Inflation in a renormalizable cosmological model and the cosmic no-hair conjecture
Energy Technology Data Exchange (ETDEWEB)
Maeda, K.; Stein-Schabes, J. A.; Futamase, T.
1989-05-15
The possibility of having inflation in a renormalizable cosmological model is investigated. The cosmic no-hair conjecture is proved to hold for all Bianchi types except Bianchi type IX. By the use of a conformal transformation on the metric we show that these models are equivalent to the ones described by the Einstein-Hilbert action for gravity minimally coupled to a set of scalar fields with inflationary potentials. Henceforth, we prove that inflationary solutions behave as attractors in solution space, making it a natural event in the evolution of such models.
Inflation in a renormalizable cosmological model and the cosmic no hair conjecture
Maeda, Kei-Ichi; Stein-Schabes, Jaime A.; Futamase, Toshifumi
1988-01-01
The possibility of having inflation in a renormalizable cosmological model is investigated. The Cosmic No Hair Conjecture is proved to hold for all Bianchi types except Bianchi IX. By the use of a conformal transformation on the metric it is shown that these models are equivalent to the ones described by the Einstein-Hilbert action for gravity minimally coupled to a set of scalar fields with inflationary potentials. Henceforth, it is proven that inflationary solutions behave as attractors in solution space, making it a natural event in the evolution of such models.
Renormalizability of Supersymmetric Group Field Cosmology
Upadhyay, Sudhaker
2014-01-01
In this paper we consider the gauge invariant third quantized model of supersymmetric group field cosmology. The supersymmetric BRST invariance for such theory in non-linear gauge is also analysed. The path integral formulation to the case of a multiverse made up of homogeneous and isotropic spacetimes filled with a perfect fluid is presented. The renormalizability for the scattering of universes in multiverse are established with suitably constructed master equations for connected diagrams and proper vertices. The Slavnov-Taylor identities for this theory hold to all orders of radiative corrections.
Renormalizability of supersymmetric group field cosmology
Upadhyay, Sudhaker
2014-03-01
In this paper we consider the gauge invariant third quantized model of supersymmetric group field cosmology. The supersymmetric BRST invariance for such theory in non-linear gauge is also analysed. The path integral formulation to the case of a multiverse made up of homogeneous and isotropic spacetimes filled with a perfect fluid is presented. The renormalizability for the scattering of universes in multiverse are established with suitably constructed master equations for connected diagrams and proper vertices. The Slavnov-Taylor identities for this theory hold to all orders of radiative corrections.
Cognola, Guido; Sebastiani, Lorenzo; Vagnozzi, Sunny; Zerbini, Sergio
2016-01-01
We consider the Nojiri-Odintsov covariant Horava-like gravitational model, where diffeomorphism invariance is broken dynamically via a non-standard coupling to a perfect fluid. The theory allows to address some of the potential instability problems present in Horava-Lifshitz gravity due to explicit diffeomorphism invariance breaking. The fluid is instead constructed from a scalar field constrained by a Lagrange multiplier. This construction allows to identify the scalar field with the mimetic field of the recently proposed mimetic gravity. Subsequently, we thoroughly explore the consequences of this identification. By adding a potential for the scalar field, we show how one can reproduce a number of interesting cosmological scenarios. We then turn to the study of perturbations around a flat FLRW background, showing that the fluid in question behaves as an irrotational fluid, with zero sound speed. To address this problem, we consider a modified version of the theory, adding higher derivative terms in a way wh...
A renormalizable supersymmetric SO(10) model
Chen, Ying-Kang
2015-01-01
A realistic grand unified model has never been constructed in the literature due to three major difficulties: the seesaw mechanism without spoiling gauge coupling unification, the doublet-triplet splitting and the proton decay suppression. We propose a renormalizable supersymmetric SO(10) model with all these difficulties solved naturally.
Meson Properties in a renormalizable version of the NJL model
Mota, A L; Hiller, B; Walliser, H; Mota, Andre L.; Hiller, Brigitte; Walliser, Hans
1999-01-01
In the present paper we implement a non-trivial and renormalizable extension of the NJL model. We discuss the advantages and shortcomings of this extended model compared to a usual effective Pauli-Villars regularized version. We show that both versions become equivalent in the case of a large cutoff. Various relevant mesonic observables are calculated and compared.
Flavour symmetries in a renormalizable SO(10) model
Ferreira, P M; Jurčiukonis, D; Lavoura, L
2015-01-01
In the context of a renormalizable supersymmetric SO(10) Grand Unified Theory, we consider the fermion mass matrices generated by the Yukawa couplings to a $\\mathbf{10} \\oplus \\mathbf{120} \\oplus \\overline{\\mathbf{126}}$ representation of scalars. We perform a complete investigation of the possibilities of imposing flavour symmetries in this scenario; the purpose is to reduce the number of Yukawa coupling constants in order to identify potentially predictive models. We have found that there are only 14 inequivalent cases of Yukawa coupling matrices, out of which 13 cases are generated by $Z_n$ symmetries, with suitable $n$, and one case is generated by a $Z_2 \\times Z_2$ symmetry. A numerical analysis of the 14 cases reveals that only two of them---dubbed A and B in the present paper---allow good fits to the experimentally known fermion masses and mixings.
Gagnon, Jean-Sébastien; Pérez-Mercader, Juan
2017-08-01
We study the effect of external power-law noise on the renormalizability of a specific reaction-diffusion system of equations describing a cubic autocatalytic chemical reaction. We show that changing the noise exponent modifies the divergence structure of loop integrals and thus the renormalizability of the model. The effects of noise-generated higher order interactions are discussed. We show how noise induces new interaction terms that can be interpreted as a manifestation of some (internal) ;chemical mechanism;. We also show how ideas of effective field theory can be applied to construct a more fundamental chemical model for this system.
Renormalizability of a quark-gluon model with soft BRST breaking in the infrared region
Baulieu, L; Gomez, A J; Lemes, V E R; Sobreiro, R F; Sorella, S P
2010-01-01
We prove the renormalizability of a quark-gluon model with a soft breaking of the BRST symmetry, which accounts for the modification of the large distance behavior of the quark and gluon correlation functions. The proof is valid to all orders of perturbation theory, by making use of softly broken Ward identities.
Renormalizability of N=1/2 Wess-Zumino model in superspace
Romagnoni, A
2003-01-01
In this letter we use the spurion field approach adopted in order to show that by adding F and F^2 terms to the original lagrangian, the N=1/2 Wess-Zumino model is renormalizable to all orders in perturbation theory. We reformulate in superspace language the proof given in the recent work in terms of component fields.
Martín, C P; Tamarit, C
2007-01-01
We discuss the renormalizability of the noncommutative U(1)Higgs-Kibble model formulated within the enveloping-algebra approach. We consider both the phase of the model with unbroken gauge symmetry and the phase with spontaneously broken gauge symmetry. We show that against all odds the gauge sector of the model is always one-loop renormalizable at first order in theta^{mu nu}, perhaps, hinting at the existence of a new symmetry of the gauge sector of the model. However, we also show that the matter sector of the model is non-renormalizable whatever the phase.
Martín, Carmelo P.; Sánchez-Ruiz, Domingo; Tamarit, Carlos
2007-02-01
We discuss the renormalizability of the noncommutative U(1) Higgs-Kibble model formulated within the enveloping-algebra approach. We consider both the phase of the model with unbroken gauge symmetry and the phase with spontaneously broken gauge symmetry. We show that against all odds the gauge sector of the model is always one-loop renormalizable at first order in θμν, perhaps, hinting at the existence of a new symmetry of the gauge sector of the model. However, we also show that the matter sector of the model is non-renormalizable whatever the phase.
Renormalizability and nonrenormalizable interactions
Institute of Scientific and Technical Information of China (English)
YAO Hai-Bo; WU Shi-Shu
2009-01-01
Arguments are provided which show that extension of renormalizability in quantum field theory is possible. By an appropriate choice of effective Lagrangian, a dressed Feynman propagator is obtained. In this scheme, higher order Feynman diagrams become self-convergent and nonrenormalizable interactions become renormalizable. As an example, the vacuum fluctuation effects on p meson mass for the vector-tensor coupling model is discussed. It is found that the result can agree with the experimental value when coupling constant is adjusted.
Quadri, A
2006-01-01
We elucidate the geometry of the polynomial formulation of the non-abelian Stueckelberg mechanism. We show that a natural off-shell nilpotent BRST differential exists allowing to implement the constraint on the sigma field by means of BRST techniques. This is achieved by extending the ghost sector by an additional U(1) factor (abelian embedding). An important consequence is that a further BRST-invariant but not gauge-invariant mass term can be written for the non-abelian gauge fields. As all versions of the Stueckelberg theory, also the abelian embedding formulation yields a non power-counting renormalizable theory in D=4. We then derive its natural power-counting renormalizable extension and show that the physical spectrum contains a physical massive scalar particle. Physical unitarity is also established. This model implements the spontaneous symmetry breaking in the abelian embedding formalism.
Two loop effective Kähler potential of (non-)renormalizable supersymmetric models
Nibbelink, S G; Nibbelink, Stefan Groot; Nyawelo, Tino S.
2006-01-01
We perform a supergraph computation of the effective Kaehler potential at one and two loops for general four dimensional N=1 supersymmetric theories described by arbitrary Kaehler potential, superpotential and gauge kinetic function. We only insist on gauge invariance of the Kaehler potential and the superpotential as we heavily rely on its consequences in the quantum theory. However, we do not require gauge invariance for the gauge kinetic functions, so that our results can also be applied to anomalous theories that involve the Green-Schwarz mechanism. We illustrate our two loop results by considering a few simple models: the (non-)renormalizable Wess-Zumino model and Super Quantum Electrodynamics.
Accioly, Antonio; Correia, Gilson; de Brito, Gustavo P.; de Almeida, José; Herdy, Wallace
2017-03-01
Simple prescriptions for computing the D-dimensional classical potential related to electromagnetic and gravitational models, based on the functional generator, are built out. These recipes are employed afterward as a support for probing the premise that renormalizable higher-order systems have a finite classical potential at the origin. It is also shown that the opposite of the conjecture above is not true. In other words, if a higher-order model is renormalizable, it is necessarily endowed with a finite classical potential at the origin, but the reverse of this statement is untrue. The systems used to check the conjecture were D-dimensional fourth-order Lee-Wick electrodynamics, and the D-dimensional fourth- and sixth-order gravity models. A special attention is devoted to New Massive Gravity (NMG) since it was the analysis of this model that inspired our surmise. In particular, we made use of our premise to resolve trivially the issue of the renormalizability of NMG, which was initially considered to be renormalizable, but it was shown some years later to be non-renormalizable. We remark that our analysis is restricted to local models in which the propagator has simple and real poles.
Renormalizable Tensor Field Theories
Geloun, Joseph Ben
2016-01-01
Extending tensor models at the field theoretical level, tensor field theories are nonlocal quantum field theories with Feynman graphs identified with simplicial complexes. They become relevant for addressing quantum topology and geometry in any dimension and therefore form an interesting class of models for studying quantum gravity. We review the class of perturbatively renormalizable tensor field theories and some of their features.
Ciafaloni, Paolo; Torrente-Lujan, Emilio; Urbano, Alfredo
2009-01-01
We address the problem of rationalizing the pattern of fermion masses and mixings by adding a nonabelian flavor symmetry in a grand unified framework. With this purpose, we include an A4 flavor symmetry into a unified renormalizable SUSY GUT SU(5) model. With the help of the "Type II Seesaw" mechanism we are able to obtain the pattern of observed neutrino mixings in a natural way, through the so called tribimaximal matrix.
Ciafaloni, Paolo; Torrente-Lujan, Emilio; Urbano, Alfredo
2009-01-01
We analyze all possible extensions of the recently proposed minimal renormalizable SUSY SU(5) grand unified model with the inclusion of an additional A4 flavor symmetry. We find that there are 5 possible Cases but only one of them is phenomenologically interesting. We develop in detail such Case and we show how the fermion masses and mixing angles come out. As prediction we obtain the neutrino masses of order of 0.1 eV with an inverted hierarchy.
Quantum cosmological metroland model
Anderson, E.; Franzen, A.T.
2010-01-01
Relational particle mechanics is useful for modelling whole-universe issues such as quantum cosmology or the problem of time in quantum gravity, including some aspects outside the reach of comparably complex mini-superspace models. In this paper, we consider the mechanics of pure shape and not scale
An Improved Cosmological Model
Tsamis, N C
2016-01-01
We study a class of non-local, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense universe the nonlocal screening terms become constant as the universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller anti-screening effect that could explain the current phase of acceleration.
Tsamis, N. C.; Woodard, R. P.
2016-08-01
We study a class of nonlocal, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the Universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense Universe the nonlocal screening terms become constant as the Universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller antiscreening effect that could explain the current phase of acceleration.
Renormalizable SU(5) Unification
Perez, Pavel Fileviez
2016-01-01
We propose a simple renormalizable grand unified theory based on the SU(5) gauge symmetry where the neutrino masses are generated at the quantum level through the Zee mechanism. In this model the same Higgs needed to correct the mass relation between charged leptons and down-type quarks plays a crucial role to generate neutrino masses. We show that in this model one can satisfy the constrains coming from the unification of gauge couplings and the mechanism for neutrino masses is discussed in detail. We find an interesting relation between the neutrino masses and the charged fermion masses. The predictions for proton decay are discussed in order to understand the testability at current and future experiments such as Hyper-Kamiokande. This simple theory predicts a light colored octet which could give rise to exotic signatures at the LHC.
The Standard Cosmological Model
Scott, D
2005-01-01
The Standard Model of Particle Physics (SMPP) is an enormously successful description of high energy physics, driving ever more precise measurements to find "physics beyond the standard model", as well as providing motivation for developing more fundamental ideas that might explain the values of its parameters. Simultaneously, a description of the entire 3-dimensional structure of the present-day Universe is being built up painstakingly. Most of the structure is stochastic in nature, being merely the result of the particular realisation of the "initial conditions" within our observable Universe patch. However, governing this structure is the Standard Model of Cosmology (SMC), which appears to require only about a dozen parameters. Cosmologists are now determining the values of these quantities with increasing precision in order to search for "physics beyond the standard model", as well as trying to develop an understanding of the more fundamental ideas which might explain the values of its parameters. Althoug...
FLRW viscous cosmological models
Khadekar, G S; Meng, X -H
2016-01-01
In this paper we solve Friedmann equations by considering a universal media as a non-perfect fluid with bulk viscosity and is described by a general "gamma law" equation of state of the form $p= (\\gamma -1) \\rho + \\Lambda(t)$, where the adiabatic parameter $\\gamma$ varies with scale factor $R$ of the metric and $\\Lambda$ is the time dependent cosmological constant. A unified description of the early evolution of the universe is presented by assuming the bulk viscosity and cosmological parameter in a linear combination of two terms of the form: $\\Lambda(t)=\\Lambda_{0} + \\Lambda_{1}\\frac{\\dot{R}}{R}$ and $\\zeta = \\zeta_{0} + \\zeta_{1} \\frac{\\dot{R}}{R}$, where $\\Lambda_{0},\\;\\Lambda_{1},\\, \\zeta_{0}$ and $ \\zeta_{1}$ are constants, in which an inflationary phase is followed by the radiation dominated phase. For this general gamma law equation of state, an entirely integrable dynamical equation to the scale factor $R$ is obtained along with its exact solutions. In this framework we demonstrate that the model can...
Quantum cosmological metroland model
Energy Technology Data Exchange (ETDEWEB)
Anderson, Edward [DAMTP, Cambridge (United Kingdom); Franzen, Anne, E-mail: ea212@cam.ac.u, E-mail: a.t.franzen@uu.n [Spinoza Institute, Utrecht (Netherlands)
2010-02-21
Relational particle mechanics is useful for modelling whole-universe issues such as quantum cosmology or the problem of time in quantum gravity, including some aspects outside the reach of comparably complex mini-superspace models. In this paper, we consider the mechanics of pure shape and not scale of four particles on a line, so that the only physically significant quantities are ratios of relative separations between the constituents' physical objects. Many of our ideas and workings extend to the N-particle case. As such models' configurations resemble depictions of metro lines in public transport maps, we term them 'N-stop metrolands'. This 4-stop model's configuration space is a 2-sphere, from which our metroland mechanics interpretation is via the 'cubic' tessellation. This model yields conserved quantities which are mathematically SO(3) objects like angular momenta but are physically relative dilational momenta (i.e. coordinates dotted with momenta). We provide and interpret various exact and approximate classical and quantum solutions for 4-stop metroland; from these results one can construct expectations and spreads of shape operators that admit interpretations as relative sizes and the 'homogeneity of the model universe's contents', and also objects of significance for the problem of time in quantum gravity (e.g. in the naive Schroedinger and records theory timeless approaches).
Matrix Model Approach to Cosmology
Chaney, A; Stern, A
2015-01-01
We perform a systematic search for rotationally invariant cosmological solutions to matrix models, or more specifically the bosonic sector of Lorentzian IKKT-type matrix models, in dimensions $d$ less than ten, specifically $d=3$ and $d=5$. After taking a continuum (or commutative) limit they yield $d-1$ dimensional space-time surfaces, with an attached Poisson structure, which can be associated with closed, open or static cosmologies. For $d=3$, we obtain recursion relations from which it is possible to generate rotationally invariant matrix solutions which yield open universes in the continuum limit. Specific examples of matrix solutions have also been found which are associated with closed and static two-dimensional space-times in the continuum limit. The solutions provide for a matrix resolution of cosmological singularities. The commutative limit reveals other desirable features, such as a solution describing a smooth transition from an initial inflation to a noninflationary era. Many of the $d=3$ soluti...
The adhesion model as a field theory for cosmological clustering
Energy Technology Data Exchange (ETDEWEB)
Rigopoulos, Gerasimos, E-mail: rigopoulos@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 12, Heidelberg, 69120 Germany (Germany)
2015-01-01
The adhesion model has been proposed in the past as an improvement of the Zel'dovich approximation, providing a good description of the formation of the cosmic web. We recast the model as a field theory for cosmological large scale structure, adding a stochastic force to account for power generated from very short, highly non-linear scales that is uncorrelated with the initial power spectrum. The dynamics of this Stochastic Adhesion Model (SAM) is reminiscent of the well known Kardar-Parisi-Zhang equation with the difference that the viscosity and the noise spectrum are time dependent. Choosing the viscosity proportional to the growth factor D restricts the form of noise spectrum through a 1-loop renormalization argument. For this choice, the SAM field theory is renormalizable to one loop. We comment on the suitability of this model for describing the non-linear regime of the CDM power spectrum and its utility as a relatively simple approach to cosmological clustering.
Cosmological models of galaxy formation
Menci, N.
I review the present status of galaxy formation models within a cosmological framework. I focus on semi-analytic models based on the Cold Dark Matter scenario, discussing the role of the different physical process involving dark matter and baryons in determining the observed statistical properties of galaxies and their dependence on cosmic time and on environment evolution. I will highlight some present problems and briefly present the main effects of assuming a Warm Dark Matter scenario.
Post-Newtonian cosmological models
Sanghai, Viraj A A
2015-01-01
We construct a framework to probe the effect of non-linear structure formation on the large-scale expansion of the universe. We take a bottom-up approach to cosmological modelling by splitting our universe into cells. The matter content within each cell is described by the post-Newtonian formalism. We assume that most of the cell is in the vicinity of weak gravitational fields, so that it can be described using a perturbed Minkowski metric. Our cells are patched together using the Israel junction conditions. We impose reflection symmetry across the boundary of these cells. This allows us to calculate the equation of motion for the boundary of the cell and, hence, the expansion rate of the universe. At Newtonian order, we recover the standard Friedmann-like equations. At post-Newtonian orders, we obtain a correction to the large-scale expansion of the universe. Our framework does not depend on the process of averaging in cosmology. As an example, we use this framework to investigate the cosmological evolution ...
Plane symmetric cosmological models
Yadav, Anil Kumar; Ray, Saibal; Mallick, A
2016-01-01
In this work, we perform the Lie symmetry analysis on the Einstein-Maxwell field equations in plane symmetric spacetime. Here Lie point symmetries and optimal system of one dimensional subalgebras are determined. The similarity reductions and exact solutions are obtained in connection to the evolution of universe. The present study deals with the electromagnetic energy of inhomogeneous universe where $F_{12}$ is the non-vanishing component of electromagnetic field tensor. To get a deterministic solution, it is assumed that the free gravitational field is Petrov type-II non-degenerate. The electromagnetic field tensor $F_{12}$ is found to be positive and increasing function of time. As a special case, to validate the solution set, we discuss some physical and geometric properties of a specific sub-model.
Fujimori, Toshiaki; Izumi, Keisuke; Kitamura, Tomotaka
2016-01-01
We study tree-unitarity and renormalizability in Lifshitz-scaling theory, which is characterized by an anisotropic scaling between the spacial and time directions. Due to the lack of the Lorentz symmetry, the conditions for both unitarity and renormalizability are modified from those in relativistic theories. For renormalizability, the conventional discussion of the power counting conditions has to be extended. Because of the dependence of $S$-matrix elements on the reference frame, unitarity requires stronger conditions than those in relativistic cases. We show that the conditions for unitarity and renormalizabilty are identical as in relativistic theories. We discuss the importance of symmetries for a theory to be renormalizable.
Simple inhomogeneous cosmological (toy) models
I., Eddy G Chirinos; Zimdahl, Winfried
2016-01-01
Based on the Lema\\^itre-Tolman-Bondi (LTB) metric we consider two flat inhomogeneous big-bang models. We aim at clarifying, as far as possible analytically, basic features of the dynamics of the simplest inhomogeneous models and to point out the potential usefulness of exact inhomogeneous solutions as generalizations of the homogeneous configurations of the cosmological standard model. We discuss explicitly partial successes but also potential pitfalls of these simplest models. Although primarily seen as toy models, the relevant free parameters are fixed by best-fit values using the Joint Light-curve Analysis (JLA)-sample data. On the basis of a likelihood analysis we find that a local hump provides a better description of the observations than a local void. Future redshift-drift measurements are discussed as a promising tool to discriminate between inhomogeneous configurations and the $\\Lambda$CDM model.
Magnetic monopoles and relativistic cosmological models
Energy Technology Data Exchange (ETDEWEB)
Stein-Schabes, J.A.
1984-01-01
A dissertation is presented on magnetic monopoles and relativistic cosmological models. The maximum number density of monopoles in various astrophysical scenarios was investigated along with: the monopole flux in the galaxy, the allowed monopole abundance, and the formation of stable monopole orbits. Limits on the mass and lifetime of monopolonium were calculated. Boltzmann's equation was used to calculate the monopole abundance in a magnetic axisymmetric Bianchi I cosmological model, and a solution was found describing an axisymmetric Bianchi I magnetic cosmology with monopoles. New inhomogeneous solutions to Einstein's equations were found. Finally, stability and inflation in Kaluza-Klein cosmologies in d + D + 1 dimensions was studied.
Cosmological model with dynamical curvature
Stichel, Peter C
2016-01-01
We generalize the recently introduced relativistic Lagrangian darkon fluid model (EPJ C (2015) 75:9) by starting with a self-gravitating geodesic fluid whose energy-momentum tensor is dust-like with a nontrivial energy flow. The corresponding covariant propagation and constraint equations are considered in a shear-free nonrelativistic limit whose analytic solutions determine the 1st-order relativistic correction to the spatial curvature. This leads to a cosmological model where the accelerated expansion of the Universe is driven by a time-dependent spatial curvature without the need for introducing any kind of dark energy. We derive the differential equation to be satisfied by the area distance for this model.
Renormalizable Quantum Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning
2002-01-01
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.
BRS structure of simple model of cosmological constant and cosmology
Mori, Taisaku; Nitta, Daisuke; Nojiri, Shin'ichi
2017-07-01
In Mod. Phys. Lett. A 31, 1650213 (2016, 10.1142/S0217732316502138), Nojiri proposed a simple model in order to solve one of the problems related to the cosmological constant. The model is induced from a topological field theory, and the model has an infinite number of BRS symmetries. The BRS symmetries are, in general, spontaneously broken, however. We investigate the BRS symmetry in detail and show that there is one and only one BRS symmetry which is not broken, and the unitarity can be guaranteed. In the model, the quantum problem of the vacuum energy, which may be identified with the cosmological constant, reduces to the classical problem of the initial condition. We investigate the cosmology given by the model and specify the region of the initial conditions, which could be consistent with the evolution of the Universe. We also show that there is a stable solution describing the de Sitter space-time, which may explain the accelerating expansion in the current Universe.
Will Quantum Cosmology Resurrect Chaotic Inflation Model?
Kim, Sang Pyo; Kim, Won
2016-07-01
The single field chaotic inflation model with a monomial power greater than one seems to be ruled out by the recent Planck and WMAP CMB data while Starobinsky model with a higher curvature term seems to be a viable model. Higher curvature terms being originated from quantum fluctuations, we revisit the quantum cosmology of the Wheeler-DeWitt equation for the chaotic inflation model. The semiclassical cosmology emerges from quantum cosmology with fluctuations of spacetimes and matter when the wave function is peaked around the semiclassical trajectory with quantum corrections a la the de Broglie-Bohm pilot theory.
Will quantum cosmology resurrect chaotic inflation model?
Kim, Sang Pyo
2016-01-01
The single field chaotic inflation model with a monomial power greater than one seems to be ruled out by the recent Planck and WMAP CMB data while Starobinsky model with a higher curvature term seems to be a viable model. Higher curvature terms being originated from quantum fluctuations, we revisit the quantum cosmology of the Wheeler-DeWitt equation for the chaotic inflation model. The semiclassical cosmology emerges from quantum cosmology with fluctuations of spacetimes and matter when the wave function is peaked around the semiclassical trajectory with quantum corrections a la the de Broglie-Bohm pilot theory.
Isotropic cosmological singularities other matter models
Tod, K P
2003-01-01
Isotropic cosmological singularities are singularities which can be removed by rescaling the metric. In some cases already studied (gr-qc/9903008, gr-qc/9903009, gr-qc/9903018) existence and uniqueness of cosmological models with data at the singularity has been established. These were cosmologies with, as source, either perfect fluids with linear equations of state or massless, collisionless particles. In this article we consider how to extend these results to a variety of other matter models. These are scalar fields, massive collisionless matter, the Yang-Mills plasma of Choquet-Bruhat, or matter satisfying the Einstein-Boltzmann equation.
Vittorio, Nicola
2017-01-01
Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives.
Inhomogeneous Universe Models with Varying Cosmological Term
Chimento, L P; Chimento, Luis P.; Pavon, Diego
1998-01-01
The evolution of a class of inhomogeneous spherically symmetric universe models possessing a varying cosmological term and a material fluid, with an adiabatic index either constant or not, is studied.
Current status of cosmological MDM model
Mikheeva, E V; Arkhipova, N A; Malinovsky, A M
2000-01-01
An analysis of cosmological models in spatially flat Friedmann Universe with cosmic gravitational wave background and zero $\\Lambda$-term is presented. The number of free parameters is equal to 5, they are $\\sigma_8$, $n$, $\\Omega_\
Standard Model Background of the Cosmological Collider
Chen, Xingang; Xianyu, Zhong-Zhi
2016-01-01
The inflationary universe can be viewed as a "Cosmological Collider" with energy of Hubble scale, producing very massive particles and recording their characteristic signals in primordial non-Gaussianities. To utilize this collider to explore any new physics at very high scales, it is a prerequisite to understand the background signals from the particle physics Standard Model. In this paper we describe the Standard Model background of the Cosmological Collider.
Renormalization of 3d quantum gravity from matrix models
Ambjørn, Jan; Loll, R
2004-01-01
Lorentzian simplicial quantum gravity is a non-perturbatively defined theory of quantum gravity which predicts a positive cosmological constant. Since the approach is based on a sum over space-time histories, it is perturbatively non-renormalizable even in three dimensions. By mapping the three-dimensional theory to a two-matrix model with ABAB interaction we show that both the cosmological and the (perturbatively) non-renormalizable gravitational coupling constant undergo additive renormalizations consistent with canonical quantization.
Nonstandard cosmologies from physics beyond the Standard model
Khlopov, M. Yu.
2016-01-01
The modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy.It implies extension of particle symmetry beyond the Standard model. Studies of physical basis of the modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play important role. The cosmological consequences of particle models inevitably go beyond the 'standard' cosmological $\\Lambda$CD...
A Renormalizable 4-Dimensional Tensor Field Theory
Geloun, Joseph Ben
2011-01-01
We prove that an integrated version of the Gurau colored tensor model supplemented with the usual Bosonic propagator on $U(1)^4$ is renormalizable to all orders in perturbation theory. The model is of the type expected for quantization of space-time in 4D Euclidean gravity and is the first example of a renormalizable model of this kind. Its vertex and propagator are four-stranded like in 4D group field theories, but without gauge averaging on the strands. Surprisingly perhaps, the model is of the $\\phi^6$ rather than of the $\\phi^4$ type, since two different $\\phi^6$-type interactions are log-divergent, i.e. marginal in the renormalization group sense. The renormalization proof relies on a multiscale analysis. It identifies all divergent graphs through a power counting theorem. These divergent graphs have internal and external structure of a particular kind called melonic. Melonic graphs dominate the 1/N expansion of colored tensor models and generalize the planar ribbon graphs of matrix models. A new localit...
Cosmological models with running cosmological term and decaying dark matter
Szydłowski, Marek; Stachowski, Aleksander
2017-03-01
We investigate the dynamics of the generalized ΛCDM model, which the Λ term is running with the cosmological time. On the example of the model Λ(t) =Λbare + α2/t2 we show the existence of a mechanism of the modification of the scaling law for energy density of dark matter: ρdm ∝a - 3 + λ(t). We use an approach developed by Urbanowski in which properties of unstable vacuum states are analyzed from the point of view of the quantum theory of unstable states. We discuss the evolution of Λ(t) term and pointed out that during the cosmic evolution there is a long phase in which this term is approximately constant. We also present the statistical analysis of both the Λ(t) CDM model with dark energy and decaying dark matter and the ΛCDM standard cosmological model. We use data such as Planck, SNIa, BAO, H(z) and AP test. While for the former we find the best fit value of the parameter Ωα2,0 is negative (energy transfer is from the dark matter to dark energy sector) and the parameter Ωα2,0 belongs to the interval (- 0 . 000040 , - 0 . 000383) at 2- σ level. The decaying dark matter causes to lowering a mass of dark matter particles which are lighter than CDM particles and remain relativistic. The rate of the process of decaying matter is estimated. Our model is consistent with the decaying mechanism producing unstable particles (e.g. sterile neutrinos) for which α2 is negative.
Cosmological perturbations in mimetic matter model
Matsumoto, Jiro; Sushkov, Sergey V
2015-01-01
We investigate the cosmological evolution of mimetic matter model with arbitrary scalar potential. The cosmological reconstruction is explicitly done for different choices of potential. The cases that mimetic matter model shows the evolution as Cold Dark Matter(CDM), wCDM model, dark matter and dark energy with dynamical $Om(z)$ or phantom dark energy with phantom-non-phantom crossing are presented in detail. The cosmological perturbations for such evolution are studied in mimetic matter model. For instance, the evolution behavior of the matter density contrast which is different from usual one, i.e. $\\ddot \\delta + 2 H \\dot \\delta - \\kappa ^2 \\rho \\delta /2 = 0$ is investigated. The possibility of peculiar evolution of $\\delta$ in the model under consideration is shown. Special attention is paid to the behavior of matter density contrast near to future singularity where decay of perturbations may occur much earlier the singularity.
Nonstandard cosmologies from physics beyond the Standard model
Khlopov, M Yu
2016-01-01
The modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy.It implies extension of particle symmetry beyond the Standard model. Studies of physical basis of the modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play important role. The cosmological consequences of particle models inevitably go beyond the 'standard' cosmological $\\Lambda$CDM model and some possible feature of such 'nonstandard'cosmological scenarios is the subject of the present brief review.
(Super-)renormalizably dressed black holes
Ayón-Beato, Eloy; Hassaïne, Mokhtar; Méndez-Zavaleta, Julio A.
2015-01-01
Black holes supported by self-interacting conformal scalar fields can be considered as renormalizably dressed since the conformal potential is nothing but the top power-counting renormalizable self-interaction in the relevant dimension. On the other hand, potentials defined by powers which are lower than the conformal one are also phenomenologically relevant since they are in fact super-renormalizable. In this work we provide a new map that allows to build black holes dressed with all the (su...
Cosmological models with constant deceleration parameter
Energy Technology Data Exchange (ETDEWEB)
Berman, M.S.; de Mello Gomide, F.
1988-02-01
Berman presented elsewhere a law of variation for Hubble's parameter that yields constant deceleration parameter models of the universe. By analyzing Einstein, Pryce-Hoyle and Brans-Dicke cosmologies, we derive here the necessary relations in each model, considering a perfect fluid.
Gravitational lens models for cosmological black holes
Zakharov, A. F.; Capozziello, S.; Stornaiolo, C.
2017-03-01
If really such objects like cosmological black holes exist they may be studied with a standard technique like strong and weak gravitational lensing. Cosmological voids can be explained as the result the collapse of large perturbations into black hole with masses of the order of 1014 M ⊙ and the expansion of the universe. The resulting image of the universe is that it is more homogeneous than expected from present observations. In this paper we discuss some lensing properties related to the cosmological black holes (CBHs), namely we consider differences in gravitational lensing for point like mass and extended mass distributions. We consider the singular isothermal sphere model as a toy (illustrative) model for an extended distribution of dark matter and a slightly more complicated isothermal sphere with a core.
Hamiltonian Dynamics of Cosmological Quintessence Models
Ivanov, Rossen I
2016-01-01
The time-evolution dynamics of two nonlinear cosmological real gas models has been reexamined in detail with methods from the theory of Hamiltonian dynamical systems. These examples are FRWL cosmologies, one based on a gas, satisfying the van der Waals equation and another one based on the virial expansion gas equation. The cosmological variables used are the expansion rate, given by the Hubble parameter, and the energy density. The analysis is aided by the existence of global first integral as well as several special (second) integrals in each case. In addition, the global first integral can serve as a Hamiltonian for a canonical Hamiltonian formulation of the evolution equations. The conserved quantities lead to the existence of stable periodic solutions (closed orbits) which are models of a cyclic Universe. The second integrals allow for explicit solutions as functions of time on some special trajectories and thus for a deeper understanding of the underlying physics. In particular, it is shown that any pos...
Cosmological constraints on superconducting dark energy models
Keresztes, Zoltán; Harko, Tiberiu; Liang, Shi-Dong
2015-01-01
We consider cosmological tests of a scalar-vector-tensor gravitational model, in which the dark energy is included in the total action through a gauge invariant, electromagnetic type contribution. The ground state of dark energy, corresponding to a constant potential $V$ is a Bose-Einstein type condensate with spontaneously broken U(1) symmetry. In another words dark energy appears as a massive vector field emerging from a superposition of a massless vector and a scalar field, the latter corresponding to the Goldstone boson. Two particular cosmological models, corresponding to pure electric and pure magnetic type potentials, respectively are confronted with Type IA Supernovae and Hubble parameter data. In the electric case good fit is obtained along a narrow inclined stripe in the $\\Omega _{m}-\\Omega _{V}$ parameter plane, which includes the $\\Lambda $CDM limit. The other points on this admissible region represent superconducting dark energy as a sum of a cosmological constant and a time-evolving contribution...
Renormalizable two-parameter piecewise isometries.
Lowenstein, J H; Vivaldi, F
2016-06-01
We exhibit two distinct renormalization scenarios for two-parameter piecewise isometries, based on 2π/5 rotations of a rhombus and parameter-dependent translations. Both scenarios rely on the recently established renormalizability of a one-parameter triangle map, which takes place if and only if the parameter belongs to the algebraic number field K=Q(5) associated with the rotation matrix. With two parameters, features emerge which have no counterpart in the single-parameter model. In the first scenario, we show that renormalizability is no longer rigid: whereas one of the two parameters is restricted to K, the second parameter can vary continuously over a real interval without destroying self-similarity. The mechanism involves neighbouring atoms which recombine after traversing distinct return paths. We show that this phenomenon also occurs in the simpler context of Rauzy-Veech renormalization of interval exchange transformations, here regarded as parametric piecewise isometries on a real interval. We explore this analogy in some detail. In the second scenario, which involves two-parameter deformations of a three-parameter rhombus map, we exhibit a weak form of rigidity. The phase space splits into several (non-convex) invariant components, on each of which the renormalization still has a free parameter. However, the foliations of the different components are transversal in parameter space; as a result, simultaneous self-similarity of the component maps requires that both of the original parameters belong to the field K.
Minimally coupled scalar field cosmology in anisotropic cosmological model
Singh, C. P.; Srivastava, Milan
2017-02-01
We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar fields with a zero rest mass and an exponential potential are studied, respectively. We find that both assumptions of potential along with the average scale factor as an exponential function of scalar field lead to the logarithmic form of scalar field in each case which further gives power-law form of the average scale factor. Using these forms of the average scale factor, exact solutions of the field equations are obtained to the metric functions which represent a power-law and a hybrid expansion, respectively. We find that the zero-rest-mass model expands with decelerated rate and behaves like a stiff matter. In the case of exponential potential function, the model decelerates, accelerates or shows the transition depending on the parameters. The isotropization is observed at late-time evolution of the Universe in the exponential potential model.
Minimally coupled scalar field cosmology in anisotropic cosmological model
Indian Academy of Sciences (India)
C P SINGH; MILAN SRIVASTAVA
2017-02-01
We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar fields with a zero rest mass and an exponential potential are studied, respectively. We find that both assumptions of potential along with the average scale factor as an exponential function of scalar field lead to the logarithmic formof scalar field in each case which further gives power-law form of the average scale factor. Using these forms of the average scale factor, exact solutions of the field equations are obtained to the metric functions which represent a power-law and a hybrid expansion, respectively. We find that the zero-rest-mass model expands with decelerated rate and behaves like a stiff matter. In the case of exponential potential function, the model decelerates, accelerates or shows the transition depending on the parameters. The isotropization is observed at late-time evolution of the Universe in the exponential potential model.
Strictly isospectral Bianchi type II cosmological models
Rosu, H C; Obregón, O
1996-01-01
We show that, in the Q=0 factor ordering, the Wheeler-DeWitt equation for the Bianchi type ll model with the Ansatz \\rm \\Psi=A\\, e^{\\pm \\Phi(q^{\\mu})}, due to its one-dimensional character, may be approached by the strictly isospectral Darboux-Witten technique in standard supersymmetric quantum mechanics. One-parameter families of cosmological potentials and normalizable `wavefunctions of the universe' are exhibited. The isospectral method can be used to introduce normalizable wavefunctions in quantum cosmology.
On non-singular inhomogeneous cosmological models
Fernández-Jambrina, L
2009-01-01
In this talk we would like to review recent results on non-singular cosmological models. It has been recently shown that among stiff perfect fluid inhomogeneous spacetimes the absence of singularities is more common than it was expected in the literature. We would like to generalize these results and apply them to other matter sources.
A model with cosmological Bell inequalities
Maldacena, Juan
2015-01-01
We discuss the possibility of devising cosmological observables which violate Bell's inequalities. Such observables could be used to argue that cosmic scale features were produced by quantum mechanical effects in the very early universe. As a proof of principle, we propose a somewhat elaborate inflationary model where a Bell inequality violating observable can be constructed.
Realistic coasting cosmology from the Milne model
John, Moncy V
2016-01-01
In the context of the recent synchronicity problem in $\\Lambda$CDM cosmology, coasting models such as the classic Milne model and the $R_h=ct$ model have attracted much attention. Also, a very recent analysis of supernovae Ia data is reported to favour models with constant expansion rates. We point out that the nonempty $R_h=ct$ model has some known antecedents in the literature. Some of these are published even before the discovery of the accelerated expansion and were shown to have none of the cosmological problems and also that $H_0t_0=1$ and $\\Omega_m/\\Omega_{dark \\; energy}$ = some constant of the order of unity. In this paper, we also derive such a model by a complex extension of scale factor in the Milne model.
Constraining Cosmological Models with Different Observations
Wei, J. J.
2016-07-01
With the observations of Type Ia supernovae (SNe Ia), scientists discovered that the Universe is experiencing an accelerated expansion, and then revealed the existence of dark energy in 1998. Since the amazing discovery, cosmology has became a hot topic in the physical research field. Cosmology is a subject that strongly depends on the astronomical observations. Therefore, constraining different cosmological models with all kinds of observations is one of the most important research works in the modern cosmology. The goal of this thesis is to investigate cosmology using the latest observations. The observations include SNe Ia, Type Ic Super Luminous supernovae (SLSN Ic), Gamma-ray bursts (GRBs), angular diameter distance of galaxy cluster, strong gravitational lensing, and age measurements of old passive galaxies, etc. In Chapter 1, we briefly review the research background of cosmology, and introduce some cosmological models. Then we summarize the progress on cosmology from all kinds of observations in more details. In Chapter 2, we present the results of our studies on the supernova cosmology. The main difficulty with the use of SNe Ia as standard candles is that one must optimize three or four nuisance parameters characterizing SN luminosities simultaneously with the parameters of an expansion model of the Universe. We have confirmed that one should optimize all of the parameters by carrying out the method of maximum likelihood estimation in any situation where the parameters include an unknown intrinsic dispersion. The commonly used method, which estimates the dispersion by requiring the reduced χ^{2} to equal unity, does not take into account all possible variances among the parameters. We carry out such a comparison of the standard ΛCDM cosmology and the R_{h}=ct Universe using the SN Legacy Survey sample of 252 SN events, and show that each model fits its individually reduced data very well. Moreover, it is quite evident that SLSNe Ic may be useful
Cosmological Models with Time Dependent G and A Coupling Scalars
Institute of Scientific and Technical Information of China (English)
N.Ibotombi Singh; S.Kiranmla Chanu; S.Surendra Singh
2009-01-01
A cosmological model in which the universe has its critical density and gravitational constants generalized as coupling scalars in Einstein's theory is considered.A general method of solving the field equations is given.An exact solution for matter distribution in cosmological models satisfying G = Go(R/Ro)n is presented.Corresponding physical interpretations of the cosmological solutions are also discussed.
Renormalizable model for neutrino mass, dark matter, muon g−2 and 750 GeV diphoton excess
Directory of Open Access Journals (Sweden)
Hiroshi Okada
2016-05-01
Full Text Available We discuss a possibility to explain the 750 GeV diphoton excess observed at the LHC in a three-loop neutrino mass model which has a similar structure to the model by Krauss, Nasri and Trodden. Tiny neutrino masses are naturally generated by the loop effect of new particles with their couplings and masses to be of order 0.1–1 and TeV, respectively. The lightest right-handed neutrino, which runs in the three-loop diagram, can be a dark matter candidate. In addition, the deviation in the measured value of the muon anomalous magnetic moment from its prediction in the standard model can be compensated by one-loop diagrams with exotic multi-charged leptons and scalar bosons. For the diphoton event, an additional isospin singlet real scalar field plays the role to explain the excess by taking its mass of 750 GeV, where it is produced from the gluon fusion production via the mixing with the standard model like Higgs boson. We find that the cross section of the diphoton process can be obtained to be a few fb level by taking the masses of new charged particles to be about 375 GeV and related coupling constants to be order 1.
Homogeneous cosmological models and new inflation
Turner, Michael S.; Widrow, Lawrence M.
1986-01-01
The promise of the inflationary-universe scenario is to free the present state of the universe from extreme dependence upon initial data. Paradoxically, inflation is usually analyzed in the context of the homogeneous and isotropic Robertson-Walker cosmological models. It is shown that all but a small subset of the homogeneous models undergo inflation. Any initial anisotropy is so strongly damped that if sufficient inflation occurs to solve the flatness and horizon problems, the universe today would still be very isotropic.
Del Cima, Oswaldo M; Piguet, Olivier
2016-01-01
In this paper, we revisit the issue intensively studied in recent years on the generation of terms by radiative corrections in models with broken Lorentz symmetry. The algebraic perturbative method of handling the problem of renormalization of the theories with Lorentz symmetry breaking, is used. We hope to make clear the Symanzik's aphorism: "{\\it Whether you like it or not, you have to include in the lagrangian all counter terms consistent with locality and power-counting, unless otherwise constrained by Ward identities.}"
Energy Technology Data Exchange (ETDEWEB)
Del Cima, Oswaldo M.; Franco, Daniel H.T.; Piguet, Olivier, E-mail: opiguet@pq.cnpq.br
2016-11-15
In this paper, we revisit the issue intensively studied in recent years on the generation of terms by radiative corrections in models with broken Lorentz symmetry. The algebraic perturbative method of handling the problem of renormalization of the theories with Lorentz symmetry breaking, is used. We hope to make clear the Symanzik's aphorism: “Whether you like it or not, you have to include in the lagrangian all counter terms consistent with locality and power-counting, unless otherwise constrained by Ward identities.”{sup 1}.
Directory of Open Access Journals (Sweden)
Oswaldo M. Del Cima
2016-11-01
Full Text Available In this paper, we revisit the issue intensively studied in recent years on the generation of terms by radiative corrections in models with broken Lorentz symmetry. The algebraic perturbative method of handling the problem of renormalization of the theories with Lorentz symmetry breaking, is used. We hope to make clear the Symanzik's aphorism: “Whether you like it or not, you have to include in the lagrangian all counter terms consistent with locality and power-counting, unless otherwise constrained by Ward identities.”1
Renormalizable theories with symmetry breaking
Becchi, Carlo M
2016-01-01
The description of symmetry breaking proposed by K. Symanzik within the framework of renormalizable theories is generalized from the geometrical point of view. For an arbitrary compact Lie group, a soft breaking of arbitrary covariance, and an arbitrary field multiplet, the expected integrated Ward identities are shown to hold to all orders of renormalized perturbation theory provided the Lagrangian is suitably chosen. The corresponding local Ward identity which provides the Lagrangian version of current algebra through the coupling to an external, classical, Yang-Mills field, is then proved to hold up to the classical Adler-Bardeen anomaly whose general form is written down. The BPHZ renormalization scheme is used throughout in such a way that the algebraic structure analyzed in the present context may serve as an introduction to the study of fully quantized gauge theories.
Starobinsky cosmological model in Palatini formalism
Energy Technology Data Exchange (ETDEWEB)
Stachowski, Aleksander [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Borowiec, Andrzej [Wroclaw University, Institute for Theoretical Physics, Wroclaw (Poland)
2017-06-15
We classify singularities in FRW cosmologies, which dynamics can be reduced to the dynamical system of the Newtonian type. This classification is performed in terms of the geometry of a potential function if it has poles. At the sewn singularity, which is of a finite scale factor type, the singularity in the past meets the singularity in the future. We show that such singularities appear in the Starobinsky model in f(R) = R + γR{sup 2} in the Palatini formalism, when dynamics is determined by the corresponding piecewise-smooth dynamical system. As an effect we obtain a degenerate singularity. Analytical calculations are given for the cosmological model with matter and the cosmological constant. The dynamics of model is also studied using dynamical system methods. From the phase portraits we find generic evolutionary scenarios of the evolution of the universe. For this model, the best fit value of Ω{sub γ} = 3γH{sub 0}{sup 2} is equal 9.70 x 10{sup -11}. We consider a model in both Jordan and Einstein frames. We show that after transition to the Einstein frame we obtain both the form of the potential of the scalar field and the decaying Lambda term. (orig.)
Starobinsky cosmological model in Palatini formalism
Stachowski, Aleksander; Borowiec, Andrzej
2016-01-01
We classify singularities in FRW cosmologies, which dynamics can be reduced to the dynamical system of the Newtonian type. This classification is performed in terms of geometry of a potential function if it has poles. At the sewn singularity, which is of a type of the finite scale factor, the singularity in the past meets the singularity in the future. We show, that such singularities appear in the Starobinsky model in $f(\\hat{R})=\\hat{R}+\\gamma \\hat{R}^2$ in the Palatini formalism, when dynamics is determined by the corresponding piece-wise smooth dynamical system. As an effect we obtain a degenerated singularity, which can be interpreted as a place, when history of the Universe ends and originates simultaneously. Detailed analytical calculations are given for the cosmological model with matter and the cosmological constant in the Starobinsky model. In this case we obtain an exact formula for values of redshift at the singularity points. The dynamics of model is also studied using dynamical system methods wh...
$C$-field cosmological models: revisited
Yadav, A K; Ray, Saibal; Rahaman, F; Sardar, I H
2015-01-01
We investigate plane symmetric space-time filled with perfect fluid in the $C$-field cosmology of Hoyle and Narlikar. A new class of exact solutions have been obtained by considering the creation field $C$ as a function of time only. To get the deterministic solution, it has been assumed that the rate of creation of matter-energy density is proportional to the strength of the existing $C$-field energy density. Several physical aspects and geometrical properties of the models are discussed in detail, especially it is shown that some of our solutions of $C$-field cosmology are free from singularity in contrast to the Big Bang cosmology. A comparative study has been carried out between two models, one singular and the other nonsingular, by contrasting the behaviour of the physical parameters and noted that the model in a unique way represents both the features of the accelerating as well as decelerating Universe depending on the parameters and thus seems provides glimpses of the oscillating or cyclic model of th...
The simplest possible bouncing quantum cosmological model
Peter, Patrick
2016-01-01
We present and expand the simplest possible quantum cosmological model already discussed in a previous work: the trajectory formulation of quantum mechanics applied to cosmology in the FLRW minisuperspace without spatial curvature. The initial conditions that were assumed there were such that the wave function would not change its functional form but instead provide a dynamics to its parameters. Here, we consider a more general situation, in practice consisting of modified Gaussian wave functions, aiming at obtaining a bounce from a contracting phase. Whereas previous works consistently obtain very symmetric bounces, we find that it is possible to produce highly non symmetric solutions, and even cases for which multiple bounces naturally occur. We also introduce a means of treating the shear in this category of models by quantizing in the Bianchi I minisuperpace.
The simplest possible bouncing quantum cosmological model
Peter, Patrick; Vitenti, Sandro D. P.
2016-06-01
We present and expand the simplest possible quantum cosmological bouncing model already discussed in previous works: the trajectory formulation of quantum mechanics applied to cosmology (through the Wheeler-De Witt equation) in the Friedmann-Lemaître-Robertson-Walker (FLRW) minisuperspace without spatial curvature. The initial conditions that were previously assumed were such that the wave function would not change its functional form but instead provide a dynamics to its parameters. Here, we consider a more general situation, in practice consisting of modified Gaussian wave functions, aiming at obtaining a nonsingular bounce from a contracting phase. Whereas previous works consistently obtain very symmetric bounces, we find that it is possible to produce highly non-symmetric solutions, and even cases for which multiple bounces naturally occur. We also introduce a means of treating the shear in this category of models by quantizing in the Bianchi I minisuperspace.
Arbitrary scalar field and quintessence cosmological models
Harko, Tiberiu; Mak, M K
2014-01-01
The mechanism of the initial inflationary scenario of the universe and of its late-time acceleration can be described by assuming the existence of some gravitationally coupled scalar fields $\\phi $, with the inflaton field generating inflation and the quintessence field being responsible for the late accelerated expansion. Various inflationary and late-time accelerated scenarios are distinguished by the choice of an effective self-interaction potential $V(\\phi)$, which simulates a temporarily non-vanishing cosmological term. In this work, we present a new formalism for the analysis of scalar fields in flat isotropic and homogeneous cosmological models. The basic evolution equation of the models can be reduced to a first order non-linear differential equation. Approximate solutions of this equation can be constructed in the limiting cases of the scalar field kinetic energy and potential energy dominance, respectively, as well as in the intermediate regime. Moreover, we present several new accelerating and dece...
Rubakov, V A
2014-01-01
In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.
Past Eras In Cyclic Cosmological Models
Frampton, Paul H
2009-01-01
In infinitely cyclic cosmology past eras are discussed using set theory and transfinite numbers. One consistent scenario, already in the literature, is where there is always a countably infinite number, $\\aleph_0$, of universes and no big bang. I describe here an alternative where the present number of universes is $\\aleph_0$ and in the infinite past there was only a finite number of universes. In this alternative model it is also possible that there was no big bang.
Inextendibility of expanding cosmological models with symmetry
Energy Technology Data Exchange (ETDEWEB)
Dafermos, Mihalis [University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Wilberforce Road, Cambridge CB3 0WB (United Kingdom); Rendall, Alan D [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muehlenberg 1, D-14476 Golm (Germany)
2005-12-07
A new criterion for inextendibility of expanding cosmological models with symmetry is presented. It is applied to derive a number of new results and to simplify the proofs of existing ones. In particular, it shows that the solutions of the Einstein-Vlasov system with T{sup 2} symmetry, including the vacuum solutions, are inextendible in the future. The technique introduced adds a qualitatively new element to the available tool-kit for studying strong cosmic censorship. (letter to the editor)
The best-fit universe. [cosmological models
Turner, Michael S.
1991-01-01
Inflation provides very strong motivation for a flat Universe, Harrison-Zel'dovich (constant-curvature) perturbations, and cold dark matter. However, there are a number of cosmological observations that conflict with the predictions of the simplest such model: one with zero cosmological constant. They include the age of the Universe, dynamical determinations of Omega, galaxy-number counts, and the apparent abundance of large-scale structure in the Universe. While the discrepancies are not yet serious enough to rule out the simplest and most well motivated model, the current data point to a best-fit model with the following parameters: Omega(sub B) approximately equal to 0.03, Omega(sub CDM) approximately equal to 0.17, Omega(sub Lambda) approximately equal to 0.8, and H(sub 0) approximately equal to 70 km/(sec x Mpc) which improves significantly the concordance with observations. While there is no good reason to expect such a value for the cosmological constant, there is no physical principle that would rule out such.
The best-fit universe. [cosmological models
Turner, Michael S.
1991-01-01
Inflation provides very strong motivation for a flat Universe, Harrison-Zel'dovich (constant-curvature) perturbations, and cold dark matter. However, there are a number of cosmological observations that conflict with the predictions of the simplest such model: one with zero cosmological constant. They include the age of the Universe, dynamical determinations of Omega, galaxy-number counts, and the apparent abundance of large-scale structure in the Universe. While the discrepancies are not yet serious enough to rule out the simplest and most well motivated model, the current data point to a best-fit model with the following parameters: Omega(sub B) approximately equal to 0.03, Omega(sub CDM) approximately equal to 0.17, Omega(sub Lambda) approximately equal to 0.8, and H(sub 0) approximately equal to 70 km/(sec x Mpc) which improves significantly the concordance with observations. While there is no good reason to expect such a value for the cosmological constant, there is no physical principle that would rule out such.
Cosmological aspects of a vector field model
Sadatian, S Davood
2012-01-01
We have studied a DGP-inspired braneworld scenario where the idea of Lorentz invariance violation has been combined into a specifying preferred frame that embed a dynamical normal vector field to brane. We propose the Lorentz violating DGP brane models with enough parameters can explain crossing of phantom divide line. Also we have considered the model for proper cosmological evolution that is according to the observed behavior of the equation of state. In other view point, we have described a Rip singularity solution of model that occur in this model.
Energy Technology Data Exchange (ETDEWEB)
Davis, Tamara M.; Mortsell, E.; Sollerman, J.; Becker, A.C.; Blondin, S.; Challis, P.; Clocchiatti, A.; Filippenko, A.V.; Foley, R.J.; Garnavich, P.M.; Jha, S.; Krisciunas, K.; Kirshner, R.P.; Leibundgut, B.; Li, W.; Matheson, T.; Miknaitis, G.; Pignata, G.; Rest, A.; Riess, A.G.; Schmidt, B.P.; /Bohr Inst. /Stockholm U. /Washington U.,
2007-01-25
The first cosmological results from the ESSENCE supernova survey (Wood-Vasey et al. 2007) are extended to a wider range of cosmological models including dynamical dark energy and non-standard cosmological models. We fold in a greater number of external data sets such as the recent Higher-z release of high-redshift supernovae (Riess et al. 2007) as well as several complementary cosmological probes. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to gauge the worth of models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, the preferred cosmological model is the flat cosmological constant model, where the expansion history of the universe can be adequately described with only one free parameter describing the energy content of the universe. Amongst the more exotic models that provide good fits to the data, we note a preference for models whose best-fit parameters reduce them to the cosmological constant model.
A classical cosmological model for triviality
Salehi, H; Rashidi, R
2004-01-01
The aim of this paper is to study the triviality of $\\lambda\\phi^{4}$ theory in a classical gravitational model. Starting from a conformal invariant scalar tensor theory with a self-interaction term $\\lambda\\phi^{4}$, we investigate the effect of a conformal symmetry breaking emerging from the gravitational coupling of the large-scale distribution of matter in the universe. Taking in this cosmological symmetry breaking phase the infinite limit of the maximal length (the size of the universe) and the zero limit of the minimal length (the Planck length) implies triviality, i.e. a vanishing coupling constant $\\lambda$. It suggests that the activity of the self-interaction term $\\lambda\\phi^{4}$ in the cosmological context implies that the universe is finite and a minimal fundamental length exists.
Hybrid models in loop quantum cosmology
Elizaga Navascués, Beatriz; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.
2016-06-01
In the framework of Loop Quantum Cosmology (LQC), inhomogeneous models are usually quantized by means of a hybrid approach that combines loop quantization techniques with standard quantum field theory methods. This approach is based on a splitting of the phase space in a homogeneous sector, formed by global, zero-modes and an inhomogeneous sector, formed by the remaining, infinite number of modes, that describe the local degrees of freedom. Then, the hybrid quantization is attained by adopting a loop representation for the homogeneous gravitational sector, while a Fock representation is used for the inhomogeneities. The zero-mode of the Hamiltonian constraint operator couples the homogeneous and inhomogeneous sectors. The hybrid approach, therefore, is expected to provide a suitable quantum theory in regimes where the main quantum effects of the geometry are those affecting the zero-modes, while the inhomogeneities, still being quantum, can be treated in a more conventional way. This hybrid strategy was first proposed for the simplest cosmological midisuperspaces: the Gowdy models, and it has been later applied to the case of cosmological perturbations. This paper reviews the construction and main applications of hybrid LQC.
(Super-)renormalizably dressed black holes
Ayón-Beato, Eloy; Méndez-Zavaleta, Julio A
2015-01-01
Black holes supported by self-interacting conformal scalar fields can be considered as renormalizably dressed since the conformal potential is nothing but the top power-counting renormalizable self-interaction in the relevant dimension. On the other hand, potentials defined by powers which are lower than the conformal one are also phenomenologically relevant since they are in fact super-renormalizable. In this work we provide a new map that allows to build black holes dressed with all the (super-)renormalizable contributions starting from known conformal seeds. We explicitly construct several new examples of these solutions in dimensions $D=3$ and $D=4$, including not only stationary configurations but also time-dependent ones.
Cosmological models in general relativity
Indian Academy of Sciences (India)
B B Paul
2003-12-01
LRS Bianchi type-I space-time ﬁlled with perfect ﬂuid is considered here with deceleration parameter as variable. The metric potentials and are functions of as well as . Assuming '/=(), where prime denotes differentiation with respect to , it was found that =('/) and =(), where =() and is the scale factor which is a function of only. The value of Hubble’s constant 0 was found to be less than half for non-ﬂat model and is equal to 1.3 for a ﬂat model.
Dynamical system approach to running $\\Lambda$ cosmological models
Stachowski, Aleksander
2016-01-01
We discussed the dynamics of cosmological models in which the cosmological constant term is a time dependent function through the scale factor $a(t)$, Hubble function $H(t)$, Ricci scalar $R(t)$ and scalar field $\\phi(t)$. We considered five classes of models; two non-covariant parametrization of $\\Lambda$: 1) $\\Lambda(H)$CDM cosmologies where $H(t)$ is the Hubble parameter, 2) $\\Lambda(a)$CDM cosmologies where $a(t)$ is the scale factor, and three covariant parametrization of $\\Lambda$: 3) $\\Lambda(R)$CDM cosmologies, where $R(t)$ is the Ricci scalar, 4) $\\Lambda(\\phi)$-cosmologies with diffusion, 5) $\\Lambda(X)$-cosmologies, where $X=\\frac{1}{2}g^{\\alpha\\beta}\
Beyond the Cosmological Standard Model
Joyce, Austin; Khoury, Justin; Trodden, Mark
2014-01-01
After a decade and a half of research motivated by the accelerating universe, theory and experiment have a reached a certain level of maturity. The development of theoretical models beyond \\Lambda, or smooth dark energy, often called modified gravity, has led to broader insights into a path forward, and a host of observational and experimental tests have been developed. In this review we present the current state of the field and describe a framework for anticipating developments in the next decade. We identify the guiding principles for rigorous and consistent modifications of the standard model, and discuss the prospects for empirical tests. We begin by reviewing attempts to consistently modify Einstein gravity in the infrared, focusing on the notion that additional degrees of freedom introduced by the modification must screen themselves from local tests of gravity. We categorize screening mechanisms into three broad classes: mechanisms which become active in regions of high Newtonian potential, those in wh...
Density contrast indicators in cosmological dust models
Indian Academy of Sciences (India)
Filipe C Mena; Reza Tavakol
2000-10-01
We discuss ways of quantifying structuration in relativistic cosmological settings, by employing a family of covariant density constrast indicators. We study the evolution of these indicators with time in the context of inhomogeneous Szekeres models. We ﬁnd that different observers (having either different spatial locations or different indicators) see different evolutions for the density contrast, which may or may not be monotonically increasing with time. We also ﬁnd that monotonicity seems to be related to the initial conditions of the model, which may be of potential interest in connection with debates regarding gravitational entropy and the arrow of time.
Testing cosmological models with COBE data
Energy Technology Data Exchange (ETDEWEB)
Torres, S. [Observatorio Astronomico, Bogota` (Colombia)]|[Centro Internacional de Fisica, Bogota` (Colombia); Cayon, L. [Lawrence Berkeley Laboratory and Center for Particle Astrophysics, Berkeley (United States); Martinez-Gonzalez, E.; Sanz, J. L. [Santander, Univ. de Cantabria (Spain). Instituto de Fisica. Consejo Superior de Investigaciones Cientificas
1997-02-01
The authors test cosmological models with {Omega} < 1 using the COBE two-year cross-correlation function by means of a maximum-likelihood test with Monte Carlo realizations of several {Omega} models. Assuming a Harrison-Zel`dovich primordial power spectrum with amplitude {proportional_to} Q, it is found that there is a large region in the ({Omega}, Q), parameter space that fits the data equally well. They find that the flatness of the universe is not implied by the data. A summary of other analyses of COBE data to constrain the shape of the primordial spectrum is presented.
Cosmological modelling with Regge calculus
Liu, Rex G
2015-01-01
The late universe's matter distribution obeys the Copernican principle at only the coarsest of scales. The relative importance of such inhomogeneity is still not well understood. Because of the Einstein field equations' non-linear nature, some argue a non-perturbative approach is necessary to correctly model inhomogeneities and may even obviate any need for dark energy. We shall discuss an approach based on Regge calculus, a discrete approximation to general relativity: we shall discuss the Collins--Williams formulation of Regge calculus and its application to two toy universes. The first is a universe for which the continuum solution is well-established, the $\\Lambda$-FLRW universe. The second is an inhomogeneous universe, the `lattice universe' wherein matter consists solely of a lattice of point masses with pure vacuum in between, a distribution more similar to that of the actual universe compared to FLRW universes. We shall discuss both regular lattices and one where one mass gets perturbed.
Inflation in the standard cosmological model
Uzan, Jean-Philippe
2015-12-01
The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multiverse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. xml:lang="fr"
Dynamics in Nonlocal Cosmological Models Derived from String Field Theory
Joukovskaya, Liudmila
2007-01-01
A general class of nonlocal cosmological models is considered. A new method for solving nonlocal Friedmann equations is proposed, and solutions of the Friedmann equations with nonlocal operator are presented. The cosmological properties of these solutions are discussed. Especially indicated is $p$-adic cosmological model in which we have obtained nonsingular bouncing solution and string field theory tachyon model in which we have obtained full solution of nonlocal Friedmann equations with $w=...
Considering Late-Time Acceleration in Some Cosmological Models
Directory of Open Access Journals (Sweden)
S. Davood Sadatian
2013-01-01
Full Text Available We study two cosmological models: a nonminimally coupled scalar field on brane world model and a minimally coupled scalar field on Lorentz invariance violation model. We compare some cosmological results in these scenarios. Also, we consider some types of Rip singularity solution in both models.
Colombo, Mattia; Sotiriou, Thomas P
2015-01-01
It has been argued that Horava gravity needs to be extended to include terms that mix spatial and time derivatives in order avoid unacceptable violations of Lorentz invariance in the matter sector. In an earlier paper we have shown that including such mixed derivative terms generically leads to 4th instead of 6th order dispersion relations and this could be (naively) interpreted as a threat to renormalizability. We have also argued that power-counting renormalizability is not actually compromised, but instead the simplest power-counting renormalizable model is not unitary. In this note we consider the Lifshitz scalar as a toy theory and we generalize our analysis to include higher order operators. We show that models which are power-counting renormalizable and unitary do exist. Our results suggest the existence of a new class of Horava theories with mixed derivative terms.
Standard cosmological evolution in the f(R) model to Kaluza-Klein cosmology
Energy Technology Data Exchange (ETDEWEB)
Aghmohammadi, A; Abolhassani, M R [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University of Tehran (Iran, Islamic Republic of); Saaidi, Kh; Vajdi, A [Department of Physics, Faculty of Science, University of Kurdistan, Pasdaran Ave., Sanandaj (Iran, Islamic Republic of)], E-mail: agha35484@yahoo.com, E-mail: ksaaidi@uok.ac.ir, E-mail: mrhasani@modares.ac.ir, E-mail: Avajdi@uok.ac.ir
2009-12-15
In this paper, using f(R) theory of gravity we explicitly calculate cosmological evolution in the presence of a perfect fluid source in four- and five-dimensional space-time in which this cosmological evolution in self-creation is presented by Reddy et al (2009 Int. J. Theor. Phys. 48 10). An exact cosmological model is presented using a relation between Einstein's gravity field equation components due to a metric with the same component from f(R) theory of gravity. Some physics and kinematical properties of the model are also discussed.
Piecewise Silence in Discrete Cosmological Models
Clifton, Timothy; Rosquist, Kjell
2014-01-01
We consider a family of cosmological models in which all mass is confined to a regular lattice of identical black holes. By exploiting the reflection symmetry about planes that bisect these lattices into identical halves, we are able to consider the evolution of a number of geometrically distinguished surfaces that exist within each of them. We show that gravitational waves are effectively trapped within small chambers for all time, and are not free to propagate throughout the space-time. Each chamber therefore evolves as if it were in isolation from the rest of the universe. We call this phenomenon "piecewise silence".
A New Class of Cosmologically `Viable' $f(R)$ Models
Kumar, Rohin
2016-01-01
Instead of assuming a form of gravity and demand cosmology fit with $\\Lambda CDM$, a potentially `viable' $f(R)$ gravity model is derived assuming an alternative model of cosmology. Taking the `designer' approach to $f(R)$, a new class of solutions are derived starting with linear coasting cosmology in which scale factor linearly increases with time during matter domination. The derived forms of $f(R)$ are presented as result.
Cosmological applications of the Szekeres model
Bolejko, K
2006-01-01
This paper presents the cosmological applications of the quasispherical Szekeres model. The quasispherical Szekeres model is an exact solution of the Einstein field equations, which represents a time-dependent mass dipole superposed on a monopole and therefore is suitable for modelling double structures such as voids and adjourning galaxy superclusters. Moreover, as the Szekeres model is an exact solution of the Einstein equations it enables tracing light and estimation of the impact of cosmic structures on light propagation. This paper presents the evolution of a void and adjourning supercluster and also reports on how the Szekeres model might be employed either for the estimation of mass of galaxies clusters or for the estimation of the luminosity distance.
Structure formation in the DGP cosmological model
Koyama, K; Koyama, Kazuya; Maartens, Roy
2006-01-01
The DGP brane-world model provides an alternative to the standard LCDM cosmology, in which the late universe accelerates due to a modification of gravity rather than vacuum energy. The cosmological constant $\\Lambda$ in LCDM is replaced by a single parameter, the crossover scale $r_c$, in DGP. The Supernova redshift observations can be fitted by both models, with $\\Lambda\\sim H_0^2$ and $r_c \\sim H_0^{-1}$. This degeneracy is broken by structure formation, which is suppressed in different ways in the two models. There is some confusion in the literature about how the standard linear growth factor is modified in DGP. While the luminosity distance can be computed purely from the modified 4-dimensional Friedman equation, the evolution of density perturbations requires an analysis of the 5-dimensional gravitational field. We show that if the 5-dimensional effects are inappropriately neglected, then the 4-dimensional Bianchi identities are violated and the computed growth factor is incorrect. By using the 5-dimens...
Scale Factor Self-Dual Cosmological Models
dS, U Camara; Sotkov, G M
2015-01-01
We implement a conformal time scale factor duality for Friedmann-Robertson-Walker cosmological models, which is consistent with the weak energy condition. The requirement for self-duality determines the equations of state for a broad class of barotropic fluids. We study the example of a universe filled with two interacting fluids, presenting an accelerated and a decelerated period, with manifest UV/IR duality. The associated self-dual scalar field interaction turns out to coincide with the "radiation-like" modified Chaplygin gas models. We present an equivalent realization of them as gauged K\\"ahler sigma models (minimally coupled to gravity) with very specific and interrelated K\\"ahler- and super-potentials. Their applications in the description of hilltop inflation and also as quintessence models for the late universe are discussed.
Cosmological Attractor Models and Higher Curvature Supergravity
Cecotti, Sergio
2014-01-01
We study cosmological $\\alpha$-attractors in superconformal/supergravity models, where $\\alpha$ is related to the geometry of the moduli space. For $\\alpha=1$ attractors \\cite{Kallosh:2013hoa} we present a generalization of the previously known manifestly superconformal higher curvature supergravity model \\cite{Cecotti:1987sa}. The relevant standard 2-derivative supergravity with a minimum of two chiral multiplets is shown to be dual to a 4-derivative higher curvature supergravity, where in general one of the chiral superfields is traded for a curvature superfield. There is a degenerate case when both matter superfields become non-dynamical and there is only a chiral curvature superfield, pure higher derivative supergravity. Generic $\\alpha$-models \\cite{Kallosh:2013yoa} interpolate between the attractor point at $\\alpha=0$ and generic chaotic inflation models at large $\\alpha$, in the limit when the inflaton moduli space becomes flat. They have higher derivative duals with the same number of matter fields as...
Super-renormalizable Higher-Derivative Quantum Gravity
Modesto, Leonardo
2012-01-01
In this paper we study perturbatively an extension of the Stelle higher derivative gravity involving an infinite number of derivative terms. We know that the usual quadratic action is renormalizable but is not unitary because of the presence of a ghost in the theory (pole with negative residue in the propagator). The new theory is instead ghost-free since an entire function (or form factor) is introduced in the model without involving new poles in the propagator. The local high derivative theory is recovered expanding the entire functions to the lowest order in the mass scale of the theory. Any truncation of the entire function gives rise to unitarity violation. The theory is divergent at one loop and finite from two loops upwards: the theory is then super-renormalizable. Using the modified graviton propagator, we demonstrate the regularity of the gravitational potential in r=0.
Cosmological constraint on Brans-Dicke Model
Li, Ji-Xia; Li, Yi-Chao; Gong, Yan; Chen, Xue-Lei
2015-01-01
We combine new Cosmic Microwave Background (CMB) data from Planck with Baryon Acoustic Oscillation (BAO) data to constrain the Brans-Dicke (BD) theory, in which the gravitational constant $G$ evolves with time. Observations of type Ia supernovae (SNeIa) provide another important set of cosmological data, as they may be regarded as standard candles after some empirical corrections. However, in theories that include modified gravity like the BD theory, there is some risk and complication when using the SNIa data because their luminosity may depend on $G$. In this paper, we assume a power law relation between the SNIa luminosity and $G$, but treat the power index as a free parameter. We then test whether the difference in distances measured with SNIa data and BAO data can be reduced in such a model. We also constrain the BD theory and cosmological parameters by making a global fit with the CMB, BAO and SNIa data set. For the CMB+BAO+SNIa data set, we find $0.08\\times10^{-2} < \\zeta <0.33\\times10^{-2} $ at ...
Preon model and cosmological quantum-hyperchromodynamic phase transition
Nishimura, H.; Hayashi, Y.
1987-05-01
From the cosmological viewpoint, we investigate whether or not recent preon models are compatible with the picture of the first-order phase transition from the preon phase to the composite quark-lepton phase. It is shown that the current models accepting the 't Hooft anomaly-matching condition together with quantum hyperchromodynamics are consistent with the cosmological first-order phase transition.
Cosmological Models with Fractional Derivatives and Fractional Action Functional
Institute of Scientific and Technical Information of China (English)
V.K. Shchigolev
2011-01-01
Cosmological models of a scalar field with dynamical equations containing fractional derivatives or derived from the Einstein-Hilbert action of fractional order, are constructed. A number of exact solutions to those equations of fractional cosmological models in both eases is given.
Statistics, Computation, and Modeling in Cosmology
Jewell, Jeff; Guiness, Joe; SAMSI 2016 Working Group in Cosmology
2017-01-01
Current and future ground and space based missions are designed to not only detect, but map out with increasing precision, details of the universe in its infancy to the present-day. As a result we are faced with the challenge of analyzing and interpreting observations from a wide variety of instruments to form a coherent view of the universe. Finding solutions to a broad range of challenging inference problems in cosmology is one of the goals of the “Statistics, Computation, and Modeling in Cosmology” workings groups, formed as part of the year long program on ‘Statistical, Mathematical, and Computational Methods for Astronomy’, hosted by the Statistical and Applied Mathematical Sciences Institute (SAMSI), a National Science Foundation funded institute. Two application areas have emerged for focused development in the cosmology working group involving advanced algorithmic implementations of exact Bayesian inference for the Cosmic Microwave Background, and statistical modeling of galaxy formation. The former includes study and development of advanced Markov Chain Monte Carlo algorithms designed to confront challenging inference problems including inference for spatial Gaussian random fields in the presence of sources of galactic emission (an example of a source separation problem). Extending these methods to future redshift survey data probing the nonlinear regime of large scale structure formation is also included in the working group activities. In addition, the working group is also focused on the study of ‘Galacticus’, a galaxy formation model applied to dark matter-only cosmological N-body simulations operating on time-dependent halo merger trees. The working group is interested in calibrating the Galacticus model to match statistics of galaxy survey observations; specifically stellar mass functions, luminosity functions, and color-color diagrams. The group will use subsampling approaches and fractional factorial designs to statistically and
Unified models of the cosmological dark sector
Energy Technology Data Exchange (ETDEWEB)
Zimdahl, W; Velten, H E S [Universidade Federal do EspIrito Santo, Departamento de Fisica, Av. Fernando Ferrari, 514, Campus de Goiabeiras, CEP 29075-910, Vitoria, EspIrito Santo (Brazil); Hipolito-Ricaldi, W S, E-mail: winfried.zimdahl@pq.cnpq.br, E-mail: hipolito@ceunes.ufes.br, E-mail: velten@cce.ufes.br [Universidade Federal do EspIrito Santo, Departamento de Ciencias Matematicas e Naturais, CEUNES Rodovia BR 101 Norte, km. 60, CEP 29932-540, Sao Mateus, Espirito Santo (Brazil)
2011-09-22
We model the cosmological substratum by a viscous fluid that is supposed to provide a unified description of the dark sector and pressureless baryonic matter. In the homogeneous and isotropic background the total energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically non-adiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value q{sub 0} {approx} -0.53 of the deceleration parameter. Moreover, different from other approaches, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis.
Improving lognormal models for cosmological fields
Xavier, Henrique S; Joachimi, Benjamin
2016-01-01
It is common practice in cosmology to model large-scale structure observables as lognormal random fields, and this approach has been successfully applied in the past to the matter density and weak lensing convergence fields separately. We argue that this approach has fundamental limitations which prevent its use for jointly modelling these two fields since the lognormal distribution's shape can prevent certain correlations to be attainable. Given the need of ongoing and future large-scale structure surveys for fast joint simulations of clustering and weak lensing, we propose two ways of overcoming these limitations. The first approach slightly distorts the power spectra of the fields using one of two algorithms that minimises either the absolute or the fractional distortions. The second one is by obtaining more accurate convergence marginal distributions, for which we provide a fitting function, by integrating the lognormal density along the line of sight. The latter approach also provides a way to determine ...
Introduction to particle cosmology the standard model of cosmology and its open problems
Bambi, Cosimo
2016-01-01
This book introduces the basic concepts of particle cosmology and covers all the main aspects of the Big Bang Model (expansion of the Universe, Big Bang Nucleosynthesis, Cosmic Microwave Background, large scale structures) and the search for new physics (inflation, baryogenesis, dark matter, dark energy). It also includes the majority of recent discoveries, such as the precise determination of cosmological parameters using experiments like WMAP and Planck, the discovery of the Higgs boson at LHC, the non-discovery to date of supersymmetric particles, and the search for the imprint of gravitational waves on the CMB polarization by Planck and BICEP. This textbook is based on the authors’ courses on Cosmology, and aims at introducing Particle Cosmology to senior undergraduate and graduate students. It has been especially written to be accessible even for those students who do not have a strong background in General Relativity and quantum field theory. The content of this book is organized in an easy-to-use ...
Dynamical system approach to running Λ cosmological models
Energy Technology Data Exchange (ETDEWEB)
Stachowski, Aleksander [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland)
2016-11-15
We study the dynamics of cosmological models with a time dependent cosmological term. We consider five classes of models; two with the non-covariant parametrization of the cosmological term Λ: Λ(H)CDM cosmologies, Λ(a)CDM cosmologies, and three with the covariant parametrization of Λ: Λ(R)CDM cosmologies, where R(t) is the Ricci scalar, Λ(φ)-cosmologies with diffusion, Λ(X)-cosmologies, where X = (1)/(2)g{sup αβ}∇{sub α}∇{sub β}φ is a kinetic part of the density of the scalar field. We also consider the case of an emergent Λ(a) relation obtained from the behaviour of trajectories in a neighbourhood of an invariant submanifold. In the study of the dynamics we used dynamical system methods for investigating how an evolutionary scenario can depend on the choice of special initial conditions. We show that the methods of dynamical systems allow one to investigate all admissible solutions of a running Λ cosmology for all initial conditions. We interpret Alcaniz and Lima's approach as a scaling cosmology. We formulate the idea of an emergent cosmological term derived directly from an approximation of the exact dynamics. We show that some non-covariant parametrization of the cosmological term like Λ(a), Λ(H) gives rise to the non-physical behaviour of trajectories in the phase space. This behaviour disappears if the term Λ(a) is emergent from the covariant parametrization. (orig.)
Non-standard Models and the Sociology of Cosmology
Lopez-Corredoira, Martin
2013-01-01
I review some theoretical ideas in cosmology different from the standard "Big Bang": the quasi-steady state model, the plasma cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Cosmologists do not usually work within the framework of alternative cosmologies because they feel that these are not at present as competitive as the standard model. Certainly, they are not so developed, and they are not so developed because cosmologists do not work on them. It is a vicious circle. The fact that most cosmologists do not pay them any attention and only dedicate their research time to the standard model is to a great extent due to a sociological phenomenon (the "snowball effect" or "groupthink"). We might well wonder whether cosmology, our knowledge of the Universe as a whole, is a science like other fields of physics or a predominant ideology.
Non-standard models and the sociology of cosmology
López-Corredoira, Martín
2014-05-01
I review some theoretical ideas in cosmology different from the standard "Big Bang": the quasi-steady state model, the plasma cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Cosmologists do not usually work within the framework of alternative cosmologies because they feel that these are not at present as competitive as the standard model. Certainly, they are not so developed, and they are not so developed because cosmologists do not work on them. It is a vicious circle. The fact that most cosmologists do not pay them any attention and only dedicate their research time to the standard model is to a great extent due to a sociological phenomenon (the "snowball effect" or "groupthink"). We might well wonder whether cosmology, our knowledge of the Universe as a whole, is a science like other fields of physics or a predominant ideology.
Experimentally testing the standard cosmological model
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))
1990-11-01
The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.
Hybrid Models in Loop Quantum Cosmology
Navascués, B Elizaga; Marugán, G A Mena
2016-01-01
In the framework of Loop Quantum Cosmology, inhomogeneous models are usually quantized by means of a hybrid approach that combines loop quantization techniques with standard quantum field theory methods. This approach is based on a splitting of the phase space in a homogeneous sector, formed by global, zero-modes, and an inhomogeneous sector, formed by the remaining, infinite number of modes, that describe the local degrees of freedom. Then, the hybrid quantization is attained by adopting a loop representation for the homogeneous gravitational sector, while a Fock representation is used for the inhomogeneities. The zero-mode of the Hamiltonian constraint operator couples the homogeneous and inhomogeneous sectors. The hybrid approach, therefore, is expected to provide a suitable quantum theory in regimes where the main quantum effects of the geometry are those affecting the zero-modes, while the inhomogeneities, still being quantum, can be treated in a more conventional way. This hybrid strategy was first prop...
Irreversible Processes in Inflationary Cosmological Models
Kremer, G M
2002-01-01
By using the thermodynamic theory of irreversible processes and Einstein general relativity, a cosmological model is proposed where the early universe is considered as a mixture of a scalar field with a matter field. The scalar field refers to the inflaton while the matter field to the classical particles. The irreversibility is related to a particle production process at the expense of the gravitational energy and of the inflaton energy. The particle production process is represented by a non-equilibrium pressure in the energy-momentum tensor. The non-equilibrium pressure is proportional to the Hubble parameter and its proportionality factor is identified with the coefficient of bulk viscosity. The dynamic equations of the inflaton and the Einstein field equations determine the time evolution of the cosmic scale factor, the Hubble parameter, the acceleration and of the energy densities of the inflaton and matter. Among other results it is shown that in some regimes the acceleration is positive which simulate...
Cosmological model in 2d dilaton gravity
Mishima, T; Mishima, Takashi; Nakamichi, Akika
1993-01-01
We apply CGHS-type dilaton gravity model to (1+1)-dimensional cosmological situations. First the behavior of a compact 1-dimensional universe (i.e. like a closed string) is classified on the assumption of homogeneity of universe. Several interesting solutions are found, which include a Misner-type universe having closed time-like curves, and an asymptotically de Sitter universe first pointed out by Yoshimura. In the second half of this talk, we discuss the modification of the classical homogeneous solutions, considering inhomogeneity of classical conformal matters and also quantum back-reaction respectively. (An expanded version of the talk presented by T. Mishima at Yukawa Institute of Theoretical Physics workshop `Quantum Gravity' 24-27, November 1992.)
A Conceptual Tour About the Standard Cosmological Model
Maroto, A L; Maroto, Antonio L.; Ramirez, Juan
2004-01-01
With the beginning of the XXIst century, a physical model of our Universe, usually called the Standard Cosmological Model (SCM), is reaching an important level of consolidation, based on accurate astrophysical data and also on theoretical developments. In this paper we review the interplay between the basic concepts and observations underlying this model. The SCM is a complex and beautiful building, recieving inputs from many branches of physics. Major topics reviewed are: General Relativity and the cosmological constant, the Cosmological Principle and Friedmann-Robertson-Walker-Lemaitre models, Hubble diagrams and dark energy, large scale structure and dark matter, the cosmic microwave background, Big Bang nucleosynthesis, and inflation.
Power law cosmology model comparison with CMB scale information
Tutusaus, Isaac; Blanchard, Alain; Dupays, Arnaud; Zolnierowski, Yves; Cohen-Tanugi, Johann; Ealet, Anne; Escoffier, Stéphanie; Fèvre, Olivier Le; Ilić, Stéphane; Piazza, Federico; Pisani, Alice; Plaszczynski, Stéphane; Sakr, Ziad; Salvatelli, Valentina; Schücker, Thomas; Tilquin, André; Virey, Jean-Marc
2016-01-01
Despite the ability of the cosmological concordance model ($\\Lambda$CDM) to describe the cosmological observations exceedingly well, power law expansion of the Universe scale radius has been proposed as an alternative framework. We examine here these models, analyzing their ability to fit cosmological data using robust model comparison criteria. Type Ia supernovae (SNIa), baryonic acoustic oscillations (BAO) and acoustic scale information from the cosmic microwave background (CMB) have been used. We find that SNIa data either alone or combined with BAO, can be well reproduced by both $\\Lambda$CDM and power law expansion models with $n \\sim 1.5$, while the constant expansion rate model ($n = 1$) is clearly disfavored. Allowing for some redshift evolution in the SNIa luminosity essentially removes any clear preference for a specific model. The CMB data is well known to provide the most stringent constraints on standard cosmological models, in particular through the position of the first peak of the temperature ...
A Monte Carlo Simulation Framework for Testing Cosmological Models
Directory of Open Access Journals (Sweden)
Heymann Y.
2014-10-01
Full Text Available We tested alternative cosmologies using Monte Carlo simulations based on the sam- pling method of the zCosmos galactic survey. The survey encompasses a collection of observable galaxies with respective redshifts that have been obtained for a given spec- troscopic area of the sky. Using a cosmological model, we can convert the redshifts into light-travel times and, by slicing the survey into small redshift buckets, compute a curve of galactic density over time. Because foreground galaxies obstruct the images of more distant galaxies, we simulated the theoretical galactic density curve using an average galactic radius. By comparing the galactic density curves of the simulations with that of the survey, we could assess the cosmologies. We applied the test to the expanding-universe cosmology of de Sitter and to a dichotomous cosmology.
Running vacuum cosmological models: linear scalar perturbations
Perico, E. L. D.; Tamayo, D. A.
2017-08-01
In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ(H2) or Λ(R). Such models assume an equation of state for the vacuum given by bar PΛ = - bar rhoΛ, relating its background pressure bar PΛ with its mean energy density bar rhoΛ ≡ Λ/8πG. This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely bar rhoΛ = Σibar rhoΛi. Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ(H2) scenario the vacuum is coupled with every matter component, whereas the Λ(R) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.
Particle Physics And Cosmology In Supersymmetric Models
Morrissey, D E
2005-01-01
The Standard Model (SM) of particle physics provides an excellent description of the elementary particle interactions observed in particle collider experiments, but the model does less well when it is applied to cosmology. Recent measurements of the Universe over very large distances indicate the existence of non-luminous dark matter and an excess of baryons over anti-baryons. The SM is unable to account for either of these results, implying that an extension of the SM description is needed. One such extension is supersymmetry. Within the minimal supersymmetric version of the SM, the MSSM, the lightest superpartner particle can make up the dark matter, and the baryon asymmetry can be generated by the mechanism of electroweak baryogenesis (EWBG). In this work, we examine these issues together in order to find out whether the MSSM can account for both of them simultaneously. We find that the MSSM can explain both the baryon asymmetry and the dark matter, but only over a very constrained region of the model para...
Realistic cosmological model with dynamical cancellation of vacuum energy
Dolgov, A D
2003-01-01
We propose a model with a compensating scalar field whose back reaction to the cosmological curvature cancels possible vacuum energy density down to the terms of the order of the time dependent critical energy density. Thus the model simultaneously solves the mystery of the compensation of vacuum energy with the accuracy of 120 orders of magnitude and explains existence of the observed dark energy. At an early stage the suggested cosmological model might experience exponential expansion without an additional inflaton field.
Late time attractors of some varying Chaplygin gas cosmological models
Khurshudyan, M
2015-01-01
Varying Chaplygin gas is one of the dark fluids actively studied in modern cosmology. It does belong to the group of the fluids which has an explicitly given EoS. From the other hand phase space does contain all possible states of the system. Therefore, phase space analysis of the cosmological models does allow to understand qualitative behavior and estimate required characteristics of the models. Phase space analysis is a convenient approach to study a cosmological model, because we do not need to solve a system of differential equations for a given initial conditions, instead, we need to deal with appropriate algebraic equations. The goal of this paper is to find late time attractors for the cosmological models, where a varying Chaplygin gas is one of the components of the large sale universe. We will pay our attention to some non linear interacting models.
Imperfect fluid cosmological model in modified gravity
Samanta, G C
2016-01-01
In this article, we considered the bulk viscous fluid in the formalism of modified gravity in which the general form of a gravitational action is $f(R, T)$ function, where $R$ is the curvature scalar and $T$ is the trace of the energy momentum tensor within the frame of flat FRW space time. The cosmological model dominated by bulk viscous matter with total bulk viscous coefficient expressed as a linear combination of the velocity and acceleration of the expansion of the universe in such a way that $\\xi=\\xi_0+\\xi_1\\frac{\\dot{a}}{a}+\\xi_2\\frac{\\ddot{a}}{\\dot{a}}$, where $\\xi_0$, $\\xi_1$ and $\\xi_2$ are constants. We take $p=(\\gamma-1)\\rho$, where $0\\le\\gamma\\le2$ as an equation of state for perfect fluid. The exact solutions to the corresponding field equations are obtained by assuming a particular model of the form of $f(R, T)=R+2f(T)$, where $f(T)=\\lambda T$, $\\lambda$ is constant. We studied the four possible scenarios for different values of $\\gamma$, such as $\\gamma=0$, $\\gamma=\\frac{2}{3}$, $\\gamma=1$ and...
Testing cosmological models with the Integrated Sachs-Wolfe effect
Energy Technology Data Exchange (ETDEWEB)
Raccanelli, Alvise, E-mail: alvise.raccanelli@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom)
2011-02-01
The cross correlation between the Cosmic Microwave Background and the Large Scale Structure of the Universe is a powerful probe to test our cosmological models. This correlation can be used to detect the Integrated Sachs-Wolfe effect, and it depends on both the geometry of the Universe and the properties of the clustering and evolution of structures; for this reason it can be used to test and constrain cosmological models and parameters as well as theories of gravity. In this proceeding we briefly introduce the ISW effect and present some of the recent cosmological tests done using it.
Bianchi-IX string cosmological model in Lyra geometry
Indian Academy of Sciences (India)
F Rahaman; S Chakraborty; N Begum; M Hossain; M Kalam
2003-06-01
A class of cosmological solutions of massive strings for the Bianchi-IX space-time are obtained within the framework of Lyra geometry. Various physical and kinematical properties of the models are discussed.
Field Fractal Cosmological Model As an Example of Practical Cosmology Approach
Baryshev, Yu V
2008-01-01
The idea of the global gravitational effect as the source of cosmological redshift was considered by de Sitter (1916, 1917), Eddington (1923), Tolman (1929) and Bondi (1947), also Hubble (1929) called the discovered distance-redshift relation as "De Sitter effect". For homogeneous matter distribution cosmological gravitational redshift is proportional to square of distance: z_grav ~ r^2. However for a fractal matter distribution having the fractal dimension D=2 the global gravitational redshift is the linear function of distance: z_grav ~ r, which gives possibility for interpretation of the Hubble law without the space expansion. Here the field gravity fractal cosmological model (FGF) is presented, which based on two initial principles. The first assumption is that the field gravity theory describes the gravitational interaction within the conceptual unity of all fundamental physical interactions. The second hypothesis is that the spatial distribution of matter is a fractal at all scales up to the Hubble radi...
An alternative to the cosmological 'concordance model'
Blanchard, A; Rowan-Robinson, M; Sarkar, S; Blanchard, Alain; Douspis, Marian; Rowan-Robinson, Michael; Sarkar, Subir
2003-01-01
Precision measurements of the cosmic microwave background by WMAP are believed to have established a flat Lambda-dominated universe, seeded by nearly scale-invariant adiabatic primordial fluctuations. However by relaxing the hypothesis that the fluctuation spectrum can be described by a single power law, we demonstrate that an Einstein-de Sitter universe with ZERO cosmological constant can fit the data as well as the best concordance model. Moreover unlike a $\\Lambda$-dominated universe, such an universe has no strong integrated Sachs-Wolfe effect, so is in better agreement with the low quadrupole seen by WMAP. The main problem is that the Hubble constant is required to be rather low: H_0 ~ 46 km/s/Mpc; we discuss whether this can be consistent with observations. Furthermore for universes consisting only of baryons and cold dark matter, the amplitude of matter fluctuations on cluster scales is too high, a problem which seems generic. However, an additional small contribution (Omega_X \\sim 0.1) of matter which...
Complementary cosmological tests of RSII brane models
Holanda, R F L; Dahia, F
2013-01-01
In this paper we explore observational bounds on flat and non-flat cosmological models in Type II Randall-Sundrum (RSII) branes. In a first analysis, we consider current measurements of the expansion rate H(z) (with two priors on the local Hubble parameter) and 288 Type Ia supernovae from the Sloan Digital Sky Survey (within the framework of the mlcs2k2 light-curve fitting method). We find that the joint analysis involving these data is an interesting tool to impose limits on the brane tension density parameter (Omega_{lambda}) and that the spatial curvature has a negligible influence on Omega_{lambda} estimates. In order to obtain stronger bounds for the contribution of the $\\Omega_{\\lambda}$ we also add in our analysis the baryon oscillation peak (BAO) and cosmic microwave background radiation (CMB) observations by using the so-called CMB/BAO ratio. From this analysis we find that the Omega_{lambda} contribution is less than 4.10^{-5} (1sigma).
Cosmological perturbations from the Standard Model Higgs
Energy Technology Data Exchange (ETDEWEB)
Simone, Andrea De [SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Riotto, Antonio, E-mail: andrea.desimone@sissa.it, E-mail: antonio.riotto@unige.ch [Department of Theoretical Physics and Center for Astroparticle Physics (CAP), 24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)
2013-02-01
We propose that the Standard Model (SM) Higgs is responsible for generating the cosmological perturbations of the universe by acting as an isocurvature mode during a de Sitter inflationary stage. In view of the recent ATLAS and CMS results for the Higgs mass, this can happen if the Hubble rate during inflation is in the range (10{sup 10}−10{sup 14}) GeV (depending on the SM parameters). Implications for the detection of primordial tensor perturbations through the B-mode of CMB polarization via the PLANCK satellite are discussed. For example, if the Higgs mass value is confirmed to be m{sub h} = 125.5 GeV and m{sub t},α{sub s} are at their central values, our mechanism predicts tensor perturbations too small to be detected in the near future. On the other hand, if tensor perturbations will be detected by PLANCK through the B-mode of CMB, then there is a definite relation between the Higgs and top masses, making the mechanism predictive and falsifiable.
Particle physics and cosmology in supersymmetric models
Morrissey, David Edgar
The Standard Model (SM) of particle physics provides an excellent description of the elementary particle interactions observed in particle collider experiments, but the model does less well when it is applied to cosmology. Recent measurements of the Universe over very large distances indicate the existence of non-luminous dark matter and an excess of baryons over anti-baryons. The SM is unable to account for either of these results, implying that an extension of the SM description is needed. One such extension is supersymmetry. Within the minimal supersymmetric version of the SM, the MSSM, the lightest superpartner particle can make up the dark matter, and the baryon asymmetry can be generated by the mechanism of electroweak baryogenesis (EWBG). In this work, we examine these issues together in order to find out whether the MSSM can account for both of them simultaneously. We find that the MSSM can explain both the baryon asymmetry and the dark matter, but only over a very constrained region of the model parameter space. The strongest constraints on this scenario come from the lower bound on the Higgs boson mass, and the upper bound on the electric dipole moment of the electron. Moreover, upcoming experiments will probe the remaining allowed parameter space in the near future. Some of these constraints may be relaxed by going beyond the MSSM. With this in mind, we also investigate the nMSSM, a minimal singlet extension of the MSSM. We find that this model can also explain both the dark matter and the baryon asymmetry.
A Time-Dependent Λ and G Cosmological Model Consistent with Cosmological Constraints
Directory of Open Access Journals (Sweden)
L. Kantha
2016-01-01
Full Text Available The prevailing constant Λ-G cosmological model agrees with observational evidence including the observed red shift, Big Bang Nucleosynthesis (BBN, and the current rate of acceleration. It assumes that matter contributes 27% to the current density of the universe, with the rest (73% coming from dark energy represented by the Einstein cosmological parameter Λ in the governing Friedmann-Robertson-Walker equations, derived from Einstein’s equations of general relativity. However, the principal problem is the extremely small value of the cosmological parameter (~10−52 m2. Moreover, the dark energy density represented by Λ is presumed to have remained unchanged as the universe expanded by 26 orders of magnitude. Attempts to overcome this deficiency often invoke a variable Λ-G model. Cosmic constraints from action principles require that either both G and Λ remain time-invariant or both vary in time. Here, we propose a variable Λ-G cosmological model consistent with the latest red shift data, the current acceleration rate, and BBN, provided the split between matter and dark energy is 18% and 82%. Λ decreases (Λ~τ-2, where τ is the normalized cosmic time and G increases (G~τn with cosmic time. The model results depend only on the chosen value of Λ at present and in the far future and not directly on G.
Deparametrization and path integral quantization of cosmological models
Simeone, Claudio
2001-01-01
The problem of time is a central feature of quantum cosmology: differing from ordinary quantum mechanics, in cosmology there is nothing "outside" the system which plays the role of clock, and this makes difficult the obtention of a consistent quantization. A possible solution is to assume that a subset of the variables describing the state of the universe can be a clock for the remaining of the system. Following this line, in this book a new proposal consisting in the previous identification of time by means of gauge fixation is applied to the quantization of homogeneous cosmological models. B
Power-counting renormalizability of generalized Horava gravity
Visser, Matt
2009-01-01
In an earlier article [arXiv:0902.0590 [hep-th], Phys. Rev D80 (2009) 025011], I discussed the potential benefits of allowing Lorentz symmetry breaking in quantum field theories. In particular I discussed the perturbative power-counting finiteness of the normal-ordered :P(phi)^{z>=d}_{d+1}: scalar quantum field theories, and sketched the implications for Horava's model of quantum gravity. In the current rather brief addendum, I will tidy up some dangling issues and fill out some of the technical details of the argument indicating the power-counting renormalizability of a z>=d variant of Horava gravity in (d+1) dimensions.
Renormalizable supersymmetric gauge theory in six dimensions
Energy Technology Data Exchange (ETDEWEB)
Ivanov, E.A. [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation)]. E-mail: eivanov@theor.jinr.ru; Smilga, A.V. [SUBATECH, Universite de Nantes, 4 rue Alfred Kastler, BP 20722, Nantes 44307 (France)]. E-mail: smilga@subatech.in2p3.fr; Zupnik, B.M. [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation)]. E-mail: zupnik@theor.jinr.ru
2005-10-17
We construct and discuss a 6D supersymmetric gauge theory involving four derivatives in the action. The theory involves a dimensionless coupling constant and is renormalizable. At the tree level, it enjoys N=(1,0) superconformal symmetry, but the latter is broken by quantum anomaly. Our study should be considered as preparatory for seeking an extended version of this theory which would hopefully preserve conformal symmetry at the full quantum level and be ultraviolet-finite.
Breaking democracy with non renormalizable mass terms
Silva-Marcos, Joaquim I
2001-01-01
The exact democratic structure for the quark mass matrix, resulting from the action of the family symmetry group $A_{3L}\\times A_{3R}$, is broken by the vacuum expectation values of heavy singlet fields appearing in non renormalizable dimension 6 operators. Within this specific context of breaking of the family symmetry we formulate a very simple ansatz which leads to correct quark masses and mixings.
Super-renormalizable Multidimensional Quantum Gravity
Modesto, Leonardo
2012-01-01
In this paper we introduce a perturbatively super-renormalizable and unitary theory of quantum gravity in any dimension D. The theory presents two entire functions, a.k.a. "form factors", and a finite number of local operators required by the quantum consistency of the theory itself. The main reason to introduce the entire functions is to avoid ghosts (states of negative norm) like the one in the four-dimensional Stelle's theory. The new theory is indeed ghost-free since the two entire functions have the property to generalize the Einstein-Hilbert action without introducing new poles in the propagator. The theory is renormalizable at one loop and finite from two loops upward. In this paper we essentially study three classes of form factors, systematically showing the tree-level unitarity. We prove that the gravitation potential is regular in r = 0 for all the choices of form factors compatible with renormalizability and unitarity. We also include Black hole spherical symmetric solutions omitting higher curvat...
A model for self-tuning the cosmological constant
Kim, J E; Lee, H M; Kim, Jihn E.; Kyae, Bumseok; Lee, Hyun Min
2001-01-01
The vanishing cosmological constant in the four dimensional space-time is obtained in a 5D Randall-Sundrum model with a brane (B1) located at $y=0$. The matter fields can be located at the brane. For settling any vacuum energy generated at the brane to zero, we need a three index antisymmetric tensor field $A_{MNP}$ with a specific form for the Lagrangian. For the self-tuning mechanism, the bulk cosmological constant should be negative.
Dynamical systems and spherically symmetric cosmological models
He, Yanjing
2006-06-01
In this thesis we present a study of the timelike self-similar spherically symmetric cosmological models with two scalar fields with exponential potentials. We first define precisely the timelike self-similar spherically symmetric (TSS) spacetimes. We write the TSS metric in a conformally isometric form in a coordinate system adapted to the geometry of the spacetime manifold. In this coordinate system, both the metric functions of the TSS spacetimes and the potential functions of the scalar fields can be simplified to four undetermined functions of a single coordinate. As a result, the Einstein field equations reduce to an autonomous system of first-order ODEs and polynomial constraints in terms of these undetermined functions. By introducing new bounded variables as well as a new independent variable and solving the constraints, we are able to apply the theory of dynamical systems to study the properties of the TSS solutions. By finding invariant sets and associated monotonic functions, by applying the LaSalle Invariance Principle and the Monotonicity Principle, by applying the [straight phi] t -connected property of a limit set, and using other theorems, we prove that all of the TSS trajectories are heteroclinic trajectories. In addition, we conduct numerical simulations to confirm and support the qualitative analysis. We obtain all possible types of TSS solutions, by analyzing the qualitative behavior of the original system of ODES from those of the reduced one. We obtain asymptotic expressions for the TSS solutions (e.g., the asymptotic expressions for the metric functions, the source functions and the Ricci scalar). In particular, self-similar flat Friedmann-Robertson-Walker spacetimes are examined in order to obtain insights into the issues related to the null surface in general TSS spacetimes in these coordinates. A discussion of the divergence of the spacetime Ricci scalar and the possible extension of the TSS solutions across the null boundary is presented
A New Cosmological Model: Black Hole Universe
Directory of Open Access Journals (Sweden)
Zhang T. X.
2009-07-01
Full Text Available A new cosmological model called black hole universe is proposed. According to this model, the universe originated from a hot star-like black hole with several solar masses, and gradually grew up through a supermassive black hole with billion solar masses to the present state with hundred billion-trillion solar masses by accreting ambient mate- rials and merging with other black holes. The entire space is structured with infinite layers hierarchically. The innermost three layers are the universe that we are living, the outside called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer is infinite in radius and limits to zero for both the mass density and absolute temperature. The relationships among all layers or universes can be connected by the universe family tree. Mathematically, the entire space can be represented as a set of all universes. A black hole universe is a subset of the en- tire space or a subspace. The child universes are null sets or empty spaces. All layers or universes are governed by the same physics - the Einstein general theory of relativity with the Robertson-walker metric of spacetime - and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. The entire life of a universe begins from the birth as a hot star-like or supermassive black hole, passes through the growth and cools down, and expands to the death with infinite large and zero mass density and absolute temperature. The black hole universe model is consistent with the Mach principle, the observations of the universe, and the Einstein general theory of relativity. Its various aspects can be understood with the well-developed physics without any difficulty. The dark energy is not required for the universe to accelerate its expansion. The inflation is not necessary because the black hole universe
Anisotropic cosmological models in $f (R, T)$ theory of gravitation
Indian Academy of Sciences (India)
Shri Ram; Priyanka; Manish Kumar Singh
2013-07-01
A class of non-singular bouncing cosmological models of a general class of Bianchi models filled with perfect fluid in the framework of $f (R, T)$ gravity is presented. The model initially accelerates for a certain period of time and decelerates thereafter. The physical behaviour of the model is also studied.
Cosmological Model Based on Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning
2005-01-01
A cosmological model based on gauge theory of gravity is proposed in this paper. Combining cosmological principle and field equation of gravitational gauge field, dynamical equations of the scale factor R(t) of our universe can be obtained. This set of equations has three different solutions. A prediction of the present model is that, if the energy density of the universe is not zero and the universe is expanding, the universe must be space-flat, the total energy density must be the critical density ρc of the universe. For space-flat case, this model gives the same solution as that of the Friedmann model. In other words, though they have different dynamics of gravitational interactions, general relativity and gauge theory of gravity give the same cosmological model.
Five-Dimensional Cosmological Model with Variable G and Λ
Institute of Scientific and Technical Information of China (English)
H. Baysal; (I). Yilmaz
2007-01-01
@@ Einstein's field equations with G and Λ both varying with time are considered in the presence of a perfect fluid for five-dimensional cosmological model in a way which conserves the energy momentum tensor of the matter content. Several sets of explicit solutions in the five-dimensional Kaluza-Klein type cosmological models with variable G and Λ are obtained. The diminishment of extra dimension with the evolution of the universe for the five-dimensional model is exhibited. The physical properties of the models are examined.
A New Type of Isotropic Cosmological Model
Naboulsi, R
2003-01-01
The Einstein equations with quantum one-loop contributions of conformally covariant matter fields in the poresence of frac{1}{t^2} decaying matter density and decaying cosmological constant is used to study an isotropic homogenous FRW space-time. We show that scale factor depends on the sums of contributions from quantum fields with different spin values. For some specific values of this later, the Universe could be in an accelerated regime.
Tree-Level Unitarity and Renormalizability in Lifshitz Scalar Theory
Fujimori, Toshiaki; Izumi, Keisuke; Kitamura, Tomotaka
2015-01-01
We study unitarity and renormalizability in the Lifshitz scalar field theory, which is characterized by an anisotropic scaling between the space and time directions. Without the Lorentz symmetry, both the unitarity and the renormalizability conditions are modified from those in relativistic theories. We show that for renormalizability, an extended version of the power counting condition is required in addition to the conventional one. The unitarity bound for S-matrix elements also gives stronger constraints on interaction terms because of the reference frame dependence of scattering amplitudes. We prove that both unitarity and renormalizability require identical conditions as in the case of conventional relativistic theories.
Cosmological and astrophysical constraints on tachyon dark energy models
Martins, C J A P
2016-01-01
Rolling tachyon field models are among the candidates suggested as explanations for the recent acceleration of the Universe. In these models the field is expected to interact with gauge fields and lead to variations of the fine-structure constant $\\alpha$. Here we take advantage of recent observational progress and use a combination of background cosmological observations of Type Ia supernovas and astrophysical and local measurements of $\\alpha$ to improve constraints on this class of models. We show that the constraints on $\\alpha$ imply that the field dynamics must be extremely slow, leading to a constraint of the present-day dark energy equation of state $(1+w_0)<2.4\\times10^{-7}$ at the $99.7\\%$ confidence level. Therefore current and forthcoming standard background cosmology observational probes can't distinguish this class of models from a cosmological constant, while detections of $\\alpha$ variations could possibly do so since they would have a characteristic redshift dependence.
Cosmological and astrophysical constraints on tachyon dark energy models
Martins, C. J. A. P.; Moucherek, F. M. O.
2016-06-01
Rolling tachyon field models are among the candidates suggested as explanations for the recent acceleration of the Universe. In these models the field is expected to interact with gauge fields and lead to variations of the fine-structure constant α . Here we take advantage of recent observational progress and use a combination of background cosmological observations of type Ia supernovas and astrophysical and local measurements of α to improve constraints on this class of models. We show that the constraints on α imply that the field dynamics must be extremely slow, leading to a constraint of the present-day dark energy equation of state (1 +w0)<2.4 ×10-7 at the 99.7% confidence level. Therefore current and forthcoming standard background cosmology observational probes cannot distinguish this class of models from a cosmological constant, while detections of α variations could possibly do so since they would have a characteristic redshift dependence.
Decaying Domain Walls in an Extended Gravity Model and Cosmology
Shiraishi, Kiyoshi
2013-01-01
We investigate cosmological consequences of an extended gravity model which belongs to the same class studied by Accetta and Steinhardt in an extended inflationary scenario. But we do not worry about inflation in our model; instead, we focus on a topological object formed during cosmological phase transitions. Although domain walls appear during first-order phase transitions such as QCD transition, they decay at the end of the phase transition. Therefore the "domain wall problem" does not exist in the suitable range of pameters and, on the contrary, the "fragments" of walls may become seeds of dark matter. A possible connection to "oscillating universe" model offered by Morikawa et al. is also discussed.
Cosmological constraints on spontaneous R-symmetry breaking models
Energy Technology Data Exchange (ETDEWEB)
Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research and Dept. of Physics
2012-11-15
We study general constraints on spontaneous R-symmetry breaking models coming from the cosmological effects of the pseudo Nambu-Goldstone bosons, R-axions. They are substantially produced in the early Universe and may cause several cosmological problems. We focus on relatively long-lived R-axions and find that in a wide range of parameter space, models are severely constrained. In particular, R-axions with mass less than 1 MeV are generally ruled out for relatively high reheating temperature, T{sub R}>10 GeV.
Current Status of cosmological models with mixed dark matter
Mikheeva, E V
2000-01-01
An analysis of cosmological mixed dark matter models in spatially flat Friedmann Universe with zero $\\Lambda$-term is presented. We argue that the introduction of cosmic gravity waves helps to satisfy observational constraints. The analysis of models is based on the confrontation with the mass function of clusters of galaxies and the CMB anisotropy. The implication of Press-Schechter formalism allowed to constrain $\\sigma_8=0.52 \\pm 0.01$. This normalisation of the spectrum of density perturbations has been used to calculate numerically the value of the large scale CMB anisotropy and the relative contribution of cosmological gravitational waves, T/S. We found that increasing $\\Omega_\
Hmong Cosmology: Proposed Model, Preliminary Insights
Directory of Open Access Journals (Sweden)
Vincent K. Her
2006-01-01
Full Text Available Is there an underlying structure to Hmong cosmology? What are its components? And how might these interrelate? In this paper, I will show that the Hmong cosmos consists of three separate realms and that these are connected together by the cycle of the human soul. Using zaaj qhuabke, I will trace the journey of the deceased and look at how ritual movement is expressive of human agency, narrative experience and community history. My insights are based on primary fieldwork research carried out for a doctoral dissertation on Hmong funeral rites in the Midwest.
Bianchi type IX string cosmological model in general relativity
Indian Academy of Sciences (India)
Raj Bali; Shuchi Dave
2001-04-01
We have investigated Bianchi type IX string cosmological models in general relativity. To get a determinate solution, we have assumed a condition ρ= i.e. rest energy density for a cloud of strings is equal to the string tension density. The various physical and geometrical aspects of the models are also discussed.
Axially Symmetric Cosmological Mesonic Stiff Fluid Models in Lyra's Geometry
Gad, Ragab M
2009-01-01
In this paper, we obtained a new class of axially symmetric cosmological mesonic stiff fluid models in the context of Lyra's geometry. Expressions for the energy, pressure and the massless scalar field are derived by considering the time dependent displacement field. We found that the mesonic scalar field depends on only $t$ coordinate. Some physical properties of the obtained models are discussed.
Physical Models of Galaxy Formation in a Cosmological Framework
Somerville, Rachel S.; Davé, Romeel
2015-08-01
Modeling galaxy formation in a cosmological context presents one of the greatest challenges in astrophysics today due to the vast range of scales and numerous physical processes involved. Here we review the current status of models that employ two leading techniques to simulate the physics of galaxy formation: semianalytic models and numerical hydrodynamic simulations. We focus on a set of observational targets that describe the evolution of the global and structural properties of galaxies from roughly cosmic high noon (z â¼ 2-3) to the present. Although minor discrepancies remain, overall, models show remarkable convergence among different methods and make predictions that are in qualitative agreement with observations. Modelers have converged on a core set of physical processes that are critical for shaping galaxy properties. This core set includes cosmological accretion, strong stellar-driven winds that are more efficient at low masses, black hole feedback that preferentially suppresses star formation at high masses, and structural and morphological evolution through merging and environmental processes. However, all cosmological models currently adopt phenomenological implementations of many of these core processes, which must be tuned to observations. Many details of how these diverse processes interact within a hierarchical structure formation setting remain poorly understood. Emerging multiscale simulations are helping to bridge the gap between stellar and cosmological scales, placing models on a firmer, more physically grounded footing. Concurrently, upcoming telescope facilities will provide new challenges and constraints for models, particularly by directly constraining inflows and outflows through observations of gas in and around galaxies.
Exactly solvable model for cosmological perturbations in dilatonic brane worlds
Koyama, K; Koyama, Kazuya; Takahashi, Keitaro
2003-01-01
We construct a model where cosmological perturbations are analytically solved based on dilatonic brane worlds. A bulk scalar field has an exponential potential in the bulk and an exponential coupling to the brane tension. The bulk scalar field yields a power-law inflation on the brane. The exact background metric can be found including the back-reaction of the scalar field. Then exact solutions for cosmological perturbations which properly satisfy the junction conditions on the brane are derived. These solutions provide us an interesting model to understand the connection between the behavior of cosmological perturbations on the brane and the geometry of the bulk. Using these solutions, the behavior of an anisotropic stress induced on the inflationary brane by bulk gravitational fields is investigated.
Power law cosmology model comparison with CMB scale information
Tutusaus, Isaac; Lamine, Brahim; Blanchard, Alain; Dupays, Arnaud; Zolnierowski, Yves; Cohen-Tanugi, Johann; Ealet, Anne; Escoffier, Stéphanie; Le Fèvre, Olivier; Ilić, Stéphane; Pisani, Alice; Plaszczynski, Stéphane; Sakr, Ziad; Salvatelli, Valentina; Schücker, Thomas; Tilquin, André; Virey, Jean-Marc
2016-11-01
Despite the ability of the cosmological concordance model (Λ CDM ) to describe the cosmological observations exceedingly well, power law expansion of the Universe scale radius, R (t )∝tn, has been proposed as an alternative framework. We examine here these models, analyzing their ability to fit cosmological data using robust model comparison criteria. Type Ia supernovae (SNIa), baryonic acoustic oscillations (BAO) and acoustic scale information from the cosmic microwave background (CMB) have been used. We find that SNIa data either alone or combined with BAO can be well reproduced by both Λ CDM and power law expansion models with n ˜1.5 , while the constant expansion rate model (n =1 ) is clearly disfavored. Allowing for some redshift evolution in the SNIa luminosity essentially removes any clear preference for a specific model. The CMB data are well known to provide the most stringent constraints on standard cosmological models, in particular, through the position of the first peak of the temperature angular power spectrum, corresponding to the sound horizon at recombination, a scale physically related to the BAO scale. Models with n ≥1 lead to a divergence of the sound horizon and do not naturally provide the relevant scales for the BAO and the CMB. We retain an empirical footing to overcome this issue: we let the data choose the preferred values for these scales, while we recompute the ionization history in power law models, to obtain the distance to the CMB. In doing so, we find that the scale coming from the BAO data is not consistent with the observed position of the first peak of the CMB temperature angular power spectrum for any power law cosmology. Therefore, we conclude that when the three standard probes (SNIa, BAO, and CMB) are combined, the Λ CDM model is very strongly favored over any of these alternative models, which are then essentially ruled out.
Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models
Marsh, M. C. David
2017-01-01
Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, Nvac˜O (1 0272 000) , are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.
Universal Form of Renormalizable Knots in Symbolic Dynamics
Institute of Scientific and Technical Information of China (English)
GAO Wen; PENG Shou-Li
2005-01-01
@@ The knot structure of three-dimensional flow has been constructed based on minimal braid assumption [Chin. Phys. Lett. 20 (2003) 1444]. Here we provide a new universal form of renormalizable knots. From this universal form an arbitrary renormalizable knot can be decomposed into a unique set of elementary templates.
A Dynamical System Analysis of Three Fluid cosmological Model
Mahata, Nilanjana
2015-01-01
In Friedman-Robertson-Walker flat spacetime, we consider a three fluid cosmological model which contains dark matter, dark energy and baryonic matter in the form of perfect fluid with a barotropic equation of state. Dark matter is taken in form of dust and dark energy is described by a scalar field with a potential $V(\\phi)$. Einstein's field equations are reduced to an autonomous dynamical system by suitable redefinition of basic variables. Considering exponential potential for the scalar field, critical points are obtained for the autonomous system. Finally stability of the critical points and cosmological implications are analyzed.
Integrable Cosmological Models From Higher Dimensional Einstein Equations
Sano, M; Sano, Masakazu; Suzuki, Hisao
2007-01-01
We consider the cosmological models for the higher dimensional spacetime which includes the curvatures of our space as well as the curvatures of the internal space. We find that the condition for the integrability of the cosmological equations is that the total space-time dimensions are D=10 or D=11 which is exactly the conditions for superstrings or M-theory. We obtain analytic solutions with generic initial conditions in the four dimensional Einstein frame and study the accelerating universe when both our space and the internal space have negative curvatures.
Scale invariant cosmology II: model equations and properties
Maeder, Andre
2016-01-01
We want to establish the basic properties of a scale invariant cosmology, that also accounts for the hypothesis of scale invariance of the empty space at large scales. We write the basic analytical properties of the scale invariant cosmological models. The hypothesis of scale invariance of the empty space at large scale brings interesting simplifications in the scale invariant equations for cosmology. There is one new term, depending on the scale factor of the scale invariant cosmology, that opposes to gravity and favours an accelerated expansion. We first consider a zero-density model and find an accelerated expansion, going like t square. In models with matter present, the displacements due to the new term make a significant contribution Omega_l to the energy-density of the Universe, satisfying an equation of the form Omega_m + Omega_k + Omega_l = 1. Unlike the Friedman's models, there is a whole family of flat models (k=0) with different density parameters Omega_m smaller than 1. We examine the basic relat...
Emergent universe in spatially flat cosmological model
Zhang, Kaituo; Yu, Hongwei
2013-01-01
The scenario of an emergent universe provides a promising resolution to the big bang singularity in universes with positive or negative spatial curvature. It however remains unclear whether the scenario can be successfully implemented in a spatially flat universe which seems to be favored by present cosmological observations. In this paper, we study the stability of Einstein static state solutions in a spatially flat Shtanov-Sahni braneworld scenario. With a negative dark radiation term included and assuming a scalar field as the only matter energy component, we find that the universe can stay at an Einstein static state past eternally and then evolve to an inflation phase naturally as the scalar field climbs up its potential slowly. In addition, we also propose a concrete potential of the scalar field that realizes this scenario.
Supersymmetric quantum cosmology for Bianchi class A models
Macías, A; Socorro, J; Macías, Alfredo; Mielke, Eckehard W.; Socorro, José
1998-01-01
The canonical theory of (N=1) supergravity, with a matrix representation for the gravitino covector-spinor, is applied to the Bianchi class A spatially homogeneous cosmologies. The full Lorentz constraint and its implications for the wave function of the universe are analyzed in detail. We found that in this model no physical states other than the trivial "rest frame" type occur.
Anisotropic cosmological models and generalized scalar tensor theory
Indian Academy of Sciences (India)
Subenoy Chakraborty; Batul Chandra Santra; Nabajit Chakravarty
2003-10-01
In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous ﬂuid, both exponential and power-law solutions have been studied and some assumptions among the physical parameters and solutions have been discussed.
Testing Cosmological Models with Type Ic Super Luminous Supernovae
Wei, Jun-Jie; Melia, Fulvio
2015-01-01
The use of type Ic Super Luminous Supernovae (SLSN Ic) to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 11 SLSNe Ic, which have thus far been used solely in tests involving $\\Lambda$CDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between the $R_{\\rm h}=ct$ and $\\Lambda$CDM cosmologies. We individually optimize the parameters in each cosmological model by minimizing the $\\chi^{2}$ statistic. We also carry out Monte Carlo simulations based on these current SLSN Ic measurements to estimate how large the sample would have to be in order to rule out either model at a $\\sim 99.7\\%$ confidence level. The currently available sample indicates a likelihood of $\\sim$$70-80\\%$ that the $R_{\\rm h}=ct$ Universe is the correct cosmology versus $\\sim$$20-30\\%$ for the standard model. These results are suggest...
Investigating inhomogeneous Szekeres models and their applications to precision cosmology
Peel, Austin Chandler
Exact solutions of Einstein's field equations that can describe the evolution of complex structures in the universe provide complementary frameworks to standard perturbation theory in which to analyze cosmological and astrophysical phenomena. The flexibility and generality of the inhomogeneous and anisotropic Szekeres metric make it the best known exact solution to explore nonlinearities in the universe. We study applications of Szekeres models to precision cosmology, focusing on the influence of inhomogeneities in two primary contexts---the growth rate of cosmic structures and biases in distance determinations to remote sources. We first define and derive evolution equations for a Szekeres density contrast, which quantifies exact deviations from a smooth background cosmology. Solving these equations and comparing to the usual perturbative approach, we find that for models with the same matter content, the Szekeres growth rate is larger through the matter-dominated cosmic era. Including a cosmological constant, we consider exact global perturbations, as well as the evolution of a single extended structure surrounded by an almost homogeneous background. For the former, we use growth data to obtain a best fit Szekeres model and find that it can fit the data as well as the standard Lambda-Cold Dark Matter (LCDM) cosmological model but with different cosmological parameters. Next, to study effects of inhomogeneities on distance measures, we build an exact relativistic Swiss-cheese model of the universe, where a large number of non-symmetric and randomly placed Szekeres structures are embedded within a LCDM background. Solving the full relativistic propagation equations, light beams are traced through the model, where they traverse the inhomogeneous structures in a way that mimics the paths of real light beams in the universe. For beams crossing a single structure, their magnification or demagnification reflects primarily the net density encountered along the path
Pairwise velocities in the "Running FLRW" cosmological model
Bibiano, Antonio; Croton, Darren J.
2017-01-01
We present an analysis of the pairwise velocity statistics from a suite of cosmological N-body simulations describing the "Running Friedmann-Lemaître-Robertson-Walker" (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends ΛCDM with a time-evolving vacuum energy density, ρ _Λ. To enforce local conservation of matter a time-evolving gravitational coupling is also included. Our results constitute the first study of velocities in the R-FLRW cosmology, and we also compare with other dark energy simulations suites, repeating the same analysis. We find a strong degeneracy between the pairwise velocity and σ8 at z = 0 for almost all scenarios considered, which remains even when we look back to epochs as early as z = 2. We also investigate various Coupled Dark Energy models, some of which show minimal degeneracy, and reveal interesting deviations from ΛCDM which could be readily exploited by future cosmological observations to test and further constrain our understanding of dark energy.
Testing Nonstandard Cosmological Models with SNLS3 Supernova Data and Other Cosmological Probes
Li, Zhengxiang; Wu, Puxun; Yu, Hongwei
2012-01-01
We investigate the implications for some nonstandard cosmological models using data from the first three years of the Supernova Legacy Survey (SNLS3), assuming a spatially flat universe. A comparison between the constraints from the SNLS3 and those from other SN Ia samples, such as the ESSENCE, Union2, SDSS-II, and Constitution samples, is given and the effects of different light-curve fitters are considered. We find that analyzing SNe Ia with SALT2 or SALT or SiFTO can give consistent results and the tensions between different data sets and different light-curve fitters are obvious for fewer-free-parameters models. At the same time, we also study the constraints from SNLS3 along with data from the cosmic microwave background and the baryonic acoustic oscillations (CMB/BAO), and the latest Hubble parameter versus redshift (H(z)). Using model selection criteria such as χ2/dof, goodness of fit, Akaike information criterion, and Bayesian information criterion, we find that, among all the cosmological models considered here (ΛCDM, constant w, varying w, Dvali-Gabadadze-Porrati (DGP), modified polytropic Cardassian, and the generalized Chaplygin gas), the flat DGP is favored by SNLS3 alone. However, when additional CMB/BAO or H(z) constraints are included, this is no longer the case, and the flat ΛCDM becomes preferred.
TESTING NONSTANDARD COSMOLOGICAL MODELS WITH SNLS3 SUPERNOVA DATA AND OTHER COSMOLOGICAL PROBES
Energy Technology Data Exchange (ETDEWEB)
Li Zhengxiang; Yu Hongwei [Department of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of the Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Wu Puxun, E-mail: hwyu@hunnu.edu.cn [Center of Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China)
2012-01-10
We investigate the implications for some nonstandard cosmological models using data from the first three years of the Supernova Legacy Survey (SNLS3), assuming a spatially flat universe. A comparison between the constraints from the SNLS3 and those from other SN Ia samples, such as the ESSENCE, Union2, SDSS-II, and Constitution samples, is given and the effects of different light-curve fitters are considered. We find that analyzing SNe Ia with SALT2 or SALT or SiFTO can give consistent results and the tensions between different data sets and different light-curve fitters are obvious for fewer-free-parameters models. At the same time, we also study the constraints from SNLS3 along with data from the cosmic microwave background and the baryonic acoustic oscillations (CMB/BAO), and the latest Hubble parameter versus redshift (H(z)). Using model selection criteria such as {chi}{sup 2}/dof, goodness of fit, Akaike information criterion, and Bayesian information criterion, we find that, among all the cosmological models considered here ({Lambda}CDM, constant w, varying w, Dvali-Gabadadze-Porrati (DGP), modified polytropic Cardassian, and the generalized Chaplygin gas), the flat DGP is favored by SNLS3 alone. However, when additional CMB/BAO or H(z) constraints are included, this is no longer the case, and the flat {Lambda}CDM becomes preferred.
Dark-energy cosmological models in f( G) gravity
Shamir, M. F.
2016-10-01
We discuss dark-energy cosmological models in f( G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f( G) model are explored. One general solution is discussed using a power-law f( G) gravity model and physical quantities are calculated. In particular, Kasner's universe is recovered and the corresponding f( G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f( G) = G 5/6 support expansion of universe while those with f( G) = G 1/2 do not favor the current expansion.
Casimir Effects in Renormalizable Quantum Field Theories
Graham, N; Weigel, H; Graham, Noah; Jaffe, Robert L.; Weigel, Herbert
2002-01-01
We review the framework we and our collaborators have developed for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.
Casimir Effects in Renormalizable Quantum Field Theories
Graham, Noah; Jaffe, Robert L.; Weigel, Herbert
We present a framework for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.
Super-renormalizable and finite gravitational theories
Energy Technology Data Exchange (ETDEWEB)
Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn; Rachwał, Lesław, E-mail: rachwal@fudan.edu.cn
2014-12-15
We hereby introduce and extensively study a class of non-polynomial higher derivative theories of gravity that realize a ultraviolet (UV) completion of Einstein general relativity. These theories are unitary (ghost free) and at most only one-loop divergences survive. The outcome is a class of theories super-renormalizable in even dimension and finite in odd dimension. Moreover, we explicitly prove in D=4 that there exists an extension of the theory that is completely finite and all the beta functions vanish even at one-loop. These results can be easily extended in extra dimensions and it is likely that the higher dimensional theory can be made finite, too. Therefore we have the possibility for “finite quantum gravity” in any dimension.
A cosmological model in Weyl-Cartan spacetime
Puetzfeld, D; Puetzfeld, Dirk; Tresguerres, Romualdo
2001-01-01
We present a cosmological model for early stages of the universe on the basis of a Weyl-Cartan spacetime. In this model, torsion $T^{\\alpha}$ and nonmetricity $Q_{\\alpha \\beta}$ are proportional to the vacuum polarization. Extending earlier work of Tresguerres, we discuss the behaviour of the cosmic scale factor and the Weyl 1-form in detail. We show how our model fits into the more general framework of metric-affine gravity (MAG).
Magnetized cosmological models in bimetric theory of gravitation
Indian Academy of Sciences (India)
S D Katore; R S Rane
2006-08-01
Bianchi type-III magnetized cosmological model when the field of gravitation is governed by either a perfect fluid or cosmic string is investigated in Rosen's [1] bimetric theory of gravitation. To complete determinate solution, the condition, viz., = (), where is a constant, between the metric potentials is used. We have assumed different equations of state for cosmic string [2] for the complete solution of the model. Some physical and geometrical properties of the exhibited model are discussed and studied.
Physical Models of Galaxy Formation in a Cosmological Framework
Somerville, Rachel S.; Davé, Romeel
2014-01-01
Modeling galaxy formation in a cosmological context presents one of the greatest challenges in astrophysics today, due to the vast range of scales and numerous physical processes involved. Here we review the current status of models that employ two leading techniques to simulate the physics of galaxy formation: semi-analytic models and numerical hydrodynamic simulations. We focus on a set of observational targets that describe the evolution of the global and structural properties of galaxies ...
Cosmological Models with Variable Deceleration Parameter in Lyra's Manifold
Pradhan, A; Singh, C B
2006-01-01
FRW models of the universe have been studied in the cosmological theory based on Lyra's manifold. A new class of exact solutions has been obtained by considering a time dependent displacement field for variable deceleration parameter from which three models of the universe are derived (i) exponential (ii) polynomial and (iii) sinusoidal form respectively. The behaviour of these models of the universe are also discussed. Finally some possibilities of further problems and their investigations have been pointed out.
The models of cosmological inflation in the context of kinetic approximation
Fomin, I.
2016-07-01
In this work the building of models of cosmological inflation with approximate linear dependence of the scalar field kinetic energy on the state parameter is considered. The key parameters of cosmological perturbations are also calculated.
Physical Models of Galaxy Formation in a Cosmological Framework
Somerville, Rachel S
2014-01-01
Modeling galaxy formation in a cosmological context presents one of the greatest challenges in astrophysics today, due to the vast range of scales and numerous physical processes involved. Here we review the current status of models that employ two leading techniques to simulate the physics of galaxy formation: semi-analytic models and numerical hydrodynamic simulations. We focus on a set of observational targets that describe the evolution of the global and structural properties of galaxies from roughly Cosmic High Noon ($z\\sim 2-3$) to the present. Although minor discrepancies remain, overall, models show remarkable convergence between different methods and make predictions that are in qualitative agreement with observations. Modelers seem to have converged on a core set of physical processes that are critical for shaping galaxy properties. This core set includes cosmological accretion, strong stellar-driven winds that are more efficient at low masses, black hole feedback that preferentially suppresses star...
Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology
Institute of Scientific and Technical Information of China (English)
CHEN Ju-Hua; ZHOU Sheng; WANG Yong-Jiu
2011-01-01
We investigate the evolution of the viscous dark energy (DE) interacting with the dark matter (DM) in the Einstein cosmology model. By using the linearizing theory of the dynamical system, we find that, in our model,there exists a stable late time scaling solution which corresponds to the accelerating universe. We also find the unstable solution under some appropriate parameters. In order to alleviate the coincidence problem, some authors considered the effect of quantum correction due to the conform anomaly and the interacting dark energy with the dark matter. However, if we take into account the bulk viscosity of the cosmic fluid, the coincidence problem will be softened just like the interacting dark energy cosmology model. That is to say, both the non-perfect fluid model and the interacting the dark energy cosmic model can alleviate or soften the singularity of the universe.%@@ We investigate the evolution of the viscous dark energy (DE) interacting with the dark matter (DM) in the Einstein cosmology model.By using the linearizing theory of the dynamical system, we find that, in our model, there exists a stable late time scaling solution which corresponds to the accelerating universe.We also find the unstable solution under some appropriate parameters.In order to alleviate the coincidence problem, some authors considered the effect of quantum correction due to the conform anomaly and the interacting dark energy with the dark matter.However, if we take into account the bulk viscosity of the cosmic fluid, the coincidence problem will be softened just like the interacting dark energy cosmology model.That is to say, both the non-perfect fluid model and the interacting the dark energy cosmic model can alleviate or soften the singularity of the universe.
Cosmological viability conditions for f(T) dark energy models
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)
2012-11-01
Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.
The GRBs Hubble diagram in quintessential cosmological models
Demianski, Marek; Rubano, Claudio
2010-01-01
It has been recently empirically established that some of the directly observed pa- rameters of GRBs are correlated with their important intrinsic parameters, like the luminosity or the total radiated energy. These correlations were derived, tested and used to standardize GRBs, i.e., to derive their luminosity or radiated energy from one or more observables, in order to construct an estimated fiducial Hubble diagram, assuming that radiation propagates in the standard LambdaCDM cosmological model. We extend these analyses by considering more general models of dark energy, and an updated data set of high redshift GRBs. We show that the correlation parameters only weakly depend on the cosmological model. Moreover we apply a local regression technique to estimate, in a model independent way, the distance modulus from the recently updated SNIa sample containing 307 SNIa (Astier et al. 2006), in order to calibrate the GRBs 2D correlations, considering only GRBs with z <1.4. The derived calibration parameters are...
Viscous dissipative Chaplygin gas dominated homogenous and isotropic cosmological models
Pun, C S J; Mak, M K; Kovács, Z; Szabó, G M; Harko, T
2008-01-01
The generalized Chaplygin gas, which interpolates between a high density relativistic era and a non-relativistic matter phase, is a popular dark energy candidate. We consider a generalization of the Chaplygin gas model, by assuming the presence of a bulk viscous type dissipative term in the effective thermodynamic pressure of the gas. The dissipative effects are described by using the truncated Israel-Stewart model, with the bulk viscosity coefficient and the relaxation time functions of the energy density only. The corresponding cosmological dynamics of the bulk viscous Chaplygin gas dominated universe is considered in detail for a flat homogeneous isotropic Friedmann-Robertson-Walker geometry. For different values of the model parameters we consider the evolution of the cosmological parameters (scale factor, energy density, Hubble function, deceleration parameter and luminosity distance, respectively), by using both analytical and numerical methods. In the large time limit the model describes an acceleratin...
Loop quantum cosmology of Bianchi type IX models
Wilson-Ewing, Edward
2010-01-01
The loop quantum cosmology "improved dynamics" of the Bianchi type IX model are studied. The action of the Hamiltonian constraint operator is obtained via techniques developed for the Bianchi type I and type II models, no new input is required. It is shown that the big bang and big crunch singularities are resolved by quantum gravity effects. We also present the effective equations which provide modifications to the classical equations of motion due to quantum geometry effects.
Loop quantum cosmology of Bianchi type IX models
Wilson-Ewing, Edward
2010-08-01
The loop quantum cosmology “improved dynamics” of the Bianchi type IX model are studied. The action of the Hamiltonian constraint operator is obtained via techniques developed for the Bianchi type I and type II models, no new input is required. It is shown that the big bang and big crunch singularities are resolved by quantum gravity effects. We also present effective equations which provide quantum geometry corrections to the classical equations of motion.
Cosmological bounds in MaVaN models
Energy Technology Data Exchange (ETDEWEB)
Boriero, D.F.; Holanda, P.C. de [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, Sao Paulo (Brazil)
2012-08-15
Mass varying neutrino (MaVaN) is a class of models which in cosmology try to explain the coincidence of dark energy density through a tracking mechanism related with neutrinos. This special model couples the quintessential scalar field with neutrino generating an effective mass which becomes variable. Furthermore, it has been shown that an additional coupling among the quintessential field and baryons could generate specific dependences of neutrino mass with baryonic density.
Cosmological model in 5D, stationarity, yes or no
Belayev, W B
1999-01-01
We consider cosmological model in 4+1 dimensions with variable scale factor in extra dimension and static external space. The time scale factor is changing. Variations of light velocity, gravity constant, mass and pressure are determined with four-dimensional projection of this space-time. Data obtained by space probes Viking on mission to Mars, Pioneer 10/11 and Ulysses are analyzed within the framework of this model.
A Dark Energy Model in Kaluza-Klein Cosmology
Mukhopadhyay, Utpal; Chakraborty, Ipsita; Ray, Saibal; Usmani, A. A.
2016-01-01
We study a dynamic Λ model with varying gravitational constant G under the Kaluza-Klein cosmology. Physical features and the limitations of the present model have been explored and discussed. Solutions are found mostly in accordance with the observed features of the accelerating universe. Interestingly, signature flipping of the deceleration parameter is noticed and the present age of the Universe is also attainable under certain stringent conditions. We find that the time variation of gravitational constant is not permitted without vintage Λ.
A Dark Energy Model in Kaluza-Klein Cosmology
Mukhopadhyay, Utpal; Ray, Saibal; Usmani, A A
2014-01-01
We study a dynamic $\\Lambda$ model with varying gravitational constant $G$ under the Kaluza-Klein cosmology. Physical features and the limitations of the present model have been explored and discussed. Solutions are found mostly in accordance with the observed features of the accelerating universe. Interestingly, signature flipping of the deceleration parameter is noticed and the present age of the Universe is also attainable under certain stringent conditions. We find that the time variation of gravitational constant is not permitted without vintage $\\Lambda$.
Bianchi type-V string cosmological models in general relativity
Indian Academy of Sciences (India)
Anil Kumar Yadav; Vineet Kumar Yadav; Lallan Yadav
2011-04-01
Bianchi type-V string cosmological models in general relativity are investigated. To get the exact solution of Einstein’s ﬁeld equations, we have taken some scale transformations used by Camci et al [Astrophys. Space Sci. 275, 391 (2001)]. It is shown that Einstein’s ﬁeld equations are solvable for any arbitrary cosmic scale function. Solutions for particular forms of cosmic scale functions are also obtained. Some physical and geometrical aspects of the models are discussed.
Super-renormalizable or finite Lee-Wick quantum gravity
Modesto, Leonardo
2016-08-01
We propose a class of multidimensional higher derivative theories of gravity without extra real degrees of freedom besides the graviton field. The propagator shows up the usual real graviton pole in k2 = 0 and extra complex conjugates poles that do not contribute to the absorptive part of the physical scattering amplitudes. Indeed, they may consistently be excluded from the asymptotic observable states of the theory making use of the Lee-Wick and Cutkosky, Landshoff, Olive and Polkinghorne prescription for the construction of a unitary S-matrix. Therefore, the spectrum consists of the graviton and short lived elementary unstable particles that we named ;anti-gravitons; because of their repulsive contribution to the gravitational potential at short distance. However, another interpretation of the complex conjugate pairs is proposed based on the Calmet's suggestion, i.e. they could be understood as black hole precursors long established in the classical theory. Since the theory is CPT invariant, the conjugate complex of the micro black hole precursor can be interpreted as a white hole precursor consistently with the 't Hooft complementarity principle. It is proved that the quantum theory is super-renormalizable in even dimension, i.e. only a finite number of divergent diagrams survive, and finite in odd dimension. Furthermore, turning on a local potential of the Riemann tensor we can make the theory finite in any dimension. The singularity-free Newtonian gravitational potential is explicitly computed for a range of higher derivative theories. Finally, we propose a new super-renormalizable or finite Lee-Wick standard model of particle physics.
Super-renormalizable or finite Lee–Wick quantum gravity
Directory of Open Access Journals (Sweden)
Leonardo Modesto
2016-08-01
Full Text Available We propose a class of multidimensional higher derivative theories of gravity without extra real degrees of freedom besides the graviton field. The propagator shows up the usual real graviton pole in k2=0 and extra complex conjugates poles that do not contribute to the absorptive part of the physical scattering amplitudes. Indeed, they may consistently be excluded from the asymptotic observable states of the theory making use of the Lee–Wick and Cutkosky, Landshoff, Olive and Polkinghorne prescription for the construction of a unitary S-matrix. Therefore, the spectrum consists of the graviton and short lived elementary unstable particles that we named “anti-gravitons” because of their repulsive contribution to the gravitational potential at short distance. However, another interpretation of the complex conjugate pairs is proposed based on the Calmet's suggestion, i.e. they could be understood as black hole precursors long established in the classical theory. Since the theory is CPT invariant, the conjugate complex of the micro black hole precursor can be interpreted as a white hole precursor consistently with the 't Hooft complementarity principle. It is proved that the quantum theory is super-renormalizable in even dimension, i.e. only a finite number of divergent diagrams survive, and finite in odd dimension. Furthermore, turning on a local potential of the Riemann tensor we can make the theory finite in any dimension. The singularity-free Newtonian gravitational potential is explicitly computed for a range of higher derivative theories. Finally, we propose a new super-renormalizable or finite Lee–Wick standard model of particle physics.
New Cosmological Model and Its Implications on Observational Data Interpretation
Directory of Open Access Journals (Sweden)
Vlahovic Branislav
2013-09-01
Full Text Available The paradigm of ΛCDM cosmology works impressively well and with the concept of inflation it explains the universe after the time of decoupling. However there are still a few concerns; after much effort there is no detection of dark matter and there are significant problems in the theoretical description of dark energy. We will consider a variant of the cosmological spherical shell model, within FRW formalism and will compare it with the standard ΛCDM model. We will show that our new topological model satisfies cosmological principles and is consistent with all observable data, but that it may require new interpretation for some data. Considered will be constraints imposed on the model, as for instance the range for the size and allowed thickness of the shell, by the supernovae luminosity distance and CMB data. In this model propagation of the light is confined along the shell, which has as a consequence that observed CMB originated from one point or a limited space region. It allows to interpret the uniformity of the CMB without inflation scenario. In addition this removes any constraints on the uniformity of the universe at the early stage and opens a possibility that the universe was not uniform and that creation of galaxies and large structures is due to the inhomogeneities that originated in the Big Bang.
Robertson-Walker cosmological models with perfect fluid in general relativity
Institute of Scientific and Technical Information of China (English)
Rishi Kumar Tiwari
2011-01-01
Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for a Robertson-Walker universe by assuming the cosmological term to be proportional to R-m (R is a scale factor and m is a constant). A variety of solutions is presented. The physical significance of the cosmological models has also been discussed.
On multidimensional solutions in the Einstein-Gauss-Bonnet model with a cosmological term
Kobtsev, A A; Ernazarov, K K
2016-01-01
A D-dimensional gravitational model with Gauss-Bonnet and cosmological term is considered. When ansatz with diagonal cosmological metrics is adopted, we overview recent solutions for zero cosmological term and find new examples of solutions for non-zero cosmological term and D = 8 with exponential dependence of scale factors which describe an expansion of our 3-dimensional factor-space and contraction of 4-dimensional internal space.
The Cosmological Constant for the Crystalline Vacuum Cosmic Space Model
Montemayor-Aldrete, J A; Morales-Mori, A; Mendoza-Allende, A; Montemayor-Varela, A; Castillo-Mussot, M; Vazquez, G J
2005-01-01
The value of the cosmological constant arising from a crystalline model for vacuum cosmic space with lattice parameter of the order of the neutron radius [1] has been calculated. The model allows to solve, in an easy way, the problem of the cosmological constant giving the right order of magnitude, which corresponds very well with the mean value of matter density in the universe. The obtained value is about 10-48 Km-2. Diffraction experiments with non-thermal neutron beam in cosmic space are proposed to search for the possibility of crystalline structure of vacuum space and to measure the lattice parameter. PACS numbers: 98.80.Es, 04.20.-q, 03.65.-w, 61.50.-f, 98.80.Ft
First cosmological constraints on the Superfluid Chaplygin gas model
Lazkoz, Ruth; Salzano, Vincenzo
2012-01-01
In this work we set observational constraints of the Superfluid Chaplygin gas model, which gives a unified description of the dark sector of the Universe as a Bose-Einstein condensate (BEC) that behaves as dark energy (DE) while it is in the ground state and as dark matter (DM) when it is in the excited state. We first show and perform the various steps leading to a form of the equations suitable for the observational tests to be carried out. Then, by using a Markov Chain Monte Carlo (MCMC) code, we constrain the model with a sample of cosmology-independent long gamma-ray bursts (LGRBs) calibrated using their Type I Fundamental Plane, as well as the Union2.1 set and observational Hubble parameter data. In this analysis, using our cosmological constraints, we sketch the effective equation of state parameter and deceleration parameter, and we also obtain the redshift of the transition from deceleration to acceleration: $z_t$.
Constraints on cosmological models from lens redshift data
Cao, Shuo
2011-01-01
Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structures, formations, and evolutions). Now several hundreds of strong lens systems produced by massive galaxies have been discovered, which may form well-defined samples useful for statistical analyses. To collect a relatively complete lens redshift data from various large systematic surveys of gravitationally lensed quasars and check the possibility to use it as a future complementarity to other cosmological probes. We use the distribution of gravitationally-lensed image separations observed in the Cosmic Lens All-Sky Survey (CLASS), the PMN-NVSS Extragalactic Lens Survey (PANELS), the Sloan Digital Sky Survey (SDSS) and other surveys, considering a singular isothermal ellipsoid (SIE) model for galactic potentials as well as improved new measurements of the velocity dispersion function of galaxies based on the SDSS DR5 data and recent semi-analytical modeling of galaxy formation, to constrain tw...
Perturbations of Kantowski-Sachs models with a cosmological constant
Keresztes, Zoltán; Bradley, Michael; Dunsby, Peter K S; Gergely, László Á
2013-01-01
We investigate perturbations of Kantowski-Sachs models with a positive cosmological constant, using the gauge invariant 1+3 and 1+1+2 covariant splits of spacetime together with a harmonic decomposition. The perturbations are assumed to be vorticity-free and of perfect fluid type, but otherwise include general scalar, vector and tensor modes. In this case the set of equations can be reduced to six evolution equations for six harmonic coefficients.
Wave functions in SUSY cosmological models with matter
Energy Technology Data Exchange (ETDEWEB)
Ortiz, C. [Instituto de Fisica de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Leon, Guanajuato (Mexico); Rosales, J.J. [Facultad de Ingenieria Mecanica Electrica y Electronica, Universidad de Guanajuato, Prolongacion Tampico 912, Bellavista, Salamanca, Guanajuato (Mexico); Socorro, J. [Instituto de Fisica de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Leon, Guanajuato (Mexico)]. E-mail: socorro@fisica.ugto.mx; Torres, J. [Instituto de Fisica de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Leon, Guanajuato (Mexico); Tkach, V.I. [Instituto de Fisica de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Leon, Guanajuato (Mexico)
2005-06-06
In this work we consider the n=2 supersymmetric superfield approach for the FRW cosmological model and the corresponding term of matter content, perfect fluid with barotropic state equation p={gamma}{rho}. We are able to obtain a normalizable wave function (at zero energy) of the universe. Besides, the mass parameter spectrum is found for the closed FRW case in the Schrodinger picture, being similar to those obtained by other methods, using a black hole system.
Stability of some Kaluza-Klein cosmological models
Energy Technology Data Exchange (ETDEWEB)
Barrow, J.D.; Stein-Schabes, J.
1986-02-06
The stability is examined of some exact Kaluza-Klein cosmological solutions that possess static extra dimensions and standard Friedman behaviour for the remaining three spatial dimensions. It is shown that even when the extra dimensions are asymptotically static they produce a deviation from Friedman behaviour in the observable three spatial dimensions. A similar effect is found for models with anisotropically expanding three-spaces. (orig.).
Cosmological Structure Formation in Decaying Dark Matter Models
Cheng, Dalong; Tang, Jiayu
2015-01-01
The standard cold dark matter (CDM) model predicts too many and too dense small structures. We consider an alternative model that the dark matter undergoes two-body decays with cosmological lifetime $\\tau$ into only one type of massive daughters with non-relativistic recoil velocity $V_k$. This decaying dark matter model (DDM) can suppress the structure formation below its free-streaming scale at time scale comparable to $\\tau$. Comparing with warm dark matter (WDM), DDM can better reduce the small structures while being consistent with high redshfit observations. We study the cosmological structure formation in DDM by performing self-consistent N-body simulations and point out that cosmological simulations are necessary to understand the DDM structures especially on non-linear scales. We propose empirical fitting functions for the DDM suppression of the mass function and the mass-concentration relation, which depend on the decay parameters lifetime $\\tau$ and recoil velocity $V_k$, and redshift. The fitting ...
Bianchi Type Ⅲ String Cosmological Model with Bulk Viscosity
Institute of Scientific and Technical Information of China (English)
WANGXing-Xiang
2004-01-01
The Bianchi type Ⅲ cosmological model for a cloud string with bulk viscosity are presented. To obtain a determinate model, an equation of state ρ=kλ and a relation between metric potentials B = Cn are assumed. The physical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuously expanding universe with a big-bang start, and the relation between the coefficient of bulk viscosity and the energy density is ζ∝ρ1/2.
Bianchi Type Ⅲ String Cosmological Model with Bulk Viscosity
Institute of Scientific and Technical Information of China (English)
WANG Xing-Xiang
2004-01-01
The Bianchi type Ⅲ cosmological model for a cloud string with bulk viscosity are presented. To obtaina determinate model, an equation of state p = κλ and a relation between metric potentials B = Cn are assumed. Thephysical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuouslyexpanding universe with a big-bang start, and the relation between the coefficient of bulk viscosity and the energy densityis ζ∝1 p1/2.
Stability analysis of cosmological models through Liapunov's method
Charters, T C; Mimoso, J P; Charters, Tiago C.; Mimoso, Jose P.
2001-01-01
We investigate the general asymptotic behaviour of Friedman-Robertson-Walker (FRW) models with an inflaton field, scalar-tensor FRW cosmological models and diagonal Bianchi-IX models by means of Liapunov's method. This method provides information not only about the asymptotic stability of a given equilibrium point but also about its basin of attraction. This cannot be obtained by the usual methods found in the literature, such as linear stability analysis or first order perturbation techniques. Moreover, Liapunov's method is also applicable to non-autonomous systems. We use this advantadge to investigate the mechanism of reheating for the inflaton field in FRW models.
On spherically symmetric singularity-free models in relativistic cosmology
Indian Academy of Sciences (India)
Ramesh Tikekar
2000-10-01
The introduction of time dependence through a scale factor in a non-conformally ﬂat static cosmological model whose spacetime can be embedded in a ﬁve demensional ﬂat spacetime is shown to give rise to two spherical models of universe ﬁlled with perfect ﬂuid acompannied with radial heat ﬂux without any Big Bang type singularity. The ﬁrst model describes an ever existing universe which witnesses a transition from state of contraction to that of ever expansion. The second model represents a universe oscillating between two regular states.
Renormalization group independence of Cosmological Attractors
Fumagalli, Jacopo
2017-06-01
The large class of inflationary models known as α- and ξ-attractors gives identical cosmological predictions at tree level (at leading order in inverse power of the number of efolds). Working with the renormalization group improved action, we show that these predictions are robust under quantum corrections. This means that for all the models considered the inflationary parameters (ns , r) are (nearly) independent on the Renormalization Group flow. The result follows once the field dependence of the renormalization scale, fixed by demanding the leading log correction to vanish, satisfies a quite generic condition. In Higgs inflation (which is a particular ξ-attractor) this is indeed the case; in the more general attractor models this is still ensured by the renormalizability of the theory in the effective field theory sense.
Renormalizability of effective scalar field theory
Ball, R D
1994-01-01
We present a comprehensive discussion of the consistency of the effective quantum field theory of a single $Z_2$ symmetric scalar field. The theory is constructed from a bare Euclidean action which at a scale much greater than the particle's mass is constrained only by the most basic requirements; stability, finiteness, analyticity, naturalness, and global symmetry. We prove to all orders in perturbation theory the boundedness, convergence, and universality of the theory at low energy scales, and thus that the theory is perturbatively renormalizable in the sense that to a certain precision over a range of such scales it depends only on a finite number of parameters. We then demonstrate that the effective theory has a well defined unitary and causal analytic S--matrix at all energy scales. We also show that redundant terms in the Lagrangian may be systematically eliminated by field redefinitions without changing the S--matrix, and discuss the extent to which effective field theory and analytic S--matrix theory...
Renormalization group approach to causal bulk viscous cosmological models
Energy Technology Data Exchange (ETDEWEB)
Belinchon, J A [Grupo Inter-Universitario de Analisis Dimensional, Dept. Fisica ETS Arquitectura UPM, Av. Juan de Herrera 4, Madrid (Spain); Harko, T [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Mak, M K [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)
2002-06-07
The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor.
The Cosmology of Generalized Modified Gravity Models
Carroll, S M; Duvvuri, V; Easson, D A; Trodden, M; Turner, M S; Carroll, Sean M.; Felice, Antonio De; Duvvuri, Vikram; Easson, Damien A.; Trodden, Mark; Turner, Michael S.
2005-01-01
We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the far future evolution of the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models.
Cosmology of generalized modified gravity models
Carroll, Sean M.; de Felice, Antonio; Duvvuri, Vikram; Easson, Damien A.; Trodden, Mark; Turner, Michael S.
2005-03-01
We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the far future evolution of the Universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models.
Ignat'ev, Yu G
2016-01-01
In this paper we investigate the asymptotic behavior of the cosmological model based on phantom scalar field on the ground of qualitative analysis of the system of the cosmological model's differential equations and show that as opposed to models with classical scalar field, such models have stable asymptotic solutions with constant value of the potential both in infinite past and infinite future. We also develop numerical models of the cosmological evolution models with phantom scalar field in this paper. {\\bf keywords}: cosmological model, phantom scalar field, quality analysis, asymptotic behavior, numerical simulation, numerical gravitation.\\\\ {\\bf PACS}: 04.20.Cv, 98.80.Cq, 96.50.S 52.27.Ny
Cosmological Perturbations in Phantom Dark Energy Models
Directory of Open Access Journals (Sweden)
Imanol Albarran
2017-03-01
Full Text Available The ΛCDM paradigm, characterised by a constant equation of state w = − 1 for dark energy, is the model that better fits observations. However, the same observations strongly support the possibility of a dark energy content where the corresponding equation of state is close to but slightly smaller than − 1 . In this regard, we focus on three different models where the dark energy content is described by a perfect fluid with an equation of state w ≲ − 1 which can evolve or not. The three proposals show very similar behaviour at present, while the asymptotic evolution of each model drives the Universe to different abrupt events known as (i Big Rip; (ii Little Rip (LR; and (iii Little Sibling of the Big Rip. With the aim of comparing these models and finding possible imprints in their predicted matter distribution, we compute the matter power spectrum and the growth rate f σ 8 . We conclude that the model which induces a LR seems to be favoured by observations.
Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models
Wojtak, Radosław
2016-01-01
The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. Here we present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acoustic oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, bu...
Ignat'ev, Yurii
2016-01-01
On the basis of qualitative analysis of the system of differential equations of the standard cosmological model it is shown that in the case of zero cosmological constant this system has a stable center corresponding to zero values of potential and its derivative at infinity. Thus, the cosmological model based on single massive classical scalar field in infinite future would give a flat Universe. The carried out numerical simulation of the dynamic system corresponding to the system of Einstein - Klein - Gordon equations showed that at great times of the evolution the invariant cosmological acceleration has an oscillating character and changes from $-2$ (braking), to $+1$ (acceleration). Average value of the cosmological acceleration is negative and is equal to $-1/2$. Oscillations of the cosmological acceleration happen on the background of rapidly falling Hubble constant. In the case of nonzero value of the cosmological constant depending on its value there are possible three various qualitative behavior typ...
On hyperbolicity violations in cosmological models with vector fields
Golovnev, Alexey
2014-01-01
Cosmological models with vector fields received much attention in recent years. Unfortunately, most of them are plagued with severe instabilities or other problems. In particular, it was noted by G. Esposito-Farese, C. Pitrou and J.-Ph. Uzan in arXiv:0912.0481 that the models with a non-linear function of the Maxwellian kinetic term do always imply violations of hyperbolicity somewhere in the phase space. In this work we make this statement more precise in several respects and show that those violations may not be present around spatially homogeneous configurations of the vector field.
Constraining interacting dark energy models with latest cosmological observations
Xia, Dong-Mei; Wang, Sai
2016-11-01
The local measurement of H0 is in tension with the prediction of Λ cold dark matter model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on cosmic microwave background, the baryon acoustic oscillation, large-scale structure, supernovae, H(z) and H0 to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The H0 tension can be moderately alleviated, but not totally released.
Constraining interacting dark energy models with latest cosmological observations
Xia, Dong-Mei
2016-01-01
The local measurement of $H_0$ is in tension with the prediction of $\\Lambda$CDM model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on CMB, BAO, LSS, SNe, $H(z)$ and $H_0$ to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The $H_0$ tension can be moderately alleviated, but not totally released.
Constraining the $\\Lambda$CDM and Galileon models with recent cosmological data
Neveu, J; Astier, P; Besançon, M; Guy, J; Möller, A; Babichev, E
2016-01-01
The Galileon theory belongs to the class of modified gravity models that can explain the late-time accelerated expansion of the Universe. In previous works, cosmological constraints on the Galileon model were derived, both in the uncoupled case and with a disformal coupling of the Galileon field to matter. There, we showed that these models agree with the most recent cosmological data. In this work, we used updated cosmological data sets to derive new constraints on Galileon models, including the case of a constant conformal Galileon coupling to matter. We also explored the tracker solution of the uncoupled Galileon model. After updating our data sets, especially with the latest \\textit{Planck} data and BAO measurements, we fitted the cosmological parameters of the $\\Lambda$CDM and Galileon models. The same analysis framework as in our previous papers was used to derive cosmological constraints, using precise measurements of cosmological distances and of the cosmic structure growth rate. We showed that all te...
Scale invariant cosmology III: dynamical models and comparisons with observations
Maeder, Andre
2016-01-01
We examine the properties of the scale invariant cosmological models, also making the specific hypothesis of the scale invariance of the empty space at large scales. Numerical integrations of the cosmological equations for different values of the curvature parameter k and of the density parameter Omega_m are performed. We compare the dynamical properties of the models to the observations at different epochs. The main numerical data and graphical representations are given for models computed with different curvatures and density parameters. The models with non-zero density start explosively with first a braking phase followed by a continuously accelerating expansion. The comparison of the models with the recent observations from supernovae SN Ia, BAO and CMB data from Planck 2015 shows that the scale invariant model with k=0 and Omega_m=0.30 very well fits the observations in the usual Omega_m vs. Omega_Lambda plane and consistently accounts for the accelerating expansion or dark energy. The expansion history ...
A comparison of cosmological models using time delay lenses
Energy Technology Data Exchange (ETDEWEB)
Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)
2014-06-20
The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R {sub h} = ct universe is the correct cosmology versus ∼20%-30% for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R {sub h} = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R {sub h} = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.
Cosmological study of reconstructed f(T) models
Jawad, Abdul; Rani, Shamaila; Saleem, M.
2017-04-01
In this paper, we construct f(T) models by using some dark energy models taking FRW space-time under reconstruction scenario. These dark energy models consist of pilgrim dark energy model with event horizon and Granda-Oliveros as infrared cutoff and higher order time derivatives of Hubble parameter. Using these models we drive the cosmological parameters such as equation of state, square speed of sound and ωT-ωT' plane taking power-law form of scale factor. We discuss these parameters graphically for different values of scale factor parameter. The first and second models represent quintessence and phantom era with stable behavior and freezing region for smaller values of scale factor parameter. The third model shows unstable behavior while phantom era of the universe.
Examining subgrid models of supermassive black holes in cosmological simulation
Sutter, P M
2010-01-01
While supermassive black holes (SMBHs) play an important role in galaxy and cluster evolution, at present they can only be included in large-scale cosmological simulation via subgrid techniques. However, these subgrid models have not been studied in a systematic fashion. Using a newly-developed fast, parallel spherical overdensity halo finder built into the simulation code FLASH, we perform a suite of dark matter-only cosmological simulations to study the effects of subgrid model choice on relations between SMBH mass and dark matter halo mass and velocity dispersion. We examine three aspects of SMBH subgrid models: the choice of initial black hole seed mass, the test for merging two black holes, and the frequency of applying the subgrid model. We also examine the role that merging can play in determining the relations, ignoring the complicating effects of SMBH-driven accretion and feedback. We find that the choice of subgrid model can dramatically affect the black hole merger rate, the cosmic SMBH mass densit...
Pradhan, Anirudh; Rikhvitsky, Victor
2013-01-01
The present study deals with the exact solutions of the Einstein's field equations with variable gravitational and cosmological "constants" for a spatially homogeneous and anisotropic Bianchi type-I space-time. To study the transit behaviour of Universe, we consider a law of variation of scale factor $a(t) = \\left(t^{k} e^{t}\\right)^{\\frac{1}{n}}$ which yields a time dependent deceleration parameter (DP) $q = - 1 + \\frac{nk}{(k + t)^{2}}$, comprising a class of models that depicts a transition of the universe from the early decelerated phase to the recent accelerating phase. We find that the time dependent DP is reasonable for the present day Universe and give an appropriate description of the evolution of the universe. For $n = 0.27k$, we obtain $q_{0} = -0.73$ which is similar to observed value of DP at present epoch. It is also observed that for $n \\geq 2$ and $k = 1$, we obtain a class of transit models of the universe from early decelerating to present accelerating phase. For $k = 0$, the universe has no...
Anisotropic models are unitary: A rejuvenation of standard quantum cosmology
Pal, Sridip
2016-01-01
The present work proves that the folk-lore of the pathology of non-conservation of probability in quantum anisotropic models is wrong. It is shown in full generality that all operator ordering can lead to a Hamiltonian with a self-adjoint extension as long as it is constructed to be a symmetric operator, thereby making the problem of non-unitarity in context of anisotropic homogeneous model a ghost. Moreover, it is indicated that the self-adjoint extension is not unique and this non-uniqueness is suspected not to be a feature of Anisotropic model only, in the sense that there exists operator orderings such that Hamiltonian for an isotropic homogeneous cosmological model does not have unique self-adjoint extension, albeit for isotropic model, there is a special unique extension associated with quadratic form of Hamiltonian i.e {\\it Friedrichs extension}. Details of calculations are carried out for a Bianchi III model.
Cosmological data analysis of f(R) gravity models
Girones, Z; Mena, O; Pena-Garay, C; Rius, N
2009-01-01
A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the LambdaCDM model.
Cosmological data analysis of f(R) gravity models
Energy Technology Data Exchange (ETDEWEB)
Gironés, Z.; Marchetti, A.; Mena, O.; Peña-Garay, C.; Rius, N., E-mail: girones@ific.uv.es, E-mail: alida.marchetti@unimi.it, E-mail: omena@ific.uv.es, E-mail: carlos.penya@ific.uv.es, E-mail: nuria@ific.uv.es [Depto. de Física Teórica, IFIC, Universidad de Valencia-CSIC, Edificio de Institutos de Paterna, Apt. 22085, 46071 Valencia (Spain)
2010-11-01
A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the ΛCDM model.
Cosmological model with interactions in the dark sector
Chimento, Luis P; Kremer, Gilberto M
2007-01-01
A cosmological model is proposed for the current Universe consisted of non-interacting baryonic matter and interacting dark components. The dark energy and dark matter are coupled through their effective barotropic indexes, which are considered as functions of the ratio between their energy densities. It is investigated two cases where the ratio is asymptotically stable and their parameters are adjusted by considering best fits to Hubble function data. It is shown that the deceleration parameter, the densities parameters, and the luminosity distance have the correct behavior which is expected for a viable present scenario of the Universe.
Testing coupled dark energy models with their cosmological background evolution
van de Bruck, Carsten; Morrice, Jack
2016-01-01
We consider a cosmology in which dark matter and a quintessence scalar field responsible for the acceleration of the Universe are allowed to interact. Allowing for both conformal and disformal couplings, we perform a global analysis of the constraints on our model using Hubble parameter measurements, baryon acoustic oscillation distance measurements, and a Supernovae Type Ia data set. We find that the additional disformal coupling relaxes the conformal coupling constraints. Moreover we show that, at the background level, a disformal interaction within the dark sector is preferred to both $\\Lambda$CDM and uncoupled quintessence, hence favouring interacting dark energy.
Tachyonization of the $\\La$CDM cosmological model
Chimento, Luis P; Kremer, Gilberto M; Ribas, Marlos O
2008-01-01
In this work a tachyonization of the $\\Lambda$CDM model for a spatially flat Friedmann-Robertson-Walker space-time is proposed. A tachyon field and a cosmological constant are considered as the sources of the gravitational field. Starting from a stability analysis and from the exact solutions for a standard tachyon field driven by a given potential, the search for a large set of cosmological models which contain the $\\Lambda$CDM model is investigated. By the use of internal transformations two new kinds of tachyon fields are derived from the standard tachyon field, namely, a complementary and a phantom tachyon fields. Numerical solutions for the three kinds of tachyon fields are determined and it is shown that the standard and complementary tachyon fields reproduces the $\\Lambda$CDM model as a limiting case. The standard tachyon field can also describe a transition from an accelerated to a decelerated regime, behaving as an inflaton field at early times and as a matter field at late times. The complementary t...
Nonspherical Szekeres models in the language of cosmological perturbations
Sussman, Roberto A.; Hidalgo, Juan Carlos; Delgado Gaspar, Ismael; Germán, Gabriel
2017-03-01
We study the differences and equivalences between the nonperturbative description of the evolution of cosmic structure furnished by the Szekeres dust models (a nonspherical exact solution of Einstein's equations) and the dynamics of cosmological perturbation theory (C P T ) for dust sources in a Λ CDM background. We show how the dynamics of Szekeres models can be described by evolution equations given in terms of "exact fluctuations" that identically reduce (at all orders) to evolution equations of C P T in the comoving isochronous gauge. We explicitly show how Szekeres linearized exact fluctuations are specific (deterministic) realizations of standard linear perturbations of C P T given as random fields, but, as opposed to the latter perturbations, they can be evolved exactly into the full nonlinear regime. We prove two important results: (i) the conservation of the curvature perturbation (at all scales) also holds for the appropriate linear approximation of the exact Szekeres fluctuations in a Λ CDM background, and (ii) the different collapse morphologies of Szekeres models yields, at nonlinear order, different functional forms for the growth factor that follows from the study of redshift space distortions. The metric-based potentials used in linear C P T are computed in terms of the parameters of the linearized Szekeres models, thus allowing us to relate our results to linear C P T results in other gauges. We believe that these results provide a solid starting stage to examine the role of non-perturbative general relativity in current cosmological research.
Forte, Mónica
2016-01-01
We show the kinematic equivalence between cosmological models driven by Dirac-Born-Infeld fields $\\phi$ with constant proper velocity of the brane and exponential potential $V=V_0e^{-B\\phi}$ and interactive cosmological systems with Modified Holographic Ricci type fluids as dark energy in flat Friedmann-Robertson-Walker cosmologies.
Constraints On Holographic Cosmological Models From Gamma Ray Bursts
Rivera, Alexander Bonilla
2016-01-01
We use Gamma Ray Bursts (GRBs) data to put additional constraints on a set of holographic dark energy models. GRBs are the most energetic events in the Universe and provide a complementary probe of dark energy by allowing the measurement of cosmic expansion history that extends to redshifts greater than 6 and they are complementary to SNIa test. We found that the LCDM model is the best fit to the data, although a preliminary statistical analysis seems to indicate that the holographic models studied show interesting agreement with observations, except Ricci Scale CPL model. These results show the importance of GRBs measurements to provide additional observational constraints to alternative cosmological models, which are necessary to clarify the way in the paradigm of dark energy or potential alternatives.
A Comparison of Cosmological Models Using Strong Gravitational Lensing Galaxies
Melia, Fulvio; Wu, Xue-Feng
2014-01-01
Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems, and carry out a one-on-one comparison between the standard model, LCDM, and the R_h=ct Universe. We find that both models account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule o...
Investigation of dark matter-dark energy interaction cosmological model
Wang, J S
2014-01-01
In this paper, we test the dark matter-dark energy interacting cosmological model with a dynamic equation of state $w_{DE}(z)=w_{0}+w_{1}z/(1+z)$, using type Ia supernovae (SNe Ia), Hubble parameter data, baryonic acoustic oscillation (BAO) measurements, and the cosmic microwave background (CMB) observation. This interacting cosmological model has not been studied before. The best-fitted parameters with $1 \\sigma$ uncertainties are $\\delta=-0.022 \\pm 0.006$, $\\Omega_{DM}^{0}=0.213 \\pm 0.008$, $w_0 =-1.210 \\pm 0.033$ and $w_1=0.872 \\pm 0.072$ with $\\chi^2_{min}/dof = 0.990$. At the $1 \\sigma$ confidence level, we find $\\delta<0$, which means that the energy transfer prefers from dark matter to dark energy. We also find that the SNe Ia are in tension with the combination of CMB, BAO and Hubble parameter data. The evolution of $\\rho_{DM}/\\rho_{DE}$ indicates that this interacting model is a good approach to solve the coincidence problem, because the $\\rho_{DE}$ decrease with scale factor $a$. The transition r...
New model of axion monodromy inflation and its cosmological implications
Energy Technology Data Exchange (ETDEWEB)
Cai, Yi-Fu [CAS Key Laboratory for Researches in Galaxies and Cosmology,Department of Astronomy, University of Science and Technology of China,Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Department of Physics, McGill University,Montréal, QC, H3A 2T8 (Canada); Chen, Fang [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, California 93106 (United States); Ferreira, Elisa G.M.; Quintin, Jerome [Department of Physics, McGill University,Montréal, QC, H3A 2T8 (Canada)
2016-06-10
We propose a new realization of axion monodromy inflation in which axion monodromy arises from torsional cycles in a type IIB compactification. A class of monomial potentials is obtained with specific values for the power index. Moreover, the inflaton mass changes profile due to the couplings between various fields after compactification. Consequently, the potential obtains a step-like profile at some critical scale. We study the cosmological implications of one concrete realization of this model. At the background level, it realizes a sufficiently long inflationary stage, which allows for the violation of the slow-roll conditions for a short period of time when the inflaton is close to the critical scale. Accordingly, the Hubble horizon is perturbed and affects the dynamics of primordial cosmological perturbations. In particular, we analyze the angular power spectrum of B-mode polarization and find a boost on very large scales. We also find that the amplitude of scalar perturbations is suppressed near the critical scale. Thus our model provides an interpretation for the low-ℓ suppression of temperature anisotropies in the CMB power spectrum. We examine these effects and confront the model to observations.
A Comparison of Cosmological Models Using Time Delay Lenses
Wei, Jun-Jie; Melia, Fulvio
2014-01-01
The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of $\\Lambda$CDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between {\\it competing} models. The currently available sample indicates a likelihood of $\\sim 70-80%$ that the $R_{\\rm h}=ct$ Universe is the correct cosmology versus $\\sim 20-30%$ for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic sa...
The Janus Cosmological Model (JCM) : An answer to the missing cosmological antimatter
D'Agostini, Gilles; Petit, Jean-Pierre
2017-01-01
Cosmological antimatter absence remains unexplained. Twin universes 1967 Sakarov's model suggests an answer: excess of matter and anti-quarks production in our universe is balanced by equivalent excess of antimatter and quark in twin universe. JCM provides geometrical framework, with a single manifold , two metrics solutions of two coupled field equations, to describe two populations of particles, one with positive energy-mass and the other with negative energy-mass : the `twin matter'. In a quantum point of view, it's a copy of the standard matter but with negative mass and energy. The matter-antimatter duality holds in both sectors. The standard and twin matters do not interact except through the gravitational coupling expressed in field equations. The twin matter is unobservable from matter-made apparatus. Field equations shows that matter and twin matter repel each other. Twin matter surrounding galaxies explains their confinement (dark matter role) and, in the dust universe era, mainly drives the process of expansion of the positive sector, responsible of the observed acceleration (dark energy role).
DGP cosmological model with generalized Ricci dark energy
Energy Technology Data Exchange (ETDEWEB)
Aguilera, Yeremy [Universidad de Santiago, Departamento de Matematicas y Ciencia de la Computacion, Santiago (Chile); Avelino, Arturo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Facultad de Ciencias, Instituto de Fisica, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria y Ciencias, Temuco (Chile)
2014-11-15
The brane-world model proposed by Dvali, Gabadadze and Porrati (DGP) leads to an accelerated universe without cosmological constant or other form of dark energy for the positive branch (element of = +1). For the negative branch (element of = -1) we have investigated the behavior of a model with an holographic Ricci-like dark energy and dark matter, where the IR cutoff takes the form αH{sup 2} + βH, H being the Hubble parameter and α, β positive constants of the model. We perform an analytical study of the model in the late-time dark energy dominated epoch, where we obtain a solution for r{sub c}H(z), where r{sub c} is the leakage scale of gravity into the bulk, and conditions for the negative branch on the holographic parameters α and β, in order to hold the conditions of weak energy and accelerated universe. On the other hand, we compare the model versus the late-time cosmological data using the latest type Ia supernova sample of the Joint Light-curve Analysis (JLA), in order to constrain the holographic parameters in the negative branch, as well as r{sub c}H{sub 0} in the positive branch, where H{sub 0} is the Hubble constant. We find that the model has a good fit to the data and that the most likely values for (r{sub c}H{sub 0}, α, β) lie in the permitted region found from an analytical solution in a dark energy dominated universe. We give a justification to use a holographic cutoff in 4D for the dark energy in the 5-dimensional DGP model. Finally, using the Bayesian Information Criterion we find that this model is disfavored compared with the flat ΛCDM model. (orig.)
Cosmological degeneracy versus cosmography: a cosmographic dark energy model
Luongo, Orlando; Troisi, Antonio
2015-01-01
In this work we use cosmography to alleviate the degeneracy among cosmological models, proposing a way to parameterize matter and dark energy in terms of cosmokinematics quantities. The recipe of using cosmography allows to expand observable quantities in Taylor series and to directly compare those expansions with data. We adopt this strategy and we propose a fully self-consistent parametrization of the total energy density driving the late time universe speed up. Afterwards, we describe a feasible \\emph{cosmographic dark energy model}, in which matter is fixed whereas dark energy evolves by means of the cosmographic series. Our technique provides robust constraints on cosmokinematic parameters, permitting one to separately bound matter from dark energy densities. Our cosmographic dark energy model turns out to be one parameter only, but differently from the $\\Lambda$CDM paradigm, it does not contain ansatz on the dark energy form. In addition, we even determine the free parameter of our model in suitable $1\\...
Some Exact Solutions of Magnetized viscous model in String Cosmology
Singh, C P
2012-01-01
In this paper we study anisotropic Bianchi-V universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state for a cloud of strings and a relationship between bulk viscous coefficient and expansion scalar. The bulk viscous coefficient is assumed to be inversely proportional to the expansion scalar. It is interesting to examine the effects of magnetized bulk viscous string model in early and late stages of the evolution of the universe. This paper investigates the different string models like geometrical(Nambu string), Takabayashi (p-string) and Reddy string models by taking certain physical conditions. The introduction of magnetic field or bulk viscosity or both results in rapid change in scale factors as well as in the classical potential. The presence of viscosity prevents the universe to be empty in its future evolution. The physical and geometrical aspects of each string model are discussed in detail.
Sequestered String Models: Supersymmetry Breaking and Cosmological Applications
Muia, Francesco
2016-01-01
In the present thesis I studied the phenomenology arising from a class of string models called sequestered compactifications, which were born with the aim of getting low-energy SUSY from strings. This is not an easy task if combined with cosmological constraints, since the mechanism of moduli stabilization fixes both the scale of supersymmetric particles and the scale of moduli, which tend to be of the same order. However, if on the one hand supersymmetric particles with TeV mass are desired in order to address the hierarchy problem, on the other hand the cosmological moduli problem requires the moduli to be heavier than 100 TeV. The specific setup of sequestered compactifications makes this hierarchy achievable, at least in principle: as in these models the visible sector is located on a stack of D3-branes at singularities, a physical separation between the visible degrees of freedom and the SUSY-breaking sources takes place. Such decoupling translates into a hierarchy between the scale of SUSY-breaking and ...
Mathematical Structure of Loop Quantum Cosmology: Homogeneous Models
Directory of Open Access Journals (Sweden)
Martin Bojowald
2013-12-01
Full Text Available The mathematical structure of homogeneous loop quantum cosmology is analyzed, starting with and taking into account the general classification of homogeneous connections not restricted to be Abelian. As a first consequence, it is seen that the usual approach of quantizing Abelian models using spaces of functions on the Bohr compactification of the real line does not capture all properties of homogeneous connections. A new, more general quantization is introduced which applies to non-Abelian models and, in the Abelian case, can be mapped by an isometric, but not unitary, algebra morphism onto common representations making use of the Bohr compactification. Physically, the Bohr compactification of spaces of Abelian connections leads to a degeneracy of edge lengths and representations of holonomies. Lifting this degeneracy, the new quantization gives rise to several dynamical properties, including lattice refinement seen as a direct consequence of state-dependent regularizations of the Hamiltonian constraint of loop quantum gravity. The representation of basic operators - holonomies and fluxes - can be derived from the full theory specialized to lattices. With the new methods of this article, loop quantum cosmology comes closer to the full theory and is in a better position to produce reliable predictions when all quantum effects of the theory are taken into account.
Stable and unstable cosmological models in bimetric massive gravity
Könnig, Frank; Amendola, Luca; Motta, Mariele; Solomon, Adam R
2014-01-01
Nonlinear, ghost-free massive gravity has two tensor fields; when both are dynamical, the mass of the graviton can lead to cosmic acceleration that agrees with background data, even in the absence of a cosmological constant. Here the question of the stability of linear perturbations in this theory is examined. Instabilities are presented for several classes of models, and simple criteria for the cosmological stability of massive bigravity are derived. In this way, we identify a particular self-accelerating bigravity model, infinite-branch bigravity (IBB), which exhibits both viable background evolution and stable linear perturbations. We discuss the modified gravity parameters for IBB, which do not reduce to the standard $\\Lambda$CDM result at early times, and compute the combined likelihood from measured growth data and type Ia supernovae. IBB predicts a present matter density $\\Omega_{m0}=0.18$ and an equation of state $w(z)=-0.79+0.21z/(1+z)$. The growth rate of structure is well-approximated at late times...
Cosmological degeneracy versus cosmography: A cosmographic dark energy model
Luongo, Orlando; Pisani, Giovanni Battista; Troisi, Antonio
In this work, we use cosmography to alleviate the degeneracy among cosmological models, proposing a way to parametrize matter and dark energy in terms of cosmokinematics quantities. The recipe of using cosmography allows to expand observable quantities in Taylor series and to directly compare those expansions with data. The strategy involves the expansions of q and j, up to the second-order around a(t) = 1. This includes additional cosmographic parameters which are fixed by current values of q0 and j0. We therefore propose a fully self-consistent parametrization of the total energy density driving the late-time universe speed up. This stratagem does not remove all the degeneracy but enables one to pass from the model-dependent couple of coefficients, ω0 and Ωm,0, to model-independent quantities determined from cosmography. Afterwards, we describe a feasible cosmographic dark energy model, in which matter is fixed whereas dark energy evolves by means of the cosmographic series. Our technique provides robust constraints on cosmokinematic parameters, permitting one to separately bound matter from dark energy densities. Our cosmographic dark energy model turns out to be one parameter only, but differently from the lambda cold dark matter (ΛCDM) paradigm, it does not contain ansatz on the dark energy form. In addition, we even determine the free parameter of our model in suitable 1σ intervals through Monte Carlo analyses based on the Metropolis algorithm. We compare our results with the standard concordance model and we find that our treatment seems to indicate that dark energy slightly evolves in time, reducing to a pure cosmological constant only as z → 0.
Lemaître Class Dark Energy Model for Relaxing Cosmological Constant
Directory of Open Access Journals (Sweden)
Irina Dymnikova
2017-05-01
Full Text Available Cosmological constant corresponds to the maximally symmetric cosmological term with the equation of state p = − ρ . Introducing a cosmological term with the reduced symmetry, p r = − ρ in the spherically symmetric case, makes cosmological constant intrinsically variable component of a variable cosmological term which describes time-dependent and spatially inhomogeneous vacuum dark energy. Relaxation of the cosmological constant from the big initial value to the presently observed value can be then described in general setting by the spherically symmetric cosmology of the Lemaître class. We outline in detail the cosmological model with the global structure of the de Sitter spacetime distinguished by the holographic principle as the only stable product of quantum evaporation of the cosmological horizon entirely determined by its quantum dynamics. Density of the vacuum dark energy is presented by semiclassical description of vacuum polarization in the spherically symmetric gravitational field, and its initial value is chosen at the GUT scale. The final non-zero value of the cosmological constant is tightly fixed by the quantum dynamics of evaporation and appears in the reasonable agreement with its observational value.
Self-Consistent Modeling of Reionization in Cosmological Hydrodynamical Simulations
Oñorbe, Jose; Lukić, Zarija
2016-01-01
The ultraviolet background (UVB) emitted by quasars and galaxies governs the ionization and thermal state of the intergalactic medium (IGM), regulates the formation of high-redshift galaxies, and is thus a key quantity for modeling cosmic reionization. The vast majority of cosmological hydrodynamical simulations implement the UVB via a set of spatially uniform photoionization and photoheating rates derived from UVB synthesis models. We show that simulations using canonical UVB rates reionize, and perhaps more importantly, spuriously heat the IGM, much earlier z ~ 15 than they should. This problem arises because at z > 6, where observational constraints are non-existent, the UVB amplitude is far too high. We introduce a new methodology to remedy this issue, and generate self-consistent photoionization and photoheating rates to model any chosen reionization history. Following this approach, we run a suite of hydrodynamical simulations of different reionization scenarios, and explore the impact of the timing of ...
A Caveat on Building Nonlocal Models of Cosmology
Tsamis, N C
2014-01-01
Nonlocal models of cosmology might derive from graviton loop corrections to the effective field equations from the epoch of primordial inflation. Although the Schwinger-Keldysh formalism would automatically produce causal and conserved effective field equations, the models so far proposed have been purely phenomenological. Two techniques have been employed to generate causal and conserved field equations: either varying an invariant nonlocal effective action and then enforcing causality by the ad hoc replacement of any advanced Green's function with its retarded counterpart, or else introducing causal nonlocality into a general ansatz for the field equations and then enforcing conservation. We point out here that the two techniques access very different classes of models, and that neither one of them may represent what would actually arise from fundamental theory.
Quintessence models and the cosmological evolution of α
Lee, Seokcheon; Olive, Keith A.; Pospelov, Maxim
2004-10-01
The cosmological evolution of a quintessencelike scalar field ϕ coupled to matter and gauge fields leads to effective modifications of the coupling constants and particle masses over time. We analyze a class of models where the scalar field potential V(ϕ) and the couplings to matter B(ϕ) admit common extremum in ϕ, as in the Damour-Polyakov ansatz. We find that even for the simplest choices of potentials and B(ϕ), the observational constraints on Δα/α coming from quasar absorption spectra, the Oklo phenomenon and Big Bang nucleosynthesis provide complementary constraints on the parameters of the model. We show the evolutionary history of these models in some detail and describe the effects of a varying mass for dark matter.
Quintessence Models and the Cosmological Evolution of alpha
Lee, S; Pospelov, M; Lee, Seokcheon; Olive, Keith A.; Pospelov, Maxim
2004-01-01
The cosmological evolution of a quintessence-like scalar field, phi, coupled to matter and gauge fields leads to effective modifications of the coupling constants and particle masses over time. We analyze a class of models where the scalar field potential V(phi) and the couplings to matter B(phi) admit common extremum in phi, as in the Damour-Polyakov ansatz. We find that even for the simplest choices of potentials and B(phi), the observational constraints on delta alpha/alpha coming from quasar absorption spectra, the Oklo phenomenon and Big Bang nucleosynthesis provide complementary constraints on the parameters of the model. We show the evolutionary history of these models in some detail and describe the effects of a varying mass for dark matter.
Inflation Cosmological Solutions in Two-Dimensional Brans-Dicke Gravity Model
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The purpose of this paper is to study cosmological properties of two-dimensional Brans-Dicke gravity model. For massless scalar field, the new cosmological solutions are found by integration of field equation, these solutions correspond to the inflation solutions with positive cosmological constant. The result of this paper show that the inflation process of universe is controlled by the classical and quantum effect of the scalar field.
Bianchi Type-Ⅲ Cosmological Models with Gravitational Constant G and the Cosmological Constant Λ
Institute of Scientific and Technical Information of China (English)
J.P.Singh; R.K.Tiwari; Pratibha Shukla
2007-01-01
Einstein field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for the Bianchi type-Ⅲ universe by assuming conservation law for the energy-momentum tensor.Exact solutions of the field equations are obtained by using the scalar of expansion proportional to the shear scalar θχσ,which leads to a relation between metric potential B=Cn,where n is a constant.The corresponding physical interpretation of the cosmological solutions are also discussed.
Energy Technology Data Exchange (ETDEWEB)
Alexander, Stephon
2003-07-15
We give an overview of the current issues in early universe cosmology and consider the potential resolution of these issues in an as yet nascent spin foam cosmology. The model is the Barrett-Crane Model for quantum gravity along with a generalization of manifold complexes to complexes including conical singularities.
An exotic k-essence interpretation of interactive cosmological models
Energy Technology Data Exchange (ETDEWEB)
Forte, Monica [Universidad de Buenos Aires, Departamento de Fisica, Facultad de ciencias Exactas y Naturales, Buenos Aires (Argentina)
2016-01-15
We define a generalization of scalar fields with non-canonical kinetic term which we call exotic k-essence or, briefly, exotik. These fields are generated by the global description of cosmological models with two interactive fluids in the dark sector and under certain conditions they correspond to usual k-essences. The formalism is applied to the cases of constant potential and of inverse square potential and also we develop the purely exotik version for the modified holographic Ricci type (MHR) of dark energy, where the equations of state are not constant. With the kinetic function F = 1 + mx and the inverse square potential we recover, through the interaction term, the identification between k-essences and quintessences of an exponential potential, already known for Friedmann-Robertson-Walker and Bianchi type I geometries. Worked examples are shown that include the self-interacting MHR and also models with crossing of the phantom divide line (PDL). (orig.)
Quintessence a natural model to parametrize the cosmological constant
Macorra, A D L
2003-01-01
We show how a scalar field with gravitational interaction only, i e. quintessence, can account for present day acceleration of the universe and it gives the correct acoustic scale and peaks of the CMP,R anisotropy. We show that the quintessence field can be naturally be described by the fermion condensates of a non-abelian gauge group. This gauge group is unified with the standard model gauge groups. The model has no free parameters. Even the initial energy density at the unification scale and at the condensation scale are fixed by the number of degrees of freedom of the gauge group. We study the evolution of all fields from the unification scale and we calculate the relevant cosmological quantities. (Author)
Modelling neutral hydrogen in galaxies using cosmological hydrodynamical simulations
Duffy, Alan R; Battye, Richard A; Booth, C M; Vecchia, Claudio Dalla; Schaye, Joop
2011-01-01
The characterisation of the atomic and molecular hydrogen content of high-redshift galaxies is a major observational challenge that will be addressed over the coming years with a new generation of radio telescopes. We investigate this important issue by considering the states of hydrogen across a range of structures within high-resolution cosmological hydrodynamical simulations. Additionally, our simulations allow us to investigate the sensitivity of our results to numerical resolution and to sub-grid baryonic physics (especially feedback from supernovae and active galactic nuclei). We find that the most significant uncertainty in modelling the neutral hydrogen distribution arises from our need to model a self-shielding correction in moderate density regions. Future simulations incorporating radiative transfer schemes will be vital to improve on our empirical self-shielding threshold. Irrespective of the exact nature of the threshold we find that while the atomic hydrogen mass function evolves only mildly fro...
Cylindrically symmetric cosmological model of the universe in modified gravity
Mishra, B.; Vadrevu, Samhita
2017-02-01
In this paper, we have constructed the cosmological models of the universe in a cylindrically symmetric space time in two classes of f(R,T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011). We have discussed two cases: one in the linear form and the other in the quadratic form of R. The matter is considered to be in the form of perfect fluid. It is observed that in the first case, the pressure and energy density remain the same, which reduces to a Zeldovich fluid. In the second case we have studied the quadratic function of f(R,T) gravity in the form f(R)=λ(R+R2) and f(T)=λ T. In the second case the pressure is in the negative domain and the energy density is in the positive domain, which confirms that the equation of state parameter is negative. The physical properties of the constructed models are studied.
Adiabatic density perturbations in a cosmological model with massive neutrinos
Jaroszynski, M.
Lifshitz (1946) has investigated the gravitational instability of a Friedmann Universe model. He treated the matter content of the universe as a single perfect fluid. In other studies, a two fluid approach was used to represent neutrinos and other kinds of matter separately. A distribution function was used by Peebles and Yu (1970), and also by Silk and Wilson (1980) to describe photons of the black-body background during and after the recombination of the primeval plasma. The approach used in the present investigation is similar, except for two differences. No collisional term is used in the kinetic equation, and massive particles are considered. A detailed description is provided of the method used to investigate the gravitational instability of a cosmological model with massive neutrinos. It is pointed out that the obtained results are preliminary. The final spectrum of perturbations is similar to those of Peebles and Yu (1970), and Wilson and Silk (1981).
An exotic k-essence interpretation of interactive cosmological models
Forte, Mónica
2015-01-01
We define a generalization of scalar fields with non-canonical kinetic term which we call exotic k-essence or briefly, exotik. These fields are generated by the global description of cosmological models with two interactive fluids in the dark sector and under certain conditions, they correspond to usual k-essences. The formalism is applied to the cases of constant potential and of inverse square potential and also we develop the purely exotik version for the modified holographic Ricci type of dark energy (MHR), where the equations of state are not constant. With the kinetic function $F=1+mx$ and the inverse square potential we recover, through the interaction term, the identification between k-essences and quintessences of exponential potential, already known for Friedmann-Robertson-Walker and Bianchi type I geometries. Worked examples are shown that include the self-interacting MHR and also models with crossing of the phantom divide line (PDL).
Zeta-functions of renormalizable sub-Lorenz templates
Energy Technology Data Exchange (ETDEWEB)
Franco, Nuno, E-mail: nmf@uevora.p [CIMA-UE and Department of Mathematics, University of Evora, Rua Romao Ramalho, 59, 7000-671 Evora (Portugal); Silva, Luis, E-mail: lfs@dec.isel.ipl.p [CIMA-UE and Scientific Area of Mathematics, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisboa (Portugal)
2010-12-15
We describe the Williams zeta-functions and the twist zeta-functions of sub-Lorenz templates generated by renormalizable Lorenz maps, in terms of the corresponding zeta-functions of the sub-Lorenz templates generated by the renormalized map and by the map that determines the renormalization type.
Spherical collapse model in $f(T)$ cosmologies
Malekjani, M
2016-01-01
In this work, we extend the spherical collapse model (SCM) in the $f(T)$ gravity models. In the context of a specific form of $f(T)$ model, the so-called power law model, we first investigate the background evolution of the universe using the Friedmann Robertson Walker (FRW) metric in a flat geometry. We then follow the linear and non-linear evolutions of the growth of spherical overdensities in perturbation levels. In the linear phase of perturbations, we show that the growth factor of fluctuations depends strongly on the power-law parameter of $f(T)$ model, $b$. We also observe that in the non-linear regime the parameters of SCM depend on the model parameter $b$. We finally compare the predicted number of virialized haloes in the $f(T)$ cosmologies with respect to a concordance $\\Lambda$CDM model and find out that in general the $f(T)$ model with positive (negative) model parameter $b$ has more (less) abundant objects compare to the standard $\\Lambda$CDM universe.
Preon models, relativity, quantum mechanics and cosmology (I)
Gonzalez-Mestres, Luis
2009-01-01
Preons are hypothetic constituents of the standard particles. They were initially assumed to have basically similar properties to those of conventional matter. But this is not necessarily the case: the ultimate constituents of matter may feel a different space-time from that of special relativity and exhibit mechanical properties different from those predicted by standard quantum mechanics. They can also play an important cosmological role (inflation, dark matter, dark energy...). It is even not obvious that energy and momentum would have to be conserved in such a scenario. In this series of papers, we review the subject using the superbradyon model as an example, and suggest new ways to explore possible tests of the preon hypothesis.
Chaubey, R.; Shukla, A. K.; Raushan, Rakesh
2017-04-01
The general class of Bianchi cosmological models with dark energy in the form of modified Chaplygin gas with variable Λ and G and bulk viscosity have been considered. We discuss three types of average scale factor by using a special law for deceleration parameter which is linear in time with negative slope. The exact solutions to the corresponding field equations are obtained. We obtain the solution of bulk viscosity ( ξ), cosmological constant (Λ), gravitational parameter ( G) and deceleration parameter ( q) for different equations of state. The model describes an accelerating Universe for large value of time t, wherein the effective negative pressure induced by Chaplygin gas and bulk viscous pressure are driving the acceleration.
Torsion gravity with non-minimally coupled fermionic field: some cosmological models
Vignolo, Stefano; Fabbri, Luca
2014-01-01
We investigate some cosmological models arising from a non-minimal coupling of a fermionic field to gravity in the geometrical setting of Einstein-Cartan-Sciama-Kibble gravity. The role played by the non-minimal coupling together with torsion in facing problems such as cosmological singularity, inflation and dark energy is discussed.
A no hair theorem and the problem of initial conditions. [in cosmological model
Jensen, Lars Gerhard; Stein-Schabes, Jaime A.
1987-01-01
It is shown that under very general conditions, any inhomogeneous cosmological model with a positive cosmological constant that can be described in a synchronous reference system will tend asymptotically in time towards the de Sitter solution. This renders the problem of initial conditions less severe.
The effects of a non-zero cosmological constant on the Veltmann models
Lingam, Manasvi
2014-01-01
The Veltmann models, which include the Plummer and Hernquist models as special cases, are studied in the presence of a cosmological constant. Physically relevant quantities such as the velocity dispersion profiles and the anisotropy parameter are computed through the use of the self-consistent approach. The cutoff radii for these models and the mass contained within this volume are also calculated. It is shown that the inclusion of a cosmological constant leads to many observable quantities such as the surface density, dispersion profiles and the anisotropy parameter becoming increasingly modified. In some scenarios, they are easily distinguished from the case where the cosmological constant is absent, as a result of their non-monotonic behaviour. The effects of neighbouring gravitational systems on the central system are also studied, and compared against the effects arising from the cosmological constant. Consequently, it is suggested that the effects of a cosmological constant can prove to be quite importa...
nIFTy Cosmology: Comparison of Galaxy Formation Models
Knebe, Alexander; Thomas, Peter A; Benson, Andrew; Blaizot, Jeremy; Bower, Richard; Carretero, Jorge; Castander, Francisco J; Cattaneo, Andrea; Cora, Sofia A; Croton, Darren J; Cui, Weiguang; Cunnama, Daniel; De Lucia, Gabriella; Devriendt, Julien E; Elahi, Pascal J; Font, Andreea; Fontanot, Fabio; Garcia-Bellido, Juan; Gargiulo, Ignacio D; Gonzalez-Perez, Violeta; Helly, John; Henriques, Bruno; Hirschmann, Michaela; Lee, Jaehyun; Mamon, Gary A; Monaco, Pierluigi; Onions, Julian; Padilla, Nelson D; Power, Chris; Pujol, Arnau; Skibba, Ramin A; Somerville, Rachel S; Srisawat, Chaichalit; Vega-Martinez, Cristian A; Yi, Sukyoung K
2015-01-01
We present a comparison of 14 galaxy formation models: 12 different semi-analytical models and 2 halo-occupation distribution models for galaxy formation based upon the same cosmological simulation and merger tree information derived from it. The participating codes have proven to be very successful in their own right but they have all been calibrated independently using various observational data sets, stellar models, and merger trees. In this paper we apply them without recalibration and this leads to a wide variety of predictions for the stellar mass function, specific star formation rates, stellar-to- halo mass ratios, and the abundance of orphan galaxies. The scatter is much larger than seen in previous comparison studies primarily because the codes have been used outside of their native environment within which they are well tested and calibrated. The purpose of the `nIFTy comparison of galaxy formation models' is to bring together as many different galaxy formation modellers as possible and to investig...
Non-gaussianity and Statistical Anisotropy in Cosmological Inflationary Models
Valenzuela-Toledo, Cesar A
2010-01-01
We study the statistical descriptors for some cosmological inflationary models that allow us to get large levels of non-gaussianity and violations of statistical isotropy. Basically, we study two different class of models: a model that include only scalar field perturbations, specifically a subclass of small-field slow-roll models of inflation with canonical kinetic terms, and models that admit both vector and scalar field perturbations. We study the former to show that it is possible to attain very high, including observable, values for the levels of non-gaussianity f_{NL} and \\tao_{NL} in the bispectrum B_\\zeta and trispectrum T_\\zeta of the primordial curvature perturbation \\zeta respectively. Such a result is obtained by taking care of loop corrections in the spectrum P_\\zeta, the bispectrum B_\\zeta and the trispectrum T_\\zeta . Sizeable values for f_{NL} and \\tao_{NL} arise even if \\zeta is generated during inflation. For the latter we study the spectrum P_\\zeta, bispectrum B_\\zeta and trispectrum $T_\\ze...
Bianchi Type-I cosmological mesonic stiff fluid models in Lyra's geometry
Indian Academy of Sciences (India)
S D Katore; S V Thakare; K S Adhao
2008-07-01
Bianchi Type-I cosmological models in Lyra's geometry are obtained when the source of gravitational field is a perfect fluid coupled with massless mesonic scalar field. Some physical and kinematical properties of the models are also discussed.
Jones, Bernard J. T.
2017-04-01
Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson–Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.
Some exact solutions of magnetized viscous model in string cosmology
Indian Academy of Sciences (India)
C P Singh
2014-07-01
In this paper, we study anisotropic Bianchi-V Universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state (EoS) for a cloud of strings, and a relationship between bulk viscous coefficient and scalar expansion. The bulk viscous coefficient is assumed to be inversely proportional to the expansion scalar. It is interesting to examine the effects of magnetized bulk viscous string model in early and late stages of evolution of the Universe. This paper presents different string models like geometrical (Nambu string), Takabayasi (p-string) and Reddy string models by taking certain physical conditions. We discuss the nature of classical potential for viscous fluid with and without magnetic field. The presence of bulk viscosity stops the Universe from becoming empty in its future evolution. It is observed that the Universe expands with decelerated rate in the presence of viscous fluid with magnetic field whereas, it expands with marginal inflation in the presence of viscous fluid without magnetic field. The other physical and geometrical aspects of each string model are discussed in detail.
Buchert, Thomas; Wiegand, Alexander
2013-01-01
Kinematical and dynamical properties of a generic inhomogeneous cosmological model, spatially averaged with respect to free-falling (generalized fundamental) observers, are investigated for the matter model `irrotational dust'. Paraphrasing a previous Newtonian investigation, we present a relativistic generalization of a backreaction model based on volume-averaging the `Relativistic Zel'dovich Approximation'. In this model we investigate the effect of `kinematical backreaction' on the evolution of cosmological parameters as they are defined in an averaged inhomogenous cosmology, and we show that the backreaction model interpolates between orthogonal symmetry properties by covering subcases of the plane-symmetric solution, the Lemaitre-Tolman-Bondi solution and the Szekeres solution. We so obtain a powerful model that lays the foundations for quantitatively addressing curvature inhomogeneities as they would be interpreted as `Dark Energy' or `Dark Matter' in a quasi-Newtonian cosmology. The present model, havi...
Pozdeeva, Ekaterina O; Toporensky, Alexey V; Vernov, Sergey Yu
2016-01-01
We explore dynamics of cosmological models with bounce solutions evolving on a spatially flat Friedmann-Lemaitre-Robertson-Walker background. We consider cosmological models that contain the Hilbert-Einstein curvature term, the induced gravity term with a negative coupled constant, and even polynomial potentials of the scalar field. Bounce solutions with non-monotonic Hubble parameters have been obtained and analyzed. The case when the scalar field has the conformal coupling and the Higgs potential with an opposite sign is studied in detail. In this model the evolution of the Hubble parameter of the bounce solution essentially depends on the sign of the cosmological constant.
Age Estimates of Universe: from Globular Clusters to Cosmological Models and Probes
Fatima, Hira; Rahman, Syed Faisal Ur
2016-01-01
We performed the photometric analysis of M2 and M92 globular clusters in g and r bands of SLOAN photometric system. We transformed these g and r bands into BV bands of Johnson-Cousins photometric system and built the color magnitude diagram (CMD). We estimated the age, and metallicity of both the clusters, by fitting Padova isochrones of different age and metallicities onto the CMD. We studied Einstein and de Sitter model, bench mark model, the cosmological parameters by WMAP and Planck surveys. Finally, we compared estimated age of globular clusters to the ages from the cosmological models and cosmological parameters values of WMAP and Planck surveys.
Pozdeeva, Ekaterina O.; Skugoreva, Maria A.; Toporensky, Alexey V.; Vernov, Sergey Yu.
2016-12-01
We explore dynamics of cosmological models with bounce solutions evolving on a spatially flat Friedmann-Lemaître-Robertson-Walker background. We consider cosmological models that contain the Hilbert-Einstein curvature term, the induced gravity term with a negative coupled constant, and even polynomial potentials of the scalar field. Bounce solutions with non-monotonic Hubble parameters have been obtained and analyzed. The case when the scalar field has the conformal coupling and the Higgs-like potential with an opposite sign is studied in detail. In this model the evolution of the Hubble parameter of the bounce solution essentially depends on the sign of the cosmological constant.
Bulk viscous cosmological model with interacting dark fluids
Kremer, Gilberto M
2012-01-01
The objective of the present work is to study a cosmological model for a spatially flat Universe whose constituents are a dark energy field and a matter field which includes baryons and dark matter. The constituents are supposed to be in interaction and irreversible processes are taken into account through the inclusion of a non-equilibrium pressure. The non-equilibrium pressure is considered to be proportional to the Hubble parameter within the framework of a first order thermodynamic theory. The dark energy and matter fields are coupled by their barotropic indexes, which are considered as functions of the ratio between their energy densities. The free parameters of the model are adjusted from the best fits of the Hubble parameter data. A comparison of the viscous model with the non-viscous one is performed. It is shown that the equality of the dark energy and matter density parameters and the decelerated-accelerated transition occur at earlier times when the irreversible processes are present. Furthermore, ...
Bulk viscous cosmological model with interacting dark fluids
Energy Technology Data Exchange (ETDEWEB)
Kremer, Gilberto M.; Sobreiro, Octavio A.S., E-mail: kremer@fisica.ufpr.br [Departamento de Fisica, Universidade Federal do Parana, Curitiba, PR (Brazil)
2012-04-15
We study a cosmological model for a spatially flat Universe whose constituents are a dark energy field and a matter field comprising baryons and dark matter. The constituents are assumed to interact with each other, and a non-equilibrium pressure is introduced to account for irreversible processes. We take the nonequilibrium pressure to be proportional to the Hubble parameter within the framework of a first-order thermodynamic theory. The dark energy and matter fields are coupled by their barotropic indexes, which depend on the ratio between their energy densities. We adjust the free parameters of the model to optimize the fits to the Hubble parameter data. We compare the viscous model with the non-viscous one, and show that the irreversible processes cause the dark-energy and matter-density parameters to become equal and the decelerated-accelerated transition to occur at earlier times. Furthermore, the density and deceleration parameters and the distance modulus have the correct behavior, consistent with a viable scenario of the present status of the Universe . (author)
Thermal Tachyacoustic Cosmology
Agarwal, Abhineet
2014-01-01
An intriguing possibility that can address pathologies in both early universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. non-renormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early universe is the Tachyacoustic (or Speedy Sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study Thermal Tachyacoustic Cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early universe, around the scale of Grand Unified Theories (GUT scale; $T\\sim 10^{15}$ GeV), during which the speed of sound drops by $25$ orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of ten...
Cosmological models with the spinor and non-minimally interacting scalar field
Osetrin, K E; Rybalov, Yu A
2014-01-01
The solution to the current extending Universe problem, and the description of all stages of evolution compels scientists to consider various cosmological models. Scalar - tensor models are rather simple and also allow us to clearly define the separate stages of evolution. Furthermore, other cosmological models are reduced. Our work takes into consideration the non-minimally interacted scalar field and the spinor field. The spinor field has been considered to establish a better understanding of the stages of evolution in our Universe.
On the true nature of renormalizability in Horava-Lifshitz gravity
Briscese, Fabio; Gonzalez, Guillermo A
2012-01-01
We argue that the true nature of the renormalizability of Horava-Lifshitz gravity lies in the presence of higher order spatial derivatives and not in the anisotropic Lifshitz scaling of space and time. We discuss the possibility of constructing a higher order spatial derivatives model that has the same renormalization properties of Horava-Lifshitz gravity but that does not make use of the Lifshitz scaling. In addition, the state-of-the-art of the Lorentz symmetry restoration in Horava-Lifshitz-type theories of gravitation is reviewed.
Indian Academy of Sciences (India)
R CHAUBEY; A K SHUKLA; RAKESH RAUSHAN
2017-04-01
The general class of Bianchi cosmological models with dark energy in the form of modified Chaplygin gas with variable $\\Lambda$ and $G$ and bulk viscosity have been considered. We discuss three types of average scalefactor by using a special law for deceleration parameter which is linear in time with negative slope. The exact solutions to the corresponding field equations are obtained. We obtain the solution of bulk viscosity ($\\xi$ ), cosmologicalconstant ($\\Lambda$), gravitational parameter ($G$) and deceleration parameter ($q$) for different equations of state. The model describes an accelerating Universe for large value of time $t$ , wherein the effective negative pressure induced by Chaplygin gas and bulk viscous pressure are driving the acceleration.
Narlikar, Jayant Vishnu
2002-01-01
The third edition of this successful textbook is fully updated and includes important recent developments in cosmology. It begins with an introduction to cosmology and general relativity, and goes on to cover the mathematical models of standard cosmology. The physical aspects of cosmology, including primordial nucleosynthesis, the astroparticle physics of inflation, and the current ideas on structure formation are discussed. Alternative models of cosmology are reviewed, including the model of Quasi-Steady State Cosmology, which has recently been proposed as an alternative to Big Bang Cosmology.
Spectral Action Models of Gravity on Packed Swiss Cheese Cosmology
Ball, Adam
2015-01-01
We present a model of (modified) gravity on spacetimes with fractal structure based on packing of spheres, which are (Euclidean) variants of the Packed Swiss Cheese Cosmology models. As the action functional for gravity we consider the spectral action of noncommutative geometry, and we compute its asymptotic expansion on a space obtained as an Apollonian packing of 3-dimensional spheres inside a 4-dimensional ball. Using information from the zeta function of the Dirac operator of the spectral triple, we show that the leading terms in the asymptotic expansion of the spectral action consist of a zeta regularization of the divergent sum of the leading terms of the spectral actions of the individual spheres in the packing, which accounts for the contribution of the points 1 and 3 in the dimension spectrum (as in the case of a 3-sphere). There is also an additional term coming from the residue at the additional point in the dimension spectrum that corresponds to the packing constant. It detects the fractality of t...
Recursion and growth estimates in renormalizable quantum field theory
Kreimer, D; Kreimer, Dirk; Yeats, Karen
2006-01-01
In this paper we show that there is a Lipatov bound for the radius of convergence for superficially divergent one-particle irreducible Green functions in a renormalizable quantum field theory if there is such a bound for the superficially convergent ones. The radius of convergence turns out to be ${\\rm min}\\{\\rho,1/b_1\\}$, where $\\rho$ is the bound on the convergent ones, the instanton radius, and $b_1$ the first coefficient of the $\\beta$-function.
Temperatures of renormalizable quantum field theories in curved spacetime
Lynch, Morgan H
2016-01-01
We compute the instantaneous temperature registered by an Unruh-DeWitt detector coupled to a Hadamard renormalizable massless quantum field in a generic state, which is moving along an accelerated trajectory in curved spacetime. The general expression for the temperature depends on the 4-acceleration, Raychaudhuri scalar, and renormalized field polarization. We can further find a novel constraint on the renormalized quantum field polarization in relativistic systems in global thermal equilibrium.
Ivanov, Mikhail M.; Tokareva, Anna A.
2016-12-01
We study the creation and evolution of cosmological perturbations in renormalizable quadratic gravity with a Weyl term. We adopt a prescription that implies the stability of the vacuum at the price of introducing a massive spin-two ghost state, leading to the loss of unitarity. The theory may still be predictive regardless the interpretation of non-unitary processes provided that their rate is negligible compared to the Universe expansion rate. This implies that the ghost is effectively stable. In such a setup, there are two scalar degrees of freedom excited during inflation. The first one is the usual curvature perturbation whose power spectrum appears to coincide with that of single-field inflation. The second one is a scalar component of the ghost encoded in the shift vector of the metric in the uniform inflaton gauge. The amplitudes of primordial tensor and vector perturbations are strongly suppressed. After inflation the ghost field starts to oscillate and its energy density shortly becomes dominant in the Universe. For all ghost masses allowed by laboratory constraints ghosts should have ``overclosed'' the Universe at temperatures higher than that of primordial nucleosynthesis. Thus, the model with the light Weyl ghost is ruled out.
On Friedmann-Lema\\^{\\i}tre-Robertson-Walker cosmologies in non-standard gravity
Sáez-Gómez, Diego
2011-01-01
The present thesis is focused on the study of FLRW cosmology in modified gravities and with scalar fields. The mystery of dark energy has made that the last decade, many efforts in theoretical physics have been focused on the explanation of the current acceleration of the Universe expansion. On the other hand, an early accelerated epoch, known as inflation, is also required in the standard cosmological model in order to fit the observational data. Here, we study the possibility to explain both effects under the same mechanism, by means of scalar fields or modified gravity. In this sense, F(R) and Gauss-Bonnet gravities are studied. This analysis is also extended to Ho\\v{r}ava-Lifshitz gravity, a theory that seems to be power counting renormalizable, in spite of it contains other serious problems that are also discussed in the thesis.
Bulk flows and CMB dipole anisotropy in cosmological void models
Tomita, K
1999-01-01
The observational behavior of spherically symmetric inhomogeneous cosmological models is studied, which consist of inner and outer homogeneous regions connected by a shell or an intermediate self-similar region. It is assumed that the present matter density parameter in the inner region is smaller than that in the outer region, and the present Hubble parameter in the inner region is larger than that in the outer region. Then galaxies in the inner void-like region can be seen to have a bulk motion relative to matter in the outer region, when we observe them at a point O deviated from the center C of the inner region. Their velocity $v_p$ in the CD direction is equal to the difference of two Hubble parameters multiplied by the distance between C and O. It is found also that the velocity $v_d$ corresponding to CMB dipole anisotropy observed at O is by a factor $\\approx 10$ small compared with $v_p$. This behavior of $v_d$ and $v_p$ may explain the puzzling situation of the cosmic flow of cluster galaxies, when t...
Anisotropic Open Cosmological Models of Spin Matter with Magnetic Moment
Institute of Scientific and Technical Information of China (English)
SHENLi－ming; SUNNai－jiang; 等
2001-01-01
We have derived a set of field equations for a Weyssenhoff spin fluid including magnetic interacton among the spinning particles prevailling in spatially homogeneous,but anisotropically cosmological models of Bianchi type V based on Einstein-Cartan theory.We analyze the field equations in three different equations of states specified by p=1(1/3)ρand p=0,The analytical solutions found are non-singular provided that the combined energy arising from matter spin and magnetic interaction among particles overcomes the anisotropy energy in the Universe,We have also deduced that the minimum particle numers for the radiation(p=(1/3)ρ) and matter(p=0) epochs are 1088 and 10108 respectively.the minimum particle number for the state p=ρ is 1096,leading to the conclusion that we must consider the existence of neutrinos and other creation of particles and anti-particles under torsion and strong gravitational field in the early Universe.
Cosmological perturbations in coherent oscillating scalar field models
Energy Technology Data Exchange (ETDEWEB)
Cembranos, J.A.R.; Maroto, A.L.; Jareño, S.J. Núñez [Departamento de Física Teórica I, Universidad Complutense de Madrid,Avenida Complutense s/n, Madrid (Spain)
2016-03-03
The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials V(ϕ)=λ|ϕ|{sup n}/n. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained c{sub eff}{sup 2}=ω=(n−2)/(n+2) with ω the effective equation of state. We also obtain the first order correction in k{sup 2}/ω{sub eff}{sup 2}, when the wavenumber k of the perturbations is much smaller than the background oscillation frequency, ω{sub eff}. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the natural ansatz for δϕ; and for sub-Hubble modes, exploiting Floquet’s theorem.
Cosmological perturbations in coherent oscillating scalar field models
Cembranos, J A R; Jareño, S J Núñez
2015-01-01
The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials $V(\\phi)=\\lambda \\vert\\phi\\vert^{n}/n$. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained $c_{\\text{eff}}^2 = \\omega=(n-2)/(n+2)$ with $\\omega$ the effective equation of state. We also obtain the first order correction in $k^2/\\omega_{\\text{eff}}^2$, when the wavenumber $k$ of the perturbations is much smaller than the background oscillation frequency, $\\omega_{\\text{eff}}$. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the nat...
Cosmological perturbations in coherent oscillating scalar field models
Cembranos, J. A. R.; Maroto, A. L.; Jareño, S. J. Núñez
2016-03-01
The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials V( ϕ) = λ| ϕ| n /n. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained c eff 2 = ω = ( n - 2)/( n + 2) with ω the effective equation of state. We also obtain the first order correction in k 2/ ω eff 2 , when the wavenumber k of the perturbations is much smaller than the background oscillation frequency, ω eff. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the natural ansatz for δϕ; and for sub-Hubble modes, exploiting Floquet's theorem.
Axially Symmetric Bianchi Type-I Bulk-Viscous Cosmological Models with Time-Dependent and
Indian Academy of Sciences (India)
Nawsad Ali
2013-09-01
The present study deals with spatially homogeneous and anisotropic axially symmetric Bianchi type-I cosmological model with time variable cosmological term in the presence of bulk viscous fluid. The Einstein’s field equations are solved explicitly by time varying deceleration parameter . Consequences of the four cases of phenomenological decay of have been discussed which are consistent with observations. Physical and kinematical parameters of the models are discussed.
$\\psi$ = W e$^{\\pm\\phi}$ quantum cosmological solutions for Class A Bianchi models
Obregón, O
1995-01-01
We find solutions for quantum Class A Bianchi models of the form \\rm \\Psi=W\\, e^{\\pm \\Phi} generalizing the results obtained by Moncrief and Ryan in standard quantum cosmology. For the II and IX Bianchi models there are other solutions \\rm \\tilde\\Phi_2, \\rm \\tilde\\Phi_9 to the Hamilton-Jacobi equation for which \\rm \\Psi is necessarely zero, in contrast with solutions found in supersymmetric quantum cosmology.
Cosmological-constant cold dark matter models and the cobe two-year Sky maps
Bunn, E F; Emory F Bunn; Naoshi Sugiyama
1994-01-01
Abstract. We compare the two-year COBE DMR sky maps with the predictions of cosmological-constant cold dark matter models. Using a Bayesian analysis, we find that the most likely value of the cosmological constant in such a model is Lambda = 0. The data set an upper limit on Lambda of 0.71 (0.78) at 90% confidence, and 0.78 (0.86) at 95% confidence with (without) the quadrupole anisotropy.
Yokoyama, Jun'ichi; Suto, Yasushi
1991-01-01
A phenomenological model to produce isocurvature baryon-number fluctuations is proposed in the framework of inflationary cosmology. The resulting spectrum of density fluctuation is very different from the conventional Harrison-Zel'dovich shape. The model, with the parameters satisfying several requirements from particle physics and cosmology, provides an appropriate initial condition for the minimal baryon isocurvature scenario of galaxy formation discussed by Peebles.
Exact solutions of a Flat Full Causal Bulk viscous FRW cosmological model through factorization
Cornejo-Pérez, O
2012-01-01
We study the classical flat full causal bulk viscous FRW cosmological model through the factorization method. The method allows to find some new exact parametric solutions for different values of the viscous parameter $s$. Special attention is given to the well known case $s=1/2$, for which the cosmological model admits scaling symmetries. Also, some exact parametric solutions for $s=1/2$ are obtained through the Lie group method.
Simple inflationary models in Gauss-Bonnet brane-world cosmology
Okada, Nobuchika; Okada, Satomi
2016-06-01
In light of the recent Planck 2015 results for the measurement of the cosmic microwave background (CMB) anisotropy, we study simple inflationary models in the context of the Gauss-Bonnet (GB) brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index (n s) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the predicted r values in the inflationary models favored by the Planck 2015 results are suppressed due to the GB brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall-Sundrum brane-world cosmology, where the r values are enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the GB brane-world cosmology can be tested by more precise measurements of n s and future observations of the CMB B-mode polarization.
Vankov, A
1998-01-01
The suggested alternative cosmology is based on the idea of barion symmetric universe, in which our home universe is a representative of multitude of typical matter and antimatter universes. This alternative concept gives a physically reasonable explanation of all major problems of the Standard Cosmological Model. Classification Code MSC: Cosmology 524.8 Key words: standard cosmological model, alternative cosmology, barionic symmetry, typical universe, quasars, cosmic rays.
Ryan, M.
1972-01-01
The study of cosmological models by means of equations of motion in Hamiltonian form is considered. Hamiltonian methods applied to gravity seem to go back to Rosenfeld (1930), who constructed a quantum-mechanical Hamiltonian for linearized general relativity theory. The first to notice that cosmologies provided a simple model in which to demonstrate features of Hamiltonian formulation was DeWitt (1967). Applications of the ADM formalism to homogeneous cosmologies are discussed together with applications of the Hamiltonian formulation, giving attention also to Bianchi-type universes. Problems involving the concept of superspace and techniques of quantization are investigated.
Early universe cosmology. In supersymmetric extensions of the standard model
Energy Technology Data Exchange (ETDEWEB)
Baumann, Jochen Peter
2012-03-19
In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss
Energy Technology Data Exchange (ETDEWEB)
Heitmann, Katrin [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Higdon, David [Los Alamos National Laboratory; Williams, Brian J [Los Alamos National Laboratory; White, Martin [Los Alamos National Laboratory; Wagner, Christian [Los Alamos National Laboratory
2008-01-01
The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the one percent level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state 'wCDM' cosmologies. In this paper we demonstrate that a limited set of only 37 cosmological models -- the 'Coyote Universe' suite -- can be used to predict the nonlinear matter power spectrum at the required accuracy over a prior parameter range set by cosmic microwave background observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum for wCDM cosmologies.
Coasting cosmologies with time dependent cosmological constant
Pimentel, L O; Pimentel, Luis O.
1999-01-01
The effect of a time dependent cosmological constant is considered in a family of scalar tensor theories. Friedmann-Robertson-Walker cosmological models for vacumm and perfect fluid matter are found. They have a linear expansion factor, the so called coasting cosmology, the gravitational "constant" decreace inversely with time; this model satisfy the Dirac hipotesis. The cosmological "constant" decreace inversely with the square of time, therefore we can have a very small value for it at present time.
Dănilă, Bogdan; Mak, Man Kwong; Pantaragphong, Praiboon; Sabau, Sorin
2016-01-01
We perform the study of the stability of the cosmological scalar field models, by using the Jacobi stability analysis, or the Kosambi-Cartan-Chern (KCC) theory. In the KCC approach we describe the time evolution of the scalar field cosmologies in geometric terms, by performing a "second geometrization", by considering them as paths of a semispray. By introducing a non-linear connection and a Berwald type connection associated to the Friedmann and Klein-Gordon equations, five geometrical invariants can be constructed, with the second invariant giving the Jacobi stability of the cosmological model. We obtain all the relevant geometric quantities, and we formulate the condition of the Jacobi stability for scalar field cosmologies in the second order formalism. As an application of the developed methods we consider the Jacobi stability properties of the scalar fields with exponential and Higgs type potential. We find that the Universe dominated by a scalar field exponential potential is in Jacobi unstable state, ...
Theories of modified gravity and reconstruction schemes of cosmological models
López Revelles, Antonio Jesús
2013-01-01
[spa] En esta memoria de tesis se expone el trabajo llevado a cabo por el doctorando durante los últimos cuatro años, el cual versa principalmente sobre diversos aspectos de soluciones cosmológicas obtenidas a partir de teorías de gravedad modificada. Para entender el origen y la importancia de las teorías de gravedad modificada es necesario comentar antes algunos hechos acontecidos durante el siglo XX en el marco de la cosmología. La cosmología como ciencia nació gracias a la Teoría de la Re...
A massive renormalizable abelian gauge theory in 2+1 dimensions
Dilkes, F A; Dilkes, F A; McKeon, D G C
1995-01-01
The standard formulation of a massive Abelian vector field in 2+1 dimensions involves a Maxwell kinetic term plus a Chern-Simons mass term; in its place we consider a Chern-Simons kinetic term plus a Stückelberg mass term. In this latter model, we still have a massive vector field, but now the interaction with a charged spinor field is renormalizable (as opposed to super renormalizable). By choosing an appropriate gauge fixing term, the Stückelberg auxiliary scalar field decouples from the vector field. The one-loop spinor self energy is computed using operator regularization, a technique which respects the three dimensional character of the antisymmetric tensor \\epsilon_{\\alpha\\beta\\gamma}. This method is used to evaluate the vector self energy to two-loop order; it is found to vanish showing that the beta function is zero to two-loop order. The canonical structure of the model is examined using the Dirac constraint formalism.
Cosmological models with spinor and scalar fields by Noether symmetry approach
Kremer, Gilberto M
2013-01-01
General cosmological models with spinor and scalar fields playing the role of gravitational sources are analyzed. The Noether symmetry approach is taken as a criterion to constrain the undefined potentials and couplings of the generic actions. For all the found Noether symmetries the corresponding dynamical systems can be analytically integrated. The obtained cosmological solutions describe the early and late Universe as expected by basing on the known eras of the Universe.
Interacting dark energy models in Cosmology and large-scale structure observational tests
Rafael José França Marcondes
2016-01-01
Modern Cosmology offers us a great understanding of the universe with striking precision, made possible by the modern technologies of the newest generations of telescopes. The standard cosmological model, however, is not absent of theoretical problems and open questions. One possibility that has been put forward is the existence of a coupling between dark sectors. The idea of an interaction between the dark components could help physicists understand why we live in an epoch of the universe wh...
Dynamics of gravitating hadron matter in Bianchi-IX cosmological model
Pavluchenko, Sergey A
2016-01-01
We perform an analysis of the Einstein-Skyrme cosmological model in Bianchi-IX background. We analytically describe asymptotic regimes and semi-analytically -- generic regimes. It appears that depending on the product of Newtonian constant $\\kappa$ with Skyrme coupling $K$, in absence of the cosmological term there are three regimes possible -- recollapse with $\\kK 2$. In presence of the positive cosmological term, power-law regimes turn to exponential (de Sitter) ones while recollapse regime turn to exponential if the value for $\\Lambda$-term is sufficiently large, otherwise the regime remains recollapse. Negative cosmological term leads to the recollapse regardless of $\\kK$. All nonsingular regimes have the squashing coefficient $a(t) \\to 1$ at late times, which is associated with restoring symmetry dynamics. Also all nonsingular regimes appear to be linearly stable -- exponential solutions always while power-law for an open region of initial conditions.
Newtonian cosmology - Problems of cosmological didactics
Energy Technology Data Exchange (ETDEWEB)
Skarzynski, E.
1983-03-01
The article presents different methods of model construction in Newtonian cosmology. Newtonian cosmology is very convenient for discussion of local problems, so the problems presented are of great didactic importance. The constant k receives a new interpretation in relativistic cosmology as the curvature of the space in consequence of the greater informational capacity of Riemann space in comparison to Euclidean space. 11 references.
Kunze, Kerstin E
2016-01-01
Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.
Bianchi Type-IX viscous fluid cosmological model in general relativity
Indian Academy of Sciences (India)
Raj Bali; Mahesh Kumar Yadav
2005-02-01
Bianchi Type-IX viscous fluid cosmological model is investigated. To get a deterministic model, we have assumed the condition = ( is a constant) between metric potentials and where is the coefficient of shear viscosity and the scalar of expansion in the model. The coefficient of bulk viscosity () is taken as constant. The physical and geometrical aspects of the model are also discussed.
Khurshudyan, M; Momeni, D; Myrzakulov, R; Raza, M
2014-01-01
The subject of this paper is to investigate the weak regime covariant scalar-tensor-vector gravity (STVG) theory, known as the MOdified gravity (MOG) theory of gravity. First, we show that the MOG in the absence of scalar fields is converted into $\\Lambda(t),G(t)$ models. Time evolution of the cosmological parameters for a family of viable models have been investigated. Numerical results with the cosmological data have been adjusted. We've introduced a model for dark energy (DE) density and cosmological constant which involves first order derivatives of Hubble parameter. To extend this model, correction terms including the gravitational constant are added. In our scenario, the cosmological constant is a function of time. To complete the model,interaction terms between dark energy and dark matter (DM) manually entered in phenomenological form. Instead of using the dust model for DM, we have proposed DM equivalent to a barotropic fluid. Time evolution of DM is a function of other cosmological parameters. Using ...
Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio
2013-01-01
The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.
Simple inflationary models in Gauss-Bonnet brane-world cosmology
Okada, Nobuchika
2014-01-01
In light of the recent measurements of the CMB anisotropy by the WMAP and Planck satellite experiments and the observation of CMB $B$-mode polarization announced by the BICEP2 collaboration, we study simple inflationary models in the context of the Gauss-Bonnet brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index ($n_s$) and the tensor-to-scalar ratio ($r$) from those obtained in the standard cosmology. In particular, the power spectrum of tensor perturbation is suppressed due to the Gauss-Bonnet brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall-Sundrum brane-world cosmology where the power spectrum is enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the Gauss-Bonnet ...
Homoclinic Chaos in Axisymmetric Bianchi-IX cosmological models with an "ad hoc" quantum potential
Corrêa, G. C.; Stuchi, T. J.; Jorás, S. E.
2010-01-01
In this work we study the dynamics of the axisymmetric Bianchi IX cosmological model with a term of quantum potential added. As it is well known this class of Bianchi IX models are homogeneous and anisotropic with two scale factors, $A(t)$ and $B(t)$, derived from the solution of Einstein's equation for General Relativity. The model we use in this work has a cosmological constant and the matter content is dust. To this model we add a quantum-inspired potential that is intended to represent sh...
A Review on the Cosmology of the de Sitter Horndeski Models
Directory of Open Access Journals (Sweden)
Nelson J. Nunes
2017-03-01
Full Text Available We review the most general scalar-tensor cosmological models with up to second-order derivatives in the field equations that have a fixed spatially flat de Sitter critical point independent of the material content or vacuum energy. This subclass of the Horndeski Lagrangian is capable of dynamically adjusting any value of the vacuum energy of the matter fields at the critical point. We present the cosmological evolution of the linear models and the non-linear models with shift symmetry. We come to the conclusion that the shift symmetric non-linear models can deliver a viable background compatible with current observations.
Observing the inflation potential. [in models of cosmological inflation
Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.; Lidsey, James E.
1993-01-01
We show how observations of the density perturbation (scalar) spectrum and the gravitational wave (tensor) spectrum allow a reconstruction of the potential responsible for cosmological inflation. A complete functional reconstruction or a perturbative approximation about a single scale are possible; the suitability of each approach depends on the data available. Consistency equations between the scalar and tensor spectra are derived, which provide a powerful signal of inflation.
Nonparametric test of consistency between cosmological models and multiband CMB measurements
Aghamousa, Amir
2015-01-01
We present a novel approach to test the consistency of the cosmological models with multiband CMB data using a nonparametric approach. In our analysis we calibrate the REACT (Risk Estimation and Adaptation after Coordinate Transformation) confidence levels associated with distances in function space (confidence distances) based on the Monte Carlo simulations in order to test the consistency of an assumed cosmological model with observation. To show the applicability of our algorithm, we confront Planck 2013 temperature data with concordance model of cosmology considering two different Planck spectra combination. In order to have an accurate quantitative statistical measure to compare between the data and the theoretical expectations, we calibrate REACT confidence distances and perform a bias control using many realizations of the data. Our results in this work using Planck 2013 temperature data put the best fit $\\Lambda$CDM model at $95\\% (\\sim 2\\sigma)$ confidence distance from the center of the nonparametri...
Amruth, B R; R., Amruth B.; Patwardhan, Ajay
2006-01-01
Cosmological inflation models with modifications to include recent cosmological observations has been an active area of research after WMAP 3 results, which have given us information about the composition of dark matter, normal matter and dark energy and the anisotropy at the 300,000 years horizon with high precision. We work on inflation models of Guth and Linde and modify them by introducing a doublet scalar field to give normal matter particles and their supersymmetric partners which result in normal and dark matter of our universe. We include the cosmological constant term as the vaccuum expectation value of the stress energy tensor, as the dark energy. We callibrate the parameters of our model using recent observations of density fluctuations. We develop a model which consistently fits with the recent observations.
Bianchi Type Ⅲ Bulk Viscous Barotropic Fluid Cosmological Models with Variable G and A
Institute of Scientific and Technical Information of China (English)
Raj Ba-li; Seema Tinker
2009-01-01
Bianchi type-Ⅲ bulk viscous barotropic fluid cosmological model with variables G and A is investigated. To obtainthe realistic model, we assume the conditions between the metric potentials A, B, C as A/A = B/B = m1/tnand C/C = m2/tn, P = p - 3ηH, η= ηops, p =γp, 0 γ 1, where p is isotropic pressure, η the coefficient of bulk viscosity, ηo and S the constants, H the Hubble constant, m1= 2m2 where m1 0, m2 0. The solutions obtained lead to inflationary phase and the results obtained match with the observations. The case n = 1 for S = 1 is also discussed, relating the results with the observations.PACS: 98. 80. Hω, 04.50. +h, 98.80. CqSpatially homogeneous and anisotropic cosmologi-cal models play a significant role in description of the large scale behaviour of the universe. The choice of anisotropic model in the Einstein system of field equa-tions permits us to obtain cosmological model more general than the Robertson-Walker model. Tikekar and Patel[1] have investigated some exact solutions of massive string for Bianchi type-Ⅲ spacetime in the presence and absence of magnetic field. They have also discussed the behaviour of the model in the ab-sence of magnetic field. Bali and Dave[2] investigated the Bianchi type-Ⅲ string cosmological model with bulk viscosity. Recently Bali and Pradhan[3] investi-gated the Bianchi type-Ⅲ string cosmological models with time-dependent bulk viscosity.
Tilted Bianchi type I dust ﬂuid cosmological model in general relativity
Indian Academy of Sciences (India)
Raj Bali; Keshav Sharma
2002-03-01
In this paper, we have investigated a tilted Bianchi type I cosmological model ﬁlled with dust of perfect ﬂuid in general relativity. To get a determinate solution, we have assumed a condition = between metric potentials. The physical and geometrical aspects of the model together with singularity in the model are also discussed.
Roy, S. R.; Banerjee, S. K.
1992-11-01
A homogeneous Bianchi type VIh cosmological model filled with perfect fluid, null electromagnetic field and streaming neutrinos is obtained for which the free gravitational field is of the electric type. The barotropic equation of statep = (γ-1)ɛ is imposed in the particular case of Bianchi VI0 string models. Various physical and kinematical properties of the models are discussed.
Indian Academy of Sciences (India)
G P Singh; R V Deshpande; T Singh
2004-11-01
We have studied five-dimensional homogeneous cosmological models with variable and bulk viscosity in Lyra geometry. Exact solutions for the field equations have been obtained and physical properties of the models are discussed. It has been observed that the results of new models are well within the observational limit.
Negative Energy Cosmology and the Cosmological Constant
Prokopec, Tomislav
2011-01-01
It is well known that string theories naturally compactify on anti-de Sitter spaces, and yet cosmological observations show no evidence of a negative cosmological constant in the early Universe's evolution. In this letter we present two simple nonlocal modifications of the standard Friedmann cosmology that can lead to observationally viable cosmologies with an initial (negative) cosmological constant. The nonlocal operators we include are toy models for the quantum cosmological backreaction. In Model I an initial quasiperiodic oscillatory epoch is followed by inflation and a late time matter era, representing a dark matter candidate. The backreaction in Model II quickly compensates the negative cosmological term such that the Ricci curvature scalar rapidly approaches zero, and the Universe ends up in a late time radiation era.
Classical and quantum Big Brake cosmology for scalar field and tachyonic models
Kamenshchik, A
2013-01-01
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.
Classical and Quantum Big Brake Cosmology for Scalar Field and Tachyonic Models
Kamenshchik, Alexander; Manti, Serena
2015-01-01
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field. It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.
a Unified Dark Energy Model from a Vanishing Speed of Sound with Emergent Cosmological Constant
Luongo, Orlando; Quevedo, Hernando
2014-11-01
The problem of the cosmic acceleration is here revisited by using the fact that the adiabatic speed of sound can be assumed to be negligible small. Within the context of general relativity, the total energy budget is recovered under the hypothesis of a vanishing speed of sound by assuming the existence of one fluid only. We find a cosmological model which reproduces the main results of the ΛCDM paradigm at late-times, showing an emergent cosmological constant, which is not at all related with the vacuum energy term. As a consequence, the model presented here behaves as a unified dark energy (DE) model.
One model of modified gravity with dynamical torsion and its cosmological consequences
Nikiforova, Vasilisa
2016-10-01
We consider a model belonging to the class of Poincarè gauge gravities. The model is free of ghosts, tachyons and gradient instabilities about Minkowski and torsionless Einstein backgrounds of sufficiently small curvature. At zero cosmological constant, the model admits a self-accelerating solution with non-Riemannian connection. We study scalar perturbations about the self-accelerating solution and find that the number of scalar modes is the same as in Minkow ski background; moreover, in the limit of small effective cosmological constant and below the UV cutoff of the low energy effective theory, the scalar sector does not have pathologies like ghosts or rapid gradient instabilities.
One model of modified gravity with dynamical torsion and its cosmological consequences
Directory of Open Access Journals (Sweden)
Nikiforova Vasilisa
2016-01-01
Full Text Available We consider a model belonging to the class of Poincarè gauge gravities. The model is free of ghosts, tachyons and gradient instabilities about Minkowski and torsionless Einstein backgrounds of sufficiently small curvature. At zero cosmological constant, the model admits a self-accelerating solution with non-Riemannian connection. We study scalar perturbations about the self-accelerating solution and find that the number of scalar modes is the same as in Minkow ski background; moreover, in the limit of small effective cosmological constant and below the UV cutoff of the low energy effective theory, the scalar sector does not have pathologies like ghosts or rapid gradient instabilities.
Classical and quantum Big Brake cosmology for scalar field and tachyonic models
Energy Technology Data Exchange (ETDEWEB)
Kamenshchik, A. Yu. [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46, 40126 Bologna (Italy) and L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow (Russian Federation); Manti, S. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)
2013-02-21
We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.
Propagator with Positive Cosmological Constant in the 3D Euclidian Quantum Gravity Toy Model
Bunting, William
2014-01-01
We study the propagator on a single tetrahedron in a three dimensional toy model of quantum gravity with positive cosmological constant. The cosmological constant is included in the model via q-deformation of the spatial symmetry algebra, that is, we use the Tuarev-Viro amplitude. The expected repulsive effect of dark energy is recovered in numerical and analytic calculations of the propagator at large scales comparable to the infrared cutoff. However, due to the simplicity of the model we do not obtain the exact Newton limit of the propagator. This is a first step toward the similar calculation in the full 3+1 dimensional theory with larger numbers of simplicies.
Energy Technology Data Exchange (ETDEWEB)
Ayissi, Raoul Domingo, E-mail: raoulayissi@yahoo.fr; Noutchegueme, Norbert, E-mail: nnoutch@yahoo.fr [Department of Mathematics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon)
2015-01-15
Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the
Improved cosmological model fitting of Planck data with a dark energy spike
Park, Chan-Gyung
2015-06-01
The Λ cold dark matter (Λ CDM ) model is currently known as the simplest cosmology model that best describes observations with a minimal number of parameters. Here we introduce a cosmology model that is preferred over the conventional Λ CDM one by constructing dark energy as the sum of the cosmological constant Λ and an additional fluid that is designed to have an extremely short transient spike in energy density during the radiation-matter equality era and an early scaling behavior with radiation and matter densities. The density parameter of the additional fluid is defined as a Gaussian function plus a constant in logarithmic scale-factor space. Searching for the best-fit cosmological parameters in the presence of such a dark energy spike gives a far smaller chi-square value by about 5 times the number of additional parameters introduced and narrower constraints on the matter density and Hubble constant compared with the best-fit Λ CDM model. The significant improvement in reducing the chi square mainly comes from the better fitting of the Planck temperature power spectrum around the third (ℓ≈800 ) and sixth (ℓ≈1800 ) acoustic peaks. The likelihood ratio test and the Akaike information criterion suggest that the model of a dark energy spike is strongly favored by the current cosmological observations over the conventional Λ CDM model. However, based on the Bayesian information criterion which penalizes models with more parameters, the strong evidence supporting the presence of a dark energy spike disappears. Our result emphasizes that the alternative cosmological parameter estimation with even better fitting of the same observational data is allowed in Einstein's gravity.
The anisotropic cosmological models in $f (R, T)$ gravity with $\\Lambda (T)$
Indian Academy of Sciences (India)
R CHAUBEY; A K SHUKLA
2017-04-01
The general class of anisotropic Bianchi cosmological models in $f(R, T)$ modified theories of gravity with $\\Lambda (T)$ has been considered. This paper deals with $f(R, T)$ modified theories of gravity, where the gravitational Lagrangian is given by an arbitrary function of Ricci scalar $R$ and the trace of the stress-energy tensor $T$ has been investigated for a specific choice of $f (R,T )$ = $f_{1}(R) + f_{2}(T)$. The exact solutions to the corresponding field equations are obtained in quadrature form. We have discussed three types of solutions of the average scale factor for the general class of Bianchi cosmological models by using a special law for deceleration parameter which is linear in time with a negative slope. The solutions to the Einstein field equations are obtained for three differentphysical viable cosmologies. All physical parameters are calculated and discussed in each model.
Testing anthropic reasoning for the cosmological constant with a realistic galaxy formation model
Sudoh, Takahiro; Makiya, Ryu; Nagashima, Masahiro
2016-01-01
The anthropic principle is one of the possible explanations for the cosmological constant ($\\Lambda$) problem. In previous studies, a dark halo mass threshold comparable with our Galaxy must be assumed in galaxy formation to get a reasonably large probability of finding the observed small value, $P(<$$\\Lambda_{\\rm obs})$, though stars are found in much smaller galaxies as well. Here we examine the anthropic argument by using a semi-analytic model of cosmological galaxy formation, which can reproduce many observations such as galaxy luminosity functions. We calculate the probability distribution of $\\Lambda$ by running the model code for a wide range of $\\Lambda$, while other cosmological parameters and model parameters for baryonic processes of galaxy formation are kept constant. Assuming that the prior probability distribution is flat per unit $\\Lambda$, and that the number of observers is proportional to stellar mass, we find $P(<$$\\Lambda_{\\rm obs}) = 6.7 \\%$ without introducing any galaxy mass thres...
The anisotropic cosmological models in f( R, T) gravity with Λ(T)
Chaubey, R.; Shukla, A. K.
2017-04-01
The general class of anisotropic Bianchi cosmological models in f( R, T) modified theories of gravity with Λ( T) has been considered. This paper deals with f( R, T) modified theories of gravity, where the gravitational Lagrangian is given by an arbitrary function of Ricci scalar R and the trace of the stress-energy tensor T has been investigated for a specific choice of f( R, T) = f 1( R) + f 2( T). The exact solutions to the corresponding field equations are obtained in quadrature form. We have discussed three types of solutions of the average scale factor for the general class of Bianchi cosmological models by using a special law for deceleration parameter which is linear in time with a negative slope. The solutions to the Einstein field equations are obtained for three different physical viable cosmologies. All physical parameters are calculated and discussed in each model.
Beyond Standard Model Physics: At the Frontiers of Cosmology and Particle Physics
Lopez-Suarez, Alejandro O.
I begin to write this thesis at a time of great excitement in the field of cosmology and particle physics. The aim of this thesis is to study and search for beyond the standard model (BSM) physics in the cosmological and high energy particle fields. There are two main questions, which this thesis aims to address: 1) what can we learn about the inflationary epoch utilizing the pioneer gravitational wave detector Adv. LIGO?, and 2) what are the dark matter particle properties and interactions with the standard model particles?. This thesis will focus on advances in answering both questions.
Cosmological perturbations in SFT inspired non-local scalar field models
Energy Technology Data Exchange (ETDEWEB)
Koshelev, Alexey S. [Vrije Universiteit Brussel and The International Solvay Institutes, Theoretische Natuurkunde, Brussels (Belgium); Vernov, Sergey Yu. [Instituto de Ciencias del Espacio (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Bellaterra, Barcelona (Spain); Lomonosov Moscow State University, Theoretical High Energy Physics Division, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation)
2012-10-15
We study cosmological perturbations in models with a single non-local scalar field originating from the string field theory description of the rolling tachyon dynamics. We construct the equation for the energy density perturbations of the non-local scalar field and explicitly prove that for the free field it is identical to a system of local cosmological perturbation equations in a particular model with multiple (maybe infinitely many) local free scalar fields. We also show that vector and tensor perturbations are absent in this set-up. (orig.)
Unitary evolution for anisotropic quantum cosmologies: models with variable spatial curvature
Pandey, Sachin
2016-01-01
Contrary to the general belief, there has recently been quite a few examples of unitary evolution of quantum cosmological models. The present work gives more examples, namely Bianchi type VI and type II. These examples are important as they involve varying spatial curvature unlike the most talked about homogeneous but anisotropic cosmological models like Bianchi I, V and IX. We exhibit either explicit example of the unitary solutions of the Wheeler-DeWitt equation, or at least show that a self-adjoint extension is possible.
Unitary evolution for anisotropic quantum cosmologies: models with variable spatial curvature
Pandey, Sachin; Banerjee, Narayan
2016-11-01
Contrary to the general belief, there has recently been quite a few examples of unitary evolution of quantum cosmological models. The present work gives more examples, namely Bianchi type VI and type II. These examples are important as they involve varying spatial curvature unlike the most talked about homogeneous but anisotropic cosmological models like Bianchi I, V and IX. We exhibit either an explicit example of the unitary solutions of the Wheeler-DeWitt equation, or at least show that a self-adjoint extension is possible.
Standard cosmological model with non vanishing Weyl tensor
Bittencourt, E
2013-01-01
We have solved Einstein's equations of general relativity for a homogeneous and isotropic metric with constant spatial curvature and found a non vanishing Weyl tensor in the presence of an anisotropic pressure component of the energy-momentum tensor. The time evolution of the space-time is guided by the usual Friedman equations and the properties of the spatial components comprise a separated system of equations that can be independently solved. The physical features of this solution are elucidated by using the Quasi-Maxwellian equations of general relativity which directly connect the anisotropic pressure to the electric part of the Weyl tensor for the cosmological fluid.
Stable cosmological models driven by a free quantum scalar field
Energy Technology Data Exchange (ETDEWEB)
Dappiaggi, C.; Pinamonti, N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Citta Univ., Roma (Italy). Istituto Nazionale di Alta Matematica ' ' F. Severi' ' - GNFM; Fredenhagen, K. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2008-01-15
In the mathematically rigorous analysis of semiclassical Einstein's equations, the renormalisation of the stress-energy tensor plays a crucial role. We address such a topic in the case of a scalar field with both arbitrary mass and coupling with gravity in the hypothesis that the underlying algebraic quantum state is of Hadamard type. Particularly, if we focus on highly symmetric solutions of the semiclassical Einstein's equations, the envisaged method displays a de Sitter type behaviour even without an a priori introduced cosmological constant. As a further novel result we shall show that these solutions turn out to be stable. (orig.)
Bianchi-I cosmological model and crossing singularities
Kamenshchik, Alexander Yu.; Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Tronconi, Alessandro; Venturi, Giovanni
2017-04-01
We consider a rather simple method for the description of the big bang-big crunch cosmological singularity crossing. For the flat Friedmann universe this method gives the same results as more complicated methods, using Weyl symmetry or the transitions between the Jordan and Einstein frames. It is then easily generalized for the case of a Bianchi-I anisotropic universe. We also present early-time and late-time asymptotic solutions for a Bianchi-I universe, filled with a conformally coupled massless scalar field.
Lee, Namhyung
Understanding the merger rate history of galaxies is critical to understanding the formation, structure, and evolution of galaxies. Moreover, the sensitivity of the galaxy merger rate to the cosmological environment enables mutual constraints to be formulated between these two major scientific quandaries. In this dissertation, we have modeled the connection between galaxy merger rates and topologically flat cosmologies with varying multi-component energy density parameters---matter (OM), radiation (OR), cosmic strings (O S) and dark energy (OX). We performed kinematic tests deriving look back times, scale factors, deceleration parameters, proper distances, luminosity distances, angular diameter distances and comoving volume elements as a function of redshift (z). We found that models with greater O X (less OS) and more negative values of the dark energy parameter (w or alpha) provide greater values of the cosmological age H oto in fixed OM. Moreover, we found that the models with greater Hoto provide greater cosmological distances and comoving volume elements. The merger rate is often expressed as a power law of the redshift z, where the exponent m varies from 2 to 7 according to many observational and theoretical studies. We model the merger rate in terms of the number of interacting galaxies N, the dark energy parameter w (or alpha), the merger rate exponent m, and other cosmological parameters---where a flat topology is assumed. We find that m and alpha (or w) mutually constrain one another with unique dependences on particular cosmologies. Consequences of these variations on the number of galaxy mergers are plotted on Normalized Three Dimensional (N3D) plots. Forthcoming observations of the Universe's expansion history will help to further constrain alpha (or w), m, and other parameters (OX, OS and O M) relating to the structure, content, and evolution of the Universe. The inclusion of the cosmic string component, OS, in our calculation lays the groundwork for
Probing cosmology with weak lensing selected clusters II: Dark energy and f(R) gravity models
Shirasaki, Masato; Yoshida, Naoki
2015-01-01
Ongoing and future wide-field galaxy surveys can be used to locate a number of clusters of galaxies with cosmic shear measurement alone. We study constraints on cosmological models using statistics of weak lensing selected galaxy clusters. We extend our previous theoretical framework to model the statistical properties of clusters in variants of cosmological models as well as in the standard LCDM model. Weak lensing selection of clusters does not rely on the conventional assumption such as the relation between luminosity and mass and/or hydrostatic equilibrium, but a number of observational effects compromise robust identification. We use a large set of realistic mock weak-lensing catalogs as well as analytic models to perform a Fisher analysis and make forecast for constraining two competing cosmological models, wCDM model and f(R) model proposed by Hu & Sawicki, with our lensing statistics. We show that weak lensing selected clusters are excellent probe of cosmology when combined with cosmic shear power...
Holographic, new agegraphic and ghost dark energy models in fractal cosmology
Karami, K; Ghaffari, S; Fahimi, K
2013-01-01
We investigate the holographic, new agegraphic and ghost dark energy models in the framework of fractal cosmology. We consider a fractal FRW universe filled with the dark energy and dark matter. We obtain the equation of state parameters of the selected dark energy models in the ultraviolet regime and discuss on their implications.
Dark Energy Model with Non-Minimal Coupling and Cosmological Constant Boundary
Institute of Scientific and Technical Information of China (English)
张晓菲
2011-01-01
In this paper, we study a kind of dark energy models in the framework of the non-minimal coupling. With this kind of models, dark energy could cross the cosmological constant boundary, and at early time, dark energy could have ＂tracking＂ behavior.
Roos, Matts
2015-01-01
The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.
A comparative study of cosmological models in alternative theory of gravity with LVDP & BVDP
Mishra, R. K.; Chand, Avtar
2017-08-01
In this communication we have presented a comparative study of Friedmann-Lemaître-Robertson-Walker (FLRW) cosmological models in alternative theory of gravity with linearly varying deceleration parameter (LVDP) and bilinearly varying deceleration parameter (BVDP) as suggested by Mishra and Chand (Astrophys. Space Sci. 361:259, 2016c). The role of viscosity in cosmology have been studied by several researchers. Under the influence of such study we have also studied bulk viscous fluid cosmological models in alternative f(R,T) theory of gravity along with comparison of results by taking LVDP and BVDP. The main conclusion of the paper is that BVDP law provides better results in comparative with Berman's constant deceleration law (CDP) and LVDP law. Also the BVDP law provides an envelope for CDP law and LVDP law.
Models of quintessence coupled to the electromagnetic field and the cosmological evolution of alpha
Copeland, E J; Pospelov, M E
2004-01-01
We study the change of the effective fine structure constant in the cosmological models of a scalar field with a non-vanishing coupling to the electromagnetic field. Combining cosmological data and terrestrial observations we place empirical constraints on the size of the possible coupling and explore a large class of models that exhibit tracking behavior. The change of the fine structure constant implied by the quasar absorption spectra together with the requirement of tracking behavior impose a lower bound of the size of this coupling. Furthermore, the transition to the quintessence regime implies a narrow window for this coupling around $10^{-5}$ in units of the inverse Planck mass. We also propose a non-minimal coupling between electromagnetism and quintessence which has the effect of leading only to changes of alpha determined from atomic physics phenomena, but leaving no observable consequences through nuclear physics effects. In doing so we are able to reconcile the claimed cosmological evidence for a ...
Tachyon cosmology with non-vanishing minimum potential: a unified model
Energy Technology Data Exchange (ETDEWEB)
Li, Huiquan, E-mail: hqli@ustc.edu.cn [Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2012-07-01
We investigate the tachyon condensation process in the effective theory with non-vanishing minimum potential and its implications to cosmology. It is shown that the tachyon condensation on an unstable three-brane described by this modified tachyon field theory leads to lower-dimensional branes (defects) forming within a stable three-brane. Thus, in the cosmological background, we can get well-behaved tachyon matter after tachyon inflation, (partially) avoiding difficulties encountered in the original tachyon cosmological models. This feature also implies that the tachyon inflated and reheated universe is followed by a Chaplygin gas dark matter and dark energy universe. Hence, such an unstable three-brane behaves quite like our universe, reproducing the key features of the whole evolutionary history of the universe and providing a unified description of inflaton, dark matter and dark energy in a very simple single-scalar field model.
Hubble space telescope counts of elliptical galaxies constraints on cosmological models?
Driver, S P; Phillipps, S; Bristow, P D; Driver, Simon P; Windhorst, Rogier A; Phillipps, Steven; Bristow, Paul D
1995-01-01
The interpretation of galaxy number counts in terms of cosmological models is fraught with difficulty due to uncertainties in the overall galaxy population (mix of morphological types, luminosity functions etc.) and in the observations (loss of low surface brightness images, image blending etc.). Many of these can be overcome if we use deep high resolution imaging of a single class of high surface brightness galaxies, whose evolution is thought to be fairly well understood. This is now possible by selecting elliptical and S0 galaxies using Hubble Space Telescope images from the Medium Deep Survey and other ultradeep WFPC2 images. In the present paper, we examine whether such data can be used to discriminate between open and closed universes, or between conventional cosmological models and those dominated by a cosmological constant. We find, based on the currently available data, that unless elliptical galaxies undergo very strong merging since z \\sim 1 (and/or very large errors exist in the morphological clas...
Garcia-Salcedo, Ricardo; Quiros, Israel
2013-01-01
Here we investigate the cosmic dynamics of Friedmann-Robertson-Walker universes -- flat spatial sections -- which are driven by nonlinear electrodynamics (NLED) Lagrangians. We pay special attention to the check of the sign of the square sound speed since, whenever the latter quantity is negative, the corresponding cosmological model is classically unstable against small perturbations of the background energy density. Besides, based on causality arguments, one has to require that the mentioned small perturbations of the background should propagate at most at the local speed of light. We also look for the occurrence of curvature singularities. Our results indicate that several cosmological models which are based in known NLED Lagrangians, either are plagued by curvature singularities of the sudden and/or big rip type, or are violently unstable against small perturbations of the cosmological background -- due to negative sign of the square sound speed -- or both. In addition, causality issues associated with su...
Sanders, Robert H
2016-01-01
The advent of sensitive high-resolution observations of the cosmic microwave background radiation and their successful interpretation in terms of the standard cosmological model has led to great confidence in this model's reality. The prevailing attitude is that we now understand the Universe and need only work out the details. In this book, Sanders traces the development and successes of Lambda-CDM, and argues that this triumphalism may be premature. The model's two major components, dark energy and dark matter, have the character of the pre-twentieth-century luminiferous aether. While there is astronomical evidence for these hypothetical fluids, their enigmatic properties call into question our assumptions of the universality of locally determined physical law. Sanders explains how modified Newtonian dynamics (MOND) is a significant challenge for cold dark matter. Overall, the message is hopeful: the field of cosmology has not become frozen, and there is much fundamental work ahead for tomorrow's cosmologis...
Background of relic gravitons in a perfect fluid in quantum cosmological models
Energy Technology Data Exchange (ETDEWEB)
Siffert, Beatriz B. [Centro Brasileiro de Pesquisas Fisicas (ICRA/CBPF), Rio de Janeiro, RJ (Brazil). Inst. de Cosmologia, Relatividade e Astrofisica; Bessada, Dennis [Instituto Nacional de Pesquisas Espaciais (INPE), SP (Brazil). Divisao de Astrofisica
2011-07-01
Full text: We studied the evolution of tensor cosmological perturbations of quantum origin in cosmological scenarios that predict a contracting phase prior to the present expansion phase. These bouncing models constitute a very plausible alternative to the current cosmological paradigm since they may be able to solve some of the cosmological puzzles present in the standard model, such as the horizon and flatness problems, without the requirement of an initial singularity or special initial conditions. While conventional inflationary models give rise to a relic background of gravitational waves that cannot be detected with present experiments, no such prediction had been made so far using quantum bouncing models. We have obtained analytically the graviton's energy density parameter as a function of time and frequency interval - which is the physical quantity to be confronted with observations - predicted by such models with a perfect fluid equation of state. To obtain the final spectrum, we numerically solved the expression for the density parameter for the time variable. The results can then be compared with the predictions from inflationary models and with the sensitivity curves of gravitational waves current detectors, such as the Virgo and Ligo interferometers, and upcoming detectors, like the LISA space mission, to determine the possibility of detection. (author)
Cosmological models in modified gravity theories with extended nonminimal derivative couplings
Harko, Tiberiu; Lobo, Francisco S. N.; Saridakis, Emmanuel N.; Tsoukalas, Minas
2017-02-01
We construct gravitational modifications that go beyond Horndeski, namely theories with extended nonminimal derivative couplings, in which the coefficient functions depend not only on the scalar field but also on its kinetic energy. Such theories prove to be ghost-free in a cosmological background. We investigate the early-time cosmology and show that a de Sitter inflationary phase can be realized as a pure result of the novel gravitational couplings. Additionally, we study the late-time evolution, where we obtain an effective dark energy sector which arises from the scalar field and its extended couplings to gravity. We extract various cosmological observables and analyze their behavior at small redshifts for three choices of potentials, namely for the exponential, the power-law, and the Higgs potentials. We show that the Universe passes from deceleration to acceleration in the recent cosmological past, while the effective dark energy equation-of-state parameter tends to the cosmological-constant value at present. Finally, the effective dark energy can be phantomlike, although the scalar field is canonical, which is an advantage of the model.
Bianchi Type-I bulk viscous fluid string dust magnetized cosmological model in general relativity
Indian Academy of Sciences (India)
Raj Bali; Anjali
2004-09-01
Bianchi Type-I magnetized bulk viscous fluid string dust cosmological model is investigated. To get a determinate model, we have assumed the conditions and = constant where is the shear, the expansion in the model and the coefficient of bulk viscosity. The behaviour of the model in the presence and absence of magnetic field together with physical and geometrical aspects of the model are also discussed.
Cosmology and Particle Physics beyond Standard Models Ten Years of the SEENET-MTP Network
Álvarez-Gaumé, Luis; Stojkovic, Dejan
2014-01-01
This publication - "Cosmology and Particle Physics beyond Standard Models" - is dedicated to the celebration of the tenth anniversary of the Southeastern European Network in Mathematical and Theoretical Physics (SEENET-MTP). As a Theme Collection, rather than a Monograph or Proceedings, this volume presents a number of reports and overviews, a few research papers and a short note. However, some of them are excellent examples of a nowadays increasingly deep interplay between particle physics and cosmology. Contributions span a wide range of topics in cosmology, particle physics, but also gravity, including the interface of these fields. The presented work is of both theoretical and experimental/ observational nature. The contributions represent recent progress in their respective fields: inflation, dark matter, neutrino physics, supersymmetry, collider physics, string theory, quantum gravity, black hole physics and massive gravity.
Qualitative Analysis and Numerical Simulation of Equations of the Standard Cosmological Model
Ignat'ev, Yurii
2016-01-01
On the basis of qualitative theory of differential equations it is shown that dynamic system based on the system of Einstein - Klein - Gordon equations with regard to Friedman Universe has a stable center corresponding to zero values of scalar potential and its derivative at infinity. Thus, the cosmological model based on single massive classical scalar field in infinite future would give a flat Universe. The carried out numerical simulation of the dynamic system corresponding to the system of Einstein - Klein - Gordon equations showed that at great times of the evolution the invariant cosmological acceleration has a microscopic oscillating character ($T\\sim 2\\pi mt$), while macroscopic value of the cosmological acceleration varies from $+1$ at inflation stage after which if decreases fast to $-1/2$ (non-relativistic stage), and then slowly tends to $-1$ (ultrarelativistic stage).
Late time behavior of cosmological perturbations in a single brane model
Koyama, K
2004-01-01
We present solutions for the late time evolution of cosmological tensor and scalar perturbations in a single Randall-Sundrum brane world model. Assuming that the bulk is Anti-de Sitter spacetime, the solutions for cosmological perturbations are derived by summing up mode functions in Poincar\\'e coordinate. The junction conditions imposed at the moving brane are solved numerically. The recovery of 4-dimensional Einstein gravity at late times is shown by solving the 5-dimensional perturbations throughout the infinite bulk. We also comment on several possibilities to have deviations from 4-dimensional Einstein gravity.
Narimani, Ali; Scott, Douglas
2011-01-01
Although it is possible that some fundamental physical constants could vary in time, it is important to only consider dimensionless combinations, such as the fine structure constant or the equivalent coupling constant for gravity. Once all such dimensionless numbers have been given, then we can be sure that our cosmological picture is governed by the same physical laws as that of another civilization with an entirely different set of units. An additional feature of the standard model of cosmology raises an extra complication, namely that the epoch at which we live is a crucial part of the model. This can be defined by giving the value of any one of the evolving cosmological parameters. It takes some care to avoid inconsistent results for constraints on variable constants, which could be caused by effectively fixing more than one parameter today. We show examples of this effect by considering in some detail the physics of Big Bang nucleosynthesis, recombination and microwave background anisotropies, being care...
Does the diffusion DM-DE interaction model solve cosmological puzzles?
Szydlowski, Marek
2016-01-01
We study dynamics of cosmological models with diffusion effects modeling dark matter and dark energy interactions. We show the simple model with diffusion between the cosmological constant sector and dark matter, where the canonical scaling law of dark matter $(\\rho_{dm,0}a^{-3}(t))$ is modified by an additive $\\epsilon(t)=\\gamma t a^{-3}(t)$ to the form $\\rho_{dm}=\\rho_{dm,0}a^{-3}(t)+\\epsilon(t)$. We reduced this model to the autonomous dynamical system and investigate it using dynamical system methods. This system possesses a two-dimensional invariant submanifold on which the DM-DE interaction can be analyzed on the phase plane. The state variables are density parameter for matter (dark and visible) and parameter $\\delta$ characterizing the rate of growth of energy transfer between the dark sectors. A corresponding dynamical system belongs to a general class of jungle type of cosmologies represented by coupled cosmological models in a Lotka-Volterra framework. We demonstrate that the de Sitter solution is ...
Tchapnda, S B; Tchapnda, Sophonie Blaise; Noutchegueme, Norbert
2003-01-01
The Einstein-Vlasov system describes a self-gravitating, collisionless gas within the framework of general relativity. We investigate the initial value problem in a cosmological setting with surface symmetry and a non-zero cosmological constant and prove local existence and continuation criteria in both time directions. The continuation criterion says that as long as the maximum velocity remains bounded and the lapse function remains bounded then the solution can be continued. This applies to either time direction.
Classical and quantum cosmology of Born-Infeld type models
Kamenshchik, Alexander; Kwidzinski, Nick
2016-01-01
We discuss Born-Infeld type fields (tachyon fields) in classical and quantum cosmology. We first partly review and partly extend the discussion of the classical solutions and focus in particular on the occurrence of singularities. For quantization, we employ geometrodynamics. In the case of constant potential, we discuss both Wheeler-DeWitt quantization and reduced quantization. We are able to give various solutions and discuss their asymptotics. For the case of general potential, we transform the Wheeler-DeWitt equation to a form where it leads to a difference equation. Such a difference equation was previously found in the quantization of black holes. We give explicit results for the cases of constant potential and inverse square potential and point out special features possessed by solutions of the difference equation.
Classical and quantum cosmology of Born-Infeld type models
Kamenshchik, Alexander; Kiefer, Claus; Kwidzinski, Nick
2016-04-01
We discuss Born-Infeld type fields (tachyon fields) in classical and quantum cosmology. We first partly review and partly extend the discussion of the classical solutions and focus in particular on the occurrence of singularities. For quantization, we employ geometrodynamics. In the case of constant potential, we discuss both Wheeler-DeWitt quantization and reduced quantization. We are able to give various solutions and discuss their asymptotics. For the case of general potential, we transform the Wheeler-DeWitt equation to a form where it leads to a difference equation. Such a difference equation was previously found in the quantization of black holes. We give explicit results for the cases of constant potential and inverse squared potential and point out special features possessed by solutions of the difference equation.
Terrestrial implications of cosmological gamma-ray burst models
Thorsett, S E
1995-01-01
The observation by the BATSE instrument on the Compton Gamma Ray Observatory that gamma-ray bursts (GRBs) are distributed isotropically around the Earth but nonuniformly in distance has led to the widespread conclusion that GRBs are most likely to be at cosmological distances, making them the most luminous sources known in the Universe. If bursts arise from events that occur in normal galaxies, such as neutron star binary inspirals, then they will also occur in our Galaxy about every hundred thousand to million years. The gamma-ray flux at the Earth due to a Galactic GRB would far exceed that from even the largest solar flares. The absorption of this radiation in the atmosphere would substantially increase the stratospheric nitric oxide concentration through photodissociation of N_2, greatly reducing the ozone concentration for several years through NO_x catalysis, with important biospheric effects due to increased solar ultraviolet flux. A nearby GRB may also leave traces in anomalous radionuclide abundances...
Non-linear structure formation in the `Running FLRW' cosmological model
Bibiano, Antonio; Croton, Darren J.
2016-07-01
We present a suite of cosmological N-body simulations describing the `Running Friedmann-Lemaïtre-Robertson-Walker' (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends Lambda cold dark matter (ΛCDM) with a time-evolving vacuum density, Λ(z), and time-evolving gravitational Newton's coupling, G(z). In this paper, we review the model and introduce the necessary analytical treatment needed to adapt a reference N-body code. Our resulting simulations represent the first realization of the full growth history of structure in the R-FLRW cosmology into the non-linear regime, and our normalization choice makes them fully consistent with the latest cosmic microwave background data. The post-processing data products also allow, for the first time, an analysis of the properties of the halo and sub-halo populations. We explore the degeneracies of many statistical observables and discuss the steps needed to break them. Furthermore, we provide a quantitative description of the deviations of R-FLRW from ΛCDM, which could be readily exploited by future cosmological observations to test and further constrain the model.
Entropy - Some Cosmological Questions Answered by Model of Expansive Nondecelerative Universe
Directory of Open Access Journals (Sweden)
Miroslav Sukenik
2003-01-01
Full Text Available Abstract: The paper summarizes the background of Expansive Nondecelerative Universe model and its potential to offer answers to some open cosmological questions related to entropy. Three problems are faced in more detail, namely that of Hawkings phenomenon of black holes evaporation, maximum entropy of the Universe during its evolution, and time evolution of specific entropy.
The Weierstrass Criterion and the Lemaitre-Tolman-Bondi Models with Cosmological Constant \\lambda
Bochicchio, Ivana; Laserra, Ettore
2011-01-01
We analyze Lemaitre-Tolman-Bondi models in presence of the cosmological constant \\Lambda through the classical Weierstrass criterion. Precisely, we show that the Weierstrass approach allows us to classify the dynamics of these inhomogeneous spherically symmetric Universes taking into account their relationship with the sign of \\Lambda.
Dark energy and dust matter phases from an exact f(R)-cosmology model
Energy Technology Data Exchange (ETDEWEB)
Capozziello, S. [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN Sezioze di Napoli, Complesso Universitario di Monte S. Angelo, Ed. N, Via Cinthia, I-80126 Napoli (Italy)], E-mail: capozziello@na.infn.it; Martin-Moruno, P. [Colina de los Chopos, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Rubano, C. [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN Sezioze di Napoli, Complesso Universitario di Monte S. Angelo, Ed. N, Via Cinthia, I-80126 Napoli (Italy)
2008-06-12
We show that dust matter-dark energy combined phases can be achieved by the exact solution derived from a power law f(R) cosmological model. This example answers the query by which a dust-dominated decelerated phase, before dark-energy accelerated phase, is needed in order to form large scale structures.
An improved cosmological model fitting of Planck data with a dark energy spike
Park, Chan-Gyung
2015-01-01
The $\\Lambda$ cold dark matter ($\\Lambda\\textrm{CDM}$) model is currently known as the simplest cosmology model that best describes observations with minimal number of parameters. Here we introduce a cosmology model that is preferred over the conventional $\\Lambda\\textrm{CDM}$ one by constructing dark energy as the sum of the cosmological constant $\\Lambda$ and the additional fluid that is designed to have an extremely short transient spike in energy density during the radiation-matter equality era and the early scaling behavior with radiation and matter densities. The density parameter of the additional fluid is defined as a Gaussian function plus a constant in logarithmic scale-factor space. Searching for the best-fit cosmological parameters in the presence of such a dark energy spike gives a far smaller chi-square value by about five times the number of additional parameters introduced and narrower constraints on matter density and Hubble constant compared with the best-fit $\\Lambda\\textrm{CDM}$ model. The...
Submanifolds in space-time with unphysical extra dimensions, cosmology and warped brane world models
Smolyakov, Mikhail N
2008-01-01
The explicit coordinate transformations which show the equivalence between a four-dimensional spatially flat cosmology and an appropriate submanifold in the flat five-dimensional Minkowski space-time are presented. Analogous procedure is made for the case of five-dimensional warped brane world models. Several examples are presented.
An evaluation of cosmological models from expansion and growth of structure measurements
Zhai, Zhongxu; Blanton, Michael; Slosar, Anže; Tinker, Jeremy
2017-01-01
We compare a large suite of theoretical cosmological models to observational data from the cosmic microwave background, baryon acoustic oscillation measurements of expansion, Type Ia SNe measurements of expansion, redshift space distortion measurements of the growth of structure, and the local Hubble constant. Our theoretical models include parametrizations of dark energy as well as physical models of dark energy and modified gravity. We determine the constraints on the model parameters, inco...
A cosmological model in Weyl-Cartan spacetime; 1, Field equations and solutions
Puetzfeld, D
2001-01-01
In this first article of a series on alternative cosmological models we present an extended version of a cosmological model in Weyl-Cartan spacetime. The new model can be viewed as a generalization of a model developed earlier jointly with Tresguerres. Within this model the non-Riemannian quantities, i.e. torsion $T^{\\alpha}$ and nonmetricity $Q_{\\alpha \\beta}$, are proportional to the Weyl 1-form. The hypermomentum $\\Delta_{\\alpha \\beta}$ depends on our ansatz for the nonmetricity and vice versa. We derive the explicit form of the field equations for different cases and provide solutions for a broad class of parameters. We demonstrate that it is possible to construct models in which the non-Riemannian quantities die out with time. We show how our model fits into the more general framework of metric-affine gravity (MAG).
A cosmological model in Weyl-Cartan spacetime: I. Field equations and solutions
Puetzfeld, Dirk
2002-06-01
In this first paper of a series on alternative cosmological models we present an extended version of a cosmological model in Weyl-Cartan spacetime. The new model can be viewed as a generalization of a model developed earlier jointly with Tresguerres. Within this model the non-Riemannian quantities, i.e. torsion Tα and nonmetricity Qαβ, are proportional to the Weyl 1-form. The hypermomentum Δαβ depends on our ansatz for the nonmetricity and vice versa. We derive the explicit form of the field equations for different cases and provide solutions for a broad class of parameters. We demonstrate that it is possible to construct models in which the non-Riemannian quantities die out with time. We show how our model fits into the more general framework of metric-affine gravity (MAG).
A cosmological model in Weyl-Cartan spacetime: I. Field equations and solutions
Energy Technology Data Exchange (ETDEWEB)
Puetzfeld, Dirk [Institute for Theoretical Physics, University of Cologne, 50923 Cologne (Germany)
2002-06-21
In this first paper of a series on alternative cosmological models we present an extended version of a cosmological model in Weyl-Cartan spacetime. The new model can be viewed as a generalization of a model developed earlier jointly with Tresguerres. Within this model the non-Riemannian quantities, i.e. torsion T{sup {alpha}} and nonmetricity Q{sub {alpha}}{sub {beta}}, are proportional to the Weyl 1-form. The hypermomentum {delta}{sub {alpha}}{sub {beta}} depends on our ansatz for the nonmetricity and vice versa. We derive the explicit form of the field equations for different cases and provide solutions for a broad class of parameters. We demonstrate that it is possible to construct models in which the non-Riemannian quantities die out with time. We show how our model fits into the more general framework of metric-affine gravity (MAG)
Bamba, Kazuharu; Nojiri, Shin'ichi; Odintsov, Sergei D
2012-01-01
We review different dark energy cosmologies. In particular, we present the $\\Lambda$CDM cosmology, Little Rip and Pseudo-Rip universes, the phantom and quintessence cosmologies with Type I, II, III and IV finite-time future singularities and non-singular dark energy universes. In the first part, we explain the $\\Lambda$CDM model and well-established observational tests which constrain the current cosmic acceleration. After that, we investigate the dark fluid universe where a fluid has quite general equation of state (EoS) [including inhomogeneous or imperfect EoS]. All the above dark energy cosmologies for different fluids are explicitly realized, and their properties are also explored. It is shown that all the above dark energy universes may mimic the $\\Lambda$CDM model currently, consistent with the recent observational data. Furthermore, special attention is paid to the equivalence of different dark energy models. We consider single and multiple scalar field theories, tachyon scalar theory and holographic ...
Kiselev, V V
2012-01-01
A huge value of cosmological constant characteristic for the particle physics and the inflation of early Universe are inherently related to each other: one can construct a fine-tuned superpotential, which produces a flat potential of inflaton with a constant density of energy V=\\Lambda^4 after taking into account for leading effects due to the supergravity, so that an introduction of small quantum loop-corrections to parameters of this superpotential naturally results in the dynamical instability relaxing the primary cosmological constant by means of inflationary regime. The model phenomenologically agrees with observational data on the large scale structure of Universe at \\Lambda~10^{16} GeV.
On the Tidal Evolution of the Earth-Moon System: A Cosmological Model
Directory of Open Access Journals (Sweden)
Arbab A. I.
2009-01-01
Full Text Available We have presented a cosmological model for the tidal evolution of the Earth-Moon system. We have found that the expansion of the universe has immense consequences on our local systems. The model can be compared with the present observational data. The close approach problem inflicting the known tidal theory is averted in this model. We have also shown that the astronomical and geological changes of our local systems are of the order of Hubble constant.
Accelerating anisotropic cosmological model in f(R,T) theory of gravity
Santhi Kumar, R.; Satyannarayana, B.
2017-10-01
Field equations in a modified theory of gravitation proposed by Harko et al. (Phys Rev D 84:024020, 8) are obtained with the aid of a spatially homogeneous and anisotropic LRS Bianchi type-I metric. Cosmological models corresponding to false vacuum and dust universe are obtained. Some physical and kinematical properties of each of the models are discussed. These models may be physically significant for discussion at an early stage of evolution of the universe.
Bianchi type VI1 cosmological model with wet dark fluid in scale invariant theory of gravitation
Mishra, B
2014-01-01
In this paper, we have investigated Bianchi type VIh, II and III cosmological model with wet dark fluid in scale invariant theory of gravity, where the matter field is in the form of perfect fluid and with a time dependent gauge function (Dirac gauge). A non-singular model for the universe filled with disorder radiation is constructed and some physical behaviors of the model are studied for the feasible VIh (h = 1) space-time.
On the Tidal Evolution of the Earth-Moon System: A Cosmological Model
Directory of Open Access Journals (Sweden)
Arbab A. I.
2009-01-01
Full Text Available We have presented a cosmological model for the tidal evolution of the Earth-Moon system. We have found that the expansion of the universe has immense consequences on our local systems. The model can be compared with the present observational data. The close approach problem inflicting the known tidal theory is averted in this model. We have also shown that the astronomical and geological changes of our local systems are of the order of Hubble constant.
Verma, M. K.; Chandel, S.; Ram, Shri
2017-01-01
The present study deals with hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez-Ballester theory of gravitation. Exact solutions of field equations are obtained by applying a special law of variation of Hubble's parameter that yields a constant negative value of the deceleration parameter. Three physically viable cosmological models of the Universe are presented for the values of parameter K occurring in the metric of the space-time. The model for K = 0 corresponds to an accelerating Universe with isotropic dark energy. The other two models for K = 1 and -1 represent accelerating Universe with anisotropic dark energy, which isotropize for large time. The physical and geometric behaviours of the models are also discussed.
Indian Academy of Sciences (India)
M K VERMA; S CHANDEL; SHRI RAM
2017-01-01
The present study deals with hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez–Ballester theory of gravitation. Exact solutions of field equations are obtained by applying a special law of variation of Hubble’s parameter that yields a constant negative value of the deceleration parameter. Three physically viable cosmological models of the Universe are presented for the values of parameter $K$ occurring in the metric of the space–time. The model for $K = 0$ corresponds to an accelerating Universe with isotropic dark energy. The other two models for $K = 1$ and $−1$ represent accelerating Universe with anisotropic dark energy, which isotropize for large time. The physical and geometric behaviours of the models are also discussed.
Warps and waves in fully cosmological models of galactic discs
Gómez, Facundo A; Grand, Robert J J; Marinacci, Federico; Springel, Volker; Pakmor, Rüdiger
2016-01-01
Recent studies have revealed an oscillating asymmetry in the vertical structure of the Milky Way's disc. Here we analyze 16 high-resolution, fully cosmological simulations of the evolution of individual Milky Way-sized galaxies, carried out with the MHD code AREPO. At redshift zero, about $70\\%$ of our galactic discs show strong vertical patterns, with amplitudes that can exceed 2 kpc. Half of these are typical `integral sign' warps. The rest are oscillations similar to those observed in the Milky Way. Such structures are thus expected to be common. The associated mean vertical motions can be as large as 30 km/s. Cold disc gas typically follows the vertical patterns seen in the stars. These perturbations have a variety of causes: close encounters with satellites, distant flybys of massive objects, accretion of misaligned cold gas from halo infall or from mergers. Tidally induced vertical patterns can be identified in both young and old stellar populations, whereas those originating from cold gas accretion are...
A fully cosmological model of a Monoceros-like ring
Gómez, Facundo A; Marinacci, Federico; Slater, Colin T; Grand, Robert J J; Springel, Volker; Pakmor, Rüdiger
2015-01-01
We study the vertical structure of a stellar disk obtained from a fully cosmological high-resolution hydrodynamical simulation of the formation of a Milky Way-like galaxy. At the present day, the disk's mean vertical height shows a well-defined and strong pattern, with amplitudes as large as 3 kpc in its outer regions. This pattern is the result of a satellite - host halo - disk interaction and reproduces, qualitatively, many of the observable properties of the Monoceros Ring. In particular we find disk material at the distance of Monoceros extending far above the mid plane (30$^{\\circ}$) in both hemispheres, as well as well-defined arcs of disk material at heliocentric distances $\\gtrsim 5$ kpc. The pattern was first excited $\\approx 3$ Gyr ago as an $m=1$ mode that later winds up into a leading spiral pattern. Interestingly, the main driver behind this perturbation is a low-mass low-velocity fly-by encounter. The satellite has total mass, pericentre distance and pericentric velocity of $\\sim 5\\%$ of the hos...
Anisotropic Cosmological Model in Modified Brans--Dicke Theory
Rasouli, S M M; Sepangi, Hamid R
2011-01-01
It has been shown that four dimensional Brans-Dicke theory with effective matter field and self interacting potential can be achieved from vacuum 5D BD field equations, where we refer to as modified Brans-Dicke theory (MBDT). We investigate a generalized Bianchi type I anisotropic cosmology in 5D BD theory, and by employing obtained formalism, we derive induced-matter on any 4D hypersurface in context of the MBDT. We illustrate that if the usual spatial scale factors are functions of time while scale factor of extra dimension is constant, and scalar field depends on time and fifth coordinate, then in general, one will encounter inconsistencies in field equations. Then, we assume the scale factors and scalar field depend on time and extra coordinate as separated variables in power law forms. Hence, we find a few classes of solutions in 5D spacetime through which, we probe the one which leads to a generalized Kasner relations among Kasner parameters. The induced scalar potential is found to be in power law or i...
Cosmological analysis of scalar field models in f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Nawazish, Iqra [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2017-03-15
This paper determines the existence of Noether symmetry in non-minimally coupled f(R, T) gravity admitting minimal coupling with scalar field models. We consider a generalized spacetime which corresponds to different anisotropic and homogeneous universe models. We formulate symmetry generators along with conserved quantities through Noether symmetry technique for direct and indirect curvature-matter coupling. For dust and perfect fluids, we evaluate exact solutions and construct their cosmological analysis through some cosmological parameters. We conclude that decelerated expansion is obtained for the quintessence model with a dust distribution, while a perfect fluid with dominating potential energy over kinetic energy leads to the current cosmic expansion for both phantom as well as quintessence models. (orig.)
Pasqua, Antonio; Chattopadhyay, Surajit; Assaf, Khudhair A.; Salako, Ines G.
2016-06-01
In this paper, we study the properties of the Holographic Dark Energy (HDE) model in the context of Kaluza-Klein (KK) cosmology with infrared cut-off given by the recently proposed by Granda-Oliveros cut-off, which contains a term proportional to the time derivative of the Hubble parameter and one proportional to the Hubble parameter squared. Moreover, this cut-off is characterized by two free parameters which are the proportional constants of the two terms of the cut-off. We derive the expression of the Equation of State (EoS) parameter ωD and of the deceleration parameter q for both non-interacting and interacting Dark Sectors and in the limiting case of a flat Dark Dominated Universe. Moreover, we study the squared speed of the sound vs2 and the statefinder diagnostic \\{r,s\\} in order to understand the cosmological properties of the model considered. We also develop a correspondence between the model considered and three scalar field models: the tachyon, the k-essence and the quintessence ones.
Does the diffusion dark matter-dark energy interaction model solve cosmological puzzles?
Szydłowski, Marek; Stachowski, Aleksander
2016-08-01
We study dynamics of cosmological models with diffusion effects modeling dark matter and dark energy interactions. We show the simple model with diffusion between the cosmological constant sector and dark matter, where the canonical scaling law of dark matter (ρd m ,0a-3(t )) is modified by an additive ɛ (t )=γ t a-3(t ) to the form ρd m=ρd m ,0a-3(t )+ɛ (t ). We reduced this model to the autonomous dynamical system and investigate it using dynamical system methods. This system possesses a two-dimensional invariant submanifold on which the dark matter-dark energy (DM-DE) interaction can be analyzed on the phase plane. The state variables are density parameter for matter (dark and visible) and parameter δ characterizing the rate of growth of energy transfer between the dark sectors. A corresponding dynamical system belongs to a general class of jungle type of cosmologies represented by coupled cosmological models in a Lotka-Volterra framework. We demonstrate that the de Sitter solution is a global attractor for all trajectories in the phase space and there are two repellers: the Einstein-de Sitter universe and the de Sitter universe state dominating by the diffusion effects. We distinguish in the phase space trajectories, which become in good agreement with the data. They should intersect a rectangle with sides of Ωm ,0∈[0.2724 ,0.3624 ] , δ ∈[0.0000 ,0.0364 ] at the 95% CL. Our model could solve some of the puzzles of the Λ CDM model, such as the coincidence and fine-tuning problems. In the context of the coincidence problem, our model can explain the present ratio of ρm to ρd e, which is equal 0.457 6-0.0831+0.1109 at a 2 σ confidence level.
Viability of Arctan Model of f(R) Gravity for Late-time Cosmology
Dutta, Koushik; Patel, Avani
2016-01-01
$f(R)$ modifications of Einstein's gravity is an interesting possibility to explain the late time acceleration of the Universe. In this work we explore the cosmological viability of one such $f(R)$ modification proposed in (Kruglov:2013). We show that the model violates fifth-force constraints. The model is also plagued with the issue of curvature singularity in a spherically collapsing object, where the effective scalar field reaches to the point of diverging scalar curvature.
Cosmological constraints on some supergravity-induced low-energy electroweak models
Energy Technology Data Exchange (ETDEWEB)
Girardi, G.; Salati, P.
1986-02-24
We present constraints on the parameters for models with gravity-induced supersymmetry breaking, obtained from cosmology. This is done by studying the evolution of the density of the lightest supersymmetric particle appearing in the mass spectrum. Our analysis, specifically done for models proposed by Cremmer, Fayet and Girardello, gives severe constraints on the mass of the neutral higgsinos, whereas those on the zino mass are very sensitive to the assumed value of the critical energy density of the Universe. (orig.).
Constraining a bulk viscous matter-dominated cosmological model using SNe Ia, CMB and LSS
Avelino, Arturo; Guzmán, F S
2008-01-01
We present and constrain a cosmological model which component is a pressureless fluid with bulk viscosity as an explanation for the present accelerated expansion of the universe. We study the particular model of a constant bulk viscosity coefficient \\zeta_m. The possible values of \\zeta_m are constrained using the cosmological tests of SNe Ia Gold 2006 sample, the CMB shift parameter R from the three-year WMAP observations, the Baryon Acoustic Oscillation (BAO) peak A from the Sloan Digital Sky Survey (SDSS) and the Second Law of Thermodynamics (SLT). It was found that this model is in agreement with the SLT using only the SNe Ia test. However when the model is submitted to the three cosmological tests together (SNe+CMB+BAO) the results are: 1.- the model violates the SLT, 2.- predicts a value of H_0 \\approx 53 km sec^{-1} Mpc^{-1} for the Hubble constant, and 3.- we obtain a bad fit to data with a \\chi^2_{min} \\approx 400 (\\chi^2_{d.o.f.} \\approx 2.2). These results indicate that this model is ruled out by t...
A MAGNIFIED GLANCE INTO THE DARK SECTOR: PROBING COSMOLOGICAL MODELS WITH STRONG LENSING IN A1689
Energy Technology Data Exchange (ETDEWEB)
Magaña, Juan; Motta, V.; Cárdenas, Victor H.; Verdugo, T. [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Valparaíso (Chile); Jullo, Eric, E-mail: juan.magana@uv.cl, E-mail: veronica.motta@uv.cl, E-mail: victor.cardenas@uv.cl, E-mail: tomasverdugo@gmail.com, E-mail: eric.jullo@lam.fr [Aix Marseille Universite, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France)
2015-11-01
In this paper we constrain four alternative models to the late cosmic acceleration in the universe: Chevallier–Polarski–Linder (CPL), interacting dark energy (IDE), Ricci holographic dark energy (HDE), and modified polytropic Cardassian (MPC). Strong lensing (SL) images of background galaxies produced by the galaxy cluster Abell 1689 are used to test these models. To perform this analysis we modify the LENSTOOL lens modeling code. The value added by this probe is compared with other complementary probes: Type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO), and cosmic microwave background (CMB). We found that the CPL constraints obtained for the SL data are consistent with those estimated using the other probes. The IDE constraints are consistent with the complementary bounds only if large errors in the SL measurements are considered. The Ricci HDE and MPC constraints are weak, but they are similar to the BAO, SN Ia, and CMB estimations. We also compute the figure of merit as a tool to quantify the goodness of fit of the data. Our results suggest that the SL method provides statistically significant constraints on the CPL parameters but is weak for those of the other models. Finally, we show that the use of the SL measurements in galaxy clusters is a promising and powerful technique to constrain cosmological models. The advantage of this method is that cosmological parameters are estimated by modeling the SL features for each underlying cosmology. These estimations could be further improved by SL constraints coming from other galaxy clusters.
Super-accelerating bouncing cosmology in asymptotically free non-local gravity
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Modesto, Leonardo [Fudan University, Department of Physics and Center for Field Theory and Particle Physics, Shanghai (China); Nicolini, Piero [Johann Wolfgang Goethe-Universitaet, Frankfurt Institute for Advanced Studies (FIAS) und Institut fuer Theoretische Physik, Frankfurt am Main (Germany)
2014-08-15
Recently, evidence has been collected that a class of gravitational theories with certain non-local operators is renormalizable. We consider one such model which, at the linear perturbative level, reproduces the effective non-local action for the light modes of bosonic closed string-field theory. Using the property of asymptotic freedom in the ultraviolet and fixing the classical behavior of the scale factor at late times, an algorithm is proposed to find general homogeneous cosmological solutions valid both at early and late times. Imposing a power-law classical limit, these solutions (including anisotropic ones) display a bounce, instead of a big-bang singularity, and super-accelerate near the bounce even in the absence of an inflaton or phantom field. (orig.)
Tremmel, Michael; Governato, Fabio; Volonteri, Marta; Quinn, Tom; Pontzen, Andrew; Anderson, Lauren
2016-01-01
We present a novel implementation of supermassive black hole (SMBH) formation, dynamics, and accretion in the massively parallel tree+SPH code, ChaNGa. This approach improves the modeling of SMBHs in fully cosmological simulations, allowing for a more detailed analysis of SMBH-galaxy co-evolution throughout cosmic time. Our scheme includes novel, physically motivated models for SMBH formation, dynamics and sinking timescales within galaxies, and SMBH accretion of rotationally supported gas. The sub-grid parameters that regulate star formation (SF) and feedback from SMBHs and SNe are optimized against a comprehensive set of z = 0 galaxy scaling relations using a novel, multi-dimensional parameter search. We have incorporated our new SMBH implementation and parameter optimization onto a new set of high resolution, large-scale cosmological simulations called Romulus. We present initial results from our flagship simulation, Romulus25, showing that our SMBH model results in SF efficiency, SMBH masses, and global c...
Cosmological Parameter Estimation from SN Ia data: a Model-Independent Approach
Benitez-Herrera, S; Maturi, M; Hillebrandt, W; Bartelmann, M; Röpke, F; .,
2013-01-01
We perform a model independent reconstruction of the cosmic expansion rate based on type Ia supernova data. Using the Union 2.1 data set, we show that the Hubble parameter behaviour allowed by the data without making any hypothesis about cosmological model or underlying gravity theory is consistent with a flat LCDM universe having H_0 = 70.43 +- 0.33 and Omega_m=0.297 +- 0.020, weakly dependent on the choice of initial scatter matrix. This is in closer agreement with the recently released Planck results (H_0 = 67.3 +- 1.2, Omega_m = 0.314 +- 0.020) than other standard analyses based on type Ia supernova data. We argue this might be an indication that, in order to tackle subtle deviations from the standard cosmological model present in type Ia supernova data, it is mandatory to go beyond parametrized approaches.
The time evolution of cosmological redshift in non-standard dark energy models
Balbi, A
2007-01-01
The variation of the expansion rate of the universe with time produces an evolution in the cosmological redshift of distant sources (for example quasars), that might be directly observed (over a decade or so) by future ultra stable, high-resolution spectrographs (such as CODEX) coupled to extremely large telescopes (such as ESO's ELT). This would open a new window to explore the physical mechanism responsible for the current acceleration of the universe. We investigate the evolution of cosmological redshift from a variety of non-standard dark energy models, and compare it with simulated data based on realistic assumptions. We perform a Fisher matrix analysis, in order to estimate the expected constraints on the parameters of the models. We find that there are interesting prospects for constraining the parameters of non-standard dark energy models and for discriminating among competing candidates.
How robust are inflation model and dark matter constraints from cosmological data?
DEFF Research Database (Denmark)
Hamann, Jan; Hannestad, Steen; Sloth, Martin Snoager;
2006-01-01
High-precision data from observation of the cosmic microwave background and the large scale structure of the universe provide very tight constraints on the effective parameters that describe cosmological inflation. Indeed, within a constrained class of LambdaCDM models, the simple lambda phi^4...... chaotic inflation model already appears to be ruled out by cosmological data. In this paper, we compute constraints on inflationary parameters within a more general framework that includes other physically motivated parameters such as a nonzero neutrino mass. We find that a strong degeneracy between...... the tensor-to-scalar ratio r and the neutrino mass prevents lambda phi^4 from being excluded by present data. Reversing the argument, if lambda phi^4 is the correct model of inflation, it predicts a sum of neutrino masses at 0.3-0.5 eV, a range compatible with present experimental limits and within the reach...
Bianchi Type-Ⅴ Bulk Viscous Barotropic Fluid Cosmological Model with Variable G and A
Institute of Scientific and Technical Information of China (English)
Raj Bali; Seema Tinker
2008-01-01
@@ We investigate the Bianehi type-Ⅴ bulk viscous barotropic fluid cosmological model with variable gravitational constant G and the cosmological constant A, assuming the condition on metric potential as A/A=B/B=C/C=m/ln, where A, B, and C are functions of time t, while m and n are constants. To obtain the deterministic model, we also assume the relations P= p-3ηH, p =γρ, η = ηoρs, where p is the isotropic pressure, η the bulk viscosity, 0 ≤γ≤1, H the Hubble constant, ηo and s are constants. Various physical aspects of the model are discussed. The case of n = 1 is also discussed to compare the results with the actual universe.
Models for the Brane-Bulk Interaction: Toward Understanding Braneworld Cosmological Perturbation
Binétruy, Pierre; Carvalho, Carla
2004-01-01
Using some simple toy models, we explore the nature of the brane-bulk interaction for cosmological models with a large extra dimension. We are in particular interested in understanding the role of the bulk gravitons, which from the point of view of an observer on the brane will appear to generate dissipation and nonlocality, effects which cannot be incorporated into an effective (3+1)-dimensional Lagrangian field theoretic description. We explicitly work out the dynamics of several discrete systems consisting of a finite number of degrees of freedom on the boundary coupled to a (1+1)-dimensional field theory subject to a variety of wave equations. Systems both with and without time translation invariance are considered and moving boundaries are discussed as well. The models considered contain all the qualitative feature of quantized linearized cosmological perturbations for a Randall-Sundrum universe having an arbitrary expansion history, with the sole exception of gravitational gauge invariance, which will b...
An Emergent Universe with Dark Sector Fields in a Chiral Cosmological Model
Beesham, A; Maharaj, S D; Kubasov, A S
2013-01-01
We consider the emergent universe scenario supported by a chiral cosmological model with two interacting dark sector fields: phantom and canonical. We investigate the general properties of the evolution of the kinetic and potential energies as well as the development of the equation of state with time. We present three models based on asymptotic solutions and investigate the phantom part of the potential and chiral metric components. The exact solution corresponding to a global emergent universe scenario, starting from the infinite past and evolving to the infinite future, has been obtained for the first time for a chiral cosmological model. The behavior of the chiral metric components responsible for the kinetic interaction between the phantom and canonical scalar fields has been analyzed as well.
A novel renormalizable representation of the Yang-Mills theory
Dubin, A Yu
2007-01-01
For a generic gauge-invariant correlator _{A}, we reformulate the standard D=4 Yang-Mills theory as a renormalizable system of two interacting fields a_{\\mu} and B_{\\mu} which faithfully represent high- and low-energy degrees of freedom of the single gauge field A_{\\mu} in the original formulation. It opens a possibility to synthesize an infrared-nonsingular weak-coupling series, employed to integrate over a_{\\mu} for a given background B_{\\mu}, with qualitatively different methods. These methods are to be applied to evaluate the resulting (after the a_{\\mu}-integration) representation of _{A} in terms of gauge-invariant generically non-local low-energy observables, like Wilson loops. The latter observables are averaged over B_{\\mu} with respect to a gauge-invariant Wilsonean effective action S_{eff}[B]. To avoid a destructive dissipation between the high- and low-energy excitations, we implement a specific fine-tuning of the interaction between the pair of the fields: prior to the integration over B_{\\mu}, t...
Causality, renormalizability and ultra-high energy gravitational scattering
Hollowood, Timothy J.; Shore, Graham M.
2016-05-01
The amplitude { A }(s,t) for ultra-high energy scattering can be found in the leading eikonal approximation by considering propagation in an Aichelburg-Sexl gravitational shockwave background. Loop corrections in the QFT describing the scattered particles are encoded for energies below the Planck scale in an effective action which in general exhibits causality violation and Shapiro time advances. In this paper, we use Penrose limit techniques to calculate the full energy dependence of the scattering phase shift {{{\\Theta }}}{{scat}}(\\hat{s}), where the single variable \\hat{s}={Gs}/{m}2{b}d-2 contains both the CM energy s and impact parameter b, for a range of scalar QFTs in d dimensions with different renormalizability properties. We evaluate the high-energy limit of {{{\\Theta }}}{{scat}}(\\hat{s}) and show in detail how causality is related to the existence of a well-defined UV completion. Similarities with graviton scattering and the corresponding resolution of causality violation in the effective action by string theory are briefly discussed.
Causality, Renormalizability and Ultra-High Energy Gravitational Scattering
Hollowood, Timothy J
2016-01-01
The amplitude A(s,t) for ultra-high energy scattering can be found in the leading eikonal approximation by considering propagation in an Aichelburg-Sexl gravitational shockwave background. Loop corrections in the QFT describing the scattered particles are encoded for energies below the Planck scale in an effective action which in general exhibits causality violation and Shapiro time advances. In this paper, we use Penrose limit techniques to calculate the full energy dependence of the scattering phase shift Theta_scat(hat_s},, where the single variable hat_s = Gs/m^2 b^(d-2) contains both the CM energy s and impact parameter b, for a range of scalar QFTs in d dimensions with different renormalizability properties. We evaluate the high-energy limit of Theta_scat(hat_s) and show in detail how causality is related to the existence of a well-defined UV completion. Similarities with graviton scattering and the corresponding resolution of causality violation in the effective action by string theory are briefly disc...
Indian Academy of Sciences (India)
Chandel S; Ram Shri
2016-03-01
The paper deals with the study of particle creation and bulk viscosity in the evolution of spatially homogeneous and anisotropic Bianchi type-V cosmological models in the framework of Saez–Ballester theory of gravitation. Particle creation and bulk viscosity are considered as separate irreversible processes. The energy–momentum tensor is modified to accommodate the viscous pressure and creation pressure which is associated with the creation of matter out of gravitational field. A special law of variation of Hubble parameter is applied to obtain exact solutions of field equations in two types of cosmologies, one with power-law expansion and the other with exponential expansion. Cosmological model with power-law expansion has a Big-Bang singularity at time $t = 0$, whereas the model with exponential expansion has no finite singularity. We study bulk viscosity and particle creation in each model in four different cases. The bulk viscosity coefficient is obtained for full causal, Eckart’s and truncated theories. All physical parameters are calculated and thoroughly discussed in both models.
Peel, Austin; Troxel, M A
2012-01-01
We use the Szekeres inhomogeneous cosmological models to study the growth of large-scale structure in the universe including nonzero spatial curvature and a cosmological constant. In particular, we use the Goode and Wainwright formulation, as in this form the models can be considered to represent exact nonlinear perturbations of an averaged background. We identify a density contrast in both classes I and II of the models, for which we derive growth evolution equations. By including Lambda, the time evolution of the density contrast as well as kinematic quantities can be tracked through the matter- and Lambda-dominated cosmic eras up to the present and into the future. In various models of class I and class II, the growth rate is found to be stronger than that of the LCDM cosmology, and it is suppressed at later times due to the presence of Lambda. We find that there are Szekeres models able to provide a growth history similar to that of LCDM while requiring less matter content and nonzero curvature, which spe...
A closer look at the cosmological implications of the $\\Lambda$HDE model
Wang, Shuang; Zhou, Lanjun; Li, Miao
2016-01-01
In a previous paper, we proposed a heterotic dark energy model, called $\\Lambda$HDE, in which dark energy is composed of two components: cosmological constant (CC) and holographic dark energy (HDE). The aim of present work is to give a more comprehensive and systematic investigation on the cosmological implications of the $\\Lambda$HDE model. Firstly, we make use of the current observations to constrain the $\\Lambda$HDE model, and compare its cosmology-fit results with the results of the $\\Lambda$CDM and the HDE model. Then, by combining a qualitative theoretical analysis with a quantitative numerical study, we discuss the impact of considering curvature on the cosmic evolutions of fractional HDE density $\\Omega_{hde}$ and fractional CC density $\\Omega_{\\Lambda}$, as well as on the ultimate cosmic fate. Finally, we explore the effects of adopting different types of observational data. We find that: (1) the current observational data cannot distinguish the $\\Lambda$HDE model from the $\\Lambda$CDM and the HDE mo...
Cosmological dynamics of magnetic Bianchi I in viable f(R) models of gravity
Liu, Xuyang; Channuie, Phongpichit; Samart, Daris
2017-09-01
Standard dynamical system analysis of Einstein-Maxwell equation in f(R) theories is considered in this work. We investigate cosmological dynamics of a uniform magnetic field in the Orthogonal Spatially Homogeneous (OSH) Bianchi I universe with viable f(R) models of gravity. In this work, the f(R) = R - αRn and f(R) =(Rb - Λ) c models are examined by using our dynamical system analysis. Our results show that both of two f(R) models have a viable cosmological consequence identical to the analysis present in Amendola and Tsujikawa (2008) for the FLRW background. Contrary to Amendola and Tsujikawa (2008), we discover in our models that there is an additional anisotropic and non-zero cosmological magnetic fields fixed point emerging before the present of the standard matter epoch. This means that the universe has initially isotropic stage with the intermediated epoch as the anisotropic background and it ends up with the isotropic late-time acceleration. The primordial magnetic fields play a crucial role of the shear evolutions obtained from these two models which have the same scaling of the cosmic time as σ ∼t-1/3, instead of σ ∼t-1 for the absence of the primordial magnetic cases.
Mead, Alexander; Heymans, Catherine; Joudaki, Shahab; Heavens, Alan
2015-01-01
We present an optimised variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically-motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of $\\Lambda$CDM and $w$CDM models the halo-model power is accurate to $\\simeq 5$ per cent for $k\\leq 10h\\,\\mathrm{Mpc}^{-1}$ and $z\\leq 2$. We compare our results with recent revisions of the popular HALOFIT model and show that our predictions are more accurate. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limi...
Plionis, M.
2004-07-01
The recent scientific efforts in Astrophysics & Cosmology have brought a revolution to our understanding of the Cosmos. Amazing results is the outcome of amazing experiments! The huge scientific, technological & financial effort that has gone into building the 10-m class telescopes as well as many space and balloon observatories, essential to observe the multitude of cosmic phenomena in their manifestations at different wavelengths, from gamma-rays to the millimetre and the radio, has given and is still giving its fruits of knowledge. These recent scientific achievements in Observational and Theoretical Cosmology were presented in the "Multiwavelength Cosmology" conference that took place on beautiful Mykonos island in the Aegean between 17 and 20 June 2003. More than 180 Cosmologists from all over the world gathered for a four-day intense meeting in which recent results from large ground based surveys (AAT/2-df, SLOAN) and space missions (WMAP, Chandra, XMM, ISO, HST) were presented and debated, providing a huge impetus to our knowledge of the Cosmos. The future of the subject (experiments, and directions of research) was also discussed. The conference was devoted mostly on the constraints on Cosmological models and galaxy formation theories that arise from the study of the high redshift Universe, from clusters of galaxies, and their evolution, from the cosmic microwave background, the large-scale structure and star-formation history. Link: http://www.wkap.nl/prod/b/1-4020-1971-8
Marsh, David J E
2015-01-01
Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also extraordinarily well-motivated within high energy physics, and so axion cosmology offers us a unique view onto these theories. I present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via the CMB and structure formation up to the present-day Universe. I briefly review the motivation and models for axions in particle physics and string theory. The primary focus is on the population of ultralight axions created via vacuum realignment, and its role as a dark matter (DM) candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute l...
Tipler, Frank J.
1996-10-01
It is generally believed that it is not possible to rigorously analyze a homogeneous and isotropic cosmological model in Newtonian mechanics. I show on the contrary that if Newtonian gravity theory is rewritten in geometrical language in the manner outlined in 1923-1924 by Élie Cartan [Ann. Ecole Norm. Sup. 40, 325-412 (1923); 41, 1-25 (1924)], then Newtonian cosmology is as rigorous as Friedmann cosmology. In particular, I show that the equation of geodesic deviation in Newtonian cosmology is exactly the same as equation of geodesic deviation in the Friedmann universe, and that this equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: Ever-expanding and recollapsing universes are allowed in any noncompact homogeneous and isotropic spatial topology. I shall give a brief history of attempts to do cosmology in the framework of Newtonian mechanics.
Off The Beaten Path: Modeling the Dynamics of Supermassive Black Holes in Cosmological Simulations
Tremmel, Michael J.; Governato, Fabio; Volonteri, Marta; Quinn, Thomas R.
2015-01-01
Cosmological simulations are an essential tool to understand the co-evolution of supermassive black holes (SMBHs) and their host galaxies. However, the limited resolution of these simulations presents unique challenges to successfully modeling black hole dynamics. We present a novel, physically motivated method for improving the dynamics of black holes in cosmological simulations, by accounting for the unresolved dynamical friction that SMBHs feel from stars and dark matter. We show how this approach, which naturally scales with resolution, is a major step forward compared to more commonly used 'advection' models that often assume SMBHs sink very rapidly toward the center of their host galaxies. Here, we demonstrate that our method is able to prevent numerical heating of SMBHs while allowing for realistic dynamics.Our implementation will allow us to more realistically model SMBH dynamics, accretion, and mergers in cosmological simulations, giving us the ability to better understand how SMBHs grow with their host galaxies. This also provides an opportunity for more detailed studies of SMBHs in dwarf galaxies, which can give crucial insight into constraining black hole seed formation models.
Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations
Gaite, Jose
2013-01-01
Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos, it is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.
Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations
Directory of Open Access Journals (Sweden)
José Gaite
2013-05-01
Full Text Available Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.
Future evolution in a backreaction model and the analogous scalar field cosmology
Ali, Amna
2016-01-01
We investigate the future evolution of the universe using the Buchert framework for averaged backreaction in the context of a two-domain partition of the universe. We show that this approach allows for the possibility of the global acceleration vanishing at a finite future time, provided that none of the subdomains accelerate individually. The model at large scales is analogously described in terms of a homogeneous scalar field emerging with a potential that is fixed and free from phenomenological parametrization. The dynamics of this scalar field is explored in the analogous FLRW cosmology. We use observational data from Type Ia Supernovae, Baryon Acoustic Oscillations, and Cosmic Microwave Background to constrain the parameters of the model for a viable cosmology, providing the corresponding likelihood contours.
Institute of Scientific and Technical Information of China (English)
LI Jie-Chao; XU Li-Xin; L(U) Jian-Bo; CHANG Sao-Rong; LIU Hong-Ya
2008-01-01
We study the constraint on deceleration parameter q from the recent SNeIa Gold dataset and observational Hubble data by using a model-independent deceleration parameter q(z)=1/2-a/(1+z)b under the five-dimensional bounce cosmological model.For the cases of SNeIa Gold dataset,Hubble data,and their combination,the present results cosmological.For the cases of SNeIa Cold dataset,and their combintion,the present results show that the constraints on transition redshift zT are 0.35+0.14-0.07,0.68+1.47-0.58,and 0.55+0.18-0.09 with lo errors,respectively.
On the Dynamics of the Massless Spin-1 Particles in the Rotating Cosmological Models
Salti, M; Havare, A; Korunur, M; Salti, Mustafa; Aydogdu, Oktay; Havare, Ali; Korunur, Murat
2005-01-01
In the present article, we have considered massless Duffin-Kemmer-Petiau equation for the general rotating space-times, and obtain its second order form in this cosmological model. Considering this second order differential equation for some well-known cosmological model which are included by the our general line-element, we obtain exact solution of the massless Duffin-Kemmer-Petiau equation. On the other hand, by using spinor form of the Maxwell equations the propagation problem is reduced to the solution of the second order differential equation of complex combination of the electric and magnetic fields. For these two different approach we obtain the spinors in terms of field strength tensor.
Interacting dark energy models in Cosmology and large-scale structure observational tests
Marcondes, Rafael J F
2016-01-01
Modern Cosmology offers us a great understanding of the universe with striking precision, made possible by the modern technologies of the newest generations of telescopes. The standard cosmological model, however, is not absent of theoretical problems and open questions. One possibility that has been put forward is the existence of a coupling between dark sectors. The idea of an interaction between the dark components could help physicists understand why we live in an epoch of the universe where dark matter and dark energy are comparable in terms of energy density, which can be regarded as a coincidence given that their time evolutions are completely different. We introduce the interaction phenomenologically and proceed to test models of interaction with observations of redshift-space distortions. In a flat universe composed only of those two fluids, we consider separately two forms of interaction, through terms proportional to the densities of both dark energy and dark matter. An analytic expression for the ...
Testing anthropic reasoning for the cosmological constant with a realistic galaxy formation model
Sudoh, Takahiro; Totani, Tomonori; Makiya, Ryu; Nagashima, Masahiro
2017-01-01
The anthropic principle is one of the possible explanations for the cosmological constant (Λ) problem. In previous studies, a dark halo mass threshold comparable with our Galaxy must be assumed in galaxy formation to get a reasonably large probability of finding the observed small value, P(running the model code for a wide range of Λ, while other cosmological parameters and model parameters for baryonic processes of galaxy formation are kept constant. Assuming that the prior probability distribution is flat per unit Λ, and that the number of observers is proportional to stellar mass, we find P(extremely small, we conclude that the anthropic argument is a viable explanation, if the value of Λ observed in our Universe is determined by a probability distribution.
(Non?)-Equivalence of Einstein and Jordan frames in quantized cosmological models
Pandey, Sachin; Banerjee, Narayan
2016-01-01
The present work sheds light on the nature of mathematical equivalence of Jordan frame and its conformally transformed version, the Einstein frame, as far as Brans-Dicke theory is concerned. It is shown that question of equivalence surviving a quantization of cosmological models in the theory is intricately related to whether the canonical structure breaks down while going from one frame to the other. It is found that that the consistent operator ordering to make two frames equivalent requires a non-canonical transformation that mixes gravity sector with scalar sector to undo the non minimal coupling, present in Jordan frame. The question of equivalence thus depends on the details of quantization prescriptions, i.e. whether we are allowed to make any such non-canonical transformation at classical level before quantizing the theory. We work with the Wheeler-deWitt quantization scheme and take up quite a few anisotropic cosmological models as examples.
Inhomogeneous Big Bang Cosmology
Wagh, S M
2002-01-01
In this letter, we outline an inhomogeneous model of the Big Bang cosmology. For the inhomogeneous spacetime used here, the universe originates in the infinite past as the one dominated by vacuum energy and ends in the infinite future as the one consisting of "hot and relativistic" matter. The spatial distribution of matter in the considered inhomogeneous spacetime is {\\em arbitrary}. Hence, observed structures can arise in this cosmology from suitable "initial" density contrast. Different problems of the standard model of Big Bang cosmology are also resolved in the present inhomogeneous model. This inhomogeneous model of the Big Bang Cosmology predicts "hot death" for the universe.
Self-tuning Solution of Cosmological Constant in RS-II Model and Goldstone Boson
Kim, J E
2001-01-01
I give a review on the self-tuning solution of the cosmological constant in a 5D RS-II model using a three index antisymmetric tensor field $A_{MNP}$. The three index antisymmetric tensor field can be the fundamental one appearing in 11D supergravity. Also, the dual of its field strength $H_{MNPQ}$, being a massless scalar, may be interpreted as a Goldstone boson of some spontaneously broken global symmetry.
On the Tensor Field Inflation in the GR Homogeneous Cosmological Model
Kazarian, Poghos F.
2000-01-01
The homogeneous cosmological model in GR is proposed, where the vacuum energy, which can cause the inflation, is described by tensor field rather than by commonly used in inflationary scenarios scalar field. It is shown that if the initial values of the field are sufficiently big (comparable with the Planck units), under the condition of the tensor field's slow change in the beginning the regime of the quasiexponential inflation can exist. Numerical solutions for the inflationary stage are ob...
Anisotropic Dark Energy Bianchi Type III Cosmological Models in Brans Dicke Theory of Gravity
Shamir, M Farasat; 10.1139/P2012-007
2012-01-01
The main purpose of this paper is to explore the solutions of Bianchi type $III$ cosmological model in Brans Dicke theory of gravity in the background of anisotropic dark energy. We use the assumption of constant deceleration parameter and power law relation between scalar field $\\phi$ and scale factor $a$ to find the solutions. The physical behavior of the solutions has been discussed using some physical quantities.
A TEST OF COSMOLOGICAL MODELS USING HIGH-z MEASUREMENTS OF H(z)
Energy Technology Data Exchange (ETDEWEB)
Melia, Fulvio [Department of Physics, The Applied Math Program, and Department of Astronomy, The University of Arizona, AZ 85721 (United States); McClintock, Thomas M., E-mail: fmelia@email.arizona.edu, E-mail: tmcclintock89@gmail.com [Department of Physics, The University of Arizona, AZ 85721 (United States)
2015-10-15
The recently constructed Hubble diagram using a combined sample of SNLS and SDSS-II SNe Ia, and an application of the Alcock–Paczyński (AP) test using model-independent Baryon Acoustic Oscillation (BAO) data, have suggested that the principal constraint underlying the cosmic expansion is the total equation-of-state of the cosmic fluid, rather than that of its dark energy. These studies have focused on the critical redshift range (0 ≲ z ≲ 2) within which the transition from decelerated to accelerated expansion is thought to have occurred, and they suggest that the cosmic fluid has zero active mass, consistent with a constant expansion rate. The evident impact of this conclusion on cosmological theory calls for an independent confirmation. In this paper, we carry out this crucial one-on-one comparison between the R{sub h} = ct universe (a Friedmann–Robertson–Walker cosmology with zero active mass) and wCDM/ΛCDM, using the latest high-z measurements of H(z). Whereas the SNe Ia yield the integrated luminosity distance, while the AP diagnostic tests the geometry of the universe, the Hubble parameter directly samples the expansion rate itself. We find that the model-independent cosmic chronometer data prefer R{sub h} = ct over wCDM/ΛCDM with a Bayes Information Criterion likelihood of ∼95% versus only ∼5%, in strong support of the earlier SNe Ia and AP results. This contrasts with a recent analysis of H(z) data based solely on BAO measurements which, however, strongly depend on the assumed cosmology. We discuss why the latter approach is inappropriate for model comparisons, and emphasize again the need for truly model-independent observations to be used in cosmological tests.
On the existence of anisotropic cosmological models in higher order theories of gravity
Middleton, Jonathan
2010-01-01
Abstract We investigate the behaviour on approach to the initial singularity in higher-order extensions of general relativity by finding exact cosmological solutions for a wide class of models in which the Lagrangian is allowed to depend nonlinearly upon the three possible linear and quadratic scalars built from the Riemann tensor ; R, R ab R ab and R abcd R abcd. We present new anisotropic vacuum solutions analagous to the Kasner solutions of general relativity and extend previous results...
Cosmological models with interacting components and mass-varying neutrinos
Collodel, Lucas G
2012-01-01
A model for a homogeneous and isotropic spatially flat Universe, composed of baryons, radiation, neutrinos, dark matter and dark energy is analyzed. We infer that dark energy (considered to behave as a scalar field) interacts with dark matter (either by the Wetterich model, or by the Anderson and Carroll model) and with neutrinos by a model proposed by Brookfield et al.. The latter is understood to have a mass-varying behavior. We show that for a very-softly varying field, both interacting models for dark matter give the same results. The models reproduce the expected red-shift performances of the present behavior of the Universe.
Burbidge, Geoffrey
2008-01-01
This meeting is entitled "A Century of Cosmology." But most of the papers being given here are based on work done very recently and there is really no attempt being made to critically review what has taken place in the last 90 or 100 years. Instead, in general the participants accept without question that cosmology equates to "hot big bang cosmology" with all of its bells and whistles. All of the theory and the results obtained from observations are interpreted on the assumption that this extremely popular model is the correct one, and observers feel that they have to interpret its results in terms of what this theory allows. No one is attempting to seriously test the model with a view to accepting it or ruling it out. They are aware, as are the theorists, that there are enough free parameters available to fix up almost any model of the type. The current scheme given in detail for example by Spergel et al (206, 2007) demonstrates this. How we got to this stage is never discussed, and little or no attention is...
Exact string theory model of closed timelike curves and cosmological singularities
Johnson, Clifford V.; Svendsen, Harald G.
2004-12-01
We study an exact model of string theory propagating in a space-time containing regions with closed timelike curves (CTCs) separated from a finite cosmological region bounded by a big bang and a big crunch. The model is an nontrivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of α' corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by timelike curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in general relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-big bang cosmological scenarios.
Non-linear structure formation in the "Running FLRW" cosmological model
Bibiano, Antonio
2016-01-01
We present a suite of cosmological N-body simulations describing the "Running Friedmann-Lema{\\"i}tre-Robertson-Walker" (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends {\\Lambda}CDM with a time-evolving vacuum density, {\\Lambda}(z), and time-evolving gravitational Newton's coupling, G(z). In this paper we review the model and introduce the necessary analytical treatment needed to adapt a reference N-body code. Our resulting simulations represent the first realisation of the full growth history of structure in the R-FLRW cosmology into the non-linear regime, and our normalisation choice makes them fully consistent with the latest cosmic microwave background data. The post-processing data products also allow, for the first time, an analysis of the properties of the halo and sub-halo populations. We explore the degeneracies of many statistical observables and discuss the steps needed to break them. Furthermore, we provide a quantitative description of the...
LRS Bianchi Type II Massive String Cosmological Models with Magnetic Field in Lyra's Geometry
Directory of Open Access Journals (Sweden)
Raj Bali
2013-01-01
Full Text Available Bianchi type II massive string cosmological models with magnetic field and time dependent gauge function ( in the frame work of Lyra's geometry are investigated. The magnetic field is in -plane. To get the deterministic solution, we have assumed that the shear ( is proportional to the expansion (. This leads to , where and are metric potentials and is a constant. We find that the models start with a big bang at initial singularity and expansion decreases due to lapse of time. The anisotropy is maintained throughout but the model isotropizes when . The physical and geometrical aspects of the model in the presence and absence of magnetic field are also discussed.
Perfect fluid Bianchi Type-I cosmological models with time varying and
Indian Academy of Sciences (India)
J P Singh; R K Tiwari
2008-04-01
Bianchi Type-I cosmological models containing perfect fluid with time varying and have been presented. The solutions obtained represent an expansion scalar bearing a constant ratio to the anisotropy in the direction of space-like unit vector . Of the two models obtained, one has negative vacuum energy density, which decays numerically. In this model, we obtain ∼ 2, ∼ 44/ and ∼ -2 ( is the cosmic time) which is in accordance with the main dynamical laws for the decay of . The second model reduces to a static solution with repulsive gravity.
Rama, S Kalyana
2016-01-01
The dynamics of a (3 + 1) dimensional homogeneous anisotropic universe is modified by Loop Quantum Cosmology and, consequently, it has generically a big bounce in the past instead of a big-bang singularity. This modified dynamics can be well described by effective equations of motion. We generalise these effective equations of motion empirically to (d + 1) dimensions. The generalised equations involve two functions and may be considered as a class of LQC -- inspired models for (d + 1) dimensional early universe cosmology. As a special case, one can now obtain a universe which has neither a big bang singularity nor a big bounce but approaches asymptotically a `Hagedorn like' phase in the past where its density and volume remain constant. In a few special cases, we also obtain explicit solutions.
Rama, S. Kalyana
2016-12-01
The dynamics of a (3 + 1) dimensional homogeneous anisotropic universe is modified by loop quantum cosmology and, consequently, it has generically a big bounce in the past instead of a big-bang singularity. This modified dynamics can be well described by effective equations of motion. We generalise these effective equations of motion empirically to (d + 1) dimensions. The generalised equations involve two functions and may be considered as a class of LQC-inspired models for (d + 1) dimensional early universe cosmology. As a special case, one can now obtain a universe which has neither a big bang singularity nor a big bounce but approaches asymptotically a `Hagedorn like' phase in the past where its density and volume remain constant. In a few special cases, we also obtain explicit solutions.
Zentner, A R
2003-01-01
Improvements in observational techniques have transformed cosmology into a field inundated with ever-expanding, high-quality data sets and driven cosmology toward a standard model where the classic cosmological parameters are accurately measured. I briefly discuss some of the methods used to determine cosmological parameters, particularly primordial nucleosynthesis, the magnitude- redshift relation of supernovae, and cosmic microwave background anisotropy. I demonstrate how cosmological data can be used to complement particle physics and constrain extensions to the Standard Model. Specifically, I present bounds on light particle species and the properties of unstable, weakly-interacting, massive particles. Despite the myriad successes of the emerging standard cosmological model, unanswered questions linger. Numerical simulations of structure formation predict galactic central densities that are considerably higher than observed. They also reveal hundreds of satellites orbiting Milky Way-like galaxies while th...
Bothun, Greg
2011-10-01
Ever since Aristotle placed us, with certainty, in the Center of the Cosmos, Cosmological models have more or less operated from a position of known truths for some time. As early as 1963, for instance, it was ``known'' that the Universe had to be 15-17 billion years old due to the suspected ages of globular clusters. For many years, attempts to determine the expansion age of the Universe (the inverse of the Hubble constant) were done against this preconceived and biased notion. Not surprisingly when more precise observations indicated a Hubble expansion age of 11-13 billion years, stellar models suddenly changed to produce a new age for globular cluster stars, consistent with 11-13 billion years. Then in 1980, to solve a variety of standard big bang problems, inflation was introduced in a fairly ad hoc manner. Inflation makes the simple prediction that the net curvature of spacetime is zero (i.e. spacetime is flat). The consequence of introducing inflation is now the necessary existence of a dark matter dominated Universe since the known baryonic material could comprise no more than 1% of the necessary energy density to make spacetime flat. As a result of this new cosmological ``truth'' a significant world wide effort was launched to detect the dark matter (which obviously also has particle physics implications). To date, no such cosmological component has been detected. Moreover, all available dynamical inferences of the mass density of the Universe showed in to be about 20% of that required for closure. This again was inconsistent with the truth that the real density of the Universe was the closure density (e.g. Omega = 1), that the observations were biased, and that 99% of the mass density had to be in the form of dark matter. That is, we know the universe is two component -- baryons and dark matter. Another prevailing cosmological truth during this time was that all the baryonic matter was known to be in galaxies that populated our galaxy catalogs. Subsequent
Cosmological Constraints on the Modified Entropic Force Model
Wei, Hao
2010-01-01
Very recently, Verlinde considered a theory in which space is emergent through a holographic scenario, and proposed that gravity can be explained as an entropic force caused by changes in the information associated with the positions of material bodies. Then, motivated by the Debye model in thermodynamics which is very successful in very low temperatures, Gao modified the entropic force scenario. The modified entropic force (MEF) model is in fact a modified gravity model, and the universe can...
A note on a mimetic scalar-tensor cosmological model
Energy Technology Data Exchange (ETDEWEB)
Rabochaya, Yevgeniya; Zerbini, Sergio [Universita di Trento, Dipartimento di Fisica, Povo, Trento (Italy); TIFPA-INFN, Povo, Trento (Italy)
2016-02-15
A specific Hordenski scalar-gravity mimetic model is investigated within a FLWR space-time. The mimetic scalar field is implemented via a Lagrangian multiplier, and it is shown that the model has equations of motion formally similar to the original simpler mimetic matter model of Chamseddine-Mukhanov-Vikman. Several exact solutions describing inflation, bounces, and future-time singularities are presented and discussed. (orig.)
Global stability analysis for cosmological models with non-minimally coupled scalar fields
Skugoreva, Maria A; Vernov, Sergey Yu
2014-01-01
We explorer dynamics of cosmological models with a non-minimally coupled scalar field evolving on a spatially flat Friedmann-Lemaitre-Robertson-Walker background. We consider cosmological models including the Hilbert-Einstein curvature term and the $N$ degree monomial of the scalar field non-minimally coupled to gravity. The potential of the scalar field is the $n$ degree monomial or polynomial.We describe several qualitatively different types of dynamics depending on values of power indices $N$ and $n$. We identify that three main possible pictures correspond to $n2N$ cases. Some special features connected with the important cases of $N=n$ (including quadratic potential with quadratic coupling) and $n=2N$ (which share its asymptotics with the potential of the Higgs-driven inflation) are described separately. A global qualitative analysis allows us to cover most interesting cases of small $N$ and $n$ by a limiting number of phase-space diagrams. The influence of the cosmological constant to the global feature...
Models of quintessence coupled to the electromagnetic field and the cosmological evolution of alpha
Copeland, E. J.; Nunes, N. J.; Pospelov, M.
2004-01-01
We study the change of the effective fine structure constant in the cosmological models of a scalar field with a nonvanishing coupling to the electromagnetic field. Combining cosmological data and terrestrial observations we place empirical constraints on the size of the possible coupling and explore a large class of models that exhibit tracking behavior. The change of the fine structure constant implied by the quasar absorption spectra together with the requirement of tracking behavior impose a lower bound of the size of this coupling. Furthermore, the transition to the quintessence regime implies a narrow window for this coupling around 10-5 in units of the inverse Planck mass. We also propose a nonminimal coupling between electromagnetism and quintessence which has the effect of leading only to changes of alpha determined from atomic physics phenomena, but leaving no observable consequences through nuclear physics effects. In doing so we are able to reconcile the claimed cosmological evidence for a changing fine structure constant with the tight constraints emerging from the Oklo natural nuclear reactor.
Brihaye, Yves; Hartmann, Betti
2005-01-01
We construct solutions of an Einstein Yang Mills system including a cosmological constant in 4 + n spacetime dimensions, where the n-dimensional manifold associated with the extra dimensions is taken to be Ricci flat. Assuming the matter and metric fields to be independent of the n extra coordinates, a spherical symmetric ansatz for the fields leads to a set of coupled ordinary differential equations. We find that for n > 1 only solutions with either one non-zero Higgs field or with all Higgs fields constant and zero gauge field function (corresponding to a Wu Yang-type ansatz) exist. We give the analytic solutions available in this model. These are 'embedded' Abelian solutions with a diverging size of the manifold associated with the extra n dimensions. Depending on the choice of parameters, these latter solutions either represent naked singularities or they possess a single horizon. We also present solutions of the effective four-dimensional Einstein Yang Mills Higgs-dilaton model, where the higher-dimensional cosmological constant induces a Liouville-type potential. The solutions are non-Abelian solutions with diverging Higgs fields, which exist only up to a maximal value of the cosmological constant.
KiDS-450: Testing extensions to the standard cosmological model
Joudaki, Shahab; Blake, Chris; Choi, Ami; de Jong, Jelte; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Hoekstra, Henk; Joachimi, Benjamin; Klaes, Dominik; Köhlinger, Fabian; Kuijken, Konrad; McFarland, John; Miller, Lance; Schneider, Peter; Viola, Massimo
2016-01-01
We test extensions to the standard cosmological model with weak gravitational lensing tomography using 450 deg$^2$ of imaging data from the Kilo Degree Survey (KiDS). In these extended cosmologies, which include massive neutrinos, nonzero curvature, evolving dark energy, modified gravity, and running of the scalar spectral index, we also examine the discordance between KiDS and cosmic microwave background measurements from Planck. The discordance between the two datasets is largely unaffected by a more conservative treatment of the lensing systematics and the removal of angular scales most sensitive to nonlinear physics. The only extended cosmology that simultaneously alleviates the discordance with Planck and is at least moderately favored by the data includes evolving dark energy with a time-dependent equation of state (in the form of the $w_0-w_a$ parameterization). In this model, the respective $S_8 = \\sigma_8 \\sqrt{\\Omega_{\\rm m}/0.3}$ constraints agree at the $1\\sigma$ level, and there is `substantial c...
Free-streaming radiation in cosmological models with spatial curvature
Wilson, M. L.
1982-01-01
The effects of spatial curvature on radiation anisotropy are examined for the standard Friedmann-Robertson-Walker model universes. The effect of curvature is found to be very important when considering fluctuations with wavelengths comparable to the horizon. It is concluded that the behavior of radiation fluctuations in models with spatial curvature is quite different from that in spatially flat models, and that models with negative curvature are most strikingly different. It is therefore necessary to take the curvature into account in careful studies of the anisotropy of the microwave background.
A New Viable f(R) Model in the Light of Local Gravity Test and Late-time Cosmology
Nautiyal, Akhilesh; Patel, Avani
2016-01-01
We propose a new model of f (R) gravity containing Arctan function in the lagrangian. We show here that this model satisfies fifth force constraint unlike a similar model [1]. In addition to this, we carry out the fixed point analysis as well as comment on the existence of curvature singularity in this model. The cosmological evolution for this f (R) gravity model is also analyzed in the Friedmann Robertson Walker background. To understand observational significance of the model, cosmological parameters are obtained numerically and compared with those of Lambda cold dark matter ({\\Lambda}CDM) model. We also scrutinize the model with supernova data.
Cosmological implications of Geometrothermodynamics
Luongo, Orlando
2013-01-01
We use the formalism of Geometrothermodynamics to derive a series of fundamental equations for thermodynamic systems. It is shown that all these fundamental equations can be used in the context of relativistic cosmology to derive diverse scenarios which include the standard cosmological model, a unified model for dark energy and dark matter, and an effective inflationary model.
Cosmological Implications of Geometrothermodynamics
Luongo, O.; Quevedo, H.
2015-01-01
We use the formalism of Geometrothermodynamics to derive a series of fundamental equations for thermodynamic systems. It is shown that all these fundamental equations can be used in the context of relativistic cosmology to derive diverse scenarios which include the standard cosmological model, a unified model for dark energy and dark matter, and an effective inflationary model.
Cosmological Reflection of Particle Symmetry
Maxim Khlopov
2016-01-01
The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetr...
A Non - Singular Cosmological Model with Shear and Rotation
Goswami, G K; 10.1134/S0202289311040062
2011-01-01
We have investigated a non-static and rotating model of the universe with an imperfect fluid distribution. It is found that the model is free from singularity and represents an ever expanding universe with shear and rotation vanishing for large value of time.
Brax, Philippe
2016-01-01
We investigate scalar-tensor theories where matter couples to the scalar field via a kinetically dependent conformal coupling. These models can be seen as the low-energy description of invariant field theories under a global Abelian symmetry. The scalar field is then identified with the Goldstone mode of the broken symmetry. It turns out that the properties of these models are very similar to the ones of ultralocal theories where the scalar-field value is directly determined by the local matter density. This leads to a complete screening of the fifth force in the Solar System and between compact objects, through the ultralocal screening mechanism. On the other hand, the fifth force can have large effects in extended structures with large-scale density gradients, such as galactic halos. Interestingly, it can either amplify or damp Newtonian gravity, depending on the model parameters. We also study the background cosmology and the linear cosmological perturbations. The background cosmology is hardly different f...
Cosmological model of interacting phantom and Yang–Mills ﬁelds
Indian Academy of Sciences (India)
V K Shchigolev
2012-05-01
In this paper, we consider a model of interacting phantom and Yang–Mills (YM) ﬁelds by assuming dilaton-type coupling. Using the speciﬁc solution for YM equation previously found by the author, we obtain simple exact solutions for the accelerated expansion of the Friedmann–Robertson–Walker (FRW) cosmological model. Besides, we derive induced potentials of phantom ﬁeld corresponding to some given regimes of expansion. The effective equations of state (EoS) have been reconstructed for all types of models considered here.
Spatially Homogeneous Bianchi Type V Cosmological Model in the Scale-Covariant Theory of Gravitation
Institute of Scientific and Technical Information of China (English)
Shri Ram; M.K.Verma; Mohd.Zeyauddin
2009-01-01
We discuss spatially homogeneous and anisotropic Bianchi type-V spacetime filled with a perfect fluid in the framework of the scaie-covariant theory of gravitation proposed by Canuto et al.By applying the law of variation for Hubble's parameter,exact solutions of the field equations are obtained,which correspond to the model of the universe having a big-bang type singularity at the initial time t=0.The cosmological model,evolving from the initial singularity,expands with power-law expansion and gives essentially an empty space for a large time.The physical and dynamical properties of the model are also discussed.
Unified dark matter and dark energy description in a chiral cosmological model
Abbyazov, Renat R
2014-01-01
We show the way of dark matter and dark energy presentation via ansatzs on the kinetic energies of the fields in the two-component chiral cosmological model. To connect a kinetic interaction of dark matter and dark energy with observational data the reconstruction procedure for the chiral metric component $h_{22}$ and the potential of (self)interaction $V$ has been developed. The reconstruction of $h_{22}$ and $V$ for the early and later inflation have been performed. The proposed model is confronted to $\\Lambda CDM$ model as well.
Dehnen, H; Melnikov, V N
2003-01-01
Multidimensional cosmological-type model with n Einstein factor spaces in the theory with l scalar fields and multiple exponential potential is considered. The dynamics of the model near the singularity is reduced to a billiard on the (N-1)-dimensional Lobachevsky space H^{N-1}, N = n+l. It is shown that for n > 1 the oscillating behaviour near the singularity is absent and solutions have an asymptotical Kasner-like behavior. For the case of one scale factor (n =1) billiards with finite volumes (e.g. coinciding with that of the Bianchi-IX model) are described and oscillating behaviour of scalar fields near the singularity is obtained.
Cosmological dynamics of a class of non-minimally coupled models of gravity
Azevedo, R P L
2016-01-01
In this work a new non-minimally coupled model is presented, where a generic function $f(R)$ of the scalar curvature factors the usual Einstein-Hilbert action functional, motivated by relevant results obtained from similar models. Its cosmological dynamics are derived and the possibility of attaining a phase of accelerated expansion is assessed. To further probe the possible implications of the model, a dynamical system formulation is established, and used to assess the scenarios where $f(R)$ assumes a power-law or exponential form.
String cosmological models in the Brans-Dicke theory for five-dimensional space-time
Institute of Scientific and Technical Information of China (English)
Koijam Manihar Singh; Kangujam Priyokumar Singh
2012-01-01
Five-dimensional space-time string cosmological models generated by a cloud of strings with particles attached to them are studied in the Brans-Dicke theory.We obtain two types of interesting models by taking up the cases of geometric strings (or Nambu strings) and p-strings (Takabayasi strings),and study their different physical and dynamical properties.The roles of the scalar field in getting different phases,such as the inflationary phase and the string-dominated phase,are discussed.An interesting feature obtained here is that in one of the models there is a "bounce" at a particular instant of its evolution.
Institute of Scientific and Technical Information of China (English)
BALI Raj; PAREEK Umesh Kumar; PRADHAN Anirudh
2007-01-01
@@ Bianchi type-Ⅰ massive string cosmological model with magnetic field of barotropic perfect fluid distribution through the techniques used by Latelier and Stachel is investigated. To obtain the deterministic model of the universe, it is assumed that the universe is filled with barotropic perfect fluid distribution. The magnetic field is due to electric current produced along the x-axis with infinite electrical condúctivity. The behaviour of the model in the presence and absence of magnetic field together with other physical aspects is further discussed.
Scalar-field cosmological and collapse models with general self-interaction potentials
Energy Technology Data Exchange (ETDEWEB)
Giambo, Roberto; Giannoni, Fabio [Dipartimento di Matematica e Informatica, Universita di Camerino (Italy); Magli, Giulio, E-mail: roberto.giambo@unicam.i, E-mail: fabio.giannoni@unicam.i, E-mail: magli@mate.polimi.i [Dipartimento di Matematica, Politecnico di Milano (Italy)
2009-10-01
We present the results of the investigation of a wide class of self-interacting, self-gravitating homogeneous scalar fields models, characterized by quite general conditions on the scalar field potential, and including both asymptotically polynomial and exponential behaviors. We show that the generic evolution is always divergent in a finite time, and this result is used to construct cosmological models as well as radiating collapsing star models of the Vaidya type - for the latter it turns out that black holes are generically formed.
A new approach to cosmological perturbations in f(R) models
Energy Technology Data Exchange (ETDEWEB)
Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino, E-mail: daniele.bertacca@pd.infn.it, E-mail: nicola.bartolo@pd.infn.it, E-mail: sabino.matarrese@pd.infn.it [Dipartimento di Fisica Galileo Galilei, Università di Padova, via F. Marzolo, 8 I-35131 Padova (Italy)
2012-08-01
We propose an analytic procedure that allows to determine quantitatively the deviation in the behavior of cosmological perturbations between a given f(R) modified gravity model and a ΛCDM reference model. Our method allows to study structure formation in these models from the largest scales, of the order of the Hubble horizon, down to scales deeply inside the Hubble radius, without employing the so-called 'quasi-static' approximation. Although we restrict our analysis here to linear perturbations, our technique is completely general and can be extended to any perturbative order.
Marsh, David J. E.
2016-07-01
Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also well-motivated within high energy physics, appearing in theories related to CP-violation in the standard model, supersymmetric theories, and theories with extra-dimensions, including string theory, and so axion cosmology offers us a unique view onto these theories. I review the motivation and models for axions in particle physics and string theory. I then present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via BBN, the CMB, reionization and structure formation, up to the present-day Universe. Topics covered include: axion dark matter (DM); direct and indirect detection of axions, reviewing existing and future experiments; axions as dark radiation; axions and the cosmological constant problem; decays of heavy axions; axions and stellar astrophysics; black hole superradiance; axions and astrophysical magnetic fields; axion inflation, and axion DM as an indirect probe of inflation. A major focus is on the population of ultralight axions created via vacuum realignment, and its role as a DM candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute lower bound on DM particle mass is established. It is ma > 10-24eV from linear observables, extending to ma ≳ 10-22eV from non-linear observables, and has the potential to reach ma ≳ 10-18eV in the future. These bounds are weaker if the axion is not all of the DM, giving rise to limits on the relic density at low mass. This leads to the exciting possibility that the effects of axion DM on structure formation could one day be detected
A Galaxy-Halo Model for Multiple Cosmological Tracers
Bull, Philip
2016-01-01
The information extracted from large galaxy surveys with the likes of DES, DESI, Euclid, LSST, SKA, and WFIRST will be greatly enhanced if the resultant galaxy catalogues can be cross-correlated with one another. Predicting the nature of the information gain, and developing the tools to realise it, depends on establishing a consistent model of how the galaxies detected by each survey trace the same underlying matter distribution. Existing analytic methods, such as halo occupation distribution (HOD) modelling, are not well-suited for this task, and can suffer from ambiguities and tuning issues when applied to multiple tracers. We construct a simple alternative that provides a common model for the connection between galaxies and dark matter halos across a wide range of wavelengths (and thus tracer populations). This is based on a chain of parametrised statistical distributions that model the connection between (a) halo mass and bulk physical properties of galaxies, such as star-formation rate; and (b) those sam...
Machine Learning and Cosmological Simulations I: Semi-Analytical Models
Kamdar, Harshil M.; Turk, Matthew J.; Brunner, Robert J.
2015-01-01
We present a new exploratory framework to model galaxy formation and evolution in a hierarchical universe by using machine learning (ML). Our motivations are two-fold: (1) presenting a new, promising technique to study galaxy formation, and (2) quantitatively analyzing the extent of the influence of dark matter halo properties on galaxies in the backdrop of semi-analytical models (SAMs). We use the influential Millennium Simulation and the corresponding Munich SAM to train and test various so...
A galaxy-halo model for multiple cosmological tracers
Bull, Philip
2017-10-01
The information extracted from large galaxy surveys with the likes of DES, DESI, Euclid, LSST, SKA, and WFIRST will be greatly enhanced if the resultant galaxy catalogues can be cross-correlated with one another. Predicting the nature of the information gain, and developing the tools to realize it, depends on establishing a consistent model of how the galaxies detected by each survey trace the same underlying matter distribution. Existing analytic methods, such as halo occupation distribution modelling, are not well suited for this task, and can suffer from ambiguities and tuning issues when applied to multiple tracers. In this paper, we take the first step towards constructing an alternative that provides a common model for the connection between galaxies and dark matter haloes across a wide range of wavelengths (and thus tracer populations). This is based on a chain of parametrized statistical distributions that model the connection between (i) halo mass and bulk physical properties of galaxies, such as star formation rate; and (ii) those same physical properties and a variety of emission processes. The result is a flexible parametric model that allows analytic halo model calculations of one-point functions to be carried out for multiple tracers, as well as providing semi realistic galaxy properties for fast mock catalogue generation.
Improvements in the spherical collapse model and dark energy cosmologies
Del Popolo, A.
In the present paper, we study how the effects of deviations from spherical symmetry of a system, produced by angular momentum, and shear stress, influence typical parameters of the spherical collapse model, like the linear density threshold for collapse of the non-relativistic component (δ c) and its virial overdensity (Δ V). The study is performed in the framework of the Einstein-de Sitter and Λ CDM models, and assuming that the vacuum component is not clustering within the homogeneous non-spherical overdensities. We start from the standard spherical top hat model (SCM) which does not take account the non-spherical effects, and we add to this model the shear term and angular momentum term, which are finally expressed in terms of the density contrast, δ . We find that the non-spherical terms change the non-linear evolution of the system and that the collapse stops ``naturally" at the virial radius, differently from the standard spherical collapse model. Moreover, shear and rotation gives rise to higher values of the linear overdensity parameter and different values of Δ V with respect to the standard spherical collapse model.
Ivashchuk, V D
2016-01-01
A (n+1)-dimensional gravitational model with Gauss-Bonnet term and cosmological constant term is considered. When ansatz with diagonal cosmological metrics is adopted, the solutions with exponential dependence of scale factors: a_i \\sim \\exp{ ( v^i t) }, i =1, ..., n, are analysed for n > 3. We study the stability of the solutions with non-static volume factor, i.e. if K(v) = \\sum_{k = 1}^{n} v^k \
Fabris, J C; Rodrigues, D C; Batista, C E M; Daouda, M H
2012-01-01
We review the difficulties of the generalized Chaplygin gas model to fit observational data, due to the tension between background and perturbative tests. We argue that such issues may be circumvented by means of a self-interacting scalar field representation of the model. However, this proposal seems to be successful only if the self-interacting scalar field has a non-canonical form. The latter can be implemented in Rastall's theory of gravity, which is based on a modification of the usual matter conservation law. We show that, besides its application to the generalized Chaplygin gas model, other cosmological models based on Rastall's theory have many interesting and unexpected new features.
Constraining models with a large scalar multiplet
Earl, Kevin; Logan, Heather E; Pilkington, Terry
2013-01-01
Models in which the Higgs sector is extended by a single electroweak scalar multiplet X can possess an accidental global U(1) symmetry at the renormalizable level if X has isospin T greater or equal to 2. We show that all such U(1)-symmetric models are excluded by the interplay of the cosmological relic density of the lightest (neutral) component of X and its direct detection cross section via Z exchange. The sole exception is the T=2 multiplet, whose lightest member decays on a few-day to few-year timescale via a Planck-suppressed dimension-5 operator.
Constraining a halo model for cosmological neutral hydrogen
Padmanabhan, Hamsa
2016-01-01
We describe a combined halo model to constrain the distribution of neutral hydrogen (HI) in the post-reionization universe. We combine constraints from the various probes of HI at different redshifts: the low-redshift 21-cm emission line surveys, intensity mapping experiments at intermediate redshifts, and the Damped Lyman-Alpha (DLA) observations at higher redshifts. We use a Markov Chain Monte Carlo (MCMC) approach to combine the observations and place constraints on the free parameters in the model. Our best-fit model involves a relation between neutral hydrogen mass $M_{\\rm HI}$ and halo mass $M$ with a non-unit slope, and an upper and a lower cutoff. We find that the model fits all the observables but leads to an underprediction of the bias parameter of DLAs at $z \\sim 2.3$. We also find indications of a possible tension between the HI column density distribution and the mass function of HI-selected galaxies at $z\\sim 0$. We provide the central values of the parameters of the best-fit model so derived. W...
Constraining a halo model for cosmological neutral hydrogen
Padmanabhan, Hamsa; Refregier, Alexandre
2017-02-01
We describe a combined halo model to constrain the distribution of neutral hydrogen (H I) in the post-reionization universe. We combine constraints from the various probes of H I at different redshifts: the low-redshift 21-cm emission line surveys, intensity mapping experiments at intermediate redshifts, and the Damped Lyman-Alpha (DLA) observations at higher redshifts. We use a Markov Chain Monte Carlo approach to combine the observations and place constraints on the free parameters in the model. Our best-fitting model involves a relation between neutral hydrogen mass M_{H I} and halo mass M with a non-unit slope, and an upper and a lower cutoff. We find that the model fits all the observables but leads to an underprediction of the bias parameter of DLAs at z ˜ 2.3. We also find indications of a possible tension between the H I column density distribution and the mass function of H I-selected galaxies at z ˜ 0. We provide the central values of the parameters of the best-fitting model so derived. We also provide a fitting form for the derived evolution of the concentration parameter of H I in dark matter haloes, and discuss the implications for the redshift evolution of the H I-halo mass relation.
Cosmological Bianchi Class A models in S\\'aez-Ballester theory
Socorro, J; Espinoza-García, Abraham; Pimentel, Luis O; Romero, Priscila
2011-01-01
We use the S\\'aez-Ballester (SB) theory on anisotropic Bianchi Class A cosmological model, with barotropic fluid and cosmological constant, using the Hamilton or Hamilton-Jacobi approach. Contrary to claims in the specialized literature, it is shown that the S\\'aez-Ballester theory cannot provide a realistic solution to the dark matter problem of Cosmology for the dust epoch, without a fine tunning because the contribution of the scalar field in this theory is equivalent to a stiff fluid (as can be seen from the energy--momentum tensor for the scalar field), that evolves in a different way as the dust component. To have similar contributions of the scalar component and the dust component implies that their past values were fine tunned. So, we reinterpreting this null result as an indication that dark matter plays a central role in the formation of structures and galaxy evolution, having measureable effects in the cosmic microwave bound radiation, and than this formalism yield to this epoch as primigenius resu...
Compatibility of the large quasar groups with the concordance cosmological model
Marinello, Gabriel E.; Clowes, Roger G.; Campusano, Luis E.; Williger, Gerard M.; Söchting, Ilona K.; Graham, Matthew J.
2016-09-01
We study the compatibility of large quasar groups with the concordance cosmological model. Large quasar groups are very large spatial associations of quasars in the cosmic web, with sizes of 50-250 h-1 Mpc. In particular, the largest large quasar group known, named Huge-LQG, has a longest axis of ˜860 h-1 Mpc, larger than the scale of homogeneity (˜260 Mpc), which has been noted as a possible violation of the cosmological principle. Using mock catalogues constructed from the Horizon Run 2 cosmological simulation, we found that large quasar groups size, quasar member number and mean overdensity distributions in the mocks agree with observations. The Huge-LQG is found to be a rare group with a probability of 0.3 per cent of finding a group as large or larger than the observed, but an extreme value analysis shows that it is an expected maximum in the sample volume with a probability of 19 per cent of observing a largest quasar group as large or larger than Huge-LQG. The Huge-LQG is expected to be the largest structure in a volume at least 5.3 ± 1 times larger than the one currently studied.
Compatibility of the Large Quasar Groups with the Concordance Cosmological Model
Marinello, Gabriel E; Campusano, Luis E; Williger, Gerald M; Söchting, Ilona K; Graham, Matthew J
2016-01-01
We study the compatibility of large quasar groups with the concordance cosmological model. Large Quasar Groups are very large spatial associations of quasars in the cosmic web, with sizes of 50-250h^-1 Mpc. In particular, the largest large quasar group known, named Huge-LQG, has a longest axis of ~860h^-1 Mpc, larger than the scale of homogeneity (~260 Mpc), which has been pointed as a possible violation of the cosmological principle. Using mock catalogues constructed from the Horizon Run 2 cosmological simulation, we found that large quasar groups size, quasar member number and mean overdensity distributions in the mocks agree with observations. The Huge-LQG is found to be a rare group with a probability of 0.3 per cent of finding a group as large or larger than the observed, but an extreme value analysis shows that it is an expected maximum in the sample volume with a probability of 19 per cent of observing a largest quasar group as large or larger than Huge-LQG. The Huge-LQG is expected to be the largest s...
Narayanan, Desika
2014-10-01
As the most luminous, heavily star-forming galaxies in the Universe, Submillimeter Galaxies at z 2-4 are key players in galaxy evolution. Since their discovery, SMGs have received significant attention from HST in characterizing their physical morphology, stellar masses, and star formation histories. Unfortunately, these physical constraints have been difficult for theorists to reconcile with galaxy formation simulations. Previous generations of simulations have all either {a} neglected baryons; {b} neglected radiative transfer {and connecting to observations}; or {c} neglected cosmological conditions. Here, we propose to conduct the first ever cosmological hydrodynamic simulations of Submillimeter Galaxy formation that couple with bona fide 3D dust radiative transfer calculations. These ultra-high resolution simulations {parsec-scale} will be the first to resolve the sites of dust obscuration, the cosmic growth history of SMGs, and their evolutionary destiny. Our proposal has two principle goals: {1} Develop the first ever model for SMG formation from cosmological simulations that include both baryons and dust radiative transfer; {2} Capitalize on our parsec-scale resolution to understand the connection between the physical properties of star-forming regions in high-z starbursts, and recent IMF constraints from present-epoch massive galaxies.
A closer look at the cosmological implications of the ΛHDE model
Wang, Shuang; Wen, Sixiang; Zhou, Lanjun; Li, Miao
2017-01-01
In a previous paper Hu et al. (2015), we proposed a heterotic dark energy model, called ΛHDE, in which dark energy is composed of two components: cosmological constant (CC) and holographic dark energy (HDE). The aim of this work is to give a more comprehensive and systematic investigation on the cosmological implications of the ΛHDE model. Firstly, we make use of the current observations to constrain the ΛHDE model, and compare its cosmology-fit results with the results of the ΛCDM and the HDE model. Then, by combining a qualitative theoretical analysis with a quantitative numerical study, we discuss the impact of considering curvature on the cosmic evolutions of fractional HDE density Ωhde and fractional CC density ΩΛ, as well as on the ultimate cosmic fate. Finally, we explore the effects of adopting different types of observational data. We find that: (1) the current observational data cannot distinguish the ΛHDE model from the ΛCDM and the HDE model; this indicates that DE may contain multiple components. (2) the asymptotic solution of Ωhde and the corresponding cosmic fate in a flat universe can be extended to the case of a non-flat universe; moreover, compared with the case of a flat universe, considering curvature will make HDE closer to a phantom dark energy. (3) compared with JLA dataset, SNLS3 data more favor a phantom type HDE; in contrast, using other types of observational data have no significant impact on the cosmic evolutions of the ΛHDE model.
Cosmological model with non-minimally coupled fermionic field
Ribas, M O; Kremer, G M
2007-01-01
A model for the Universe is proposed whose constituents are: (a) a dark energy field modeled by a fermionic field non-minimally coupled with the gravitational field, (b) a matter field which consists of pressureless baryonic and dark matter fields and (c) a field which represents the radiation and the neutrinos. The coupled system of Dirac's equations and Einstein field equations is solved numerically by considering a spatially flat homogeneous and isotropic Universe. It is shown that the proposed model can reproduce the expected red-shift behaviors of the deceleration parameter, of the density parameters of each constituent and of the luminosity distance. Furthermore, for small values of the red-shift the constant which couples the fermionic and gravitational fields has a remarkable influence on the density and deceleration parameters.
A physical model for cosmological simulations of galaxy formation
Vogelsberger, Mark; Sijacki, Debora; Torrey, Paul; Springel, Volker; Hernquist, Lars; ),
2013-01-01
We present a new comprehensive model of the physics of galaxy formation designed for large-scale hydrodynamical simulations of structure formation using the moving mesh code AREPO. Our model includes primordial and metal line cooling with self-shielding corrections, stellar evolution and feedback processes, gas recycling, chemical enrichment, a novel subgrid model for the metal loading of outflows, black hole (BH) seeding, BH growth and merging procedures, quasar- and radio-mode feedback, and a prescription for radiative electro-magnetic (EM) feedback from active galactic nuclei (AGN). Stellar feedback is realised through kinetic outflows. The scaling of the mass loading of galactic winds can be set to be either energy or momentum driven, or a mixture of both. The metal mass loading of outflows can be adjusted independently of the wind mass loading. This is required to simultaneously reproduce the stellar mass content of low mass haloes and their gas oxygen abundances. Radiative EM AGN feedback is implemented...
The cosmological Janus model: comparison with observational data
Petit, Jean-Pierre; Dagostini, Gilles
2017-01-01
In 2014 we presented a model based on a system of two coupled field equations to describe two populations of particles, one positive and the other mass of negative mass. The analysis of this system by Newtonian approximation show that the masses of the same signs attract according to Newton's law while the masses of opposite signs repel according to an anti-Newton law. This eliminates the runaway phenomenon. It uses the time-dependent exact solution of this system to build the bolometric magnitude distribution of the red-shift. Comparing the prediction of our model -which requires adjustment with a single parameter- with the data from 740 supernovae highlighting the acceleration of the universe gives an excellent agreement. The comparison is then made with the multi-parametric Λ CDM model.
From Planck data to Planck era: Observational tests of Holographic Cosmology
Afshordi, Niayesh; Rose, Luigi Delle; Gould, Elizabeth; Skenderis, Kostas
2016-01-01
We test a class of holographic models for the very early universe against cosmological observations and find that they are competitive to the standard $\\Lambda$CDM model of cosmology. These models are based on three dimensional perturbative super-renormalizable Quantum Field Theory (QFT), and while they predict a different power spectrum from the standard power-law used in $\\Lambda$CDM, they still provide an excellent fit to data (within their regime of validity). By comparing the Bayesian evidence for the models, we find that $\\Lambda$CDM does a better job globally, while the holographic models provide a (marginally) better fit to data without very low multipoles (i.e. $l\\lesssim 30$), where the dual QFT becomes non-perturbative. Observations can be used to exclude some QFT models, while we also find models satisfying all phenomenological constraints: the data rules out the dual theory being Yang-Mills theory coupled to fermions only, but allows for Yang-Mills theory coupled to non-minimal scalars with quart...
String Cosmological Models in Five-Dimensional Spacetimes
Institute of Scientific and Technical Information of China (English)
Sanjay Oli
2009-01-01
We present some classes of solutions for dust matter coupled to the string cloud in five-dimensional Kaluza-Klein spacetimes. The solutions have one or two distinct singularities depending upon the sign of the constant of integration. Some of the classes of models exhibit inflation in the initial stage. The behaviour of associated parameters has been discussed in detail.
Directory of Open Access Journals (Sweden)
Balbi Amedeo
2013-09-01
Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.
AIC, BIC, Bayesian evidence and a notion on simplicity of cosmological model
Szydlowski, Marek
2008-01-01
Recent astronomical observations indicate that the Universe is in the phase of accelerated expansion. There are many cosmological models which explain this phenomenon, but should we prefer those models over the simplest one -- $\\Lambda$CDM model? According to the Occam's razor principle if all models describe the observations equally well we should prefer the simplest one. We consider the model comparison methods which involve such rules: the Akaike information criterion (AIC), Bayesian information criterion (BIC) and Bayesian evidence to compare the $\\Lambda$CDM model with its generalisation where the interaction between dark matter and dark energy is allowed. The analyses based on the AIC and Bayesian evidence indicate that there is only a weak evidence in favour of the $\\Lambda$CDM model over its generalisation, while those based on BIC quantity indicate the strong evidence in favour the simpler model. We also calculate some quantity which measure the effective number of model parameters that the given dat...
Modeling the galaxy/light-mass connection with cosmological simulations
Tasitsiomi, A
2006-01-01
I review some results on the galaxy/light-mass connection obtained by dissipationless simulations in combination with a simple, non-parametric model to connect halo circular velocity to the luminosity of the galaxy they would host. I focus on the galaxy-mass correlation and mass-to-light ratios obtained from galaxy up to cluster scales. The predictions of this simple scheme are shown to be in very good agreement with SDSS observations.
Machine learning and cosmological simulations - I. Semi-analytical models
Kamdar, Harshil M.; Turk, Matthew J.; Brunner, Robert J.
2016-01-01
We present a new exploratory framework to model galaxy formation and evolution in a hierarchical Universe by using machine learning (ML). Our motivations are two-fold: (1) presenting a new, promising technique to study galaxy formation, and (2) quantitatively analysing the extent of the influence of dark matter halo properties on galaxies in the backdrop of semi-analytical models (SAMs). We use the influential Millennium Simulation and the corresponding Munich SAM to train and test various sophisticated ML algorithms (k-Nearest Neighbors, decision trees, random forests, and extremely randomized trees). By using only essential dark matter halo physical properties for haloes of M > 1012 M⊙ and a partial merger tree, our model predicts the hot gas mass, cold gas mass, bulge mass, total stellar mass, black hole mass and cooling radius at z = 0 for each central galaxy in a dark matter halo for the Millennium run. Our results provide a unique and powerful phenomenological framework to explore the galaxy-halo connection that is built upon SAMs and demonstrably place ML as a promising and a computationally efficient tool to study small-scale structure formation.
Machine Learning and Cosmological Simulations I: Semi-Analytical Models
Kamdar, Harshil M; Brunner, Robert J
2016-01-01
We present a new exploratory framework to model galaxy formation and evolution in a hierarchical universe by using machine learning (ML). Our motivations are two-fold: (1) presenting a new, promising technique to study galaxy formation, and (2) quantitatively analyzing the extent of the influence of dark matter halo properties on galaxies in the backdrop of semi-analytical models (SAMs). We use the influential Millennium Simulation and the corresponding Munich SAM to train and test various sophisticated machine learning algorithms (k-Nearest Neighbors, decision trees, random forests and extremely randomized trees). By using only essential dark matter halo physical properties for haloes of $M>10^{12} M_{\\odot}$ and a partial merger tree, our model predicts the hot gas mass, cold gas mass, bulge mass, total stellar mass, black hole mass and cooling radius at z = 0 for each central galaxy in a dark matter halo for the Millennium run. Our results provide a unique and powerful phenomenological framework to explore...
Vacaru, Sergiu I
2015-01-01
We re-investigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and f-modified gravity using the anholonomic frame deformation method. There are constructed new classes of locally anisotropic and (in) homogeneous cosmological metrics with open and closed spatial geometries. By resorting such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related St\\" uckelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lama\\^{\\i}tre-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass and other effective sources modelling nonlinear gravitational and matter fields interactions with polarization of physical constants and deformations of metrics, which may explain dark ene...
Bianchi type-VIh string cloud cosmological models with bulk viscosity
Tripathy, Sunil K.; Behera, Dipanjali
2010-11-01
String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.
Bianchi Type V magnetized string dust cosmological models with Petrov-type degenerate
Indian Academy of Sciences (India)
Raj Bali; Umesh K Pareek
2009-05-01
Bianchi Type V massive string cosmological models with free gravitational field of Petrov Type degenerate in the presence of magnetic field with variable magnetic permeability are investigated. The magnetic field is due to an electric current produced along the -axis. The 23 is the only non-vanishing component of electromagnetic field tensor . Maxwell's equations [;] = 0 and $F_{ij}^{ij} = 0$ are satisfied by 23 = constant. The behaviour of the model in the presence and absence of magnetic field and other physical aspects are also discussed.
LRS Bianchi type-I string cosmological model in f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Sahoo, Pradyumn [Department of Mathematics, Birla Institute of Technology and Science-Pilani, Hyderabad (India)
2016-04-15
In this study the locally rotationally symmetric (LRS) Bianchi type-I (BI) cosmological model has been investigated in the presence of one dimensional cosmic strings in f(R, T) gravity. The exact solutions of the field equations are obtained through the use of constant deceleration parameter [1] and the scalar expansion is proportional to the shear scalar. Considering the accelerating nature of the universe in the present epoch, the physical behavior of the model has been discussed. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Stability analysis of some reconstructed cosmological models in f(G , T) gravity
Sharif, M.; Ikram, Ayesha
2017-09-01
The aim of this paper is to reconstruct and analyze the stability of some cosmological models against linear perturbations in f(G , T) gravity (G and T represent the Gauss-Bonnet invariant and trace of the energy-momentum tensor, respectively). We formulate the field equations for both general as well as particular cases in the context of isotropic and homogeneous universe model. We reproduce the cosmic evolution corresponding to de Sitter universe, power-law solutions and phantom/non-phantom eras in this theory using reconstruction technique. Finally, we study stability analysis of de Sitter as well as power-law solutions through linear perturbations.
Avelino, Arturo
2008-01-01
We present and constrain a cosmological model where the only component is a pressureless fluid with bulk viscosity as an explanation for the present accelerated expansion of the universe. We study the particular model of a bulk viscosity coefficient proportional to the Hubble parameter. The model is constrained using the SNe Ia Gold 2006 sample, the Cosmic Microwave Background (CMB) shift parameter R, the Baryon Acoustic Oscillation (BAO) peak A and the Second Law of Thermodynamics (SLT). It was found that this model is in agreement with the SLT using only the SNe Ia test. However when the model is constrained using the three cosmological tests together (SNe+CMB+BAO) we found: 1.- The model violates the SLT, 2.- It predicts a value of H_0 \\approx 53 km sec^{-1} Mpc^{-1} for the Hubble constant, and 3.- We obtain a bad fit to data with a \\chi^2_{min} \\approx 532. These results indicate that this model is viable just if the bulk viscosity is triggered in recent times.
Energy Technology Data Exchange (ETDEWEB)
Waizmann, Jean-Claude
2010-11-24
One of the main objectives of the PLANCK mission is to perform a full-sky cluster survey based on the Sunyaev-Zel'dovich (SZ) effect, which leads to the question of how such a survey would be affected by cosmological models with a different history of structure formation than LCDM. To answer this question, I developed a fast semi-analytic approach for simulating full-sky maps of the Compton-y parameter, ready to be fed into a realistic simulation pipeline. I also implemented a filter and detection pipeline based on spherical multi-frequency matched filters, that was used to study the expected SZ cluster sample of PLANCK. It turned out that realistic samples will comprise 1000 clusters at low rate of contamination, significantly lower than originally anticipated. Driven by wrong estimates of the impact of early dark energy models on structure formation, we studied the spherical collapse model in dark energy model, finding that models with varying equation-of-state have a negligible impact on the structure formation. Yet, the different expansion history for the different models can be detected via volume effects, when counting objects in a known volume. Furthermore, it turned out that the different expansion history strongly affects the angular SZ power spectra for the various models, making them an interesting tool to distinguish and constrain alternative cosmologies. (orig.)
Cosmological evolution in a two-brane warped geometry model
Directory of Open Access Journals (Sweden)
Sumit Kumar
2015-07-01
Full Text Available We study an effective 4-dimensional scalar–tensor field theory, originated from an underlying brane–bulk warped geometry, to explore the scenario of inflation. It is shown that the inflaton potential naturally emerges from the radion energy–momentum tensor which in turn results in an inflationary model of the Universe on the visible brane that is consistent with the recent results from the Planck's experiment. The dynamics of modulus stabilization from the inflaton rolling condition is demonstrated. The implications of our results in the context of recent BICEP2 results are also discussed.
Cosmological evolution in a two-brane warped geometry model
Energy Technology Data Exchange (ETDEWEB)
Kumar, Sumit, E-mail: sumit@ctp-jamia.res.in [Center For Theoretical Physics, Jamia Millia Islamia, New Delhi 110025 (India); Sen, Anjan A., E-mail: aasen@jmi.ac.in [Center For Theoretical Physics, Jamia Millia Islamia, New Delhi 110025 (India); SenGupta, Soumitra, E-mail: tpssg@iacs.res.in [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Kolkata 700032 (India)
2015-07-30
We study an effective 4-dimensional scalar–tensor field theory, originated from an underlying brane–bulk warped geometry, to explore the scenario of inflation. It is shown that the inflaton potential naturally emerges from the radion energy–momentum tensor which in turn results in an inflationary model of the Universe on the visible brane that is consistent with the recent results from the Planck's experiment. The dynamics of modulus stabilization from the inflaton rolling condition is demonstrated. The implications of our results in the context of recent BICEP2 results are also discussed.
Cosmological evolution in a two-brane warped geometry model
Kumar, Sumit; SenGupta, Soumitra
2014-01-01
We study an effective 4-dimensional scalar-tensor field theory, originated from an underlying brane-bulk warped geometry, to explore the scenario of inflation. It is shown that the inflaton potential naturally emerges from the radion energy-momentum tensor which in turn results into an inflationary model of the Universe on the visible brane that is consistent with the recent results from the Planck's experiment. The dynamics of modulus stabilization from the inflaton rolling condition is demonstrated. The implications of our results in the context of recent BICEP2 results are also discussed.
A halo model for cosmological neutral hydrogen : abundances and clustering
Padmanabhan, Hamsa; Amara, Adam
2016-01-01
We extend the results of previous analyses towards constraining the abundance and clustering of post-reionization ($z \\sim 0-5$) neutral hydrogen (HI) systems using a halo model framework. We work with a comprehensive HI dataset including the small-scale clustering, column density and mass function of HI galaxies at low redshifts, intensity mapping measurements at intermediate redshifts and the UV/optical observations of Damped Lyman Alpha (DLA) systems at higher redshifts. We use a Markov Chain Monte Carlo (MCMC) approach to constrain the parameters of the best-fitting models, both for the HI-halo mass relation and the HI radial density profile. We find that a radial exponential profile results in a good fit to the low-redshift HI observations, including the clustering and the column density distribution. The form of the profile is also found to match the high-redshift DLA observations, when used in combination with a three-parameter HI-halo mass relation and a redshift evolution in the HI concentration. The...