to adipose tissue lipogenic gene expression and decreased lipolytic gene expression.

  13. Dose-dependent effects of dietary fat on development of obesity in relation to intestinal differential gene expression in C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Nicole J W de Wit

    Full Text Available Excessive intake of dietary fat is known to be a contributing factor in the development of obesity. In this study, we determined the dose-dependent effects of dietary fat on the development of this metabolic condition with a focus on changes in gene expression in the small intestine. C57BL/6J mice were fed diets with either 10, 20, 30 or 45 energy% (E% derived from fat for four weeks (n = 10 mice/diet. We found a significant higher weight gain in mice fed the 30E% and 45E% fat diet compared to mice on the control diet. These data indicate that the main shift towards an obese phenotype lies between a 20E% and 30E% dietary fat intake. Analysis of differential gene expression in the small intestine showed a fat-dose dependent gradient in differentially expressed genes, with the highest numbers in mice fed the 45E% fat diet. The main shift in fat-induced differential gene expression was found between the 30E% and 45E% fat diet. Furthermore, approximately 70% of the differentially expressed genes were changed in a fat-dose dependent manner. Many of these genes were involved in lipid metabolism-related processes and were already differentially expressed on a 30E% fat diet. Taken together, we conclude that up to 20E% of dietary fat, the small intestine has an effective 'buffer capacity' for fat handling. From 30E% of dietary fat, a switch towards an obese phenotype is triggered. We further speculate that especially fat-dose dependently changed lipid metabolism-related genes are involved in development of obesity.

  14. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases.

    Science.gov (United States)

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-08-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner.

  15. Gene expression, serum amino acid levels, and growth performance of pigs fed dietary leucine and lysine at different ratios.

    Science.gov (United States)

    García, H; Morales, A; Araiza, A; Htoo, J K; Cervantes, M

    2015-03-06

    We examined 96 pigs (28.1 ± 0.83 kg) to analyze the effect of Leu:Lys ratios on expression of the cationic amino acid transporters b(0,+) and CAT-1 in the jejunum and liver as well as myosin expression in 2 muscles to estimate the optimum standardized ileal digestible (SID) Leu:Lys ratio for growth rate and efficiency. A wheat-and wheat bran-based diets were formulated to meet the requirements of SID amino acids other than Leu (0.70%) and Lys (0.80%). L-Leu was added to the basal diet in 5 SID Leu:Lys ratios (88, 100, 120, 140, and 160% in diets 1-5). Tissue samples were collected from 8 pigs with ratios of 88, 120, and 160%. Relative expression of b(0,+), CAT-1, and myosin was analyzed. b(0,+) expression in the jejunum was higher but lower in the liver of pigs with the 120% ratio compared to those with the 88 or 160% ratio; myosin expression in longissimus dorsi was also higher in pigs with the 120% ratio (P pigs with 120 or 160% ratios than in pigs with 88%. Serum concentration of nearly all amino acids decreased with excess dietary Leu (P dietary Leu:Lys ratio affects the expression of genes coding for amino acid transporters and myosin, the availability of Lys, and the growth rate and efficiency in pigs.

  16. Dietary intake alters behavioral recovery and gene expression profiles in the brain of juvenile rats that have experienced a concussion.

    Science.gov (United States)

    Mychasiuk, Richelle; Hehar, Harleen; Ma, Irene; Esser, Michael J

    2015-01-01

    Concussion and mild traumatic brain injury (mTBI) research has made minimal progress diagnosing who will suffer from lingering symptomology or generating effective treatment strategies. Research demonstrates that dietary intake affects many biological systems including brain and neurological health. This study determined if exposure to a high fat diet (HFD) or caloric restriction (CR) altered post-concussion susceptibility or resiliency using a rodent model of pediatric concussion. Rats were maintained on HFD, CR, or standard diet (STD) throughout life (including the prenatal period and weaning). At postnatal day 30, male and female rats experienced a concussion or a sham injury which was followed by 17 days of testing. Prefrontal cortex and hippocampus tissue was collected for molecular profiling. Gene expression changes in BDNF, CREB, DNMT1, FGF-2, IGF1, LEP, PGC-1α, SIRT1, Tau, and TERT were analyzed with respect to injury and diet. Analysis of telomere length (TL) using peripheral skin cells and brain tissue found that TL in skin significantly correlated with TL in brain tissue and TL was affected by dietary intake and injury status. With respect to mTBI outcomes, diet was correlated with recovery as animals on the HFD often displayed poorer performance than animals on the CR diet. Molecular analysis demonstrated that diet induced epigenetic changes that can be associated with differences in individual predisposition and resiliency to post-concussion syndrome.

  17. Dietary phytochemicals modulate skin gene expression profiles and result in reduced lice counts after experimental infection in Atlantic salmon.

    Science.gov (United States)

    Jodaa Holm, Helle; Wadsworth, Simon; Bjelland, Anne-Kari; Krasnov, Aleksei; Evensen, Øystein; Skugor, Stanko

    2016-05-10

    The use of phytochemicals is a promising solution in biological control against salmon louse (Lepeophtheirus salmonis). Glucosinolates belong to a diverse group of compounds used as protection against herbivores by plants in the family Brassicaceae, while in vertebrates, ingested glucosinolates exert health-promoting effects due to their antioxidant and detoxifying properties as well as effects on cell proliferation and growth. The aim of this study was to investigate if Atlantic salmon fed two different doses of glucosinolate-enriched feeds would be protected against lice infection. The effects of feeding high dose of glucosinolates before the infection, and of high and low doses five weeks into the infection were studied. Skin was screened by 15 k oligonucleotide microarray and qPCR. A 25 % reduction (P < 0.05) in lice counts was obtained in the low dose group and a 17 % reduction in the high dose group compared to fish fed control feed. Microarray analysis revealed induction of over 50 interferon (IFN)-related genes prior to lice infection. Genes upregulated five weeks into the infection in glucosinolate-enriched dietary groups included Type 1 pro-inflammatory factors, antimicrobial and acute phase proteins, extracellular matrix remodeling proteases and iron homeostasis regulators. In contrast, genes involved in muscle contraction, lipid and glucose metabolism were found more highly expressed in the skin of infected control fish. Atlantic salmon fed glucosinolates had a significantly lower number of sea lice at the end of the experimental challenge. Feeding glucosinolates coincided with increased expression of IFN-related genes, and higher expression profiles of Type 1 immune genes late into the infection. In addition, regulation of genes involved in the metabolism of iron, lipid and sugar suggested an interplay between metabolism of nutrients and mechanisms of resistance.

  18. The Effect of Polymorphisms in DNA Repair Genes and Carcinogen Metabolizers on Leukocyte Telomere Length: A Cohort of Healthy Spanish Smokers.

    Science.gov (United States)

    Verde, Zoraida; Reinoso-Barbero, Luis; Chicharro, Luis; Resano, Pilar; Sánchez-Hernández, Ignacio; Rodríguez González-Moro, Jose Miguel; Bandrés, Fernando; Gómez-Gallego, Félix; Santiago, Catalina

    2016-04-01

    Smoking implies exposure to carcinogenic agents that causes DNA damage, which could be suspected to enhance telomere attrition. To protect and deal with DNA damage, cells possess mechanisms that repair and neutralize harmful substances. Polymorphisms altering DNA repair capacity or carcinogen metabolism may lead to synergistic effects with tobacco carcinogen-induced shorter telomere length independently of cancer interaction. The aim of this study was to explore the association between leukocyte telomere length (LTL) and several genetic polymorphisms in DNA repair genes and carcinogen metabolizers in a cohort of healthy smokers. We evaluated the effect of six genetic polymorphisms in cytochrome P1A1 (Ile462Val), XRCC1 (Arg399Gln), APEX1 (Asp148Glu), XRCC3 (Thr241Met), and XPD (Asp312Asn; Lys751Gln) on LTL in a cohort of 145 healthy smokers in addition to smoking habits. Logistic regression analysis showed an association between XRCC1 399Gln allele and shorter telomere length (OR = 5.03, 95% CI = 1.08% to 23.36%). There were not association between the rest of polymorphisms analyzed and LTL. Continuous exposure to tobacco could overwhelm the DNA repair machinery, making the effect of the polymorphisms that reduce repair capacity more pronounced. Analyzing the function of smoking-induced DNA-repair genes and LTL is an important goal in order to identify therapeutic targets to treat smoking-induced diseases. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Gene expression and DNA repair in progeroid syndromes and human aging.

    Science.gov (United States)

    Kyng, Kasper J; Bohr, Vilhelm A

    2005-11-01

    Human progeroid syndromes are caused by mutations in single genes accelerating some but not all features of normal aging. Most progeroid disorders are linked to defects in genome maintenance, and while it remains unknown if similar processes underlie normal and premature aging, they provide useful models for the study of aging. Altered transcription is speculated to play a causative role in aging, and is involved in the pathology of most if not all progeroid syndromes. Previous studies demonstrate that there is a similar pattern of gene expression changes in primary cells from old and Werner syndrome compared to young suggesting a presence of common cellular aging mechanisms in old and progeria. Here we review the role of transcription in progeroid syndromes and discuss the implications of similar transcription aberrations in normal and premature aging.

  20. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos.

    Science.gov (United States)

    Yu, Shuangying; Tang, Song; Mayer, Gregory D; Cobb, George P; Maul, Jonathan D

    2015-02-01

    Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photo-adducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and α-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 μg/L endosulfan or 0, 2.5, and 5.0 μg/L α-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and α-cypermethrin on CPD repair. This is attributed to results indicating that α-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides increased transcript abundance of CSA and MUTL. In addition, mRNA abundance of HSP70 and GADD45α were increased by endosulfan and mRNA abundance of XPG was increased by α-cypermethrin. XPC, HR23B, XPG, and GADD45α exhibited elevated mRNA concentrations whereas there was a reduction in MUTL transcript concentrations in UVB-alone treatments. It appeared that even

  1. Participation of different genes in the ruptures repair of double chain in Escherichia coli stumps exposed to gamma radiation; Participacion de diferentes genes en la reparacion de rupturas de doble cadena en cepas de Escherichia coli expuestas a radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Serment G, J. H.; Martinez M, E.; Alcantara D, D., E-mail: jorge.serment@inin.gob.mx [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-05-01

    All living organisms are naturally exposed to radiation from different sources. Ionizing radiation produces a plethora of lesions upon DNA that can be categorized as single and double strand breaks and base damage. Among them, unrepaired double strand breaks (Dbs) have the greatest biological significance, since they are responsible of cell death. In Escherichia coli this kind of lesions are repaired mostly by homologous recombination. In this work the participation of some recombination genes in the repair of Dbs is evaluated. Escherichia coli defective strains were exposed to gamma radiation and incubated for different periods in ideal conditions. Both micro electrophoresis and pulse field gel electrophoresis techniques were used to evaluate the kinetics of repair of such lesions, reflecting the importance of each defective gene in the process. (Author)

  2. The novel quinolone CHM-1 induces DNA damage and inhibits DNA repair gene expressions in a human osterogenic sarcoma cell line.

    Science.gov (United States)

    Chen, Hung-Yi; Lu, Hsu-Feng; Yang, Jai-Sing; Kuo, Sheng-Chu; Lo, Chyi; Yang, Mei-Due; Chiu, Tsan-Hung; Chueh, Fu-Shin; Ho, Heng-Chien; Ko, Yang-Ching; Chung, Jing-Gung

    2010-10-01

    20-Fluoro-6,7-methylenedioxy-2-phenyl-4-quino-lone (CHM-1) has been reported to induce cell cycle arrest and apoptosis in many types of cancer cells. However, there is no available information to show CHM-1 affecting DNA damage and expression of associated repair genes. Herein, we investigated whether or not CHM-1 induced DNA damage and affected DNA repair gene expression in U-2 OS human osterogenic sarcoma cells. The comet assay showed that incubation of U-2 OS cells with 0, 0.75, 1.5, 3 and 6 μM of CHM-1 led to a longer DNA migration smear (comet tail). DNA gel electrophoresis showed that 3 μM of CHM-1 for 24 and 48 h treatment induced DNA fragmentation in U-2 OS cells. Real-time PCR analysis showed that treatment with 3 μM of CHM-1 for 24 h reduced the mRNA expression levels of ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR), breast cancer 1, early onset (BRCA1), 14-3-3sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK) and O(6)-methylguanine-DNA methyltransferase (MGMT) genes in a time-dependent manner. Taken together, the results indicate that CHM-1 caused DNA damage and reduced DNA repair genes in U-2 OS cells, which may be the mechanism for CHM-1-inhibited cell growth and induction of apoptosis.

  3. Dietary selenium and prolonged exercise alter gene expression and activity of antioxidant enzymes in equine skeletal muscle.

    Science.gov (United States)

    White, S H; Johnson, S E; Bobel, J M; Warren, L K

    2016-07-01

    Untrained Thoroughbred horses (6 mares and 6 geldings; 11 yr [SE 1] and 565 kg [SE 11]) were used to evaluate antioxidant gene expression and enzyme activity in blood and skeletal muscle in response to prolonged exercise after receiving 2 levels of dietary selenium for 36 d: 0.1 (CON; = 6) or 0.3 mg/kg DM (SEL; = 6). Horses were individually fed 1.6% BW coastal bermudagrass hay, 0.4% BW whole oats, and a mineral/vitamin premix containing no Se. Sodium selenite was added to achieve either 0.1 or 0.3 mg Se/kg DM in the total diet. On d 35, horses underwent 2 h of submaximal exercise in a free-stall exerciser. Blood samples were obtained before (d 0) and after 34 d of Se supplementation and on d 35 to 36 immediately after exercise and at 6 and 24 h after exercise. Biopsies of the middle gluteal muscle were obtained on d 0, before exercise on d 34, and at 6 and 24 h after exercise. Supplementation with Se above the NRC requirement (SEL) increased serum Se ( = 0.011) and muscle thioredoxin reductase (TrxR) activity ( = 0.051) but had no effect on glutathione peroxidase (GPx) activity in plasma, red blood cell (RBC) lysate, or muscle in horses at rest. Serum creatine kinase activity increased ( Level of dietary Se had no overall effect on expression of , , , , , , or in muscle following exercise. The impact of prolonged exercise on the activities of antioxidant enzymes varied. Furthermore, changes in enzyme activity did not necessarily align with enzyme gene expression following exercise. A higher level of Se intake elevated Se status of untrained horses, increased GPx activity, and lessened lipid peroxidation following exercise, suggesting that Se may be beneficial for mitigating oxidative muscle damage and aiding in postexercise recovery.

  4. 5-lipoxygenase and 5-lipoxygenase-activating protein gene polymorphisms, dietary linoleic acid, and risk for breast cancer.

    Science.gov (United States)

    Wang, Jun; John, Esther M; Ingles, Sue Ann

    2008-10-01

    The n-6 polyunsaturated fatty acid 5-lipoxygenase pathway has been shown to play a role in the carcinogenesis of breast cancer. We conducted a population-based case-control study among Latina, African-American, and White women from the San Francisco Bay area to examine the association of the 5-lipoxygenase gene (ALOX5) and 5-lipoxygenase-activating protein gene (ALOX5AP) with breast cancer risk. Three ALOX5AP polymorphisms [poly(A) microsatellite, -4900 A>G (rs4076128), and -3472 A>G (rs4073259)] and three ALOX5 polymorphisms [Sp1-binding site (-GGGCGG-) variable number of tandem repeat polymorphism, -1279 G>T (rs6593482), and 760 G>A (rs2228065)] were genotyped in 802 cases and 888 controls. We did not find significant main effects of ALOX5 and ALOX5AP genotypes on breast cancer risk that were consistent across race or ethnicity; however, there was a significant interaction between the ALOX5AP -4900 A>G polymorphism and dietary linoleic acid intake (P=0.03). Among women consuming a diet high in linoleic acid (top quartile of intake, >17.4 g/d), carrying the AA genotype was associated with higher breast cancer risk (age- and race-adjusted odds ratio, 1.8; 95% confidence interval, 1.2-2.9) compared with carrying genotypes AG or GG. Among women consuming dietary fat and breast cancer should take into account genetic predisposition related to n-6 polyunsaturated fatty acid metabolism.

  5. Dietary L-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle.

    Science.gov (United States)

    Tan, Bie; Yin, Yulong; Liu, Zhiqiang; Tang, Wenjie; Xu, Haijun; Kong, Xiangfeng; Li, Xinguo; Yao, Kang; Gu, Wanting; Smith, Stephen B; Wu, Guoyao

    2011-05-01

    Obesity is a major health crisis worldwide and new treatments are needed to fight this epidemic. Using the swine model, we recently reported that dietary L-arginine (Arg) supplementation promotes muscle gain and reduces body-fat accretion. The present study tested the hypothesis that Arg regulates expression of key genes involved in lipid metabolism in skeletal muscle and white adipose tissue. Sixteen 110-day-old barrows were fed for 60 days a corn- and soybean-meal-based diet supplemented with 1.0% Arg or 2.05% L-alanine (isonitrogenous control). Blood samples, longissimus dorsi muscle and overlying subcutaneous adipose tissue were obtained from 170-day-old pigs for biochemical studies. Serum concentrations of leptin, alanine and glutamine were lower, but those for Arg and proline were higher in Arg-supplemented pigs than in control pigs. The percentage of oleic acid was higher but that of stearic acid and linoleic acid was lower in muscle of Arg-supplemented pigs, compared with control pigs. Dietary Arg supplementation increased mRNA levels for fatty acid synthase in muscle, while decreasing those for lipoprotein lipase, glucose transporter-4, and acetyl-coenzyme A carboxylase-α in adipose tissue. Additionally, mRNA levels for hormone sensitive lipase were higher in adipose tissue of Arg-supplemented pigs compared with control pigs. These results indicate that Arg differentially regulates expression of fat-metabolic genes in skeletal muscle and white adipose tissue, therefore favoring lipogenesis in muscle but lipolysis in adipose tissue. Our novel findings provide a biochemical basis for explaining the beneficial effect of Arg in improving the metabolic profile in mammals (including obese humans). Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Anticoagulant effect of dietary fish oil in hyperlipidemia. A study of hepatic gene expression in APOE2 knock-in mice

    NARCIS (Netherlands)

    K. Vanschoonbeek (Kristof); K. Wouters (Kristiaan); P.E.J. van der Meijden (Paola); P.J. van Gorp (Patrick); M.A.H. Feijge (Marion); M. Herfs (Marjolein); L.J. Schurgers; M.A. Hofker (Marten); M.P.M. de Maat (Moniek); J.W.M. Heemskerk (Johan)

    2008-01-01

    textabstractObjective - In hyperlipidemia, dietary fish oil containing n-3 polyunsaturated fatty acids (PUFA) provokes plasma triacylglycerol lowering and hypocoagulant activity. Using APOE2 knock-in mice, the relation of these fish-oil effects with altered gene expression was investigated. Methods

  7. Increasing levels of dietary crystalline methionine affect plasma methionine profiles, ammonia excretion, and the expression of genes related to the hepatic intermediary metabolism in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Rolland, Marine; Skov, Peter Vilhelm; Larsen, Bodil Katrine;

    2016-01-01

    . The diets were fed in excess for six weeks before three sampling campaigns carried out successively to elucidate (i) the hepatic expression of selected genes involved in lipid, glucose and amino acid metabolism; (ii) the postprandial ammonia excretion; and (iii) the postprandial plasma methionine...... significantly affected by the increase in dietary methionine. Changes in gene expression reflected to some extent the decrease in ammonia excretion (P=0.022) and in the hepatosomatic index (HSI; P...

  8. The human Bloom syndrome gene suppresses the DNA replication and repair defects of yeast dna2 mutants.

    Science.gov (United States)

    Imamura, Osamu; Campbell, Judith L

    2003-07-08

    Bloom syndrome is a disorder of profound and early cancer predisposition in which cells become hypermutable, exhibit high frequency of sister chromatid exchanges, and show increased micronuclei. BLM, the gene mutated in Bloom syndrome, has been cloned previously, and the BLM protein is a member of the RecQ family of DNA helicases. Many lines of evidence suggest that BLM is involved either directly in DNA replication or in surveillance during DNA replication, but its specific roles remain unknown. Here we show that hBLM can suppress both the temperature-sensitive growth defect and the DNA damage sensitivity of the yeast DNA replication mutant dna2-1. The dna2-1 mutant is defective in a helicase-nuclease that is required either to coordinate with the crucial Saccharomyces cerevisiae (sc) FEN1 nuclease in Okazaki fragment maturation or to compensate for scFEN1 when its activity is impaired. We show that human BLM interacts with both scDna2 and scFEN1 by using coimmunoprecipitation from yeast extracts, suggesting that human BLM participates in the same steps of DNA replication or repair as scFEN1 and scDna2.

  9. Inactivation of RAD52 and HDF1 DNA repair genes leads to premature chronological aging and cellular instability

    Indian Academy of Sciences (India)

    SILVIA MERCADO-SÁENZ; BEATRIZ LÓPEZ-DÍAZ; FRANCISCO SENDRA-PORTERO; MANUEL MARTÍNEZ-MORILLO; MIGUEL J RUIZ-GÓMEZ

    2017-06-01

    The present study aims to investigate the role of radiation sensitive 52 (RAD52) and high-affinity DNA binding factor1 (HDF1) DNA repair genes on the life span of budding yeasts during chronological aging. Wild type (wt) and rad52,hdf1, and rad52 hdf1 mutant Saccharomyces cerevisiae strains were used. Chronological aging and survival assayswere studied by clonogenic assay and drop test. DNA damage was analyzed by electrophoresis after phenol extraction.Mutant analysis, colony forming units and the index of respiratory competence were studied by growing on dextroseand glycerol plates as a carbon source. Rad52 and rad52 hdf1 mutants showed a gradual decrease in surviving fractionin relation to wt and hdf1 mutant during aging. Genomic DNA was spontaneously more degraded during aging,mainly in rad52 mutants. This strain showed an increased percentage of revertant colonies. Moreover, all mutantsshowed a decrease in the index of respiratory competence during aging. The inactivation of RAD52 leads to prematurechronological aging with an increase in DNA degradation and mutation frequency. In addition, RAD52 and HDF1contribute to maintain the metabolic state, in a different way, during chronological aging. The results obtained couldhave important implications in the chronobiology of aging.

  10. Distinctive adaptive response to repeated exposure to hydrogen peroxide associated with upregulation of DNA repair genes and cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Gloria A. Santa-Gonzalez

    2016-10-01

    Full Text Available Many environmental and physiological stresses are chronic. Thus, cells are constantly exposed to diverse types of genotoxic insults that challenge genome stability, including those that induce oxidative DNA damage. However, most in vitro studies that model cellular response to oxidative stressors employ short exposures and/or acute stress models. In this study, we tested the hypothesis that chronic and repeated exposure to a micromolar concentration of hydrogen peroxide (H2O2 could activate DNA damage responses, resulting in cellular adaptations. For this purpose, we developed an in vitro model in which we incubated mouse myoblast cells with a steady concentration of ~50 μM H2O2 for one hour daily for seven days, followed by a final challenge of a 10 or 20X higher dose of H2O2 (0.5 or 1 mM. We report that intermittent long-term exposure to this oxidative stimulus nearly eliminated cell toxicity and significantly decreased genotoxicity (in particular, a >5-fold decreased in double-strand breaks resulting from subsequent acute exposure to oxidative stress. This protection was associated with cell cycle arrest in G2/M and induction of expression of nine DNA repair genes. Together, this evidence supports an adaptive response to chronic, low-level oxidative stress that results in genomic protection and up-regulated maintenance of cellular homeostasis.

  11. Evolution of DNA Double-Strand Break Repair by Gene Conversion: Coevolution Between a Phage and a Restriction-Modification System

    Science.gov (United States)

    Yahara, Koji; Horie, Ryota; Kobayashi, Ichizo; Sasaki, Akira

    2007-01-01

    The necessity to repair genome damage has been considered to be an immediate factor responsible for the origin of sex. Indeed, attack by a cellular restriction enzyme of invading DNA from several bacteriophages initiates recombinational repair by gene conversion if there is homologous DNA. In this work, we modeled the interaction between a bacteriophage and a bacterium carrying a restriction enzyme as antagonistic coevolution. We assume a locus on the bacteriophage genome has either a restriction-sensitive or a restriction-resistant allele, and another locus determines whether it is recombination/repair proficient or defective. A restriction break can be repaired by a co-infecting phage genome if one of them is recombination/repair proficient. We define the fitness of phage (resistant/sensitive and repair-positive/-negative) genotypes and bacterial (restriction-positive/-negative) genotypes by assuming random encounter of the genotypes, with given probabilities of single and double infections, and the costs of resistance, repair, and restriction. Our results show the evolution of the repair allele depends on \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}b_{1}/b_{0},\\end{equation*}\\end{document} the ratio of the burst size \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}b_{1}\\end{equation*}\\end{document} under damage to host cell physiology induced by an unrepaired double-strand break to the default burst size \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage

  12. Micronuclei in humans induced by exposure to low level of ionizing radiation: influence of polymorphisms in DNA repair genes

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, Sabrina [Department of Pharmacology, University of Bologna, Via Irnerio 48, Bologna 40126 (Italy) and Department of Biosciences, Karolinska Institute, Novum, Huddinge 141 57 (Sweden)]. E-mail: angelini@biocfarm.unibo.it; Kumar, Rajiv [Department of Biosciences, Karolinska Institute, Novum, Huddinge 141 57 (Sweden); Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Carbone, Fabio [Department of Pharmacology, University of Bologna, Via Irnerio 48, Bologna 40126 (Italy); Maffei, Francesca [Department of Pharmacology, University of Bologna, Via Irnerio 48, Bologna 40126 (Italy); Forti, Giorgio Cantelli [Department of Pharmacology, University of Bologna, Via Irnerio 48, Bologna 40126 (Italy); Violante, Francesco Saverio [Department of Biosciences, Karolinska Institute, Novum, Huddinge 141 57 (Sweden); Occupational Medicine Unit, S. Orsola-Malpighi Hospital, Via Pelagi 9, Bologna 40100 (Italy); Lodi, Vittorio [Department of Biosciences, Karolinska Institute, Novum, Huddinge 141 57 (Sweden); Curti, Stefania [Department of Biosciences, Karolinska Institute, Novum, Huddinge 141 57 (Sweden); Hemminki, Kari [Department of Biosciences, Karolinska Institute, Novum, Huddinge 141 57 (Sweden); Hrelia, Patrizia [Department of Pharmacology, University of Bologna, Via Irnerio 48, Bologna 40126 (Italy)

    2005-02-15

    Understanding the risks deriving from protracted exposure to low doses of ionizing radiation has remarkable societal importance in view of the large number of work settings in which sources of IR are encountered. To address this question, we studied the frequency of micronuclei (MN), which is an indicator of DNA damage, in a population exposed to low levels of ionizing radiation and in matched controls. In both exposed population and controls, the possible influence of single nucleotide polymorphisms in XRCC1, XRCC3 and XPD genes on the frequency of micronuclei was also evaluated. We also considered the effects of confounding factors, like smoking status, age and gender. The results indicated that MN frequency was significantly higher in the exposed workers than in the controls [8.62 {+-} 2.80 versus 6.86 {+-} 2.65; P = 0.019]. Radiological workers with variant alleles for XRCC1 or XRCC3 polymorphisms or wild-type alleles for XPD exon 23 or 10 polymorphisms showed a significantly higher MN frequency than controls with the same genotypes. Smoking status did not affect micronuclei frequency either in exposed workers or controls, while age was associated with increased MN frequency in the exposed only. In the combined population, gender but not age exerted an influence on the yield of MN, being higher in females than in males. Even though there is a limitation in this study due to the small number of subjects, these results suggest that even exposures to low level of ionizing radiation could have genotoxic effects and that XRCC3, XRCC1 and XPD polymorphisms might contribute to the increased genetic damage in susceptible individuals occupationally exposed to chronic low levels of ionizing radiation. For a clear conclusion on the induction of DNA damage caused by protracted exposure to low doses of ionizing radiation and the possible influence of genetic polymorphism in DNA repair genes larger studies are needed.

  13. Assessing SNP-SNP interactions among DNA repair, modification and metabolism related pathway genes in breast cancer susceptibility.

    Directory of Open Access Journals (Sweden)

    Yadav Sapkota

    Full Text Available Genome-wide association studies (GWASs have identified low-penetrance common variants (i.e., single nucleotide polymorphisms, SNPs associated with breast cancer susceptibility. Although GWASs are primarily focused on single-locus effects, gene-gene interactions (i.e., epistasis are also assumed to contribute to the genetic risks for complex diseases including breast cancer. While it has been hypothesized that moderately ranked (P value based weak single-locus effects in GWASs could potentially harbor valuable information for evaluating epistasis, we lack systematic efforts to investigate SNPs showing consistent associations with weak statistical significance across independent discovery and replication stages. The objectives of this study were i to select SNPs showing single-locus effects with weak statistical significance for breast cancer in a GWAS and/or candidate-gene studies; ii to replicate these SNPs in an independent set of breast cancer cases and controls; and iii to explore their potential SNP-SNP interactions contributing to breast cancer susceptibility. A total of 17 SNPs related to DNA repair, modification and metabolism pathway genes were selected since these pathways offer a priori knowledge for potential epistatic interactions and an overall role in breast carcinogenesis. The study design included predominantly Caucasian women (2,795 cases and 4,505 controls from Alberta, Canada. We observed two two-way SNP-SNP interactions (APEX1-rs1130409 and RPAP1-rs2297381; MLH1-rs1799977 and MDM2-rs769412 in logistic regression that conferred elevated risks for breast cancer (P(interaction<7.3 × 10(-3. Logic regression identified an interaction involving four SNPs (MBD2-rs4041245, MLH1-rs1799977, MDM2-rs769412, BRCA2-rs1799943 (P(permutation = 2.4 × 10(-3. SNPs involved in SNP-SNP interactions also showed single-locus effects with weak statistical significance, while BRCA2-rs1799943 showed stronger statistical significance (P

  14. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuangying, E-mail: shuangying.yu@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Tang, Song, E-mail: song.tang@usask.ca [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Mayer, Gregory D., E-mail: greg.mayer@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States); Cobb, George P., E-mail: george_cobb@baylor.edu [Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798 (United States); Maul, Jonathan D., E-mail: jonathan.maul@ttu.edu [Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, 1207 S. Gilbert Dr., Lubbock, TX 79416 (United States)

    2015-02-15

    Highlights: • Interactive effects of UVB radiation-pesticide co-exposures were examined in frogs. • Responses included induction of DNA photo-adducts and DNA damage and repair genes. • Elevated DNA adduct levels occurred for co-exposures compared to UVB alone. • One mechanism is that pesticides may alter nuclear excision repair gene expression. - Abstract: Pesticide use and ultraviolet-B (UVB) radiation have both been suggested to adversely affect amphibians; however, little is known about their interactive effects. One potential adverse interaction could involve pesticide-induced dysregulation of DNA repair pathways, resulting in greater numbers of DNA photo-adducts from UVB exposure. In the present study, we investigated the interactive effects of UVB radiation and two common pesticides (endosulfan and α-cypermethrin) on induction of DNA photo-adducts and expression of DNA damage and repair related genes in African clawed frog (Xenopus laevis) embryos. We examined 13 genes that are, collectively, involved in stress defense, cell cycle arrest, nucleotide excision repair (NER), base excision repair, mismatch repair, DNA repair regulation, and apoptosis. We exposed X. laevis embryos to 0, 25, and 50 μg/L endosulfan or 0, 2.5, and 5.0 μg/L α-cypermethrin for 96 h, with environmentally relevant exposures of UVB radiation during the last 7 h of the 96 h exposure. We measured the amount of cyclobutane pyrimidine dimers (CPDs) and mRNA abundance of the 13 genes among treatments including control, pesticide only, UVB only, and UVB and pesticide co-exposures. Each of the co-exposure scenarios resulted in elevated CPD levels compared to UVB exposure alone, suggesting an inhibitory effect of endosulfan and α-cypermethrin on CPD repair. This is attributed to results indicating that α-cypermethrin and endosulfan reduced mRNA abundance of XPA and HR23B, respectively, to levels that may affect the initial recognition of DNA lesions. In contrast, both pesticides

  15. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana

    Energy Technology Data Exchange (ETDEWEB)

    Won, Eun-Ji; Han, Jeonghoon [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Yeonjung; Kumar, K. Suresh; Shin, Kyung-Hoon [Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Su-Jae [Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Heum Gi, E-mail: hgpark@gwnu.ac.kr [Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Lee, Jae-Seong, E-mail: jslee2@skku.edu [Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-08-15

    Highlights: • UV-B radiation induced a significant reduction of the re-brooding rate of ovigerous females. • A dose-dependent decrease in food ingestion and the rate of assimilation to the body upon UV radiation. • Expression of base excision repair-associated and hsp chaperoning genes was significantly increased upon UV radiation in P. nana. - Abstract: To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0–3 kJ/m{sup 2}) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7–87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (P < 0.05) in food ingestion and the rate of assimilation to the body in response to UV radiation, implying that P. nana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1 kJ/m{sup 2} of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana.

  16. Association between Genetic Polymorphisms of DNA Repair Genes and Chromosomal Damage for 1,3-Butadiene-Exposed Workers in a Matched Study in China

    OpenAIRE

    2015-01-01

    The aim of the study was to examine the association between polymorphisms of DNA repair genes and chromosomal damage of 1,3-butadiene- (BD-) exposed workers. The study was conducted in 45 pairs of occupationally exposed workers in a BD product workshop and matched control workers in an administrative office and a circulatory water workshop in China. Newly developed biomarkers (micronuclei, MNi; nucleoplasmic bridges, NPBs; nuclear buds, NBUDs) in the cytokinesis-blocked micronucleus (CBMN) cy...

  17. Germ line mutations of mismatch repair genes in hereditary nonpolyposis colorectal cancer patients with small bowel cancer: International Society for Gastrointestinal Hereditary Tumours Collaborative Study

    DEFF Research Database (Denmark)

    Park, Jae-Gahb; Kim, Duck-Woo; Hong, Chang Won;

    2006-01-01

    PURPOSE: The aim of study was to determine the clinical characteristics and mutational profiles of the mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) patients with small bowel cancer (SBC). EXPERIMENTAL DESIGN: A questionnaire was mailed to 55 members of the Internatio.......8%, P teens. The distribution of MSH2 mutations found in patients with HNPCC-associated SBCs significantly differed from that found in the control group (P

  18. Modulation of gene expression in precancerous rat esophagus by dietary zinc deficit and replenishment.

    Science.gov (United States)

    Liu, Chang-Gong; Zhang, Liang; Jiang, Yubao; Chatterjee, Devjani; Croce, Carlo M; Huebner, Kay; Fong, Louise Y Y

    2005-09-01

    Zinc deficiency in rats enhances esophageal cell proliferation, causes alteration in gene expression, and promotes esophageal carcinogenesis. Zinc replenishment rapidly induces apoptosis in the esophageal epithelium thereby reversing cell proliferation and carcinogenesis. To identify zinc-responsive genes responsible for these divergent effects, we did oligonucleotide array-based gene expression profiling analyses in the precancerous zinc-deficient esophagus and in zinc-replenished esophagi after treatment with intragastric zinc compared with zinc-sufficient esophagi. Thirty-three genes (21 up-regulated and 12 down-regulated) showed a > or = 2-fold change in expression in the hyperplastic zinc-deficient versus zinc-sufficient esophageal epithelia. Expression of genes involved in cell division, survival, adhesion, and tumorigenesis were markedly changed. The zinc-sensitive gene metallothionein-1 (MT-1 was up-regulated 7-fold, the opposite of results for small intestine and liver under zinc-deficient conditions. Keratin 14 (KRT14, a biomarker in esophageal tumorigenesis), carbonic anhydrase II (CAII, a regulator of acid-base homeostasis), and cyclin B were up-regulated >4-fold. Immunohistochemistry showed that metallothionein and keratin 14 proteins were overexpressed in zinc-deficient esophagus, as well as in lingual and esophageal squamous cell carcinoma from carcinogen-treated rats, emphasizing their roles in carcinogenesis. Calponin 1 (CNN1, an actin cross-linking regulator) was down-regulated 0.2-fold. Within hours after oral zinc treatment, the abnormal expression of 29 of 33 genes returned to near zinc-sufficient levels, accompanied by reversal of the precancerous phenotype. Thus, we have identified new molecular markers in precancerous esophagus and showed their restoration by zinc replenishment, providing insights into the interaction between zinc and gene expression in esophageal cancer development and prevention.

  19. Maternal dietary betaine supplementation modifies hepatic expression of cholesterol metabolic genes via epigenetic mechanisms in newborn piglets.

    Science.gov (United States)

    Cai, Demin; Jia, Yimin; Lu, Jingyu; Yuan, Mengjie; Sui, Shiyan; Song, Haogang; Zhao, Ruqian

    2014-11-14

    To elucidate the effects of maternal dietary betaine supplementation on hepatic expression of cholesterol metabolic genes in newborn piglets and the involved epigenetic mechanisms, we fed gestational sows with control or betaine-supplemented diets (3 g/kg) throughout pregnancy. Neonatal piglets born to betaine-supplemented sows had higher serum methionine concentration and hepatic content of betaine, which was associated with significantly up-regulated hepatic expression of glycine N-methyltransferase. Prenatal betaine exposure increased hepatic cholesterol content and modified the hepatic expression of cholesterol metabolic genes in neonatal piglets. Sterol regulatory element-binding protein 2 was down-regulated at both mRNA and protein levels, while 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) was down-regulated at the mRNA level, but up-regulated at the protein level, in betaine-exposed piglets. The transcriptional repression of HMGCR was associated with CpG island hypermethylation and higher repressive histone mark H3K27me3 (histone H3 lysine 27 trimethylation) on the promoter, whereas increased HMGCR protein content was associated with significantly decreased expression of miR-497. Furthermore, LDL receptor was significantly down-regulated at both mRNA and protein levels in the liver of betaine-exposed piglets, which was associated with promoter CpG hypermethylation. In addition, the expression of cholesterol-27α-hydroxylase (CYP27α1) was up-regulated at both mRNA and protein levels, while the expression of cholesterol-7α-hydroxylase (CYP7α1) was increased at the mRNA level, but unchanged at the protein level associated with increased expression of miR-181. These results indicate that maternal betaine supplementation increases hepatic cholesterol content in neonatal piglets through epigenetic regulations of cholesterol metabolic genes, which involve alterations in DNA and histone methylation and in the expression of microRNA targeting these genes.

  20. Molecular epidemiology of VHL gene mutations in renal cell carcinoma patients: relation to dietary and other factors.

    Science.gov (United States)

    Hemminki, Kari; Jiang, Yongwen; Ma, Xin; Yang, Ke; Egevad, Lars; Lindblad, Per

    2002-05-01

    Carcinogenic chemicals act through DNA damage and mitogenic effects. No established mechanism explains the cancer preventive effects, if any, of food items, such as vegetables and fruit. If such data were available, preferably on tumor-initiating genes, the evidence for the protective effects would become stronger. The von Hipple-Lindau (VHL) gene is the tumor suppressor gene predisposing to both sporadic renal cell carcinoma (RCC) and von Hippel-Lindau disease. We have earlier analyzed VHL mutations in RCCs from 102 Swedish patients identified in a case-control study and here examine associations between patient characteristics, including dietary habits and mutations, considering the type of mutation. The results are given as odds ratios (OR), separately for smokers and all patients. In univariate analysis, consumption of vegetables and citrus fruit decreased the frequency of VHL mutations among smokers and citrus fruit among all patients. In multivariate analysis of smokers' characteristics, welding fumes showed a risk of 5.63 for multiple VHL mutations. In smokers, citrus fruit decreased the OR of GC to AT mutations to 0.13 and that of multiple mutations to 0.17; vegetables decreased the OR for single mutations to 0.22. Among all subjects, welding fumes were a risk factor and citrus fruit a protective factor. Additionally, an intake of selenium protected against multiple mutations. The present results provide evidence that the intake of vegetables, selenium and particularly of citrus fruit protects the renal VHL gene from mutational insults that may be endogenous or common in a population. Even though most of the associations are biologically plausible, and vegetables and fruit were an a priori hypothesis, fortuitous results cannot be ruled out in this relatively small study.

  1. Association between Genetic Polymorphisms of DNA Repair Genes and Chromosomal Damage for 1,3-Butadiene-Exposed Workers in a Matched Study in China.

    Science.gov (United States)

    Xiang, Menglong; Sun, Lei; Dong, Xiaomei; Yang, Huan; Liu, Wen-bin; Zhou, Niya; Han, Xue; Zhou, Ziyuan; Cui, Zhihong; Liu, Jing-yi; Cao, Jia; Ao, Lin

    2015-01-01

    The aim of the study was to examine the association between polymorphisms of DNA repair genes and chromosomal damage of 1,3-butadiene- (BD-) exposed workers. The study was conducted in 45 pairs of occupationally exposed workers in a BD product workshop and matched control workers in an administrative office and a circulatory water workshop in China. Newly developed biomarkers (micronuclei, MNi; nucleoplasmic bridges, NPBs; nuclear buds, NBUDs) in the cytokinesis-blocked micronucleus (CBMN) cytome assay were adopted to detect chromosomal damage. PCR and PCR-restriction fragment length polymorphism (RFLP) are adopted to analyze polymorphisms of DNA repair genes, such as X-ray repair cross-complementing Group 1 (XRCC1), O6-methylguanine-DNA methyltransferase (MGMT), poly (adenosine diphosphate-ribose) polymerases (ADPRT), and apurinic/apyrimidinic endonucleases (APE1). The BD-exposed workers exhibited increased frequencies of MNi and NPBs when compared to subjects in the control group. The results also show that the BD-exposed workers carrying XRCC1 diplotypes TCGA-CCGG (4.25 ± 2.06 ‰) (FR = 2.10, 95% CI: 1.03-4.28) and TCGG-TCGA (5.80 ± 3.56 ‰) (FR = 2.75, 95% CI: 0.76-2.65) had statistically higher NBUD frequencies than those who carried diplotype TCGG-TCGG (1.89 ± 1.27 ‰). Our study suggests that polymorphisms of XRCC1 gene may influence chromosomal damage in BD-exposed workers.

  2. In vivo effects of UV radiation on multiple endpoints and expression profiles of DNA repair and heat shock protein (Hsp) genes in the cycloid copepod Paracyclopina nana.

    Science.gov (United States)

    Won, Eun-Ji; Han, Jeonghoon; Lee, Yeonjung; Kumar, K Suresh; Shin, Kyung-Hoon; Lee, Su-Jae; Park, Heum Gi; Lee, Jae-Seong

    2015-08-01

    To evaluate the effects of ultraviolet (UV) radiation on energy acquisition and consumption, the copepod Paracyclopina nana was irradiated with several doses (0-3kJ/m(2)) of UV. After UV radiation, we measured the re-brooding success, growth pattern of newly hatched nauplii, ingestion rate, and assimilation of diet. In addition, we checked the modulated patterns of DNA repair and heat shock protein (hsp) chaperoning genes of P. nana. UV-B radiation induced a significant reduction (7-87%) of the re-brooding rate of ovigerous females, indicating that UV-induced egg sac damage is closely correlated with a reduction in the hatching rate of UV-irradiated ovigerous female offspring. Using chlorophyll a and stable carbon isotope incubation experiments, we found a dose-dependent decrease (Pnana has an underlying ability to shift its balanced-energy status from growth and reproduction to DNA repair and adaptation. Also, expression of P. nana base excision repair (BER)-associated genes and hsp chaperoning genes was significantly increased in response to UV radiation in P. nana. These findings indicate that even 1kJ/m(2) of UV radiation induces a reduction in reproduction and growth patterns, alters the physiological balance and inhibits the ability to cope with UV-induced damage in P. nana.

  3. Normal repair of ultraviolet radiation-induced DNA damage in familial melanoma without CDKN2A or CDK4 gene mutation.

    Science.gov (United States)

    Shannon, J A; Matias, C; Luxford, C; Kefford, R F; Mann, G J

    1999-04-01

    Excessive sun exposure and family history are strong risk factors for the development of cutaneous melanoma. Inherited susceptibility to this type of skin cancer could therefore result from constitutively impaired capacity to repair ultraviolet (UV)-induced DNA lesions. While a proportion of familial melanoma kindreds exhibit germline mutations in the cell cycle regulatory gene CDKN2A (p16INK4a) or its protein target, cyclin-dependent kinase 4 (CDK4), the biochemical basis of most familial melanoma is unknown. We have examined lymphoblastoid cell lines from melanoma-affected and unaffected individuals from large hereditary melanoma kindreds which are not attributable to CDKN2A or CDK4 gene mutation. These lines were tested for sensitivity of clonogenic growth to UV radiation and for their ability to repair transfected UV-damaged plasmid templates (host cell reactivation). Two of seven affected-unaffected pairs differed in colony survival after exposure to UVB radiation; however, no significant differences were observed in the host-cell reactivation assays. These results indicate that melanoma susceptibility genes other than CDKN2A and CDK4 do not impair net capacity to repair UV-induced DNA damage.

  4. Polymorphisms in DNA Repair Gene XRCC3 and Susceptibility to Breast Cancer in Saudi Females

    Directory of Open Access Journals (Sweden)

    Alaa Mohammed Ali

    2016-01-01

    Full Text Available We investigated three common polymorphisms (SNPs in the XRCC3 gene (rs861539, rs1799794, and rs1799796 in 143 Saudi females suffering from breast cancer (median age = 51.4 years and 145 age matched normal healthy controls. DNA was extracted from whole blood and genotyping was conducted using PCR-RFLP. rs1799794 showed significant association, where AA and AA+AG occurred at a significantly higher frequency in the cancer patients compared to the control group (OR: 28.1; 95% CI: 3.76–21.12; χ2: 22.82; pT and rs1799796 A>G did not show a significant difference when the results in the patients and controls were compared. However, the frequency of rs1799796 differed significantly in patients with different age of diagnosis, tumor grade, and ER and HER2 status. The wild type A allele occurred at a higher frequency in the ER− and HER2− group. Our results among Saudis suggest that some variations in XRCC3 may contribute to breast cancer susceptibility. In conclusion, the results obtained during this study suggest that rs1799794 in XRCC3 shows strong association with breast cancer development in Saudi females.

  5. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.

    Science.gov (United States)

    Rivera-Torres, Natalia; Banas, Kelly; Bialk, Pawel; Bloh, Kevin M; Kmiec, Eric B

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and

  6. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides

    Science.gov (United States)

    Rivera-Torres, Natalia; Bialk, Pawel; Bloh, Kevin M.; Kmiec, Eric B.

    2017-01-01

    CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and

  7. Hepatic and subcutaneous adipose lipid metabolism genes modulation by dietary fish oil and stearate in transition goats

    Directory of Open Access Journals (Sweden)

    Greta Farina

    2015-07-01

    Full Text Available The objective of the experiment was to understand the interaction between saturated or unsaturated fatty acids and genes involved in lipid metabolism in liver and subcutaneous adipose tissue. With this purpose, further gene expression assays were performed on obtained adipose and liver samples from a previous in vivo study where expression levels of ADIPOQ, LPIN1, LPL, PPARG, SREBF1 and THRSP were already determined. The study consisted on the administration of either a no fat-supplemented, or a stearic acid or fish oil supplemented diets to dairy goats from the last week of gestation until 21 days after kidding. Fat-supplied goats received 30g/head/d extra fatty acids during the dry period and 50g/head/d during lactation. Liver and subcutaneous adipose tissue samples were harvested at day ­7, 7 and 21 relative to kidding and immediately snap frozen in liquid nitrogen. At the present moment, quantitative real-time RT-PCR of ACAT1, MSMO1, CPT1, IL6 on liver and ACACA, LEP, LPL, FASN, IL6 and PLIN2 on adipose tissue are running. Data obtained will be analysed using the MIXED procedure of SAS and results may increase the knowledge on the mechanism of action of saturated or unsaturated dietary fatty acid sources in the fatty acid metabolism changes during transition in dairy goats.

  8. The effect of sodium alginate on the immune response of tiger shrimp via dietary administration: activity and gene transcription.

    Science.gov (United States)

    Liu, Chun-Hung; Yeh, Shinn-Pyng; Kuo, Chin-Ming; Cheng, Winton; Chou, Chang-Hung

    2006-10-01

    The total haemocyte count (THC), phenoloxidase (PO) activity, respiratory bursts (release of superoxide anions), and superoxide dismutase (SOD) activity, as well as expressions of beta-1,3-glucan-binding protein (betaGBP), prophenoloxidase (proPO), peroxinectin (PE), cytosolic SOD (cyt-SOD), penaeidin-5 (PA-5), and a single whey acidic protein (WAP) domain protein (SWDP) gene were determined in the tiger shrimp Penaeus monodon (15.6-19.5g) which had individually been fed diets containing sodium alginate at 0, 1.0, or 2.0gkg(-1) for 5months. Results showed that shrimp fed a diet containing 1.0 and 2.0gkg(-1) sodium alginate had significantly increased SOD activity but decreased respiratory bursts. The expressions of betaGBP, PE, cyt-SOD, PA-5, and SWDP were significantly elevated in shrimp fed the sodium alginate-containing diet for 5months. However, no significant differences in THC, PO activity, or proPO mRNA transcription in shrimp were observed among the three treatments. It was concluded that sodium alginate can be used as an immunomodulator for shrimp through dietary administration to modify immune genes expression of shrimp.

  9. Differential transcriptional modulation of duplicated fatty acid-binding protein genes by dietary fatty acids in zebrafish (Danio rerio: evidence for subfunctionalization or neofunctionalization of duplicated genes

    Directory of Open Access Journals (Sweden)

    Denovan-Wright Eileen M

    2009-09-01

    Full Text Available Abstract Background In the Duplication-Degeneration-Complementation (DDC model, subfunctionalization and neofunctionalization have been proposed as important processes driving the retention of duplicated genes in the genome. These processes are thought to occur by gain or loss of regulatory elements in the promoters of duplicated genes. We tested the DDC model by determining the transcriptional induction of fatty acid-binding proteins (Fabps genes by dietary fatty acids (FAs in zebrafish. We chose zebrafish for this study for two reasons: extensive bioinformatics resources are available for zebrafish at zfin.org and zebrafish contains many duplicated genes owing to a whole genome duplication event that occurred early in the ray-finned fish lineage approximately 230-400 million years ago. Adult zebrafish were fed diets containing either fish oil (12% lipid, rich in highly unsaturated fatty acid, sunflower oil (12% lipid, rich in linoleic acid, linseed oil (12% lipid, rich in linolenic acid, or low fat (4% lipid, low fat diet for 10 weeks. FA profiles and the steady-state levels of fabp mRNA and heterogeneous nuclear RNA in intestine, liver, muscle and brain of zebrafish were determined. Result FA profiles assayed by gas chromatography differed in the intestine, brain, muscle and liver depending on diet. The steady-state level of mRNA for three sets of duplicated genes, fabp1a/fabp1b.1/fabp1b.2, fabp7a/fabp7b, and fabp11a/fabp11b, was determined by reverse transcription, quantitative polymerase chain reaction (RT-qPCR. In brain, the steady-state level of fabp7b mRNAs was induced in fish fed the linoleic acid-rich diet; in intestine, the transcript level of fabp1b.1 and fabp7b were elevated in fish fed the linolenic acid-rich diet; in liver, the level of fabp7a mRNAs was elevated in fish fed the low fat diet; and in muscle, the level of fabp7a and fabp11a mRNAs were elevated in fish fed the linolenic acid-rich or the low fat diets. In all cases

  10. Contribution of energy restriction and macronutrient composition to changes in adipose tissue gene expression during dietary weight-loss programs in obese women

    DEFF Research Database (Denmark)

    Capel, Frédéric; Viguerie, Nathalie; Vega, Nathalie;

    2008-01-01

    CONTEXT: Hypoenergetic diets are used to reduce body fat mass and metabolic risk factors in obese subjects. The molecular changes in adipose tissue associated with weight loss and specifically related to the dietary composition are poorly understood. OBJECTIVE: We investigated adipose tissue gene...... diet. SUBJECTS: Two sets of 47 women in each dietary arm were selected among 648 subjects matched for anthropometric and biological parameters. MAIN OUTCOME MEASURE: We measured adipose tissue gene expression changes in one set using a candidate gene approach. The other set was used to survey 24...... expression from human obese women according to energy deficit and the fat and carbohydrate content of the diet. DESIGN AND SETTING: Obese subjects recruited among eight European clinical centers were followed up 10 wk of either a low-fat (high carbohydrate) or a moderate-fat (low carbohydrate) hypoenergetic...

  11. Impact of improving dietary amino acid balance for lactating sows on efficiency of dietary amino acid utilization and transcript abundance of genes encoding lysine transporters in mammary tissue

    DEFF Research Database (Denmark)

    Huber, L; de Lange, C F M; Ernst, Cathy

    2016-01-01

    ) Lys concentration was 80% of the estimated requirement. In Exp. 2, 24 sows were assigned to the HCP or LCP diets. In Exp. 1, blood samples were postprandially collected 15 h on d 3, 7, 14, and 18 of lactation and utilization efficiency of dietary AA for milk production was calculated during early (d 3...

  12. Dietary starch intake modifies the relation between copy number variation in the salivary amylase gene and BMI.

    Science.gov (United States)

    Rukh, Gull; Ericson, Ulrika; Andersson-Assarsson, Johanna; Orho-Melander, Marju; Sonestedt, Emily

    2017-07-01

    Background: Studies have shown conflicting associations between the salivary amylase gene (AMY1) copy number and obesity. Salivary amylase initiates starch digestion in the oral cavity; starch is a major source of energy in the diet.Objective: We investigated the association between AMY1 copy number and obesity traits, and the effect of the interaction between AMY1 copy number and starch intake on these obesity traits.Design: We first assessed the association between AMY1 copy number (genotyped by digital droplet polymerase chain reaction) and obesity traits in 4800 individuals without diabetes (mean age: 57 y; 60% female) from the Malmö Diet and Cancer Cohort. Then we analyzed interactions between AMY1 copy number and energy-adjusted starch intake (obtained by a modified diet history method) on body mass index (BMI) and body fat percentage.Results:AMY1 copy number was not associated with BMI (P = 0.80) or body fat percentage (P = 0.38). We observed a significant effect of the interaction between AMY1 copy number and starch intake on BMI (P-interaction = 0.007) and body fat percentage (P-interaction = 0.03). Upon stratification by dietary starch intake, BMI tended to decrease with increasing AMY1 copy numbers in the low-starch intake group (P = 0.07) and tended to increase with increasing AMY1 copy numbers in the high-starch intake group (P = 0.08). The lowest mean BMI was observed in the group of participants with a low AMY1 copy number and a high dietary intake of starch.Conclusions: Our findings suggest an effect of the interaction between starch intake and AMY1 copy number on obesity. Individuals with high starch intake but low genetic capacity to digest starch had the lowest BMI, potentially because larger amounts of undigested starch are transported through the gastrointestinal tract, contributing to fewer calories extracted from ingested starch. © 2017 American Society for Nutrition.

  13. Vitamin D receptor gene polymorphisms, dietary promotion of insulin resistance, and colon and rectal cancer.

    OpenAIRE

    Murtaugh, Maureen A.; Sweeney, Carol; Ma, Khe-ni; Potter, John D.; Caan, Bette J.; Wolff, Roger K.; Slattery, Martha L

    2006-01-01

    Biomarkers of individual susceptibility: field studies. Biomarker: vitamin D receptor (VDR) gene polymorphisms Effect studied: colon and rectal cancer risk. Tissue/biological material/sample size: colon, rectum. Method of analysis: genotyping of the VDR gene Study design: case-control studyStudy size: colon cancer (1,698 cases and 1,861 controls); rectal cancer (752 cases and 960 controls) Impact on outcome (including dose-response): The lowest colon cancer risk was observed with the Ff/ff Fo...

  14. Influence of DNA repair gene polymorphisms of hOGG1, XRCC1, XRCC3, ERCC2 and the folate metabolism gene MTHFR on chromosomal aberration frequencies.

    Science.gov (United States)

    Skjelbred, Camilla Furu; Svendsen, Marit; Haugan, Vera; Eek, Anette Kildal; Clausen, Kjell Oskar; Svendsen, Martin Veel; Hansteen, Inger-Lise

    2006-12-01

    We have studied the effect of genetic polymorphisms in the DNA repair genes hOGG1, XRCC1, XRCC3, ERCC2 and the MTHFR gene in the folate metabolism on the frequencies of cells with chromosomal aberrations (CA), chromosome-type aberrations (CSA), chromatid-type aberrations (CTA), chromatid breaks (CTB) and chromatid gaps (CTG) scored in peripheral blood lymphocytes from 651 Norwegian subjects of Caucasian descendant. DNA was extracted from fixed cell suspensions. The log-linear Poisson regression model was used for the combined data which included age, smoking, occupational exposure and genotype for 449 subjects. Our results suggest that individuals carrying the hOGG1 326Cys or the XRCC1 399Gln allele have an increased risk of chromosomal damage, while individuals carrying the XRCC1 194Trp or the ERCC2 751Gln allele have a reduced risk regardless of smoking habits and age. Individuals carrying the XRCC1 280His allele had an increased risk of CSA which was only apparent in non-smokers. This was independent of age. A protective effect of the XRCC3 241Met allele was only found in the older age group in non-smokers for CA, CSA and CTA, and in smokers for CSA. In the youngest age group, the opposite effect was found, with an increased risk for CA, CTA and CTG in smokers. Carrying the MTHFR 222Val allele gave an increased risk for chromosome and chromatid-type aberrations for both non-smokers and smokers, especially for individuals in the older age group, and with variable results in the youngest age group. The variables included in the different regression models accounted, however, for only 4-10% of the variation. The frequency ratio for CTG was significantly higher than for CTA and CTB for only 7 of the 43 comparisons performed. Some of the gap frequencies diverge from the trend in the CA, CSA, CTA and CTB results.

  15. Search for genes essential for pneumococcal transformation: the RADA DNA repair protein plays a role in genomic recombination of donor DNA.

    Science.gov (United States)

    Burghout, Peter; Bootsma, Hester J; Kloosterman, Tomas G; Bijlsma, Jetta J E; de Jongh, Christa E; Kuipers, Oscar P; Hermans, Peter W M

    2007-09-01

    We applied a novel negative selection strategy called genomic array footprinting (GAF) to identify genes required for genetic transformation of the gram-positive bacterium Streptococcus pneumoniae. Genome-wide mariner transposon mutant libraries in S. pneumoniae strain R6 were challenged by transformation with an antibiotic resistance cassette and growth in the presence of the corresponding antibiotic. The GAF screen identified the enrichment of mutants in two genes, i.e., hexA and hexB, and the counterselection of mutants in 21 different genes during the challenge. Eight of the counterselected genes were known to be essential for pneumococcal transformation. Four other genes, i.e., radA, comGF, parB, and spr2011, have previously been linked to the competence regulon, and one, spr2014, was located adjacent to the essential competence gene comFA. Directed mutants of seven of the eight remaining genes, i.e., spr0459-spr0460, spr0777, spr0838, spr1259-spr1260, and spr1357, resulted in reduced, albeit modest, transformation rates. No connection to pneumococcal transformation could be made for the eighth gene, which encodes the response regulator RR03. We further demonstrated that the gene encoding the putative DNA repair protein RadA is required for efficient transformation with chromosomal markers, whereas transformation with replicating plasmid DNA was not significantly affected. The radA mutant also displayed an increased sensitivity to treatment with the DNA-damaging agent methyl methanesulfonate. Hence, RadA is considered to have a role in recombination of donor DNA and in DNA damage repair in S. pneumoniae.

  16. Down-regulation of the Nucleotide Excision Repair gene XPG as a new mechanism of drug resistance in human and murine cancer cells

    Directory of Open Access Journals (Sweden)

    Geroni Cristina

    2010-09-01

    Full Text Available Abstract Background Drug resistance is one of the major obstacles limiting the activity of anticancer agents. Activation of DNA repair mechanism often accounts for increase resistance to cancer chemotherapy. Results We present evidence that nemorubicin, a doxorubicin derivative currently in clinical evaluation, acts through a mechanism of action different from classical anthracyclines, requiring an intact nucleotide excision repair (NER system to exert its activity. Cells made resistant to nemorubicin show increased sensitivity to UV damage. We have analysed the mechanism of resistance and discovered a previously unknown mechanism resulting from methylation-dependent silencing of the XPG gene. Restoration of NER activity through XPG gene transfer or treatment with demethylating agents restored sensitivity to nemorubicin. Furthermore, we found that a significant proportion of ovarian tumors present methylation of the XPG promoter. Conclusions Methylation of a NER gene, as described here, is a completely new mechanism of drug resistance and this is the first evidence that XPG gene expression can be influenced by an epigenetic mechanism. The reported methylation of XPG gene could be an important determinant of the response to platinum based therapy. In addition, the mechanism of resistance reported opens up the possibility of reverting the resistant phenotype using combinations with demethylating agents, molecules already employed in the clinical setting.

  17. Association of the fat mass and obesity-associated (FTO) gene variant (rs9939609) with dietary intake in the Finnish Diabetes Prevention Study.

    Science.gov (United States)

    Lappalainen, Tiina; Lindström, Jaana; Paananen, Jussi; Eriksson, Johan G; Karhunen, Leila; Tuomilehto, Jaakko; Uusitupa, Matti

    2012-11-28

    A cluster of variants in the fat mass and obesity-associated (FTO) gene are associated with the common form of obesity. Well-documented dietary data are required for identifying how the genetic risk can be modified by dietary factors. The objective of the present study was to investigate the associations between the FTO risk allele (rs9939609) and dietary intake, and to evaluate how dietary intake affects the association between FTO and BMI in the Finnish Diabetes Prevention Study during a mean follow-up of 3·2 years. A total of 479 (BMI >25 kg/m2) men and women were genotyped for rs9939609. The participants completed a 3 d food record at baseline and before every annual study visit. The average intakes at baseline and during the years 1, 2 and 3 were calculated. At baseline, the FTO variant rs9939609 was not associated with the mean values of total energy intake, macronutrients or fibre. At baseline, a higher BMI by the FTO risk genotype was detected especially in those who reported a diet high in fat with mean BMI of 30·6 (sd 4·1), 31·3 (sd 4·6) and 34·5 (sd 6·2) kg/m2 for TT, TA and AA carriers, respectively (P =0·005). Higher BMI was also observed in those who had a diet low in carbohydrates (P =0·028) and fibre (P =0·015). However, in the analyses adjusted for total energy intake, age and sex, significant interactions between FTO and dietary intakes were not found. These findings suggest that the association between the FTO genotype and obesity is influenced by the components of dietary intake, and the current dietary recommendations are particularly beneficial for those who are genetically susceptible for obesity.

  18. Coexisting role of fasting or feeding and dietary lipids in the control of gene expression of enzymes involved in the synthesis of saturated, monounsaturated and polyunsaturated fatty acids.

    Science.gov (United States)

    Rodríguez-Cruz, Maricela; Sánchez González, Raúl; Sánchez García, Apolos M; Lòpez-Alarcòn, Mardia

    2012-03-15

    In the liver, maintaining lipid homeostasis is regulated by physiological and exogenous factors. These lipids are synthesized by Fasn, elongases and desaturases. Interactions in an organism among these factors are quite complex and, to date, relatively little is known about them. The aim of this study was to evaluate the coexisting role of physiological (insulin, fasting and feeding) and exogenous (dietary lipids) factors in the control of gene expression of Fasn, elongases and desaturases via Srebf-1c in liver from rats. Gene expression of encoding enzymes for fatty acid synthesis and fatty acid composition was evaluated in liver from rats in fasting and feeding (at 30, 60, 90 and 120 min after feeding) when food intake (adequate or high-lipid diet) was synchronized to a restricted period of 7h. Fasn, Scd and Fads2 were induced during 120 min after initial feeding in both dietary groups. This induction may be activated in part by insulin via Srebf-1c. Also, we showed for the first time that Elovl7 may be regulated by insulin and dietary lipids. The failure to synthesize saturated and monounsaturated fatty acids is consistent with a downregulation of Fasn and Scd, respectively, by dietary lipids. A higher content of LC-PUFAs was observed due to a high expression of Elovl2 and Elovl5, although Fads2 was suppressed by dietary lipids. Therefore, elongases may have a mechanism that is Srebf-1c-independent. This study suggests that a high-lipid diet triggers, during 120 min after initial feeding, a tight coordination among de novo lipogenesis, elongation, and desaturation and may not always be regulated by Srebf-1c. Finally, upregulation by feeding (insulin) of Fasn, Scd, Fads2 and Srebf-1c is insufficient to compensate for the inhibitory effect of dietary lipids. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Detailed transcriptomics analysis of the effect of dietary fatty acids on gene expression in the heart

    NARCIS (Netherlands)

    Georgiadi, A.; Boekschoten, M.V.; Muller, M.R.; Kersten, A.H.

    2012-01-01

    Fatty acids comprise the primary energy source for the heart and are mainly taken up via hydrolysis of circulating triglyceride-rich lipoproteins. While most of the fatty acids entering the cardiomyocyte are oxidized, a small portion is involved in altering gene transcription to modulate cardiometab

  20. DNA Repair Genes ERCC1 and BRCA1 Expression in Non-Small Cell Lung Cancer Chemotherapy Drug Resistance.

    Science.gov (United States)

    Wang, Shuai; Liu, Feng; Zhu, Jingyan; Chen, Peng; Liu, Hongxing; Liu, Qi; Han, Junqing

    2016-06-12

    BACKGROUND Surgery combined with chemotherapy is an important therapy for non-small cell lung cancer (NSCLC). However, chemotherapy drug resistance seriously hinders the curative effect. Studies show that DNA repair genes ERCC1 and BRCA1 are associated with NSCLC chemotherapy, but their expression and mechanism in NSCLC chemotherapy drug-resistant cells has not been elucidated. MATERIAL AND METHODS NSCLC cell line A549 and drug resistance cell line A549/DDP were cultured. Real-time PCR and Western blot analyses were used to detect ERCC1 and BRCA1 mRNA expression. A549/DDP cells were randomly divided into 3 groups: the control group; the siRNA-negative control group (scramble group); and the siRNA ERCC1 and BRCA1siRNA transfection group. Real-time PCR and Western blot analyses were used to determine ERCC1 and BRCA1 mRNA and protein expression. MTT was used to detect cell proliferation activity. Caspase 3 activity was tested by use of a kit. Western blot analysis was performed to detect PI3K, AKT, phosphorylated PI3K, and phosphorylated AKT protein expression. RESULTS ERCC1 and BRCA1 were overexpressed in A549/DDP compared with A549 (P<0.05). ERCC1 and BRCA1siRNA transfection can significantly reduce ERCC1 and BRCA1 mRNA and protein expression (P<0.05). Downregulating ERCC1 and BRCA1 expression obviously inhibited cell proliferation and increased caspase 3 activity (P<0.05). Downregulating ERCC1 and BRCA1 significantly decreased PI3K and AKT phosphorylation levels (P<0.05). CONCLUSIONS ERCC1 and BRCA1 were overexpressed in NSCLC drug-resistant cells, and they regulated lung cancer occurrence and development through the phosphorylating PI3K/AKT signaling pathway.

  1. Comparative analysis of meiotic progression in female mice bearing mutations in genes of the DNA mismatch repair pathway.

    Science.gov (United States)

    Kan, Rui; Sun, Xianfei; Kolas, Nadine K; Avdievich, Elena; Kneitz, Burkhard; Edelmann, Winfried; Cohen, Paula E

    2008-03-01

    The DNA mismatch repair (MMR) family functions in a variety of contexts to preserve genome integrity in most eukaryotes. In particular, members of the MMR family are involved in the process of meiotic recombination in germ cells. MMR gene mutations in mice result in meiotic disruption during prophase I, but the extent of this disruption often differs between male and female meiocytes. To address the role of MMR proteins specifically in female meiosis, we explored the progression of oocytes through prophase I and the meiotic divisions in mice harboring deletions in members of the MMR pathway (Mlh1, Mlh3, Exo1, and an ATPase-deficient variant of Mlh1, Mlh1(G67R)). The colocalization of MLH1 and MLH3, key proteins involved in stabilization of nascent crossovers, was dependent on intact heterodimer formation and was highly correlated with the ability of oocytes to progress through to metaphase II. The exception was Exo1(-/-) oocytes, in which normal MLH1/MLH3 localization was observed followed by failure to proceed to metaphase II. All mutant oocytes were able to resume meiosis after dictyate arrest, but they showed a dramatic decline in chiasmata (to less than 25% of normal), accompanied by varied progression through metaphase I. Taken together, these results demonstrate that MMR function is required for the formation and stabilization of crossovers in mammalian oocytes and that, in the absence of a functional MMR system, the failure to maintain chiasmata results in a reduced ability to proceed normally through the first and second meiotic divisions, despite near-normal levels of meiotic resumption after dictyate arrest.

  2. Dietary Lecithin Decreases Skeletal Muscle COL1A1 and COL3A1 Gene Expression in Finisher Gilts

    Directory of Open Access Journals (Sweden)

    Henny Akit

    2016-06-01

    Full Text Available The purpose of this study was to investigate the effect of dietary lecithin on skeletal muscle gene expression of collagen precursors and enzymes involved in collagen synthesis and degradation. Finisher gilts with an average start weight of 55.9 ± 2.22 kg were fed diets containing either 0, 4, 20 or 80 g/kg soybean lecithin prior to harvest for six weeks and the rectus abdominis muscle gene expression profile was analyzed by quantitative real-time PCR. Lecithin treatment down-regulated Type I (α1 procollagen (COL1A1 and Type III (α1 procollagen (COL3A1 mRNA expression ( p < 0.05, respectively, indicating a decrease in the precursors for collagen synthesis. The α-subunit of prolyl 4-hydroxylase (P4H mRNA expression also tended to be down-regulated ( p = 0.056, indicating a decrease in collagen synthesis. Decreased matrix metalloproteinase-1 (MMP-1 mRNA expression may reflect a positive regulatory response to the reduced collagen synthesis in muscle from the pigs fed lecithin ( p = 0.035. Lecithin had no effect on tissue inhibitor metalloproteinase-1 (TIMP-1, matrix metalloproteinase-13 (MMP-13 and lysyl oxidase mRNA expression. In conclusion, lecithin down-regulated COL1A1 and COL3A1 as well as tended to down-regulate α-subunit P4H expression. However, determination of muscle collagen content and solubility are required to support the gene functions.

  3. Dietary Phenethyl Isothiocyanate Alters Gene Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Young Jin Moon

    2011-01-01

    Full Text Available Phenethyl isothiocyanate (PEITC, a component in cruciferous vegetables, can block chemical carcinogenesis in animal models. Our objective was to determine the effect of treatment with PEITC on gene expression changes in MCF-7 human breast cancer cells in order to evaluate potential mechanisms involved in its chemopreventive effects. MCF-7 cells were treated for 48 hours with either PEITC (3 μM or the vehicle. Total RNA was extracted from cell membrane preparations, and labeled cDNA's representing the mRNA pool were reverse-transcribed directly from total RNA isolated for use in the microarray hybridizations. Two specific human GE Array Kits (Superarray Inc. that both contain 23 marker genes, related to signal transduction pathways or cancer/tumor suppression, plus 2 housekeeping genes (β-actin and GAPDH, were utilized. Arrays from treated and control cells (n=4 per group were evaluated using a Student's t-test. Gene expression was significantly induced for tumor protein p53 (p53, cyclin-dependent kinase inhibitor 1C (p57 Kip2, breast cancer Type 2 early onset (BRCA2, cAMP responsive element binding protein 2 (ATF-2, interleukin 2 (IL-2, heat shock 27 KD protein (hsp27, and CYP19 (aromatase. Induction of p57 Kip2, p53, BRCA2, IL-2, and ATF-2 would be expected to decrease cellular proliferation and increase tumor suppression and/or apoptosis. PEITC treatment produced significant alterations in some genes involved in tumor suppression and cellular proliferation/apoptosis that may be important in explaining the chemopreventive effects of PEITC.

  4. Profile of select hepatic insulin signaling pathway genes in response to 2-aminoanthracene dietary ingestion.

    Science.gov (United States)

    Mattis, N D; Jay, J W; Barnett, G W; Rosaldo, J J; Howerth, E W; Means, J C; Gato, W E

    2014-01-01

    Some genes that regulate various processes such as insulin signaling, glucose metabolism, fatty acid, and lipid biosynthesis were profiled. The objective of the current investigation is to examine the mRNA expression of some genes that mediate insulin signaling due to 2AA toxicity. 2AA is a polycyclic aromatic hydrocarbon (PAH) that has been detected in broiled food and tobacco smoke. Twenty-four post-weaning 3-4-week-old F344 male rats were exposed to 0 mg/kg-diet, 50 mg/kg-diet, 75 mg/kg-diet, and 100 mg/kgdiet 2AA for 2 weeks and 4 weeks. The mRNA expression of AKT1, G6PC, GCK, GLUT4, INSR, IRS1, PP1R3C, PAMPK, SOCS 2, and SREBF1 was determined by qRTPCR followed by the quantification of G6PC and AMPK via ELISA. The results suggest that 2AA modulates these genes depending on the length of exposure. Up-regulation of AMPK and SOCS2 genes in animals treated with 100 mg/kg-diet and 50 mg/kg-diet, respectively, during 14 days of feeding was noted. G6PC expression was inhibited in the 2-week group while being dose-dependently increased in the 4-week group. Hepatic activity of G6PC was enhanced significantly in the livers of rats that ingested 2AA. It appears that 2AA intoxication leads to the activation of irs1 and akt1 genes in the liver. Quantified AMPK amounts increased significantly in the short-term treatment group. Dose-dependent rise of AMPK in animals treated to 2AA showed an increased production of hepatic AMPK in response to the toxicity of 2AA in order to maintain cellular homeostasis. In contrast, the reduction in AMPK concentration in treated animals within the 4-week set indicated an adaptive recovery.

  5. Macrophage-specific apoE gene repair reduces diet-induced hyperlipidemia and atherosclerosis in hypomorphic Apoe mice.

    Directory of Open Access Journals (Sweden)

    Nathalie Gaudreault

    Full Text Available BACKGROUND: Apolipoprotein (apo E is best known for its ability to lower plasma cholesterol and protect against atherosclerosis. Although the liver is the major source of plasma apoE, extra-hepatic sources of apoE, including from macrophages, account for up to 10% of plasma apoE levels. This study examined the contribution of macrophage-derived apoE expression levels in diet-induced hyperlipidemia and atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS: Hypomorphic apoE (Apoe(h/h mice expressing wildtype mouse apoE at ∼2-5% of physiological levels in all tissues were derived by gene targeting in embryonic stem cells. Cre-mediated gene repair of the Apoe(h/h allele in Apoe(h/hLysM-Cre mice raised apoE expression levels by 26 fold in freshly isolated peritoneal macrophages, restoring it to 37% of levels seen in wildtype mice. Chow-fed Apoe(h/hLysM-Cre and Apoe(h/h mice displayed similar plasma apoE and cholesterol levels (55.53±2.90 mg/dl versus 62.70±2.77 mg/dl, n = 12. When fed a high-cholesterol diet (HCD for 16 weeks, Apoe(h/hLysM-Cre mice displayed a 3-fold increase in plasma apoE and a concomitant 32% decrease in plasma cholesterol when compared to Apoe(h/h mice (602.20±22.30 mg/dl versus 888.80±24.99 mg/dl, n = 7. On HCD, Apoe(h/hLysM-Cre mice showed increased apoE immunoreactivity in lesional macrophages and liver-associated Kupffer cells but not hepatocytes. In addition, Apoe(h/hLysM-Cre mice developed 35% less atherosclerotic lesions in the aortic root than Apoe(h/h mice (167×10(3±16×10(3 µm(2 versus 259×10(3±56×10(3 µm(2, n = 7. This difference in atherosclerosis lesions size was proportional to the observed reduction in plasma cholesterol. CONCLUSIONS/SIGNIFICANCE: Macrophage-derived apoE raises plasma apoE levels in response to diet-induced hyperlipidemia and by such reduces atherosclerosis proportionally to the extent to which it lowers plasma cholesterol levels.

  6. Mismatch repair genes of Streptococcus pneumoniae: HexA confers a mutator phenotype in Escherichia coli by negative complementation.

    OpenAIRE

    Prudhomme, M; Méjean, V; Martin, B; Claverys, J P

    1991-01-01

    DNA repair systems able to correct base pair mismatches within newly replicated DNA or within heteroduplex molecules produced during recombination are widespread among living organisms. Evidence that such generalized mismatch repair systems evolved from a common ancestor is particularly strong for two of them, the Hex system of the gram-positive Streptococcus pneumoniae and the Mut system of the gram-negative Escherichia coli and Salmonella typhimurium. The homology existing between HexA and ...

  7. H. pylori-Induced DNA Strand Breaks Are Introduced by Nucleotide Excision Repair Endonucleases and Promote NF-κB Target Gene Expression

    Directory of Open Access Journals (Sweden)

    Mara L. Hartung

    2015-10-01

    Full Text Available The human bacterial pathogen Helicobacter pylori exhibits genotoxic properties that promote gastric carcinogenesis. H. pylori introduces DNA double strand breaks (DSBs in epithelial cells that trigger host cell DNA repair efforts. Here, we show that H. pylori-induced DSBs are repaired via error-prone, potentially mutagenic non-homologous end-joining. A genome-wide screen for factors contributing to DSB induction revealed a critical role for the H. pylori type IV secretion system (T4SS. Inhibition of transcription, as well as NF-κB/RelA-specific RNAi, abrogates DSB formation. DSB induction further requires β1-integrin signaling. DSBs are introduced by the nucleotide excision repair endonucleases XPF and XPG, which, together with RelA, are recruited to chromatin in a highly coordinated, T4SS-dependent manner. Interestingly, XPF/XPG-mediated DNA DSBs promote NF-κB target gene transactivation and host cell survival. In summary, H. pylori induces XPF/XPG-mediated DNA damage through activation of the T4SS/β1-integrin signaling axis, which promotes NF-κB target gene expression and host cell survival.

  8. Comprehensive SNP scan of DNA repair and DNA damage response genes reveal multiple susceptibility loci conferring risk to tobacco associated leukoplakia and oral cancer.

    Science.gov (United States)

    Mondal, Pinaki; Datta, Sayantan; Maiti, Guru Prasad; Baral, Aradhita; Jha, Ganga Nath; Panda, Chinmay Kumar; Chowdhury, Shantanu; Ghosh, Saurabh; Roy, Bidyut; Roychoudhury, Susanta

    2013-01-01

    Polymorphic variants of DNA repair and damage response genes play major role in carcinogenesis. These variants are suspected as predisposition factors to Oral Squamous Cell Carcinoma (OSCC). For identification of susceptible variants affecting OSCC development in Indian population, the "maximally informative" method of SNP selection from HapMap data to non-HapMap populations was applied. Three hundred twenty-five SNPs from 11 key genes involved in double strand break repair, mismatch repair and DNA damage response pathways were genotyped on a total of 373 OSCC, 253 leukoplakia and 535 unrelated control individuals. The significantly associated SNPs were validated in an additional cohort of 144 OSCC patients and 160 controls. The rs12515548 of MSH3 showed significant association with OSCC both in the discovery and validation phases (discovery P-value: 1.43E-05, replication P-value: 4.84E-03). Two SNPs (rs12360870 of MRE11A, P-value: 2.37E-07 and rs7003908 of PRKDC, P-value: 7.99E-05) were found to be significantly associated only with leukoplakia. Stratification of subjects based on amount of tobacco consumption identified SNPs that were associated with either high or low tobacco exposed group. The study reveals a synergism between associated SNPs and lifestyle factors in predisposition to OSCC and leukoplakia.

  9. Mice with DNA repair gene Ercc1 deficiency in a neural crest lineage are a model for late-onset Hirschsprung disease.

    Science.gov (United States)

    Selfridge, Jim; Song, Liang; Brownstein, David G; Melton, David W

    2010-06-04

    The Ercc1 gene is essential for nucleotide excision repair and is also important in recombination repair and the repair of interstrand crosslinks. We have previously used a floxed Ercc1 allele with a keratinocyte-specific Cre recombinase transgene to inactivate Ercc1 in the epidermal layer of the skin and so generate a mouse model for UV-induced non-melanoma skin cancer. Now, in an attempt to generate a model for UV-induced melanoma, we have used the floxed Ercc1 allele in combination with a Cre transgene under the control of the tyrosinase gene promoter to produce mice with Ercc1-deficient melanocytes that are hypersensitive to UV irradiation. These animals developed normally, but died when 4-6 months old with severe colonic obstruction. Melanocytes are derived from the neural crest and the tyrosinase promoter is also expressed in additional neural crest-derived lineages, including the progenitors of the parasympathetic nervous system that innervates the gastrointestinal tract and controls gut peristalsis. A functional enteric nervous system developed in floxed Ercc1 mice with the tyrosinase Cre transgene, but was found to have degenerated in the colons of affected mice. We suggest that accumulating unrepaired endogenous DNA damage in the Ercc1-deficient colonic parasympathetic ganglia leads to the degeneration of this network and results in a colonic obstructive disorder that resembles late-onset Hirschsprung disease in man.

  10. [Photoreactivating Activity of Bioluminescence: Repair of UV-damaged DNA of Escherichia coli Occurs with Assistance of lux-Genes of Marine Bacteria].

    Science.gov (United States)

    Zavilgelsky, G B; Melkina, O E; Kotova, V Yu; Konopleva, M N; Manukhov, I V; Pustovoit, K Ss

    2015-01-01

    The UV resistance of luminescent bacteria Escherichia coli AB1886 uvrA6 (pLeo1) containing the plasmid with luxCDABE genes of marine bacteria Photobacterium leiognathi is approximately two times higher than the UV resistance of non-luminous bacteria E. coli AB1886 uvrA6. Introduction of phr::kan(r) mutations (a defect in the functional activity of photolyase) into the genome of E. coli AB1886 uvrA6 (pLeo1) completely removes the high UV resistance of the cells. Therefore, photoreactivation that involves bacterial photolyase contributes mainly to the bioluminescence-induced DNA repair. It is shown that photoreactivating activity of bioluminescence of P. leiognathi is about 2.5 times lower compared with that one induced by a light source with λ > 385 nm. It is also shown that an increase in the bioluminescence intensity, induced by UV radiation in E. coli bacterial cells with a plasmid containing the luxCD ABE genes under RecA-LexA-regulated promoters, occurs only 25-30 min later after UV irradiation of cells and does not contribute to DNA repair. A quorum sensing regulatory system is not involved in the DNA repair by photolyase.

  11. Dietary quercetin supplementation increases serum antioxidant capacity and alters hepatic gene expression profile in rats.

    Science.gov (United States)

    Zhao, Liting; Wu, Jianquan; Yang, Jijun; Wei, Jingyu; Gao, Weina; Guo, Changjiang

    2011-06-01

    The aim of this study was to determine the effect of quercetin on hepatic gene expression profile in rats. Twenty male Wistar rats were divided into the control group and the quercetin-treated group, in which a diet containing 0.5% quercetin was provided. After two weeks of feeding, serum and liver samples were collected. Biomarkers of oxidative stress, including serum ferric reducing antioxidant power (FRAP) values and levels of ascorbic acid, vitamin E (VE), glutathione (GSH) and malondialdehyde (MDA) were measured. The hepatic gene expression profile was examined using a microarray technique. The results showed that serum FRAP value, levels of ascorbic acid and VE were increased significantly, whereas serum levels of GSH and MDA were not changed significantly after quercetin supplementation. The microarray analysis revealed that some hepatic genes involved in phase 2 reaction, metabolism of cholesterol and homocysteine, and energy production were expressed differentially in response to quercetin administration. These findings provide a molecular basis for the elucidation of the actions played by quercetin in vivo.

  12. Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of Northern Spain

    Directory of Open Access Journals (Sweden)

    Tardón Adonina

    2007-08-01

    Full Text Available Abstract Background Polymorphisms in DNA repair genes have been associated to repair DNA lesions, and might contribute to the individual susceptibility to develop different types of cancer. Nucleotide excision repair (NER, base excision repair (BER, and double-strand break repair (DSBR are the main DNA repair pathways. We investigated the relationship between polymorphisms in two NER genes, XPC (poly (AT insertion/deletion: PAT-/+ and XPD (Asp312Asn and Lys751Gln, the BER gene XRCC1 (Arg399Gln, and the DSBR gene XRCC3 (Thr241Met and the risk of developing lung cancer. Methods A hospital-based case-control study was designed with 516 lung cancer patients and 533 control subjects, matched on ethnicity, age, and gender. Genotypes were determined by PCR-RFLP and the results were analysed using multivariate unconditional logistic regression, adjusting for age, gender and pack-years. Results Borderline association was found for XPC and XPD NER genes polymorphisms, while no association was observed for polymorphisms in BER and DSBR genes. XPC PAT+/+ genotype was associated with no statistically significant increased risk among ever smokers (OR = 1.40; 95%CI = 0.94–2.08, squamous cell carcinoma (OR = 1.44; 95%CI = 0.85–2.44, and adenocarcinoma (OR = 1.72; 95%CI = 0.97–3.04. XPD variant genotypes (312Asn/Asn and 751Gln/Gln presented a not statistically significant risk of developing lung cancer (OR = 1.52; 95%CI = 0.91–2.51; OR = 1.38; 95%CI = 0.85–2.25, respectively, especially among ever smokers (OR = 1.58; 95%CI = 0.96–2.60, heavy smokers (OR = 2.07; 95%CI = 0.74–5.75, and adenocarcinoma (OR = 1.88; 95%CI = 0.97–3.63. On the other hand, individuals homozygous for the XRCC1 399Gln allele presented no risk of developing lung cancer (OR = 0.87; 95%CI = 0.57–1.31 except for individuals carriers of 399Gln/Gln genotype and without family history of cancer (OR = 0.57; 95%CI = 0.33–0.98 and no association was found between XRCC3 Thr241Met

  13. Removal of nonhomologous DNA ends in double-strand break recombination: The role of the yeast ultraviolet repair gene RAD1

    Energy Technology Data Exchange (ETDEWEB)

    Fishman-Lobell, J.; Habert, J.E. (Brandeis Univ., Waltham, MA (United States))

    1992-10-15

    Double-strand breaks (DSBs) in Saccharomyces cerevisiae can be repaired by gene conversions or by deletions resulting from single-strand annealing between direct repeats of homologous sequences. Although rad1 mutants are resistant to x-rays and can complete DSB-mediated mating-type switching, they could not complete recombination when the ends of the break contained approximately 60 base pairs of nonhomology. Recombination was restored when the ends of the break were made homologous to donor sequences. Additionally, the absence of RAD1 led to the frequent appearance of a previously unobserved type of recombination product. These data suggest RAD1 is required to remove nonhomologous DNA from the 3{prime} ends of recombining DNA, a process analogous to the excision of photodimers during repair of ultraviolet-damaged DNA.

  14. Inducible Apoe Gene Repair in Hypomorphic ApoE Mice Deficient in the LDL Receptor Promotes Atheroma Stabilization with a Human-like Lipoprotein Profile

    Science.gov (United States)

    Eberlé, Delphine; Luk, Fu Sang; Kim, Roy Y.; Olivas, Victor R.; Kumar, Nikit; Posada, Jessica M.; Li, Kang; Gaudreault, Nathalie; Rapp, Joseph H.; Raffai, Robert L.

    2013-01-01

    Objective To study atherosclerosis regression in mice following plasma lipid reduction to moderately elevated apolipoprotein B (apoB)-lipoprotein levels. Approach and Results Chow-fed hypomorphic Apoe mice deficient in LDL receptor expression (Apoeh/hLdlr−/−Mx1-cre mice) develop hyperlipidemia and atherosclerosis. These mice were studied before and after inducible cre-mediated Apoe gene repair. By 1 week, induced mice displayed a 2-fold reduction in plasma cholesterol and triglyceride levels and a decrease in the non-HDL:HDL-cholesterol ratio from 87%:13% to 60%:40%. This halted atherosclerotic lesion growth and promoted macrophage loss and accumulation of thick collagen fibers for up to 8 weeks. Concomitantly, blood Ly-6Chi monocytes were decreased by 2-fold but lesional macrophage apoptosis was unchanged. The expression of several genes involved in extra-cellular matrix remodeling and cell migration were changed in lesional macrophages 1 week after Apoe gene repair. However, mRNA levels of numerous genes involved in cholesterol efflux and inflammation were not significantly changed at this time point. Conclusions Restoring apoE expression in Apoeh/hLdlr−/−Mx1-cre mice resulted in lesion stabilization in the context of a human-like ratio of non-HDL:HDL-cholesterol. Our data suggest that macrophage loss derived in part from reduced blood Ly-6Chi monocytes levels and genetic reprogramming of lesional macrophages. PMID:23788760

  15. Tendon repair

    Science.gov (United States)

    Repair of tendon ... Tendon repair can be performed using: Local anesthesia (the immediate area of the surgery is pain-free) ... a cut on the skin over the injured tendon. The damaged or torn ends of the tendon ...

  16. Dietary ascorbic acid modulates the expression profile of stress protein genes in hepatopancreas of adult Pacific abalone Haliotis discus hannai Ino.

    Science.gov (United States)

    Wu, Chenglong; Wang, Jia; Xu, Wei; Zhang, Wenbing; Mai, Kangsen

    2014-12-01

    by influencing gene expression of antioxidant proteins, but excessive dietary AA (829.8 and 4967.5 mg kg(-1)) induced oxidative stress in Pacific abalone H. discus hannai.

  17. International congress on DNA damage and repair: Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  18. The Dietary Constituent Falcarindiol Promotes Cholesterol Efflux from THP-1 Macrophages by Increasing ABCA1 Gene Transcription and Protein Stability

    Directory of Open Access Journals (Sweden)

    Limei Wang

    2017-09-01

    Full Text Available We report increased cholesterol efflux from macrophages in the presence of falcarindiol, an important dietary constituent present in commonly used vegetables and medicinal plants. Falcarindiol (3–20 μM increased cholesterol efflux from THP-1-derived macrophages. Western blot analysis showed an increased protein level of ABCA1 upon falcarindiol exposure. Quantitative real-time PCR revealed that also ABCA1 mRNA level rise with falcarindiol (10 μM treatment. The effect of falcarindiol on ABCA1 protein as well as mRNA level were counteracted by co-treatment with BADGE, an antagonist of PPARγ. Furthermore, falcarindiol significantly inhibited ABCA1 protein degradation in the presence of cycloheximide. This post-translational regulation of ABCA1 by falcarindiol occurs most likely by inhibition of lysosomal cathepsins, resulting in decreased proteolysis and extended protein half-life of ABCA1. Taken together, falcarindiol increases ABCA1 protein level by two complementary mechanisms, i.e., promoting ABCA1 gene expression and inhibiting ABCA1 protein degradation, which lead to enhanced cholesterol efflux.

  19. Vitamin D in a northern Canadian first nation population: dietary intake, serum concentrations and functional gene polymorphisms.

    Directory of Open Access Journals (Sweden)

    Linda Larcombe

    Full Text Available The wide spectrum of vitamin D activity has focused attention on its potential role in the elevated burden of disease in a northern Canadian First Nations (Dené cohort. Vitamin D insufficiency, and gene polymorphisms in the vitamin D receptor (VDR and vitamin D binding protein (VDBP have been implicated in susceptibility to infectious and chronic diseases. The objectives of this study were to determine the contribution of vitamin D from food, and measure the serum concentrations of 25-hydroxyvitamin D(3 (25-OHD(3 and VDBP in Dené participants. Single nucleotide polymorphisms (SNPs associated with the dysregulation of the innate immune response were typed and counted. Potential correlations between the SNPs and serum concentrations of 25-OHD(3 and VDBP were evaluated. Venous blood was collected in summer and winter over a one-year period and analyzed for 25-OHD(3 and VDBP concentrations (N = 46. A questionnaire was administered to determine the amount of dietary vitamin D consumed. Sixty-one percent and 30% of the participants had 25-OHD(3 serum concentrations <75 nmol/L in the winter and summer respectively. Mean vitamin D binding protein concentrations were within the normal range in the winter but below normal in the summer. VDBP and VDR gene polymorphisms affect the bioavailability and regulation of 25-OHD(3. The Dené had a high frequency of the VDBP D432E-G allele (71% and the Gc1 genotype (90%, associated with high concentrations of VDBP and a high binding affinity to 25-OHD(3. The Dené had a high frequency of VDR Fok1-f allele (82%, which has been associated with a down-regulated Th1 immune response. VDBP and VDR polymorphisms, and low winter 25-OHD(3 serum concentrations may be risk factors for infectious diseases and chronic conditions related to the dysregulation of the vitamin D pathway.

  20. Dietary Assessment

    Science.gov (United States)

    EGRP's goals in Dietary Assessment are to increase the precision of dietary intake estimates by improving self-report of dietary intake and the analytic procedures for processing reported information.

  1. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.

    Directory of Open Access Journals (Sweden)

    Ricardo Mouro Pinto

    2013-10-01

    Full Text Available The Huntington's disease gene (HTT CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111 mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111 than on a 129 background (129.Hdh(Q111 . Linkage mapping in (B6x129.Hdh(Q111 F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111 mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111 somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3 complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3. The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest

  2. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.

    Science.gov (United States)

    Pinto, Ricardo Mouro; Dragileva, Ella; Kirby, Andrew; Lloret, Alejandro; Lopez, Edith; St Claire, Jason; Panigrahi, Gagan B; Hou, Caixia; Holloway, Kim; Gillis, Tammy; Guide, Jolene R; Cohen, Paula E; Li, Guo-Min; Pearson, Christopher E; Daly, Mark J; Wheeler, Vanessa C

    2013-10-01

    The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111) ) than on a 129 background (129.Hdh(Q111) ). Linkage mapping in (B6x129).Hdh(Q111) F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111) mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111) somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1

  3. Biological Augmentation of Rotator Cuff Tendon Repair

    National Research Council Canada - National Science Library

    Kovacevic, David; Rodeo, Scott A

    2008-01-01

    A histologically normal insertion site does not regenerate following rotator cuff tendon-to-bone repair, which is likely due to abnormal or insufficient gene expression and/or cell differentiation at the repair site...

  4. Dietary fish oil regulates gene expression of cholesterol and bile acid transporters in mice.

    Science.gov (United States)

    Kamisako, Toshinori; Tanaka, Yuji; Ikeda, Takanori; Yamamoto, Kazuo; Ogawa, Hiroshi

    2012-03-01

      Fish oil rich in n-3 polyunsaturated fatty acids is known to affect hepatic lipid metabolism. Several studies have demonstrated that fish oil may affect the bile acid metabolism as well as lipid metabolism, whereas only scarce data are available. The aim of this study was to investigate the effect of fish oil on the gene expression of the transporters and enzymes related to bile acid as well as lipid metabolism in the liver and small intestine.   Seven-week old male C57BL/6 mice were fed diets enriched in 10% soybean oil or 10% fish oil for 4 weeks. After 4 weeks, blood, liver and small intestine were obtained.   Hepatic mRNA expression of lipids (Abcg5/8, multidrug resistance gene product 2) and bile acids transporters (bile salt export pump, multidrug resistance associated protein 2 and 3, organic solute transporter α) was induced in fish oil-fed mice. Hepatic Cyp8b1, Cyp27a1 and bile acid CoA : amino acid N-acyltransferase were increased in fish oil-fed mice compared with soybean-oil fed mice. Besides, intestinal cholesterol (Abcg5/8) and bile acid transporters (multidrug resistance associated protein 2 and organic solute transporter α) were induced in fish oil-fed mice.   Fish oil induced the expression of cholesterol and bile acid transporters not only in liver but in intestine. The upregulation of Abcg5/g8 by fish oil is caused by an increase in cellular 27-HOC through Cyp27a1 induction. The hepatic induction of bile acid synthesis through Cyp27a1 may upregulate expression of bile acid transporters in both organs. © 2012 The Japan Society of Hepatology.

  5. Deoxyribonucleic acid repair gene X-ray repair cross-complementing group 1 polymorphisms and non-carcinogenic disease risk in different populations: A meta-analysis

    Directory of Open Access Journals (Sweden)

    Bagher Larijani

    2013-01-01

    Full Text Available Purpose: This study aims to assess a meta-analysis of the association of X-ray repair cross-complementing group 1 (XRCC1 polymorphisms with the risk of various non-carcinogenic diseases in different population. Materials and Methods: This meta-analysis was performed by critically reviewing reveals 38 studies involving 10043 cases and 11037 controls. Among all the eligible studies, 14 focused on Arg194Trp polymorphism, 33 described the Arg399Gln and three articles investigated on Arg280His. Populations were divided into three different ethnic subgroups include Caucasians, Asians and other (Turkish and Iranian. Results: Pooled results showed no correlation between Arg194Trp and non-carcinogenic disease. There was only weak relation in the recessive (odds ratio [OR] =1.11, 95% confidence interval [CI]: 0.86-1.44 model in Asian population and dominant (OR = 1.04, 95% CI: 0.66-1.63 model of other populations. In Arg399Gln polymorphism, there was no relation with diseases of interest generally. In the pooled analysis, there were weak relation in the dominant (OR = 1.08, 95% CI: 0.86-1.35 model of Asian population and quite well-correlation with recessive (OR = 1.49, 95% CI: 1.19-1.88, dominant (OR = 1.23, 95% CI: 0.94-1.62, and additive (OR = 1.23, 95% CI: 0.94-1.62 models of other subgroup. For Arg280His, there was a weak relation only in the dominant model (OR = 1.06, 95% CI: 0.74-1.51. Conclusion: The present meta-analysis correspondingly shows that Arg399Gln variant to be associated with increased non-carcinogenic diseases risk through dominant and recessive modes among Iranian and Turkish population. It also suggests a trend of dominant and recessive effect of Arg280His variant in all population and its possible protective effect on non-carcinogenic diseases.

  6. Homologous and homeologous intermolecular gene conversion are not differentially affected by mutations in the DNA damage or the mismatch repair genes RAD1, RAD50, RAD51, RAD52, RAD54, PMS1 and MSH2

    Energy Technology Data Exchange (ETDEWEB)

    Porter, G.; Westmoreland, J.; Priebe, S. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States)] [and others

    1996-06-01

    Mismatch repair (MMR) genes or genes involved in both DNA damage repair and homologous recombination might affect homeologous vs. homologous recombination differentially. Spontaneous mitotic gene conversion between a chromosome and a homologous or homeologous donor sequence (14% diverged) on a single copy plasmid was examined in wild-type Saccharomyces cerevisiae strains and in MMR or DNA damage repair mutants. Homologous recombination in rad51, rad52 and rad54 mutants was considerably reduced, while there was little effect of rad1, rad50, pms1 and msh2 null mutations. DNA divergence resulted in no differential effect on recombination rates in the wild type or the mutants; there was only a five- to 10-fold reduction in homeologous relative to homologous recombination regardless of background. Since DNA divergence is known to affect recombination in some systems, we propose that differences in the role of MMR depends on the mode of recombination and/or the level of divergence. Based on analysis of the recombination breakpoints, there is a minimum of three homologous bases required at a recombination junction. A comparison of Rad{sup +} vs. rad52 strains revealed that while all conversion tracts are continuous, elimination of RAD52 leads to the appearance of a novel class of very short conversion tracts. 67 refs., 5 figs., 4 tabs.

  7. Association between Genetic Polymorphisms of DNA Repair Genes and Chromosomal Damage for 1,3-Butadiene-Exposed Workers in a Matched Study in China

    Directory of Open Access Journals (Sweden)

    Menglong Xiang

    2015-01-01

    Full Text Available The aim of the study was to examine the association between polymorphisms of DNA repair genes and chromosomal damage of 1,3-butadiene- (BD- exposed workers. The study was conducted in 45 pairs of occupationally exposed workers in a BD product workshop and matched control workers in an administrative office and a circulatory water workshop in China. Newly developed biomarkers (micronuclei, MNi; nucleoplasmic bridges, NPBs; nuclear buds, NBUDs in the cytokinesis-blocked micronucleus (CBMN cytome assay were adopted to detect chromosomal damage. PCR and PCR-restriction fragment length polymorphism (RFLP are adopted to analyze polymorphisms of DNA repair genes, such as X-ray repair cross-complementing Group 1 (XRCC1, O6-methylguanine-DNA methyltransferase (MGMT, poly (adenosine diphosphate-ribose polymerases (ADPRT, and apurinic/apyrimidinic endonucleases (APE1. The BD-exposed workers exhibited increased frequencies of MNi and NPBs when compared to subjects in the control group. The results also show that the BD-exposed workers carrying XRCC1 diplotypes TCGA-CCGG (4.25±2.06‰ (FR=2.10, 95% CI: 1.03–4.28 and TCGG-TCGA (5.80±3.56‰ (FR=2.75, 95% CI: 0.76–2.65 had statistically higher NBUD frequencies than those who carried diplotype TCGG-TCGG (1.89±1.27‰. Our study suggests that polymorphisms of XRCC1 gene may influence chromosomal damage in BD-exposed workers.

  8. Identification and Analysis of MS5(d): A Gene That Affects Double-Strand Break (DSB) Repair during Meiosis I in Brassica napus Microsporocytes.

    Science.gov (United States)

    Zeng, Xinhua; Yan, Xiaohong; Yuan, Rong; Li, Keqi; Wu, Yuhua; Liu, Fang; Luo, Junling; Li, Jun; Wu, Gang

    2016-01-01

    Here, we report the identification of the Brassica-specific gene MS5(d), which is responsible for male sterility in Brassica napus. The MS5(d) gene is highly expressed in the microsporocyte and encodes a protein that localizes to the nucleus. Light microscopy analyses have demonstrated that the MS5(d) gene affects microsporocyte meiosis in the thermosensitive genic male sterility line TE5A. Sequence comparisons and genetic complementation revealed a C-to-T transition in MS5(d), encoding a Leu-to-Phe (L281F) substitution and causing abnormal male meiosis in TE5A. These findings suggest arrested meiotic chromosome dynamics at pachytene. Furthermore, immunofluorescence analyses showed that double-strand break (DSB) formation and axial elements were normal but that DSB repair and spindle behavior were aberrant in TE5A meiocytes. Collectively, our results indicate that MS5(d) likely encodes a protein required for chromosomal DSB repair at early stages of meiosis in B. napus.

  9. Interactive Effects of Dietary Lipid and Phenotypic Feed Efficiency on the Expression of Nuclear and Mitochondrial Genes Involved in the Mitochondrial Electron Transport Chain in Rainbow Trout

    Directory of Open Access Journals (Sweden)

    Jonathan C. Eya

    2015-04-01

    Full Text Available A 2 × 3 factorial study was conducted to evaluate the effects of dietary lipid level on the expression of mitochondrial and nuclear genes involved in electron transport chain in all-female rainbow trout Oncorhynchus mykiss. Three practical diets with a fixed crude protein content of 40%, formulated to contain 10% (40/10, 20% (40/20 and 30% (40/30 dietary lipid, were fed to apparent satiety to triplicate groups of either low-feed efficient (F120; 217.66 ± 2.24 g initial average mass or high-feed efficient (F136; 205.47 ± 1.27 g full-sib families of fish, twice per day, for 90 days. At the end of the experiment, the results showed that there is an interactive effect of the dietary lipid levels and the phenotypic feed efficiency (growth rate and feed efficiency on the expression of the mitochondrial genes nd1 (NADH dehydrogenase subunit 1, cytb (Cytochrome b, cox1 (Cytochrome c oxidase subunits 1, cox2 (Cytochrome c oxidase subunits 2 and atp6 (ATP synthase subunit 6 and nuclear genes ucp2α (uncoupling proteins 2 alpha, ucp2β (uncoupling proteins 2 beta, pparα (peroxisome proliferator-activated receptor alpha, pparβ (peroxisome proliferatoractivated receptor beta and ppargc1α (proliferator-activated receptor gamma coactivator 1 alpha in fish liver, intestine and muscle, except on ppargc1α in the muscle which was affected by the diet and the family separately. Also, the results revealed that the expression of mitochondrial genes is associated with that of nuclear genes involved in electron transport chain in fish liver, intestine and muscle. Furthermore, this work showed that the expression of mitochondrial genes parallels with the expression of genes encoding uncoupling proteins (UCP in the liver and the intestine of rainbow trout. This study for the first time presents the molecular basis of the effects of dietary lipid level on mitochondrial and nuclear genes involved in mitochondrial electron transport chain in fish.

  10. Radio-adaptive response of base excision repair genes and proteins in human peripheral blood mononuclear cells exposed to gamma radiation.

    Science.gov (United States)

    Toprani, Sneh M; Das, Birajalaxmi

    2015-09-01

    Radio-adaptive response is a mechanism whereby a low-dose exposure (priming dose) induces resistance to a higher dose (challenging dose) thus significantly reducing its detrimental effects. Radiation-induced DNA damage gets repaired through various DNA repair pathways in human cells depending upon the type of lesion. The base excision repair (BER) pathway repairs radiation-induced base damage, abasic sites and single-strand breaks in cellular DNA. In the present study, an attempt has been made to investigate the involvement of BER genes and proteins in the radio-adaptive response in human resting peripheral blood mononuclear cells (PBMC). Venous blood samples were collected from 20 randomly selected healthy male individuals with written informed consent. PBMC were isolated and irradiated at a priming dose of 0.1 Gy followed 4h later with a challenging dose of 2.0 Gy (primed cells). Quantitation of DNA damage was done using the alkaline comet assay immediately and expression profile of BER genes and proteins were studied 30 min after the challenging dose using real-time quantitative polymerase chain reaction and western blot, respectively. The overall result showed significant (P ≤ 0.05) reduction of DNA damage in terms of percentage of DNA in tail (%T) with a priming dose of 0.1 Gy followed by a challenging dose of 2.0 Gy after 4 h. Twelve individuals showed significant (P ≤ 0.05) reduction in %T whereas eight individuals showed marginal reduction in DNA damage that was not statistically significant. However, at the transcriptional level, BER genes such as APE1, FEN1 and LIGASE1 showed significant (P ≤ 0.05) up-regulation in both groups. Significant (P ≤ 0.05) up-regulation was also observed at the protein level for OGG1, APE1, MBD4, FEN1 and LIGASE1 in primed cells. Up-regulation of some BER genes and proteins such as APE1, FEN1 and LIGASE1 in primed cells of resting PBMC is suggestive of active involvement of the BER pathway in radio-adaptive response.

  11. Effects of dietary zinc on gene expression of antioxidant enzymes and heat shock proteins in hepatopancreas of abalone Haliotis discus hannai.

    Science.gov (United States)

    Wu, Chenglong; Zhang, Wenbing; Mai, Kangsen; Xu, Wei; Zhong, Xiaoli

    2011-06-01

    The expression patterns of different genes encoding antioxidant enzymes and heat shock proteins were investigated, in present study, by real-time quantitative PCR in the hepatopancreas of abalone Haliotis discus hannai fed with different levels of dietary zinc (6.69, 33.8, 710.6 and 3462.5 mg/kg) for 20 weeks. The antioxidant enzymes include Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-superoxide dismutase (Mn-SOD), catalase (CAT), mu-glutathione-s-transferase (mu-GST) and thioredoxin peroxidase (TPx). The results showed that the mRNA expression of these antioxidant enzymes increased and reached the maximum at the dietary zinc level of 33.8 mg/kg, and then dropped progressively. Expression levels of the heat shock proteins (HSP26, HSP70 and HSP90) firstly increased at 33.8 mg/kg dietary Zn level, and reached to the maximum at 710.6 mg/kg, then dropped at 3462.5 mg/kg (pantioxidant capacity (T-AOC) in hepatopancreas (plevels of antioxidant enzymes and heat shock proteins, but excessive dietary Zn (710.6 and 3462.5 mg/kg) induces a high oxidative stress in abalone. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Effect of dietary legumes on bone-specific gene expression in ovariectomized rats.

    Science.gov (United States)

    Park, Yongsoon; Moon, Hyoun-Jung; Paik, Doo-Jin; Kim, Deog-Yoon

    2013-06-01

    In previous studies, we found that the consumption of legumes decreased bone turnover in ovariectomized rats. The purpose of the present study is to determine whether the protective effects on bone mineral density (BMD) and the microarchitecture of a diet containing legumes are comparable. In addition, we aim to determine their protective actions in bones by studying bone specific gene expression. Forty-two Sprague-Dawley rats are being divided into six groups during the 12 week study: 1) rats that underwent sham operations (Sham), 2) ovariectomized rats fed an AIN-93M diet (OVX), 3) ovariectomized rats fed an AIN-93M diet with soybeans (OVX-S), 4) ovariectomized rats fed an AIN-93M diet with mung beans (OVX-M), 5) ovariectomized rats fed an AIN-93M diet with cowpeas (OVX-C), and 6) ovariectomized rats fed an AIN-93M diet with azuki beans (OVX-A). Consumption of legumes significantly increased BMD of the spine and femur and bone volume of the femur compared to the OVX. Serum calcium and phosphate ratio, osteocalcin, expression of osteoprotegerin (OPG), and the receptor activator of nuclear factor κB ligand (RANKL) ratio increased significantly, while urinary excretion of calcium and deoxypyridinoline and expression of TNF-α and IL-6 were significantly reduced in OVX rats fed legumes, compared to OVX rats that were not fed legumes. This study demonstrates that consumption of legumes has a beneficial effect on bone through modulation of OPG and RANKL expression in ovariectomized rats and that legume consumption can help compensate for an estrogen-deficiency by preventing bone loss induced by ovarian hormone deficiency.

  13. Inter-individual variation in nucleotide excision repair pathway is modulated by non-synonymous polymorphisms in ERCC4 and MBD4 genes

    Energy Technology Data Exchange (ETDEWEB)

    Allione, Alessandra, E-mail: alessandra.allione@hugef-torino.org [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Guarrera, Simonetta; Russo, Alessia [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Ricceri, Fulvio [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Department of Medical Sciences, University of Turin, Via Santena 19, 10126 Turin (Italy); Purohit, Rituraj [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu (India); Pagnani, Andrea; Rosa, Fabio; Polidoro, Silvia; Voglino, Floriana [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Matullo, Giuseppe [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Department of Medical Sciences, University of Turin, Via Santena 19, 10126 Turin (Italy)

    2013-11-15

    Highlights: • We reported a large inter-individual variability of NER capacity. • ERCC4 rs1800124 and MBD4 rs10342 nsSNP variants were associated with DNA repair capacity. • DNA–protein interaction analyses showed alteration of binding for ERCC4 and MBD4 variants. • A new possible cross-talk between NER and BER pathways has been reported. - Abstract: Inter-individual differences in DNA repair capacity (DRC) may lead to genome instability and, consequently, modulate individual cancer risk. Among the different DNA repair pathways, nucleotide excision repair (NER) is one of the most versatile, as it can eliminate a wide range of helix-distorting DNA lesions caused by ultraviolet light irradiation and chemical mutagens. We performed a genotype–phenotype correlation study in 122 healthy subjects in order to assess if any associations exist between phenotypic profiles of NER and DNA repair gene single nucleotide polymorphisms (SNPs). Individuals were genotyped for 768 SNPs with a custom Illumina Golden Gate Assay, and peripheral blood mononuclear cells (PBMCs) of the same subjects were tested for a NER comet assay to measure DRC after challenging cells by benzo(a)pyrene diolepoxide (BPDE). We observed a large inter-individual variability of NER capacity, with women showing a statistically significant lower DRC (mean ± SD: 6.68 ± 4.76; p = 0.004) than men (mean ± SD: 8.89 ± 5.20). Moreover, DRC was significantly lower in individuals carrying a variant allele for the ERCC4 rs1800124 non-synonymous SNP (nsSNP) (p = 0.006) and significantly higher in subjects with the variant allele of MBD4 rs2005618 SNP (p = 0.008), in linkage disequilibrium (r{sup 2} = 0.908) with rs10342 nsSNP. Traditional in silico docking approaches on protein–DNA and protein–protein interaction showed that Gly875 variant in ERCC4 (rs1800124) decreases the DNA–protein interaction and that Ser273 and Thr273 variants in MBD4 (rs10342) indicate complete loss of protein

  14. Completion of meiosis in male zebrafish (Danio rerio) despite lack of DNA mismatch repair gene mlh1

    NARCIS (Netherlands)

    Leal, M.C.; Feitsma, H.; Cuppen, E.; França, L.R.; Schulz, R.W.

    2008-01-01

    Mlh1 is a member of DNA mismatch repair (MMR) machinery and is also essential for the stabilization of crossovers during the first meiotic division. Recently, we have shown that zebrafish mlh1 mutant males are completely infertile because of a block in metaphase I, whereas females are fertile but ha

  15. Deletion of the nucleotide excision repair gene Ercc1 reduces immunoglobulin class switching and alters mutations near switch recombination junctions

    NARCIS (Netherlands)

    C.E. Schrader; J. Vardo; E. Linehan; M.Z. Twarog; L.J. Niedernhofer (Laura); J. Stavnezer; J.H.J. Hoeijmakers (Jan)

    2004-01-01

    textabstractThe structure-specific endonuclease ERCC1-XPF is an essential component of the nucleotide excision DNA repair pathway. ERCC1-XPF nicks double-stranded DNA immediately adjacent to 3' single-strand regions. Substrates include DNA bubbles and flaps. Furthermore, ERCC1 interacts with Msh2, a

  16. Explorative study to identify novel candidate genes related to oxaliplatin efficacy and toxicity using a DNA repair array.

    NARCIS (Netherlands)

    Kweekel, D.M.; Antonini, N.F.; Nortier, J.W.; Punt, C.J.A.; Gelderblom, H.; Guchelaar, H.J.

    2009-01-01

    PURPOSE: To identify new polymorphisms (single nucleotide polymorphisms, SNPs) in DNA repair pathways that are associated with efficacy and toxicity in patients receiving oxaliplatin and capecitabine for advanced colorectal cancer (ACC). METHODS: We studied progression-free survival (PFS) in 91 ACC

  17. Completion of meiosis in male zebrafish (Danio rerio) despite lack of DNA mismatch repair gene mlh1.

    NARCIS (Netherlands)

    Leal, M.C.; Feitsma, H.; Cuppen, E.; Franca, L.R.; Schulz, R.W.

    2008-01-01

    Mlh1 is a member of DNA mismatch repair (MMR) machinery and is also essential for the stabilization of crossovers during the first meiotic division. Recently, we have shown that zebrafish mlh1 mutant males are completely infertile because of a block in metaphase I, whereas females are fertile but

  18. Interleukin-6 Gene Polymorphisms, Dietary Fat Intake, Obesity and Serum Lipid Concentrations in Black and White South African Women

    OpenAIRE

    Yael T. Joffe; Lize van der Merwe; Juliet Evans; Malcolm Collins; Lambert, Estelle V.; September, Alison V; Goedecke, Julia H.

    2014-01-01

    This study investigated interactions between dietary fat intake and IL-6 polymorphisms on obesity and serum lipids in black and white South African (SA) women. Normal-weight and obese, black and white women underwent measurements of body composition, serum lipids and dietary fat intake, and were genotyped for the IL-6 −174 G>C, IVS3 +281 G>T and IVS4 +869 A>G polymorphisms. In black women the IVS4 +869 G allele was associated with greater adiposity, and with increasing dietary fat i...

  19. Bladder exstrophy repair

    Science.gov (United States)

    Bladder birth defect repair; Everted bladder repair; Exposed bladder repair; Repair of bladder exstrophy ... Bladder exstrophy repair involves two surgeries. The first surgery is to repair the bladder and the second one is to attach ...

  20. Dietary withdrawal of phytoestrogens resulted in higher gene expression of 3-beta-HSD and ARO but lower 5-alpha-R-1 in male rats.

    Science.gov (United States)

    Andreoli, María F; Stoker, Cora; Rossetti, María F; Lazzarino, Gisela P; Luque, Enrique H; Ramos, Jorge G

    2016-09-01

    Removing dietary phytoestrogens causes obesity and diabetes in adult male rats. Based on the facts that hypothalamic food intake control is disrupted in phytoestrogen-deprived animals and that several steroids affect food intake, we hypothesized that phytoestrogen withdrawal alters the expression of hypothalamic steroidogenic enzymes. Male Wistar rats fed with a high-phytoestrogen diet from conception to adulthood were subjected to phytoestrogen withdrawal by feeding them a low-phytoestrogen diet or a high-phytoestrogen, high-fat diet. Withdrawal of dietary phytoestrogens increased 3β-hydroxysteroid dehydrogenase and P450 aromatase gene expression and decreased those of 5α-reductase-1. This is a direct effect of the lack of dietary phytoestrogens and not a consequence of obesity, as it was not observed in high-fat-fed rats. Phytoestrogen withdrawal and high-fat diet intake reduced hypothalamic expression of estrogen receptor (ER)α correlated with low levels of ERα-O, ERα-OS, and ERα-OT transcripts. Variations in gene expression of steroidogenic enzymes may affect the content of neurosteroids. As neurosteroids are related to food intake control, the changes observed may be a novel mechanism in the regulation of energy balance in obese phytoestrogen-deprived animals. In rats, steroidogenesis and ER signaling appear to be altered by phytoestrogen withdrawal in the rat. The ubiquity of phytoestrogens in the diet and changing intakes or withdrawal suggest that aspects of human health could be affected based on the rat and warrant further research.

  1. Kin-cohort estimates for familial breast cancer risk in relation to variants in DNA base excision repair, BRCA1 interacting and growth factor genes

    Directory of Open Access Journals (Sweden)

    Rutter Joni L

    2004-03-01

    Full Text Available Abstract Background Subtle functional deficiencies in highly conserved DNA repair or growth regulatory processes resulting from polymorphic variation may increase genetic susceptibility to breast cancer. Polymorphisms in DNA repair genes can impact protein function leading to genomic instability facilitated by growth stimulation and increased cancer risk. Thus, 19 single nucleotide polymorphisms (SNPs in eight genes involved in base excision repair (XRCC1, APEX, POLD1, BRCA1 protein interaction (BRIP1, ZNF350, BRCA2, and growth regulation (TGFß1, IGFBP3 were evaluated. Methods Genomic DNA samples were used in Taqman 5'-nuclease assays for most SNPs. Breast cancer risk to ages 50 and 70 were estimated using the kin-cohort method in which genotypes of relatives are inferred based on the known genotype of the index subject and Mendelian inheritance patterns. Family cancer history data was collected from a series of genotyped breast cancer cases (N = 748 identified within a cohort of female US radiologic technologists. Among 2,430 female first-degree relatives of cases, 190 breast cancers were reported. Results Genotypes associated with increased risk were: XRCC1 R194W (WW and RW vs. RR, cumulative risk up to age 70, risk ratio (RR = 2.3; 95% CI 1.3–3.8; XRCC1 R399Q (QQ vs. RR, cumulative risk up to age 70, RR = 1.9; 1.1–3.9; and BRIP1 (or BACH1 P919S (SS vs. PP, cumulative risk up to age 50, RR = 6.9; 1.6–29.3. The risk for those heterozygous for BRCA2 N372H and APEX D148E were significantly lower than risks for homozygotes of either allele, and these were the only two results that remained significant after adjusting for multiple comparisons. No associations with breast cancer were observed for: APEX Q51H; XRCC1 R280H; IGFPB3 -202A>C; TGFß1 L10P, P25R, and T263I; BRCA2 N289H and T1915M; BRIP1 -64A>C; and ZNF350 (or ZBRK1 1845C>T, L66P, R501S, and S472P. Conclusion Some variants in genes within the base-excision repair pathway (XRCC1 and

  2. Effects of dietary methionine on feed utilization, plasma amino acid profiles and gene expression in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Rolland, Marine

    (EAA) compared to dietary requirements. Supplementation with amino acids in crystalline from (CAA) is a common practice to balance the dietary amino acid profile to achieve high growth performances. However, complete substitution of fish meal using plant proteins and CAAs often results in poorer growth...... are presented in Paper I and show that the protein source itself (fish meal or plant based) does not affect the plasma EAA profiles, but rather that plasma EAA levels reflect the dietary level. Supplementation with histidine, lysine and threonine in crystalline form to a plant based diet was, on the other hand...... as an apparent “accumulation” in the plasma, compared to fish fed similar dietary level but in protein bound form. The study further showed that the nitrogen excretion resulting from feeding an AA deficient diet was higher than for the fish meal control diet. Supplementation of the plant meal diet...

  3. Dose response and adaptive response of non-homologous end joining repair genes and proteins in resting human peripheral blood mononuclear cells exposed to γ radiation.

    Science.gov (United States)

    Shelke, Shridevi; Das, Birajalaxmi

    2015-05-01

    Ionising radiation induces single-strand breaks, double-strand breaks (DSB) and base damages in human cell. DSBs are the most deleterious and if not repaired may lead to genomic instability and cell death. DSB can be repaired through non-homologous end joining (NHEJ) pathway in resting lymphocytes. In this study, NHEJ genes and proteins were studied in irradiated human peripheral blood mononuclear cells (PBMC) at resting stage. Dose-response, time point kinetics and adaptive-response studies were conducted in irradiated PBMC at various end points such as DNA damage quantitation, transcription and protein expression profile. Venous blood samples were collected from 20 random, normal and healthy donors with written informed consent. PBMC was separated and irradiated with various doses between 0.1 and 2.0 Gy ((60)CO-γ source) for dose-response study. Repair kinetics of DNA damage and time point changes in expression of genes and proteins were studied in post-irradiated PBMC at 2.0 Gy at various time points up to 240 min. Adaptive-response study was conducted with a priming dose of 0.1 Gy followed by a challenging dose of 2.0 Gy after 4-h incubation. Our results revealed that Ku70, Ku80, XLF and Ligase IV were significantly upregulated (P Adaptive-response study showed significantly increased expression of the proteins involved in NHEJ, suggesting their role in adaptive response in human PBMC at G0/G1, which has important implications to human health. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Gene expression analysis during recovery process indicates the mechanism for innate immune injury and repair from Coxsackievirus B3-induced myocarditis.

    Science.gov (United States)

    Yao, Hai-Lan; Song, Juan; Sun, Peng; Song, Qin-Qin; Sheng, Lin-Jun; Chi, Miao-Miao; Han, Jun

    2016-02-02

    To investigate the innate immune injury and repair mechanism during recovery from Coxsackievirus B3 (CVB3) induced myocarditis, we established an acute viral myocarditis recovery model by infecting BALB/c mice with CVB3. Histopathological examination of cardiac tissues after infection showed a gradual increase of myocardial injury to the maximum degree at 8 dpi (days post infection), followed by a recovery process with reduced viral replication. We also measured expression changes of innate immune genes in heart after 4, 8 and 12 days of infection using innate immune real-time PCR array. The results showed expression alterations in many Pattern Recognition Receptors (PRRs) genes upon CVB3 infection, which activated multiple important signaling pathways during recovery process. The expression of TLRs, RLRs, PKR and cytokines were strongly induced and reached the peak at 4 dpi in early myocarditis stage, followed by a gradual reduction in recovery stage, during which the levels were even lower than normal at 12 dpi. The strong correlation between cardiac histopathology score and chemokine expression level suggested that the chemokines might play a role in pathological changes during early myocarditis stage. In addition, we also found that both cell survival signaling pathways (AKT1, p38MAPK) and antiviral signaling pathways (IKKα/β/ε) were activated and promoted the recovery during late myocarditis stage. Altogether, our observations improved the understanding of formation and progression of the pathological lesions, as well as the repair mechanism for acute viral myocarditis.

  5. DNA repair genes XRCC1 and XRCC3 polymorphisms and their relationship with the level of micronuclei in breast cancer patients

    Directory of Open Access Journals (Sweden)

    Raquel A. Santos

    2010-01-01

    Full Text Available Breast cancer (BC is the most prevalent type worldwide, besides being one of the most common causes of death among women. It has been suggested that sporadic BC is most likely caused by low-penetrance genes, including those involved in DNA repair mechanisms. Furthermore, the accumulation of DNA damage may contribute to breast carcinogenesis. In the present study, the relationship between two DNA repair genes, viz., XRCC1 (Arg399Gln and XRCC3 (Thr241Met polymorphisms, and the levels of chromosome damage detected in 65 untreated BC women and 85 healthy controls, was investigated. Chromosome damage was evaluated through micronucleus assaying, and genotypes determined by PCR-RFLP methodology. The results showed no alteration in the risk of BC and DNA damage brought about by either XRCC1 (Arg399Gln or XRCC3 (Thr241Met action in either of the two groups. Nevertheless, on evaluating BC risk in women presenting levels of chromosome damage above the mean, the XRCC3 Thr241Met polymorphism was found to be more frequent in the BC group than in the control, thereby leading to the conclusion that there is a slight association between XRCC3 (241 C/T genotypes and BC risk in the subgroups with higher levels of chromosome damage.

  6. Transcript levels of the Saccharomyes cerevisiae DNA repair gene RAD23 increase in response to UV light and in meiosis but remain constant in the mitotic cell cycle.

    Science.gov (United States)

    Madura, K; Prakash, S

    1990-08-25

    The RAD23 gene of Saccharomyces cerevisiae is required for excision-repair of UV damaged DNA. In this paper, we determine the location of the RAD23 gene in a cloned DNA fragment, identify the 1.6 kb RAD23 transcript, and examine RAD23 transcript levels in UV damaged cells, during the mitotic cell cycle, and in meiosis. The RAD23 mRNA levels are elevated 5-fold between 30 to 60 min after 37 J/m2 of UV light. RAD23 mRNA levels rise over 6-fold during meiosis at a stage coincident with high levels of genetic recombination. This response is specific to sporulation competent MATa/MAT alpha diploid cells, and is not observed in asporogenous MATa/MATa diploids. RAD23 mRNA levels, however, remain constant during the mitotic cell cycle.

  7. Microarray analysis of gene expression in liver, adipose tissue and skeletal muscle in response to chronic dietary administration of NDGA to high-fructose fed dyslipidemic rats.

    Science.gov (United States)

    Zhang, Haiyan; Shen, Wen-Jun; Li, Yihang; Bittner, Alex; Bittner, Stefanie; Tabassum, Juveria; Cortez, Yuan F; Kraemer, Fredric B; Azhar, Salman

    2016-01-01

    Nordihydroguaiaretic acid (NDGA), the main metabolite of Creosote Bush, has been shown to have profound effects on the core components of metabolic syndrome, including lowering of blood glucose, free fatty acids and triglyceride levels, attenuating elevated blood pressure in several rodent models of dyslipidemia, and improving body weight, insulin resistance, diabetes and hypertension. In the present study, a high-fructose diet fed rat model of hypertriglyceridemia, dyslipidemia, insulin resistance and hepatic steatosis was employed to investigate the global transcriptional changes in the lipid metabolizing pathways in three insulin sensitive tissues: liver, skeletal muscle and adipose tissue in response to chronic dietary administration of NDGA. Sprague-Dawley male rats (SD) were fed a chow (control) diet, high-fructose diet (HFrD) or HFrD supplemented with NDGA (2.5 g/kg diet) for eight weeks. Dietary administration of NDGA decreased plasma levels of TG, glucose, and insulin, and attenuated hepatic TG accumulation. DNA microarray expression profiling indicated that dietary administration of NDGA upregulated the expression of certain genes involved in fatty acid oxidation and their transcription regulator, PPARα, decreased the expression of a number of lipogenic genes and relevant transcription factors, and differentially impacted the genes of fatty acid transporters, acetyl CoA synthetases, elongases, fatty acid desaturases and lipid clearance proteins in liver, skeletal muscle and adipose tissues. These findings suggest that NDGA ameliorates hypertriglyceridemia and steatosis primarily by inhibiting lipogenesis and enhancing fatty acid catabolism in three major insulin responsive tissues by altering the expression of key enzyme genes and transcription factors involved in de novo lipogenesis and fatty acid oxidation.

  8. A variant in the fat mass and obesity-associated gene (FTO) and variants near the melanocortin-4 receptor gene (MC4R) do not influence dietary intake

    DEFF Research Database (Denmark)

    Hasselbalch, Ann L; Angquist, Lars; Christiansen, Lene

    2010-01-01

    . In a population-based sample of 756 healthy adult twin pairs, we studied associations between FTO rs9939609, near-MC4R rs12970134, rs17700633, and rs17782313 single nucleotide polymorphisms (SNP) and habitual dietary intake. Habitual dietary intake was assessed by a 247-question FFQ. Nontransformed variables...... and variables transformed by natural logarithm were analyzed by linear regression and dichotomized variables were analyzed by logistic regression. FTO SNP rs9939609 was not associated with habitual dietary intake. For the near-MC4R SNP rs12970134 and rs17700633, we found significant positive associations...

  9. The CREB Coactivator CRTC2 is a Lymphoma Tumor Suppressor that Preserves Genome Integrity Through Transcription of DNA Mismatch Repair Genes

    Science.gov (United States)

    Fang, Minggang; Pak, Magnolia L.; Chamberlain, Lynn; Xing, Wei; Yu, Hongbo; Green, Michael R.

    2015-01-01

    SUMMARY The CREB-regulated transcription coactivator CRTC2 stimulates CREB target gene expression and has a well-established role in modulating glucose and lipid metabolism. Here we find, unexpectedly, that loss of CRTC2, as well as CREB1 and its coactivator CREB-binding protein (CBP), results in a deficiency in DNA mismatch repair (MMR) and a resultant increased mutation frequency. We show that CRTC2, CREB1 and CBP are transcriptional activators of well-established MMR genes, including EXO1, MSH6, PMS1 and POLD2. Mining of expression profiling databases and analysis of patient samples reveal that CRTC2 and its target MMR genes are down-regulated in specific T-cell lymphoma subtypes, which are microsatellite unstable. The levels of acetylated histone H3 on the CRTC2 promoter are significantly reduced in lymphoma compared to normal tissue, explaining the decreased CRTC2 expression. Our results establish a role for CRTC2 as a lymphoma tumor suppressor gene that preserves genome integrity by stimulating transcription of MMR genes. PMID:26004186

  10. Comparison of clastogen-induced gene expression profiles in wild-type and DNA repair-deficient Rad54/Rad54B cells

    Directory of Open Access Journals (Sweden)

    van Benthem Jan

    2010-01-01

    Full Text Available Abstract Background Previously we found that Rad54/Rad54B cells are more sensitive towards mitomycin C (MMC as compared to wild-type (WT cells. This difference in sensitivity was absent upon exposure to other clastogens like bleomycin (BLM and γ-radiation. In order to get further insight into possible underlying mechanisms, gene expression changes in WT and Rad54/Rad54B MEFs (mouse embryonic fibroblasts after exposure to the clastogens MMC and BLM were investigated. Exposures of these cells to mutagens (N-ac-AAF and ENU and vehicle were taken as controls. Results Most exposures resulted in an induction of DNA damage signaling and apoptosis genes and a reduced expression of cell division genes in cells of both genotypes. As expected, responses to N-ac-AAF were very similar in both genotypes. ENU exposure did not lead to significant gene expression changes in cells of both genotypes, presumably due to its short half-life. Gene expression responses to clastogens, however, showed a genotype-dependent effect for BLM and MMC. MMC treated Rad54/Rad54B MEFs showed no induction of p53-signaling, DNA damage response and apoptosis as seen for all the other treatments. Conclusion These data support our finding that different types of clastogens exist and that responses to these types depend on the DNA repair status of the cells.

  11. Association of Polymorphisms in X-Ray Repair Cross Complementing 1 Gene and Risk of Esophageal Squamous Cell Carcinoma in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Yu-Xia Yun

    2015-01-01

    Full Text Available Objectives. To investigate the association between three single nucleotide polymorphisms (SNPs in the X-ray repair cross complementing 1 gene (XRCC1 and the risk of esophageal squamous cell carcinoma (ESCC in Chinese population. Methods. A case-control study including 381 primary ESCC patients recruited from hospital and 432 normal controls matched with patients by age and gender from Chinese Han population was conducted. The genotypes of three XRCC1 polymorphisms at −77T>C (T-77C, codon 194 (Arg194Trp, and codon 399 (Arg399Gln were studied by means of polymerase chain reaction-restriction fragment length polymorphism techniques (PCR-RFLP. Unconditional logistic regression model and haplotype analysis were used to estimate associations of these three SNPs in XRCC1 gene with ESCC risk. Results. Polymorphisms at these three sites in XRCC1 gene were not found to be associated with risk for developing ESCC; however the haplotype Ccodon 194Gcodon 399C-77T>C was significantly associated with reduced risk of ESCC (OR: 0.62, 95% CI: 0.40–0.96 upon haplotype analysis. Conclusion. These results suggested that the gene-gene interactions might play vital roles in the progression on esophageal cancer in Chinese Han population and it would be necessary to confirm these findings in a large and multiethnic population.

  12. Genetic polymorphisms of DNA repair genes and chromosomal damage in workers exposed to 1,3-butadiene.

    Science.gov (United States)

    Wang, Qi; Wang, Ai-hong; Tan, Hong-shan; Feng, Nan-nan; Ye, Yun-jie; Feng, Xiao-qing; Liu, Geoffrey; Zheng, Yu-xin; Xia, Zhao-lin

    2010-05-01

    The base excision repair (BER) pathway is important in repairing DNA damage incurred from occupational exposure to 1,3-butadiene (BD). This study examines the relationship between inherited polymorphisms of the BER pathway (x-ray repair cross-complementing group 1 (XRCC1) Arg194Trp, Arg280His, Arg399Gln, T-77C, ADPRT Val762Ala, MGMT Leu84Phe and APE1 Asp148Glu) and chromosomal damage in BD-exposed workers, using the cytokinesis-blocked (CB) micronucleus (MN) assay in peripheral lymphocytes of 166 workers occupationally exposed to BD and 41 non-exposed healthy individuals. The MN frequency of exposed workers (3.39 +/- 2.42) per thousand was higher than that of the non-exposed groups (1.48 +/- 1.26) per thousand (P damage among BD-exposed workers. In workers exposed to BD, multiple BER polymorphisms and a XRCC1 haplotype were associated with differential levels of chromosome damage.

  13. Dietary Lactobacillus acidophilus modulated skin mucus protein profile, immune and appetite genes expression in gold fish (Carassius auratus gibelio).

    Science.gov (United States)

    Hosseini, Marjan; Kolangi Miandare, Hamed; Hoseinifar, Seyed Hossein; Yarahmadi, Peyman

    2016-12-01

    The objective of the present study was to investigate the effect of dietary Lactobacillus acidophilus on skin mucus protein pattern, immune and appetite related genes expression as well as growth performance in gold fish (Carassius auratus gibelio). Three hundred healthy gold fish (2.5 ± 0.05) juveniles were randomly distributed in 12 glass aquariums (400-L; 25 fish per aquaria) and fed experimental diets contain different levels of L. acidophilus (0, 1.5 × 10(8), 3 × 10(8) and 6 × 10(8)) for 8 weeks. SDS-PAGE analysis of skin mucus protein profile at the end of the feeding trial revealed differences in protein profile of probiotic fed fish and control group; even three new bands were observed in L. acidophilus treated groups. Furthermore, fish fed 6 × 10(8) CFU g(-1) supplemented diet showed up-regulation of both TNF-1α and TNF-2α gene expression (P acidophilus had no significant effects on growth performance (P > 0.05). These results demonstrated that while no beneficial effects on growth performance, dietary L. acidophilus affects immune and appetite related genes expression as well as skin mucus protein profile.

  14. Accumulation of copper in the kidney of pigs fed high dietary zinc is due to metallothionein expression with minor effects on genes involved in copper metabolism.

    Science.gov (United States)

    Zetzsche, A; Schunter, N; Zentek, J; Pieper, R

    2016-05-01

    A study was conducted to determine the effect of high dietary zinc (Zn) oxide on trace element accumulation in various organs with special emphasis on the kidney. A total of 40 weaned piglets were allocated into two groups with 16 and 24 piglets each receiving a diet containing normal (NZn; 100mg Zn/kg) or high (HZn; 2,100mg Zn/kg) Zn concentration, respectively. After two weeks, eight piglets from each treatment were killed and organ samples were taken. Eight piglets from the remaining 16 pigs fed HZn diets were changed to NZn diets (CZn). All remaining piglets were killed after another two weeks for organ sampling. Trace element concentration was determined in the jejunum, liver, kidney, pancreas, bone (metacarpal IV), spleen, lung, thymus, tonsils and lymph nodes of jejunum, ileum and colon. Kidney mRNA expression of Zn transporter ZnT1 and ZIP4, genes involved in Cu metabolism (Ctr1, Atox1, SOD1, ATP7A, CCS, CP) and divalent metal ion transport (DMT1) and binding (MT-1a, MT-2b, MT-3) were determined. The Zn concentration in jejunum, liver, pancreas tissue and metacarpal IV was higher (Pkidney. No significant differences for Cu chaperones, Cu transporters and Cu-dependent factors were determined despite decreased expression of Atox1 after two weeks and increased Ctr1 expression over time in the HZn group. Expression of MT-1a, MT-2b and MT-3 were significantly higher in HZn fed pigs with most pronounced effects for MT-1a > MT-2b > MT-3. Gene expression of MTs in pigs fed CZn diets did not differ from pigs fed NZn diets. The data suggest that high dietary Zn feeding in pigs leads to Cu co-accumulation in the kidney of pigs with minor effect on genes relevant for Cu metabolism. In addition, the organ Zn and Cu accumulation is reversible after two weeks of withdrawal of high dietary Zn.

  15. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays

    Directory of Open Access Journals (Sweden)

    Yang Zhen-Zhou

    2010-02-01

    Full Text Available Abstract Background The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. Methods HeLa cells were treated with fractionated 252Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. Results The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Conclusions Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these "radioresistance" genes will lead to new therapeutic targets for cervical cancer.

  16. Repair of Staphylococcus aureus-infected wound with gene-modified C3H10T1/2 cells expressing BPI-BD3 fusion antibiotic peptide

    Directory of Open Access Journals (Sweden)

    Xin-ran ZHANG

    2015-10-01

    Full Text Available Objective To study the antibacterial and tissue reparative effect of BPI-BD3 gene-modified mesenchymal stem cells in a mouse model of wound infection. Methods C3H10T1/2 cells were transfected with recombinant adenovirus vector pAdxsi-BPI-BD3, the expression of BPI-BD3 fusion protein was verified by RT-PCR and Western blotting. Excision wound with a diameter of 1cm was inoculated with Staphylococcus aureuswas made on the back of 30 mice. The mice were randomly divided into 3 groups (10 each. Mice in group T were injected with BPI-BD3 gene-modified C3H10T1/2 cells through caudal vein, those in group C were injected with unmodified C3H10T1/2 cells, and in group N were injected with PBS as control. The wound repair result was evaluated by estimation of the percentage of remaining wound area and the amount of wound bacteria under the scar, followed by observation of pathological changes. Inflammatory reactions of the wounds were assessed accordingly. Results The amount of bacteria under the scar was less in group T than in the other two groups (P<0.05. It was also found that the wound healing process was faster in group T than in group C and group N. Pathological observation showed that the inflammatory reaction in group T was also significantly milder than in the other two groups. Conclusion BPI-BD3 gene-modified mesenchymal stem cells may enhance wound repair by controlling infection and promoting tissue regeneration, thus it may be promising in clinical application. DOI: 10.11855/j.issn.0577-7402.2015.09.07

  17. Dietary fat source affects metabolism of fatty acids in pigs as evaluated by altered expression of lipogenic genes in liver and adipose tissues

    DEFF Research Database (Denmark)

    Duran-Montge, P; Theil, Peter Kappel; Lauridsen, Charlotte

    2009-01-01

    ), linseed oil (LO), blend (FB) (55% T, 35% SFO and 10% LO) and fish oil (FO) blend (40% FO and 60% LO). Pigs were slaughtered at 100 kg BW and autopsies from liver, adipose tissue and muscle semimembranousus were collected for qPCR. The messenger ribonucleic acid (mRNA) abundances of genes related...... of seven dietary treatments (eight animals per treatment): a semi-synthetic diet containing a very low level of fat (no fat (NF)) and six fat-supplemented diets (ca. 10%) based on barley and soybean meal. The supplemental fat sources were tallow (T), high-oleic sunflower oil (HOSF), sunflower oil (SFO...

  18. Genes and environment as predisposing factors in autoimmunity: acceleration of spontaneous thyroiditis by dietary iodide in NOD.H2(h4) mice.

    Science.gov (United States)

    Kolypetri, Panayota; King, Justin; Larijani, Mani; Carayanniotis, George

    2015-01-01

    In the field of autoimmune thyroiditis, NOD.H2(h4) mice have attracted significant and increasing attention since they not only develop spontaneous disease but they present thyroiditis with accelerated incidence and severity if they ingest iodide through their drinking water. This animal model highlights the interplay between genetic and dietary factors in the triggering of autoimmune disease and offers new opportunities to study immunoregulatory parameters influenced by both genes and environment. Here, we review experimental findings with this mouse model of thyroiditis.

  19. Epigenetic Studies Point to DNA Replication/Repair Genes as a Basis for the Heritable Nature of Long Term Complications in Diabetes

    Directory of Open Access Journals (Sweden)

    Alexey A. Leontovich

    2016-01-01

    Full Text Available Metabolic memory (MM is defined as the persistence of diabetic (DM complications even after glycemic control is pharmacologically achieved. Using a zebrafish diabetic model that induces a MM state, we previously reported that, in this model, tissue dysfunction was of a heritable nature based on cell proliferation studies in limb tissue and this correlated with epigenetic DNA methylation changes that paralleled alterations in gene expression. In the current study, control, DM, and MM excised fin tissues were further analyzed by MeDIP sequencing and microarray techniques. Bioinformatics analysis of the data found that genes of the DNA replication/DNA metabolism process group (with upregulation of the apex1, mcm2, mcm4, orc3, lig1, and dnmt1 genes were altered in the DM state and these molecular changes continued into MM. Interestingly, DNA methylation changes could be found as far as 6–13 kb upstream of the transcription start site for these genes suggesting potential higher levels of epigenetic control. In conclusion, DNA methylation changes in members of the DNA replication/repair process group best explain the heritable nature of cell proliferation impairment found in the zebrafish DM/MM model. These results are consistent with human diabetic epigenetic studies and provide one explanation for the persistence of long term tissue complications as seen in diabetes.

  20. Epigenetic Studies Point to DNA Replication/Repair Genes as a Basis for the Heritable Nature of Long Term Complications in Diabetes

    Science.gov (United States)

    Leontovich, Alexey A.; Intine, Robert V.; Sarras, Michael P.

    2016-01-01

    Metabolic memory (MM) is defined as the persistence of diabetic (DM) complications even after glycemic control is pharmacologically achieved. Using a zebrafish diabetic model that induces a MM state, we previously reported that, in this model, tissue dysfunction was of a heritable nature based on cell proliferation studies in limb tissue and this correlated with epigenetic DNA methylation changes that paralleled alterations in gene expression. In the current study, control, DM, and MM excised fin tissues were further analyzed by MeDIP sequencing and microarray techniques. Bioinformatics analysis of the data found that genes of the DNA replication/DNA metabolism process group (with upregulation of the apex1, mcm2, mcm4, orc3, lig1, and dnmt1 genes) were altered in the DM state and these molecular changes continued into MM. Interestingly, DNA methylation changes could be found as far as 6–13 kb upstream of the transcription start site for these genes suggesting potential higher levels of epigenetic control. In conclusion, DNA methylation changes in members of the DNA replication/repair process group best explain the heritable nature of cell proliferation impairment found in the zebrafish DM/MM model. These results are consistent with human diabetic epigenetic studies and provide one explanation for the persistence of long term tissue complications as seen in diabetes. PMID:26981540

  1. Evaluating the performance of clinical criteria for predicting mismatch repair gene mutations in Lynch syndrome: a comprehensive analysis of 3,671 families.

    Science.gov (United States)

    Steinke, Verena; Holzapfel, Stefanie; Loeffler, Markus; Holinski-Feder, Elke; Morak, Monika; Schackert, Hans K; Görgens, Heike; Pox, Christian; Royer-Pokora, Brigitte; von Knebel-Doeberitz, Magnus; Büttner, Reinhard; Propping, Peter; Engel, Christoph

    2014-07-01

    Carriers of mismatch repair (MMR) gene mutations have a high lifetime risk for colorectal and endometrial cancers, as well as other malignancies. As mutation analysis to detect these patients is expensive and time-consuming, clinical criteria and tumor-tissue analysis are widely used as pre-screening methods. The aim of our study was to evaluate the performance of commonly applied clinical criteria (the Amsterdam I and II Criteria, and the original and revised Bethesda Guidelines) and the results of tumor-tissue analysis in predicting MMR gene mutations. We analyzed 3,671 families from the German HNPCC Registry and divided them into nine mutually exclusive groups with different clinical criteria. A total of 680 families (18.5%) were found to have a pathogenic MMR gene mutation. Among all 1,284 families with microsatellite instability-high (MSI-H) colorectal cancer, the overall mutation detection rate was 53.0%. Mutation frequencies and their distribution between the four MMR genes differed significantly between clinical groups (p small-bowel cancer (p small-bowel cancer were clinically relevant predictors for Lynch syndrome. © 2013 UICC.

  2. Identification of a deletion in the mismatch repair gene, MSH2, using mouse-human cell hybrids monosomal for chromosome 2.

    Science.gov (United States)

    Pyatt, R E; Nakagawa, H; Hampel, H; Sedra, M; Fuchik, M B; Comeras, I; de la Chapelle, A; Prior, T W

    2003-03-01

    Hereditary non-polyposis colorectal cancer is characterized by mutations in one of the DNA mismatch repair genes, primarily MLH1, MSH2, or MSH6. We report here the identification of a genomic deletion of approximately 11.4 kb encompassing the first two exons of the MSH2 gene in two generations of an Ohio family. By Southern blot analysis, using a cDNA probe spanning the first seven exons of MSH2, an alteration in each of three different enzyme digests (including a unique 13-kb band on HindIII digests) was observed, which suggested the presence of a large alteration in the 5' region of this gene. Mouse-human cell hybrids from a mutation carrier were then generated which contained a single copy each of human chromosome 2 on which the MSH2 gene resides. Southern blots on DNA from the cell hybrids demonstrated the same, unique 13-kb band from one MSH2 allele, as seen in the diploid DNA. DNA from this same monosomal cell hybrid failed to amplify in polymerase chain reactions (PCRs) using primers to exons 1 and 2, demonstrating the deletion of these sequences in one MSH2 allele, and the breakpoints involving Alu repeats were identified by PCR amplification and sequence analysis.

  3. Methylation Analysis of DNA Mismatch Repair Genes Using DNA Derived from the Peripheral Blood of Patients with Endometrial Cancer: Epimutation in Endometrial Carcinogenesis.

    Science.gov (United States)

    Takeda, Takashi; Banno, Kouji; Yanokura, Megumi; Adachi, Masataka; Iijima, Moito; Kunitomi, Haruko; Nakamura, Kanako; Iida, Miho; Nogami, Yuya; Umene, Kiyoko; Masuda, Kenta; Kobayashi, Yusuke; Yamagami, Wataru; Hirasawa, Akira; Tominaga, Eiichiro; Susumu, Nobuyuki; Aoki, Daisuke

    2016-10-14

    Germline mutation of DNA mismatch repair (MMR) genes is a cause of Lynch syndrome. Methylation of MutL homolog 1 (MLH1) and MutS homolog 2 (MSH2) has been detected in peripheral blood cells of patients with colorectal cancer. This methylation is referred to as epimutation. Methylation of these genes has not been studied in an unselected series of endometrial cancer cases. Therefore, we examined methylation of MLH1, MSH2, and MSH6 promoter regions of peripheral blood cells in 206 patients with endometrial cancer using a methylation-specific polymerase chain reaction (MSP). Germline mutation of MMR genes, microsatellite instability (MSI), and immunohistochemistry (IHC) were also analyzed in each case with epimutation. MLH1 epimutation was detected in a single patient out of a total of 206 (0.49%)-1 out of 58 (1.72%) with an onset age of less than 50 years. The patient with MLH1 epimutation showed high level MSI (MSI-H), loss of MLH1 expression and had developed endometrial cancer at 46 years old, complicated with colorectal cancer. No case had epimutation of MSH2 or MSH6. The MLH1 epimutation detected in a patient with endometrial cancer may be a cause of endometrial carcinogenesis. This result indicates that it is important to check epimutation in patients with endometrial cancer without a germline mutation of MMR genes.

  4. Effect of dietary zinc oxide on morphological characteristics, mucin composition and gene expression in the colon of weaned piglets.

    Science.gov (United States)

    Liu, Ping; Pieper, Robert; Rieger, Juliane; Vahjen, Wilfried; Davin, Roger; Plendl, Johanna; Meyer, Wilfried; Zentek, Jürgen

    2014-01-01

    The trace element zinc is often used in the diet of weaned piglets, as high doses have resulted in positive effects on intestinal health. However, the majority of previous studies evaluated zinc supplementations for a short period only and focused on the small intestine. The hypothesis of the present study was that low, medium and high levels of dietary zinc (57, 164 and 2,425 mg Zn/kg from zinc oxide) would affect colonic morphology and innate host defense mechanisms across 4 weeks post-weaning. Histological examinations were conducted regarding the colonic morphology and neutral, acidic, sialylated and sulphated mucins. The mRNA expression levels of mucin (MUC) 1, 2, 13, 20, toll-like receptor (TLR) 2, 4, interleukin (IL)-1β, 8, 10, interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) were also measured. The colonic crypt area increased in an age-depending manner, and the greatest area was found with medium concentration of dietary zinc. With the high concentration of dietary zinc, the number of goblet cells containing mixed neutral-acidic mucins and total mucins increased. Sialomucin containing goblet cells increased age-dependently. The expression of MUC2 increased with age and reached the highest level at 47 days of age. The expression levels of TLR2 and 4 decreased with age. The mRNA expression of TLR4 and the pro-inflammatory cytokine IL-8 were down-regulated with high dietary zinc treatment, while piglets fed with medium dietary zinc had the highest expression. It is concluded that dietary zinc level had a clear impact on colonic morphology, mucin profiles and immunological traits in piglets after weaning. Those changes might support local defense mechanisms and affect colonic physiology and contribute to the reported reduction of post-weaning diarrhea.

  5. Effect of dietary zinc oxide on morphological characteristics, mucin composition and gene expression in the colon of weaned piglets.

    Directory of Open Access Journals (Sweden)

    Ping Liu

    Full Text Available The trace element zinc is often used in the diet of weaned piglets, as high doses have resulted in positive effects on intestinal health. However, the majority of previous studies evaluated zinc supplementations for a short period only and focused on the small intestine. The hypothesis of the present study was that low, medium and high levels of dietary zinc (57, 164 and 2,425 mg Zn/kg from zinc oxide would affect colonic morphology and innate host defense mechanisms across 4 weeks post-weaning. Histological examinations were conducted regarding the colonic morphology and neutral, acidic, sialylated and sulphated mucins. The mRNA expression levels of mucin (MUC 1, 2, 13, 20, toll-like receptor (TLR 2, 4, interleukin (IL-1β, 8, 10, interferon-γ (IFN-γ and transforming growth factor-β (TGF-β were also measured. The colonic crypt area increased in an age-depending manner, and the greatest area was found with medium concentration of dietary zinc. With the high concentration of dietary zinc, the number of goblet cells containing mixed neutral-acidic mucins and total mucins increased. Sialomucin containing goblet cells increased age-dependently. The expression of MUC2 increased with age and reached the highest level at 47 days of age. The expression levels of TLR2 and 4 decreased with age. The mRNA expression of TLR4 and the pro-inflammatory cytokine IL-8 were down-regulated with high dietary zinc treatment, while piglets fed with medium dietary zinc had the highest expression. It is concluded that dietary zinc level had a clear impact on colonic morphology, mucin profiles and immunological traits in piglets after weaning. Those changes might support local defense mechanisms and affect colonic physiology and contribute to the reported reduction of post-weaning diarrhea.

  6. Polymorphisms in DNA Repair Genes (APEX1, XPD, XRCC1 and XRCC3 and Risk of Preeclampsia in a Mexican Mestizo Population

    Directory of Open Access Journals (Sweden)

    Ada Sandoval-Carrillo

    2014-03-01

    Full Text Available Variations in genes involved in DNA repair systems have been proposed as risk factors for the development of preeclampsia (PE. We conducted a case-control study to investigate the association of Human apurinic/apyrimidinic (AP endonuclease (APEX1 Asp148Glu (rs1130409, Xeroderma Pigmentosum group D (XPD Lys751Gln (rs13181, X-ray repair cross-complementing group 1 (XRCC Arg399Gln (rs25487 and X-ray repair cross-complementing group 3 (XRCC3 Thr241Met (rs861539 polymorphisms with PE in a Mexican population. Samples of 202 cases and 350 controls were genotyped using RTPCR. Association analyses based on a χ2 test and binary logistic regression were performed to determine the odds ratio (OR and a 95% confidence interval (95% CI for each polymorphism. The allelic frequencies of APEX1 Asp148Glu polymorphism showed statistical significant differences between preeclamptic and normal women (p = 0.036. Although neither of the polymorphisms proved to be a risk factor for the disease, the APEX1 Asp148Glu polymorphism showed a tendency of association (OR: 1.74, 95% CI = 0.96–3.14 and a significant trend (p for trend = 0.048. A subgroup analyses revealed differences in the allelic frequencies of APEX1 Asp148Glu polymorphism between women with mild preeclampsia and severe preeclampsia (p = 0.035. In conclusion, our results reveal no association between XPD Lys751Gln, XRCC Arg399Gln and XRCC3 Thr241Met polymorphisms and the risk of PE in a Mexican mestizo population; however, the results in the APEX1 Asp148Glu polymorphism suggest the need for future studies using a larger sample size.

  7. The TMPRSS2-ERG Gene Fusion Blocks XRCC4-Mediated Nonhomologous End-Joining Repair and Radiosensitizes Prostate Cancer Cells to PARP Inhibition.

    Science.gov (United States)

    Chatterjee, Payel; Choudhary, Gaurav S; Alswillah, Turkeyah; Xiong, Xiahui; Heston, Warren D; Magi-Galluzzi, Cristina; Zhang, Junran; Klein, Eric A; Almasan, Alexandru

    2015-08-01

    Exposure to genotoxic agents, such as ionizing radiation (IR), produces DNA damage, leading to DNA double-strand breaks (DSB); IR toxicity is augmented when the DNA repair is impaired. We reported that radiosensitization by a PARP inhibitor (PARPi) was highly prominent in prostate cancer cells expressing the TMPRSS2-ERG gene fusion protein. Here, we show that TMPRSS2-ERG blocks nonhomologous end-joining (NHEJ) DNA repair by inhibiting DNA-PKcs. VCaP cells, which harbor TMPRSS2-ERG and PC3 cells that stably express it, displayed γH2AX and 53BP1 foci constitutively, indicating persistent DNA damage that was absent if TMPRSS2-ERG was depleted by siRNA in VCaP cells. The extent of DNA damage was enhanced and associated with TMPRSS2-ERG's ability to inhibit DNA-PKcs function, as indicated by its own phosphorylation (Thr2609, Ser2056) and that of its substrate, Ser1778-53BP1. DNA-PKcs deficiency caused by TMPRSS2-ERG destabilized critical NHEJ components on chromatin. Thus, XRCC4 was not recruited to chromatin, with retention of other NHEJ core factors being reduced. DNA-PKcs autophosphorylation was restored to the level of parental cells when TMPRSS2-ERG was depleted by siRNA. Following IR, TMPRSS2-ERG-expressing PC3 cells had elevated Rad51 foci and homologous recombination (HR) activity, indicating that HR compensated for defective NHEJ in these cells, hence addressing why TMPRSS2-ERG alone did not lead to radiosensitization. However, the presence of TMPRSS2-ERG, by inhibiting NHEJ DNA repair, enhanced PARPi-mediated radiosensitization. IR in combination with PARPi resulted in enhanced DNA damage in TMPRSS2-ERG-expressing cells. Therefore, by inhibiting NHEJ, TMPRSS2-ERG provides a synthetic lethal interaction with PARPi in prostate cancer patients expressing TMPRSS2-ERG. ©2015 American Association for Cancer Research.

  8. Human Longevity and Variation in GH/IGF-1/Insulin Signaling, DNA Damage Signaling and Repair and Pro/antioxidant Pathway Genes: Cross Sectional and Longitudinal Studies

    Science.gov (United States)

    Soerensen, Mette; Dato, Serena; Tan, Qihua; Thinggaard, Mikael; Kleindorp, Rabea; Beekman, Marian; Jacobsen, Rune; Suchiman, H. Eka D.; de Craen, Anton J.M.; Westendorp, Rudi G.J.; Schreiber, Stefan; Stevnsner, Tinna; Bohr, Vilhelm A.; Slagboom, P. Eline; Nebel, Almut; Vaupel, James W.; Christensen, Kaare; McGue, Matt; Christiansen, Lene

    2012-01-01

    Here we explore association with human longevity of common genetic variation in three major candidate pathways: GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidants by investigating 1273 tagging SNPs in 148 genes composing these pathways. In a case-control study of 1089 oldest-old (age 92–93) and 736 middle-aged Danes we found 1 pro/antioxidant SNP (rs1002149 (GSR)), 5 GH/IGF-1/INS SNPs (rs1207362 (KL), rs2267723 (GHRHR), rs3842755 (INS), rs572169 (GHSR), rs9456497 (IGF2R)) and 5 DNA repair SNPs (rs11571461 (RAD52), rs13251813 (WRN), rs1805329 (RAD23B), rs2953983 (POLB), rs3211994 (NTLH1)) to be associated with longevity after correction for multiple testing. In a longitudinal study with 11 years of follow-up on survival in the oldest-old Danes we found 2 pro/antioxidant SNPs (rs10047589 (TNXRD1), rs207444 (XDH)), 1 GH/IGF-1/INS SNP (rs26802 (GHRL)) and 3 DNA repair SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. When examining the 11 SNPs from the case-control study in the longitudinal data, rs3842755 (INS), rs13251813 (WRN) and rs3211994 (NTHL1) demonstrated the same directions of effect (pbased association study, the largest to date applying a pathway approach, points to potential new longevity loci, but does also underline the difficulties of replicating association findings in independent study populations and thus the difficulties in identifying universal longevity polymorphisms. PMID:22406557

  9. Sequence analysis of the DNA-repair gene rad51 in the tardigrades Milnesium cf. tardigradum, Hypsibius dujardini and Macrobiotus cf. harmsworthi

    Directory of Open Access Journals (Sweden)

    Eliana A. Beltrán-Pardo

    2013-05-01

    Full Text Available Tardigrades are known for being resistant to extreme conditions, including tolerance to ionising and UV radiation in both the hydrated and the dehydrated state. It is known that these factors may cause damage to DNA. It has recently been shown that single and double DNA strand breaks occur when tardigrades are maintained for a long time in the anhydrobiotic state. This may suggest that perhaps tardigrades rely on efficient DNA repair mechanisms. Among all proteins that comprise the DNA repair system, recombinases such as RecA or Rad51 have a very important function: DNA exchange activity. This enzyme is used in the homologous recombination and allows repair of the damaged strand using homologous non-damaged strands as a template. In this study, Rad51 induction was evaluated by western blot in Milnesium cf. tardigradum, after exposure to gamma radiation. The Rad51 protein was highly induced by radiation, when compared to the control. The rad51 genes were searched in three tardigrades: Milnesium cf. tardigradum, Hypsibius dujardini and Macrobiotus cf. harmsworthi. The gene sequences were obtained by preparing and sequencing transcriptome libraries for H. dujardini and M. cf. harmsworthi and designing rad51 degenerate primers specific for M. cf. tardigradum. Comparison of Rad51 putative proteins from tardigrades with other organisms showed that they are highly similar to the corresponding sequence from the nematode Trichinella spiralis. A structure-based sequence alignment from tardigrades and other organisms revealed that putative Rad51 predicted proteins from tardigrades contain the expected motifs for these important recombinases. In a cladogram tree based on this alignment, tardigrades tend to cluster together suggesting that they have selective differences in these genes that make them diverge between species. Predicted Rad51 structures from tardigrades were also compared with crystalline structure of Rad51 in Saccharomyces cerevisiae. These

  10. New Primers Targeting Full-Length Ciliate 18S rRNA Genes and Evaluation of Dietary Effect on Rumen Ciliate Diversity in Dairy Cows.

    Science.gov (United States)

    Zhang, Jun; Zhao, Shengguo; Zhang, Yangdong; Sun, Peng; Bu, Dengpan; Wang, Jiaqi

    2015-12-01

    Analysis of the full-length 18S rRNA gene sequences of rumen ciliates is more reliable for taxonomical classification and diversity assessment than the analysis of partial hypervariable regions only. The objective of this study was to develop new oligonucleotide primers targeting the full-length 18S rRNA genes of rumen ciliates, and to evaluate the effect of different sources of dietary fiber (corn stover or a mixture of alfalfa hay and corn silage) and protein (mixed rapeseed, cottonseed, and/or soybean meals) on rumen ciliate diversity in dairy cows. Primers were designed based on a total of 137 previously reported ciliate 18S rRNA gene sequences. The 3'-terminal sequences of the newly designed primers, P.1747r_2, P.324f, and P.1651r, demonstrated >99% base coverage. Primer pair D (P.324f and P.1747r_2) was selected for the cloning and sequencing of ciliate 18S rRNA genes because it produced a 1423-bp amplicon, and did not amply the sequences of other eukaryotic species, such as yeast. The optimal species-level cutoff value for distinguishing between the operational taxonomic units of different ciliate species was 0.015. The phylogenetic analysis of full-length ciliate 18S rRNA gene sequences showed that distinct ciliate profiles were induced by the different sources of dietary fiber and protein. Dasytricha and Entodinium were the predominant genera in the ruminal fluid of dairy cattle, and Dasytricha was significantly more abundant in cows fed with corn stover than in cows fed with alfalfa hay and corn silage.

  11. A semi-quantitative RT-PCR method to measure the in vivo effect of dietary conjugated linoleic acid on porcine muscle PPAR gene expression

    Directory of Open Access Journals (Sweden)

    Meadus W.J.

    2003-01-01

    Full Text Available Conjugated linoleic acid (CLA can activate (in vitro the nuclear transcription factors known as the peroxisome proliferators activated receptors (PPAR. CLA was fed at 11 g CLA/kg of feed for 45d to castrated male pigs (barrows to better understand long term effects of PPAR activation in vivo. The barrows fed CLA had lean muscle increased by 3.5% and overall fat reduced by 9.2% but intramuscular fat (IMF % was increased by 14% (P < 0.05. To measure the effect of long term feeding of CLA on porcine muscle gene expression, a semi-quantitative RT-PCR method was developed using cDNA normalized against the housekeeping genes cyclophilin and &bgr;-actin. This method does not require radioactivity or expensive PCR instruments with real-time fluorescent detection. PPAR&ggr; and the PPAR responsive gene AFABP but not PPAR&agr; were significantly increased (P < 0.05 in the CLA fed pig’s muscle. PPAR&agr; and PPAR&ggr; were also quantitatively tested for large differences in gene expression by western blot analysis but no significant difference was detected at this level. Although large differences in gene expression of the PPAR transcriptional factors could not be confirmed by western blotting techniques. The increased expression of AFABP gene, which is responsive to PPAR transcriptional factors, confirmed that dietary CLA can induce a detectable increase in basal PPAR transcriptional activity in the live animal.

  12. Association and Interaction Effect of AGTR1 and AGTR2 Gene Polymorphisms with Dietary Pattern on Metabolic Risk Factors of Cardiovascular Disease in Malaysian Adults.

    Science.gov (United States)

    Yap, Roseline Wai Kuan; Shidoji, Yoshihiro; Yap, Wai Sum; Masaki, Motofumi

    2017-08-09

    Gene-diet interaction using a multifactorial approach is preferred to study the multiple risk factors of cardiovascular disease (CVD). This study examined the association and gene-diet interaction effects of the angiotensin II type 1 receptor (AGTR1) gene (rs5186), and type 2 receptor (AGTR2) gene (rs1403543) polymorphisms on metabolic risk factors of CVD in Malaysian adults. CVD parameters (BMI, blood pressure, glycated hemoglobin, total cholesterol (TC), triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), and TC/HDL-C ratio), and constructed dietary patterns "vegetables, fruits, and soy diet" (VFSD), and "rice, egg, and fish diet" (REFD) were obtained from previous studies. Genotyping analysis was performed by real-time PCR using Taqman probes. The subjects were 507 adults (151 Malays; 179 Chinese; and 177 Indians). Significant genetic associations were obtained on blood lipids for rs5186 in Malays and Chinese, and rs1403543 in Chinese females. The significant gene-diet interaction effects after adjusting for potential confounders were: rs5186 × VFSD on blood pressure in Malays (p = 0.016), and in Chinese on blood lipids for rs5186 × REFD (p = 0.009-0.023), and rs1403543 × VFSD in female subjects (p = 0.001-0.011). Malays and Chinese showed higher risk for blood pressure and/or lipids involving rs5186 and rs1403543 SNPs together with gene-diet interactions, but not Indians.

  13. Mucosal pentraxin (Mptx), a novel rat gene 10-fold down-regulated in colon by dietary heme

    NARCIS (Netherlands)

    Meer - van Kraaij, van der C.; Lieshout, van E.M.M.; Kramer, E.H.M.; Meer, van der R.; Keijer, J.

    2003-01-01

    Consumption of red meat is associated with increased colon cancer risk. Our previous work indicated that this association might be due to the heme content of red meat. In rat studies, dietary heme increased colonic cytotoxicity and epithelial cell turnover, carcinogenesis biomarkers. Here we apply

  14. Pulsed low-level infrared laser alters mRNA levels from muscle repair genes dependent on power output in Wistar rats

    Science.gov (United States)

    Trajano, L. A. S. N.; Trajano, E. T. L.; Thomé, A. M. C.; Sergio, L. P. S.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2017-10-01

    Satellite cells are present in skeletal muscle functioning in the repair and regeneration of muscle injury. Activation of these cells depends on the expression of myogenic factor 5 (Myf5), myogenic determination factor 1(MyoD), myogenic regulatory factor 4 (MRF4), myogenin (MyoG), paired box transcription factors 3 (Pax3), and 7 (Pax7). Low-level laser irradiation accelerates the repair of muscle injuries. However, data from the expression of myogenic factors have been controversial. Furthermore, the effects of different laser beam powers on the repair of muscle injuries have been not evaluated. The aim of this study was to evaluate the effects of low-level infrared laser at different powers and in pulsed emission mode on the expression of myogenic regulatory factors and on Pax3 and Pax7 in injured skeletal muscle from Wistar rats. Animals that underwent cryoinjury were divided into three groups: injury, injury laser 25 Mw, and injury laser 75 mW. Low-level infrared laser irradiation (904 nm, 3 J cm‑2, 5 kHz) was carried out at 25 and 75 mW. After euthanasia, skeletal muscle samples were withdrawn and the total RNA was extracted for the evaluation of mRNA levels from the MyoD, MyoG, MRF4, Myf5, Pax3, and Pax7 gene. Pax 7 mRNA levels did not alter, but Pax3 mRNA levels increased in the injured and laser-irradiated group at 25 mW. MyoD, MyoG, and MYf5 mRNA levels increased in the injured and laser-irradiated animals at both powers, and MRF4 mRNA levels decreased in the injured and laser-irradiated group at 75 mW. In conclusion, exposure to pulsed low-level infrared laser, by power-dependent effect, could accelerate the muscle repair process altering mRNA levels from paired box transcription factors and myogenic regulatory factors.

  15. A study on p53 gene alterations in esophageal squamous cell carcinoma and their correlation to common dietary risk factors among population of the Kashmir valley

    Institute of Scientific and Technical Information of China (English)

    Imtiyaz Murtaza; Dhuha Mushtaq; Mushtaq A Margoob; Amit Dutt; Nisar Ahmad Wani; Ishfaq Ahmad; Mohan Lal Bhat

    2006-01-01

    AIM: To systematically examine the extent of correlation of risk factors, such as age, consumed dietary habit and familial predisposition with somatic Tp53 molecular lesion causal to elevate carcinogenesis severity of esophageal squamous cell carcinoma (ESCC) among the Kashmiri population of Northern India.METHODS: All cases (n = 51) and controls (n = 150) were permanent residents of the Kashmir valley. Genetic alterations were determined in exons 5-8 of Tp53 tumor suppressor gene among 45 ESCC cases histologically confirmed by PCR-SSCP analysis. Data for individual cancer cases (n = 45) and inpatient controls (n = 150) with non-cancer disease included information on family history of cancer, thirty prevailing common dietary risk factors along with patient's age group. Correlation of genetic lesion in p53 exons to animistic data from these parameters was generated by Chi-square test to all 45 histologically confirmed ESCC cases along with healthy controls.RESULTS: Thirty-five of 45 (77.8%) histologically characterized tumor samples had analogous somatic mutation as opposed to 1 of 45 normal sample obtained from adjacent region from the same patient showed germline mutation. The SSCP analysis demonstrated that most common p53 gene alterations were found in exon 6 (77.7%), that did not correlate with the age of the individual and clinicopathological parameters but showed significant concordance (P < 0.05) with familial history of cancer (CD = 58), suggesting germline predisposition at an unknown locus, and dietary habit of consuming locally grown Brassica vegetable "Hakh" (CD = 19.5),red chillies (CD = 20.2), hot salty soda tea (CD = 2.37) and local baked bread (CD = 1.1).CONCLUSION: Our study suggests that somatic chromosomal mutations, especially in exon 6 of Tp53 gene, among esophageal cancer patients of an ethnically homogenous population of Kashmir valley are closely related to continued exposure to various common dietary risk factors, especially hot salty tea

  16. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair.

    Directory of Open Access Journals (Sweden)

    Ewelina Bolcun-Filas

    2009-02-01

    Full Text Available In mammals, the synaptonemal complex is a structure required to complete crossover recombination. Although suggested by cytological work, in vivo links between the structural proteins of the synaptonemal complex and the proteins of the recombination process have not previously been made. The central element of the synaptonemal complex is traversed by DNA at sites of recombination and presents a logical place to look for interactions between these components. There are four known central element proteins, three of which have previously been mutated. Here, we complete the set by creating a null mutation in the Syce1 gene in mouse. The resulting disruption of synapsis in these animals has allowed us to demonstrate a biochemical interaction between the structural protein SYCE2 and the repair protein RAD51. In normal meiosis, this interaction may be responsible for promoting homologous synapsis from sites of recombination.

  17. Lipidomic evidence that lowering the typical dietary palmitate to oleate ratio in humans decreases the leukocyte production of proinflammatory cytokines and muscle expression of redox-sensitive genes.

    Science.gov (United States)

    Kien, C Lawrence; Bunn, Janice Y; Fukagawa, Naomi K; Anathy, Vikas; Matthews, Dwight E; Crain, Karen I; Ebenstein, David B; Tarleton, Emily K; Pratley, Richard E; Poynter, Matthew E

    2015-12-01

    We recently reported that lowering the high, habitual palmitic acid (PA) intake in ovulating women improved insulin sensitivity and both inflammatory and oxidative stress. In vitro studies indicate that PA can activate both cell membrane toll-like receptor-4 and the intracellular nucleotide oligomerization domain-like receptor protein (NLRP3). To gain further insight into the relevance to human metabolic disease of dietary PA, we studied healthy, lean and obese adults enrolled in a randomized, crossover trial comparing 3-week, high-PA (HPA) and low-PA/high-oleic-acid (HOA) diets. After each diet, both hepatic and peripheral insulin sensitivities were measured, and we assessed cytokine concentrations in plasma and in supernatants derived from lipopolysaccharide-stimulated peripheral blood mononuclear cells (PBMCs) as well as proinflammatory gene expression in skeletal muscle. Insulin sensitivity was unaffected by diet. Plasma concentration of tumor necrosis factor-α was higher during the HPA diet. Lowering the habitually high PA intake by feeding the HOA diet resulted in lower secretion of interleukin (IL)-1β, IL-18, IL-10, and tumor necrosis factor-α by PBMCs, as well as lower relative mRNA expression of cJun and NLRP3 in muscle. Principal components analysis of 156 total variables coupled to analysis of covariance indicated that the mechanistic pathway for the differential dietary effects on PBMCs involved changes in the PA/OA ratio of tissue lipids. Our results indicate that lowering the dietary and tissue lipid PA/OA ratio resulted in lower leukocyte production of proinflammatory cytokines and muscle expression of redox-sensitive genes, but the relevance to diabetes risk is uncertain.

  18. Meta-analysis of estrogen response in MCF-7 distinguishes early target genes involved in signaling and cell proliferation from later target genes involved in cell cycle and DNA repair

    Directory of Open Access Journals (Sweden)

    Jagannathan Vidhya

    2011-08-01

    Full Text Available Abstract Background Many studies have been published outlining the global effects of 17β-estradiol (E2 on gene expression in human epithelial breast cancer derived MCF-7 cells. These studies show large variation in results, reporting between ~100 and ~1500 genes regulated by E2, with poor overlap. Results We performed a meta-analysis of these expression studies, using the Rank product method to obtain a more accurate and stable list of the differentially expressed genes, and of pathways regulated by E2. We analyzed 9 time-series data sets, concentrating on response at 3-4 hrs (early and at 24 hrs (late. We found >1000 statistically significant probe sets after correction for multiple testing at 3-4 hrs, and >2000 significant probe sets at 24 hrs. Differentially expressed genes were examined by pathway analysis. This revealed 15 early response pathways, mostly related to cell signaling and proliferation, and 20 late response pathways, mostly related to breast cancer, cell division, DNA repair and recombination. Conclusions Our results confirm that meta-analysis identified more differentially expressed genes than the individual studies, and that these genes act together in networks. These results provide new insight into E2 regulated mechanisms, especially in the context of breast cancer.

  19. Mouse BAZ1A (ACF1 is dispensable for double-strand break repair but is essential for averting improper gene expression during spermatogenesis.

    Directory of Open Access Journals (Sweden)

    James A Dowdle

    2013-11-01

    Full Text Available ATP-dependent chromatin remodelers control DNA access for transcription, recombination, and other processes. Acf1 (also known as BAZ1A in mammals is a defining subunit of the conserved ISWI-family chromatin remodelers ACF and CHRAC, first purified over 15 years ago from Drosophila melanogaster embryos. Much is known about biochemical properties of ACF and CHRAC, which move nucleosomes in vitro and in vivo to establish ordered chromatin arrays. Genetic studies in yeast, flies and cultured human cells clearly implicate these complexes in transcriptional repression via control of chromatin structures. RNAi experiments in transformed mammalian cells in culture also implicate ACF and CHRAC in DNA damage checkpoints and double-strand break repair. However, their essential in vivo roles in mammals are unknown. Here, we show that Baz1a-knockout mice are viable and able to repair developmentally programmed DNA double-strand breaks in the immune system and germ line, I-SceI endonuclease-induced breaks in primary fibroblasts via homologous recombination, and DNA damage from mitomycin C exposure in vivo. However, Baz1a deficiency causes male-specific sterility in accord with its high expression in male germ cells, where it displays dynamic, stage-specific patterns of chromosomal localization. Sterility is caused by pronounced defects in sperm development, most likely a consequence of massively perturbed gene expression in spermatocytes and round spermatids in the absence of BAZ1A: the normal spermiogenic transcription program is largely intact but more than 900 other genes are mis-regulated, primarily reflecting inappropriate up-regulation. We propose that large-scale changes in chromatin composition that occur during spermatogenesis create a window of vulnerability to promiscuous transcription changes, with an essential function of ACF and/or CHRAC chromatin remodeling activities being to safeguard against these alterations.

  20. A symphony on C : orchestrating DNA repair for gene expression via cytosine modification The 2012 IMB Conference: DNA Demethylation, Repair and Beyond Institute of Molecular Biology, Mainz, Germany, 18-21 October 2012

    NARCIS (Netherlands)

    Rots, Marianne G.; Petersen-Mahrt, Svend K.

    2013-01-01

    Headline-grabbing attention has been given to DNA demethylation pathways as new epigenetic mechanisms, with reviews and hypotheses outnumbering research papers. As candidate proteins for DNA demethylation include well-known DNA repair enzymes, it was timely to join epigenetics and DNA repair experts

  1. Hypospadias repair

    Science.gov (United States)

    ... the problem. If the repair is not done, problems may occur later on such as: Difficulty controlling and directing urine stream A curve in the penis during erection Decreased fertility Embarrassment about appearance of penis Surgery ...

  2. Base excision repair in sugarcane

    Directory of Open Access Journals (Sweden)

    Agnez-Lima Lucymara F.

    2001-01-01

    Full Text Available DNA damage can be induced by a large number of physical and chemical agents from the environment as well as compounds produced by cellular metabolism. This type of damage can interfere with cellular processes such as replication and transcription, resulting in cell death and/or mutations. The low frequency of mutagenesis in cells is due to the presence of enzymatic pathways which repair damaged DNA. Several DNA repair genes (mainly from bacteria, yeasts and mammals have been cloned and their products characterized. The high conservation, especially in eukaryotes, of the majority of genes related to DNA repair argues for their importance in the maintenance of life on earth. In plants, our understanding of DNA repair pathways is still very poor, the first plant repair genes having only been cloned in 1997 and the mechanisms of their products have not yet been characterized. The objective of our data mining work was to identify genes related to the base excision repair (BER pathway, which are present in the database of the Sugarcane Expressed Sequence Tag (SUCEST Project. This search was performed by tblastn program. We identified sugarcane clusters homologous to the majority of BER proteins used in the analysis and a high degree of conservation was observed. The best results were obtained with BER proteins from Arabidopsis thaliana. For some sugarcane BER genes, the presence of more than one form of mRNA is possible, as shown by the occurrence of more than one homologous EST cluster.

  3. Molecular cloning and characterization of unfolded protein response genes from large yellow croaker (Larimichthys crocea) and their expression in response to dietary fatty acids.

    Science.gov (United States)

    Liao, Kai; Yan, Jing; Li, Songlin; Wang, Tianjiao; Xu, Wei; Mai, Kangsen; Ai, Qinghui

    2017-01-01

    The unfolded protein response (UPR) is a mechanism to cope with perturbed endoplasmic reticulum (ER) functions or accumulation of unfolded protein in the ER in eukaryotic cells. Furthermore, the UPR also participates in a number of physiological and pathological processes, such as nutrient sensing, lipid synthesis, and inflammatory response. In this study, four UPR-related genes (GRP78/BiP, ATF6α, XBP1 and CHO) were isolated characterized from large yellow croaker (Larimichthys crocea), and their expression in response to dietary lipid sources (various fatty acids) such as fish oil (FO), palmic acid (PA), olive oil (OO), sunflower oil (SO), and perilla oil (PO), were examined following feeding. The results showed that the four UPR-related proteins contained highly conserved functional domains and had the closest phylogenetic relationships with other fishes. Additionally, these genes were ubiquitously expressed in large yellow croaker, as in zebrafish and medaka. Moreover, GRP78, ATF6α and spliced XBP1 (XBP1s) mRNA levels in the liver, not in adipose tissue, were significantly increased in the SO group compared to the other groups (P<0.05). These results indicated that dietary SO activated UPR, and the activation of UPR might provide a mechanism to improve ER function, but probably stimulated lipid synthesis and caused inflammatory response in the liver of large yellow croaker.

  4. Effects of different fatty acids and dietary lipids on adiponectin gene expression in 3T3-L1 cells and C57BL/6J mice adipose tissue.

    Science.gov (United States)

    Bueno, Allain Amador; Oyama, Lila Missae; de Oliveira, Cristiane; Pisani, Luciana Pelegrini; Ribeiro, Eliane Beraldi; Silveira, Vera Lucia Flor; Oller do Nascimento, Cláudia Maria

    2008-01-01

    Obesity is positively correlated to dietary lipid intake, and the type of lipid may play a causal role in the development of obesity-related pathologies. A major protein secreted by adipose tissue is adiponectin, which has antiatherogenic and antidiabetic properties. The aim of this study was to evaluate the effects of four different high-fat diets (enriched with soybean oil, fish oil, coconut oil, or lard) on adiponectin gene expression and secretion by the white adipose tissue (WAT) of mice fed on a selected diet for either 2 (acute treatment) or 60 days (chronic treatment). Additionally, 3T3-L1 adipocytes were treated for 48 h with six different fatty acids: palmitic, linoleic, eicosapentaenoic (EPA), docosahexaenoic (DHA), lauric, or oleic acid. Serum adiponectin concentration was reduced in the soybean-, coconut-, and lard-enriched diets in both groups. Adiponectin gene expression was lower in retroperitoneal WAT after acute treatment with all diets. The same reduction in levels of adiponectin gene expression was observed in epididymal adipose tissue of animals chronically fed soybean and coconut diets and in 3T3-L1 cells treated with palmitic, linoleic, EPA, and DHA acids. These results indicate that the intake of certain fatty acids may affect serum adiponectin levels in mice and adiponectin gene expression in mouse WAT and 3T3-L1 adipocytes. The effects appear to be time dependent and depot specific. It is postulated that the downregulation of adiponectin expression by dietary enrichment with soybean oil or coconut oil may contribute to the development of insulin resistance and atherosclerosis.

  5. Immunohistochemical expression of mismatch repair genes: A screening tool for predicting mutator phenotype in liver fluke infection-associated intrahepatic cholangiocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Upama Liengswangwong; Anant Karalak; Yukio Morishita; Masayuki Noguchi; Thiravud Khuhaprema; Petcharin Srivatanakul; Masanao Miwa

    2006-01-01

    AIM: To clarify possible contributions of DNA mismatch repair (MMR) system in carcinogenesis of liver fluke infection-associated intrahepatic cholangiocarcinoma (ICC) by using immunohistochemical assay.METHODS: A total of 29 ICC samples, which had been assessed for genomic instability by a PCR-based method, were used for study. They were examined immunohistochemically to demonstrate protein expression of two MMR genes, hMSH2 and hMLH1.Results obtained were compared with their mutator phenotype assessed previously.RESULTS: Either hMSH2or hMLH1 protein was obviously expressed in 28 of 29 (96.6%) ICC samples.Positive nuclear localization of hMSH2 or hMLH1 protein was observed in 86.2% (25/29) or 93.1% (27/29) ICC cases, respectively, while their negative nuclear reactivity was only detected in 13.8% (4/29) or 6.9% (2/29) ICC cases analyzed, respectively.CONCLUSION: Our study, probably for the first time,showed through immunohistochemical detection of hMSH2 and hMLH1 gene that DNA MMR system does not play a prominent role in liver fluke infection-associated cholangiocarcinogenesis. These results confirm previous findings on mutational status of these genes assessed through a PCR-based method. The immunohistochemical analysis has proven to be an effective and sensitive approach for screening MMR deficiency regardless of somatic inactivation or promoter hypermethylation of hMSH2 and/or hMLH1 gene. Furthermore,immunohistochemistry is more advantageous compared to mutator phenotyping assay in terms of simplicity,less time consuming and cost effectiveness for screening possible involvements of target MMR genes in tumorigenesis.

  6. DIMETHYLARSINIC ACID ALTERS EXPRESSION OF OXIDATIVE STRESS AND DNA REPAIR GENES IN A DOSE DEPENDENT MANNER IN THE TRANSITIONAL EPITHELIUM OF THE URINARY BLADDER FROM FEMALE F344 RATS.

    Science.gov (United States)

    Dose-dependent alteration of oxidative stress and DNA repair gene expression by Dimethylarsinic acid [DMA(V)] in transitional epithelium of urinary bladder from female F344 rats.Arsenic (As) is a major concern as millions of people are at risk from drinking arsenic contaminat...

  7. DNA repair in Chromobacterium violaceum.

    Science.gov (United States)

    Duarte, Fábio Teixeira; Carvalho, Fabíola Marques de; Bezerra e Silva, Uaska; Scortecci, Kátia Castanho; Blaha, Carlos Alfredo Galindo; Agnez-Lima, Lucymara Fassarella; Batistuzzo de Medeiros, Silvia Regina

    2004-03-31

    Chromobacterium violaceum is a Gram-negative beta-proteobacterium that inhabits a variety of ecosystems in tropical and subtropical regions, including the water and banks of the Negro River in the Brazilian Amazon. This bacterium has been the subject of extensive study over the last three decades, due to its biotechnological properties, including the characteristic violacein pigment, which has antimicrobial and anti-tumoral activities. C. violaceum promotes the solubilization of gold in a mercury-free process, and has been used in the synthesis of homopolyesters suitable for the production of biodegradable polymers. The complete genome sequence of this organism has been completed by the Brazilian National Genome Project Consortium. The aim of our group was to study the DNA repair genes in this o