WorldWideScience

Sample records for renewably power coastal

  1. Integration of wave energy and other marine renewable energy sources with the needs of coastal societies

    Directory of Open Access Journals (Sweden)

    Richard Manasseh

    2017-04-01

    Full Text Available Marine renewable energy has the potential to solve both the energy-security and coastal-protection problems affecting coastal societies. In this article, the potential benefits arising from the combination of marine renewable energy technologies with infrastructural needs for coastal protection and other local needs are analysed. Classifications of technologies are developed to inform future coastal planning. Explanations of the resources and technologies are presented in layperson’s term. The threat of coastal inundation under climate-change scenarios is a major global issue. The investment in new infrastructure demanded by cities, ports and communities at risk of inundation could very substantially reduce the levelised cost of electricity from renewable sources, provided the infrastructure is designed with the dual purpose of power generation and coastal protection. Correspondingly, the sale of electricity from such infrastructure could defray the long-term cost of installing coastal protection. Furthermore, many marine renewable energy technologies provide a platform on which other forms of renewable energy generation could be mounted. It is noted that the complex geophysical and engineering issues arising from this opportunity must be assessed considering socio-economic factors.

  2. Renewable energies for power generation

    International Nuclear Information System (INIS)

    Freris, L.; Infield, D.

    2009-01-01

    Power generation from renewable energy sources is different from power generation from classical energies (nuclear, thermal..). Therefore, the integration into the grid of the electricity supplied by renewable sources requires a deep thinking. The reason is that these power sources are controlled by variable elements, like wind, water and sun, which condition production. This book deals with the following aspects in detail: characteristics of classical and intermittent generators; grid balancing between supply and demand; conversion methods of renewable energies into electricity; power systems; privatizing of power generation and birth of new markets, in particular the 'green' power market; development of renewable energies thanks to technical advances. It gives a comprehensive overview of the present day available renewable energy sources for power generation. (J.S.)

  3. Evaluation of sustainable walk-up flats in terms of urban housing renewal in coastal area

    Science.gov (United States)

    Septanti, D.; Kisnarini, R.; Setyawan, W.; Utami, ASPR

    2018-03-01

    Urban housing renewal aims to get added value while maintaining the sustainability of its environmental function and quality [4]. This research discusses the urban renewal which is done by rebuilding the affected area with walk-up flats. There are four aspects to be considered in achieving sustainability, namely: environmental, social, economic, and cultural [14]. This study is focused on cultural aspect. Sustainable walk-up flats, viewed from the micro context perspective, can later be used as one of the terms of reference in assessing the success of urban renewal projects in Indonesia. Especially in coastal areas, it becomes more challenging because coastal communities have different characteristics and the existing urban renewal flats are not necessarily appropriate for the coastal community. The methods used in this study are explorative, descriptive, ex- post, cross-sectional and synchronic evaluation. This research describes the characteristics of citizens, activities at home and the environment. Thus, the conclusions which are drawn by deductive reasoning are done using frequency, mean, etc. A mixed research method is applied combining with the analysis of quantitative and qualitative data collection and interpretation, including determining quantitative indicators and space design attributes, and qualitative user needs. This research is located in Surabaya as a sample of coastal cities with urban and environmental problems. The results of this study are the findings of indicators, directions, and concepts for Sustainable Housing Development in Coastal Areas which further can be made as scientific recommendation (to support the Housing Theory and Urban Renewal) and contribute to practical guidelines for sustainable low-cost walk-up flats in coastal areas.

  4. Using remote sensing data for exploitation of integrated renewable energy at coastal site in South Italy

    Science.gov (United States)

    Calaudi, Rosamaria; Lo Feudo, Teresa; Calidonna, Claudia Roberta; Sempreviva, Anna Maria

    2016-04-01

    Renewable energy sources are major components of the strategy to reduce harmful emissions and to replace depleting fossil energy resources. Data from Remote Sensing can provide detailed information for analysis for sources of renewable energy and to determine the potential energy and socially acceptability of suggested location. Coastal sites of Southern Italy have the advantage of favorable climatic conditions to use renewable energy, such us cloud free days and local breeze phenomena. Many ports are located where they have opportunities for exploitation of renewable energy, by using existing port area and by taking advantage of their coastal locations. Policies of European-Committee and Global-Navigation-PIANC for a better use of energy and an efficient supply from renewable sources are also focused on the construction of port facilities in zero emissions. Using data from Remote Sensing, can reduce the financial resources currently required for finding and assessing suitable areas, we defined an integrated methodology for potential wind and solar energy in harbor areas. In this study we compared the hourly solar power energy using MSG-SEVIRI (Meteosat Second Generation Spinning Enhanced Visible and Infrared) data products DSSF (Down-welling Surface Short-wave-Flux), and PV-Plant measurements with Nominal Power Peak of 19,85 kWp. The PV Plant is situated at a coastal site in Calabrian region, located near Vibo Valentia harbor area. We estimate potential energy by using input solar radiation of Satellite data, with same characteristics of the PV-plant. The RMSE and BIAS for hourly averaged solar electrical reproducibility are estimated including clear and sky conditions. Comparison between energy reproducibility by using DSSF product and PV-plant measurements, made over the period October 2013-June 2014, showed a good agreement in our costal site and generally overestimate (RMSE(35W/m2) and BIAS(4W/m2)) electrical reproducibility from a PV-plant. For wind resource

  5. Power marketing and renewable energy

    International Nuclear Information System (INIS)

    Fang, J.M.

    1997-01-01

    Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences

  6. Renewable and nuclear power: A common future?

    International Nuclear Information System (INIS)

    Verbruggen, Aviel

    2008-01-01

    Nuclear power and renewable energy are the main options to bring down the carbon intensity of commercial energy supply. What technology is unlimited backstop supply depends on its performance on the sustainability criteria: democratic decided, globally accessible, environmental benign, low risk, affordable. Renewable power meets all criteria, with affordability under debate. Maximizing energy efficiency as prerequisite, the affordable sustainable option in fact is the twin efficiency/renewable power. Nuclear power falls short on the sustainability criteria and its public acceptance is low. Nuclear proponents now propose nuclear and renewable energy as a suitable couple to address the climate change challenge. The two antagonists however are mutually exclusive on the five major directions of future power systems. First, nuclear power has been architect of the expansive 'business-as-usual' energy economy since the 1950s. Second, add-on by fossil-fuelled power plants is bulky and expansive for nuclear power, but is distributed, flexible and contracting over time for renewable power. Third, power grids for spreading bulky nuclear outputs are other than the interconnection between millions of distributed power sources requires. Fourth, risks and externalities and the proper technology itself of nuclear power limit its development perspectives, while efficiency/renewable power are still in their infancy. Fifth, their stalemate for R and D resources and for production capacities will intensify. Nuclear power and renewable power have no common future in safeguarding 'Our Common Future'

  7. Integration of Renewable Generation in Power System Defence Plans

    DEFF Research Database (Denmark)

    Das, Kaushik

    Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity of conven......Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity......, one of them being the North East area with high share of wind power generation.The aim of this study is to investigate how renewable generations like wind power can contribute to the power system defence plans. This PhD project “Integration of Renewable Generation in Power System Defence Plans...

  8. Power Electronics for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Choi, U. M.; Lee, K. B.; Blaabjerg, Frede

    2012-01-01

    The use of renewable energy sources are increased because of the depletion of natural resources and the increasing pollution level from energy production. The wind energy and the solar energy are most widely used among the renewable energy sources. Power electronics is needed in almost all kinds...... of renewable energy system. It controls the renewable source and interfaces with the load effectively, which can be grid-connected or van work in stand-alone mode. In this presentation, overview of wind and photovoltaic energy systems are introduced. Next, the power electronic circuits behind the most common...

  9. Power electronics for renewable energy systems

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede

    2009-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......, wind energy and photovoltaics, which by means of power electronics are changing from being minor energy sources to be acting as important power sources in the energy system....

  10. Large Scale Integration of Renewable Power Sources into the Vietnamese Power System

    Science.gov (United States)

    Kies, Alexander; Schyska, Bruno; Thanh Viet, Dinh; von Bremen, Lueder; Heinemann, Detlev; Schramm, Stefan

    2017-04-01

    The Vietnamese Power system is expected to expand considerably in upcoming decades. Power capacities installed are projected to grow from 39 GW in 2015 to 129.5 GW by 2030. Installed wind power capacities are expected to grow to 6 GW (0.8 GW 2015) and solar power capacities to 12 GW (0.85 GW 2015). This goes hand in hand with an increase of the renewable penetration in the power mix from 1.3% from wind and photovoltaics (PV) in 2015 to 5.4% by 2030. The overall potential for wind power in Vietnam is estimated to be around 24 GW. Moreover, the up-scaling of renewable energy sources was formulated as one of the priorized targets of the Vietnamese government in the National Power Development Plan VII. In this work, we investigate the transition of the Vietnamese power system towards high shares of renewables. For this purpose, we jointly optimise the expansion of renewable generation facilities for wind and PV, and the transmission grid within renewable build-up pathways until 2030 and beyond. To simulate the Vietnamese power system and its generation from renewable sources, we use highly spatially and temporally resolved historical weather and load data and the open source modelling toolbox Python for Power System Analysis (PyPSA). We show that the highest potential of renewable generation for wind and PV is observed in southern Vietnam and discuss the resulting need for transmission grid extensions in dependency of the optimal pathway. Furthermore, we show that the smoothing effect of wind power has several considerable beneficial effects and that the Vietnamese hydro power potential can be efficiently used to provide balancing opportunities. This work is part of the R&D Project "Analysis of the Large Scale Integration of Renewable Power into the Future Vietnamese Power System" (GIZ, 2016-2018).

  11. Power fluctuation reduction methodology for the grid-connected renewable power systems

    Science.gov (United States)

    Aula, Fadhil T.; Lee, Samuel C.

    2013-04-01

    This paper presents a new methodology for eliminating the influence of the power fluctuations of the renewable power systems. The renewable energy, which is to be considered an uncertain and uncontrollable resource, can only provide irregular electrical power to the power grid. This irregularity creates fluctuations of the generated power from the renewable power systems. These fluctuations cause instability to the power system and influence the operation of conventional power plants. Overall, the power system is vulnerable to collapse if necessary actions are not taken to reduce the impact of these fluctuations. This methodology aims at reducing these fluctuations and makes the generated power capability for covering the power consumption. This requires a prediction tool for estimating the generated power in advance to provide the range and the time of occurrence of the fluctuations. Since most of the renewable energies are weather based, as a result a weather forecast technique will be used for predicting the generated power. The reduction of the fluctuation also requires stabilizing facilities to maintain the output power at a desired level. In this study, a wind farm and a photovoltaic array as renewable power systems and a pumped-storage and batteries as stabilizing facilities are used, since they are best suitable for compensating the fluctuations of these types of power suppliers. As an illustrative example, a model of wind and photovoltaic power systems with battery energy and pumped hydro storage facilities for power fluctuation reduction is included, and its power fluctuation reduction is verified through simulation.

  12. Power quality enhancement of renewable energy source power network using SMES system

    International Nuclear Information System (INIS)

    Seo, H.R.; Kim, A.R.; Park, M.; Yu, I.K.

    2011-01-01

    Power quality enhancement of a renewable energy source power network is performed by a real-toroidal-type SMES coil. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation. The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality. This paper deals with power quality enhancement of renewable energy source power network using SMES system and describes the operation characteristics of HTS SMES system using real-toroidal-type SMES coil for smoothening the fluctuation of large-scale renewable energy source such as photovoltaic (PV) power generation system. It generates maximum power of PV array under various weather conditions. SMES unit charges and discharges the HTS coil to mitigate the fluctuation of PV system output power. The SMES unit is controlled according to the PV array output and the utility power quality conditions. The grid connected PV and SMES system has been modeled and simulated using power-hard-in-the-loop simulation (PHILS). The PHILS results demonstrated the effectiveness of the SMES system for enhancing power quality in power network including large-scale renewable energy source, especially PV power generation system.

  13. Economics of Renewable Energy for Water Desalination in Developing Countries

    Directory of Open Access Journals (Sweden)

    Enas R. Shouman

    2015-12-01

    Full Text Available The aim of this study is to investigate the economics of renewable energy- powered desalination, as applied to water supply for remote coastal and desert communities in developing countries. In this paper, the issue of integration of desalination technologies and renewable energy from specified sources is addressed. The features of Photovoltaic (PV system combined with reverse osmosis desalination technology, which represents the most commonly applied integration between renewable energy and desalination technology, are analyzed. Further, a case study for conceptual seawater reverse osmosis (SW-RO desalination plant with 1000 m3 /d capacity is presented, based on PV and conventional generators powered with fossil fuel to be installed in a remote coastal area in Egypt, as a typical developing country. The estimated water cost for desalination with PV/ SW-RO system is about $1.25 m3 , while ranging between $1.22-1.59 for SW-RO powered with conventional generator powered with fossil fuel. Analysis of the economical, technical and environmental factors depicts the merits of using large scale integrated PV/RO system as an economically feasible water supply relying upon a renewable energy source.

  14. Green power: A renewable energy resources marketing plan

    International Nuclear Information System (INIS)

    Barr, R.C.

    1997-01-01

    Green power is electricity generated from renewable energy sources such as power generated from the sun, the wind, the heat of the earth, and biomass. Green pricing is the marketing strategy to sell green power to customers who voluntarily pay a premium for it. Green pricing is evolving from the deregulation of the electric industry, the need for clean air, reflected in part as concern over global warming, and technology advances. The goal of the renewable energy marketing plan is to generate enough revenues for a utility to fund power purchase agreements (PPAs) with renewable energy developers or construct its own renewable facilities. Long-term, fixed price PPAs enable developers to obtain financing to construct new facilities, sometimes taking technological risks which a utility might not take otherwise. The marketing plan is built around different rate premiums for different categories of ratepayers, volunteer customer participation, customer participation recognition, and budget allocations between project costs and power marketing costs. Green prices are higher than those for conventional sources, particularly prices from natural gas fired plants. Natural gas is abundant relative to oil in price per British thermal unit (Btu). Green pricing can help bridge the gap between the current oversupply of gas and the time, not far off, when all petroleum prices will exceed those for renewable energy. The rapid implementation of green pricing is important. New marketing programs will bolster the growing demand for renewable energy evidenced in many national surveys thus decreasing the consumption of power now generated by burning hydrocarbons. This paper sets forth a framework to implement a green power marketing plan for renewable energy developers and utilities working together

  15. Power Converters and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Chen, Zhe

    2004-01-01

    The global electrical energy consumption is steadily rising and therefore a continuous demand to increase the power generation capacity. A significant percentage of the required capacity increase can be based on renewable energy sources. Wind turbine technology, as the most cost effective renewable...... energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface to the grid...... for the renewables and this paper will first briefly discuss three different alternative/renewable energy sources. Next, various configurations of small and medium power conversion topologies are presented including their control (mainly for PV-systems). Finally wind turbine configuration and their control...

  16. Renewables for sustainable village power

    International Nuclear Information System (INIS)

    Flowers, L.

    1997-03-01

    It is estimated that two billion people live without electricity and its services. In addition, there is a sizeable number of rural villages that have limited electrical service, with either part-day operation by diesel gen-sets or partial electrification (local school or community center and several nearby houses). For many villages connected to the grid, power is often sporadically available and of poor quality. The U.S. National Renewable Energy Laboratory (NREL) in Golden, Colorado, has initiated a program to address these potential electricity opportunities in rural villages through the application of renewable energy (RE) technologies. The objective of this program is to develop and implement applications that demonstrate the technical performance, economic competitiveness, operational viability, and environmental benefits of renewable rural electric solutions, compared to the conventional options of line extension and isolated diesel mini-grids. These four attributes foster sustainability; therefore, the program is entitled Renewables for Sustainable Village Power (RSVP). The RSVP program is a multi-technology, multi-application program composed of six activities, including village applications development, computer model development, systems analysis, pilot project development, technical assistance, and Internet-based village power project data base. While the current program emphasizes wind, photovoltaics (PV), and their hybrids with diesel gen-sets, micro-hydro and micro-biomass technologies may be integrated in the future. NREL's RSVP team is currently involved in rural electricity projects in thirteen countries, with U.S., foreign, and internationally based agencies and institutions. The integration of the technology developments, institutional experiences, and the financial solutions for the implementation of renewables in the main line rural electrification processes in both the developing world and remote regions of the developed world is the goal

  17. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Science.gov (United States)

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse

  18. Renewable Energy versus Nuclear Power (Summary)

    International Nuclear Information System (INIS)

    Mraz, G.; Wallner, A.

    2014-01-01

    The European Union is divided on the issue of electricity production. While there is consensus that generation technologies need to be low on greenhouse gas- emissions, the question of whether to use renewables or nuclear to meet this power demand is highly controversial. Both options still require financial support and this is not going to change in the near future. This raises the question of where our money should be invested in order to achieve greater economic efficiency: into support for renewable energies (RE) or support for nuclear power plants? This paper sets out to answer this question. The detailed model-based prospective scenario assessment performed in this study provides the basis for estimating future cost developments. After discussing the existing support schemes for renewables, the paper compares these with a nuclear model. The recent state aid case for the construction of the nuclear power plant Hinkley Point in United Kingdom serves as the model for the nuclear option. New milestone in nuclear state aid: Hinkley Point It is planned to construct two additional reactors at Hinkley Point. The EU estimates the total capital needed for construction at € 43 billion. The UK government intends to grant state aid for this project; in accordance with EU state aid rules, the suggested state aid scheme was submitted to the EU Commission for approval as public funds would be used for a company. A central part of the state aid scheme is the Contract for Difference which runs for 35 years. According to this contract, the state commits to compensating any difference between the electricity market price (reference price) and the negotiated Strike Price. Consequently, the plant operator, NNB Generation Company Limited (NNBG), has received a long term price guarantee which, in principle, is analogous to the feed-in tariffs commonly used to support renewable energies. The Strike Price for the first unit to be constructed has been set at € 108 per MWh (with

  19. Economic feasibility constraints for renewable energy source power production

    International Nuclear Information System (INIS)

    Biondi, L.

    1992-01-01

    Suitable analysis criteria for use in economic feasibility studies of renewable energy source power plants are examined for various plant types, e.g., pumped storage hydroelectric, geothermal, wind, solar, refuse-fuelled, etc. The paper focusses on the impacts, on operating cost and rate structure, of the necessity, depending on demand characteristics, to integrate renewable energy source power production with conventional power production in order to effectively and economically meet peak power demand. The influence of commercialization and marketing trends on renewable energy source power plant economic feasibility are also taken into consideration

  20. Renewable Energy. The Power to Choose.

    Science.gov (United States)

    Deudney, Daniel; Flavin, Christopher

    This book, consisting of 13 chapters, charts the progress made in renewable energy in recent years and outlines renewable energy's prospects. Areas addressed include: energy at the crossroads (discussing oil, gas, coal, nuclear power, and the conservation revolution); solar building design; solar collection; sunlight to electricity; wood; energy…

  1. External Benefit Evaluation of Renewable Energy Power in China for Sustainability

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2015-04-01

    Full Text Available China’s renewable energy power has developed rapidly in recent years. Evaluating the external benefits of renewable energy power can provide a reference for the Chinese government to set diverse development goals and to implement differentiated supporting policies for different renewable energy power types, which can promote their sustainable development. In this paper, a hybrid MCDM method was applied to evaluate the external benefits of China’s renewable energy power. Firstly, the impacts of renewable energy power accessing the power grid for multiple stakeholders in the electric power system were analyzed. Secondly, the external benefit evaluation index system for renewable energy power was built from the economic, social and environmental factors, based on the concept of sustainability. Then, the basic theory of the hybrid MCDM method employed in this paper was introduced in two parts: the superiority linguistic ratings and entropy weighting method for index weight determination and the fuzzy grey relation analysis for ranking alternatives. Finally, the external benefits of wind power, solar PV power and biomass power were evaluated. Taking a regional electric power system as an example, the results show that PV power has the greatest external benefit, followed by wind power and biomass power. Therefore, more policies supporting PV power should be put in place to promote the harmonious and sustainable development of the whole renewable energy power industry.

  2. Conference on renewable energies integration to power grids

    International Nuclear Information System (INIS)

    Laffaille, Didier; Bischoff, Torsten; Merkel, Marcus; Rohrig, Kurt; Glatigny, Alain; Quitmann, Eckard; Lehec, Guillaume; Teirlynck, Thierry; Stahl, Oliver

    2014-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on renewable energies integration to power grids. In the framework of this French-German exchange of experience, more than 150 participants exchanged views on the perspectives and possible solutions of this integration in order to warrant the security of supplies and the grid stability in a context of increasing injection and decentralization of renewable power sources. This document brings together the available presentations (slides) made during this event: 1 - French distribution grids - Overview and perspectives (Didier Laffaille); 2 - Distribution Grids in Germany - Overview and Perspective (Torsten Bischoff); 3 - Integration of renewable energies into distribution grids - a case example from Germany (Marcus Merkel); 4 - Regeneratives Kombikraftwerk Deutschland: System Services with 100 % Renewable energies (Kurt Rohrig); 5 - Overview of the different grid instrumentation-control and automation tools (Alain Glatigny); 6 - Which Ancillary Services needs the Power System? The contribution from Wind Power Plants (Eckard Quitmann); 7 - The Flexibility Aggregator - the example of the GreenLys Project (Guillaume Lehec); 8 - Energy Pool - Providing flexibility to the electric system. Consumption cut-off solutions in France (Thierry Teirlynck); 9 - Demand Response experiences from Germany (Oliver Stahl)

  3. Location matters: The impact of renewable power on transmission congestion and emissions

    International Nuclear Information System (INIS)

    Hitaj, Claudia

    2015-01-01

    Many governments offer subsidies for renewable power to reduce greenhouse gas emissions in the power sector. However, most support schemes for renewable power do not take into account that emissions depend on the location of renewable and conventional power plants within an electricity grid. I simulate optimal power flow in a test grid when 4 renewable power plants connect to the grid across 24 potential sites, amounting to over 10,000 configurations. Each configuration is associated with different levels of emissions and renewable power output. I find that emission reductions vary by a factor of 7 and that curtailment due to transmission congestion is more likely when renewable power plants are concentrated in an area of the grid with low demand. Large cost savings could be obtained by allowing subsidies for renewable power to vary across locations according to abatement potential or by replacing subsidies with a price on emissions. - Highlights: • Analyze the impact of renewable power plant location on congestion and emissions. • Simulate optimal power flow in a test grid for over 10,000 configurations. • Determine that emission reductions vary by a factor of 7. • Find that renewable power is curtailed due to transmission congestion. • Pricing emissions is most efficient since abatement potential varies across locations.

  4. Renewable and efficient electric power systems

    CERN Document Server

    Masters, Gilbert M

    2013-01-01

    A solid, quantitative, practical introduction to a wide range of renewable energy systems-in a completely updated, new edition The second edition of Renewable and Efficient Electric Power Systems provides a solid, quantitative, practical introduction to a wide range of renewable energy systems. For each topic, essential theoretical background is introduced, practical engineering considerations associated with designing systems and predicting their performance are provided, and methods for evaluating the economics of these systems are presented. While the book focuses on

  5. Power Electronics and Reliability in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Zhou, Dao

    2012-01-01

    Power Electronics are needed in almost all kind of renewable energy systems. It is used both for controlling the renewable source and also for interfacing to the load, which can be grid-connected or working in stand-alone mode. More and more efforts are put into making renewable energy systems...... better in terms of reliability in order to ensure a high availability of the power sources, in this case the knowledge of mission profile of a certain application is crucial for the reliability evaluation/design of power electronics. In this paper an overview on the power electronic circuits behind...... the most common converter configurations for wind turbine and photovoltaic is done. Next different aspects of improving the system reliability are mapped. Further on examples of how to control the chip temperature in different power electronic configurations as well as operation modes for wind power...

  6. Economic Justification of Concentrating Solar Power in High Renewable Energy Penetrated Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kroposki, Benjamin D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Du, Ershun [Tsinghua University; Zhang, Ning [Tsinghua University; Kang, Chongqing [Tsinghua University; Xia, Qing [Tsinghua University

    2018-04-24

    Concentrating solar power (CSP) plants are able to provide both renewable energy and operational flexibility at the same time due to its thermal energy storage (TES). It is ideal generation to power systems lacking in flexibility to accommodate variable renewable energy (VRE) generation such as wind power and photovoltaics. However, its investment cost currently is too high to justify its benefit in terms of providing renewable energy only. In this paper we evaluate the economic benefit of CSP in high renewable energy penetrated power systems from two aspects: generating renewable energy and providing operational flexibility to help accommodating VRE. In order to keep the same renewable energy penetration level during evaluation, we compare the economic costs between the system with a high share of VRE and another in which some part of the VRE generation is replaced by CSP generation. The generation cost of a power system is analyzed through chronological operation simulation over a whole year. The benefit of CSP is quantified into two parts: (1) energy benefit - the saving investment of substituted VRE generation and (2) flexibility benefit - the reduction in operating cost due to substituting VRE with CSP. The break-even investment cost of CSP is further discussed. The methodology is tested on a modified IEEE RTS-79 system. The economic justifications of CSP are demonstrated in two practical provincial power systems with high penetration of renewable energy in northwestern China, Qinghai and Gansu, where the former province has massive inflexible thermal power plants but later one has high share of flexible hydro power. The results suggest that the CSP is more beneficial in Gansu system than in Qinghai. The levelized benefit of CSP, including both energy benefit and flexibility benefit, is about 0.177-0.191 $/kWh in Qinghai and about 0.238-0.300 $/kWh in Gansu, when replacing 5-20% VRE generation with CSP generation.

  7. Probabilistic life-cycle cost analysis for renewable and non-renewable power plants

    International Nuclear Information System (INIS)

    Cartelle Barros, Juan José; Lara Coira, Manuel; Cruz López, María Pilar de la; Caño Gochi, Alfredo del

    2016-01-01

    Two probabilistic models are presented to assess the costs of power plants. One of them uses requirement trees, value functions and the analytic hierarchy process. It is also based on Monte Carlo simulation. The second one is a mathematical model for calculating the levelised cost of electricity (LCOE) based on discounted cash flow techniques, and combined with Monte Carlo simulation. The results obtained with both models are compared and discussed. On the one hand, the LCOE model provides the most reliable results. These results reinforce the idea that conventional or coal, lignite, oil, natural gas and nuclear power plants are still the most competitive options, with the LCOE falling in a range of around 25 to 200 €/MWh and mean values approaching 70 €/MWh. Generally, renewable power plants obtained the worst results, with a LCOE varying from around 30 to more than 450 €/MWh. Nevertheless, this study demonstrates that renewable alternatives can compete with their conventional counterparts under certain conditions. - Highlights: • Two probabilistic models are presented to assess the costs of power plants. • Conventional power plants are still the most competitive options. • Renewable energies can compete with their conventional counterparts under certain conditions. • The model aids the decision making process in the energy policy field.

  8. Effect of increased renewables generation on operation of thermal power plants

    International Nuclear Information System (INIS)

    Eser, Patrick; Singh, Antriksh; Chokani, Ndaona; Abhari, Reza S.

    2016-01-01

    Highlights: • Impacts of increased renewables in central European transmission system are assessed. • Individual transmission lines and power plants of transmission system are modelled. • Starts and ramps of thermal power plants significantly increase with increased renewables. • Impact of renewables on thermal power plants is highly dependent on location. - Abstract: High spatial and temporal resolution optimal power flow simulations of the 2013 and 2020 interconnected grid in Central Western and Eastern Europe regions are undertaken to assess the impact of an increased penetration of renewables on thermal power plants. In contrast to prior studies, the present work models each individual transmission line and power plant within the two regions. Furthermore, for conventional plants, electricity costs are determined with respect to fuel type, nameplate capacity, operating condition and geographic location; cycling costs are modeled as function of the recent operational history. For renewable power plants, costs and available power are determined using mesoscale weather simulations and hydrology models. Countrywide validation of the simulations shows that all renewable and most conventional power production is predicted with less than 10% error. It is shown that the increased penetration of renewables in 2020 will induce a 4–23% increase in the number of starts of conventional plants. The number of load ramps significantly increases by 63–181%, which underlines the necessity for equipment manufacturers and utilities to adapt to scenarios of high penetration of renewables. The increased cycling operation of coal plants is shown to depend strongly on the power plant’s location and is mainly observed in Germany and the Czech Republic. Austrian coal plants are cycled less because they supply more base load power to southern Germany, where several nuclear power plants will be phased out by 2020. Thus there is a need for more transmission capacity along

  9. Smart power systems and renewable energy system integration

    CERN Document Server

    2016-01-01

    This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage. .

  10. Control of renewable distributed power plants

    OpenAIRE

    Bullich Massagué, Eduard

    2015-01-01

    The main objective of this master thesis is to design a power plant controller for a photo- voltaic (PV) power plant. In a first stage, the current situation of the status of the electrical grid is analysed. The electrical network structure is moving from a conventional system (with centralized power generation, unidirectional power ows, easy control) to a smart grid system consisting on distributed generation, renewable energies, smart and complex control architecture and ...

  11. The Development of the Renewable Energy Power Industry under Feed-In Tariff and Renewable Portfolio Standard: A Case Study of China’s Photovoltaic Power Industry

    Directory of Open Access Journals (Sweden)

    Yuzhuo Zhang

    2017-03-01

    Full Text Available Among the regulatory policies, feed-in tariffs (FIT and renewable portfolio standards (RPS are the most popular to promote the development of renewable energy power industry. They can significantly contribute to the expansion of domestic industrial activities in terms of sustainable energy. In this paper, we synthetically consider various important factors with the analysis of the existing literature, and use system dynamics (SD to establish models of long-term development of the renewable energy power industry under FIT and RPS schemes. The model not only clearly shows the complex logical relationship between the factors but also reveals the process of coordination between the two policy tools in the development of the renewable energy power industry. In addition, as an example of development of renewable energy industry, the paper studies the development of China’s photovoltaic power industry under different scenarios. The models proposed in this paper can provide a reference for scholars to study development of the renewable energy power industry in different countries, thereby facilitating an understanding of the renewable energy power’s long-term sustainable development pattern under FIT and RPS schemes, and helping to provide references for policy-making institutions. The results show that in the perfect competitive market, the implementation of RPS can promote long-term and rapid development of China’s photovoltaic power industry given the constraints and actions of the mechanisms of RPS quota proportion, the TGC valid period, and fines, compared with FIT. At the end of the paper, policy implications are offered as references for the government.

  12. Using Remote Sensing Data for Integrating different Renewable Energy Sources at Coastal Site in South Italy

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Feudo, Teresa Lo; Calidonna, Claudia Roberta

    2016-01-01

    Italian coastal sites have the advantage of favorable climatic conditions to use mixed renewable energy sources, such as solar and wind. Harbors are safe places to install wind turbines where wind conditions are almost offshore. Space-borne remote sensing can provide information to determine solar...

  13. Impacts of Renewable Energy Quota System on China's Future Power Sector

    DEFF Research Database (Denmark)

    Xiong, Weiming; Zhang, Da; Mischke, Peggy

    2014-01-01

    As the biggest carbon emitting sector which produces 44% of current national carbon emission in China, the coal-dominated power sector has a tremendous potential for CO2 mitigation in the next two decades. Renewable energy quota system is currently discussed as a potential future policy instrument...... for the power sector, which requires certain fraction of renewable energy in total power generation for each province and grid zone. The quantitative studies on renewable energy quota for China are still very limited. Based on a least-cost and technology-rich power generation and transmission expansion model...... for China, this study examines the impacts of renewable energy quota system and carbon cap policy instruments on the future Chinese power sector. Various scenarios are examined toward 2030 and their future power generation mix, capacity installations and carbon emission are discussed. This study concludes...

  14. Design for Reliability of Power Electronics in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Wang, Huai

    2014-01-01

    Power electronics is the enabling technology for maximizing the power captured from renewable electrical generation, e.g., the wind and solar technology, and also for an efficient integration into the grid. Therefore, it is important that the power electronics are reliable and do not have too many...... failures during operation which otherwise will increase cost for operation, maintenance and reputation. Typically, power electronics in renewable electrical generation has to be designed for 20–30 years of operation, and in order to do that, it is crucial to know about the mission profile of the power...... electronics technology as well as to know how the power electronics technology is loaded in terms of temperature and other stressors relevant, to reliability. Hence, this chapter will show the basics of power electronics technology for renewable energy systems, describe the mission profile of the technology...

  15. Assessment of post-Fukushima renewable energy policy in Japan's nation-wide power grid

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Fujii, Yasumasa

    2017-01-01

    This manuscript analyzes an optimal power generation mix in Japan's nation-wide power grid by considering the post-Fukushima energy policy which puts a high priority on expanding renewable energy. The study is performed, employing an optimal power generation mix model which is characterized by detailed geographical resolution derived from 135 nodes and 166 high-voltage power transmission lines with 10-min temporal resolution. Simulated results reveal that renewable energy promotion policy underlies the necessity for capacity expansion of inter- or intra-regional power transmission lines in Japan in order to realize economical power system operation. In addition, the results show that the integration of massive variable renewable (VR) such as PV and wind decreases the capacity factor of power plant including ramp generator and possibly affects that profitability, which implies the challenge to ensure power system adequacy enough to control VR variability. - Highlights: • Authors analyze installable potential of renewable by Japan's power grid model. • Power grid of the model includes 135 nodes and 166 power transmission lines. • Renewable promotion underlies the necessity for capacity expansion of power lines. • Unremunerated power plants affect power grid adequacy under extensive renewable.

  16. Effective policies for renewable energy - the example of China's wind power - lessons for China's photovoltaic power

    International Nuclear Information System (INIS)

    Wang, Qiang

    2010-01-01

    China, one of the global biggest emitter of CO 2 , needs promotion renewable energy to reduce air pollution from its surging fossil fuel use, and to increase its energy supply security. Renewable energy in its infancy needs policy support and market cultivation. Wind power installed capacity has boomed in recent year in China, as a series of effective support policies were adopted. In this paper, I review the main renewable energy policies regarding to China's wind power, including the Wind Power Concession Program, Renewable Energy Law, and a couple of additional laws and regulations. Such policies have effectively reduced the cost of wind power installed capacity, stimulated the localization of wind power manufacture, and driven the company investment in wind power. China is success in wind power installed capacity, however, success in wind-generated electricity has yet achieved, mainly due to the backward grid system and lack of quota system. The paper ends with the recommended best practice of the China's wind power installed capacity might be transferable to China's photovoltaic power generation. (author)

  17. Renewable Energy Resources: Solutions to Nigeria power and energy needs

    International Nuclear Information System (INIS)

    Ladan-Haruna, A.

    2011-01-01

    Power and energy, with particularly electricity remains the pivot of economical and social development of any country. In view of this fact, a research on how renewable energy resources can solve Nigeria power and energy needs was carried out. It has identified main issues such as inconsistence government policies, corruptions and lack of fund hindering the development of renewable and power sectors for sustainable energy supply. The capacity of alternative energy resources and technology [hydropower, wind power, biomass, photovoltaic (solar), and geothermal power] to solve Nigerian energy crisis cannot be over-emphasized as some countries of the world who have no petroleum resources, utilizes other alternatives or options to solves their power and energy requirement. This paper reviews the prospects, challenges and solutions to Nigeria energy needs using renewable sources for development as it boost industrialization and create job opportunities

  18. Impacts of Renewable Energy Quota System on China's Future Power Sector

    OpenAIRE

    Xiong, Weiming; Zhang, Da; Mischke, Peggy; Zhang, Xiliang

    2014-01-01

    As the biggest carbon emitting sector which produces 44% of current national carbon emission in China, the coal-dominated power sector has a tremendous potential for CO2 mitigation in the next two decades. Renewable energy quota system is currently discussed as a potential future policy instrument for the power sector, which requires certain fraction of renewable energy in total power generation for each province and grid zone. The quantitative studies on renewable energy quota for China are ...

  19. 5. world inventory of the electric power produced by renewable energy

    International Nuclear Information System (INIS)

    2004-03-01

    This fifth edition of the electric power production in the world by renewable energies sources, has been realized by the renewable energies observatory for ''Electricite de France''. It proposes an evaluation of the situation, providing data and analysis for each renewable energy sources, hydro electric power, wind energy, biomass, geothermal energy, photovoltaic and the green energy. (A.L.B.)

  20. Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Sera, Dezso

    2007-01-01

    sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss some of the most emerging renewable energy sources......The global electrical energy consumption is still rising and there is a demand to double the power capacity within 20 years. The production, distribution and use of energy should be as technological efficient as possible and incentives to save energy at the end-user should also be set up....... Deregulation of energy has in the past lowered the investment in larger power plants, which means the need for new electrical power sources may be very high in the near future. Two major technologies will play important roles to solve the future problems. One is to change the electrical power production...

  1. Power Electronics for Renewable Energy Systems - Status and Trends

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    electronics in generation, transmission/distribution and end-user application, together with advanced controls, can pave the way for renewable energy resources. In view of this, some of the most promising renewable candidates like wind power and photovoltaic, which are becoming a significant part...... in the electricity production, are explored in this paper. Issues like technology demands, power converter topologies, and control structures are addressed. Some special focuses are also paid on the emerging trends in power electronics development for those systems....

  2. Renewable Energy Systems in the Power Electronics Curriculum

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2005-01-01

    of the most important area is renewable energy systems. This paper will discuss the basic courses for the power electronics curriculum. It will also discuss how to teach power electronic systems efficiently through a projectoriented and problem-based learning approach with Aalborg University in Denmark...... as a full-scale example. Different project examples will be given as well as important laboratories for adjustable speed drives and renewable energy systems which are used at the university are described.......Power Electronics is still an emerging technology and its applications are increasing. The primary function is to convert electrical energy from one stage to another and it is used in many different applications. The power electronics curriculum is multidisciplinary covering fields like devices...

  3. Trends in Power Electronics and Control of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2010-01-01

    term) based energy sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which...... by means of power electronics are changing the future electrical infrastructure but also contributes steadily more to non-carbon based electricity production. Most focus is on the power electronics technologies used. In the case of photovoltaics transformer-less systems are discussed as they have...

  4. Overview of renewable electric power in 2016 in Normandy

    International Nuclear Information System (INIS)

    Berg, Patrick

    2017-06-01

    This publication proposes an assessment of renewable electricity produced in 2016 in the Normandie region, and thus highlights how these territories are committed in an energy transition logics and in a positive evolution of the region energy mix. After a recall of national and regional objectives in terms of final consumption and of shares of renewable energies, definitions, figures, objectives, installed and connected powers, projects, evolutions, electric power production cover rate, numbers and locations of installations are given by graphs and maps and briefly commented for the different renewable sources: onshore wind energy, solar photovoltaic energy, hydroelectricity, bio-energies. A regional assessment which gathers some of these information is given, and modalities of support to renewable energies are briefly presented for onshore and offshore wind energy, photovoltaic, hydroelectricity and biogas

  5. Decentral amd renewable power generation; Dezentrale und erneuerbare Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, Ulli [EWE AG, Oldenburg (Germany). Abt. Forschung und Entwicklung

    2011-07-01

    The inspiration for the design of an energy system of the future constitutes the necessary change of the power generation structure deriving from renewable energy sources such as wind power and solar energy. In Germany, the captured feeding volume of renewable energy amounts 89.1 TWh per annum in 2009. The high demands on a stable and efficient network operation require an intelligent networking of information and communication technology. This network enables the production facilities and consumption components to communicate with renewable energies. EWE AG (Oldenburg, Federal Republic of Germany) develops and implements an active smart grid as a distribution network with a virtual power plants and energy marketplaces, with network services and management algorithms and a new tariff system feedback sysem for the involvement of domestic consumers.

  6. Power Electronics as Efficient Interface of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Kjær, Søren Bækhøj

    2004-01-01

    The global electrical energy consumption is steadily rising and consequently there is a demand to increase the power generation capacity. A significant percentage of the required capacity increase can be based on renewable energy sources. Wind turbine technology, as the most cost effective...... renewable energy conversion system, will play an important part in our future energy supply. But other sources like microturbines, photovoltaics and fuel cell systems may also be serious contributor to the power supply. Characteristically, power electronics will be an efficient and important interface...... to the grid and this paper will first briefly discuss three different alternative/ renewable energy sources. Next, various configurations of the wind turbine technology are presented, as this technology seems to be most developed and cost-effective. Finally, the developments and requirements from the grid...

  7. Power electronics - key technology for renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Kerekes, Tamas

    2011-01-01

    sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss trends of the most emerging renewable energy sources, wind energy and photovoltaics, which by means of power electronics...... as efficient as possible. Further, the emerging climate changes is arguing to find sustainable future solutions. Of many options, two major technologies will play important roles to solve parts of those future problems. One is to change the electrical power production from conventional, fossil based energy......The electrical energy consumption continues to grow and more applications are based on electricity. We can expect that more 60% of all energy consumption will be converted and used as electricity. Therefore, it is a demand that production, distribution and use of electrical energy are done...

  8. Integrating renewable energy sources in the Portuguese power system

    International Nuclear Information System (INIS)

    Martins, Nuno; Cabral, Pedro; Azevedo, Helena

    2012-01-01

    The integration of large amounts of renewable energy is an important challenge for the future management of electric systems, since it affects the operation of the electric power system and the design of the transmission and distribution network infrastructure. This is specially due to the connection requirements of the renewable energy technologies, to the extension and adjustment of the grid infrastructure and to the identification of new solutions for operational reserve, in order to maintain the overall system flexibility and security. In this paper, the impact of high penetration of intermittent energy sources, expected in long term in the Portuguese Power System, is analysed and the operational reserve requirements to accomplish a reliable and reasonable electrical energy supply are identified. It was concluded that pumped storage power plants, special power plants with regulating capabilities, will have an important task to provide the operational reserve requirements of the Portuguese Power System. This technology assumes a fundamental role not only to ensure the adequate levels of security of supply but also to allow the maximum exploitation of the installed capacity in renewable energy sources. (authors)

  9. Shoreline change due to coastal structures of power plants

    International Nuclear Information System (INIS)

    Kang, K. S.; Lee, T. S.; Kim, Y. I.

    2001-01-01

    Characteristics of shoreline change at the coastal area near power plant were analyzed. For a nuclear power plant located in the east coast of Korean peninsula, remote-sensing data, i.e.airborne images and satellite images are acquired and shoreline data were extracted. Recession and davance of shoreline due to coastal structures of powder plant and land reclamation was showed. 1-line numerical shoreline change model was established for simulating the response of shoreline to construction of coastal structures. The model uses curvilinear coordinates that follow the shoreline and is capable of handling the formation of tombolos as well as the growth of salients in the vicinity of coastal structures. The model predicted significant erosion of beach in case breakwaters were extended. Offshore breakwaters were suggested as a countermeasure to shoreline change

  10. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness.

    Science.gov (United States)

    Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2017-03-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.

  11. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    Science.gov (United States)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  12. 78 FR 37324 - Preparation of Environmental Reports for Nuclear Power Plant License Renewal Applications

    Science.gov (United States)

    2013-06-20

    ... Environmental Reports for Nuclear Power Plant License Renewal Applications AGENCY: Nuclear Regulatory Commission... for Nuclear Power Plant License Renewal Applications.'' This regulatory guide provides guidance to... renewal of a nuclear power plant operating license. Applicants should use this regulatory guide when...

  13. Russian Energy Strategy and development of renewable power industry

    OpenAIRE

    Bazhanov, Andrei; Tyukhov, Igor

    2008-01-01

    We consider two scenarios of the development of renewable power industry in Russia on an example of the Dasgupta-Heal-Solow-Stiglitz model. We assume that the resource rent is being invested into capital in the form of renewable power technologies according to the standard Hartwick saving rule. We use the modified Hotelling rule that reflects externalities implying, in particular, growing rates of oil extraction. We have shown that the growing extraction, prescribed by the Russian Energy Stra...

  14. Power system and market integration of renewable electricity

    Science.gov (United States)

    Erdmann, Georg

    2017-07-01

    This paper addresses problems of power generation markets that arise under high shares of intermittent generation. After discussing the economic fundamentals of wind and photovoltaic investments, the paper introduces the concept of the "Merit order effect of renewables". According to this concept electricity prices on wholesale power markets become smaller in periods during which large volumes of wind and photovoltaic generation is available and squeeze out relative expensive gas-fired power generation. The merit order effect of renewables has a couple of consequences. Among others it challenges the profitability of conventional power generation. If such generation capacities are still necessary, at least during a transitory period, a capacity mechanism may be put in place that generates an additional stream of income to the operators of conventional power generators. Another consequence of growing intermittent power generation is the need for concepts and technologies that deal with excess generation. Among these concepts are virtual and physical power storage capacities. In the last parts of the paper models are presented that are able to analyze these concepts from an economic point of view.

  15. Financing renewable energy for Village Power application

    Energy Technology Data Exchange (ETDEWEB)

    Santibanez-Yeneza, G.

    1997-12-01

    When one talks of rural development, no doubt, the issue of rural energy is not far behind. As a significant component of any development strategy, rural energy is seen as the engine for growth that can bring about economic upliftment in the countryside. Many approaches to rural energy development have been tried. These approaches differ from country to country. But regardless of structure and approach, the goal remain essentially the same: to provide rural communities access to reliable energy services at affordable prices. In recent years, as global concern for the environment has increased, many governments have turned to renewable energy as a more environment friendly alternative to rural electrification. Technological advances in renewable energy application has helped to encourage this use. System reliability has improved, development costs have, to some extent been brought down and varied application approaches have been tried and tested in many areas. Indeed, there is huge potential for the development of renewable energy in the rural areas of most developing countries. At the rural level, renewable energy resources are almost always abundantly available: woodwaste, agricultural residues, animal waste, small-scale hydro, wind, solar and even sometimes geothermal resources. Since smaller scale systems are usually expected in these areas, renewable energy technologies can very well serve as decentralized energy systems for rural application. And not only for rural applications, new expansion planning paradigms have likewise led to the emergence of decentralized energy systems not only as supply options but also as corrective measures for maintaining end of line voltage levels. On the other hand, where renewable energy resource can provide significant blocks of power, they can be relied upon to provide indigenous power to the grids.

  16. Curtailment in a Highly Renewable Power System and Its Effect on Capacity Factors

    Directory of Open Access Journals (Sweden)

    Alexander Kies

    2016-06-01

    Full Text Available The capacity factor of a power plant is the ratio of generation over its potential generation. It is an important measure to describe wind and solar resources. However, the fluctuating nature of renewable power generation makes it difficult to integrate all generation at times. Whenever generation exceeds the load, curtailment or storage of energy is required. With increasing renewable shares in the power system, the level of curtailment will further increase. In this work, the influence of the curtailment on the capacity factors for a highly renewable German power system is studied. An effective capacity factor is introduced, and the implications for the distribution of renewable power plants are discussed. Three years of highly-resolved weather data were used to model wind and solar power generation. Together with historical load data and a transmission model, a possible future German power system was simulated. It is shown that effective capacity factors for unlimited transmission are strongly reduced by up to 60% (wind and 70% (photovoltaics and therefore of limited value in a highly renewable power system. Furthermore, the results demonstrate that wind power benefits more strongly from a reinforced transmission grid than photovoltaics (PV does.

  17. International Conference on Power Electronics and Renewable Energy Systems

    CERN Document Server

    Suresh, L; Dash, Subhransu; Panigrahi, Bijaya

    2015-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Power Electronics and Renewable Energy Systems (ICPERES 2014) held at Rajalakshmi Engineering College, Chennai, India. These research papers provide the latest developments in the broad area of Power Electronics and Renewable Energy. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.

  18. Market designs for a completely renewable power sector

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jenny [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany); Altmann, Matthias [Ludwig-Boelkow-Systemtechnik GmbH, Ottobrunn (Germany)

    2012-06-15

    The article discusses whether the current German electricity market design is suitable for an electricity system completely based on renewable sources, and analyzes alternatives. Such a system becomes ever more likely due to the phase-out of nuclear power and the carbon reduction targets. Various existing scenarios for a completely renewable electricity system are analyzed and compared with respect to the contribution of different renewable technologies. Challenges for the market design arising from the differences between the current and a completely renewable system are identified - notably problems with cost recovery and investment incentives, an increased need for balancing and/or intraday adjustments, an increased diversity of actors, grid congestion and the continuing occurrence of market power. The current market design's ability to solve these issues is assessed with the result that all but the critical problem of investment incentives and cost recovery can be solved by adapting certain rules. A comparison with other suggested market designs reveals that some designs could ensure cost recovery and investment incentives. However, these market designs have other drawbacks. Therefore, the identification of the optimal market design for a completely renewable electricity system requires further research regarding the qualitative and quantitative effects of different changes to the current market design. The article concludes by developing concrete policy recommendations. (orig.)

  19. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe

    Energy Technology Data Exchange (ETDEWEB)

    Heide, Dominik [Frankfurt Institute for Advanced Studies (FIAS) and Frankfurt International Graduate School for Science, Johann Wolfgang Goethe Universitaet, Ruth-Moufang-Strasse 1, D-60438 Frankfurt am Main (Germany); von Bremen, Lueder [ForWind - Center for Wind Energy Research, University of Oldenburg, Marie-Curie-Str. 1, D-26129 Oldenburg (Germany); Greiner, Martin [Corporate Research and Technology, Siemens AG, D-81730 Muenchen (Germany); Aarhus School of Engineering and Institute of Mathematical Sciences, Aarhus University, Ny Munkegade 118, 8000 Aarhus C (Denmark); Hoffmann, Clemens [Corporate Research and Technology, Siemens AG, D-81730 Muenchen (Germany); Speckmann, Markus; Bofinger, Stefan [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Koenigstor 59, D-34119 Kassel (Germany)

    2010-11-15

    The renewable power generation aggregated across Europe exhibits strong seasonal behaviors. Wind power generation is much stronger in winter than in summer. The opposite is true for solar power generation. In a future Europe with a very high share of renewable power generation those two opposite behaviors are able to counterbalance each other to a certain extent to follow the seasonal load curve. The best point of counterbalancing represents the seasonal optimal mix between wind and solar power generation. It leads to a pronounced minimum in required stored energy. For a 100% renewable Europe the seasonal optimal mix becomes 55% wind and 45% solar power generation. For less than 100% renewable scenarios the fraction of wind power generation increases and that of solar power generation decreases. (author)

  20. Potential for deserts to supply reliable renewable electric power

    Science.gov (United States)

    Labordena, Mercè; Lilliestam, Johan

    2015-04-01

    To avoid dangerous climate change, the electricity systems must be decarbonized by mid-century. The world has sufficient renewable electricity resources for complete power sector decarbonization, but an expansion of renewables poses several challenges for the electricity systems. First, wind and solar PV power are intermittent and supply-controlled, making it difficult to securely integrate this fluctuating generation into the power systems. Consequently, power sources that are both renewable and dispatchable, such as biomass, hydro and concentrating solar power (CSP), are particularly important. Second, renewable power has a low power density and needs vast areas of land, which is problematic both due to cost reasons and due to land-use conflicts, in particular with agriculture. Renewable and dispatchable technologies that can be built in sparsely inhabited regions or on land with low competition with agriculture would therefore be especially valuable; this land-use competition greatly limits the potential for hydro and biomass electricity. Deserts, however, are precisely such low-competition land, and are at the same time the most suited places for CSP generation, but this option would necessitate long transmission lines from remote places in the deserts to the demand centers such as big cities. We therefore study the potential for fleets of CSP plants in the large deserts of the world to produce reliable and reasonable-cost renewable electricity for regions with high and/or rapidly increasing electricity demand and with a desert within or close to its borders. The regions in focus here are the European Union, North Africa and the Middle East, China and Australia. We conduct the analysis in three steps. First, we identify the best solar generation areas in the selected deserts using geographic information systems (GIS), and applying restrictions to minimize impact on biodiversity, soils, human heath, and land-use and land-cover change. Second, we identify

  1. Renewable energy and CCS in German and European power sector decarbonization scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ludig, Sylvie

    2013-11-06

    In order to avoid unmanageable impacts of anthropogenic climate change, it is necessary to achieve substantial CO{sub 2} emission reductions in all energy sectors. Due to salient decarbonization options such as renewable energy technologies and carbon capture and storage (CCS), the power sector plays a major role in climate change mitigation strategies. However, these options come with a set of challenges: the output of wind and solar energy varies in time and space and CCS faces technical challenges and public acceptance problems. This thesis develops power sector decarbonization scenarios for the EU and Germany while taking into account both the interplay of renewable energy technologies and CCS as mitigation options as well as the technical challenges of renewable energy integration. More specifically, a series of model based studies address the respective roles of CCS and renewable energy technologies in emission reduction strategies while evaluating technical integration options such as transmission, storage and balancing technologies. Results show that large-scale expansion of renewable energies will play the main role in power sector decarbonization scenarios, but the availability of CCS could lead to lower total costs and easier reaching of emission reduction targets through compensation of emissions generated by balancing technologies. Long-distance transmission enables better siting of renewable energy and thus higher achievable renewable shares in power generation and higher capacity factors. These indirect effects of delayed expansions induce additional power system costs, which are high relative to investment costs for new transmission lines. Results also reveal a preference for flexible technologies in combination with high shares of renewables for balancing purposes rather than inflexible baseload plants. A case study for the EU shows that a near-complete decarbonization is possible both with and without transmission expansions, but total power

  2. Limitation of fusion power plant installation on future power grids under the effect of renewable and nuclear power sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shutaro, E-mail: takeda.shutarou.55r@st.kyoto-u.ac.jp [Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Kyoto (Japan); Sakurai, Shigeki [Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Kyoto (Japan); Yamamoto, Yasushi [Faculty of Engineering Science, Kansai University, Suita, Osaka (Japan); Kasada, Ryuta; Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Uji, Kyoto (Japan)

    2016-11-01

    Graphical abstract: - Highlights: • Future power grids would be unstable due to renewable and nuclear power sources. • Output interruptions of fusion plant would cause disturbances to future grids. • Simulation results suggested they would create limitations in fusion installation. • A novel diagram was presented to illustrate this suggested limitation. - Abstract: Future power grids would be unstable because of the larger share of renewable and nuclear power sources. This instability might bring some additional difficulties to fusion plant installation. Therefore, the authors carried out a quantitative feasibility study from the aspect of grid stability through simulation. Results showed that the more renewable and nuclear sources are linked to a grid, the greater disturbance the grid experiences upon a sudden output interruption of a fusion power plant, e.g. plasma disruption. The frequency deviations surpassed 0.2 Hz on some grids, suggesting potential limitations of fusion plant installation on future grids. To clearly show the suggested limitations of fusion plant installations, a novel diagram was presented.

  3. Renewable energy strategies to overcome power shortage in Kurdistan Region of Iraq

    Directory of Open Access Journals (Sweden)

    Al-Din Salar Salah Muhy

    2017-01-01

    Full Text Available The aim of this paper is to investigate the possibility of applying renewable energy strategies in Kurdistan Region of Iraq to overcome the shortage of electricity supply. Finding alternative renewable sources could overcome the problem. The renewable energy will reduce CO2 emission in the cities which considers the main source of pollution. That will participate in reducing the effect of global warming. The study tries to investigate the direct solar renewable energy through two of the main renewable energy categories to produce electricity based on a survey of literature review. Photovoltaic and wind power technologies are possible to be conducted in the region to overcome power shortage.

  4. The Concept of Autonomous Power Supply System Fed with Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Waldemar Fedak

    2017-12-01

    Full Text Available Sustainable economic development requires the use of renewable energy sources in a rational and thoughtful way. In Polish conditions the use of several types of renewable energy sources on a single setup is a new issue. In particular, hybrid devices in conjunction with intelligent energy systems, such as lighting systems are generally not used. Therefore, the Polish energy production still relies on the burning of coal. Despite their advantages, renewable energy sources are characterized by seasonality and considerable instability. Access to renewable energy varies daily and seasonally, hence activities promoting the use of autonomous, hybrid power systems must be intensified. The presented research aims at the development of the Autonomous Power Supply (APS system based on the so-called energy mix. Such a system works in an isolated arrangement and serves to reliably supply electricity from renewable sources for small residential or public utility devices in an urban area. Systems with up to 3 kW power consist of modules, whose modular design allows the combination of various power configurations and types of renewable energy used. The basic system consists of a primary power source, additional power source, emergency power source, energy storage device, weather station and controller. The energy mix depends on the geographical location of the system. The emergency source can be implemented as an on-grid connector or fuel power generator with the participation of 100% until the primary or accessory power source failure is removed. The energy storage system consists of batteries or supercapacitors. The proposed system can be combined to create a local network that automatically responds to energy shortages in various network nodes by adjusting the supply of electricity within the network depending on its needs. For Poland realistic solutions in this article are the new and modern answer to these requirements.

  5. Renewable energy. The power and the potential

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In late 1985, the Public Advisory Committees to the Environmental Council of Alberta began working toward a draft conservation strategy for Alberta. A prospectus was published and meetings and workshops held, the goal being a conservation strategy in place by 1992. This report is one of a series of discussion papers on relevant sectors such as agriculture, fish and wildlife, tourism, and energy production. This report focuses on the present and potential economic significance of renewable energy resources, excluding hydro power, and their capability to meet Alberta's demand. Renewable energy sources discussed include solar, wind, geothermal, biomass, and energy from waste, with economic significance and demand projections for each, as well as their interactions with conventional sources. Their use in low-temperature space heating, industrial process heat, liquid fuels, and electricity is also detailed. Current legislative and regulatory requirements for each of the renewables is given, as well as an attempt at policy formulation to deal with the use of renewables as a whole. 4 figs.

  6. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  7. Power Electronics, Energy Harvesting and Renewable Energies Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The research in the Power Electronics, Energy Harvesting and Renewable Energies Laboratory (PEHREL) is mainly focused on investigation, modeling, simulation, design,...

  8. Power electronics for renewable and distributed energy systems a sourcebook of topologies, control and integration

    CERN Document Server

    Chakraborty, Sudipta; Kramer, William E

    2013-01-01

    While most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage s

  9. Development of water demand coefficients for power generation from renewable energy technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2017-01-01

    Highlights: • Water consumption and withdrawals coefficients for renewable power generation were developed. • Six renewable energy sources (biomass, nuclear, solar, wind, hydroelectricity, and geothermal) were studied. • Life cycle water footprints for 60 electricity generation pathways were considered. • Impact of cooling systems for some power generation pathways was assessed. - Abstract: Renewable energy technology-based power generation is considered to be environmentally friendly and to have a low life cycle greenhouse gas emissions footprint. However, the life cycle water footprint of renewable energy technology-based power generation needs to be assessed. The objective of this study is to develop life cycle water footprints for renewable energy technology-based power generation pathways. Water demand is evaluated through consumption and withdrawals coefficients developed in this study. Sixty renewable energy technology-based power generation pathways were developed for a comprehensive comparative assessment of water footprints. The pathways were based on the use of biomass, nuclear, solar, wind, hydroelectricity, and geothermal as the source of energy. During the complete life cycle, power generation from bio-oil extracted from wood chips, a biomass source, was found to have the highest water demand footprint and wind power the lowest. During the complete life cycle, the water demand coefficients for biomass-based power generation pathways range from 260 to 1289 l of water per kilowatt hour and for nuclear energy pathways from 0.48 to 179 l of water per kilowatt hour. The water demand for power generation from solar energy-based pathways ranges from 0.02 to 4.39 l of water per kilowatt hour, for geothermal pathways from 0.04 to 1.94 l of water per kilowatt hour, and for wind from 0.005 to 0.104 l of water per kilowatt hour. A sensitivity analysis was conducted with varying conversion efficiencies to evaluate the impact of power plant performance on

  10. Market stimulation of renewable-based power generation in Australia

    International Nuclear Information System (INIS)

    Kuwahata, Rena; Monroy, Carlos Rodriguez

    2011-01-01

    This paper attempts to identify the types of renewable-based power generation technologies available in Australia that have the capacity to contribute to the growth of the renewable energy sector and then suggest what type of economic incentive instruments could be applied in order to stimulate investment in that sector. Currently in Australia there are hydro, wind, bioenergy, solar, geothermal and ocean technologies being used to produce renewable power. Of these all except hydro power has large amounts of potentially useful resources. In the cases of wind, bioenergy, solar, and geothermal, the technology is mature enough to be immediately deployed in large-scale. However, only in the cases of wind and bioenergy the costs and return on investments are proven to be viable in the current market. What is required on all fronts is an improved return on investments. Within the current electricity market competition with fossil-fuel based power is very difficult considering the ample supply of coal available in Australia and the heavy subsidies it receives. To become more competitive with electricity generated from coal-fired power plants, a feed-in tariff scheme could be implemented, and subsidies to the coal industry should be reduced if not removed. Another aspect impeding the growth of certain renewable power technologies is the high capital cost. This issue could be addressed with direct subsidies or tax exemptions, or aiding with easier access of finance options. However for particular industries such as wind and solar, it would be a further benefit if some effort is made to encourage component manufacturing within Australia. For technologies that require further technical development, funding towards R and D or pilot projects, and support for international collaboration projects would accelerate their path to deployment. It is critical that the Australian government continues to be a leader. In addition to the Carbon Pollution Reduction Scheme (CPRS) and an

  11. Optimal investment strategies in decentralized renewable power generation under uncertainty

    International Nuclear Information System (INIS)

    Fleten, S.-E.; Maribu, K.M.; Wangensteen, I.

    2007-01-01

    This paper presents a method for evaluating investments in decentralized renewable power generation under price un certainty. The analysis is applicable for a client with an electricity load and a renewable resource that can be utilized for power generation. The investor has a deferrable opportunity to invest in one local power generating unit, with the objective to maximize the profits from the opportunity. Renewable electricity generation can serve local load when generation and load coincide in time, and surplus power can be exported to the grid. The problem is to find the price intervals and the capacity of the generator at which to invest. Results from a case with wind power generation for an office building suggests it is optimal to wait for higher prices than the net present value break-even price under price uncertainty, and that capacity choice can depend on the current market price and the price volatility. With low price volatility there can be more than one investment price interval for different units with intermediate waiting regions between them. High price volatility increases the value of the investment opportunity, and therefore makes it more attractive to postpone investment until larger units are profitable. (author)

  12. Power electronics - The key technology for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke; Yang, Yongheng

    2014-01-01

    The energy paradigms in many countries (e.g. Germany and Denmark) have experienced a significant change from fossil-based resources to clean renewables (e.g. wind turbines and photovoltaics) in the past few decades. The scenario of highly penetrated renewables is going to be further enhanced...... - Denmark expects to be 100 % fossil-free by 2050. Consequently, it is required that the production, distribution and use of the energy should be as technologically efficient as possible and incentives to save energy at the end-user should also be strengthened. In order to realize the transition smoothly...... and effectively, energy conversion systems, currently based on power electronics technology, will again play an essential role in this energy paradigm shift. Using highly efficient power electronics in power generation, power transmission/distribution and end-user application, together with advanced control...

  13. Can renewable energy replace nuclear power in Korea? An economic valuation analysis

    International Nuclear Information System (INIS)

    Park, Soo Ho; Jung, Woo Jin; Kim, Tae Hwan; Lee, Sang Yong Tom

    2016-01-01

    This paper studies the feasibility of renewable energy as a substitute for nuclear and energy by considering Korean customers' willingness to pay (WTP). For this analysis, we use the contingent valuation method to estimate the WTP of renewable energy, and then estimate its value using ordered logistic regression. To replace nuclear power and fossil energy with renewable energy in Korea, an average household is willing to pay an additional 102,388 Korean Won (KRW) per month (approx. US $85). Therefore, the yearly economic value of renewable energy in Korea is about 19.3 trillion KRW (approx. US $16.1 billion). Considering that power generation with only renewable energy would cost an additional 35 trillion KRW per year, it is economically infeasible for renewable energy to be the sole method of low-carbon energy generation in Korea

  14. Can Renewable Energy Replace Nuclear Power in Korea? An Economic Valuation Analysis

    Directory of Open Access Journals (Sweden)

    Soo-Ho Park

    2016-04-01

    Full Text Available This paper studies the feasibility of renewable energy as a substitute for nuclear and energy by considering Korean customers' willingness to pay (WTP. For this analysis, we use the contingent valuation method to estimate the WTP of renewable energy, and then estimate its value using ordered logistic regression. To replace nuclear power and fossil energy with renewable energy in Korea, an average household is willing to pay an additional 102,388 Korean Won (KRW per month (approx. US $85. Therefore, the yearly economic value of renewable energy in Korea is about 19.3 trillion KRW (approx. US $16.1 billion. Considering that power generation with only renewable energy would cost an additional 35 trillion KRW per year, it is economically infeasible for renewable energy to be the sole method of low-carbon energy generation in Korea.

  15. Can renewable energy replace nuclear power in Korea? An economic valuation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Ho [Korea Institute for Advancement of Technology, Korea Technology Center, Seoul (Korea, Republic of); Jung, Woo Jin [Graduate School of Information, Yonsei University, Seoul (Korea, Republic of); Kim, Tae Hwan; Lee, Sang Yong Tom [School of Business, Hanyang University, Seoul (Korea, Republic of)

    2016-04-15

    This paper studies the feasibility of renewable energy as a substitute for nuclear and energy by considering Korean customers' willingness to pay (WTP). For this analysis, we use the contingent valuation method to estimate the WTP of renewable energy, and then estimate its value using ordered logistic regression. To replace nuclear power and fossil energy with renewable energy in Korea, an average household is willing to pay an additional 102,388 Korean Won (KRW) per month (approx. US $85). Therefore, the yearly economic value of renewable energy in Korea is about 19.3 trillion KRW (approx. US $16.1 billion). Considering that power generation with only renewable energy would cost an additional 35 trillion KRW per year, it is economically infeasible for renewable energy to be the sole method of low-carbon energy generation in Korea.

  16. Efficient and equitable spatial allocation of renewable power plants at the country scale

    Science.gov (United States)

    Drechsler, Martin; Egerer, Jonas; Lange, Martin; Masurowski, Frank; Meyerhoff, Jürgen; Oehlmann, Malte

    2017-09-01

    Globally, the production of renewable energy is undergoing rapid growth. One of the most pressing issues is the appropriate allocation of renewable power plants, as the question of where to produce renewable electricity is highly controversial. Here we explore this issue through analysis of the efficient and equitable spatial allocation of wind turbines and photovoltaic power plants in Germany. We combine multiple methods, including legal analysis, economic and energy modelling, monetary valuation and numerical optimization. We find that minimum distances between renewable power plants and human settlements should be as small as is legally possible. Even small reductions in efficiency lead to large increases in equity. By considering electricity grid expansion costs, we find a more even allocation of power plants across the country than is the case when grid expansion costs are neglected.

  17. A market for renewable energy credits in the Indian power sector

    International Nuclear Information System (INIS)

    Singh, Anoop

    2009-01-01

    Electricity generation from renewable energy sources in India has been promoted through a host of fiscal policies and preferential tariff for electricity produced from the same. The fiscal policies include tax incentives and purchase of electricity generated through renewable energy sources. The enactment of the Electricity Act 2003 (the Act) has lent further support to renewable energy by stipulating purchase of a certain percentage of the power procurement by distribution utilities from renewable energy sources. The renewable portfolio obligation as well as the feed-in tariff for power procurement has been specified by a number of State Electricity Regulatory Commissions (SERCs) for the respective state under their jurisdiction. A feed-in tariff determined through a cost-plus approach under a rate of return framework lacks incentive for cost minimisation and does not encourage optimal utilisation of renewable energy resources in the country. Such regulatory provisions differ across states. The prevalent practice of fixing a renewable portfolio obligation along with cost-based feed-in tariffs disregards economic efficiency. The paper proposes nationally tradable renewable energy credits scheme for achieving the targets set by the respective SERCs as renewable portfolio obligation. This would reduce the cost of compliance to a renewable portfolio obligation, and would encourage efficient resource utilisation and investment in appropriate technologies. The paper highlights its advantages and implementation issues. This paper discusses regulatory developments for promotion of renewable energy in various Indian states. The paper also identifies a number of issues related to regulations concerning renewable portfolio obligation. (author)

  18. Energy Storage Applications in Power Systems with Renewable Energy Generation

    Science.gov (United States)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  19. A Flexible Power Electronics Configuration for Coupling Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    Mattia Filippini

    2015-05-01

    Full Text Available A combination of series, parallel and multilevel power electronics has been investigated as a potential interface for two different types of renewable energy sources and in order to reach higher power levels. Renewable energy sources are typically dispersed in a territory, and sources, like wind and solar, allow small to medium-scale generation of electricity. The configuration investigated in this article aims at adapting the coupling solution to the specific generation characteristics of the renewable energy source to make it fit the electrical network. The configuration consists of a combination of three-phase multilevel converters and single-phase inverters, which are designed to provide flexibility, high power quality and high efficiency. A detailed analysis and simulation is performed to identify the properties in conjunction with the electrical grid requirements and the potential challenges encountered during operation. An optimized operation example of wind generation combined with solar PV generation is presented to exemplify the flexibility and benefits of the proposed configuration.

  20. Power Electronics – Key Technology for Renewable Energy Systems – Status and Future

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng; Ma, Ke

    2013-01-01

    play an essential role. Using highly efficient power electronics in power generation, power transmission/ distribution and end-user application, together with advanced control solutions, can pave the way for renewable energies. In view of this, some of the most emerging renewable energies, e.g. wind......The energy paradigms in many countries (e.g. Germany and Denmark) have experienced a significant change from fossil-based resources to clean renewables in the past few decades. The scenario of highly penetrated renewables is going to be further enhanced. This requires that the production......, distribution and use of the energy should be as technological efficient as possible and incentives to save energy at the end-user should also be streng-thened. In order to realize the transition smoothly and effectively, energy conversion systems, currently based on power electronics technology, will again...

  1. Efficient electrochemical CO2 conversion powered by renewable energy.

    Science.gov (United States)

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient

  2. Renewable power production in a Pan-Caribbean energy grid

    Science.gov (United States)

    Miller, David

    The Small Island Developing States of the Caribbean are victims of geography and geopolitics. Lacking access to large fossil fuel reserves, they are forced to import fuel at prices they have no control over. Renewable energy resources, particularly wind, have the potential to help break the Caribbean dependency on fossil fuels and allow for increased development at the same time. Working from a sustainable development point of view, this project discusses the history of the area, the theoretical background for the idea of large scale renewable power production, the regional initiatives already in place that address both the cost of fossil fuels and the policy hurdles that need to be overcome to assist the region in gaining energy independence. Haiti is highlighted as a special case in the region and the potential use of several renewable resources are discussed, along with a potential business model based on the idea of the Internet. Power storage is covered, specifically the potential of battery operated vehicles to have a positive impact on the Caribbean region and other developing states. The role of government regulation and policy comes into play next, followed by a discussion on the need for developed states to change patterns of behavior in order to achieve sustainability. Finally, nuclear power and liquefied natural gas are reviewed and rejected as power options for the region.

  3. Study the feasibility of hydrogen assisted renewable power for off-grid communities

    International Nuclear Information System (INIS)

    Wu, S.H.; Fleetwood, M.; Roberston, R.; Nielsen, N.

    2004-01-01

    Most Renewable energy sources lack the controllability and availability of conventional fossil fuel-based energy sources and therefore cannot meet load requirements of a community without a backup or storage system. The advances of hydrogen technologies enable these renewable energy options to supply power to remote communities relying on independent sources of electrical and other energy. The hydrogen assisted renewable power (HARP) concept promises to make renewable energy more practical and mainstream through the use of hydrogen based electrical generation systems. The study herein is the first of a multiphase project to investigate the benefits of HARP as an environmentally friendly replacement for diesel in the supply of electricity to off-grid communities and analyse its feasibility and suitability as a back-up power supply. A small-scale pilot project was selected and this study assesses the major elements of a plant required to integrate electrical generation system, hydrogen storage and hydrogen generation into a renewable energy generation system. Based on the available renewable energy profiles, a simulation model was developed to assist in selecting, integrating, and evaluating various configurations and operational scenarios. This paper describes the components of the proposed HARP system as well as its cost, benefits and opportunities for other applications. (author)

  4. Global analysis of a renewable micro hydro power generation plant

    Science.gov (United States)

    Rahman, Md. Shad; Nabil, Imtiaz Muhammed; Alam, M. Mahbubul

    2017-12-01

    Hydroelectric power or Hydropower means the power generated by the help of flowing water with force. It is one the best source of renewable energy in the world. Water evaporates from the earth's surface, forms clouds, precipitates back to earth, and flows toward the ocean. Hydropower is considered a renewable energy resource because it uses the earth's water cycle to generate electricity. As far as Global is concerned, only a small fraction of electricity is generated by hydro-power. The aim of our analysis is to demonstrate and observe the hydropower of the Globe in micro-scale by our experimental setup which is completely new in concept. This paper consists of all the Global and National Scenario of Hydropower. And how we can more emphasize the generation of Hydroelectric power worldwide.

  5. Is the depressive effect of renewables on power prices contagious? A cross border econometric analysis

    International Nuclear Information System (INIS)

    Phan, Sebastien; Roques, Fabien

    2015-04-01

    European power markets have become more integrated and the implementation of market coupling has reinforced the efficiency of cross-border trading. This paper investigates empirically the impact of renewables growth in Germany on German and French power price volatility. We find that renewables depress power prices on average and increase volatility not only domestically but also across borders. We also leverage market resiliency data to investigate the impact of increases in interconnection capacity. We find that power price volatility would decrease in France despite some contagion effects of volatility from German renewables production. Our findings have important policy implications as they demonstrate the need to coordinate cross-border support policies for renewables in order to mitigate the impact of volatility on power prices in coupled power markets. (authors)

  6. A Game Theoretical Approach Based Bidding Strategy Optimization for Power Producers in Power Markets with Renewable Electricity

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-05-01

    Full Text Available In a competitive electricity market with substantial involvement of renewable electricity, maximizing profits by optimizing bidding strategies is crucial to different power producers including conventional power plants and renewable ones. This paper proposes a game-theoretic bidding optimization method based on bi-level programming, where power producers are at the upper level and utility companies are at the lower level. The competition among the multiple power producers is formulated as a non-cooperative game in which bidding curves are their strategies, while uniform clearing pricing is considered for utility companies represented by an independent system operator. Consequently, based on the formulated game model, the bidding strategies for power producers are optimized for the day-ahead market and the intraday market with considering the properties of renewable energy; and the clearing pricing for the utility companies, with respect to the power quantity from different power producers, is optimized simultaneously. Furthermore, a distributed algorithm is provided to search the solution of the generalized Nash equilibrium. Finally, simulation results were performed and discussed to verify the feasibility and effectiveness of the proposed non-cooperative game-based bi-level optimization approach.

  7. Power conversion and control methods for renewable energy sources

    Science.gov (United States)

    Yu, Dachuan

    2005-07-01

    In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.

  8. Risk factors during construction of power plants using renewable energy sources

    Directory of Open Access Journals (Sweden)

    Nefedova Lyudmila Veniaminovna

    2016-12-01

    Full Text Available The authors consider main characteristics of modern development of renewable energy sources (RES. It is dedicated that there are some technical and economic barriers to the widespread use of renewable energy. For example, RES are inconstancy in time and space and have low density of energy flow. High capital intensity and cost price, long-term construction, a considerable degree of different kinds of risk, lack of competitiveness with hydrocarbon species generation in the existing regulatory environment are also inherent to RES. The role of the regulatory framework is shown according to perspective plans of construction of power plants using renewable energy sources. The main requirements which are applied to measures of state support of construction industry of renewable energy development are formulated. Current condition of construction industry of RES in Russia is assessed. The problems of risks which arise during construction of renewable energy facilities according to results of practical use of RES are discussed. And it is rather important to use stage assessment for the construction phase of the project during risk analysis of construction of alternative energy sources. The main groups of RES risks are described. The importance of regulatory and resource risks for effective development of renewable energy in Russia according to the method of strategic planning with the identification of the adverse effects of gradation factors are determined. The analysis of financial risks types and methods of its management during construction power generation projects based on different types of renewable energy resources are made. In the end of the article the authors make a conclusion, that the development of projects for the construction of power plants with the use of innovative technical solutions to ensure minimal risks to the environment and safe operation in various climatic conditions is a priority.

  9. Distributed renewable power from biomass and other waste fuels

    Science.gov (United States)

    Lyons, Chris

    2012-03-01

    The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.

  10. Perspectives on renewable energy and Village Power

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A.R.

    1997-12-01

    The author provides a brief overview of the role the Department of Energy has been playing in the area of renewable energy sources and their applications at a village level. Energy demand is rising sharply, and shortages are becoming more acute. Developing countries will present a large demand, and market opportunity over the next 40 years. Environmental concerns are a factor in the choice for what sources to promote and develop. The author touches on the features of renewable sources which makes them attractive to DOE for some applications, and what the goals of the department are in supporting this technology. Examples of applications at the level of village power are presented for both the US and abroad.

  11. Atmospheric Renewable Energy Research, Volume 3: Solar-Power Microgrids and Atmospheric Influences

    Science.gov (United States)

    2016-09-01

    1.2 DOD Renewable Energy Applications 1 1.3 Atmospheric Renewable Energy Research Strategy 2 1.4 Microgrid Definitions 3 1.4.1 Mobile Microgrid 4...1.4.2 Hybrid Microgrid 4 1.4.3 Smart Microgrid 4 1.5 Long-Term Atmospheric Renewable Energy Research Vision 5 2. Atmospheric Dependencies 5 2.1...developed-for-Army “ smart ” mobile hybrid microgrid that will incorporate both traditional and renewable energy power resources. A significant

  12. Use a renewable energy sources and latest power-saving technologies in the the Republic Kazakstan

    International Nuclear Information System (INIS)

    Gulevich, N.V.

    1996-01-01

    The subject of alternative power in Kazakstan is brought up. Wind-, hydro-, solar power, biogas installation can improve the Republic power base. The main directions of activity of A. Einstein International Power engineering Academy on involving renewable energy sources and latest power-saving technologies to Republic of Kazakstan's fuel-power balance is given. It should be noted that renewable power engineering usually handles reversible energy sources and reserved power cycles. (author)

  13. Colorado's Prospects for Interstate Commerce in Renewable Power

    Energy Technology Data Exchange (ETDEWEB)

    Hurlbut, D. J.

    2009-12-01

    Colorado has more renewable energy potential than it is ever likely to need for its own in-state electricity consumption. Such abundance may suggest an opportunity for the state to sell renewable power elsewhere, but Colorado faces considerable competition from other western states that may have better resources and easier access to key markets on the West Coast. This report examines factors that will be important to the development of interstate commerce for electricity generated from renewable resources. It examines market fundamentals in a regional context, and then looks at the implications for Colorado.

  14. Modeling a power-to-renewable methane system for an assessment of power grid balancing options in the Baltic States’ region

    International Nuclear Information System (INIS)

    Zoss, Toms; Dace, Elina; Blumberga, Dagnija

    2016-01-01

    Highlights: • A mathematical modeling framework developed for assessing power-to-methane systems. • An integrated system of wind power, electrolysis, biogas and methanation assessed. • Power system is more stable with methanizing biogas with H_2 from excess wind power. • Accumulation of H_2 limits production of renewable methane. • Large potential for wind power development in the Baltic States. - Abstract: The explicit tendency to increase the power generation from stochastic renewable resources forces to look for technological solutions of energy management and storage. In the recent years, the concept of power-to-gas, where the excess energy is converted into hydrogen and/or further methanized into renewable methane, is gaining high popularity among researchers. In this study, we assess the power-to-renewable methane system as the potential technology for power grid balancing. For the assessment, a mathematical model has been developed that assists in understanding of whether a power-to-renewable methane system can be developed in a region with specific installed and planned capacities of wind energy and biogas plants. Considering the varying amount of excess power available for H_2 production and the varying biogas quality, the aim of the model is to simulate the system to determine, if wind power generation meets the needs of biogas plants for storing the excess energy in the form of methane via the methanation process. For the case study, the Baltic States (Estonia, Latvia, and Lithuania) have been selected, as the region is characterized by high dependence on fossil energy sources and electricity import. The results show that with the wind power produced in the region it would be possible to increase the average CH_4 content in the methanized biogas by up to 48.4%. Yet, even with a positive H_2 net production rate, not in all cases the maximum possible quality of the renewable methane would be achieved, as at moments the necessary amount of H_2 for

  15. Risoe energy report 5. Renewable energy for power and transport

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2006-11-15

    The global energy policy scene today is dominated by three concerns, namely security of supply, climate change and energy for development and poverty alleviation. This is the starting point for Risoe Energy Report 5 that addresses status and trends in renewable energy, and gives an overview of global driving forces for transformation of the energy systems in the light of security of supply, climate change and economic growth. More specifically status and trends in renewable energy technologies, for broader applications in off grid power production (and heat) will be discussed. Furthermore the report will address wider introduction of renewable energy in the transport sector, for example renewable based fuels, hybrid vehicles, electric vehicles and fuel cell driven vehicles. (au)

  16. Risoe energy report 5. Renewable energy for power and transport

    International Nuclear Information System (INIS)

    Larsen, Hans; Soenderberg Petersen, L.

    2006-11-01

    The global energy policy scene today is dominated by three concerns, namely security of supply, climate change and energy for development and poverty alleviation. This is the starting point for Risoe Energy Report 5 that addresses status and trends in renewable energy, and gives an overview of global driving forces for transformation of the energy systems in the light of security of supply, climate change and economic growth. More specifically status and trends in renewable energy technologies, for broader applications in off grid power production (and heat) will be discussed. Furthermore the report will address wider introduction of renewable energy in the transport sector, for example renewable based fuels, hybrid vehicles, electric vehicles and fuel cell driven vehicles. (au)

  17. Power flow modelling in electric networks with renewable energy sources in large areas

    International Nuclear Information System (INIS)

    Buhawa, Z. M.; Dvorsky, E.

    2012-01-01

    In many worlds regions there is a great potential for utilizing home grid connected renewable power generating systems, with capacities of MW thousands. The optimal utilization of these sources is connected with power flow possibilities trough the power network in which they have to be connected. There is necessary to respect the long distances among the electric power sources with great outputs and power consumption and non even distribution of the power sources as well. The article gives the solution possibilities for Libya region under utilization of wind renewable sources in north in shore regions. (Authors)

  18. Urges use of renewable energy sources to generate electric power

    International Nuclear Information System (INIS)

    Santizo, Rodolfo

    2001-01-01

    The article discusses the following issues of generation of electric power through renewable energy sources like geothermal and wind energy. The author that is the actual Deputy Minister of Energy and Mines explains the needs of Guatemala in the sector of energy in promoting the renewable energy sources such as wind and geothermal energy because Guatemala has a potential generation by this sources

  19. 78 FR 37281 - Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating Licenses

    Science.gov (United States)

    2013-06-20

    ... factors: (1) License renewal will involve nuclear power plants for which the environmental impacts of...) Changes in the environment around nuclear power plants are gradual and predictable. The 1996 GEIS improved... environmental impacts that may occur from renewing commercial nuclear power plant operating licenses; (2...

  20. 78 FR 37325 - License Renewal of Nuclear Power Plants; Generic Environmental Impact Statement and Standard...

    Science.gov (United States)

    2013-06-20

    ... Nuclear Power Plants; Generic Environmental Impact Statement and Standard Review Plans for Environmental... for Nuclear Power Plants, Supplement 1: Operating License Renewal'' (ESRP). The ESRP serves as a guide... published a final rule, ``Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating...

  1. Proceedings of the APPrO 2006 18. annual Canadian power conference and trade show : Green Power Conference : Canada's leading renewable energy conference

    International Nuclear Information System (INIS)

    Brooks, J.

    2007-01-01

    This conference provided a forum for members of the Association of Power Producers of Ontario to discuss recent developments in renewable energy and the electric power industry. An overview of Ontario's renewable standard offer program was provided. Members of the conference also discussed case studies of Ontario renewable energy projects including micro-hydro; anaerobic digesters; stand-alone wind power; and solar energy. The economics of wind power were discussed, and current capital costs for renewable energy technology projects were reviewed. Other topics included the use of base-load nuclear and hydro-electricity; the closing down of coal-fired generation; the integration of wind power; and natural gas and cogeneration. Issues related to interconnected power supplies were also reviewed. Discussions were divided into 5 topics : (1) an introduction to the standard offer program; (2) provincial procurement of green power; (3) case studies of stand-alone project; (4) distributed generation and the standard offer process; and distribution approval and connection issues. refs., tabs., figs

  2. Coastal Freshening Prevents Fjord Bottom Water Renewal in Northeast Greenland: A Mooring Study From 2003 to 2015

    Science.gov (United States)

    Boone, Wieter; Rysgaard, Søren; Carlson, Daniel F.; Meire, Lorenz; Kirillov, Sergei; Mortensen, John; Dmitrenko, Igor; Vergeynst, Leendert; Sejr, Mikael K.

    2018-03-01

    The freshwater content of the Arctic Ocean and its bordering seas has recently increased. Observing freshening events is an important step toward identifying the drivers and understanding the effects of freshening on ocean circulation and marine ecosystems. Here we present a 13 year (2003-2015) record of temperature and salinity in Young Sound-Tyrolerfjord (74°N) in Northeast Greenland. Our observations show that strong freshening occurred from August 2005 to August 2007 (-0.92 psu or -0.46 psu yr-1) and from August 2009 to August 2013 (-0.66 psu or -0.17 psu yr-1). Furthermore, temperature-salinity analysis from 2004 to 2014 shows that freshening of the coastal water ( range at sill depth: 33.3 psu in 2005 to 31.4 psu in 2007) prevented renewal of the fjord's bottom water. These data provide critical observations of interannual freshening rates in a remote fjord in Greenland and in the adjacent coastal waters and show that coastal freshening impacts the fjord hydrography, which may impact the ecosystem dynamics in the long term.

  3. Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems

    DEFF Research Database (Denmark)

    Gandoman, Foad H.; Ahmadi, Abdollah; Sharaf, Adel M.

    2018-01-01

    In the last two decades, emerging use of renewable and distributed energy sources in electricity grid has created new challenges for the utility regarding the power quality, voltage stabilization and efficient energy utilization. Power electronic converters are extensively utilized to interface...... the power quality. Also, distributed FACTSs play an important role in improving the power factor, energy utilization, enhancing the power quality, and ensuring efficient energy utilization and energy management in smart grids with renewable energy sources. This paper presents a literature survey of FACTS...... technology tools and applications for power quality and efficient renewable energy system utilization....

  4. Renewable energy and power cooperation between China and six Latin American nations

    Science.gov (United States)

    Xie, Yuetao; Yan, Bingzhong; Zhou, Shichun

    2018-02-01

    China has been entitled the biggest supplier and largest market of renewable energy for the past few years. With One Belt and One Road initiative carrying on, the China’s renewable energy industry is looking for opportunities across the world. Latin America, which has rich renewable energy resources and urge demand for a cleaner and more sustainable energy system, may become an important target market for China. The prospect and potential of renewable energy cooperation between China and Latin America are promising. In this paper, six Latin American nations of varied background were selected as study cases. Their nation profile, energy resources, power market, and energy development trends were analysed, and the cooperation prospect and potential between these nations and China in renewable energy sector were discussed. The results indicate that Argentina and Bolivia are most potential cooperation partners, and project development and equipment manufacturing of non-hydro renewable energy, along with power grid upgrading are the prioritized areas. In addition, recommendations and solutions addressing the issues and challenges incurred in the current bilateral energy cooperation between China and Latin American nations were proposed.

  5. Stability Enhancement of a Power System Containing High-Penetration Intermittent Renewable Generation

    OpenAIRE

    Morel, Jorge; Obara, Shin’ya; Morizane, Yuta

    2015-01-01

    This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to...

  6. Research on hybrid transmission mode for HVDC with optimal thermal power and renewable energy combination

    Science.gov (United States)

    Zhang, Jinfang; Yan, Xiaoqing; Wang, Hongfu

    2018-02-01

    With the rapid development of renewable energy in Northwest China, curtailment phenomena is becoming more and more serve owing to lack of adjustment ability and enough transmission capacity. Based on the existing HVDC projects, exploring the hybrid transmission mode associated with thermal power and renewable power will be necessary and important. This paper has proposed a method on optimal thermal power and renewable energy combination for HVDC lines, based on multi-scheme comparison. Having established the mathematic model for electric power balance in time series mode, ten different schemes have been picked for figuring out the suitable one by test simulation. By the proposed related discriminated principle, including generation device utilization hours, renewable energy electricity proportion and curtailment level, the recommendation scheme has been found. The result has also validated the efficiency of the method.

  7. Nuclear power : decline, prolongation or renewal?

    International Nuclear Information System (INIS)

    Goldberg, Nicolas

    2014-01-01

    In an international context still under the shock of Fukushima, and at a time when France is committed to an energy transition, the details of which still have to be decided, the future of nuclear power in the world is provoking intense and contradictory debate. What to expert: a decline, business as usual, or a renewal of the sector throughout its value chain? Some answers are to be found in an analysis by Colombus Consulting. (author)

  8. Renewable energy resources and technologies practice in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Rofiqul Islam, M.; Rafiqul Alam Beg, M. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Rabiul Islam, M. [Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh)

    2008-02-15

    decade have led to a start of large-scale utilization of PV (solar photovoltaic) by various organizations and by NGOs. More than 61,500 solar PV systems of a total capacity around 3 MW and 260 hot box cookers have been installed all over the country mainly in off-grid rural, hill tracks and coastal Bangladesh. Kaptai hydroelectric power plant is the only one renewable energy power generation plant of the country that is generating 3.28% of total 3651.20 MW. The first micro hydropower unit of 10 kW has been installed in a village of Bandarban through private initiatives. The project is providing electricity to 140 families in the village and to a Buddhist Temple. The annual wind speed at a height of 25 m at some coastal locations is above 4 m/s and much higher in the pre-monsoon and monsoon periods. The sites are suitable for power generation, particularly using PV or diesel hybrid technique for winter months. (author)

  9. Ecological aspects of nuclear power plants in coastal environment

    International Nuclear Information System (INIS)

    Lebreton, P.

    1976-01-01

    A review is presented about ecological effects of giant nuclear Power Plants (ca. 5,000 MWe) on coastal environment. From short to long time, the problems concern the following points of view: - physical: (sitology; necessity of ecological mapping); - mechanical: (the cooling systems. 'Courantology'. Disturbance of marine micro- and macro-organisms); - thermal: (the heated discharges; thermal pollution. Effects on dissolved chemicals and marine organisms. Acquaculture and its limits); - chemical and radiochemical: (synergistic pollutions. Chlorine vs. fouling. Acute or chronic radioactive effluents; concentration by food chains). The conclusions emphasize the necessity of 'pluridisciplinarity' and 'zero-point' definition. Three ecological categories can be distinguished on the basis of water physical turn-over; to this categories correspond various standards and recommandations for management of nuclear Power Plants in coastal zones [fr

  10. An overview of renewable energy in Spain. The small hydro-power case

    International Nuclear Information System (INIS)

    Montes, G.M.; Lopez, M. del Mar Serrano; Gamez, M. del Carmen Rubio; Ondina, A.M.

    2005-01-01

    Development of hydroelectric energy, a renewable source of power, is guaranteed and maintained by the Plan of Promotion of the Renewable Energies 1999-2010 (PLAFER). This is arrived at by means of a definition and establishment of a series of power objectives in which an increase in the hydroelectric sector in anticipated. This study corresponds to a revision of the present situation of the mini-hydraulic energy, it is expected of evolution, and development in Spain. (author)

  11. An overview of renewable energy in Spain. The small hydro-power case

    Energy Technology Data Exchange (ETDEWEB)

    Montes, G.M. [Universidad de Granada (Spain). Departamento de Ingenieria Civil; Lopez, M. del Mar Serrano [Institute for the Diversification and Saving of the Energy, Madrid (Spain). Hydroelectric Department; Gamez, M. del Carmen Rubio; Ondina, A.M. [Universidad de Granada (Spain). Departamento de Ingenieria Civil, Ingenieria de la Construccion

    2005-10-01

    Development of hydroelectric energy, a renewable source of power, is guaranteed and maintained by the Plan of Promotion of the Renewable Energies 1999-2010 (PLAFER). This is arrived at by means of a definition and establishment of a series of power objectives in which an increase in the hydroelectric sector in anticipated. This study corresponds to a revision of the present situation of the mini-hydraulic energy, it is expected of evolution, and development in Spain. (author)

  12. Prices vs. quantities. Incentives for renewable power generation. Numerical analysis for the European power market

    Energy Technology Data Exchange (ETDEWEB)

    Nagl, Stephan

    2013-02-15

    In recent years, many countries have implemented policies to incentivize renewable power generation. This paper outlines the effects of weather uncertainty on investment and operation decisions of electricity producers under a feed-in tariff and renewable quota obligation. Furthermore, this paper tries to quantify the sectoral welfare and investments risks under the different policies. For this purpose, a spatial stochastic equilibrium model is introduced for the European electricity market. The numerical analysis suggests that including the electricity market price in renewable policies (wholesale price + x) reduces the loss of sectoral welfare due to a renewable policy by 11-20 %. Moreover, investors face an only slightly higher risk than under fixed price compensations. However, electricity producers face a substantially larger investment risk when introducing a renewable quota obligation without the option of banking and borrowing of green certificates. Given the scenario results, an integration of the hourly market price in renewable support mechanisms is mandatory to keep the financial burden to electricity consumers at a minimum. Additionally, following the discussion of a European renewable quota after 2020, the analysis indicates the importance of an appropriate banking and borrowing mechanism in light of stochastic wind and solar generation.

  13. RENEWABLE ENERGY SOURCES IN ELECTRIC-POWER IN-DUSTRY OF BELARUS

    Directory of Open Access Journals (Sweden)

    M. M. Oleshkevich

    2014-01-01

    Full Text Available The paper investigates technical and economic indices (specific capital inputs, construction period, pay-off period, possible economically substantiated generation of electric power of electric power plants using renewable energy sources under climatic conditions ofBelarus. The indices have been compared with the data of nuclear power engineering. The most efficient directions are wind and biomass power engineering. In accordance with its technical and economic and ecological indices the biomass power engineering is more profitable than nuclear, hydro- and solar power engineering.

  14. Can Australia Power the Energy-Hungry Asia with Renewable Energy?

    Directory of Open Access Journals (Sweden)

    Ashish Gulagi

    2017-02-01

    Full Text Available The Paris Agreement points out that countries need to shift away from the existing fossil-fuel-based energy system to limit the average temperature rise to 1.5 or 2 °C. A cost-optimal 100% renewable energy based system is simulated for East Asia for the year 2030, covering demand by power, desalination, and industrial gas sectors on an hourly basis for an entire year. East Asia was divided into 20 sub-regions and four different scenarios were set up based on the level of high voltage grid connection, and additional demand sectors: power, desalination, industrial gas, and a renewable-energy-based synthetic natural gas (RE-SNG trading between regions. The integrated RE-SNG scenario gives the lowest cost of electricity (€52/MWh and the lowest total annual cost of the system. Results contradict the notion that long-distance power lines could be beneficial to utilize the abundant solar and wind resources in Australia for East Asia. However, Australia could become a liquefaction hub for exporting RE-SNG to Asia and a 100% renewable energy system could be a reality in East Asia with the cost assumptions used. This may also be more cost-competitive than nuclear and fossil fuel carbon capture and storage alternatives.

  15. Power Electronics – The Key Technology for Renewable Energy System Integration

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng; Ma, Ke

    2015-01-01

    The energy paradigms in many countries (e.g. Germany and Denmark) have experienced a significant change from fossil-based resources to clean renewables (e.g. wind turbines and photovoltaics) in the past few decades. The scenario of highly penetrated renewables is going to be further enhanced...... – Denmark expects to be 100 % fossil-free by 2050. Consequently, it is required that the production, distribution and use of the energy should be as technologically efficient as possible and incentives to save energy at the end-user should also be strengthened. In order to realize the transition smoothly...... and effectively, energy conversion systems, currently based on power electronics technology, will again play an essential role in this energy paradigm shift. Using highly efficient power electronics in power generation, power transmission/distribution and end-user application, together with advanced control...

  16. Management of a power system based on renewable energy

    Directory of Open Access Journals (Sweden)

    Ronay Karoly

    2012-06-01

    Full Text Available This article main purpose is to highlight the main advantage of the hardware and software implementation for an energy management system based on renewable energy sources. By using implemented and dedicated hardware and software the evolution of energy production and consumption can be monitored. The advantages of such system are highlighted by the results obtained from experimental simulations. An experimental model for the power system based on renewable energy sources was implemented, where the actual status of the system in different situations when the equipments change their own statuses can be shown.

  17. A 100% renewable power system for Europe - Let the weather and physics decide!

    DEFF Research Database (Denmark)

    Greiner, Martin; Heide, Dominik; Rasmussen, Morten Grud

    The design of sustainable energy systems is no longer only the domain of politics, economics and engineering. Mathematical physics is able to contribute with its generic understanding of everything. A new modeling approach is presented and applied to design a fully renewable European power system....... This approach is based on weather data with good spatio-temporal resolution, which is first converted into wind and solar power generation and then used to derive estimates on the optimal mix between the renewable resources and the storage needs.......The design of sustainable energy systems is no longer only the domain of politics, economics and engineering. Mathematical physics is able to contribute with its generic understanding of everything. A new modeling approach is presented and applied to design a fully renewable European power system...

  18. Renewable enthusiasm

    International Nuclear Information System (INIS)

    Duffin, Tony

    2000-01-01

    A reduction in energy consumption by the energy intensive sectors will be rewarded by a tax credit. The advantages of renewable sources of energy in terms of reducing emissions of carbon dioxide are extolled. The Government will reward the use of renewables through exemption from the Climate Change Levy. Many major companies are now committed to renewables and Shell predict that 50% of world energy will come from renewables by 2050. World-wide there is now 10,000 MW of installed wind power and the annual rate of growth is more than 20%. Other renewables such as biomass, energy from waste, solar power, hydropower, wind power and tidal power are discussed. The Government would like to see 10% of the UK's electricity coming from renewables by 2010. (UK)

  19. Large scale renewable power generation advances in technologies for generation, transmission and storage

    CERN Document Server

    Hossain, Jahangir

    2014-01-01

    This book focuses on the issues of integrating large-scale renewable power generation into existing grids. It includes a new protection technique for renewable generators along with the inclusion of current status of smart grid.

  20. Current status and analysis of renewable promotional policies in Indian restructured power sector - A review

    International Nuclear Information System (INIS)

    Singh, Randhir; Sood, Yog Raj

    2011-01-01

    Restructuring has changed the traditional mission and mandates of power utilities in complex ways, and had large impacts on environmental, social, and political conditions for any particular country. At the same time, new regulatory approaches are being found for reducing environmental impacts in restructured power sectors. India has a vast supply of renewable energy resources, and it has one of the largest programs in the world for deploying renewable energy based products and systems. So this paper attempts to review the various policies and measures undertaken by Indian government for promotion of renewable energy. The aim of this paper is also to review the current policy mechanisms, especially investment- or generation-based price-driven and capacity-driven mechanisms, ranging from investment incentives for the development of renewable energy projects, feed-in tariffs, production tax incentives, tradable green certificates, and their effects upon the prospects of encouraging as well as expanding the development of renewable energy in Indian restructured power sector. This will make renewable more attractive in the Indian future electricity market. (author)

  1. Passivity Enhancement in Renewable Energy Source Based Power Plant With Paralleled Grid-Connected VSIs

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Harmonic instability is threatening the operation of renewable energy based power plants where multiple gridconnected VSIs are connected in parallel. To analyze and improve the stability of the grid-connected VSIs, the real part of the output admittance of the VSIs is first investigated......-connected VSIs can improve the stability of the renewable power plant....

  2. Stability Enhancement of a Power System Containing High-Penetration Intermittent Renewable Generation

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2015-06-01

    Full Text Available This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to a reduction in the total inertia of the system because renewable generators are connected to the grid by power converters, and transient stability becomes a significant issue. Simulation results show that sodium-sulfur batteries can keep the system in operation and stable after strong transient disturbances, especially for an isolated system. The results also show how the reduction of the inertia in the system can be mitigated by exploiting the kinetic energy of wind turbines.

  3. 78 FR 46255 - Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction

    Science.gov (United States)

    2013-07-31

    ... Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction AGENCY: Nuclear... nuclear power plant. Compliance with the provisions of the rule is required by June 20, 2014. This... environmental effect of renewing the operating license of a nuclear power plant. This document is necessary to...

  4. Interregional power transmission: a component in planning for renewable energy technologies

    International Nuclear Information System (INIS)

    Krueger Nielsen, S.; Soerensen, B.

    2000-01-01

    We discuss the role played by interregional power transmission on the basis of recent scenario work. In a project dealing with long-term planning for energy efficiency and renewable energy in Europe we modelled a scenario for the present 15 EU countries' energy system in 2050. The basis for the scenario is the concept of 'fair pricing' for energy services, meaning that the price of energy should reflect all externalities, but not otherwise be taxed or subsidized. The project assessed resource availability and expected technology price developments over time for a number of energy-related technologies, both on the supply side, the intermediate conversion chain and on the demand side. Among these, transmission technologies play an important role, both in smoothing out renewable energy supplies within the European Union region, and also allowing substantial import of energy from countries outside the EU having a surplus of renewable energy based power. (orig.)

  5. Switch: a planning tool for power systems with large shares of intermittent renewable energy.

    Science.gov (United States)

    Fripp, Matthias

    2012-06-05

    Wind and solar power are highly variable, so it is it unclear how large a role they can play in future power systems. This work introduces a new open-source electricity planning model--Switch--that identifies the least-cost strategy for using renewable and conventional generators and transmission in a large power system over a multidecade period. Switch includes an unprecedented amount of spatial and temporal detail, making it possible to address a new type of question about the optimal design and operation of power systems with large amounts of renewable power. A case study of California for 2012-2027 finds that there is no maximum possible penetration of wind and solar power--these resources could potentially be used to reduce emissions 90% or more below 1990 levels without reducing reliability or severely raising the cost of electricity. This work also finds that policies that encourage customers to shift electricity demand to times when renewable power is most abundant (e.g., well-timed charging of electric vehicles) could make it possible to achieve radical emission reductions at moderate costs.

  6. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Interim Report 1

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, Stanton W [ORNL; Key, Thomas S [Electric Power Research Institute (EPRI)

    2009-03-01

    The power transfer potential for bringing renewable energy into the Southeast in response to a renewable portfolio standard (RPS) will depend not only on available transmission capacity but also on electricity supply and demand factors. This interim report examines how the commonly used EIA NEMS and EPRI NESSIE energy equilibrium models are considering such power transfers. Using regional estimates of capacity expansion and demand, a base case for 2008, 2020 and 2030 are compared relative to generation mix, renewable deployments, planned power transfers, and meeting RPS goals. The needed amounts of regional renewable energy to comply with possible RPS levels are compared to inter-regional transmission capacities to establish a baseline available for import into the Southeast and other regions. Gaps in the renewable generation available to meet RPS requirements are calculated. The initial finding is that the physical capability for transferring renewable energy into the SE is only about 10% of what would be required to meet a 20% RPS. Issues that need to be addressed in future tasks with respect to modeling are the current limitations for expanding renewable capacity and generation in one region to meet the demand in another and the details on transmission corridors required to deliver the power.

  7. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    Science.gov (United States)

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  8. The Role of License Renewal in PLiM for U.S. Nuclear Power Plants

    International Nuclear Information System (INIS)

    Young, G.G.

    2012-01-01

    At the 2nd International Symposium on Nuclear Power Plant Life Management (PLiM) in 2007, it was reported that the NRC had approved renewal of operating licenses for 48 nuclear units, which would allow operation for up to 60 years (i.e., an additional 20 years from the original 40-year license term). Of the 104 operating nuclear units in the U.S. in 2007, it was anticipated that almost 100% would eventually pursue license renewal. At that time, it was also concluded that the regulatory process was stable and predictable for license renewal, and that successful PLiM activities were helping to ensure the safety, economic, and political factors in the U.S. remained favorable for continued success with license renewal. The status of license renewal in 2012 is even better than it was in 2007. As of April 2012, the NRC has approved renewal of the operating licenses for 71 nuclear units and has applications under review for 15 more units. In addition, nuclear plant owners of at least 14 more units have announced plans to submit license renewal applications over the next few years. This brings the total of renewed licenses and announced plans for license renewal to 96% of the 104 currently operating nuclear units in the U.S. The prediction that almost 100% would eventually pursue license renewal is assured. This positive trend for long term operation of nuclear power plants in the U.S. is attributed to: (1) the success of PLiM activities in achieving an excellent safety record for the nuclear power industry and in ensuring on-going positive economics for nuclear plant operation, and (2) the stable and predictable regulatory process for license renewal. U.S. efforts are now underway to consider long term operation for more than 60 years and the process of preparing a second round of license renewals for up to 80 years of operation is likely to begin within the next few years. (author)

  9. Power in the loop real time simulation platform for renewable energy generation

    Science.gov (United States)

    Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing

    2018-02-01

    Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.

  10. 77 FR 34093 - License Renewal for Calvert Cliffs Nuclear Power Plant, LLC's

    Science.gov (United States)

    2012-06-08

    ... Nuclear Power Plant, LLC's AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... Spent Fuel Storage Installation (ISFSI) at the Calvert Cliffs Nuclear Power Plant site near Lusby... Cliffs Nuclear Power Plant, LLC (CCNPP) submitted an application to the NRC to renew NRC License SNM-2505...

  11. Quantifying the Impacts of Large Scale Integration of Renewables in Indian Power Sector

    Science.gov (United States)

    Kumar, P.; Mishra, T.; Banerjee, R.

    2017-12-01

    India's power sector is responsible for nearly 37 percent of India's greenhouse gas emissions. For a fast emerging economy like India whose population and energy consumption are poised to rise rapidly in the coming decades, renewable energy can play a vital role in decarbonizing power sector. In this context, India has targeted 33-35 percent emission intensity reduction (with respect to 2005 levels) along with large scale renewable energy targets (100GW solar, 60GW wind, and 10GW biomass energy by 2022) in INDCs submitted at Paris agreement. But large scale integration of renewable energy is a complex process which faces a number of problems like capital intensiveness, matching intermittent loads with least storage capacity and reliability. In this context, this study attempts to assess the technical feasibility of integrating renewables into Indian electricity mix by 2022 and analyze its implications on power sector operations. This study uses TIMES, a bottom up energy optimization model with unit commitment and dispatch features. We model coal and gas fired units discretely with region-wise representation of wind and solar resources. The dispatch features are used for operational analysis of power plant units under ramp rate and minimum generation constraints. The study analyzes India's electricity sector transition for the year 2022 with three scenarios. The base case scenario (no RE addition) along with INDC scenario (with 100GW solar, 60GW wind, 10GW biomass) and low RE scenario (50GW solar, 30GW wind) have been created to analyze the implications of large scale integration of variable renewable energy. The results provide us insights on trade-offs involved in achieving mitigation targets and investment decisions involved. The study also examines operational reliability and flexibility requirements of the system for integrating renewables.

  12. Autonomous hydrogen power plants with renewable energy sources

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.; Shpil'rajn, Eh.Eh.; Izosimov, D.B.; Tumanov, V.L.

    2006-01-01

    One studies the principles to design independent hydrogen power plants (IHPP) operating on renewable energy sources and the approaches to design a pilot IHP plant. One worded tasks of mathematical simulation and of calculations to substantiate the optimal configuration of the mentioned plants depending on the ambient conditions of operation and on peculiar features of a consumer [ru

  13. Renewable energy off-grid power systems: options for energy suppliers

    International Nuclear Information System (INIS)

    Trouchet, K.

    1992-01-01

    SURVIVOR ENERGY SYSTEMS package a range of wind-based renewable energy systems for the supply of 24-hour power to off-grid homesteads and communities. This paper presents a leasing package for these power users and illustrates their cost effectiveness in comparison with stand-alone diesel and comparative hybrid power options. This offer is seen as a alternative for energy planners and supply agencies for their off-grid clients. 6 refs., 3 tabs., 3 figs

  14. Renewable energy distributed power system with photovoltaic/ thermal and bio gas power generators

    International Nuclear Information System (INIS)

    Haider, M.U.; Rehman, S.U.

    2011-01-01

    The energy shortage and environmental pollution is becoming an important problem in these days. Hence it is very much important to use renewable power technologies to get rid of these problems. The important renewable energy sources are Bio-Energy, Wind Energy, Hydrogen Energy, Tide Energy, Terrestrial Heat Energy, Solar Energy, Thermal Energy and so on. Pakistan is rich in all these aspects particularly in Solar and Thermal Energies. In major areas of Pakistan like in South Punjab, Sind and Baluchistan the weather condition are very friendly for these types of Renewable Energies. In these areas Solar Energy can be utilized by solar panels in conjunction with thermal panels. The Photovoltaic cells are used to convert Solar Energy directly to Electrical Energy and thermal panels can be uses to convert solar energy into heat energy and this heat energy will be used to drive some turbine to get Electrical Energy. The Solar Energy can be absorbed more efficiently by any given area of Solar Panel if these two technologies can be combined in such a way that they can work together. The first part of this paper shows that how these technologies can be combined. Furthermore it is known to all that photovoltaic/thermal panels depend entirely on weather conditions. So in order to maintain constant power a biogas generator is used in conjunction with these. (author)

  15. Pioneering developments of marine renewable energy in Australia

    Directory of Open Access Journals (Sweden)

    Richard Manasseh

    2017-04-01

    Full Text Available The history of ocean renewable energy developments in Australia is reviewed. A layperson’s description of the physical operating principle is given for the main classes of technology that have been tested in Australian waters. The Australian marine domain possesses among the world’s most energetic wave-energy resources, driven by powerful mid-latitude westerly winds. The northern coast of Western Australia has tidal ranges significant on a global scale, and some geographical features around the continent have local tidal resonances. The East Australian Current, one of the world’s major western boundary currents, runs along the eastern Australian seaboard, offering potential for ocean-current energy. Sea-water temperatures in the tropical north-east of Australia may permit ocean thermal energy conversion. While this abundance of resources makes Australia an ideal location for technology development, the population is highly concentrated in a few large cities, and transmission infrastructure has developed over a century to supply cities from traditional power plants. Several wave-power developments have resulted in demonstration of deployments in Australian waters, three of which have been grid connected. Trials of tidal devices have also occurred, while other classes of ocean renewable energy have not yet been trialled. The prospects for marine renewable energy in Australia are discussed including non-traditional applications such as coastal protection and energy export.

  16. Jet stream wind power as a renewable energy resource: little power, big impacts

    Directory of Open Access Journals (Sweden)

    L. M. Miller

    2011-11-01

    Full Text Available Jet streams are regions of sustained high wind speeds in the upper atmosphere and are seen by some as a substantial renewable energy resource. However, jet streams are nearly geostrophic flow, that is, they result from the balance between the pressure gradient and Coriolis force in the near absence of friction. Therefore, jet stream motion is associated with very small generation rates of kinetic energy to maintain the high wind velocities, and it is this generation rate that will ultimately limit the potential use of jet streams as a renewable energy resource. Here we estimate the maximum limit of jet stream wind power by considering extraction of kinetic energy as a term in the free energy balance of kinetic energy that describes the generation, depletion, and extraction of kinetic energy. We use this balance as the basis to quantify the maximum limit of how much kinetic energy can be extracted sustainably from the jet streams of the global atmosphere as well as the potential climatic impacts of its use. We first use a simple thought experiment of geostrophic flow to demonstrate why the high wind velocities of the jet streams are not associated with a high potential for renewable energy generation. We then use an atmospheric general circulation model to estimate that the maximum sustainable extraction from jet streams of the global atmosphere is about 7.5 TW. This estimate is about 200-times less than previous estimates and is due to the fact that the common expression for instantaneous wind power 12 ρv3 merely characterizes the transport of kinetic energy by the flow, but not the generation rate of kinetic energy. We also find that when maximum wind power is extracted from the jet streams, it results in significant

  17. Hot Thermal Storage in a Variable Power, Renewable Energy System

    Science.gov (United States)

    2014-06-01

    where cost effective, increase the utilization of distributed electric power generation through wind, solar, geothermal , and biomass renewable...characteristics and may not necessarily be available in all cases. Types of direct heat energy systems include solar thermal, waste heat, and geothermal ...of super capacitor energy storage system in microgrid,” in International Conference on Sustainable Power Generation and Supply, Janjing, China

  18. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    Science.gov (United States)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  19. The development of renewable energy power in India: Which policies have been effective?

    International Nuclear Information System (INIS)

    Schmid, Gisèle

    2012-01-01

    The International Energy Agency has identified the development of renewable energy sources as a key element to mitigate climate change. At the same time it has projected India to be the second-largest contributor to the increase in global energy demand to 2035. India hence faces a significant challenge to ensure its energy security by diversifying its power generation mix. In the wake of the creation of a Green Climate Fund in Cancun, this paper studies empirically the effect of the introduction of the Electricity Act 2003 and the Tariff Policy 2006, as well as the implementation of feed-in tariffs and minimum quotas on clean electricity sourcing, on the development of grid-connected renewable energy power in nine Indian States over the period 2001–2009. Results suggest that the passing of the Tariff Policy 2006, state-level policies, quantity-based instruments and a greater participation of the private sector have played a key role in promoting the development of installed capacity from renewable energy power in the nine States of the sample. - Highlights: ► First empirical analysis on renewable energy power development in India. ► National and state-level regulation analysis in nine Indian States. ► Use of panel data over the period 2001–2009. ► The Tariff Policy 2006, state-level policies and RPOs have played a key role.

  20. Renewable Energy Zones: Delivering Clean Power to Meet Demand, Greening the Grid

    Energy Technology Data Exchange (ETDEWEB)

    Hurlbut, David; Chernyakhovskiy, Ilya; Cochran, Jaquelin

    2016-05-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document describes the renewable energy zone concept that has emerged as a transmission planning tool to help scale up the penetration of solar, wind, and other resources on the power system.

  1. Design for reliability in power electronics in renewable energy systems – status and future

    DEFF Research Database (Denmark)

    Wang, Huai; Blaabjerg, Frede; Ma, Ke

    2013-01-01

    Advances in power electronics enable efficient and flexible interconnection of renewable sources, loads and electric grids. While targets concerning efficiency of power converters are within reach, recent research endeavors to predict and improve their reliability to ensure high availability, low...... maintenance costs, and herefore, low Levelized-Cost-of-Energy (LCOE) of renewable energy systems. This paper presents the prior-art Design for Reliability (DFR) process for power converters and addresses the paradigm shift to Physics-of-Failure (PoF) approach and mission profile based analysis. Moreover...

  2. Renewable energy utilization and CO2 mitigation in the power sector: A case study in selected GMS countries

    Directory of Open Access Journals (Sweden)

    Kong Pagnarith

    2011-06-01

    Full Text Available Renewable energy is an alternative resource to substitute fossil fuels. Currently, the share of renewable energy inpower generation is very low. The selected Greater Mekong Sub-region (GMS, namely, Cambodia, Laos, Thailand andVietnam is a region having abundant of renewable energy resources. Though these countries have a high potential of renewableenergy utilization, they are still highly dependent on the imported fossil fuels for electricity generation. The less contributionof renewable energy in the power sector in the region is due to the high cost of technologies. Renewable energytechnology cannot compete with the conventional power plant. However, in order to promote renewable energy utilizationand reduce dependency on imported fossil fuel as well as to mitigate CO2 emissions from the power sector, this study introducesfour renewable energy technologies, namely, biomass, wind, solar PV, and geothermal power, for substitution of conventionaltechnologies. To make the renewable energy competitive to the fossil fuels, incentives in terms of carbon credit of20$/ton-ne CO2 are taken into account. Results are analyzed by using the Long-Range Energy Alternative Planning System(LEAP modeling. Results of analyses reveal that in the renewable energy (RE scenario the biomass power, wind, solarphotovoltaics, and geothermal would contribute in electricity supply for 5.47 GW in the region, accounted for 3.5% in 2030.The RE scenario with carbon credits could mitigate CO2 emissions at about 36.0 million tonne at lower system cost whencompared to the business-as-usual scenario.

  3. Overview of village scale, renewable energy powered desalination

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.E.

    1997-04-01

    An overview of desalination technologies is presented, focusing on those technologies appropriate for use in remote villages, and how they can be powered using renewable energy. Technologies are compared on the basis of capital cost, lifecycle cost, operations and maintenance complexity, and energy requirements. Conclusions on the appropriateness of different technologies are drawn, and recommendations for future research are given.

  4. 75 FR 76055 - Nebraska Public Power District Cooper Nuclear Station; Notice of Issuance of Renewed Facility...

    Science.gov (United States)

    2010-12-07

    ... NUCLEAR REGULATORY COMMISSION Docket No. 50-298; NRC-2008-0617] Nebraska Public Power District Cooper Nuclear Station; Notice of Issuance of Renewed Facility Operating License No. DPR-46 for an... Power District (NPPD), the operator of the Cooper Nuclear Station (CNS). Renewed facility operating...

  5. Storage and balancing synergies in a fully or highly renewable pan-European power system

    International Nuclear Information System (INIS)

    Rasmussen, Morten Grud; Andresen, Gorm Bruun; Greiner, Martin

    2012-01-01

    Through a parametric time-series analysis of 8 years of hourly data, we quantify the storage size and balancing energy needs for highly and fully renewable European power systems for different levels and mixes of wind and solar energy. By applying a dispatch strategy that minimizes the balancing energy needs for a given storage size, the interplay between storage and balancing is quantified, providing a hard upper limit on their synergy. An efficient but relatively small storage reduces balancing energy needs significantly due to its influence on intra-day mismatches. Furthermore, we show that combined with a low-efficiency hydrogen storage and a level of balancing equal to what is today provided by storage lakes, it is sufficient to meet the European electricity demand in a fully renewable power system where the average power generation from combined wind and solar exceeds the demand by only a few percent. - Highlights: ► We model a wind and solar based European power system with storage and balancing. ► We find that storage needs peaks when average renewable generation matches load. ► We find strong synergetic effects when combining storage and balancing. ► We study the effects of a storage capable of storing 6 h average use. ► We find a realisable fully renewable scenario based on wind, solar and hydro power.

  6. Renewable energy finance and project ownership. The impact of alternative development structures on the cost of wind power

    International Nuclear Information System (INIS)

    Wiser, R.H.

    1997-01-01

    This paper uses traditional financial cash flow techniques to examine the impact of different ownership and financing structures on the cost of renewable energy, specifically wind power. Most large, non-hydroelectric, renewable energy projects are developed, owned and financed by private non-utility generators. Recently, however, US utilities have begun to consider owning and financing their own wind power facilities rather than purchasing power from independent renewable energy suppliers. Utilities in other countries have also expressed interest in direct renewable energy investments. A primary justification for utility ownership of wind turbine power plants is that utility self-financing and ownership is cheaper than purchasing wind energy from non-utility renewable energy suppliers. The results presented in this paper support that justification, although some of the estimated cost savings associated with utility ownership are a result of suboptimal utility analysis procedures and implicit risk shifting. Financing terms and variables are shown to significantly impact wind power costs. (author)

  7. The Evolution of Power System Planning with High Levels of Variable Renewable Generation

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of the Greening the Grid introduces the evolution of power system planning with high levels of variable renewable generation.

  8. Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis

    International Nuclear Information System (INIS)

    Krakowski, Vincent; Assoumou, Edi; Mazauric, Vincent; Maïzi, Nadia

    2016-01-01

    Highlights: • Combination of thermodynamic framework and energy-planning model. • Short-term dynamic of power systems in long-term prospective studies. • Approach applied to renewable penetration in the French power system. • Major role played by dispatchable power plants, imports and demand-response. • Renewable energy penetration may jeopardize power system reliability. - Abstract: This paper explores the conditions under which renewable energy sources (RES) penetration could jeopardize power system reliability, as well as which flexibility options could help integrate high levels of RES. For this purpose, we used an energy-planning model from the TIMES family, which provides a realistic representation of power systems and plausible options for their long-term development, completed by a thermodynamic description of power systems to assess their reliability. We applied this model to the case of France and built contrasted scenarios, from 0% to 100% renewable energy penetration by 2050. We also tested different assumptions on Variable Renewable Energy (VRE) production, imports, demand flexibility and biomass potential. We show that high renewable energy penetration would need significant investments in new capacities, new flexibility options along with imports and demand-response, and that it is likely to deteriorate power system reliability if no technologies dedicated to this issue are installed.

  9. Electric power from renewable energy: resources and stakes for France

    International Nuclear Information System (INIS)

    2001-01-01

    This paper presents the essential of the last thematic letter published by the IFEN (French institute of the environment), devoted to the resources and stakes of the electric power produced by the renewable energies in France. (A.L.B.)

  10. Renewable sources electric power: resources and challenges for the France

    International Nuclear Information System (INIS)

    Bouchereau, J.M.; Dormoy, C.

    2001-05-01

    This paper provides information (statistical data, legal framework) on the electric power produced by the renewable energy sources in France. It explains the associated local economical challenge and the french objectives in the European Union Directive. (A.L.B.)

  11. 2015 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    The Renewable Energy Data Book for 2015 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  12. 2015 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp; Tian, Tian

    2016-11-01

    The 2015 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  13. 2014 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp

    2015-11-01

    The Renewable Energy Data Book for 2014 provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  14. 2016 Renewable Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    2017-12-29

    The 2016 Renewable Energy Data Book provides facts and figures on energy and electricity use, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, marine and hydrokinetic power, hydrogen, renewable fuels, and clean energy investment.

  15. The effect of real-time pricing on load shifting in a highly renewable power system dominated by generation from the renewable sources of wind and photovoltaics

    Science.gov (United States)

    Kies, Alexander; Brown, Tom; Schlachtberger, David; Schramm, Stefan

    2017-04-01

    The supply-demand imbalance is a major concern in the presence of large shares of highly variable renewable generation from sources like wind and photovoltaics (PV) in power systems. Other than the measures on the generation side, such as flexible backup generation or energy storage, sector coupling or demand side management are the most likely option to counter imbalances, therefore to ease the integration of renewable generation. Demand side management usually refers to load shifting, which comprises the reaction of electricity consumers to price fluctuations. In this work, we derive a novel methodology to model the interplay of load shifting and provided incentives via real-time pricing in highly renewable power systems. We use weather data to simulate generation from the renewable sources of wind and photovoltaics, as well as historical load data, split into different consumption categories, such as, heating, cooling, domestic, etc., to model a simplified power system. Together with renewable power forecast data, a simple market model and approaches to incorporate sector coupling [1] and load shifting [2,3], we model the interplay of incentives and load shifting for different scenarios (e.g., in dependency of the risk-aversion of consumers or the forecast horizon) and demonstrate the practical benefits of load shifting. First, we introduce the novel methodology and compare it with existing approaches. Secondly, we show results of numerical simulations on the effects of load shifting: It supports the integration of PV power by providing a storage, which characteristics can be described as "daily" and provides a significant amount of balancing potential. Lastly, we propose an experimental setup to obtain empirical data on end-consumer load-shifting behaviour in response to price incentives. References [1] Brown, T., Schlachtberger, D., Kies. A., Greiner, M., Sector coupling in a highly renewable European energy system, Proc. of the 15th International Workshop on

  16. The art and trend of nuclear power plants aging management and licenses renewal activity In USA

    International Nuclear Information System (INIS)

    Zhong Zhimin; Li Jinsong; Zhang Mengyi

    2014-01-01

    This paper briefly introduced the history and the art of nuclear power plants licenses renewal in United State. The aims, working scope, methodology, the art and trend of aging management and its role in license renewal process in United State nuclear power plants license renewal process were discussed in details. Furthermore, the aging management current research focus in United State was described. Then, take into account the AP serials Pressurized Water Reactor and nuclear safety requirements in the regulatory and safety guide in China, some suggestions and recommendation on nuclear power plants aging management were introduced, which will be helpful when we developed related aging management works in China. (authors)

  17. Scheduling Model for Renewable Energy Sources Integration in an Insular Power System

    Directory of Open Access Journals (Sweden)

    Gerardo J. Osório

    2018-01-01

    Full Text Available Insular power systems represent an asset and an excellent starting point for the development and analysis of innovative tools and technologies. The integration of renewable energy resources that has taken place in several islands in the south of Europe, particularly in Portugal, has brought more uncertainty to production management. In this work, an innovative scheduling model is proposed, which considers the integration of wind and solar resources in an insular power system in Portugal, with a strong conventional generation basis. This study aims to show the benefits of increasing the integration of renewable energy resources in this insular power system, and the objectives are related to minimizing the time for which conventional generation is in operation, maximizing profits, reducing production costs, and consequently, reducing greenhouse gas emissions.

  18. 75 FR 64350 - Notice of Availability of Record of Decision for the NextLight Renewable Power, LLC, Silver State...

    Science.gov (United States)

    2010-10-19

    ...Light Renewable Power, LLC, Silver State Solar Project Environmental Impact Statement AGENCY: Bureau of... CONTACT: Gregory Helseth, Renewable Energy Project Manager, phone: (702) 515-5173; address: BLM Southern...) announces the availability of the Record of Decision (ROD) for the NextLight Renewable Power, LLC, Silver...

  19. Renewable energy for professional applications: a guide to implementing off-grid power supplies in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Paish, O.; Oldach, R.

    2002-09-01

    These guidelines are intended to help those considering renewable energy systems to supply power to off-grid applications without access to the UK mains electricity network. The guidelines consider: examples of renewable energy systems used applications with a low power demand in the UK; renewable energy technologies relevant to off-grid applications (solar photovoltaics, wind generators, micro-hydro turbines and hybrid systems); nine steps for project implementation; defining and optimising the load application; estimating energy resources when using solar energy, wind power and hydro power; general rules of thumb when choosing a power source; system components such as batteries, inverters, support structure and civil works; basic system sizing calculations; developing a specification and contacting suppliers; checking equipment, installation and commissioning; legal and other non-technical issues; operating issues such as maintenance and safety; and selected case studies from the UK.

  20. Stochastic Modeling and Analysis of Power System with Renewable Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan

    Unlike traditional fossil-fuel based power generation, renewable generation such as wind power relies on uncontrollable prime sources such as wind speed. Wind speed varies stochastically, which to a large extent determines the stochastic behavior of power generation from wind farms...... that such a stochastic model can be used to simulate the effect of load management on the load duration curve. As CHP units are turned on and off by regulating power, CHP generation has discrete output and thus can be modeled by a transition matrix based discrete Markov chain. As the CHP generation has a strong diurnal...

  1. The promotional impacts of green power products on renewable energy sources: direct and indirect eco-effects

    International Nuclear Information System (INIS)

    Markard, Jochen; Truffer, Bernhard

    2006-01-01

    Green power products may be seen as a means of fostering renewable energy sources because they create and channel consumer demand for environmentally sound power generation. They can therefore be evaluated on a par with other support instruments regarding their effectiveness to connect new capacity to the grid. Apart from this direct effect however, green power products confer a much more active role for customers and utilities. Thus, learning processes, which foster eco-oriented decisions beyond the construction of new renewable generation capacity, may be induced. In the present paper, we provide an encompassing review of the ecological consequences of green electricity products. We examine the direct eco-effects by comparing five European countries in their endeavor to increase electricity generation from renewable energy. The results show that the impact of green power on increasing renewable generation capacity is rather limited. In a second step, we analyze the contribution of green power in stimulating eco-oriented learning. It turns out that green power has particular potential in facilitating simultaneous learning processes involving power producers, traders, suppliers and consumers. We conclude that green electricity can be a crucial complement to governmental energy policies in the mid term. A precondition for reaping this potential is the careful policy design to create synergies in the interaction of regulatory support schemes and the green power market

  2. Analyses of operating license renewal for nuclear power plants in USA

    International Nuclear Information System (INIS)

    Chiba, Goro

    2007-01-01

    Although the originally-approved operating period for nuclear power plants in the U.S. is 40 years, the operating periods of many plants have been extended by license renewal for another 20 years. On the other hand, in Japan, plant life management is carried out assuming long-term operation of the plant, and the electric power company submits reports, such as aging technology assessment, and receives evaluation by the authorities. In this paper, the situation regarding plant life management was investigated and a Japan-U.S. comparison was made. As a result, differences were found in the procedure, the background, the manpower, the review period, etc. in Japan and the U.S. but there is no difference between Japan and the U.S. in aiming for a check of the integrity of components, assuming long-term operation for 60 years. Moreover, trend analysis using the overseas fault database of INSS examined the effect on the preservation activities of a license renewal. As a result, there is a tendency for license renewal not to be applied for in units in which the number of aging faults increases with the increase in elapsed years. The U.S. license renewal system was considered to be effective in plant life management, and suggested the validity of plant life management in Japan which is employing the equivalent system to the U.S. (author)

  3. The United States' energy play - California, the national drama, and renewable power

    International Nuclear Information System (INIS)

    Sklar, Scott

    2001-01-01

    The energy supply crisis in California is examined, and the problems resulting from the deteriorating electricity infrastructures due to under investment and the slowing down of power plant construction due to deregulation are considered. Details are given of the lead shown by California in the use of renewable energy sources and the insulation from the worst of the energy crisis of some town such as Redding, Sacramento and Los Angeles which own their own electric utility. The building of solar homes, incentives offered for energy efficiency and the installation of photovoltaics (PV) by the Long Island Power Authority, and the investment in a PV micro-manufacturing plant in Illinois are reported. The absence of any cheap energy, new state energy portfolios, the passing of net-metering laws to promote PV and other renewable energy resources in 30 states, and the growth of the renewable energy sector in the US and in energy service companies are discussed

  4. The renewable energy targets of the Maghreb countries: Impact on electricity supply and conventional power markets

    International Nuclear Information System (INIS)

    Brand, Bernhard; Zingerle, Jonas

    2011-01-01

    Morocco, Algeria and Tunisia, the three countries of the North African Maghreb region, are showing increased efforts to integrate renewable electricity into their power markets. Like many other countries, they have pronounced renewable energy targets, defining future shares of 'green' electricity in their national generation mixes. The individual national targets are relatively varied, reflecting the different availability of renewable resources in each country, but also the different political ambitions for renewable electricity in the Maghreb states. Open questions remain regarding the targets' economic impact on the power markets. Our article addresses this issue by applying a linear electricity market optimization model to the North African countries. Assuming a competitive, regional electricity market in the Maghreb, the model minimizes dispatch and investment costs and simulates the impact of the renewable energy targets on the conventional generation system until 2025. Special emphasis is put on investment decisions and overall system costs. - Research Highlights: →Market simulation shows impact of RES-E penetration on the conventional power system of Morocco, Algeria and Tunisia. →Noticeable effects on dispatch and investments in fossil power plants. →Reduced utilization of base-load plants - stronger investments in flexible capacities. →Overall system costs can be decreased by optimizing the RES-E goals.

  5. Multifunctional voltage source inverter for renewable energy integration and power quality conditioning.

    Science.gov (United States)

    Dai, NingYi; Lam, Chi-Seng; Zhang, WenChen

    2014-01-01

    In order to utilize the energy from the renewable energy sources, power conversion system is necessary, in which the voltage source inverter (VSI) is usually the last stage for injecting power to the grid. It is an economical solution to add the function of power quality conditioning to the grid-connected VSI in the low-voltage distribution system. Two multifunctional VSIs are studied in this paper, that is, inductive-coupling VSI and capacitive-coupling VSI, which are named after the fundamental frequency impedance of their coupling branch. The operation voltages of the two VSIs are compared when they are used for renewable energy integration and power quality conditioning simultaneously. The operation voltage of the capacitive-coupling VSI can be set much lower than that of the inductive-coupling VSI when reactive power is for compensating inductive loads. Since a large portion of the loads in the distribution system are inductive, the capacitive-coupling VSI is further studied. The design and control method of the multifunctional capacitive-coupling VSI are proposed in this paper. Simulation and experimental results are provided to show its validity.

  6. A Robust Synchronization to Enhance the Power Quality of Renewable Energy Systems

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2015-01-01

    The increasing penetration of renewable energy sources (RESs) in the power grid requires high-quality power injection under various grid conditions. The synchronization method, usually a phase-locked loop (PLL) algorithm, is directly affecting the response of the grid-side converter of the RES....... This paper proposes a new PLL algorithm that uses an advanced decoupling network implemented in the stationary reference frame with limited requirements for processing time to enable a fast and accurate synchronization even under harmonic distorted voltage and low-voltage grid faults. The robust response...... of the proposed PLL is validated, and the effect of the proposed synchronization on the performance of the grid-connected renewable energy system is investigated. This investigation proves that the robust, accurate, and dynamic response of the new PLL can enhance the quality of the injected power from the RES...

  7. Improved flexibility with large-scale variable renewable power in cities through optimal demand side management and power-to-heat conversion

    International Nuclear Information System (INIS)

    Salpakari, Jyri; Mikkola, Jani; Lund, Peter D.

    2016-01-01

    Highlights: • New models for optimal control of shiftable loads and power-to-heat conversion. • Full technical and economic potential with optimal controls. • Detailed time series of shiftable loads based on empirical data. • Case study of Helsinki (Finland) with over 90% share of district heating. • Positive net present values in cost-optimal operation. - Abstract: Solar and wind power are potential carbon-free energy solutions for urban areas, but they are also subject to large variability. At the same time, urban areas offer promising flexibility solutions for balancing variable renewable power. This paper presents models for optimal control of power-to-heat conversion to heating systems and shiftable loads in cities to incorporate large variable renewable power schemes. The power-to-heat systems comprise heat pumps, electric boilers, and thermal storage. The control strategies comprise optimal matching of load and production, and cost-optimal market participation with investment analysis. All analyses are based on hourly data. The models are applied to a case study in Helsinki, Finland. For a scheme providing ca. 50% of all electricity in the city through self-consumption of variable renewables, power-to-heat with thermal storage could absorb all the surplus production. A significant reduction in the net load magnitude was obtained with shiftable loads. Investments to both power-to-heat and load shifting with electric heating and commercial refrigeration have a positive net present value if the resources are controlled cost-optimally.

  8. Renewable energy

    International Nuclear Information System (INIS)

    Yoon, Cheon Seok

    2009-09-01

    This book tells of renewable energy giving description of environment problem, market of renewable energy and vision and economics of renewable energy. It also deals with solar light like solar cell, materials performance, system and merit of solar cell, solar thermal power such as solar cooker and solar collector, wind energy, geothermal energy, ocean energy like tidal power and ocean thermal energy conversion, fuel cell and biomass.

  9. Transmission topologies for the integration of renewable power into the electricity systems of North Africa

    International Nuclear Information System (INIS)

    Brand, Bernhard

    2013-01-01

    A cost-minimizing electricity market model was used to explore optimized infrastructures for the integration of renewable energies in interconnected North African power systems until 2030. The results show that the five countries Morocco, Algeria, Tunisia, Libya and Egypt could together achieve significant economic benefits, reaching up to €3.4 billion, if they increase power system integration, build interconnectors and cooperate on joint utilization of their generation assets. Net electricity exports out of North Africa to Europe or Eastern Mediterranean regions, however, were not observed in the regime of integrated electricity markets until 2030, and could only be realized by much higher levels of renewable energy penetration than currently foreseen by North African governments. - Highlights: • Market model to optimize North Africa's generation and transmission infrastructures until 2030. • Simulations consider existing interconnectors, power plant inventories, as well as national renewable goals. • Savings of up to €3.4 billion can be realized by more cooperation and integrated system planning. • No electricity exports to Europe in a competitive market framework, except for very high renewable penetrations

  10. Adapting AC Lines to DC Grids for Large-Scale Renewable Power Transmission

    Directory of Open Access Journals (Sweden)

    D. Marene Larruskain

    2014-10-01

    Full Text Available All over the world, governments of different countries are nowadays promoting the use of clean energies in order to achieve sustainable energy systems. In this scenario, since the installed capacity is continuously increasing, renewable sources can play an important role. Notwithstanding that, some important problems may appear when connecting these sources to the grid, being the overload of distribution lines one of the most relevant. In fact, renewable generation is usually connected to the nearest AC grid, although this HV system may not have been designed considering distributed generation. In the particular case of large wind farms, the electrical grid has to transmit all the power generated by wind energy and, as a consequence, the AC system may get overloaded. It is therefore necessary to determine the impact of wind power transmission so that appropriate measures can be taken. Not only are these measures influenced by the amount of power transmitted, but also by the quality of the transmitted power, due to the output voltage fluctuation caused by the highly variable nature of wind. When designing a power grid, although AC systems are usually the most economical solution because of its highly proven technology, HVDC may arise in some cases (e.g. offshore wind farms as an interesting alternative, offering some added values such as lower losses and better controllability. This way, HVDC technology can solve most of the aforementioned problems and has a good potential for future use. Additionally, the fast development of power electronics based on new and powerful semiconductor devices allow the spread of innovative technologies, such as VSC-HVDC, which can be applied to create DC grids. This paper focuses on the main aspects involved in adapting the existing overhead AC lines to DC grids, with the objective of improving the transmission of distributed renewable energy to the centers of consumption.

  11. Integrating High Levels of Variable Renewable Energy into Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As more variable renewable energy is integrated into electric power systems, there are a range of challenges and solutions to accommodating very high penetration levels. This presentation highlights some of the recent research in this area.

  12. An analysis of Grenada's power sector and energy resources: a role for renewable energy technologies?

    International Nuclear Information System (INIS)

    Wiesser, D.

    2004-01-01

    Presently, Grenada's power sector is fully dependent on fossil fuel imports for meeting the country's electricity demand. Electric utilities in Small Island Developing States (SIDS), in general, face high cost of electricity generation due to diseconomies of scale in production, consumption and logistical aspects. Grenada's private power monopoly is no exception and the high cost of import dependent electricity generation places an increasing burden on economic development. In light of rapid technological and economic improvement of renewable energy technologies (RETs), the country's abundant sources of renewable energy should be harnessed. Benefits are envisaged to include lower electricity cost, better environmental performance and a safer and diversified supply of energy. However, barriers for shifting power production towards meaningful contributions from RETs exist, both in government and industry. This work analyses important economic interactions between the power sector and economic development, bringing to attention the importance of power sector reform. Further, present problems of integrating RETs into the grid, ranging from technical and regulatory issues to shareholder interest are investigated. A summary and analysis of past research into renewable sources of energy (RES) underscore the potential for power production from RETs in Grenada. (author)

  13. Micro generation from renewable resources - secure and sustainable

    International Nuclear Information System (INIS)

    Khan, S.A.

    2011-01-01

    Pakistan's power demand is mainly satisfied by fossil fuel, which is not abundant and major source of global warming/climate change. A sustainable and secure alternative for Pakistan would be to exploit its indigenous and renewable energy (RE) resources like hydro, solar and wind with public participation. Pakistan receives year-round solar irradiance, which can become a major power producer in urban and non-arable areas. Secondly, locally managed run-of-river micro hydro projects can be an important source of power generation in Northern Pakistan. Thirdly, small wind turbines installed in coastal and windy areas of Southern Pakistan can serve as significant electricity producers. The limiting factors in the case of power from RE are: space, cost, storage, vested interests and reluctance to change. Regardless of production technique, the power shortfall can be controlled to some extent by energy conservation, managing heat loss, transmission and distribution losses and by having energy-efficient buildings and appliances. (author)

  14. Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems

    Directory of Open Access Journals (Sweden)

    Mubbashir Ali

    2018-05-01

    Full Text Available From an environment perspective, the increased penetration of wind and solar generation in power systems is remarkable. However, as the intermittent renewable generation briskly grows, electrical grids are experiencing significant discrepancies between supply and demand as a result of limited system flexibility. This paper investigates the optimal sizing and control of the hydrogen energy storage system for increased utilization of renewable generation. Using a Finnish case study, a mathematical model is presented to investigate the optimal storage capacity in a renewable power system. In addition, the impact of demand response for domestic storage space heating in terms of the optimal sizing of energy storage is discussed. Finally, sensitivity analyses are conducted to observe the impact of a small share of controllable baseload production as well as the oversizing of renewable generation in terms of required hydrogen storage size.

  15. 2013 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Esterly, S.

    2014-12-01

    This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  16. Power system and market integration of renewable electricity

    Directory of Open Access Journals (Sweden)

    Erdmann Georg

    2017-01-01

    Full Text Available This paper addresses problems of power generation markets that arise under high shares of intermittent generation. After discussing the economic fundamentals of wind and photovoltaic investments, the paper introduces the concept of the “Merit order effect of renewables”. According to this concept electricity prices on wholesale power markets become smaller in periods during which large volumes of wind and photovoltaic generation is available and squeeze out relative expensive gas-fired power generation. The merit order effect of renewables has a couple of consequences. Among others it challenges the profitability of conventional power generation. If such generation capacities are still necessary, at least during a transitory period, a capacity mechanism may be put in place that generates an additional stream of income to the operators of conventional power generators. Another consequence of growing intermittent power generation is the need for concepts and technologies that deal with excess generation. Among these concepts are virtual and physical power storage capacities. In the last parts of the paper models are presented that are able to analyze these concepts from an economic point of view.

  17. Examining the Small Renewable Energy Power (SREP) Program in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K., E-mail: bsovacool@nus.edu.sg [Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road, Singapore 259772 (Singapore); Drupady, Ira Martina [Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2011-11-15

    The Small Renewable Energy Power (SREP) Program was the premier policy mechanism implemented by the national government to promote small-scale renewable electricity in Malaysia from 2001 to 2010. However, it managed meet less than 3 percent of its original goal by 2005. This study investigates what happened. More specifically, using a qualitative semi-structured interview approach with data presented in a narrative format, it answers the following five questions: (1) What are the primary energy policy and security challenges facing Malaysia? (2) What were the drivers behind the SREP in Malaysia? (3) What were the major benefits arising from the SREP? (4) What were the significant challenges to implementation? (5) What lessons or insights does the SREP offer for the study of energy policy design and implementation more generally? We find that the SREP failed to achieve its targets due to capacity caps, a lengthy approval process, lack of monitoring, exclusion of stakeholders, and few (if any) pre-feasibility studies. Other factors explaining its poor performance include opposition from the national utility Tenaga Nasional Berhad and electricity tariffs unmatched with true production costs. - Highlights: > The Small Renewable Energy Power Program aimed to install 500 MW by 2005. > It installed only 12 MW by December 2005. > This study investigates why the SREP failed to achieve its targets.

  18. Examining the Small Renewable Energy Power (SREP) Program in Malaysia

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Drupady, Ira Martina

    2011-01-01

    The Small Renewable Energy Power (SREP) Program was the premier policy mechanism implemented by the national government to promote small-scale renewable electricity in Malaysia from 2001 to 2010. However, it managed meet less than 3 percent of its original goal by 2005. This study investigates what happened. More specifically, using a qualitative semi-structured interview approach with data presented in a narrative format, it answers the following five questions: (1) What are the primary energy policy and security challenges facing Malaysia? (2) What were the drivers behind the SREP in Malaysia? (3) What were the major benefits arising from the SREP? (4) What were the significant challenges to implementation? (5) What lessons or insights does the SREP offer for the study of energy policy design and implementation more generally? We find that the SREP failed to achieve its targets due to capacity caps, a lengthy approval process, lack of monitoring, exclusion of stakeholders, and few (if any) pre-feasibility studies. Other factors explaining its poor performance include opposition from the national utility Tenaga Nasional Berhad and electricity tariffs unmatched with true production costs. - Highlights: → The Small Renewable Energy Power Program aimed to install 500 MW by 2005. → It installed only 12 MW by December 2005. → This study investigates why the SREP failed to achieve its targets.

  19. Application of the analytic hierarchy process to a sustainability assessment of coastal beach exploitation: a case study of the wind power projects on the coastal beaches of Yancheng, China.

    Science.gov (United States)

    Tian, Weijun; Bai, Jie; Sun, Huimei; Zhao, Yangguo

    2013-01-30

    Sustainability assessments of coastal beach exploitation are difficult because the identification of appropriate monitoring methodologies and evaluation procedures is still ongoing. In particular, the most suitable procedure for the application of sustainability assessment to coastal beaches remains uncertain. This paper presents a complete sustainability assessment process for coastal beach exploitation based on the analytic hierarchy process (AHP). We developed an assessment framework consisting of 14 indicators derived from the three dimensions of suitability, economic and social value, and ecosystem. We chose a wind power project on a coastal beach of Yancheng as a case study. The results indicated that the wind power farms on the coastal beach were not completely in keeping with sustainable development theory. The construction of the wind power farms had some negative impacts. Therefore, in the design stage, wind turbines should be designed and planned carefully to minimize these negative impacts. In addition, the case study demonstrated that the AHP was capable of addressing the complexities associated with the sustainability of coastal beaches. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Performance Analyses of Renewable and Fuel Power Supply Systems for Different Base Station Sites

    Directory of Open Access Journals (Sweden)

    Josip Lorincz

    2014-11-01

    Full Text Available Base station sites (BSSs powered with renewable energy sources have gained the attention of cellular operators during the last few years. This is because such “green” BSSs impose significant reductions in the operational expenditures (OPEX of telecom operators due to the possibility of on-site renewable energy harvesting. In this paper, the green BSSs power supply system parameters detected through remote and centralized real time sensing are presented. An implemented sensing system based on a wireless sensor network enables reliable collection and post-processing analyses of many parameters, such as: total charging/discharging current of power supply system, battery voltage and temperature, wind speed, etc. As an example, yearly sensing results for three different BSS configurations powered by solar and/or wind energy are discussed in terms of renewable energy supply (RES system performance. In the case of powering those BSS with standalone systems based on a fuel generator, the fuel consumption models expressing interdependence among the generator load and fuel consumption are proposed. This has allowed energy-efficiency comparison of the fuel powered and RES systems, which is presented in terms of the OPEX and carbon dioxide (CO2 reductions. Additionally, approaches based on different BSS air-conditioning systems and the on/off regulation of a daily fuel generator activity are proposed and validated in terms of energy and capital expenditure (CAPEX savings.

  1. Public perspectives on proposed license renewal regulations for nuclear power plants

    International Nuclear Information System (INIS)

    Ligon, D.; Hughes, A.; Seth, S.

    1991-01-01

    On 17 July 1990, the U.S Nuclear Regulatory Commission (NRC) issued for public comment its proposed rule for renewing the operating licenses of nuclear power plants (55 FR 29043). This solicitation marked the fourth time that NRC has Invited public comments on its efforts to develop regulatory requirements for re licensing nuclear power plants. Previously, NRC solicited public comments on establishing a policy statement on plant life extension, and on the issues and options for license renewal discussed in NUREG-1317. On 13-14 November 1989, NRC held a public workshop where the NRC staff discussed a conceptual approach to the rule and solicited written comments on the regulatory philosophy, conceptual rule, and on certain questions. NRC is taking into account all comments received in its development of the final rule which is scheduled for issuance in the summer of 1991

  2. 2012 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2013-10-01

    This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  3. On the economics of stand-alone renewable hybrid power plants in remote regions

    International Nuclear Information System (INIS)

    Petrakopoulou, Fontina

    2016-01-01

    Highlights: • Economic evaluation of three renewable hybrid power plants for off-grid operation. • The high electricity cost of remote regions increases the competitiveness of renewable energy. • The proposed plants are economically viable when compared to the existing situation. • The zero direct emissions of the plants constitute an additional advantage of the plants. - Abstract: In recent years ever more examples of regions that have managed to achieve or orientate themselves toward renewable energy sufficiency are emerging. However, actions to create energy autonomy are mainly the result of isolated activities and they are less driven from fully organized movements. In addition, total energy independence without the support of a centralized electrical grid is yet to be achieved. The objectives of this work are to investigate the associated costs of stand-alone renewable hybrid power plants on a Greek island and compare them to the cost of the currently used fossil-fuel-based conventional plant. The plants examined here are designed to fully cover the electricity needs of the island. Islands may face numerous energy problems and rely heavily on foreign and environmentally-harmful fuels. It is shown that the relatively high cost of electricity of such a remote region can increase the competitiveness and promote the wider incorporation of technologies based on renewable energy sources that may, in other cases, seem economically inferior to business-as-usual energy solutions.

  4. China's renewables law

    International Nuclear Information System (INIS)

    Zhu Li

    2005-01-01

    The paper discusses China's Renewable Energy Promotion Law which will come into force in January 2006. The law shows China's commitment to renewable energy sources. The target is to raise the country's energy consumption from renewables to 10% by 2020. Data for current capacity, and expected capacity by 2020, are given for wind power, solar power, biomass and hydroelectric power. The financial and technological hurdles which China must overcome are mentioned briefly

  5. Active Power Deficit Estimation in Presence of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2015-01-01

    The inertia of the power system is reduced in the presence of Renewable Energy Sources (RESs) due to their low or even no contribution in the inertial response as it is inherently available in the Synchronous Machines (SMs). The total inertia of the grid becomes unknown or at least uncertain...

  6. Effects of Scandinavian hydro power on storage needs in a fully renewable European power system for various transmission capacity scenarios

    Science.gov (United States)

    Kies, Alexander; Nag, Kabitri; von Bremen, Lueder; Lorenz, Elke; Heinemann, Detlev

    2015-04-01

    The penetration of renewable energies in the European power system has increased in the last decades (23.5% share of renewables in the gross electricity consumption of the EU-28 in 2012) and is expected to increase further up to very high shares close to 100%. Planning and organizing this European energy transition towards sustainable power sources will be one of the major challenges of the 21st century. It is very likely that in a fully renewable European power system wind and photovoltaics (pv) will contribute the largest shares to the generation mix followed by hydro power. However, feed-in from wind and pv is due to the weather dependant nature of their resources fluctuating and non-controllable. To match generation and consumption several solutions and their combinations were proposed like very high backup-capacities of conventional power generation (e.g. fossile or nuclear), storages or the extension of the transmission grid. Apart from those options hydro power can be used to counterbalance fluctuating wind and pv generation to some extent. In this work we investigate the effects of hydro power from Norway and Sweden on residual storage needs in Europe depending on the overlaying grid scenario. High temporally and spatially resolved weather data with a spatial resolution of 7 x 7 km and a temporal resolution of 1 hour was used to model the feed-in from wind and pv for 34 investigated European countries for the years 2003-2012. Inflow into hydro storages and generation by run-of-river power plants were computed from ERA-Interim reanalysis runoff data at a spatial resolution of 0.75° x 0.75° and a daily temporal resolution. Power flows in a simplified transmission grid connecting the 34 European countries were modelled minimizing dissipation using a DC-flow approximation. Previous work has shown that hydro power, namely in Norway and Sweden, can reduce storage needs in a renewable European power system by a large extent. A 15% share of hydro power in Europe

  7. The Cost-Optimal Distribution of Wind and Solar Generation Facilities in a Simplified Highly Renewable European Power System

    Science.gov (United States)

    Kies, Alexander; von Bremen, Lüder; Schyska, Bruno; Chattopadhyay, Kabitri; Lorenz, Elke; Heinemann, Detlev

    2016-04-01

    The transition of the European power system from fossil generation towards renewable sources is driven by different reasons like decarbonisation and sustainability. Renewable power sources like wind and solar have, due to their weather dependency, fluctuating feed-in profiles, which make their system integration a difficult task. To overcome this issue, several solutions have been investigated in the past like the optimal mix of wind and PV [1], the extension of the transmission grid or storages [2]. In this work, the optimal distribution of wind turbines and solar modules in Europe is investigated. For this purpose, feed-in data with an hourly temporal resolution and a spatial resolution of 7 km covering Europe for the renewable sources wind, photovoltaics and hydro was used. Together with historical load data and a transmission model , a simplified pan-European power power system was simulated. Under cost assumptions of [3] the levelized cost of electricity (LCOE) for this simplified system consisting of generation, consumption, transmission and backup units is calculated. With respect to the LCOE, the optimal distribution of generation facilities in Europe is derived. It is shown, that by optimal placement of renewable generation facilities the LCOE can be reduced by more than 10% compared to a meta study scenario [4] and a self-sufficient scenario (every country produces on average as much from renewable sources as it consumes). This is mainly caused by a shift of generation facilities towards highly suitable locations, reduced backup and increased transmission need. The results of the optimization will be shown and implications for the extension of renewable shares in the European power mix will be discussed. The work is part of the RESTORE 2050 project (Wuppertal Institute, Next Energy, University of Oldenburg), that is financed by the Federal Ministry of Education and Research (BMBF, Fkz. 03SFF0439A). [1] Kies, A. et al.: Kies, Alexander, et al

  8. The impact of monsoon intraseasonal variability on renewable power generation in India

    International Nuclear Information System (INIS)

    Dunning, C M; Turner, A G; Brayshaw, D J

    2015-01-01

    India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency's New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterized by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterized by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors

  9. The impact of monsoon intraseasonal variability on renewable power generation in India

    Science.gov (United States)

    Dunning, C. M.; Turner, A. G.; Brayshaw, D. J.

    2015-06-01

    India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency's New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterized by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterized by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in

  10. A Measurement and Power Line Communication System Design for Renewable Smart Grids

    Science.gov (United States)

    Kabalci, E.; Kabalci, Y.

    2013-10-01

    The data communication over the electric power lines can be managed easily and economically since the grid connections are already spread around all over the world. This paper investigates the applicability of Power Line Communication (PLC) in an energy generation system that is based on photovoltaic (PV) panels with the modeling study in Matlab/Simulink. The Simulink model covers the designed PV panels, boost converter with Perturb and Observe (P&O) control algorithm, full bridge inverter, and the binary phase shift keying (BPSK) modem that is utilized to transfer the measured data over the power lines. This study proposes a novel method to use the electrical power lines not only for carrying the line voltage but also to transmit the measurements of the renewable energy generation plants. Hence, it is aimed at minimizing the additional monitoring costs such as SCADA, Ethernet-based or GSM based systems by using the proposed technique. Although this study is performed with solar power plants, the proposed model can be applied to other renewable generation systems. Consequently, the usage of the proposed technique instead of SCADA or Ethernet-based systems eliminates additional monitoring costs.

  11. Coastal zone: Shelf-EEZ and land sea interface

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, B.N.; Parulekar, A

    Among the few vibrant ecotopes is the coastal zone, where multifaceted interactions among air, sea and land are dynamically balanced. An area of intense clash of interest of user community, the coastal zone harbouring vast potential of renewable...

  12. Southern African Power Pool: Planning and Prospects for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Miketa, Asami [IRENA, Bonn (Germany); Merven, Bruno [Energy Research Centre, Univ. of Cape Town (South Africa)

    2013-06-25

    With the energy systems of many African countries dominated by fossil-fuel sources that are vulnerable to global price volatility, regional and intra-continental power systems with high shares of renewable energy can provide least-cost option to support continued economic growth and address the continent’s acute energy access problem. Unlocking Africa’s huge renewable energy potential could help to take many people out of poverty, while ensuring the uptake of sustainable technologies for the continent’s long-term development. The report examines the ''renewable scenario'' based on a modelling tool developed by IRENA and tested in cooperation with the South African National Energy Development Institute (SANEDI) and the Southern African Development Community (SADC). Initial results from the System Planning and Test (SPLAT) model show that the share of renewable technologies in Southern Africa could increase from the current 10% to as much as 46% in 2030, with 20% of decentralised capacity coming from renewable sources and nearly 80% of the envisaged capacity additions between 2010 and 2030 being provided by renewable energy technologies. Deployment and export of hydropower from the Democratic Republic of Congo’s Inga hydropower project to the SADC region would significantly reduce average electricity generation costs. Analysis using SPLAT – along with a similar model developed for West Africa – can provide valuable input for regional dialogue and energy projects such as the East and Southern Africa Clean Energy Corridor and the Programme for Infrastructure and Development in Africa (PIDA). IRENA, together with partner organisations, has started plans to set up capacity building and development support for energy system modelling and planning for greater integration of renewables in Africa. IRENA is also completing a similar model and study for East Africa and intends to extend this work to Central and North Africa.

  13. West African Power Pool: Planning and Prospects for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Miketa, Asami [IRENA, Bonn (Germany); Merven, Bruno [Energy Research Centre, Univ. of Cape Town (South Africa)

    2013-06-25

    With the energy systems of many African countries dominated by fossil-fuel sources that are vulnerable to global price volatility, regional and intra-continental power systems with high shares of renewable energy can provide least-cost option to support continued economic growth and address the continent’s acute energy access problem. Unlocking Africa’s huge renewable energy potential could help to take many people out of poverty, while ensuring the uptake of sustainable technologies for the continent’s long-term development. The report examines a ''renewable scenario'' based on a modelling tool developed by IRENA and tested with assistance from the Economic Community of West African States (ECOWAS). Initial results from the ECOWAS Renewable Energy Planning (EREP) model for continental ECOWAS countries show that the share of renewable technologies in the region could increase from the current 22% of electricity generation to as much as 52% in 2030, provided that the cost of these technologies continues to fall and fossil fuel prices continue to rise. In this scenario, nearly half of the envisaged capacity additions between 2010 and 2030 would be with renewable technologies. Analysis using EREP – along with a similar model developed for Southern Africa – can provide valuable input for regional dialogue and energy projects such as the East and Southern Africa Clean Energy Corridor and the Programme for Infrastructure and Development in Africa (PIDA). IRENA, together with partner organisations, has started plans to set up capacity building and development support for energy system modelling and planning for greater integration of renewables in Africa. IRENA is also completing a similar model and study for East Africa and intends to extend this work to Central and North Africa.

  14. A fast method for the unit scheduling problem with significant renewable power generation

    International Nuclear Information System (INIS)

    Osório, G.J.; Lujano-Rojas, J.M.; Matias, J.C.O.; Catalão, J.P.S.

    2015-01-01

    Highlights: • A model to the scheduling of power systems with significant renewable power generation is provided. • A new methodology that takes information from the analysis of each scenario separately is proposed. • Based on a probabilistic analysis, unit scheduling and corresponding economic dispatch are estimated. • A comparison with others methodologies is in favour of the proposed approach. - Abstract: Optimal operation of power systems with high integration of renewable power sources has become difficult as a consequence of the random nature of some sources like wind energy and photovoltaic energy. Nowadays, this problem is solved using Monte Carlo Simulation (MCS) approach, which allows considering important statistical characteristics of wind and solar power production such as the correlation between consecutive observations, the diurnal profile of the forecasted power production, and the forecasting error. However, MCS method requires the analysis of a representative amount of trials, which is an intensive calculation task that increases considerably with the number of scenarios considered. In this paper, a model to the scheduling of power systems with significant renewable power generation based on scenario generation/reduction method, which establishes a proportional relationship between the number of scenarios and the computational time required to analyse them, is proposed. The methodology takes information from the analysis of each scenario separately to determine the probabilistic behaviour of each generator at each hour in the scheduling problem. Then, considering a determined significance level, the units to be committed are selected and the load dispatch is determined. The proposed technique was illustrated through a case study and the comparison with stochastic programming approach was carried out, concluding that the proposed methodology can provide an acceptable solution in a reduced computational time

  15. 75 FR 6378 - Covanta Pylmouth Renewable Energy Limited Partnership Covanta Energy Marketing LLC Covanta Power...

    Science.gov (United States)

    2010-02-09

    ..., ER10-410-000] Covanta Pylmouth Renewable Energy Limited Partnership Covanta Energy Marketing LLC... Pylmouth Renewable Energy Limited Partnership, Covanta Energy Marketing LLC, and Covanta Power, LLC filed... assistance with any FERC Online service, please e-mail [email protected] , or call (866) 208-3676...

  16. Can nuclear power and renewable energies be friends? - 15555

    International Nuclear Information System (INIS)

    Ingersoll, D.T.; Colbert, C.; Houghton, Z.; Snuggerud, R.; Gaston, J.W.; Empey, M.

    2015-01-01

    The increasing penetration of renewable energies, especially wind generation, have dramatically changed the economics and realities of grid management in ways that now encourage some level of load-following capabilities for historically base-load plants, including nuclear. The NuScale small modular reactor design currently under development in the United States is well suited for integration with renewable energies because of several design features related to the nuclear steam supply system, the power conversion system, and the overall plant architecture. The fundamental building block of the NuScale plant is the NuScale power module. The power module consists of a small 160 MWt reactor core housed with other primary system components in an integral reactor pressure vessel and surrounded by a steel containment pressure vessel, which is immersed in a large pool of water. Several power modules (as many as 12) are co-located in the same pool to comprise a single plant. A dedicated turbine/generator system is coupled to each module to provide a gross electrical power of 50 MWe. The module design allows changes to reactor power down to 40% using only control rod movement (no boron adjustments) to increase power maneuverability. The condenser is designed to accommodate full steam bypass, thus allowing rapid changes to system output while minimizing the impact to the reactor system, which can be maintained at full power. The multi-module nature of a NuScale plant allows the plant output to be varied in 3 ways spanning a wide range of different time frames: (1) taking one or more modules offline for extended periods of sustained wind output, (2) adjusting reactor power for one or more modules for intermediate periods to compensate for hourly changes in wind generation, or (3) bypassing the steam turbine for rapid responses to wind generation variations. Results are presented from a recent analysis of nuclear-wind integration that utilized historical wind generation data

  17. The renewable energy field is gaining power

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, D.B.

    1984-01-01

    For about 25 years, Basic Resources Corp. in New York has been growing on the strength of operations ranging from oil and gas exploration and printing to computer leasing and the manufacture of highway toll-collecting equipment. But since early 1982, when it received an Energy Department grant, a new subsidiary has been working on a project with scant resemblance to any other of the multimillion-dollar firm's operations: the preliminary research for an ocean thermal energy plant that would convert heat on the ocean's surface to power at a site in the Hawaiian islands. Renewable energy -- once largely the domain of dreamers and urban dropouts -- has moved into the corporate mainstream, and more and more companies in the United States and abroad are trying to stake a claim to a piece of its future. Basic Resources is not the only renewable energy source firm doing well. Several hundred exhibitors and other participants -- including a number of foreign visitors -- turned out for the 3-day event. Arco, which has been working on photovoltaics since the late 1970s, is considered the world's largest manufacturer of photovoltaics -- solar cells that convert the sun's energy directly into electricity. But, despite tax credits, worldwide sales and dramatic strides in reducing the cost of the technology, the operation still isn't profitable after the costs of research and other costreduction efforts are included. Nonetheless, Arco has no plans to abandon the field, and its attitude explains why so many firms are bucking the odds and pursuing renewable energy.

  18. Implications of renewable energy technologies in the Bangladesh power sector. Long-term planning strategies

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Alam Hossain

    2010-10-04

    Bangladesh is facing daunting energy challenges: Security concerns over growing fuel imports, limited domestic energy resources for power generation, and projected demands for electricity that will exceed domestic supply capabilities within a few years. By acknowledging the potential of renewable energy resources, the country could possibly meet its unprecedented energy demand, thus increasing electricity accessibility for all and enhancing energy security through their advancement. The integration of renewable energy technologies in the power sector through national energy planning would, therefore, be a step in the right direction, not only for sustainable development of the country but also as part of Bangladesh's responsibility toward the global common task of environmental protection. This study estimates the potential of renewable energy sources for power generation in Bangladesh from the viewpoint of different promising available technologies. Future long-term electricity demand in Bangladesh is projected based on three economic growth scenarios. The energy planning model LEAP is applied to forecast the energy requirements from 2005 to 2035. Different policy scenarios, e.g., accelerated renewable energy production, null coal import, CO2 emission reduction targets and carbon taxes in the power sector from 2005 to 2035 are explored. The analyses are based on a long-term energy system model of Bangladesh using the MARKAL model. Prospects for the power sector development of the country are identified, which ensure energy security and mitigate environmental impacts. The technical potential of grid-connected solar photovoltaic and wind energy are estimated at 50174 MW and 4614 MW, respectively. The potential of energy from biomass and small hydro power plants is estimated at 566 MW and 125 MW, respectively. Total electricity consumption was 18 TWh in 2005 and is projected to increase about 7 times to 132 TWh by 2035 in the low GDP growth scenario. In the

  19. Modeling and sizing a Storage System coupled with intermittent renewable power generation

    International Nuclear Information System (INIS)

    Bridier, Laurent

    2016-01-01

    This thesis aims at presenting an optimal management and sizing of an Energy Storage System (ESS) paired up with Intermittent Renewable Energy Sources (IReN). Firstly, we developed a technical-economic model of the system which is associated with three typical scenarios of utility grid power supply: hourly smoothing based on a one-day-ahead forecast (S1), guaranteed power supply (S2) and combined scenarios (S3). This model takes the form of a large-scale non-linear optimization program. Secondly, four heuristic strategies are assessed and lead to an optimized management of the power output with storage according to the reliability, productivity, efficiency and profitability criteria. This ESS optimized management is called 'Adaptive Storage Operation' (ASO). When compared to a mixed integer linear program (MILP), this optimized operation that is practicable under operational conditions gives rapidly near-optimal results. Finally, we use the ASO in ESS optimal sizing for each renewable energy: wind, wave and solar (PV). We determine the minimal sizing that complies with each scenario, by inferring the failure rate, the viable feed-in tariff of the energy, and the corresponding compliant, lost or missing energies. We also perform sensitivity analysis which highlights the importance of the ESS efficiency and of the forecasting accuracy and the strong influence of the hybridization of renewables on ESS technical-economic sizing. (author) [fr

  20. 2010 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2011-10-01

    This Renewable Energy Data Book for 2010 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  1. 2011 Renewable Energy Data Book (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.

    2012-10-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  2. Geometry of power flows and convex-relaxed power flows in distribution networks with high penetration of renewables

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Zhao, Haoran

    2016-01-01

    Renewable energies are increasingly integrated in electric distribution networks and will cause severe overvoltage issues. Smart grid technologies make it possible to use coordinated control to mitigate the overvoltage issues and the optimal power flow (OPF) method is proven to be efficient...... in the applications such as curtailment management and reactive power control. Nonconvex nature of the OPF makes it difficult to solve and convex relaxation is a promising method to solve the OPF very efficiently. This paper investigates the geometry of the power flows and the convex-relaxed power flows when high...

  3. Environmental Standard Review Plan for the review of license renewal applications for nuclear power plants

    International Nuclear Information System (INIS)

    O'Brien, J.; Kim, T.J.; Reynolds, S.

    1991-08-01

    The Environmental Standard Review Plan for the Review of License Applications for Nuclear Power Plants (ESRP-LR) is to be used by the NRC staff when performing environmental reviews of applications for the renewal of power reactor licenses. The use of the ESRP-LR provides a framework for the staff to determine whether or not environmental issues important to license renewal have been identified and the impacts evaluated and provides acceptance standards to help the reviewers comply with the National Environmental Policy Act

  4. Analysis of license renewal at U.S. Nuclear Power Plants

    International Nuclear Information System (INIS)

    Nagayama, Munehiro

    2017-01-01

    The U.S. NRC had implemented the rules for LR (License Renewal) of NPPs (Nuclear Power Plants) and the LR rules allow plus 20-year operation of NPPs adding to initial 40-year term for reactor license. The U.S. NRC has already issued ROL (Renewed Operating License) for over forty NPPs. The Atomic Energy Act do not limit the number of LR, so the fleet of U.S. Nuclear, including agency, industry and academy, is continuing efforts to develop rules for SLR (Subsequent License Renewal). The framework of SLR rules has been developed and there is a plan of implementation of SLR for a pilot plant on FY 2018. The total operating term of a SLR plant is 80-year. The LR/SLR of NPPs is effective for stable power supply, greenhouse gas suppression, maintenance of technology, and securing employment. These profits will return to society. It is important to maintain required function of SSCs (Structure, System, and Components) for period of long term operation of NPPs. The U.S. fleet has established integrated ageing management strategy and each NPPs is developing their maintenance plans for long term operation. These adequate maintenance plans may enable to achieve good capacity factor of LR applied NPPs. In this report, domestic LR position will be considered by referring the good performance of U.S. NPPs which entered long term operation beyond 40-year and some conditions such as energy security. (author)

  5. Renewable resource power production: Italian decree CIP No. 34

    International Nuclear Information System (INIS)

    Di Macco, C.

    1991-01-01

    As part of an overall energy conservation campaign, a concrete step, in the form of a more favourable electricity rate structure for auto-producers, is being taken by the Italian Government to encourage medium sized industries to adopt cogeneration systems to meet their heat and power requirements. Within this context, this paper gives a look at the incentives for renewable energy source use which are incorporated in the CIP (Italian Inter-ministerial Commission on Prices) Provision No. 34/90, regulating industrial plant cogeneration systems, and which governs ENEL's (Italian National Electricity Board) rate structure in the case of independent on-site producers ceding power to the national utility's grid

  6. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.

  7. Tri-generation based hybrid power plant scheduling for renewable resources rich area with energy storage

    International Nuclear Information System (INIS)

    Pazheri, F.R.

    2015-01-01

    Highlights: • Involves scheduling of the tri-generation based hybrid power plant. • Utilization of renewable energy through energy storage is discussed. • Benefits of the proposed model are illustrated. • Energy efficient and environmental friendly dispatch is analyzed. • Modeled scheduling problem is applicable to any fuel enriched area. - Abstract: Solving power system scheduling is crucial to ensure smooth operations of the electric power industry. Effective utilization of available conventional and renewable energy sources (RES) by tri-generation and with the aid of energy storage facilities (ESF) can ensure clean and energy efficient power generation. Such power generation can play an important role in countries, like Saudi Arabia, where abundant fossil fuels (FF) and renewable energy sources (RES) are available. Hence, effective modeling of such hybrid power systems scheduling is essential in such countries based on the available fuel resources. The intent of this paper is to present a simple model for tri-generation based hybrid power system scheduling for energy resources rich area in presence of ESF, to ensure optimum fuel utilization and minimum pollutant emissions while meeting the power demand. This research points an effective operation strategy which ensure a clean and energy efficient power scheduling by exploiting available energy resources effectively. Hence, it has an important role in current and future power generation. In order to illustrate the benefits of the presented approach a clean and energy efficient hybrid power supply scheme for King Saud University (KSU), Saudi Arabia, is proposed and analyzed here. Results show that the proposed approach is very suitable for KSU since adequate solar power is available during its peak demand periods

  8. Buying Renewable Electric Power in Montgomery County, Maryland

    Science.gov (United States)

    Cember, Richard P.

    2008-08-01

    From mid-August 2007 until mid-August 2008, my home electricity supply was 100% wind-generated. My experience in switching to wind-generated electric power may be of interest to fellow AGU members for three reasons. First, Montgomery County, Md., where I live, is one of the few jurisdictions in the United States that has both an electric power tax and a renewable energy credit. The county is therefore a case study in price-based public policy for greenhouse gas emissions control. Second, I was surprised by the comparatively small price difference (or ``price premium'') between wind-generated and conventionally generated power in the county, and I believe that Eos readers will be similarly surprised. Third, because so many U.S. federal agencies concerned with Earth science are based in the Washington, D. C., area, a high concentration of AGU members live in Montgomery County and may be personally interested in evaluating the price of reducing carbon dioxide emissions from the generation of their own residential electricity.

  9. Three-Phase Short-Circuit Current Calculation of Power Systems with High Penetration of VSC-Based Renewable Energy

    Directory of Open Access Journals (Sweden)

    Niancheng Zhou

    2018-03-01

    Full Text Available Short-circuit current level of power grid will be increased with high penetration of VSC-based renewable energy, and a strong coupling between transient fault process and control strategy will change the fault features. The full current expression of VSC-based renewable energy was obtained according to transient characteristics of short-circuit current. Furtherly, by analyzing the closed-loop transfer function model of controller and current source characteristics presented in steady state during a fault, equivalent circuits of VSC-based renewable energy of fault transient state and steady state were proposed, respectively. Then the correctness of the theory was verified by experimental tests. In addition, for power grid with VSC-based renewable energy, superposition theorem was used to calculate AC component and DC component of short-circuit current, respectively, then the peak value of short-circuit current was evaluated effectively. The calculated results could be used for grid planning and design, short-circuit current management as well as adjustment of relay protection. Based on comparing calculation and simulation results of 6-node 500 kV Huainan power grid and 35-node 220 kV Huaisu power grid, the effectiveness of the proposed method was verified.

  10. Adaptations of renewable energy policies to unstable macroeconomic situations - case study: wind power in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, J.M. [Technical University, Berlin (Germany). Dept. of Renewable Energies; Federal University, Rio de Janeiro (Brazil); World Council for Renewable Energy, Rio de Janeiro (Brazil); Krauter, S.C.W. [Technical University, Berlin (Germany). Dept. of Renewable Energies; World Council for Renewable Energy, Rio de Janeiro (Brazil); State University of Ceara (Brazil). Dept. of Physics

    2006-12-15

    Despite the massive cost reduction in the last decade, wind power generation is generally still more expensive than conventional energy sources which benefit from the exclusion of externality costs in the price structure. Support policies for renewable energies guarantee the economic viability of this type of electrical power generation in many European countries. In Latin America, Brazil has become the pioneer state for renewable energy with the implementation of the PROINFA programme that supports, among other sources, wind power development of 1100 MW. This article presents an overview of the differences between the German and Brazilian wind power promotion policies with a special focus on how PROINFA can be adapted to the unstable macroeconomic situation of Brazil. The document specifically examines the adaptation of wind power promotion policies to large inflation and interest rates in Brazil. (author)

  11. Adaptations of renewable energy policies to unstable macroeconomic situations-Case study: Wind power in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, Johannes M. [Department of Renewable Energies, Institute for Energy and Control Technology, Technical University Berlin (TUB), Sec. EM 4, Einsteinufer 11, D-10587 Berlin (Germany) and Federal University of Rio de Janeiro (UFRJ-COPPE), Programme for Energy Planning, Rio de Janeiro-RJ (Brazil) and World Council for Renewable Energy-Latin America - WCRE LA, c/o Rio Solar Ltda./PML, Av. Rio Branco, 25/18o andar, 20093-900 Rio de Janeiro-RJ (Brazil)]. E-mail: jo.kissel@gmx.net; Krauter, Stefan C.W. [Department of Renewable Energies, Institute for Energy and Control Technology, Technical University Berlin (TUB), Sec. EM 4, Einsteinufer 11, D-10587 Berlin (Germany) and World Council for Renewable Energy-Latin America (WCRE LA), c/o Rio Solar Ltda./PML, Av. Rio Branco, 25/18o andar, 20093-900 Rio de Janeiro-RJ (Brazil) and Department of Physics, State University of Ceara - UECE, Alternative Energy Group, Av. Paranjana 1700, Campus do Itaperi, Fortaleza 60740-000 CE (Brazil)]. E-mail: krauter@uece.br

    2006-12-15

    Despite the massive cost reduction in the last decade, wind power generation is generally still more expensive than conventional energy sources which benefit from the exclusion of externality costs in the price structure. Support policies for renewable energies guarantee the economic viability of this type of electrical power generation in many European countries. In Latin America, Brazil has become the pioneer state for renewable energy with the implementation of the PROINFA programme that supports, among other sources, wind power development of 1100 MW. This article presents an overview of the differences between the German and Brazilian wind power promotion policies with a special focus on how PROINFA can be adapted to the unstable macroeconomic situation of Brazil. The document specifically examines the adaptation of wind power promotion policies to large inflation and interest rates in Brazil.

  12. Adaptations of renewable energy policies to unstable macroeconomic situations-Case study: Wind power in Brazil

    International Nuclear Information System (INIS)

    Kissel, Johannes M.; Krauter, Stefan C.W.

    2006-01-01

    Despite the massive cost reduction in the last decade, wind power generation is generally still more expensive than conventional energy sources which benefit from the exclusion of externality costs in the price structure. Support policies for renewable energies guarantee the economic viability of this type of electrical power generation in many European countries. In Latin America, Brazil has become the pioneer state for renewable energy with the implementation of the PROINFA programme that supports, among other sources, wind power development of 1100 MW. This article presents an overview of the differences between the German and Brazilian wind power promotion policies with a special focus on how PROINFA can be adapted to the unstable macroeconomic situation of Brazil. The document specifically examines the adaptation of wind power promotion policies to large inflation and interest rates in Brazil

  13. An evaluation of effects of large-scale introduction of renewable power on capacities and operation modes of power generation systems in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Hiromi; Yabe, Kuniaki; Bando, Shigeru; Nagai, Yu

    2014-01-01

    This study aims to establish a methodology to adequately evaluate an optimal power generation mix in Japan taking into account load frequency control (LFC) capacity and operation modes of power plants in case of a large-scale introduction of photovoltaic and wind power. For this purpose, the authors gave such an improvement to the MM-OPG model, a power generation mix optimization model, which it can deal with different operation modes of pumped hydro power in addition to those of thermal power sources. Using the model, the authors calculated the optimal power generation mix and its corresponding operation modes of Japan's power systems in 2030 with additional insights to 2020, and obtained the following results. (1) Introduction of photovoltaic and wind can be substituted for a limited capacity of conventional power sources. The introduction of 150 GW that consists of 108GW of photovoltaic and 42GW of wind in 2030 can replace no greater than 0.5 GW of conventional power sources. (2) The introduction of the renewables will affect the operation patterns of thermal and pumped hydro power generation. The capacity factor of variable speed pumped hydro will be much greater than that of fixed speed pumped hydro since the former can supply LFC at pump modes as well as generation modes. The capacity factor of LNG combined cycle plants decreases from 43% to 29% in the case with the introduction of 150GW of renewables in 2030. On the same assumption, the average cost of power generation excluding the renewables increases by up to 0.55 JPY/kWh in 2030. (author)

  14. Microgrid Control Strategy Utlizing Thermal Energy Storage With Renewable Solar And Wind Power Generation

    Science.gov (United States)

    2016-06-01

    iii Approved for public release; distribution is unlimited MICROGRID CONTROL STRATEGY UTLIZING THERMAL ENERGY STORAGE WITH RENEWABLE SOLAR AND WIND... control tracks increasing power generation in the morning. The batteries require a large amount of electrical power to charge every morning, as charge ...is 37 lost throughout the night. This causes the solar panels to output their maximum power generation. The MPPT control records when power

  15. The socio-economic power of renewable energy production cooperatives in Germany: Results of an empirical assessment

    OpenAIRE

    Debor, Sarah

    2014-01-01

    This paper reflects the socio-economic power of renewable energy production cooperatives for a wider energy system transformation in Germany. Energy cooperatives have turned into important supporters of renewable and decentralised energy structures, due to their strong growth since the year 2006, their participation in local renewable energy projects and their democratic awareness. The cooperative form of coordinating regional energy projects applies to a decentralised energy system that is m...

  16. IT-Enabled Integration of Renewables: A Concept for the Smart Power Grid

    Directory of Open Access Journals (Sweden)

    Sauter Thilo

    2011-01-01

    Full Text Available The wide utilisation of information and communication technologies is hoped to enable a more efficient and sustainable operation of electric power grids. This paper analyses the benefits of smart power grids for the integration of renewable energy resources into the existing grid infrastructure. Therefore, the concept of a smart power grid is analysed, and it is shown that it covers more than for example, time-of-use energy tariffs. Further, the communication technologies used for smart grids are discussed, and the challenge of interoperability between the smart grid itself and its active contributors such as functional buildings is shown. A significant share of electrical energy demand is and will be constituted by large functional buildings that are mostly equipped with automation systems and therefore enable a relatively simple IT integration into smart grids. This large potential of thermal storages and flexible consumption processes might be a future key to match demand and supply under the presence of a high share of fluctuating generation from renewables.

  17. Green power. Renewable electricity purchasing by Leicester City Council

    International Nuclear Information System (INIS)

    2000-05-01

    This case study describes the use of renewable energy by Leicester City Council in the East Midlands. The Council, which has a long-term commitment to sustainable energy and the environment, employs over 14,000 people. A contract was first negotiated with East Midlands Electricity (now PowerGen) to supply the Council's New Walk Centre with green electricity in 1995. Some of the green energy is supplied by the Milford Mill hydroelectric plant. Use of building energy monitoring systems (BEMSs) and other good practice has allowed the Council to achieve a 20% saving in its electricity bill. The Council has also negotiated contracts to supply two smaller sites (a recycling facility called Planet Works and the city's Energy Efficiency centre) with green electricity generated by Beacon Energy, a small renewable energy company which operates two 25 kW wind turbines and two 3 kW arrays of photovoltaic cells at a site some 15 miles from Leicester. The exemption given to renewable energy from the climate change levy makes these schemes even more economic; a worked example is provided to demonstrate the impact of the climate change levy on electricity costs at the New Walk Centre. Six steps to follow when seeking to connect to green electricity are advised

  18. Demand response power system optimization in presence of renewable energy sources

    Directory of Open Access Journals (Sweden)

    Dumbrava Virgil

    2017-07-01

    Full Text Available This paper optimizes the price-based demand response of a large customer in a power system with stochastic production and classical fuel-supplied power plants. The implemented method of optimization, under uncertainty, is helpful to model both the utility functions for the consumers and their technical limitations. The consumers exposed to price-based demand can reduce their cost for electricity procurement by modifying their behavior, possibly shifting their consumption during the day to periods with low electricity prices. The demand is considered elastic to electricity price if the consumer is willing and capable to buy various amounts of energy at different price levels, the demand function being represented as purchasing bidding blocks. The demand response is seen also by the scientific literature as a possible source of the needed flexibility of modern power systems, while the flexibility of conventional generation technologies is restricted by technical constraints, such as ramp rates. This paper shows how wind power generation affects short term operation of the electricity system. Fluctuations in the amount of wind power fed into the grid require, without storage capacities, compensating changes in the output of flexible generators or in the consumers’ behavior. In the presented case study, we show the minimization of the overall costs in presence of stochastic wind power production. For highlighting the variability degree of production from renewable sources, four scenarios of production were formulated, with different probabilities of occurrence. The contribution brought by the paper is represented by the optimization model for demand-response of a large customer in a power system with fossil fueled generators and intermittent renewable energy sources. The consumer can reduce the power system costs by modifying his demand. The demand function is represented as purchasing bidding blocks for the possible price forecasted realizations

  19. Probability density function evolution of power systems subject to stochastic variation of renewable energy

    Science.gov (United States)

    Wei, J. Q.; Cong, Y. C.; Xiao, M. Q.

    2018-05-01

    As renewable energies are increasingly integrated into power systems, there is increasing interest in stochastic analysis of power systems.Better techniques should be developed to account for the uncertainty caused by penetration of renewables and consequently analyse its impacts on stochastic stability of power systems. In this paper, the Stochastic Differential Equations (SDEs) are used to represent the evolutionary behaviour of the power systems. The stationary Probability Density Function (PDF) solution to SDEs modelling power systems excited by Gaussian white noise is analysed. Subjected to such random excitation, the Joint Probability Density Function (JPDF) solution to the phase angle and angular velocity is governed by the generalized Fokker-Planck-Kolmogorov (FPK) equation. To solve this equation, the numerical method is adopted. Special measure is taken such that the generalized FPK equation is satisfied in the average sense of integration with the assumed PDF. Both weak and strong intensities of the stochastic excitations are considered in a single machine infinite bus power system. The numerical analysis has the same result as the one given by the Monte Carlo simulation. Potential studies on stochastic behaviour of multi-machine power systems with random excitations are discussed at the end.

  20. Map of decentralised energy potential based on renewable energy sources in Croatia

    International Nuclear Information System (INIS)

    Schneider, D. R.; Ban, M.; Duic, N.; Bogdan, Z.

    2005-01-01

    Although the Republic of Croatia is almost completely electrified there are still regions where electricity network is not in place or network capacity is insufficient. These regions usually include areas of special state care (underdeveloped, war-affected or depopulated areas), islands, and mountainous areas. However, they often have good renewable energy potential. Decentralised energy generation based on renewable energy sources (wind power, hydropower, solar energy, biomass) has potential to ensure energy supply to users in remote and often isolated rural areas (off-grid applications). Such applications will primarily be related to tourism business in mountainous, rural and island/coastal regions. Also, agriculture, wood-processing and food-processing industries will potentially be interested in application of decentralised energy generation systems, most likely those using biomass as fuel (for example cogeneration facilities, connected on-grid).(author)

  1. Electricity Storage and Renewables for Island Power. A Guide for Decision Makers

    Energy Technology Data Exchange (ETDEWEB)

    Komor, P; Glassmire, J [University of Colorado, Boulder, CO (United States)

    2012-05-15

    Energy is a key issue for sustainable development. In island and remote communities, where grid extension is difficult and fuel transportation and logistics are challenging and costly, renewable energy is emerging as the energy supply solution for the 21st century, ensuring reliable and secure energy supply in such communities. The deployment of renewable energy technologies is increasing globally, supported by rapidly declining prices and government policies and strategies in many countries, resulting in renewable energy solutions being the most cost-effective option in many markets today. For example, in 2011 the Special Report of the IPCC (Intergovernmental Panel on Climate Change) on Renewable Energy Sources and Climate Change Mitigation showed that approximately 50% of new electricity generation capacity added globally between 2008 and 2009 came from renewable energy sources. Therefore, the future of renewables as the base energy source for islands and remote communities looks very bright. However, as the share of renewables in power supply increases, the natural variability of some renewable energy sources must be tackled appropriately to ensure continuous availability and efficient use of the energy generated. Successful strategies to manage this variability can encompass a range of measures, such as a balanced supply technology portfolio, geographical spread of supply, better forecasting tools, demand-side management and appropriate storage solutions. Traditionally, large scale electricity storage systems were based on pumped hydropower installations. New solutions are emerging, including affordable and long-lasting batteries. This technology field is developing rapidly and prices are falling. IRENA has developed this report as a practical guide to the available energy storage solutions and their successful applications in the context of islands communities. The report also includes various best practice cases and different scenarios and strategies. It is

  2. Renewable vs. fossil electricity systems. A cost comparison. Power world 2050. Analysis of renewable, coal and gas-based electricity systems; Erneuerbare vs. fossile Stromsysteme. Ein Kostenvergleich. Stromwelten 2050. Analyse von Erneuerbaren, kohle- und gasbasierten Elektrizitaetssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Graichen, Patrick; Kleiner, Mara Martha [Agora Energiewende, Berlin (Germany); Matthes, Felix Christian; Heinemann, Christoph [Oeko-Institut e.V. - Institut fuer Angewandte Oekologie, Berlin (Germany)

    2017-01-15

    The decarbonisation of the energy and, above all, the power system is the core component of any consistent climate protection strategy. For the electricity sector, this means, in the final analysis, the transition from a power supply based on lignite, hard coal, natural gas and other fossil fuels to one (almost) completely based on renewable energies by 2050. The fundamental technical feasibility of such a system, more than 90 percent of which would generate electricity from renewable energies, is no longer disputable today. The explanation for this is the partly rapid technological advances made in recent years, particularly those involving wind (on- and offshore) and solar energy, as well as the foreseeable further developments of central flexibility options (including flexible demand, battery storage and power-to-gas technologies). However, the question of the costs of this new electricity system has not yet been fully resolved. These cost calculations need to take into account, on the one hand, the total costs of an electricity system based on renewable energies and, on the other hand, the comparison to a power system that remains based on fossil fuels. Against this background, the present study provides a numerical analysis of the following questions: What are the technical and cost structures for a power system when 90 percent or more of the electricity is generated from renewable energies in 2050? How do the costs for different storage strategies (batteries vs. power-to-gas) differ? What technical, cost and emission structures result for a hypothetical fossil-based power system in 2050 if the further construction of electricity production plants based on wind and solar energy is immediately abandoned? How do the costs for various fossil-based power systems differ (conventional mix of lignite/hard coal/natural gas power plants vs. an electricity system based purely on natural gas)? For this purpose, a large number of model calculations with different

  3. Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power

    International Nuclear Information System (INIS)

    Sütterlin, Bernadette; Siegrist, Michael

    2017-01-01

    Public acceptance and perception of renewable energy sources are key factors for successfully accomplishing an energy transition. In this light, developing effective policy and communication measures necessitates understanding how people perceive energy systems. Accordingly, the present study aimed to shed light on people's imagery of solar power, one of the renewable energy sources with the highest potential. Results revealed that almost unanimously people associate solar power with highly positive imagery and that visual characteristics are especially prevalent. The successful realization of renewable energy projects requires policymakers to draw on reliable data about public acceptance of renewables. In response to this need, the present study examined whether assessing public acceptance of renewables on a more concrete level (i.e., by addressing drawbacks) can result in a different, more reliable acceptance rating than assessment on an abstract level, as done at present in opinion polls. Results showed that people do not think about drawbacks related to renewables when they consider it from a general, more abstract, perspective. However, when downsides are specifically addressed, people integrate these into their evaluation, thus diminishing acceptance. Even the highly positive imagery of solar power is relativized and acceptance decreases. These findings have several important implications for policymakers. - Highlights: • Evaluating renewables on a concrete rather than abstract level decreases acceptance. • People are less likely to consider drawbacks when assessing renewables on an abstract level. • On a concrete level, people consider drawbacks, even if not personally affected. • Public acceptance assessed on a concrete level provides a more valid base for policy decisions. • People almost unanimously hold a strongly positive imagery of solar power.

  4. Renewables 2018 - Global status report. A comprehensive annual overview of the state of renewable energy. Advancing the global renewable energy transition - Highlights of the REN21 Renewables 2018 Global Status Report in perspective

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Sverrisson, Freyr; Rutovitz, Jay; Dwyer, Scott; Teske, Sven; Murdock, Hannah E.; Adib, Rana; Guerra, Flavia; Murdock, Hannah E.; Blanning, Linh H.; Guerra, Flavia; Hamirwasia, Vibhushree; Misra, Archita; Satzinger, Katharina; Williamson, Laura E.; Lie, Mimi; Nilsson, Anna; Aberg, Emma; Weckend, Stephanie; Wuester, Henning; Ferroukhi, Rabia; Garcia, Celia; Khalid, Arslan; Renner, Michael; Taylor, Michael; Epp, Barbel; Seyboth, Kristin; Skeen, Jonathan; Kamiya, George; Munuera, Luis; Appavou, Fabiani; Brown, Adam; Kondev, Bozhil; Musolino, Evan; Brown, Adam; Mastny, Lisa; Arris, Lelani

    2018-06-01

    REN21's Renewables 2018 Global Status Report presents developments and trends through the end of 2017, as well as observed trends from early 2018 where available. Renewable power accounted for 70% of net additions to global power generating capacity in 2017, the largest increase in renewable power capacity in modern history, according to REN21's Renewables 2018 Global Status Report (GSR). But the heating, cooling and transport sectors - which together account for about four-fifths of global final energy demand - continue to lag far behind the power sector. The GSR, published today, is the most comprehensive annual overview of the state of renewable energy worldwide. New solar photovoltaic (PV) capacity reached record levels: Solar PV additions were up 29% relative to 2016, to 98 GW. More solar PV generating capacity was added to the electricity system than net capacity additions of coal, natural gas and nuclear power combined. Wind power also drove the uptake of renewables with 52 GW added globally. Investment in new renewable power capacity was more than twice that of net, new fossil fuel and nuclear power capacity combined, despite large, ongoing subsidies for fossil fuel generation. More than two-thirds of investments in power generation were in renewables in 2017, thanks to their increasing cost-competitiveness - and the share of renewables in the power sector is expected to only continue to rise. Investment in renewables was regionally concentrated: China, Europe and the United States accounted for nearly 75% of global investment in renewables in 2017. However, when measured per unit of gross domestic product (GDP), the Marshall Islands, Rwanda, the Solomon Islands, Guinea Bissau, and many other developing countries are investing as much as or more in renewables than developed and emerging economies. Both energy demand and energy-related CO 2 emissions rose substantially for the first time in four years. Energy-related CO 2 emissions rose by 1

  5. Collateral effects of renewable energies deployment in Spain: Impact on thermal power plants performance and management

    International Nuclear Information System (INIS)

    Moreno, Fermin; Martinez-Val, Jose M.

    2011-01-01

    The quest for renewable energy sources has been strong in Spain for a couple of decades, and has produced outstanding results, notably in windpower. Solar technologies also had a prompt response to the promoting legislation of 2007. This evolution has generated side effects in the electricity generation system as a whole, and all this phenomenology is analysed in this paper under the consideration of the three objectives theoretically guiding electricity policy nowadays: security of supply (at macro and micro level), environmental quality, and economic competitiveness. The analysis points out some unbalance among the objectives, which can evolve to a scenario where back-up power is going to be a critical point for the stability of the system. Such a back-up service will surely be provided by gas-fired combined cycles (GFCC). The estimated projections of the generation system show that the required back-up power will grow about 8-9 GW by year 2020, for complying with the objective of attaining a share of 40% renewable electricity. However, collateral effects as the decline in the load factor of GFCC, as well as a reduction in spot price of electricity, can cast many doubts about the feasibility to reach that back-up power level. - Highlights: → Renewable energy will not match power peaks with high level of confidence. → Fossil thermal plants have become back-up systems to substitute for renewable energy. → Estimations show that 8-9 GW of additional combined cycles will be needed by 2020. → Electricity from renewable energy will provoke long periods of low spot prices. → Lack of economic feasibility of thermal plants threatens long term security of supply.

  6. An advanced control system for the optimal operation and management of medium size power systems with a large penetration from renewable power sources

    Energy Technology Data Exchange (ETDEWEB)

    Nogaret, E.; Stavrakakis, G.; Kariniotakis, G. [Ecole de Mines de Paris, Centre d`Energetique, Sophia-Antipolis (France)] [and others

    1997-10-01

    An advanced control system for the optimal operation and management of autonomous wind-diesel systems is presented. This system minimises the production costs through an on-line optimal scheduling of the power units, which takes into account the technical constraints of the diesel units, as well as short-term forecasts of the load and renewable resources. The power system security is maximised through on-line security assessment modules, which enable the power system to withstand sudden changes in the production of the renewable sources. The control system was evaluated using data from the island of Lemnos, where it has been installed and operated since January 1995. (Author)

  7. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets.

    Science.gov (United States)

    Mureddu, Mario; Caldarelli, Guido; Chessa, Alessandro; Scala, Antonio; Damiano, Alfonso

    2015-01-01

    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players' behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents' behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data.

  8. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets.

    Directory of Open Access Journals (Sweden)

    Mario Mureddu

    Full Text Available The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players' behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents' behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data.

  9. Design basis flood for nuclear power plants on coastal sites

    International Nuclear Information System (INIS)

    1983-01-01

    This Guide discusses the phenomena causing coastal floods (storm surge, seiche, tsunami and wind-wave) and gives a general description of the methods used and the critical factors involved in the evaluation of such floods and of their associated effects. In addition, some treatment is presented of the possible combinations of two or more of these phenomena to produce a DBF. Methods are also provided for evaluating the reference water levels, taking into account the effect of tides, sea level anomalies and changes in lake level and river flow. Sites vulnerable to coastal flooding are located on open coastal regions, semi-enclosed bodies of water and enclosed bodies of water. Open coastal regions are those portions of land directly exposed to and having a shore on a major body of water. Semi-enclosed bodies of water are lagoons, river estuaries, gulfs, fjords and rias. Enclosed bodies of water are lakes and reservoirs. The phenomena of the lowering of the water level at coastal sites caused by offshore winds, low tides, wave effects or of drawdown caused by tsunamis are discussed. The static and dynamic effects of floods resulting from the various combinations (independent and interdependent) of surface waves of varying frequency are also discussed. Consideration is also given to shoreline instabilities and to the effects of erosion. Estimated flood levels and related effects on the nuclear power plant, which will vary according to the method of analysis and the type of flooding considered, shall be compared with available historical data where this is relevant, to check the conservativeness of the evaluated results

  10. Power situation in German and lessons for Japan. Expanding renewable energy and fluctuating FIT system

    International Nuclear Information System (INIS)

    Kitamura, Kazuya

    2016-01-01

    In Germany, energy shift has now caused that a quarter of the total consumed power is obtained from renewable energy sources. There, a shift from nuclear energy has been achieved, and the dissemination of renewable energy as industrial creation has been demanded. However, the Renewable Energy Act, which was the promoter of the above process, was revised drastically in August 2014. Although evaluation on the revised Renewable Energy Act is a future work, it is said that this revision is quite severe for the parties who have promoted the renewable energy business in local regions and enjoyed the profiles locally. Regarding electricity, the German government has a strong industrial protection policy. This paper summarized the basic stance of the German government, by taking up the specific examples of actual electricity fee and the reduction/exemption system of levies on power consumption type companies. The German government clearly shows its willingness to adhere to be an industrial nation. In Germany, the wholesaling spot price of electricity declined due to the spread of renewable energy. This also comes from the mechanism of the FIT system. Unlike Germany where FIT system started in 2000, levies are still small affecting less in Japan where the FIT system has just begun. However, in Germany, it is a big problem. In order to discuss the ideal way of FIT system in Japan, it is necessary to know as accurately as possible what the reality is, including about overseas precedents. (A.O.)

  11. The economic impacts of desert power. Socio-economic aspects of an EUMENA renewable energy transition

    Energy Technology Data Exchange (ETDEWEB)

    Blohmke, Julian; Sohm, Matthew; Zickfeld, Florian

    2013-06-15

    The countries of the Middle East and North Africa (MENA) are one of the world's largest potential growth markets for renewable energy generation. Countries throughout the region have recognized the great potential of their excellent wind and solar conditions, and ample empty space, and have ambitious plans to develop solar and wind energy. They are already making progress in realizing these renewables targets. They also increasingly recognize the great potential of renewable energy in tackling a range of challenges. At a time of high unemployment, particularly among youth, the growth of renewable energy provides an engine for creating new jobs and fostering new skill profiles among workers. Renewables can increase GDP and form the basis for a significant new source of trade revenues. As a source of energy, renewables reduce dependency on fossil fuels - whether as imports, to supply energy, or as exports. This report, Economic Impacts of Desert Power (EIDP), investigates how, and under what conditions, renewables in MENA can lead to socioeconomic benefits. EIDP shows, under various scenarios, how many jobs can be expected in three exemplary MENA countries, and how the expansion of renewables can lead to higher GDP growth rates across the region. EIDP pinpoints their economic impact across sectors and countries. At the same time, EIDP describes how these effects can be maximized through immediate and sustained policy support. The report also details how such support can be tailored to foster a self-sustaining market. In short, EIDP aims to contribute to a range of debates focused on how to maximize the benefits of green growth. EIDP illustrates the following points: - MENA can benefit economically from decarbonizing - even if the rest of the world does not pursue climate action. - Exporting excess electricity is an economic opportunity for MENA countries - several North African countries could create a major export industry with renewable electricity, which

  12. A hybrid model for the optimum integration of renewable technologies in power generation systems

    International Nuclear Information System (INIS)

    Poullikkas, Andreas; Kourtis, George; Hadjipaschalis, Ioannis

    2011-01-01

    The main purpose of this work is to assess the unavoidable increase in the cost of electricity of a generation system by the integration of the necessary renewable energy sources for power generation (RES-E) technologies in order for the European Union Member States to achieve their national RES energy target. The optimization model developed uses a genetic algorithm (GA) technique for the calculation of both the additional cost of electricity due to the penetration of RES-E technologies as well as the required RES-E levy in the electricity bills in order to fund this RES-E penetration. Also, the procedure enables the estimation of the optimum feed-in-tariff to be offered to future RES-E systems. Also, the overall cost increase in the electricity sector for the promotion of RES-E technologies, for the period 2010-2020, is analyzed taking into account factors, such as, the fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc. The overall results indicate that in the case of RES-E investments with internal rate of return (IRR) of 10% the cost of integration is higher, compared to RES-E investments with no profit, (i.e., IRR at 0%) by 0.3-0.5 Euro c/kWh (in real prices), depending on the RES-E penetration level. - Research Highlights: →Development of a hybrid optimization model for the integration of renewable technologies in power generation systems. →Estimation of the optimum feed-in-tariffs to be offered to future renewable systems. →Determination of the overall cost increase in the electricity sector for the promotion of renewable technologies. →Analyses taking into account fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc.

  13. Carbon mitigation in the electric power sector under cap-and-trade and renewables policies

    International Nuclear Information System (INIS)

    Delarue, Erik; Van den Bergh, Kenneth

    2016-01-01

    In Europe, CO_2 emissions from the electric power sector and energy intensive industries are capped under a cap-and-trade system (i.e., the EU ETS). When other indirect measures are taken to impact emissions in a specific sector under the cap (such as a push for renewables in the electric power sector), this has implications on the overall allowance price, and on CO_2 emissions both from this specific sector and the other sectors under the cap. The central contribution of this paper is the derivation of impact curves, which describe these interactions, i.e., the impact on allowance price and the shift of emissions across sectors. From a set of detailed simulations of the electric power system operation, a so-called “emission plane” is obtained, from which impact curves can be derived. Focus is on interactions between CO_2 abatement through fuel switching and measures affecting the residual electricity demand (such as deployment of renewables) in the electric power sector, as well as on interactions with other sectors, both in a short-term framework. A case study for Central-Western Europe is presented. The analysis reveals a substantial impact of renewables on CO_2 emissions, and hence on emissions shifts across sectors and/or on the CO_2 price. - Highlights: •CO_2 cap-and-trade interacts with policies targeting one specific sector under cap. •Interaction creates emission displacement and/or impacts CO_2 price. •The central contribution is the derivation of impact curves from the emission plane. •The method is applied to a case study of Central-Western Europe. •The analysis reveals a large impact of renewables on CO_2 displacement and/or price.

  14. Transient Stability Assessment of Power Systems With Uncertain Renewable Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Villegas Pico, Hugo Nestor [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Aliprantis, Dionysios C. [Purdue University; Lin, Xiaojun [Purdue University

    2017-08-09

    The transient stability of a power system depends heavily on its operational state at the moment of a fault. In systems where the penetration of renewable generation is significant, the dispatch of the conventional fleet of synchronous generators is uncertain at the time of dynamic security analysis. Hence, the assessment of transient stability requires the solution of a system of nonlinear ordinary differential equations with unknown initial conditions and inputs. To this end, we set forth a computational framework that relies on Taylor polynomials, where variables are associated with the level of renewable generation. This paper describes the details of the method and illustrates its application on a nine-bus test system.

  15. Renewable Energy Tenders and Community [Em]power[ment]: Latin America and the Caribbean

    International Nuclear Information System (INIS)

    Lucas, Hugo; Munoz Cabre, Miquel; Gomez, Juan Carlos; Leidreiter, Anna; Ranalder, Lea; Williamson, Laura E.; Adib, Rana; Lins, Christine; Ranalder, Lea; Mastny, Lisa; Acuna, Francisco; Arroyo, Tabare; Bayao, Joao; Bonotto, Adriano; Konzen, Gabriel; Vasconcellos Barral Ferreira, Thiago; Bayer, Benjamin; Bravo, Gonzalo; Furlano, Lukas; Camacho, Luis; Carrasco Gonzalez, Fidel; Coronado, Juan; Escobar, Rafael; Gamarra, Alba; Garcia, Henry; Goni, Sebastian; Raquet, Francis; Gsaenger, Stefan; Schenk, Fabian; Mitma, Riquel; Munozcano Alvarez, Luis Alfonso; Ramirez, Michelle; Rodriguez Aguilar, Jessica Susana; Ruiz Carmona, Oscar; Villarreal Singer, Diego; Oceransky, Sergio; Perez, Juan Esteban; Puig, Pep; Trujillo, Ramiro; Chavez, Sandra; Gonzalez, Alaide; Luna, Nestor; Moreno, Adrian

    2017-01-01

    . The main renewable energy markets in Latin America and the Caribbean are dominated by tendering processes, a trend that is likely to continue in the coming years. But whereas tenders are predicated on competition, community-driven projects are based on collaboration. Participating in tendering processes - and winning - requires, among others, significant expertise and access to large reserves of capital, which smaller actors do not have to the same degree as large, specialist renewable energy developers. Under the tendering process, even if their projects are financially viable, actors that take a one-project approach - including community-driven renewable energy projects - are penalised against large developers, which can distribute the costs and risks of tendering to several projects. Tenders can be modified to favour a diversity of actors and community-driven renewable energy projects through the use of various tendering design options. Applying these design options often results in a trade-off between the primary objective - contracting the cheapest electricity from renewables - and the secondary objective of promoting a diversity of actors. As one solution, in the accession process following the tender, community-driven projects can be offered a power purchase agreement at a tariff based on the result of the tender. The accession process captures both the efficiency of tenders and the effectiveness of feed-in tariffs for community projects. Setting limits, in time and quantity, for the implementation of the accession process is necessary to ensure its dynamic efficiency. The accession process would be greatly strengthened and accelerated by the establishment of ambitious, but realistic, mid- and long-term targets for community-driven renewable energy projects. Complementing the accession process, it is proposed that a community power authority be established, with the roles of providing technical, legal and business support; assigning official &apos

  16. Technical and economic viability of electric power plants on the basis of renewable energy resources regarding hierarchical structure

    Directory of Open Access Journals (Sweden)

    Balzannikov Mikhail

    2017-01-01

    Full Text Available The article deals with power stations working on the basis of non-renewable energy resources and finite resources which will inevitably come to depletion in the future. These installations produce considerable negative impact on the environment, including air pollution. It is noted that considerable amounts of emissions of harmful substances accounts for the share of small thermal installations which aren’t always considered in calculations of pollution. The author specifies that emission reduction of harmful substances should be achieved due to wider use of environmentally friendly renewable energy resources. It is recommended to use hierarchical structure with the priority of ecological and social conditions of the region for technical and economic viability of consumers’ power supply systems and installations, based on renewable energy resources use. At the same time the author suggests considering federal, regional and object levels of viability. It is recommended to consider the main stages of lifecycle of an object for object level: designing, construction, operation, reconstruction of an object and its preservation. The author shows the example of calculation of power plant efficiency, based on renewable energy resources during its reconstruction, followed by power generation increase.

  17. Unforeseen consequences of dedicated renewable energy transmission: Potential implications for renewable electricity development

    Energy Technology Data Exchange (ETDEWEB)

    Bezdek, Roger

    2010-09-15

    Renewable electricity generation requires expansion of electricity transmission, and the U.S. is planning to build a 'green' transmission lines restricted to renewable electricity. However, local jurisdictions are resisting this unless the transmission serves local constituents and existing power plants. This paper finds that if such transmission is built and local access allowed, then the major beneficiaries may be existing power plants. Their access to added transmission could enable them to sell electric power at rates against which renewables cannot compete. These issues must be addressed if large additions of new transmission lines are to facilitate expansion of renewable electricity generation worldwide.

  18. Control strategy for a distributed DC power system with renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Kurohane, Kyohei; Uehara, Akie; Senjyu, Tomonobu; Yona, Atsushi; Urasaki, Naomitsu [University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami, Okinawa 903-0213 (Japan); Funabashi, Toshihisa [Meidensha Corporation, 36-2 Nihonbashi-Hakozakicho, Chuo-ku, Tokyo 103-8513 (Japan); Kim, Chul-Hwan [Sungkyunkwan University and NPT Center, Suwon City 440-746 (Korea)

    2011-01-15

    This paper deals with a DC-micro-grid with renewable energy. The proposed method is composed of a gearless wind power generation system, a battery, and DC loads in a DC distribution system. The battery helps to avoid the DC over-voltages by absorbing the power of the permanent magnet synchronous generator (PMSG) during line-fault. In addition, the control schemes presented in this paper including the maximum power point tracking (MPPT) control and a pitch angle control for the gearless wind turbine generator. By means of the proposed method, high-reliable power can be supplied to the DC distribution system during the line-fault and stable power supply from the PMSG can be achieved after line-fault clearing. The effectiveness of the proposed method is examined in a MATLAB/Simulink {sup registered} environment. (author)

  19. Renewable energy research 1995–2009: a case study of wind power research in EU, Spain, Germany and Denmark

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Garcia- Zorita, J. Carlos; Serrano-López, Antonio Eleazar

    2013-01-01

    The paper reports the developments and citation patterns over three time periods of research on Renewable Energy generation and Wind Power 1995–2011 in EU, Spain, Germany and Denmark. Analyses are based on Web of Science and incorporate journal articles as well as conference proceeding papers...... terms to map knowledge export areas. Findings show an increase in citation impact for Renewable Energy and Wind Power research albeit hampered by scarcely cited conference papers. Although EU maintains its global top position in producing Renewable Energy and Wind Power research the developments of EU...... Wind Power research are EU-self citations. An expected intensified EU collaboration in the Wind Energy field does not come about. The most productive research institutions in Denmark and Spain are also the most cited ones....

  20. Renewable Energy in Danish Municipalities - an Evaluation of The Planning Framework for Wind Power

    DEFF Research Database (Denmark)

    Sperling, Karl; Hvelplund, Frede; Mathiesen, Brian Vad

    2009-01-01

    Wind power is a maturing technology that in a number of countries is likely to contribute a major share to fully renewable energy systems. Denmark has a comparably long history of wind power development and is planning to continue expanding the existing capacity. If a large-scale penetration of w...

  1. Advanced Power Batteries for Renewable Energy Applications 3.09

    Energy Technology Data Exchange (ETDEWEB)

    Shane, Rodney [East Penn Manufacturing Company, Inc., Lyon Station, PA (United States)

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  2. Integrating Variable Renewable Energy in Electric Power Markets. Best Practices from International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-04-30

    Many countries—reflecting very different geographies, markets, and power systems—are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  3. Integration of wide scale renewable resources into the power delivery system

    International Nuclear Information System (INIS)

    2009-01-01

    The CD includes the 60 papers presented and discussed, which cover the following: - National experiences with wind power; - Impact of wind generation on planning; - Rules for connection of wind generation; grid codes; - Impact on operation: Forecasting wind generation; Stability, control; - Research, fields and labs; Modelling and simulation; Micro-grids; - Economics on integrating renewables and other general issues

  4. Nuclear and intermittent renewables: Two compatible supply options? The case of the French power mix

    International Nuclear Information System (INIS)

    Cany, Camille; Mansilla, Christine; Costa, Pascal da; Mathonnière, Gilles; Duquesnoy, Thierry; Baschwitz, Anne

    2016-01-01

    The complementary features of low-carbon power sources are a central issue in designing energy transition policies. The French current electricity mix is characterised by a high share of nuclear power which equalled 76% of the total electric production in 2015. With the increase in intermittent renewable sources, nuclear flexibility is examined as part of the solution to balance electricity supply and demand. Our proposed methodology involves designing scenarios with nuclear and intermittent renewable penetration levels, and developing residual load duration curves in each case. The load modulation impact on the nuclear production cost is estimated. This article shows to which extent the nuclear annual energy production will decrease with high shares of intermittent renewables (down to load factors of 40% for proactive assumptions). However, the production cost increase could be compensated by progressively replacing the plants. Moreover, incentives are necessary if nuclear is to compete with combined-cycle gas turbines as its alternative back-up option. In order to reconcile the social planner with plant operator goals, the solution could be to find new outlets rather than reducing nuclear load factors. Nuclear flexibility could then be considered in terms of using its power to produce heat or hydrogen. - Highlights: •Nuclear flexibility is examined to balance the system with high renewables share. •Impacts of wind and solar shares on the nuclear load factor and LCOE are assessed. •Nuclear fleet replacement must be progressive to ensure competitive load-following. •Incentives are needed for nuclear to compete with CCGT gas back-up. •We recommend considering nuclear flexibility through the power use.

  5. Federal tax effects on the financial attractiveness of renewable versus conventional power plants

    International Nuclear Information System (INIS)

    Hill, L.J.; Hadley, S.W.

    1995-01-01

    In this paper, we examine the effects of federal tax laws on the financial attractiveness of seven renewable and four conventional electric power generating technologies adopted by investor owned utilities (IOUs) and non-utility electricity generators (NUGs). The results show that federal income tax laws applicable to renewable generating technologies generally provide very attractive financial incentives for the adoption of these technologies by IOUs and NUGs. If an IOU and NUG is subject to the alternative minimum tax, however, it may not be able to take full advantage of these financial incentives. (author)

  6. High-Efficiency Food Production in a Renewable Energy Based Micro-Grid Power System

    Science.gov (United States)

    Bubenheim, David; Meiners, Dennis

    2016-01-01

    Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA. Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40% and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well being in remote communities today and tomorrow.

  7. Energy installation implementation to the proof of law: the example of renewable marine energy

    International Nuclear Information System (INIS)

    Bonis, Anne

    2013-01-01

    The first renewable marine energy projects were first presented during the so called Eole program in 1996, and then during a call for bids on offshore wind-power in 2004. Despite these initiatives and a second call for bids in 2011, only a few prototypes are being tested at the beginning of 2013. This study aims to determine if the French legislation is adapted to this emerging new activity of renewable marine energy installation implementation. The results of three-year research show that several advances have contributed to defining a legal framework favorable to the implementation of renewable marine energy production installation; yet, their legal regime has not been finalized. Nevertheless, a comparison with maritime and coastal legislations reveals solutions are worth considering and possible. As a result, an intervention from legislative or parliamentary authorities seems necessary to simplify the implementation of projects and to limit the risks of legal disputes [fr

  8. Can renewable energy sources be financed through competitive power markets in the long run?; Koennen sich erneuerbare Energien langfristig auf wettbewerblich organisierten Strommaerkten finanzieren?

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Oliver; Essler-Frey, Anke; Engelhorn, Thorsten [MVV Energie AG, Mannheim (Germany)

    2012-12-15

    In this paper we address the issue of whether renewable energy sources can be integrated into power markets if the use of renewable energies is extended at the desired speed. Market integration means that renewable energy sources have to cover their full costs from revenues on competitive markets. In the first part of this paper, we evaluate the long-term revenues of intermittent renewable energy sources using a high resolution power market model. Considering the renewable targets of the German lead study of 2010, we show that due to the merit order effect, intermittent renewable energy sources, such as wind power and photovoltaic, cannot be financed through power markets alone, even if their full costs fall below those of conventional power plants. This is also true for scenarios with high CO{sub 2}-prices and increasing spot market prices. In the second part of this paper, we discuss whether in the long run additional instruments such as green certificates or capacity markets would allow for a more competitive financing of renewable energy sources. Center stage in the discussion is the question under which circumstances these instruments increase competitive pricing and decentralised market decisions. (orig.)

  9. A real options evaluation model for the diffusion prospects of new renewable power generation technologies

    International Nuclear Information System (INIS)

    Kumbaroglu, Guerkan; Madlener, Reinhard; Demirel, Mustafa

    2008-01-01

    This study presents a policy planning model that integrates learning curve information on renewable power generation technologies into a dynamic programming formulation featuring real options analysis. The model recursively evaluates a set of investment alternatives on a year-by-year basis, thereby taking into account that the flexibility to delay an irreversible investment expenditure can profoundly affect the diffusion prospects of renewable power generation technologies. Price uncertainty is introduced through stochastic processes for the average wholesale price of electricity and for input fuel prices. Demand for electricity is assumed to be increasingly price-sensitive, as the electricity market deregulation proceeds, reflecting new options of consumers to react to electricity price changes (such as time-of-use pricing, unbundled electricity services, and choice of supplier). The empirical analysis is based on data for the Turkish electricity supply industry. Apart from general implications for policy-making, it provides some interesting insights about the impact of uncertainty and technical change on the diffusion of various emerging renewable energy technologies

  10. Exploitation of Renewable Energy--A Strategic Choice for Sustainable Development of Power Industry

    Institute of Scientific and Technical Information of China (English)

    Zhou Dabing

    2005-01-01

    Since China is being faced with the pressure of energy shortage and environmental conservation, the power industry in China has to actively develop the renewable energy for electricity generation while raising the utilization efficiency of conventional energy. In view of such facts, China Guodian Corporation decided on a development strategy of giving priority to green power, such as wind power. Based on the national planning of wind power development, the corporation set out its own target of installing wind power capacity of 1500 MW by the end of 2010, and is adopting appropriate measures including promoting the localization of wind turbines and developing hydropower, thermal power and wind power simultaneously. Moreover, it put some relevant suggestions.

  11. Stochastic Methods Applied to Power System Operations with Renewable Energy: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Electric Reliability Council of Texas (ERCOT), Austin, TX (United States); Botterud, A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    Renewable energy resources have been rapidly integrated into power systems in many parts of the world, contributing to a cleaner and more sustainable supply of electricity. Wind and solar resources also introduce new challenges for system operations and planning in terms of economics and reliability because of their variability and uncertainty. Operational strategies based on stochastic optimization have been developed recently to address these challenges. In general terms, these stochastic strategies either embed uncertainties into the scheduling formulations (e.g., the unit commitment [UC] problem) in probabilistic forms or develop more appropriate operating reserve strategies to take advantage of advanced forecasting techniques. Other approaches to address uncertainty are also proposed, where operational feasibility is ensured within an uncertainty set of forecasting intervals. In this report, a comprehensive review is conducted to present the state of the art through Spring 2015 in the area of stochastic methods applied to power system operations with high penetration of renewable energy. Chapters 1 and 2 give a brief introduction and overview of power system and electricity market operations, as well as the impact of renewable energy and how this impact is typically considered in modeling tools. Chapter 3 reviews relevant literature on operating reserves and specifically probabilistic methods to estimate the need for system reserve requirements. Chapter 4 looks at stochastic programming formulations of the UC and economic dispatch (ED) problems, highlighting benefits reported in the literature as well as recent industry developments. Chapter 5 briefly introduces alternative formulations of UC under uncertainty, such as robust, chance-constrained, and interval programming. Finally, in Chapter 6, we conclude with the main observations from our review and important directions for future work.

  12. A Power Supply System with ZVS and Current-Doubler Features for Hybrid Renewable Energy Conversion

    Directory of Open Access Journals (Sweden)

    Jye-Chau Su

    2013-09-01

    Full Text Available In this paper, a power supply system for hybrid renewable energy conversion is proposed, which can process PV (photovoltaic power and wind-turbine energy simultaneously for step-down voltage and high current applications. It is a dual-input converter and mainly contains a PV energy source, a wind turbine energy source, a zero-voltage-switching (ZVS forward converter, and a current-doubler rectifier. The proposed power supply system has the following advantages: (1 PV-arrays and wind-energy sources can alternatively deliver power to the load during climate or season alteration; (2 maximum power point tracking (MPPT can be accomplished for both different kinds of renewable-energy sources; (3 ZVS and synchronous rectification techniques for the active switches of the forward converter are embedded so as to reduce switching and conducting losses; and (4 electricity isolation is naturally obtained. To achieve an optimally dynamic response and to increase control flexibility, a digital signal processor (DSP is investigated and presented to implement MPPT algorithm and power regulating scheme. Finally, a 240 W prototype power supply system with ZVS and current-doubler features to deal with PV power and wind energy is built and implemented. Experimental results are presented to verify the performance and the feasibility of the proposed power supply system.

  13. Environmental assessment for final rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    The Atomic Energy Act and Nuclear Regulatory Commission (NRC) regulations provide for the renewal of nuclear power plant operating licenses beyond their initial 40-year term. The Act and NRC regulations, however, do not specify the procedures, criteria, and standards that must be satisfied in order to renew a license. The NRC is promulgating a rule (10 CFR Part 54) to codify such requirements prior to the receipt of applications for license renewal. The NRC has assessed the possible environmental effects of promulgating requirements in 10 CFR Part 54 now rather than employing such requirements in an ad hoc manner in individual licensing actions. The final part 54 rule requires the development of information and analyses to identify aging problems of systems, structures, and components unique to license renewal that will be of concern during the period of extended operation and will not be controlled by existing effective programs. In general, licensee activities for license renewal may involve replacement, refurbishment, inspection, testing, or monitoring. Such actions will be generally be within the range of similar actions taken for plants during the initial operating term. These actions would be primarily confined within the plants with potential for only minor disruption to the environment. It is unlikely that these actions would change the operating conditions of plants in ways that would change the environmental effects already being experienced. Relicensing under existing regulations would also be primarily focused on aging degradation and would likely result in requirements similar to those that will result from relicensing under the final rule

  14. Renewable energy location and network congestion in a liberalised power market

    International Nuclear Information System (INIS)

    Singh, Balbir

    2003-01-01

    The report is a partial study in the SNF projects No. 3080 and 3155, ''Environmental measures and efficiency'' and ''Robust energy markets''. The study presents a spatial equilibrium optimisation model of a power market. The reports concludes that the economic and environmental efficiency of the introduction of renewable energy generation in a congested network is crucially dependent on the location of these resources in relation to the capacity constraints in the network. Physical laws that govern flows in meshed electricity networks introduce important substitution and complementary impacts between generation assets at various locations. Neglect of substitution impacts in location decisions may result in crowding-out of existing generation capacity during times of congestion, while on the other hand complementary relationships between new and existing generation may reduce congestion. In the context of introduction of new renewable technologies, there is need for coordination between the development of renewable generation resources and network capacity to avoid that crowding-out of existing capacity, particularly if the existing capacity is primarily hydropower. This would result in production and environmental inefficiency in policy implementation. It may be emphasized that coordination does not necessarily imply centralization of renewable energy and network developments. The research and policy challenge is to devise grid-access regime and tariff mechanism that promote the necessary coordination. In the Norwegian policy context, it calls for a flexibility for Statnett to determine appropriate access regime for the renewable energy and a greater advisory role in the licensing process undertaken by the Norwegian Water Resources and Energy Directorate (NVE)

  15. Water Storage Instead of Energy Storage for Desalination Powered by Renewable Energy—King Island Case Study

    Directory of Open Access Journals (Sweden)

    Aya Tafech

    2016-10-01

    Full Text Available In this paper, we scrutinized the energy storage options used in mitigation of the intermittent nature of renewable energy resources for desalination process. In off-grid islands and remote areas, renewable energy is often combined with appropriate energy storage technologies (ESTs to provide a consistent and reliable electric power source. We demonstrated that in developing a renewable energy scheme for desalination purposes, product (water storage is a more reliable and techno-economic solution. For a King Island (Southeast Australia case-study, electric power production from renewable energy sources was sized under transient conditions to meet the dynamic demand of freshwater throughout the year. Among four proposed scenarios, we found the most economic option by sizing a 13 MW solar photovoltaic (PV field to instantly run a proportional RO desalination plant and generate immediate freshwater in diurnal times without the need for energy storage. The excess generated water was stored in 4 × 50 ML (mega liter storage tanks to meet the load in those solar deficit times. It was also demonstrated that integrating well-sized solar PV with wind power production shows more consistent energy/water profiles that harmonize the transient nature of energy sources with the water consumption dynamics, but that would have trivial economic penalties caused by larger desalination and water storage capacities.

  16. Marine renewable energy in China: Current status and perspectives

    OpenAIRE

    Yong-liang Zhang; Zheng Lin; Qiu-lin Liu

    2014-01-01

    Based on a general review of marine renewable energy in China, an assessment of the development status and amount of various marine renewable energy resources, including tidal energy, tidal current energy, wave energy, ocean thermal energy, and salinity gradient energy in China's coastal seas, such as the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea, is presented. We have found that these kinds of marine renewable energy resources will play an important role in meeti...

  17. Development of Mixed Autonomous Power System on the Basis of Renewable Energy Sources

    Directory of Open Access Journals (Sweden)

    D. P. Laoshvili

    2010-01-01

    Full Text Available A principal circuit diagram has been developed for an autonomous power system on the basis of renewable energy sources – solar and accumulator batteries.Due to the usage of a dc pulse converter, a dc converter (interrupter, an IGBT module inverter and a single-phase matching power transformer it is possible to achieve an effective sectioning of constant voltage and their inversion with minimal energy losses.Efficiency factor of the proposed converter installation exceeds 90 % and power factor is close to unity.

  18. The Opportunity of Using Wind to Generate Power as a Renewable Energy:"Case of Kuwait”

    OpenAIRE

    Abdelkarim J.Ibreik; Humoud A. Alqatta

    2015-01-01

    The demand ofsustainable energy is increased daily by expanding our cities and creating new cities and suburbswith huge towers besides increasing in population,moreover the environment and human life is threatening by the pollutions resulted from energy generation. For this reason the researchersattracted todevelop renewable energy and explore its large benefits and unit capacity. Wind power is one of the clean renewable energy resources.Therefore the importance of implementing th...

  19. Proceedings of the 2009 CIGRE Canada conference on power systems : innovation and renewal : building the new power system

    International Nuclear Information System (INIS)

    2009-01-01

    The Conseil International des Grands Reseaux Electriques (CIGRE) is the International Council on Large Electric Systems. It promotes technical, economic and environmental developments in electricity transmission and generation. CIGRE Canada is the Canadian National Committee which fosters the participation of Canadian members in CIGRE activities. CIGRE Canada organizes an annual conference that provides a forum for power system engineers, decision makers,economists, and academics to discuss technological developments in electrical power systems. The presentations at this conference addressed issues regarding the use of renewable energy sources in power transmission and distribution systems, with particular reference to control and protection; HVDC and MVDC; modelling tools; interface technologies; and reduced carbon generation and sustainability. The use of active distribution systems was also discussed in terms of future trends; the role of information technology and communications; and the role of energy storage. The session on smart grids addressed issues such as power utility perspectives; sensing, measurements and controls; advanced interfaces and decision support systems; open-architecture; distributed energy resources; and regulatory issues. Issues concerning the interconnection of non traditional energy sources to the power systems were also discussed along with recent research initiatives related to renewable energy source development. The sessions were entitled: smart grids; distributed energy resources; wind and solar PV; AC systems and HV lines; wide area measurements; power system operation and control; modelling and analysis; substation automation; and HVDC and facts. The conference featured 66 presentations, of which 35 have been catalogued separately for inclusion in this database

  20. Regulation of Renewable Energy Sources to Optimal Power Flow Solutions Using ADMM: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yijian; Hong, Mingyi; Dall' Anese, Emiliano; Dhople, Sairaj; Xu, Zi

    2017-03-03

    This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposed here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.

  1. Introduction to Renewable Energy Systems

    DEFF Research Database (Denmark)

    Ma, Ke; Yang, Yongheng; Blaabjerg, Frede

    2014-01-01

    . It is concluded that as the quick development of renewable energy, wind power and PV power both show great potential to be largely integrated into the power grid. Power electronics is playing essential role in both of the systems to achieve more controllable, efficient, and reliable energy production......In this chapter, the state-of-the-arts developments of renewable energy are reviewed in respect to the installed power and market share, where wind power and photovoltaic power generation are the main focuses due to the fast growing speed and large share of installed capacity. Some basic principles...... of operation, mission profiles, as well as power electronics solutions and corresponding controls are discussed respectively in the case of wind power and photovoltaic power systems. Finally a few development trends for renewable energy conversions are also given from a power electronics point of view...

  2. Power Take-off System for Marine Renewable Devices, CRADA Number CRD-14-566

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-13

    Ocean Renewable Power Company (ORPC) proposes a project to develop and test innovative second-generation power take-off (PTO) components for the U.S. Department of Energy's 2013 FOA: Marine and Hydrokinetic System Performance Advancement, Topic Area 2 (Project). Innovative PTO components will include new and improved designs for bearings, couplings and a subsea electrical generator. Specific project objectives include the following: (1) Develop components for an advanced PTO suitable for MHK devices; (2) Bench test these components; (3) Assess the component and system performance benefits; (4) Perform a system integration study to integrate these components into an ORPC hydrokinetic turbine. National Renewable Energy Laboratory (NREL) will participate on the ORPC lead team to review design of the generator and will provide guidance on the design. Based on inputs from the project team, NREL will also provide an economic analysis of the impacts of the proposed system performance advancements.

  3. On the physics of power, energy and economics of renewable electric energy sources - Part II

    International Nuclear Information System (INIS)

    Skoglund, Annika; Leijon, Mats; Waters, Rafael; Rehn, Alf; Lindahl, Marcus

    2010-01-01

    Renewable Energy Technologies (RETs) are often recognized as less competitive than traditional electric energy conversion systems. Obstacles with renewable electric energy conversion systems are often referred to the intermittency of the energy sources and the relatively high maintenance cost. However, due to an intensified discourse on climate change and its effects, it has from a societal point of view, become more desirable to adopt and install CO 2 neutral power plants. Even if this has increased the competitiveness of RETs in a political sense, the new goals for RET installations must also be met with economical viability. We propose that the direction of technical development, as well as the chosen technology in new installations, should not primarily be determined by policies, but by the basic physical properties of the energy source and the associated potential for inexpensive energy production. This potential is the basic entity that drives the payback of the investment of a specific RET power plant. With regard to this, we argue that the total electric energy conversion system must be considered if effective power production is to be achieved, with focus on the possible number of full loading hours and the Degree of Utilization. This will increase the cost efficiency and economical competitiveness of RET investments, and could enhance faster diffusion of new innovations and installations without over-optimistic subsidies. This paper elaborates on the overall problem of the economy of renewable electric energy conversion systems by studying the interface between physics, engineering and economy reported for RET power plants in different scientific publications. The core objective is to show the practical use of the Degree of Utilization and how the concept is crucial for the design and economical optimization disregarding subsidies. The results clearly indicate that the future political regulative frameworks should consider the choice of renewable energy

  4. Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.

    Directory of Open Access Journals (Sweden)

    Michiya Sugimori

    Full Text Available Accumulating evidence indicates that cancer stem cells (CSCs drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS forming model, to generate a population in which glioma stem cells (GSCs become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres. Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone. Log-log plots of distributions of clone sizes yielded a good fit (r>0.90 to a straight line (log(% total clones = k*log(#cells/clone indicating that the system follows a power-law (y = xk with a specific degree exponent (k = -1.42. Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = -1.01 to -1.17. Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM, suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous

  5. Regulatory analysis for final rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    This regulatory analysis provides the supporting information for the final rule (10 CFR Part 54) that defines the Nuclear Regulatory Commission's requirements for renewing the operating licenses of commercial nuclear power plants. A set of four specific alternatives for the safety review of license renewal applications is defined and evaluated. These are: Alternative A-current licensing basis; Alternative B-extension of Alternative A to require assessment and managing of aging; Alternative C -- extension of Alternative B to require assessment of design differences against selected new-plant standards using probabilistic risk assessment; and Alternative D -- extension of Alternative B to require compliance with all new-plant standards. A quantitative comparison of the four alternatives in terms of impact-to-value ratio is presented, and Alternative B is the most cost-beneficial safety review alternative

  6. Day-ahead resource scheduling of a renewable energy based virtual power plant

    International Nuclear Information System (INIS)

    Zamani, Ali Ghahgharaee; Zakariazadeh, Alireza; Jadid, Shahram

    2016-01-01

    Highlights: • Simultaneous energy and reserve scheduling of a VPP. • Aggregate uncertainties of electricity prices, renewable generation and load demand. • Develop a stochastic scheduling model using the point estimate method. - Abstract: The evolution of energy markets is accelerating in the direction of a greater reliance upon distributed energy resources (DERs). To manage this increasing two-way complexity, virtual power plants (VPPs) are being deployed today all over the world. In this paper, a probabilistic model for optimal day ahead scheduling of electrical and thermal energy resources in a VPP is proposed where participation of energy storage systems and demand response programs (DRPs) are also taken into account. In the proposed model, energy and reserve is simultaneously scheduled considering the uncertainties of market prices, electrical demand and intermittent renewable power generation. The Point Estimate Method (PEM) is applied in order to model the uncertainties of VPP’s scheduling problem. Moreover, the optimal reserve scheduling of VPP is presented which efficiently decreases VPP’s risk facing the unexpected fluctuations of uncertain parameters at the power delivery time. The results demonstrated that implementation of demand response programs (DRPs) would decrease total operation costs of VPP as well as its dependency on the upstream network.

  7. Modeling the power of renewable energy sources in the context of classical electricity system transformation

    Directory of Open Access Journals (Sweden)

    Rafał Kasperowicz

    2017-10-01

    Full Text Available Many regions, not only in the Europe, introduce plans for the modernization of energy systems so that in a few or several years most of the demand for electricity was being able to cover using renewable energy sources. The aim of this paper is to present the possibility of estimation of appropriate power supply based on the renewable energy sources in the context of the whole energy system in the annual balance, taking into account the technical and the economic optimization strategies. The article presents also the simplified structure of the 100% renewable energy system supported by energy storage systems and the production of synthetic fuels.

  8. New and renewable energies. Stakes, driving forces and perspectives of the renewable energies market

    International Nuclear Information System (INIS)

    2000-09-01

    New and renewable energies (hydro-power, wind-power, solar, biomass, biogas, geothermal and fuel cells) are progressively entering the industrialization phase (except for hydro-power which is already largely developed). Thus they are no more considered as solutions for utopian ecologists but have reached the status of alternative technologies. This study takes stock of the following questions: what are the applications of renewable energies, what is their stage of development and their potential with respect to fossil fuels, what are their perspectives of development, and what are the strategies developed by the actors of the sector? The main stakes of the renewable energy sector are: fulfilling the increasing power needs (in particular with the wind and solar power in isolated areas), improving the competitiveness (reduction of the investment costs), developing financial incentives (tax relief, financial helps, eco-taxes..), participating to the reduction of pollutant emissions. The renewable energy sector is progressively structuring and profits by the increasing implication of major energy actors, such as the oil companies. The behaviour and strategy of 14 major actors of the renewable energy sector is also analyzed. (J.S.)

  9. Economic and technological aspects of the market introduction of renewable power technologies

    Science.gov (United States)

    Worlen, Christine M.

    Renewable energy, if developed and delivered with appropriate technologies, is cleaner, more evenly distributed, and safer than conventional energy systems. Many countries and several states in the United States promote the development and introduction of technologies for "green" electricity production. This dissertation investigates economic and technological aspects of this process for wind energy. In liberalized electricity markets, policy makers use economic incentives to encourage the adoption of renewables. Choosing from a large range of possible policies and instruments is a multi-criteria decision process. This dissertation evaluates the criteria used and the trade-offs among the criteria, and develops a hierarchical flow scheme that policy makers can use to choose the most appropriate policy for a given situation. Economic incentives and market transformation programs seek to reduce costs through mass deployment in order to make renewable technologies competitive. Cost reduction is measured in "experience curves" that posit negative exponential relationships between cumulative deployment and production cost. This analysis reveals the weaknesses in conventional experience curve analyses for wind turbines, and concludes that the concept is limited by data availability, a weak conceptual foundation, and inappropriate statistical estimation. A revised model specifies a more complete set of economic and technological forces that determine the cost of wind power. Econometric results indicate that experience and upscaling of turbine sizes accounted for the observed cost reduction in wind turbines in the United States, Denmark and Germany between 1983 and 2001. These trends are likely to continue. In addition, future cost reductions will result from economies of scale in production. Observed differences in the performance of theoretically equivalent policy instruments could arise from economic uncertainty. To test this hypothesis, a methodology for the

  10. Renewable energy and decentralized power generation in Russia: an opportunity for German-Russian energy cooperation

    OpenAIRE

    Chukanov, Denis; Opitz, Petra; Pastukhova, Maria; Piani, Gianguido; Westphal, Kirsten

    2017-01-01

    Renewable and decentralized power generation are a centerpiece of Germany's domestic energy transition (Energiewende) and a major element of its international efforts to promote this goal. Recently, the renewables sector has also been advancing in Russia, albeit from a lower level. Thus, it is time to explore the status quo and analyze the potential for sustainable energy cooperation. In the context of the current deterioration in EURussian (energy) relations, crafting a sustainable energy pa...

  11. Fusion fuel and renewables

    International Nuclear Information System (INIS)

    Entler, Slavomir

    2015-01-01

    It is shown that fusion fuel meets all aspects applied when defining renewables. A table of definitions of renewables is presented. The sections of the paper are as follows: An industrial renewable source; Nuclear fusion; Current situation in research; Definitions of renewable sources; Energy concept of nuclear fusion; Fusion fuel; Natural energy flow; Environmental impacts; Fusion fuel assessment; Sustainable power; and Energy mix from renewables. (P.A.)

  12. Assessment of Renewable Energy Sources & Municipal Solid Waste for Sustainable Power Generation in Nigeria

    Science.gov (United States)

    Aderoju, Olaide M.; Dias, Guerner A.; Echakraoui, Zhour

    2017-12-01

    The demand for Energy in most Sub-Saharan African countries has become unimaginable despite its high potential of natural and renewable resources. The deficit has impeded the regions’ economic growth and sustainability. Nigeria as a nation is blessed with fossil fuels, abundant sunlight, hydro, wind and many among others, but the energy output to its population (185 million) still remains less than 4000MW. Currently, the clamour for an alternative but renewable energy source is the demand of the globe but it is quite expensive to achieve the yield that meets the Nigeria demand. Hence, this study aims at identifying and mapping out various regions with renewable energy potentials. The study also considers municipal solid waste as a consistent and available resource for power generation. Furthermore, this study examines the drawbacks inhibiting the inability to harness these renewable, energy generating potentials in full capacity. The study will enable the authorities and other stakeholders to invest and plan on providing a sustainable energy for the people.

  13. Enhancement of the REMix energy system model. Global renewable energy potentials, optimized power plant siting and scenario validation

    Energy Technology Data Exchange (ETDEWEB)

    Stetter, Daniel

    2014-04-10

    As electricity generation based on volatile renewable resources is subject to fluctuations, data with high temporal and spatial resolution on their availability is indispensable for integrating large shares of renewable capacities into energy infrastructures. The scope of the present doctoral thesis is to enhance the existing energy modelling environment REMix in terms of (i.) extending the geographic coverage of the potential assessment tool REMix-EnDaT from a European to a global scale, (ii.) adding a new plant siting optimization module REMix-PlaSMo, capable of assessing siting effects of renewable power plants on the portfolio output and (iii.) adding a new alternating current power transmission model between 30 European countries and CSP electricity imports from power plants located in North Africa and the Middle East via high voltage direct current links into the module REMix-OptiMo. With respect to the global potential assessment tool, a thorough investigation is carried out creating an hourly global inventory of the theoretical potentials of the major renewable resources solar irradiance, wind speed and river discharge at a spatial resolution of 0.45°x0.45°. A detailed global land use analysis determines eligible sites for the installation of renewable power plants. Detailed power plant models for PV, CSP, wind and hydro power allow for the assessment of power output, cost per kWh and respective full load hours taking into account the theoretical potentials, technological as well as economic data. The so-obtined tool REMix-EnDaT can be used as follows: First, as an assessment tool for arbitrary geographic locations, countries or world regions, deriving either site-specific or aggregated installable capacities, cost as well as full load hour potentials. Second, as a tool providing input data such as installable capacities and hourly renewable electricity generation for further assessments using the modules REMix-PlasMo and OptiMo. The plant siting tool

  14. Enhancement of the REMix energy system model. Global renewable energy potentials, optimized power plant siting and scenario validation

    International Nuclear Information System (INIS)

    Stetter, Daniel

    2014-01-01

    As electricity generation based on volatile renewable resources is subject to fluctuations, data with high temporal and spatial resolution on their availability is indispensable for integrating large shares of renewable capacities into energy infrastructures. The scope of the present doctoral thesis is to enhance the existing energy modelling environment REMix in terms of (i.) extending the geographic coverage of the potential assessment tool REMix-EnDaT from a European to a global scale, (ii.) adding a new plant siting optimization module REMix-PlaSMo, capable of assessing siting effects of renewable power plants on the portfolio output and (iii.) adding a new alternating current power transmission model between 30 European countries and CSP electricity imports from power plants located in North Africa and the Middle East via high voltage direct current links into the module REMix-OptiMo. With respect to the global potential assessment tool, a thorough investigation is carried out creating an hourly global inventory of the theoretical potentials of the major renewable resources solar irradiance, wind speed and river discharge at a spatial resolution of 0.45°x0.45°. A detailed global land use analysis determines eligible sites for the installation of renewable power plants. Detailed power plant models for PV, CSP, wind and hydro power allow for the assessment of power output, cost per kWh and respective full load hours taking into account the theoretical potentials, technological as well as economic data. The so-obtined tool REMix-EnDaT can be used as follows: First, as an assessment tool for arbitrary geographic locations, countries or world regions, deriving either site-specific or aggregated installable capacities, cost as well as full load hour potentials. Second, as a tool providing input data such as installable capacities and hourly renewable electricity generation for further assessments using the modules REMix-PlasMo and OptiMo. The plant siting tool

  15. The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation

    Directory of Open Access Journals (Sweden)

    Simone Sperati

    2015-09-01

    Full Text Available A benchmarking exercise was organized within the framework of the European Action Weather Intelligence for Renewable Energies (“WIRE” with the purpose of evaluating the performance of state of the art models for short-term renewable energy forecasting. The exercise consisted in forecasting the power output of two wind farms and two photovoltaic power plants, in order to compare the merits of forecasts based on different modeling approaches and input data. It was thus possible to obtain a better knowledge of the state of the art in both wind and solar power forecasting, with an overview and comparison of the principal and the novel approaches that are used today in the field, and to assess the evolution of forecast performance with respect to previous benchmarking exercises. The outcome of this exercise consisted then in proposing new challenges in the renewable power forecasting field and identifying the main areas for improving accuracy in the future.

  16. Impact of public policy uncertainty on renewable energy investment: Wind power and the production tax credit

    International Nuclear Information System (INIS)

    Barradale, Merrill Jones

    2010-01-01

    It is generally understood that the pattern of repeated expiration and short-term renewal of the federal production tax credit (PTC) causes a boom-bust cycle in wind power plant investment in the US. This on-off pattern is detrimental to the wind industry, since ramp-up and ramp-down costs are high, and players are deterred from making long-term investments. It is often assumed that the severe downturn in investment during 'off' years implies that wind power is unviable without the PTC. This assumption turns out to be unsubstantiated: this paper demonstrates that it is not the absence of the PTC that causes the investment downturn during 'off' years, but rather the uncertainty over its return. Specifically, it is the dynamic of power purchase agreement (PPA) negotiations in the face of PTC renewal uncertainty that drives investment volatility. With contract negotiations prevalent in the renewable energy industry, this finding suggests that reducing uncertainty is a crucial component of effective renewable energy policy. The PTC as currently structured is not the only means, existing or potential, for encouraging wind power investment. Using data from a survey of energy professionals, various policy instruments are compared in terms of their perceived stability for supporting long-term investment. - Research highlights: →The case of wind energy investment in the face of PTC uncertainty provides an important study in how industry structure, and in particular the process of contract negotiations, can amplify the impact of public policy uncertainty on corporate investment. →The finding that contract negotiations in the face of uncertainty are sufficient in themselves to hinder investment implies that the assumption that investment downturns reflect unfavorable economics is unfounded. This assumption falsely discourages interest and investment in wind energy. →Policy stability should be added to the list of criteria explicitly considered in designing policy

  17. An integrated assessment for wind energy in Lake Michigan coastal counties.

    Science.gov (United States)

    Nordman, Erik; VanderMolen, Jon; Gajewski, Betty; Isely, Paul; Fan, Yue; Koches, John; Damm, Sara; Ferguson, Aaron; Schoolmaster, Claire

    2015-04-01

    The benefits and challenges of onshore and offshore wind energy development were assessed for a 4-county area of coastal Michigan. Economic, social, environmental, and spatial dimensions were considered. The coastal counties have suitable wind resources for energy development, which could contribute toward Michigan's 10% renewable energy standard. Wind energy is cost-effective with contract prices less than the benchmark energy price of a new coal-fired power plant. Constructing a 100 MW wind farm could have a $54.7 million economic impact. A patchwork of township-level zoning ordinances regulates wind energy siting. Voluntary collaborations among adjacent townships standardizing the ordinances could reduce regulatory complexity. A Delphi Inquiry on offshore wind energy in Lake Michigan elicited considerable agreement on its challenges, but little agreement on the benefits to coastal communities. Offshore turbines could be acceptable to the participants if they reduced pollution, benefited coastal communities, involved substantial public participation, and had minimal impact on property values and tourism. The US Coast Guard will take a risk-based approach to evaluating individual offshore developments and has no plans to issue blanket restrictions around the wind farms. Models showed that using wind energy to reach the remainder of the 10% renewable energy standard could reduce SO2 , NOx , and CO2 pollution by 4% to 7%. Turbines are highly likely to impact the area's navigational and defense radar systems but planning and technological upgrades can reduce the impact. The integrated assessment shows that responsible wind energy development can enhance the quality of life by reducing air pollution and associated health problems and enhancing economic development. Policies could reduce the negative impacts to local communities while preserving the benefits to the broader region. © 2015 SETAC.

  18. Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems

    Science.gov (United States)

    Luo, Yu; Shi, Yixiang; Zheng, Yi; Cai, Ningsheng

    2017-02-01

    Renewable energy (RE) is expected to be the major part of the future energy. Presently, the intermittence and fluctuation of RE lead to the limitation of its penetration. Reversible solid oxide fuel cell (RSOFC) as the energy storage device can effectively store the renewable energy and build a bidirectional connection with natural gas (NG). In this paper, the energy storage strategy was designed to improve the RE penetration and dynamic operation stability in a distributed system coupling wind generators, internal combustion engine, RSOFC and lithium-ion batteries. By compromising the relative deviation of power supply and demand, RE penetration, system efficiency and capacity requirement, the strategy that no more than 36% of the maximum wind power output is directly supplied to users and the other is stored by the combination of battery and reversible solid oxide fuel cell is optimal for the distributed system. In the case, the RE penetration reached 56.9% and the system efficiency reached 55.2%. The maximum relative deviation of power supply and demand is also lower than 4%, which is significantly superior to that in the wind curtailment case.

  19. Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data

    International Nuclear Information System (INIS)

    Squalli, Jay

    2017-01-01

    This paper examines the relationship between renewable energy production and greenhouse gas emissions (GHG) using U.S. state-level data for 2010. After controlling for other sources of emissions, U.S. states that produce a larger share of renewable energy are found to have lower GHG emissions. It is estimated that a 10% increase in the share of renewable energy could decrease CH_4 emissions by about 0.26%. Since the use of renewable energy sources does not release GHG emissions, this effect can be interpreted as stabilizing if renewable energy is added to coal use or as corrective if it replaces coal. After accounting for the role of coal as a baseload power source, an increase in the share of renewable energy is estimated to mitigate N_2O emissions at the U.S. state level only if states individually decrease their share of coal use to levels below 41.47%. These findings have significant policy implications for the provision of guidance to policymakers in identifying optimal energy mixes and in pursuing realistic goals to enhance renewable energy penetration and to contribute to the current efforts of tackling climate change. - Highlights: • The paper examines the link between renewable energy, coal, and GHG emissions. • The analysis accounts for the role of coal as a baseload power source. • A 10% increase in renewable energy share decreases CH_4 emissions by about 0.26%. • Renewable energy can mitigate emissions if the share of coal drops below 41.47%.

  20. Economics of nuclear and renewables

    International Nuclear Information System (INIS)

    Khatib, Hisham; Difiglio, Carmine

    2016-01-01

    This paper provides an assessment of the economic challenges faced by both nuclear power and “new” renewable electricity technologies. The assessment reflects the need to incorporate new renewables into power grids and issues faced in dispatching power and their effect on traditional electricity technologies as well as the need for transmission extension and/or grid reinforcement. Wider introduction of smart grids and the likely demise of nuclear in some OECD countries are bound to enhance the future prospects for new renewables. However, their immediate future expansion will depend on continued subsidies, which are becoming difficult to sustain in present economic circumstances. Development of large energy storage facilities and carbon pricing could significantly enhance future renewable energy prospects. Correspondingly, expanding renewable energy, in spite of their popularity with some governments and sections of the public, is likely to face challenges which will slow their present rapid progress. Nuclear is now shied away from in many industrialized countries and having mixed prospects in developing economies. In many instances, it suffers from high initial costs, long lead times and often excessive construction delays. Nuclear power also faces challenging risks – investment as well as regulatory. In contrast to renewables, its share of global energy consumption is declining. - Highlights: •Renewables are increasing their energy share. •Renewables system cost is higher than their production cost. •Nuclear share is not increasing and their costs are not reduced. •Discount rate and subsidies are important in economics of renewables and nuclear.

  1. DC Distributed Power Systems. Analysis, Design and Control for a Renewable Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Per

    2002-12-01

    Renewable energy systems are likely to become wide spread in the future due to environmental demands. As a consequence of the dispersed nature of renewable energy systems, this implies that there will be a distributed generation of electric power. Since most of the distributed electrical energy sources do not provide their electric power at line frequency and voltage, a DC bus is a useful common connection for several such sources. Due to the differences in output voltage among the sources, depending on both the type of source and their actual operating point, the sources are connected to the DC power system via power electronic converters. The intention behind the presented work is not to replace the existing AC power system, but to include local DC power systems. The AC and DC power systems are connected at some points in the network. The renewable energy sources are weak compared to the present hydro power and nuclear power plants, resulting in a need of power conditioning before the renewable energy is fed to the transmission lines. The benefit of such an approach is that power conditioning is applied on a central level, i.e. at the interface between the AC and DC power systems. The thesis starts with an overview of related work. Present DC transmission systems are discussed and investigated in simulations. Then, different methods for load sharing and voltage control are discussed. Especially, the voltage droop control scheme is examined thoroughly. Since the droop control method does not require any high-speed communication between sources and loads, this is considered the most suitable for DC distributed power systems. The voltage feed back design of the controller also results in a specification of the DC bus capacitors (equivalents to DC link capacitors of single converters) needed for filtering. If the converters in the DC distribution system are equipped with capacitors selected from this design criterion and if the DC bus impedance is neglected, the

  2. Ruled-based control of off-grid desalination powered by renewable energies

    Directory of Open Access Journals (Sweden)

    Alvaro Serna

    2015-08-01

    Full Text Available A rule-based control is presented for desalination plants operating under variable, renewable power availability. This control algorithm is based on two sets of rules: first, a list that prioritizes the reverse osmosis (RO units of the plant is created, based on the current state and the expected water demand; secondly, the available energy is then dispatched to these units following this prioritized list. The selected strategy is tested on a specific case study: a reverse osmosis plant designed for the production of desalinated water powered by wind and wave energy. Simulation results illustrate the correct performance of the plant under this control.

  3. Seasonal shifting of surplus renewable energy in a power system located in a cold region

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2014-10-01

    Full Text Available The Fukushima nuclear disaster in 2011 changed Japan's strategy for reducing CO2 emissions. The government is now placing more emphasis on the development of nonCO2-emitting distributed generation systems such as wind, solar, and tidal power to reduce greenhouse gas emissions and guarantee electricity supply in the case of a natural disaster. This paper proposes a strategy for the exploitation of wind, solar, and tidal resources in a cold region in Japan by utilizing surplus energy from the summer and spring during winter. It also aims to determine the most favorable energy mix of these renewable sources and storage system types. The study is performed by calculating hourly demand and renewable energy supply for the city in one year, which is based on actual data of demand, solar irradiation, wind speeds, and tidal current speeds. The costs of the components of the renewable power plants and storage systems are considered, and different proportions of generation outputs are evaluated with different types of storage systems. According to results, the configuration containing the hydrogen storage system using organic chemical hydride methylcyclohexane (OCHM is the most economical but is still more expensive than one using a conventional generation system. Moreover, we confirm that the cost of CO2 emissions is the key element for leveling the playing field between conventional and renewable generation from an economic perspective. The cost of CO2 emissions to public health as well as those costs related to the interruption of services during a catastrophe must be carefully calculated with other issues from conventional power projects to perform a precise comparative evaluation between both types of generation systems.

  4. Power Flow Simulations of a More Renewable California Grid Utilizing Wind and Solar Insolation Forecasting

    Science.gov (United States)

    Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.

    2008-12-01

    Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.

  5. Power systems balancing with high penetration renewables: The potential of demand response in Hawaii

    International Nuclear Information System (INIS)

    Critz, D. Karl; Busche, Sarah; Connors, Stephen

    2013-01-01

    Highlights: • Demand response for Oahu results in system cost savings. • Demand response improves thermal power plant operations. • Increased use of wind generation possible with demand response. • WILMAR model used to simulate various levels and prices of demand response. - Abstract: The State of Hawaii’s Clean Energy policies call for 40% of the state’s electricity to be supplied by renewable sources by 2030. A recent study focusing on the island of Oahu showed that meeting large amounts of the island’s electricity needs with wind and solar introduced significant operational challenges, especially when renewable generation varies from forecasts. This paper focuses on the potential of demand response in balancing supply and demand on an hourly basis. Using the WILMAR model, various levels and prices of demand response were simulated. Results indicate that demand response has the potential to smooth overall power system operation, with production cost savings arising from both improved thermal power plant operations and increased wind production. Demand response program design and cost structure is then discussed drawing from industry experience in direct load control programs

  6. The renewable energy market in Australia

    International Nuclear Information System (INIS)

    2002-01-01

    Australia is committed to an 8 per cent reduction in its emissions of greenhouse gases above 1990 levels as a result of the Kyoto Protocol for the period 2008-2012. At present, the emissions stand at 17.4 per cent above 1990 levels. Total electrical power in Australia resulting from renewable energy is in the order of 10.5 per cent. A mandatory renewable energy target of 9500 gigawatt hour (GWh) of extra renewable energy is to be produced annually by 2010, under the Renewable Energy (Electricity) Act. An emissions trading system has been implemented, involving one renewable energy certificate (REC) created for each megawatt hour of renewable energy generated. A significant expansion of the demand for renewable energy is expected in Australia over the next ten years, according to the Australian Greenhouse Office. Increased opportunities for local and international firms operating in the field of renewable energy are being created by the Australian government through initiatives such as the Renewable Energy Commercialization Program, and the Renewable Remote Power Generation Program. Solar, biomass, and wind power are comprised in the wealth of renewable energy resources in Australia. The market remains largely undeveloped. Firms from the United States and the European Union are the leading exporters of renewable energy technology to Australia. Public utilities and independent power producers having entered the deregulated electricity market are the consumers of renewable energy technology and services. A country with minimal duties in most cases, Australia has much in common with Canada, including similar regulatory and legal systems. Australia applies a 10 per cent goods and services tax, which would apply to Canadian exports. It was advised to consult the Australian Customs Service for additional information concerning duties that might be applicable to the renewable energy industry. 28 refs., 3 tabs

  7. Evaluation of the contribution of license renewal of nuclear power plants to fault reduction in the U.S

    International Nuclear Information System (INIS)

    Chiba, Goro

    2008-01-01

    Although nuclear power plants in the U.S. were originally permitted to operate for 40 years, operating periods of many plants have been extended by license renewal for another 20 years. On the other hand, plant life management of nuclear power plants in Japan is carried out assuming long-term operation, and the licensee submits aging technology assessment reports before the plant has been operating commercially for 30 years, and then every ten years thereafter, and receives an evaluation by the authorities. In this paper, trend analysis using the INSS database on faults at nuclear power plants overseas, state of implementation of relevant aging management programs, and the effects of license renewal on preservation activities are examined. It is shown that the aging management program identified that many of the cases of fatigue, FAC, and a closed cycle cooling system have been addressed. As a result of analyzing the fault number for each unit, the number of aging faults trends to decrease after applying for license renewal. Therefore, the U.S. license renewal system is considered to be effective for plant life management, and hence the plant life management in Japan, which is substantially equivalent to the U.S. system, is valid. (author)

  8. Rejecting renewables: The socio-technical impediments to renewable electricity in the United States

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2009-01-01

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection.

  9. Rejecting renewables. The socio-technical impediments to renewable electricity in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)

    2009-11-15

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection. (author)

  10. Rejecting renewables: The socio-technical impediments to renewable electricity in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K., E-mail: bsovacool@nus.edu.s [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)

    2009-11-15

    If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection.

  11. Integration of renewable energies and nuclear power into North African Energy Systems: An analysis of energy import and export effects

    International Nuclear Information System (INIS)

    Supersberger, Nikolaus; Fuehrer, Laura

    2011-01-01

    The North African countries Morocco, Algeria, Tunisia, Libya and Egypt have been and are currently experiencing rapid growth in energy demand. This development confronts their political leaders with the question of how to expand or diversify their countries' generation capacities. In this context, renewable energies and nuclear power constitute options that have rarely been exploited so far in the region. This article analyzes the drawbacks and benefits of both alternatives, with a special focus on import and export dynamics. When attempting to make the strategic decision between renewables and atomic power, North African regional specifics and circumstances have to be taken into account. Hence, in a first step, the article characterizes the energy systems of the North African countries and presents scenarios for their future development. In a second step, it scrutinizes the energy challenges these states face in terms of domestic concerns and foreign affairs. Finally, a case study of Algeria is used to demonstrate how renewable energies, but not nuclear power, are able to respond to North African energy challenges. - Research highlights: → Using nuclear power would require fuel imports over the entire operation time. → Hence, energy exporters (Algeria, Libya) would become dependent on fuel imports. → Renewable energies can make North African countries less fuel import dependent. → Nuclear technologies would have to be imported over the whole life cycle of plants. → Domestic production for renewables technologies could be established after a first phase of technology imports.

  12. Planning renewable energy in electric power system for sustainable development under uncertainty – A case study of Beijing

    International Nuclear Information System (INIS)

    Nie, S.; Huang, Charley Z.; Huang, G.H.; Li, Y.P.; Chen, J.P.; Fan, Y.R.; Cheng, G.H.

    2016-01-01

    Highlights: • Interval type-2 fuzzy fractional programming is developed to optimize ratio problem. • It is advantageous in reflecting conflicting objectives and complex uncertainties. • Uncertainties existed as interval numbers and type-2 fuzzy intervals are quantified. • Results reveal that share of renewable power generation in gross supply increase. • Alternative to manage mixed energy system with sustainable development is suggested. - Abstract: An interval type-2 fuzzy fractional programming (IT2FFP) method is developed for planning the renewable energy in electric power system for supporting sustainable development under uncertainty. IT2FFP can tackle output/input ratio problems where complex uncertainties are expressed as type-2 fuzzy intervals (T2FI) with uncertain membership functions. The IT2FFP method is then applied to planning Beijing electric power system, where issues of renewable energy utilization, electricity supply security, and pollutant/greenhouse gas (GHG) emissions mitigation are incorporated within the modeling formulation. The obtained results suggest that the coal-fired power would continue to decrease and the share of renewable energy in gross electricity supply would maintain an increasing trend. Results also reveal that imported electricity plays a significant role in the city’s energy supply. A number of decision alternatives are also analyzed based on the interval solutions as well as the projected applicable conditions, which represent multiple options with sustainable and economic considerations. The optimal alternative that can give rise to the desirable sustainable option under the maximization of the share of renewable power generation has been suggested. The findings can help decision makers identify desired alternatives for managing such a mixed energy system in association with sustainable development. Compared with the conventional optimization methods that optimize single criterion, it is proved that IT2FFP is

  13. Renewables in the grid. Modeling the German power market of the year 2030

    International Nuclear Information System (INIS)

    Boldt, Jenny; Hankel, Lisa; Laurisch, Lilian Charlotte; Lutterbeck, Felix; Oei, Pao-Yu; Sander, Aram; Schroeder, Andreas; Schweter, Helena; Sommer, Philipp; Sulerz, Jasmin

    2012-01-01

    Renewable energy in Germany is on the rise. Recent changes in legislature, following the nuclear disaster in Fukushima, have accelerated the shift towards a renewable and sustainable energy supply. Offshore wind from the North and Baltic Sea is expected to reach nearly 30 GW by 2030, while the adequacy of the electricity grid to withstand this impact is already threatened today. Since the bulk of renewable energy comes from the North and East of Germany, while demand is far greater in the South and West, transmission infrastructure is poised to become the bottleneck of the German power market transformation. This study investigates where congestion is likely to occur along the grid, and proposes different approaches to meeting the requirements of an increasing share of renewable energy generation. A considerable amount of data for the year 2030, including, but not limited to, conventional generation, renewable generation, transmission and demand serves as the input for the welfare-maximizing DC load flow model. It consists of 40 nodes (18 within Germany, as well as 22 European countries, each modeled by a single node), 232 AC lines and 35 DC lines. The model is solved with the General Algebraic Modeling System (GAMS) for four representative weeks in 2030, one for each season of the year. We investigate three different scenarios: the Reference Scenario, the Strategic South Scenario and the Direct Current (DC) Highway Scenario. - The Reference Scenario is based on the assumption that 63 percent of renewable energy power will be generated in Northern and Eastern Germany by 2030, while 62 percent of load will be located in Southern and Western Germany. This situation requires a substantial expansion of transmission infrastructure from north to south. - In the Strategic South Scenario, we explore the possibility of strategically placing renewable and conventional generation capacities to Southern and Western regions in order to make major transmission upgrades redundant

  14. Renewables in the grid. Modeling the German power market of the year 2030

    Energy Technology Data Exchange (ETDEWEB)

    Boldt, Jenny; Hankel, Lisa; Laurisch, Lilian Charlotte; Lutterbeck, Felix; Oei, Pao-Yu; Sander, Aram; Schroeder, Andreas; Schweter, Helena; Sommer, Philipp; Sulerz, Jasmin

    2012-02-15

    Renewable energy in Germany is on the rise. Recent changes in legislature, following the nuclear disaster in Fukushima, have accelerated the shift towards a renewable and sustainable energy supply. Offshore wind from the North and Baltic Sea is expected to reach nearly 30 GW by 2030, while the adequacy of the electricity grid to withstand this impact is already threatened today. Since the bulk of renewable energy comes from the North and East of Germany, while demand is far greater in the South and West, transmission infrastructure is poised to become the bottleneck of the German power market transformation. This study investigates where congestion is likely to occur along the grid, and proposes different approaches to meeting the requirements of an increasing share of renewable energy generation. A considerable amount of data for the year 2030, including, but not limited to, conventional generation, renewable generation, transmission and demand serves as the input for the welfare-maximizing DC load flow model. It consists of 40 nodes (18 within Germany, as well as 22 European countries, each modeled by a single node), 232 AC lines and 35 DC lines. The model is solved with the General Algebraic Modeling System (GAMS) for four representative weeks in 2030, one for each season of the year. We investigate three different scenarios: the Reference Scenario, the Strategic South Scenario and the Direct Current (DC) Highway Scenario. - The Reference Scenario is based on the assumption that 63 percent of renewable energy power will be generated in Northern and Eastern Germany by 2030, while 62 percent of load will be located in Southern and Western Germany. This situation requires a substantial expansion of transmission infrastructure from north to south. - In the Strategic South Scenario, we explore the possibility of strategically placing renewable and conventional generation capacities to Southern and Western regions in order to make major transmission upgrades redundant

  15. Powering Nigeria through renewable electricity investments: legal ...

    African Journals Online (AJOL)

    Renewable energy has a prominent role in promoting energy access and addressing environmental concerns with energy use in Nigeria. However, there are legal barriers that have not allowed renewable energy to be used in the Nigerian electricity sector. The absence of an effective legal framework to encourage and ...

  16. Renewable Energy Devices and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.

    2015-01-01

    In this paper, essential statistics demonstrating the increasing role of renewable energy generation are firstly discussed. A state of the art review section covers fundamentals of wind turbines and PV systems. Included are schematic diagrams illustrating the main components and system topologies...... and the fundamental and increasing role of power electronics as an enabler for renewable energy integration, and for the future power system and smart grid. Recent examples of research and development, including new devices and system installations for utility power plants, as well for as residential and commercial......, fuel cells, and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in a final section. This paper also represents an editorial introduction for two special issues of the Electric Power Component...

  17. Concentrating solar power: a sustainable and renewable way to get energy from solar light

    International Nuclear Information System (INIS)

    Montecchi, Marco

    2015-01-01

    Solar light irradiating the Earth is a great sustainable and renewable power source. In concentrating solar power plants, mirrors are used to redirect the solar light toward a small area where a receiver captures and converts it into thermal-energy which can be stored. ENEA has been developing the parabolic-trough Italian technology, as well as several facilities for the component characterization. The paper reports on some of those which are purely optical instruments [it

  18. Marine renewable energy in China: Current status and perspectives

    Directory of Open Access Journals (Sweden)

    Yong-liang Zhang

    2014-07-01

    Full Text Available Based on a general review of marine renewable energy in China, an assessment of the development status and amount of various marine renewable energy resources, including tidal energy, tidal current energy, wave energy, ocean thermal energy, and salinity gradient energy in China's coastal seas, such as the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea, is presented. We have found that these kinds of marine renewable energy resources will play an important role in meeting China's future energy needs. Additionally, considering the uneven distribution of China's marine renewable energy and the influences of its exploitation on the environment, we have suggested several sites with great potential for each kind of marine energy. Furthermore, perspectives on and challenges related with marine renewable energy in China are addressed.

  19. Renewable energy technology for off-grid power generation solar hybrid system

    International Nuclear Information System (INIS)

    Mohd Azhar Abd Rahman

    2006-01-01

    Off-grid power generation is meant to supply remote or rural area, where grid connection is almost impossible in terms of cost and geography, such as island, aborigine's villages, and areas where nature preservation is concern. Harnessing an abundance renewable energy sources using versatile hybrid power systems can offer the best, least-cost alternative solution for extending modern energy services to remote and isolated communities. The conventional method for off-grid power generation is using diesel generator with a renewable energy (RE) technology utilizing solar photovoltaic, wind, biomass, biogas and/or mini/micro hydro. A hybrid technology is a combination of multiple source of energy; such as RE and diesel generator and may also include energy storage such as battery. In our design, the concept of solar hybrid system is a combination of solar with diesel genset and battery as an energy storage. The main objective of the system are to reduce the cost of operation and maintenance, cost of logistic and carbon dioxide (CO 2 ) emission. The operational concept of solar hybrid system is that solar will be the first choice of supplying load and excess energy produced will be stored in battery. Genset will be a secondary source of energy. The system is controlled by a microprocessor-based controlled to manage the energy supplied and load demand. The solar hybrid system consists of one or two diesel generator with electronic control system, lead-acid battery system, solar PV, inverter module and system controller with remote monitoring capability. The benefits of solar hybrid system are: Improved reliability, Improved energy services, reduced emissions and pollution, provide continuous power supply, increased operational life, reduced cost, and more efficient use of power. Currently, such system has been installed at Middle and Top Station of Langkawi Cable Car, Langkawi and Aborigines Village Kg Denai, Rompin, Pahang. The technology is considered new in Malaysia

  20. Integration of renewable energies into the German power system and their influence on investments in new power plants. Integrated consideration of effects on power plant investment and operation

    Energy Technology Data Exchange (ETDEWEB)

    Harthan, Ralph Oliver

    2015-01-14

    The increasing share of renewable energies in the power sector influences the economic viability of investments in new conventional power plants. Many studies have investigated these issues by considering power plant operation or the long-term development of the power plant fleet. However, power plant decommissioning, investment and operation are intrinsically linked. This doctoral thesis therefore presents a modelling framework for an integrated consideration of power plant decommissioning, investment and operation. In a case study focusing on Germany, the effects of the integration of renewable energies on power plant decommissioning, investment and operation are evaluated in the context of different assumptions regarding the remaining lifetime of nuclear power plants. With regard to the use of nuclear power, a phase-out scenario and a scenario with lifetime extension of nuclear power plants (by on average 12 years) are considered. The results show that static decommissioning (i.e. considering fixed technical lifetimes) underestimates the capacity available in the power sector in the scenario without lifetime extension since retrofit measures (versus decommissioning) are not taken into account. In contrast, capacity available in the case of nuclear lifetime extension is overestimated since mothballing (versus regular operation) is not considered. If the impact on decommissioning decisions of profit margins accrued during power plant operation are considered (''dynamic decommissioning''), the electricity price reduction effect due to a lifetime extension is reduced by more than half in comparison to static decommissioning. Scarcity situations do not differ significantly between the scenarios with and without lifetime extension with dynamic decommissioning; in contrast, there is a significantly higher need for imports without lifetime extension with static decommissioning. The case study demonstrates that further system flexibility is needed for

  1. Integration of renewable energies into the German power system and their influence on investments in new power plants. Integrated consideration of effects on power plant investment and operation

    International Nuclear Information System (INIS)

    Harthan, Ralph Oliver

    2015-01-01

    The increasing share of renewable energies in the power sector influences the economic viability of investments in new conventional power plants. Many studies have investigated these issues by considering power plant operation or the long-term development of the power plant fleet. However, power plant decommissioning, investment and operation are intrinsically linked. This doctoral thesis therefore presents a modelling framework for an integrated consideration of power plant decommissioning, investment and operation. In a case study focusing on Germany, the effects of the integration of renewable energies on power plant decommissioning, investment and operation are evaluated in the context of different assumptions regarding the remaining lifetime of nuclear power plants. With regard to the use of nuclear power, a phase-out scenario and a scenario with lifetime extension of nuclear power plants (by on average 12 years) are considered. The results show that static decommissioning (i.e. considering fixed technical lifetimes) underestimates the capacity available in the power sector in the scenario without lifetime extension since retrofit measures (versus decommissioning) are not taken into account. In contrast, capacity available in the case of nuclear lifetime extension is overestimated since mothballing (versus regular operation) is not considered. If the impact on decommissioning decisions of profit margins accrued during power plant operation are considered (''dynamic decommissioning''), the electricity price reduction effect due to a lifetime extension is reduced by more than half in comparison to static decommissioning. Scarcity situations do not differ significantly between the scenarios with and without lifetime extension with dynamic decommissioning; in contrast, there is a significantly higher need for imports without lifetime extension with static decommissioning. The case study demonstrates that further system flexibility is needed for

  2. Market role, profitability and competitive features of thermal power plants in the Swedish future electricity market with high renewable integration

    OpenAIRE

    Llovera Bonmatí, Albert

    2017-01-01

    The Swedish energy market is currently undergoing a transition from fossil fuels to renewable energy sources, including a potential phase-out of nuclear power. The combination of a phase-out with expansion of intermittent renewable energy leads to the issue of increased fluctuations in electricity production. Energy-related organizations and institutions are projecting future Swedish energy scenarios with different possible transition pathways. In this study the market role of thermal power p...

  3. Renewable energy: power for a sustainable future

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2001-01-01

    By the end of the 21 century, according to United National projections, the number of people on the earth is likely to have approximately doubled. How can a world of 10 to 12 billion people be provided with adequate supplies of energy, cleanly, safely and substantially? There is a growing consensus that renewable energy sources will be a very important part of the answer. The growing interest in 'renewables' has been prompted in part, by increasing concern over the pollution, resource depletion and possible climate change implications of our continuing use of conventional fossil and nuclear fuels. But recent technological developments have also improved the cost-effectiveness of many of the renewables, making their economic prospects look increasingly attractive. It describes the achievements and progress made in hydropower, biomass conversion, geothermal, solar thermal technology, wind energy conversion and the increasing usage of photovoltaics. It is evident that global warming is setting in and is going to change the climate as well as the terrain of many countries unless drastic measures are taken. The Kyoto meeting emphasised the importance of limiting CO 2 emissions and to abide by some form of agreement to reduce emissions. Present study concludes that renewable energy penetration into the energy market is much faster than was expected in recent years and by 2030, 15-20 percent of our prime energy will be met by renewable energy. (Author)

  4. Renewables 2010 - Global status report

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Martinot, Eric; Sonntag-O'Brien, Virginia; McCrone, Angus; Roussell, Jodie; Barnes, Douglas; Flavin, Christopher; Mastny, Lisa; Kraft, Diana; Wang, Shannon; Ellenbeck, Saskia; Ilieva, Lili; Griebenow, Christof; Adib, Rana; Lempp, Philippe; Welker, Bettina

    2010-01-01

    Changes in renewable energy markets, investments, industries, and policies have been so rapid in recent years that perceptions of the status of renewable energy can lag years behind the reality. This report captures that reality and provides a unique overview of renewable energy worldwide as of early 2010. The report covers both current status and key trends. By design, the report does not provide analysis, discuss current issues, or forecast the future. Many of the trends reflect the increasing significance of renewable energy relative to conventional energy sources (including coal, gas, oil, and nuclear). By 2010, renewable energy had reached a clear tipping point in the context of global energy supply. Renewables comprised fully one quarter of global power capacity from all sources and delivered 18 percent of global electricity supply in 2009. In a number of countries, renewables represent a rapidly growing share of total energy supply-including heat and transport. The share of households worldwide employing solar hot water heating continues to increase and is now estimated at 70 million households. And investment in new renewable power capacity in both 2008 and 2009 represented over half of total global investment in new power generation. Trends reflect strong growth and investment across all market sectors-power generation, heating and cooling, and transport fuels. Grid-connected solar PV has grown by an average of 60 percent every year for the past decade, increasing 100-fold since 2000. During the past five years from 2005 to 2009, consistent high growth year-after-year marked virtually every other renewable technology. During those five years, wind power capacity grew an average of 27 percent annually, solar hot water by 19 percent annually, and ethanol production by 20 percent annually. Biomass and geothermal for power and heat also grew strongly. Much more active policy development during the past several years culminated in a significant policy milestone

  5. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  6. Renewable energy integration into the Spanish power system

    International Nuclear Information System (INIS)

    Duvison Garcia, Miguel R.; Rivas Cuenca, Ana

    2013-01-01

    The increase in renewable energy sources in the Spanish peninsular system, along with the installation of other technologies represents a challenge due to the particularities of this type of technologies. Innovative solutions and new operation paradigms may be needed in order to cope with these challenges. Grid codes must incorporate new specifications for these technologies and demand management strategies must be incorporated in control centers in order to balance the system, maximize renewable production and maintain system security. In real time, the most significant improvements that ease integration of renewable resources are the introduction of observability and controllability, which is especially important in dealing with the problem of system balancing and the impact of renewable energy on matching generation and demand. In this regard the commissioning of a control center specifically for management of these technologies have been taken in the Spanish electrical system in order to integrate the maximum amount of renewable energy

  7. Smart grid and renewable energy systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Guerrero, Josep M.

    2011-01-01

    conventional, fossil based energy sources to renewable energy sources. Another is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discus trends of the future grid infrastructure as well as the most emerging renewable energy...... as efficient as possible. Further, the recent challenges with nuclear power plants are arguing to find more sustainable energy generation solutions. Of many options, two major technologies will play important roles to solve parts of those future challenges. One is to change the electrical power production from...... sources, wind energy and photovoltaics. Then main focus is on the power electronics and control technology for wind turbines as they are the largest renewable power contributor, allowing their penetration into a SmartGrid to be even higher in the future....

  8. Efficient Simulation Methods of Large Power Systems with High Penetration of Renewable Energy Resources : Theory and Applications

    NARCIS (Netherlands)

    Shayesteh, E.

    2015-01-01

    Electrical energy is one of the most common forms of energy these days. Consequently, electric power system is an indispensable part of any society. However, due to the deregulation of electricity markets and the growth in the share of power generation by uncontrollable renewable energies such as

  9. Operation Strategy for a Power Grid Supplied by 100% Renewable Energy at a Cold Region in Japan

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2014-09-01

    Full Text Available This paper presents an operation strategy for a power system supplied from 100% renewable energy generation in Kitami City, a cold region in Japan. The main goal of this work is the complete elimination of the CO2 emissions of the city while keeping the power frequency within prescribed limits. Currently, the main energy related issue in Japan is the reduction of CO2 emissions without depending on nuclear generation. Also, there is a need for the adoption of distributed generation architecture in order to permit local autonomous operation of the system by the local generation of power. As a solution, this paper proposes a strategy to eliminate CO2 emissions that considers digital simulations using past hourly meteorological data and demand for one year. Results shows that Kitami City can be supplied entirely by renewable generation, reducing its CO2 emission to zero while keeping the quality of its power grid frequency within permitted limits.

  10. Optimal mix of renewable power generation in the MENA region as a basis for an efficient electricity supply to europe

    Science.gov (United States)

    Alhamwi, Alaa; Kleinhans, David; Weitemeyer, Stefan; Vogt, Thomas

    2014-12-01

    Renewable Energy sources are gaining importance in the Middle East and North Africa (MENA) region. The purpose of this study is to quantify the optimal mix of renewable power generation in the MENA region, taking Morocco as a case study. Based on hourly meteorological data and load data, a 100% solar-plus-wind only scenario for Morocco is investigated. For the optimal mix analyses, a mismatch energy modelling approach is adopted with the objective to minimise the required storage capacities. For a hypothetical Moroccan energy supply system which is entirely based on renewable energy sources, our results show that the minimum storage capacity is achieved at a share of 63% solar and 37% wind power generations.

  11. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Interim Report 2

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, Stanton W [ORNL; Key, Thomas S [Electric Power Research Institute (EPRI); Deb, Rajat [LCG Consulting

    2009-05-01

    Electricity consumption in the Southeastern US, not including Florida, is approximately 24% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient long distant transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. It shows that development of wind resources will depend not only on available transmission capacity but also on electricity supply and demand factors.

  12. A review of renewable energy in Canada, 1990-2003

    International Nuclear Information System (INIS)

    Nyboer, J.; Rivers, N.; Muncaster, K.; Bennett, M.; Bennett, S.

    2004-10-01

    This paper provides a comprehensive database of renewable energy facilities in Canada by province and by resource type. It considers technologies used for power generation or cogeneration, renewable energy heating systems, hydrogen generation and transportation fuels. Renewable energy technologies convert naturally regenerating resources into useful energy such as electricity, thermal energy, hydrogen or bio-fuels. The database contains information on renewable power operations in Canada over a scale of 100 kilowatts of rated capacity. Smaller applications have been included for run-of-river, hydro, earth, wind and solar power. There are 753 records for renewable energy facilities in Canada, including wind, hydroelectricity, wood residue biomass, landfill/sewage gas, solar photovoltaic, municipal solid waste, and tidal energy. The data in this report was acquired from Statistics Canada and other public information sources. For each of the 753 renewable energy power plants, this report states its type of renewable energy, the province, the name of the project, its location, its operator, electrical generating capacity, number of generating units, average annual electricity production, and the year it began operation. Canada currently has an installed electrical capacity of 115 GW, of which renewable energy sources constitute 76 per cent with the dominant source being hydroelectricity. Manitoba has the highest portion of renewable energy in its installed electrical capacity. Approximately 40 per cent Canada's renewable power capacity is in Quebec, followed by 15 per cent in British Columbia. Nova Scotia has Canada's only tidal power plant. Most of the installed renewable energy power capacity in Canada is owned by integrated electric utilities and a small percentage is owned by renewable electricity generating companies, aluminium companies, pulp and paper companies or diversified electricity generators. It is expected that interest in renewable energy will grow with

  13. Hydro power flexibility for power systems with variable renewable energy sources: an IEA Task 25 collaboration: Hydro power flexibility for power systems

    Energy Technology Data Exchange (ETDEWEB)

    Huertas-Hernando, Daniel [Department of Energy Systems, SINTEF, Trondheim Norway; Farahmand, Hossein [Department of Electric Power Engineering, Norwegian University of Science and Technology (NTNU), Trondheim Norway; Holttinen, Hannele [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Kiviluoma, Juha [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Rinne, Erkka [Department of Energy Systems, VTT Technical Research Centre of Finland, Espoo Finland; Söder, Lennart [Department of Electrical Engineering, KTH University, Stockholm Sweden; Milligan, Michael [Transmission and Grid Integration Group, National Renewable Energy Laboratory' s National Wind Technology Center, Golden CO USA; Ibanez, Eduardo [Transmission and Grid Integration Group, National Renewable Energy Laboratory' s National Wind Technology Center, Golden CO USA; Martínez, Sergio Martín [Department of Electrical Engineering, Electronics, Automation and Communications, Universidad de Castilla-La Mancha, Albacete Spain; Gomez-Lazaro, Emilio [Department of Electrical Engineering, Electronics, Automation and Communications, Universidad de Castilla-La Mancha, Albacete Spain; Estanqueiro, Ana [National Laboratory of Energy and Geology - LNEG, Lisbon Portugal; Rodrigues, Luis [National Laboratory of Energy and Geology - LNEG, Lisbon Portugal; Carr, Luis [Research Association for Energy Economics (FfE GmbH), Munich Germany; van Roon, Serafin [Research Association for Energy Economics (FfE GmbH), Munich Germany; Orths, Antje Gesa [Energinet.dk, Fredericia Denmark; Eriksen, Peter Børre [Energinet.dk, Fredericia Denmark; Forcione, Alain [Hydro Quebec, Montréal Canada; Menemenlis, Nickie [Hydro Quebec, Montréal Canada

    2016-06-20

    Hydro power is one of the most flexible sources of electricity production. Power systems with considerable amounts of flexible hydro power potentially offer easier integration of variable generation, e.g., wind and solar. However, there exist operational constraints to ensure mid-/long-term security of supply while keeping river flows and reservoirs levels within permitted limits. In order to properly assess the effective available hydro power flexibility and its value for storage, a detailed assessment of hydro power is essential. Due to the inherent uncertainty of the weather-dependent hydrological cycle, regulation constraints on the hydro system, and uncertainty of internal load as well as variable generation (wind and solar), this assessment is complex. Hence, it requires proper modeling of all the underlying interactions between hydro power and the power system, with a large share of other variable renewables. A summary of existing experience of wind integration in hydro-dominated power systems clearly points to strict simulation methodologies. Recommendations include requirements for techno-economic models to correctly assess strategies for hydro power and pumped storage dispatch. These models are based not only on seasonal water inflow variations but also on variable generation, and all these are in time horizons from very short term up to multiple years, depending on the studied system. Another important recommendation is to include a geographically detailed description of hydro power systems, rivers' flows, and reservoirs as well as grid topology and congestion.

  14. Sustainability assessment of renewable power and heat generation technologies

    International Nuclear Information System (INIS)

    Dombi, Mihály; Kuti, István; Balogh, Péter

    2014-01-01

    Rationalisation of consumption, more efficient energy usage and a new energy structure are needed to be achieved in order to shift the structure of energy system towards sustainability. The required energy system is among others characterised by intensive utilisation of renewable energy sources (RES). RES technologies have their own advantages and disadvantages. Nevertheless, for the strategic planning there is a great demand for the comparison of RES technologies. Furthermore, there are additional functions of RES utilisation expected beyond climate change mitigation, e.g. increment of employment, economic growth and rural development. The aim of the study was to reveal the most beneficial RES technologies with special respect to sustainability. Ten technologies of power generation and seven technologies of heat supply were examined in a multi-criteria sustainability assessment frame of seven attributes which were evaluated based on a choice experiment (CE) survey. According to experts the most important characteristics of RES utilisation technologies are land demand and social impacts i.e. increase in employment and local income generation. Concentrated solar power (CSP), hydropower and geothermal power plants are favourable technologies for power generation, while geothermal district heating, pellet-based non-grid heating and solar thermal heating can offer significant advantages in case of heat supply. - highlights: • We used choice experiment to estimate the weights of criteria for the sustainability assessment of RES technologies. • The most important attributes of RES technologies according to experts are land demand and social impacts. • Concentrated solar power (CSP), hydropower and geothermal power plants are advantageous technologies for power generation. • Geothermal district heating, pellet-based non-grid heating and solar thermal heating are favourable in case of heat supply

  15. Power System Study for Renewable Energy Interconnection in Malaysia

    International Nuclear Information System (INIS)

    Askar, O F; Ramachandaramurthy, V K

    2013-01-01

    The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.

  16. Power System Study for Renewable Energy Interconnection in Malaysia

    Science.gov (United States)

    Askar, O. F.; Ramachandaramurthy, V. K.

    2013-06-01

    The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.

  17. Resilient Renewable Energy Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Katherine H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DiOrio, Nicholas A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Butt, Robert S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cutler, Dylan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, Allison [Unaffiliated

    2017-11-14

    This presentation for the Cable-Tec Expo 2017 offers information about how renewable microgrids can be used to increase resiliency. It includes information about why renewable energy battery diesel hybrids microgrids should be considered for backup power, how to estimate economic savings of microgrids, quantifying the resiliency gain of microgrids, and where renewable microgrids will be successful.

  18. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe

    DEFF Research Database (Denmark)

    Heide, Dominik; Bremen, Lueder von; Greiner, Martin

    2010-01-01

    behaviors are able to counterbalance each other to a certain extent to follow the seasonal load curve. The best point of counterbalancing represents the seasonal optimal mix between wind and solar power generation. It leads to a pronounced minimum in required stored energy. For a 100% renewable Europe...

  19. Selection of site coolant intake and discharge of shore based power stations - coastal oceanographic considerations

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Suryanarayana, A.; Krishnakumar, V.

    Many new nuclear power plants, reactors are proposed along coastal area of Indian coastline apart from the existing ones. All these, being ultimately a heat exchange process, necessitate enormous quantity of cooling water drawn from the sea...

  20. Renewables Deals. Mergers and acquisitions activity in renewable power and related clean technology. 2012 outlook and 2011 review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    Renewables Deals is our annual analysis of deal activity in the renewable power and related clean technology sectors. We publish our outlook on the prospects for dealmaking in the year ahead. We also take a look at what's been happening in the last 12 months and in the different main markets around the world. This year for the first time, we open our report with our discussion of the outlook for the year ahead and identify some of the main themes we expect to be at work. Looking ahead, the sector is undergoing a growing maturity and consolidation phase. This evolution inclines us to believe that deal flow will remain significant in 2012. In part, though, this will depend on how the Eurozone crisis unfolds. We assume a continuation of a 'rolling uncertainty' scenario affecting the Eurozone and wider world sentiment. But, if there are significant adverse events that turn Eurozone 'rolling uncertainty' into deeper crisis, deal flow is likely to be dampened.

  1. Thermal power plant operating regimes in future British power systems with increasing variable renewable penetration

    International Nuclear Information System (INIS)

    Edmunds, Ray; Davies, Lloyd; Deane, Paul; Pourkashanian, Mohamed

    2015-01-01

    Highlights: • This work investigates thermal power operating regimes in future power systems. • Gas plants have low utilisation in the scenarios considered. • Ramping intensity increases for gas plants and pumped storage. • Coal plants frequently operate at minimum stable levels and start-ups increase. • Grid emission intensity and total emission production remains substantial. - Abstract: This work investigates the operational requirements of thermal power plants in a number of potential future British power systems with increasing variable renewable penetration. The PLEXOS Integrated Energy Model has been used to develop the market models, with PLEXOS employing mixed integer programming to solve the unit commitment and economic dispatch problem, subject to a number of constraints. Initially, a model of the British power system was developed and validated. Subsequently, a 2020 test model was developed to analyse a number of future system structures with differing fuel and carbon prices and generation mixes. The study has found that in three of the four scenarios considered, the utilisation of gas power plants will be relatively low, but remains fundamental to the security of supply. Also, gas plants will be subject to more intense ramping. The findings have consequent implications for energy policy as expensive government interventions may be required to prevent early decommissioning of gas capacity, should the prevailing market conditions not guarantee revenue adequacy.

  2. Renewable energies in France 1970-2002

    International Nuclear Information System (INIS)

    2004-02-01

    The energy observatory presents in this 2004 edition today data concerning the thermal renewable energies and the new energetic accounting method for the electric renewable energies. The following energy sources are concerned: hydroelectric power, wind power, photovoltaic, geothermal energy, biomass, wood fuels, domestic wastes, heat pumps, biogas, the thermal solar and biofuels. The energy production by renewable sources from 1970 to 2002, is also provided. (A.L.B.)

  3. Evaluation and Numerical Simulation of Tsunami for Coastal Nuclear Power Plants of India

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Singh, R.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-01-01

    Recent tsunami generated on December 26, 2004 due to Sumatra earthquake of magnitude 9.3 resulted in inundation at the various coastal sites of India. The site selection and design of Indian nuclear power plants demand the evaluation of run up and the structural barriers for the coastal plants: Besides it is also desirable to evaluate the early warning system for tsunami-genic earthquakes. The tsunamis originate from submarine faults, underwater volcanic activities, sub-aerial landslides impinging on the sea and submarine landslides. In case of a submarine earthquake-induced tsunami the wave is generated in the fluid domain due to displacement of the seabed. There are three phases of tsunami: generation, propagation, and run-up. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC), Trombay has initiated computational simulation for all the three phases of tsunami source generation, its propagation and finally run up evaluation for the protection of public life, property and various industrial infrastructures located on the coastal regions of India. These studies could be effectively utilized for design and implementation of early warning system for coastal region of the country apart from catering to the needs of Indian nuclear installations. This paper presents some results of tsunami waves based on different analytical/numerical approaches with shallow water wave theory. (authors)

  4. Renewable energy: Method and measures

    International Nuclear Information System (INIS)

    Nilsen, Trond Hartvedt

    2003-01-01

    The thesis presents various possibilities for renewable energy in Norway. The wind power would give a practical and economic alternative. The external costs for the wind power would be moderate. In chapter 3 the utility cost analysis for renewable alternatives are studied relative to the macroeconomic efficiency. Some methodical problems and how these analyses are used are reviewed. In the practical utility cost analyses wind power is studied relative to gas power which is the non-renewable alternative present in Norway today. A qualitative part is included. It is not possible to determine whether wind power is preferable to gas power in the macroeconomic perspective. Wind power would be the choice if high environmental and CO2 cleaning costs are expected. The first conclusion to be drawn is that it is difficult to decide whether wind power is the best solution based on cost benefit analysis. However, the alternative seems to be quite robust in the analysis. Due to the central position the energy supplies have in the society this business should be heavily regulated. The sector is also overtaxed as a reduction in consumption is desired. The analysis shows that the system does not function perfectly. The thesis surveys various measures for improving the renewable energy supply and focuses on the wind power. A model for and analysis of the measures are carried out and resulted in a second conclusion. The measures have various properties as to the influence on the market. A subsidy is a fine measure for stimulation production of green power while a tax reduces efficiently the production of black power. A system with green licenses in combination with a subsidy and a tax would be preferable as to increasing the part of renewable energy of the total production. It is therefore necessary to have clearly defined goals and use suitable measures for achieving them. The costs of wind power is falling and it would therefore soon be macroeconomic profitable. It is also

  5. Renewable Energy Policies in a Time of Transition

    International Nuclear Information System (INIS)

    Murdock, Hannah E.; Adib, Rana; Lins, Christine; Guerra, Flavia; Misra, Archita; Murdock, Hannah E.; Vickery, Louise; Collier, Ute; Le Feuvre, Pharoah; Bianco, Emanuele; Mueller, Simon; Philibert, Cedric; Schmidt, Oliver; Kvarnstroem, Oskar; Collier, Ute; Hungerford, Zoe; Frankl, Paolo; Bianco, Emanuele; Hawila, Diala; Ferroukhi, Rabia; Hawila, Diala; Renner, Michael; Nagpal, Divyam; Cox, Sadie; Esterly, Sean; Priesmann, Caspar; Taylor, Hadley; Breitschopf, Barbara; Van Rooijen, Sascha

    2018-01-01

    Spurred by innovation, increased competition, and policy support in a growing number of countries, renewable energy technologies have achieved massive technological advances and sharp cost reductions. Renewables have come to the forefront of the global energy transition, with nearly every country adopting a renewable energy target. Yet progress has been uneven in different countries and sectors. Technology and financial risks still hamper the expansion of renewables into new markets. As the power sector develops further, the increased adoption of variable renewables like solar and wind requires more flexible systems. Compared to power generation, the regulatory framework for end-use sectors lags behind. This report, prepared jointly by the International Renewable Energy Agency (IRENA), the International Energy Agency (IEA) and the Renewable Energy Policy Network for the 21. Century (REN21), identifies key barriers and highlights policy options to boost renewable energy deployment. After reviewing current policies and targets worldwide, it examines sector-specific policies for heating and cooling, transport and power, as well as measures for integrating variable renewables. An updated policy classification and terminology list can serve as a global reference for renewable energy policy instruments. Among the key findings: Renewable energy policies must focus on end-use sectors, not just power generation; The use of renewables for heating and cooling requires greater policy attention, including dedicated targets, technology mandates, financial incentives, generation-based incentives, and carbon or energy taxes; Policies in the transport sector require further development, including integrated policies to de-carbonise energy carriers and fuels, vehicles and infrastructure; Policies in the power sector must also evolve further to address new challenges. Measures are needed to support the integration of variable renewable energy, taking into account the specific

  6. Stochastic simulation of power systems with integrated renewable and utility-scale storage resources

    Science.gov (United States)

    Degeilh, Yannick

    The push for a more sustainable electric supply has led various countries to adopt policies advocating the integration of renewable yet variable energy resources, such as wind and solar, into the grid. The challenges of integrating such time-varying, intermittent resources has in turn sparked a growing interest in the implementation of utility-scale energy storage resources ( ESRs), with MWweek storage capability. Indeed, storage devices provide flexibility to facilitate the management of power system operations in the presence of uncertain, highly time-varying and intermittent renewable resources. The ability to exploit the potential synergies between renewable and ESRs hinges on developing appropriate models, methodologies, tools and policy initiatives. We report on the development of a comprehensive simulation methodology that provides the capability to quantify the impacts of integrated renewable and ESRs on the economics, reliability and emission variable effects of power systems operating in a market environment. We model the uncertainty in the demands, the available capacity of conventional generation resources and the time-varying, intermittent renewable resources, with their temporal and spatial correlations, as discrete-time random processes. We deploy models of the ESRs to emulate their scheduling and operations in the transmission-constrained hourly day-ahead markets. To this end, we formulate a scheduling optimization problem (SOP) whose solutions determine the operational schedule of the controllable ESRs in coordination with the demands and the conventional/renewable resources. As such, the SOP serves the dual purpose of emulating the clearing of the transmission-constrained day-ahead markets (DAMs ) and scheduling the energy storage resource operations. We also represent the need for system operators to impose stricter ramping requirements on the conventional generating units so as to maintain the system capability to perform "load following'', i

  7. Promotion strategies for renewable energy in Taiwan

    International Nuclear Information System (INIS)

    Chen, Falin; Lu, Shyi-Min; Chi-Chuan, Wang; Chang, Yi-Lin

    2008-01-01

    To promote the development and application of renewable energy, under the planning and execution of Bureau of Energy of Ministry of Economical Affairs (BOEMOEA), Taiwan has implemented many measures for subsidizing the installation of RE apparatus since 2000. Besides subsidizing the installing expenses, Taiwanese government also provides incentive measures of finance/tax, such as investment deduction and accelerating depreciation. The successive growth of the amount of installing cases has apparently constructed the base of promotion and application of renewable energy; on the other hand, many barriers to be overcome were continuously discovered during the executing processes. To effectively remove these promoting barriers, the Energy Commission (the pre-BOE) issued 'Renewable Energy Development Plan' through the endorsement of Executive Yuan in January 2002. The purpose of this plan is to establish an inter-ministerial coordinating mechanism of a higher administrative level, which may focus all resources to be functioned as a working team. In the meantime, to further establish a systematically promoting mechanism, the Bureau of Energy then pushes the legislation of 'Renewable Energy Development Bill'. According to the drafted plan of this law, the power capacity of renewable energies will be 12% share of the national power installation capacity by 2020. Furthermore, in the Nuclear-free Homeland National Conference held in June 2003, government planned that the power capacity of renewable energy must reach 10% of the total power capacity in the nation by 2010. However, the share of the power capacity of renewable energy to the national power installation capacity is only 6.17%, currently, so there is still a lot of growing space for the development of renewable energy in Taiwan. (author)

  8. renewables 2011 - Global status report

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Martinot, Eric; Barnes, Douglas; Martinot, Eric; McCrone, Angus; Roussell, Jodie; Sawin, Janet L.; Sims, Ralph; Sonntag-O'Brien, Virginia; Adib, Rana; Skeen, Jonathan; Musolino, Evan; Riahi, Lily; Mastny, Lisa

    2011-01-01

    Changes in renewable energy markets, investments, industries, and policies have been so rapid in recent years that perceptions of the status of renewable energy can lag years behind the reality. This report captures that reality and provides a unique overview of renewable energy worldwide as of early 2011. The report covers both current status and key trends; by design, it does not provide analysis or forecast the future. Global energy consumption rebounded in 2010 after an overall downturn in 2009. Renewable energy, which experienced no downturn in 2009, continued to grow strongly in all end-use sectors - power, heat and transport - and supplied an estimated 16% of global final energy consumption. Renewable energy accounted for approximately half of the estimated 194 gigawatts (GW) of new electric capacity added globally during the year. Renewables delivered close to 20% of global electricity supply in 2010, and by early 2011 they comprised one quarter of global power capacity from all sources. In several countries, renewables represent a rapidly growing share of total energy supply, including heat and transport

  9. Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island

    International Nuclear Information System (INIS)

    Ma, Tao; Yang, Hongxing; Lu, Lin

    2014-01-01

    Highlights: • Batteries and pumped hydro storage schemes are examined. • Sizing procedure for each option is investigated in detail. • The two schemes are compared in terms of life cycle cost and technical viability. • Sensitivity analyses are conducted on five key input parameters. - Abstract: This study examined and compared two energy storage technologies, i.e. batteries and pumped hydro storage (PHS), for the renewable energy powered microgrid power supply system on a remote island in Hong Kong. The problems of energy storage for off-grid renewable energy were analyzed. The sizing methods and economic models were developed, and finally applied in the real project (case study). The results provide the most suitable energy storage scheme for local decision-makers. The two storage schemes were further divided into 4 options. Accordingly, the life-cycle costs (LCC), levelized costs for the renewable energy storage system (LCRES) and the LCC ratios between all options were calculated and compared. It was found that the employment of conventional battery (Option 2) had a higher LCC value than the advanced deep cycle battery (Option 1), indicating that using deep cycle batteries is more suitable for a standalone renewable power supply system. The pumped storage combined with battery bank option (Option 3) had only 55% LCC of that of Option 1, making this combined option more cost-competitive than the sole battery option. The economic benefit of pumped storage is even more significant in the case of purely pumped storage with a hydraulic controller (Option 4), with the lowest LCC among all options at 29–48% of Option 1. Sensitivity analysis demonstrates that PHS is even more cost competitive by controlling some adjustments such as increasing energy storage capacity and days of autonomy. Therefore, the renewable energy system coupled with pumped storage presents technically feasible opportunities and practical potential for continuous power supply in remote

  10. Power generation with ORC machines using low-grade waste heat or renewable energy

    International Nuclear Information System (INIS)

    Minea, Vasile

    2014-01-01

    By 2030, global energy consumption is projected to grow by 71%. At the same time, energy-related carbon dioxide emissions are expected to rise by more than 40%. In this context, waste and renewable energy sources may represent alternatives to help reduce fossil primary energy consumption. This paper focuses on the technical feasibility, efficiency and reliability of a heat-to-electricity conversion, laboratory beta-prototype, 50 kW Organic Rankine Cycle (ORC) machine using industrial waste or renewable energy sources at temperatures varying between 85 °C and 116 °C. The thermodynamic cycle along with the selected working fluid, components and control strategy, as well as the main experimental results, are presented. The study shows that the power generated and the overall net conversion efficiency rate of the machine mainly depends on such parameters as the inlet temperatures of the waste (or renewable) heat and cooling fluid, as well as on the control strategy and amount of parasitic electrical power required. It also indicates that after more than 3000 h of continuous operation, the ORC-50 beta-prototype machine has shown itself to be reliable and robust, and ready for industrial market deployment. - Highlights: •A laboratory-scale beta-prototype Organic Rankine Cycle machine has been studied. •Cycle efficiency with feed pump at variable full range speed has been determined. •Energetic and exergetic conversion efficiencies have been experimentally evaluated. •Various effects of evaporator superheating on the cycle efficiency have been analysed. •Several cycle improvements and potential industrial application were identified

  11. The hillsides would allow to produce electric power from renewable source

    International Nuclear Information System (INIS)

    Laby, F.

    2006-09-01

    A solar tower is a renewable energy plant, designed to channel the air warmed by the sun, in order to produce electric power by the use of turbines. It is composed of a giant greenhouse with a chimney in its center. The capacity of this system is proportional to the chimney high. That is the reason why french engineers proposed to use the hillsides to build chimneys of many kilometers high. The project and some technical informations are provided in this paper. (A.L.B.)

  12. Renewables global status report - 2009 Update

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Martinot, Eric; Mastny, Lisa; Lempp, Philippe; Sonntag-O'Brien, Virginia; Lempp, Philippe; Foulon, Samia; Roussell, Jodie; Welker, Bettina

    2009-01-01

    Since 2004, when the Renewables Global Status Report was first launched, many indicators of renewable energy have shown dramatic gains. Annual renewable energy investment has increased fourfold to reach $120 billion in 2008. In the four years from end-2004 to end-2008, solar photovoltaic (PV) capacity increased six-fold to more than 16 gigawatts (GW), wind power capacity increased 250 percent to 121 GW, and total power capacity from new renewables increased 75 percent to 280 GW, including significant gains in small hydro, geothermal, and biomass power generation. During the same period, solar heating capacity doubled to 145 gigawatts-thermal (GWth), while bio-diesel production increased six-fold to 12 billion liters per year and ethanol production doubled to 67 billion liters per year. Annual percentage gains for 2008 were even more dramatic. Wind power grew by 29 percent and grid-tied solar PV by 70 percent. The capacity of utility-scale solar PV plants (larger than 200 kilowatts) tripled during 2008, to 3 GW. Solar hot water grew by 15 percent, and annual ethanol and bio-diesel production both grew by 34 percent. Heat and power from biomass and geothermal sources continued to grow, and small hydro increased by about 8 percent. Many leadership changes and milestones in renewable energy markets and policy took place in 2008. The United States became the leader in new capacity investment with $24 billion invested, or 20 percent of global total investment. The United States also led in added and total wind power capacity, surpassing long-time wind power leader Germany. Spain added 2.6 GW of solar PV, representing a full half of global grid-tied installations and a fivefold increase over Spain's 2007 additions. China doubled its wind power capacity for the fifth year in a row, moving into fourth place worldwide. Another significant milestone was that for the first time, both the United States and the European Union added more power capacity from renewables than

  13. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Key, Thomas S [Electric Power Research Institute (EPRI); Hadley, Stanton W [ORNL; Deb, Rajat [LCG Consulting

    2010-02-01

    Electricity consumption in the Southeastern US, including Florida, is approximately 32% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. We found that significant wind energy transfers, at the level of 30-60 GW, are expected to be economic in case of federal RPC or CO2 policy. Development of wind resources will depend not only on the available transmission capacity and required balancing resources, but also on electricity supply and demand factors.

  14. 20 years power generation from renewable energy in Germany. A success story; 20 Jahre Foerderung von Strom aus Erneuerbaren Energien in Deutschland. Eine Erfolgsgeschichte

    Energy Technology Data Exchange (ETDEWEB)

    Bruns, Elke; Ohlhorst, Doerte; Wenzel, Bernd

    2010-09-15

    The contribution under consideration reports on the historical development of the power generation from renewable energies in Germany. It is a summary of an extensive investigation of the Technical University of Berlin (Federal Republic of Germany) with the title 'Renewable energies in Germany - a biography of innovations'. This investigation contains the social background for the reconstruction of the power supply system, the most important political and legal settings the course for the development of the renewable energies as well as an overview of technological innovations. An emphasis of this contribution is on the genesis of the German regulation of reimbursement. The contribution is limited to the range of power generation by water power, wind energy, photovoltaics, biogas and geothermal energy.

  15. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  16. Integrating Variable Renewable Energy in Electric Power Markets. Best Practices from International Experience, Summary for Policymakers

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-04-30

    Many countries - reflecting very different geographies, markets, and power systems - are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  17. Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security

    International Nuclear Information System (INIS)

    Pfenninger, Stefan; Keirstead, James

    2015-01-01

    Highlights: • We compare a large number of cost-optimal future power systems for Great Britain. • Scenarios are assessed on cost, emissions reductions, and energy security. • Up to 60% of variable renewable capacity is possible with little cost increase. • Higher shares require storage, imports or dispatchable renewables such as tidal range. - Abstract: Mitigating climate change is driving the need to decarbonize the electricity sector, for which various possible technological options exist, alongside uncertainty over which options are preferable in terms of cost, emissions reductions, and energy security. To reduce this uncertainty, we here quantify two questions for the power system of Great Britain (England, Wales and Scotland): First, when compared within the same high-resolution modeling framework, how much do different combinations of technologies differ in these three respects? Second, how strongly does the cost and availability of grid-scale storage affect overall system cost, and would it favor some technology combinations above others? We compare three main possible generation technologies: (1) renewables, (2) nuclear, and (3) fossil fuels (with/without carbon capture and storage). Our results show that across a wide range of these combinations, the overall costs remain similar, implying that different configurations are equally feasible both technically and economically. However, the most economically favorable scenarios are not necessarily favorable in terms of emissions or energy security. The availability of grid-scale storage in scenarios with little dispatchable generation can reduce overall levelized electricity cost by up to 50%, depending on storage capacity costs. The UK can rely on its domestic wind and solar PV generation at lower renewable shares, with levelized costs only rising more than 10% above the mean of 0.084 GBP/kWh for shares of 50% and below at a 70% share, which is 35% higher. However, for more than an 80% renewable

  18. Power quality analysis of hybrid renewable energy system

    Directory of Open Access Journals (Sweden)

    Rinchin W. Mosobi

    2015-12-01

    Full Text Available An hybrid renewable energy sources consisting of solar photovoltaic, wind energy system, and a microhydro system is proposed in this paper. This system is suitable for supplying electricity to isolated locations or remote villages far from the grid supply. The solar photovoltaic system is modeled with two power converters, the first one being a DC-DC converter along with an maximum power point tracking to achieve a regulated DC output voltage and the second one being a DC-AC converter to obtain AC output. The wind energy system is modeled with a wind-turbine prime mover with varying wind speed and fixed pitch angle to drive an self excited induction generator (SEIG. Owing to inherent drooping characteristics of the SEIG, a closed loop turbine input system is incorporated. The microhydro system is modeled with a constant input power to drive an SEIG. The three different sources are integrated through an AC bus and the proposed hybrid system is supplied to R, R-L, and induction motor loads. A static compensator is proposed to improve the load voltage and current profiles; it also mitigates the harmonic contents of the voltage and current. The static synchronous compensator is realized by means of a three-phase IGBT-based current-controlled voltage source inverter with a self-supporting DC bus. The complete system is modeled and simulated using Matlab/Simulink. The simulation results obtained illustrate the feasibility of the proposed system and are found to be satisfactory.

  19. License renewal

    International Nuclear Information System (INIS)

    Newberry, S.

    1993-01-01

    This article gives an overview of the process of license renewal for nuclear power plants. It explains what is meant by license renewal, the significance of license renewal, and goes over key elements involved in the process of license renewal. Those key elements are NRC requirements embodied in 10 CFR Part 54 (Reactor Safety) and 10 CFR Part 51 (Environmental Issues). In addition Industry Reports must be developed and reviewed. License renewal is essentially the process of applying for a 20 year extension to the original 40 year operating license granted for the plant. This is a very long term process, which involves a lot of preparation, and compliance with regulatory rules and guidelines. In general it is a process which is expected to begin when plants reach an operating lifetime of 20 years. It has provisions for allowing the public to become involved in the review process

  20. PEI's perspective on renewable energy development

    International Nuclear Information System (INIS)

    Brown, B.

    2005-01-01

    Approximately 7 per cent of Prince Edward Island's (PEI) energy supply is from renewable sources, acquired mainly from biomass. Wind power accounts for 0.5 per cent of electricity production. This paper discussed issues concerning renewable energy developments in PEI, with particular reference to the PEI Renewable Energy Act as well as the PEI energy framework and renewable energy strategy, which was the result of public consultation sessions held in 2003. The results of these sessions indicated that greater development of indigenous renewable energy resources was desired, particularly in wind power. It was also stated that the government should help to advance renewable energy development in the province. Several development opportunities were highlighted, including: wind; biodiesel; ethanol; biomass; bio-gas; and small-scale hydro. The advantages of wind power were reviewed and wind data was presented. The economic and community benefits of renewable energy include local price stability, development opportunities, diversity of fuel type and security of supply. It was noted that renewable energy fully complemented the energy goals of the PEI government. Several strategies were discussed towards the development of renewable energy, including feasibility studies in biogas and biomass generation. The PEI government's commitment towards developing a regulatory framework acknowledging environmental sustainability was re-stated. Objectives include the promotion of renewable energy sources through the establishment of a Renewable Portfolio Standard for electricity; improvements in the economics of small-scale electricity production from renewable resources through the introduction of net metering; decreases in peak demand; enablement of green credits; the designation of areas for large-scale wind developments; and provision of guaranteed prices paid to producers for medium and large-scale renewable energy generators through feed-in tariffs. tabs, figs

  1. Design, modeling and testing of the Askaryan Radio Array South Pole autonomous renewable power stations

    Energy Technology Data Exchange (ETDEWEB)

    Besson, D.Z., E-mail: zedlam@ku.edu [Department of Physics and Astronomy, University of Kansas, 1082 Malott Hall, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582 (United States); Moscow Engineering and Physics Institute, 31 Kashirskaya Highway, Moscow 115409 (Russian Federation); Kennedy, D.M., E-mail: dmkennedy@ku.edu [Department of Physics and Astronomy, University of Kansas, 1082 Malott Hall, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582 (United States); Ratzlaff, K., E-mail: ratzlaff@ku.edu [Instrumentation Design Laboratory, University of Kansas, 6042 Malott Hall, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582 (United States); Young, R., E-mail: rwyoung@ku.edu [Instrumentation Design Laboratory, University of Kansas, 6042 Malott Hall, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582 (United States)

    2014-11-01

    We describe the design, construction and operation of the Askaryan Radio Array (ARA) Autonomous Renewable Power Stations, initially installed at the South Pole in December, 2010 with the goal of providing an independently operating 100 W power source capable of year-round operation in extreme environments. In addition to particle astrophysics applications at the South Pole, such a station can easily be, and has since been, extended to operation elsewhere, as described herein.

  2. Design, modeling and testing of the Askaryan Radio Array South Pole autonomous renewable power stations

    International Nuclear Information System (INIS)

    Besson, D.Z.; Kennedy, D.M.; Ratzlaff, K.; Young, R.

    2014-01-01

    We describe the design, construction and operation of the Askaryan Radio Array (ARA) Autonomous Renewable Power Stations, initially installed at the South Pole in December, 2010 with the goal of providing an independently operating 100 W power source capable of year-round operation in extreme environments. In addition to particle astrophysics applications at the South Pole, such a station can easily be, and has since been, extended to operation elsewhere, as described herein

  3. Assessment of air pollution emissions and evaluation of renewable energy as mitigation option-power generation sector of Pakistan

    International Nuclear Information System (INIS)

    Harijan, K.H.; Uqaili, M.A.; Memon, M.

    2005-01-01

    Energy is an engine for growth and is linked with all aspects of development, poverty alleviation, and improvement of quality of life. The production, distribution and use of energy particularly fossil fuels have significant environmental impacts. Pakistan has total power generation capacity of 19.25 GW, with 63.9% thermal, 33.7% hydel and 2.4% nuclear share. The electricity generation increased by 7.5% per annum during the last three decades and future demand has been projected to grow at 7%-11 % per annum. This increasing power demand will depend mainly on power generation from fossil fuels. This paper presents the review of power generation situation and assesses the air pollution emissions from thermal power generation in Pakistan. The paper also investigates the prospects of renewable energy- sources for air pollution mitigation in the country. The study indicates that thermal power generation plants are the major source of air pollution emissions in the country. This air pollution has local, regional and global environmental impacts. The paper concludes that the use of renewables such as hydel, wind, solar and biomass energy for power generation can contribute substantially in air pollution mitigation in the country. (author)

  4. Fueling Wisconsin's economy with renewable energy

    International Nuclear Information System (INIS)

    Clemmer, S.

    1995-01-01

    A dynamic macroeconomic model of the Wisconsin economy is used to estimate the economic impacts of displacing a portion of future investment in fossil fuel power plants (coal and natural gas) with renewable energy resources (biomass, wind, solar and hydro). The results show that renewable energy investments produce over three times more jobs, income and economic activity than the same amount of electricity generated from coal and natural gas power plants. Between 1995 and 2020, a 75% increase in renewable energy use generates approximately 65,000 more job-years of employment, $1.6 billion in higher disposable income and a $3.1 billion increase in gross regional product than conventional power plant investments. This includes the effects of a 0.3% average annual increase in electricity prices from renewable energy investments

  5. The Economics of Renewable Electricity Policy in Ontario

    OpenAIRE

    Donald N. Dewees

    2013-01-01

    Economic evaluation of green or renewable power should compare the cost of renewable power with the cost savings from displaced fossil generation plus the avoided harm from reduced emissions of air pollution and greenhouse gases. We use existing estimates of the values of the harm and we calculate cost savings from renewable power based on wholesale spot prices of power in Ontario and steady-state estimates of the cost of new gas generation to estimate the value or affordability of various fo...

  6. Different Predictive Control Strategies for Active Load Management in Distributed Power Systems with High Penetration of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Zong, Yi; Bindner, Henrik W.; Gehrke, Oliver

    2013-01-01

    In order to achieve a Danish energy supply based on 100% renewable energy from combinations of wind, biomass, wave and solar power in 2050 and to cover 50% of the Danish electricity consumption by wind power in 2020, it requires more renewable energy in buildings and industries (e.g. cold stores......, greenhouses, etc.), and to coordinate the management of large numbers of distributed energy resources with the smart grid solution. This paper presents different predictive control (Genetic Algorithm-based and Model Predictive Control-based) strategies that schedule controlled loads in the industrial...... and residential sectors, based on dynamic power price and weather forecast, considering users’ comfort settings to meet an optimization objective, such as maximum profit or minimum energy consumption. Some field tests were carried out on a facility for intelligent, active and distributed power systems, which...

  7. Nuclear power in societal flux. The renewal of nuclear power in Finland in the context of global concern over energy security

    International Nuclear Information System (INIS)

    Litmanen, Tapio

    2010-01-01

    This paper will address nuclear power's relationship with societal flux. The history of nuclear power indicates that this type of technology is unusually to societal flux. Instability in nuclear power's societal status is created by the ambiguous nature of the technology itself, changing public opinion, the fluidity of political judgments, the flow of cultural meanings attaching to nuclear power and the unpredictability of media processing. Even though the risks of nuclear technology are highly regulated by the companies themselves and by the state and public administration, it remains capable of inflaming political debate and igniting controversy. One public opinion survey after another reveals how divisive nuclear power is. Unlike most other industrial activities nuclear power decision-making involves extraordinary levels of political consideration, societal processing and cultural valuation by stakeholders and the media. In order to illustrate the idea of societal flux, the paper will deal with major shifts in Finnish nuclear power policy since the 1950s, focusing particularly, however, on changes between 1986-2010. The recent changes in the country's nuclear power policy prove interesting having proceeded from a phase of rejection during the period 1986-1993, to a revival between 1994-2002 and renewal between 2002-2009. The rejection period ended in 1993 during which time the Parliament of Finland had rejected the further construction of nuclear power plants in the wake of the Chernobyl accident. In less than a decade, however, nuclear power policy changed. The revival period ended in 2001 as Parliament ratified a Decision in Principle for the final disposal of spent nuclear fuel and in 2002 for the construction of a new nuclear power plant unit, Olkiluoto 3. Characteristic of the ongoing renewal period is that in 2008-2009 the nuclear industry submitted three further applications for the construction of new NPP units. Thus Finland today has acquired a

  8. A review of existing renewable energy facilities in Canada

    International Nuclear Information System (INIS)

    Nyboer, J.; Pape-Salmon, A.

    2003-05-01

    This first annual report on renewable energy in the Canadian electricity sector includes records from 629 power plants across Canada. Renewable energy sources include wind, hydroelectricity, wood residue biomass, landfill/sewage gas, solar photovoltaic, municipal solid waste, and tidal energy. The data in this report was acquired from Statistics Canada and other public information sources. For each of the 629 renewable energy power plants, this report states its type of renewable energy, the province, the name of the project, its location, its operator, electrical generating capacity, number of generating units, average annual electricity production, and the year it began operation. The majority (64 per cent) of Canada's total installed power capacity comes from renewable energy sources, with the dominant source being hydroelectricity. Manitoba has the highest portion of renewable energy at almost 98 per cent of its installed electrical capacity. Nearly half of Canada's renewable power capacity is in Quebec, followed by 18 per cent in British Columbia. Nova Scotia has Canada's only tidal power plant. Approximately 80 per cent of the total installed renewable energy power capacity in Canada is owned by integrated electric utilities. Eleven per cent is owned by renewable electricity generating companies, 5 per cent is owned by aluminium companies, and 3 per cent is owned by pulp and paper companies. The rest is owned by diversified electricity generators. It is expected that with the ratification of the Kyoto Protocol interest in renewable energy will grow. 6 refs., 3 tabs., 2 figs., 1 appendix

  9. Renewable Energy Technology

    Science.gov (United States)

    Daugherty, Michael K.; Carter, Vinson R.

    2010-01-01

    In many ways the field of renewable energy technology is being introduced to a society that has little knowledge or background with anything beyond traditional exhaustible forms of energy and power. Dotson (2009) noted that the real challenge is to inform and educate the citizenry of the renewable energy potential through the development of…

  10. Power control based on particle swarm optimization of grid-connected inverter for hybrid renewable energy system

    International Nuclear Information System (INIS)

    García-Triviño, Pablo; Gil-Mena, Antonio José; Llorens-Iborra, Francisco; García-Vázquez, Carlos Andrés; Fernández-Ramírez, Luis M.; Jurado, Francisco

    2015-01-01

    Highlights: • Three PSO-based PI controllers for a grid-connected inverter were presented. • Two online PSO-based PI controllers were compared with an offline PSO-tuned PI. • The HRES and the inverter were evaluated under power changes and grid voltage sags. • Online ITAE-based PSO reduced ITAE (current THD) by 15.24% (5.32%) versus offline one. - Abstract: This paper is focused on the study of particle swarm optimization (PSO)-based PI controllers for the power control of a grid-connected inverter supplied from a hybrid renewable energy system. It is composed of two renewable energy sources (wind turbine and photovoltaic – PV – solar panels) and two energy storage systems (battery and hydrogen system, integrated by fuel cell and electrolyzer). Three PSO-based PI controllers are implemented: (1) conventional PI controller with offline tuning by PSO algorithm based on the integral time absolute error (ITAE) index; (2) PI controllers with online self-tuning by PSO algorithm based on the error; and (3) PI controllers with online self-tuning by PSO algorithm based on the ITAE index. To evaluate and compare the three controllers, the hybrid renewable energy system and the grid-connected inverter are simulated under changes in the active and reactive power values, as well as under a grid voltage sag. The results show that the online PSO-based PI controllers that optimize the ITAE index achieves the best response

  11. Short-term Forecast of Automatic Frequency Restoration Reserve from a Renewable Energy Based Virtual Power Plant

    OpenAIRE

    Camal , Simon; Michiorri , Andrea; Kariniotakis , Georges; Liebelt , Andreas

    2017-01-01

    International audience; This paper presents the initial findings on a new forecast approach for ancillary services delivered by aggregated renewable power plants. The increasing penetration of distributed variable generators challenges grid reliability. Wind and photovoltaic power plants are technically able to provide ancillary services, but their stochastic behavior currently impedes their integration into reserve mechanisms. A methodology is developed to forecast the flexibility that a win...

  12. A picture of renewable energies in regions in 2015

    International Nuclear Information System (INIS)

    2016-05-01

    For each French region, this publication proposes: an indication of the level of renewable electric power production and the rank among other French regions in this respect, an indication of the global annual electric power production and of the consumption covering rate, figures indicating the share of the different renewable sources, an indication of objectives by 2020 for wind and solar energy, indications related to renewable heat production (installed power, number of installations) and renewable gas production (number of injection sites and of planned projects), and a list of actors of the renewable energy sector present in the region

  13. Feasibility Study of Standalone PV-Wind-Diesel Energy Systems for Coastal Residential Application in Pekan, Pahang

    Directory of Open Access Journals (Sweden)

    Zailan Roziah

    2017-01-01

    Full Text Available Techno economic study is feasible to optimize the usage of renewable energy components that targeting low cost of electricity generation system. The selected case study area is coastal area in Pekan, Pahang, Malaysia. The autonomous system designed in this study is hybrid standalone PV-wind-diesel energy system to fulfil a basic power demand of 20.1 kWh/day. Such power system was designed and optimized further to meet the power demand at a minimum cost of energy using energy optimization software, Hybrid Optimization Model for Electric Renewables (HOMER. The analysis focused on the operational characteristics and economics. The standalone PV-wind-diesel energy system has total net present cost about $61, 911 with cost of energy $0.66/kWh. Apparently, the generation of electricity from both wind turbine and PV can be inflated with the diesel generator. In comparison, return of investment (ROI value turned out lower for Feed in Tariff (FIT as compared to self-sustained house. Payback period also longer for FIT program that makes the selling back of electricity generated to Tenaga National Berhad (TNB is considered not favourable.

  14. Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems

    Directory of Open Access Journals (Sweden)

    Sergio Ignacio Serna-Garcés

    2016-03-01

    Full Text Available Stand-alone power systems based on renewable energy sources are used to replace generators based on fossil fuels. Those renewable power systems also require Energy Storage Devices (ESD interfaced by a charger/discharger power converter, which consist of a bidirectional DC/DC converter, and a DC bus. This paper proposes a single sliding-mode controller (SMC for the charger/discharger DC/DC converter to provide a stable DC bus voltage in any operation condition: charging or discharging the ESD, or even without any power exchange between the ESD and the DC bus. Due to the non-linear nature of the power converter, the SMC parameters are adapted on-line to ensure global stability in any operation condition. Such stability of the adaptive SMC is mathematically demonstrated using analytical expressions for the transversality, reachability and equivalent control conditions. Moreover, a design procedure for the adaptive SMC parameters is provided in order to ensure the dynamic response required for the correct operation of the load. Finally, simulations and experimental tests validate the proposed controller and design procedure.

  15. Promotion of direct marketing and supply on demand of electric power from renewable energy sources. Final report; Foerderung der Direktvermarktung und der bedarfsgerechten Einspeisung von Strom aus Erneuerbaren Energien. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-23

    The study investigates the promotion of direct marketing and supply on demand of electric power from renewable energy sources in Germany. the study shows that renewable energy sources are a good option for facing the challenges of the future. However, the potential is often left unused because of a lack of incentives in the current pricing system. To solve this problem, the Federal Ministry of the Environment, Nature Conservation and Nuclear Safety authorized two studies that are to enable or improve the utilization of the integration potentials of the renewable energy sources. Two model proposals based on these studies are presented here. The model proposing a bonus for combined-cycle power plants is to ensure supply on demand of electric power from renewables with the aid of integrated power storage systems. However, it is found that this model will not generate significant effects for power supply on demand. The second model proposes financial incentives; it will work well for renewable power supply systems that can be controlled, e.g. bioenergy, run-of-river power plants with power storage, and biogas plants. On the other hand, supply-dependent technologies like wind power, photovoltaic power, run-of-river power plants without power storage, and geothermal power plants with very low variable cost, the goal is not fully reached. In contrast to the first model, the market incentives model will enhance the integration of renewable energy sources in the competitive market by largely eliminating market risks. (orig./RHM)

  16. Renewable energy sources offering flexibility through electricity markets

    DEFF Research Database (Denmark)

    Soares, Tiago

    governments. Renewable energy sources are characterized by their uncertain and variable production that limits the current operation and management tools of the power system. Nevertheless, recent developments of renewable energy technologies enable these resources to provide, to some extent, ancillary......All over the world, penetration of renewable energy sources in power systems has been increasing, creating new challenges in electricity markets and for operation and management of power systems, since power production from these resources is by nature uncertain and variable. New methods and tools...... in both energy and reserve markets. In this context, the main contribution of this thesis is the design and development of optimal offering strategies for the joint participation of renewables in the energy and reserve markets. Two distinct control policies for the splitting of available wind power...

  17. Challenges for Nordic power; How to handle the renewable electricity surplus

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-15

    Almost two years after the EU Commission put forth the EUs 202020 Climate and Energy policy package, it is clear that the Nordic region may face investment in new renewable generation at levels that are unprecedented since the deregulation of the Nordic electricity market. This report explores the linkages between political choices and market dynamics on the basis of four scenarios for the Nordic Power Sector towards 2020 and 2030. The aim is to contribute to a common understanding of the market challenges and dynamics among different stakeholders: How do different policy and market drivers interact? What are the long-term implications for prices and the energy balance? And ultimately, what policy choices are available when it comes to handling the expected increase in renewable generation and the looming Nordic energy surplus. Econ Poeyry and THEMA Consulting Group have invited companies, industry organizations and government agencies to participate in the process to elaborate on the issues mentioned above. The participants have contributed through workshops, working groups and conferences. (Author)

  18. Renewable Energy Systems: Technology Overview and Perspectives

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ionel, Dan M.; Yang, Yongheng

    2017-01-01

    In this chapter, essential statistics demonstrating the increasing role of renewable energy generation are first discussed. A state-of-the-art review section covers the fundamentals of wind turbine and photovoltaic (PV) systems. Schematic diagrams illustrating the main components and system topol......, including PV and concentrating solar power; wave energy; fuel cells; and storage with batteries and hydrogen, respectively. Recommended further readings on topics of electric power engineering for renewable energy are included in the final section.......In this chapter, essential statistics demonstrating the increasing role of renewable energy generation are first discussed. A state-of-the-art review section covers the fundamentals of wind turbine and photovoltaic (PV) systems. Schematic diagrams illustrating the main components and system...... topologies are included. Also, the increasing role of power electronics is explained as an enabler for renewable energy integration and for future power systems and smart grids. Recent examples of research and development, including new devices and system installations for utility power plants...

  19. Political will and collaboration for electric power reform through renewable energy in Africa

    International Nuclear Information System (INIS)

    Chineke, Theo Chidiezie; Ezike, Fabian M.

    2010-01-01

    Climate change, in particular rainfall variability, affects rain-dependent agriculture in Africa. The resulting food shortages, in combination with rising population and lack of access to electricity needed for development, require the governments and people of Africa to consider renewable energy sources. One example that has high potential in Africa is solar energy. Many African governments have begun discussions about renewable energy but tangible results have yet to materialize. This research contributes to the governmental efforts by presenting the solar electricity potentials for some African cities. Using photovoltaic geographical information system (PVGIS) data, it is clear that there is enough electricity for urban and rural dwellers if there is political will and if the solar panels are mounted at the suggested optimal angles ranging from 8-34 . The solar irradiation at all sites was higher than the typical daily domestic load requirement of 2324 Wh/m 2 in urban and rural areas. We provide a strong rationale for political will, collaboration and transparent energy policies that will ensure that life is enhanced through the use of environmentally-friendly renewable energy technologies such as solar power. (author)

  20. New renewable energy sources; Nye fornybare energikilder

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This booklet describes in simple terms the so-called new renewable energy sources: solar energy, biomass, wind power and wave power. In addition, there are brief discussions on hydrogen, ocean thermal energy conversion (OTEC), tidal power, geothermal energy, small hydropower plants and energy from salt gradients. The concept of new renewable energy sources is used to exclude large hydropower plants as these are considered conventional energy sources. The booklet also discusses the present energy use, the external frames for new renewable energy sources, and prospects for the future energy supply.

  1. Mapping of renewable energies

    International Nuclear Information System (INIS)

    Boulanger, V.

    2013-01-01

    Germany is the champion of green energy in Europe: the contribution of renewable energies to electricity generation reached about 20% in 2011. This article describes the situation of renewable energies in Germany in 2011 with the help of 2 maps, the first one gives the installed electrical generation capacity for each region and for each renewable energy source (wind power, hydro-electricity, biomass, photovoltaic energy and biogas) and the second one details the total number of jobs (direct and indirect) for each renewable energy source and for each region. In 2011 about 372000 people worked in the renewable energy sector in Germany. (A.C.)

  2. Priority to renewable energies - on the amendment to the renewable energies act

    International Nuclear Information System (INIS)

    Heller, W.

    2003-01-01

    The Federal Ministry for the Environment, which has been the competent authority for renewable energies since the 2002 federal election, has presented draft legislation on the accelerated development of renewable energies in the electricity sector. This is to reduce, through internalization, the costs to the national economy arising from power supply, to conserve nature and the environment, avoid conflicts over fossil energy resources, and promote the advanced development of renewable energy technologies. Emphasis is put solely on protection of the climate and of the environment. The way towards sustainable energy supply by taking into account ecological, economic and social aspects is abandoned. The funding rates laid down in legislation are not going to offer major incentives for further plant improvement by technological development. The quantitative goals of this draft legislation onesidedly aimed at electricity production are doubtful. Renewable energies are hardly the right way to replace nuclear power plants operated in the baseload mode. What is missing in the draft legislation, though it would be urgently needed, is a clear time limit on the eligibility of renewable energy plants for subsidizing, as this would counteract the impression of permanent subsidizing. (orig.)

  3. DSOGI-PLL Based Power Control Method to Mitigate Control Errors Under Disturbances of Grid Connected Hybrid Renewable Power Systems

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Meral

    2018-01-01

    Full Text Available The control of power converter devices is one of the main research lines in interfaced renewable energy sources, such as solar cells and wind turbines. Therefore, suitable control algorithms should be designed in order to regulate power or current properly and attain a good power quality for some disturbances, such as voltage sag/swell, voltage unbalances and fluctuations, long interruptions, and harmonics. Various synchronisation techniques based control strategies are implemented for the hybrid power system applications under unbalanced conditions in literature studies. In this paper, synchronisation algorithms based Proportional-Resonant (PR power/current controller is applied to the hybrid power system (solar cell + wind turbine + grid, and Dual Second Order Generalized Integrator-Phase Locked Loop (DSOGI-PLL based PR controller in stationary reference frame provides a solution to overcome these problems. The influence of various cases, such as unbalance, and harmonic conditions, is examined, analysed and compared to the PR controllers based on DSOGI-PLL and SRF-PLL. The results verify the effectiveness and correctness of the proposed DSOGI-PLL based power control method.

  4. Renewables 2017 Global Status Report

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Sverrisson, Freyr; Seyboth, Kristin; Adib, Rana; Murdock, Hannah E.; Lins, Christine; Edwards, Isobel; Hullin, Martin; Nguyen, Linh H.; Prillianto, Satrio S.; Satzinger, Katharina; Appavou, Fabiani; Brown, Adam; Chernyakhovskiy, Ilya; Logan, Jeffrey; Milligan, Michael; Zinaman, Owen; Epp, Baerbel; Huber, Lon; Lyons, Lorcan; Nowak, Thomas; Otte, Pia; Skeen, Jonathan; Sovacool, Benjamin; Witkamp, Bert; Musolino, Evan; Brown, Adam; Williamson, Laura E.; Ashworth, Lewis; Mastny, Lisa

    2017-01-01

    Renewable energy technologies increase their hold across developing and emerging economies throughout the year The year 2016 saw several developments and ongoing trends that all have a bearing on renewable energy, including the continuation of comparatively low global fossil fuel prices; dramatic price declines of several renewable energy technologies; and a continued increase in attention to energy storage. For the third consecutive year, global energy-related carbon dioxide emissions from fossil fuels and industry were nearly flat in 2016, due largely to declining coal use worldwide but also due to improvements in energy efficiency and to increasing use of renewable energy. As of 2015, renewable energy provided an estimated 19.3% of global final energy consumption, and growth in capacity and production continued in 2016. The power sector experienced the greatest increases in renewable energy capacity in 2016, whereas the growth of renewables in the heating and cooling and transport sectors was comparatively slow. Most new renewable energy capacity is installed in developing countries, and largely in China, the single largest developer of renewable power and heat over the past eight years. In 2016, renewable energy spread to a growing number of developing and emerging economies, some of which have become important markets. For the more than 1 billion people without access to electricity, distributed renewable energy projects, especially those in rural areas far from the centralised grid, offer important and often cost-effective options to provide such access. The renewable energy sector employed 9.8 million people in 2016, an increase of 1.1% over 2015. By technology, solar PV and biofuels provided the largest numbers of jobs. Employment shifted further towards Asia, which accounted for 62% of all renewable energy jobs (not including large-scale hydropower), led by China. The development of community renewable energy projects continued in 2016, but the pace of

  5. Renewable energy resources

    DEFF Research Database (Denmark)

    Ellabban, Omar S.; Abu-Rub, Haitham A.; Blaabjerg, Frede

    2014-01-01

    Electric energy security is essential, yet the high cost and limited sources of fossil fuels, in addition to the need to reduce greenhouse gasses emission, have made renewable resources attractive in world energy-based economies. The potential for renewable energy resources is enormous because...... they can, in principle, exponentially exceed the world's energy demand; therefore, these types of resources will have a significant share in the future global energy portfolio, much of which is now concentrating on advancing their pool of renewable energy resources. Accordingly, this paper presents how...... renewable energy resources are currently being used, scientific developments to improve their use, their future prospects, and their deployment. Additionally, the paper represents the impact of power electronics and smart grid technologies that can enable the proportionate share of renewable energy...

  6. Monitoring biofouling in the seawater tunnel of a coastal power station

    International Nuclear Information System (INIS)

    Sasikumar, N.

    1994-01-01

    Water level difference (head loss) between the seawater intake and the forebay was used to determine the biofouling growth in the cooling-water tunnel of Madras atomic power station, India. During 1986-87, due to biofouling growth in the tunnel, the head loss dropped beyond the permissible limits required for operation of the power plant. The head loss showed an improvement during 1988 and 1989, after exomotive chlorination was adopted instead of shock chlorination. Fouling biomass estimated from the head loss showed a heavy biomass build-up of 535.52 ± 102 tonnes in the tunnel during 1992. The head loss showed a seasonal pattern, very similar to the settlement pattern of foulants in the coastal waters, with maximum values during summer months. On the basis of head-loss data, a suitable chlorination practice has been recommended to the power station. The experience suggested that a continuous monitoring of head loss is a simple and reliable method of estimating and controlling biofouling in power-plant cooling-water tunnels. (author)

  7. Marine renewables: Exploring the opportunity for combining wind and wave energy

    International Nuclear Information System (INIS)

    Azzellino, Arianna; Riefolo, Luigia; Lanfredi, Caterina; Vicinanza, Diego

    2015-01-01

    Resource diversity is considered the key to manage the intrinsic variability of renewable energy sources and to lower their system integration costs. The expected development of Marine Renewable Energy Installations is likely to result in further transformation of coastal sea areas, already heavily impacted. In this perspective, the combination of different renewables and their potential impact on the environment must be evaluated in the context of the existing pressures. In this study the opportunity of co-locating offshore wind turbines and wave energy converters and their environmental sustainability is evaluated through a quantitative Marine Spatial Planning (MSP) approach. [it

  8. Design for micro-combined cooling, heating and power systems stirling engines and renewable power systems

    CERN Document Server

    2015-01-01

    ‘Design for Micro-Combined Cooling, Heating & Power Systems’ provides a manual for the technical and structural design of systems for supplying decentralised energy in residential buildings. It presents the micro-combined cooling, heating & power systems Stirling engines & renewable energy sources (mCCHP-SE-RES) systems in an accessible manner both for the public at large, and for professionals who conceive, design or commercialise such systems or their components.  The high performance levels of these systems are demonstrated within the final chapter by the results of an experiment in which a house is equipped with a mCCHP-SE-RES system. The reader is also familiarized with the conceptual, technical and legal aspects of modern domestic energy systems; the components that constitute these systems; and advanced algorithms for achieving the structural and technical design of such systems. In residential buildings, satisfying demands of durable development has gradually evolved from necessity to...

  9. Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100m high tower; the frequency of the “event day of land and sea breezes” are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test.A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established.This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast.The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.

  10. Understanding renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Quaschning, Volker

    2005-01-15

    Beginning with an overview of renewable energy sources including biomass, hydroelectricity, geothermal, tidal, wind and solar power, this book explores the fundamentals of different renewable energy systems. The main focus is on technologies with high development potential such as solar thermal systems, photovoltaics and wind power. This text not only describes technological aspects, but also deals consciously with problems of the energy industry. In this way, the topics are treated in a holistic manner, bringing together maths, engineering, climate studies and economics, and enabling readers to gain a broad understanding of renewable energy technologies and their potential. The book also contains a free CD-ROM resource, which includes a variety of specialist simulation software and detailed figures from the book. (Author)

  11. Primary frequency regulation supported by battery storage systems in power systems dominated by renewable energy sources

    DEFF Research Database (Denmark)

    Turk, Ana; Sandelic, Monika; Noto, Giancarlo

    2018-01-01

    replaced by intermittent renewable generators. Therefore, maintaining system quality and stability in terms of power system frequency control is one of the major challenges that requires new resources and their system integration. Battery energy storage systems (BESS), as fast-acting energy storage systems...

  12. A theoretical bilevel control scheme for power networks with large-scale penetration of distributed renewable resources

    DEFF Research Database (Denmark)

    Boroojeni, Kianoosh; Amini, M. Hadi; Nejadpak, Arash

    2016-01-01

    In this paper, we present a bilevel control framework to achieve a highly-reliable smart distribution network with large-scale penetration of distributed renewable resources (DRRs). We assume that the power distribution network consists of several residential/commercial communities. In the first ...

  13. Power Electronics and Renewable Energy Systems – a perfect match for a sustainable society

    Directory of Open Access Journals (Sweden)

    Frede Blaabjerg

    2015-08-01

    Full Text Available The energy consumption is steadily increasing very rapid due to more people on the earth, betterliving conditions as well as we are trying to live in areas where the energy demand is high. Theeconomy growth in the last century has not been possible without low prize of energy which has beenachieved by fossil fuels. Looking into the future – the fossil fuel resources have a time limit – whichcan appear faster than expected – both because of the limited resources but also because the marketcan suddenly increase the prize. Therefore there is a demand to come up with sustainable energysolutions for energy production like wind turbines, hydro power as well as photovoltaics. At the sametime it is evident that by the use of new technology it is possible to make energy saving. In bothsituations power electronics are making this possible – we are using power electronics to interfacerenewable sources to maximize the energy yield from wind turbines and photovoltaics as well assmoothly integrate it to the grid. Also in many applications we use power electronics to interface a loadwith the grid and control the behavior of the electrical equipment according to the demand. In manycases power electronics is able to ensure a large amount of energy saving like in pumps, compressorsas well as in ventilation systems. Also the transportation gain a lot of using electricity instead of fossilfuel – clearly made possible due to the power electronics. Denmark is one of the societies which have been the frontier of implementing the renewabletechnology and has today covered more than 50 % of the electrical energy consumption by means ofrenewable and has as ambition to be fully independent on fossil fuels in 2050. Already in 2035 100 %of the electricity will be covered by renewables. At the same time the energy consumption has notreally increased for 20 years despite the GDP has grown by more than 60 % - much is enabled byenergy efficient technologies based on

  14. Renewables cannot be stored economically on a well-run power system

    Science.gov (United States)

    Swift-Hook, Donald

    2017-11-01

    Economic storage on a power system must rely on arbitrage, buying electrical power when it is cheap and selling when it is dear. In practice, this means a store must buy power at night and sell it during the day. There is no solar power at night [by definition], so solar power cannot be stored economically on a well-run power system. Also renewables [and nuclear] are installed commercially to save fuel but fuel costs the same at night as it does during the day, so there is no arbitrage on fuel-saving to justify storage. Pumped water storage has always been widely used on power systems and is still the only method that is economic today, although many others have been tried, including fuels cells, compressed air and batteries. Devices for power correction and balancing [e.g. capacitor banks and batteries] may physically involve the storage of energy [just as a mobile phone does] but it is misleading to describe them as methods of power system storage, [just as it would be misleading to call a School bus a fuel transportation system, even though it does transport fuel]. When a power system has different sorts of plant generating - coal, gas, nuclear, wind etc - any power being put into storage is from the plant that would need to be switched off [because less power was needed] if storage ceased [e.g. because the store became full or failed]. On a well-run power system, that always has the highest fuel/running cost, but the wind blows free and has zero fuel/running cost, so wind is never [normally] stored unless there is no other plant on line i.e. wind power is the last to be stored.

  15. Assessing the performance of renewable electricity support instruments

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Lauber, Volkmar

    2012-01-01

    The performance of feed-in tariffs and tradable certificates is assessed on criteria of efficacy, efficiency, equity and institutional feasibility. In the early stage of transition to an energy system based entirely on renewable energy supplies, renewable electricity can only thrive if support takes into account the specific technical, economic and political problems which result from embedding this electricity in conventional power systems whose technology, organizational structure, environmental responsibility and general mission differ profoundly from the emerging, renewable-based system. Support schemes need to capture the diversity of power supplies, the variable nature of some renewable supplies, and their different attributes for the purposes of public policy. They must take into account the variety of generators – including small, decentralized generation – emerging in a renewable-based system, and the new relationships between generators and customers. Renewable energy policies need a clear point of reference: because the incumbent power systems are not sustainable they must adapt to the requirements of the renewable ones, not the other way round. Incumbent systems carry the responsibility of paying the transition, something that corresponds best with the polluter pays principle. - Highlights: ► Present power systems must adapt to the requirements of growing renewable ones, not the opposite. ► Well performing support systems capture the diversity of renewable sources and technologies. ► Feed-in Tariffs are superior in addressing the renewables' diversity and in promoting innovation. ► Feed-in Tariffs put transition burdens on incumbents and stimulate independent producers.

  16. License renewal process

    International Nuclear Information System (INIS)

    Fable, D.; Prah, M.; Vrankic, K.; Lebegner, J.

    2004-01-01

    The purpose of this paper is to provide information about license renewal process, as defined by Nuclear Regulatory Commission (NRC). The Atomic Energy Act and NRC regulations limit commercial power reactor licenses to an initial 40 years but also permit such licenses to be renewed. This original 40-year term for reactor licenses was based on economic and antitrust considerations not on limitations of nuclear technology. Due to this selected time period; however, some structures and components may have been engineered on the basis of an expected 40-year service life. The NRC has established a timely license renewal process and clear requirements codified in 10 CFR Part 51 and 10 CFR Part 54, that are needed to assure safe plant operation for extended plant life. The timely renewal of licenses for an additional 20 years, where appropriate to renew them, may be important to ensuring an adequate energy supply during the first half of the 21st Century. License renewal rests on the determination that currently operating plants continue to maintain adequate levels of safety, and over the plant's life, this level has been enhanced through maintenance of the licensing bases, with appropriate adjustments to address new information from industry operating experience. Additionally, NRC activities have provided ongoing assurance that the licensing bases will continue to provide an acceptable level of safety. This paper provides additional discussion of license renewal costs, as one of key elements in evaluation of license renewal justifiability. Including structure of costs, approximately value and two different approaches, conservative and typical. Current status and position of Nuclear Power Plant Krsko, related to license renewal process, will be briefly presented in this paper. NPP Krsko is designed based on NRC Regulations, so requirements from 10 CFR 51, and 10 CFR 54, are applicable to NPP Krsko, as well. Finally, this paper will give an overview of current status of

  17. Renewables in the Midwest

    International Nuclear Information System (INIS)

    Wager, J.S.

    1994-01-01

    Over the past three years, the Union of Concerned Scientists (UCS) has evaluated the potential for using renewable energy for electricity in the Midwest, and has been carrying out a multifaceted effort to expand the use of renewables in the region. The UCS study presents a strategy for developing renewable-electric technologies and resources in 12 midwestern states. UCS analysts used a geographic information system (GIS) to create data-bases of renewable resources, land uses, vegetation cover, terrain elevation and locations of utility transmission lines, and to analyze and present information on a .6 mi x .6 mi (1 km x 1 km) grid scale. In addition, UCS developed a model to calculate the net employment impact of renewable versus conventional electricity technologies on a state-by-state basis. In evaluating the costs and benefits of renewable energy sources, UCS analysts explored a cost assessment that accounted for the impact of pollution from fossil fuels on energy resource cost. Researchers also considered the risks associated with fuel-price volatility, environmental regulation, construction lead times and other uncertainties. Finally, UCS researchers suggested steps to remove the institutional, regulatory and legislative barriers that inhibit renewable energy development, and proposed policies to expand the use of the region's renewable resources. The UCS analysis showed that wind is currently the least expensive renewable resource. UCS also found numerous opportunities to expand biomass-electric generation in the near term, such as converting small coal-fired power plants to wood fuel, making greater use of logging residues and co-firing a small percentage of biomass with fossil fuel at large power plants

  18. Renewable energy systems the choice and modeling of 100% renewable solutions

    CERN Document Server

    Lund, Henrik

    2009-01-01

    How can society quickly convert to renewable energy? Can worldwide energy needs ever be met through 100% renewable sources? The answers to these questions rest largely on the perception of choice in the energy arena. It is of pivotal importance that engineers, researchers and policymakers understand what choices are available, and reasonable, when considering the design and deployment of new energy systems. The mission of this new book, written by one of the world's foremost experts in renewable power, is to arm these professionals with the tools and methodologies necessary to make smart choic

  19. Overview of government and market driven programs for the promotion of renewable power generation

    International Nuclear Information System (INIS)

    Ackermann, T.; Andersson, G.; Soeder, L.

    2001-01-01

    This paper presents and briefly evaluates some existing government instruments and market schemes which support the development of renewable energy generation. The brief evaluation focuses on the incentives provided by the various instruments to reduce production costs. The instruments and schemes are: feed-in tariffs, net metering, bidding process, fixed quotas, green certificate trading, green power exchange, green pricing. (author)

  20. Renewable energy for rural electrification

    Energy Technology Data Exchange (ETDEWEB)

    Strebkov, D. [All Russian Research Institute for Electrification of the Agriculture, Moscow (Russian Federation); Bezrukich, P. [Ministry for Fuel and Energy of Russian Federation, Moscow (Russian Federation); Kozlov, V. [Intersolarcenter Association, Moscow (Russian Federation)

    1997-12-31

    In spite of quite good centralized power supply system, rural electrification level across Russia vary widely: in some regions there are densely populated communities which lack power, while in the other the most pressing need is to electrify dispersed, isolated villages or homes. The main objective of the Russian project `Renewable energy for rural electrification` is the elaboration and application of new technologies of rural electrification in order to ensure the sustainable development of unelectrified areas of the Russia. The long-term objective of the project are: to improve the living standards of people in rural areas, who lack centralized energy supply systems, by introducing a new system for generation, transmission and distribution of electric power on the base of renewable energy systems; to provide a reliable cost-effective electric service for electrified and uncertified communities; to reduce the consumption of organic fuel in power generation systems; to support the military industry in converting their activity into the renewable energy sector; and to protect the environment

  1. Renewable energy for rural electrification

    Energy Technology Data Exchange (ETDEWEB)

    Strebkov, D [All Russian Research Institute for Electrification of the Agriculture, Moscow (Russian Federation); Bezrukich, P [Ministry for Fuel and Energy of Russian Federation, Moscow (Russian Federation); Kozlov, V [Intersolarcenter Association, Moscow (Russian Federation)

    1998-12-31

    In spite of quite good centralized power supply system, rural electrification level across Russia vary widely: in some regions there are densely populated communities which lack power, while in the other the most pressing need is to electrify dispersed, isolated villages or homes. The main objective of the Russian project `Renewable energy for rural electrification` is the elaboration and application of new technologies of rural electrification in order to ensure the sustainable development of unelectrified areas of the Russia. The long-term objective of the project are: to improve the living standards of people in rural areas, who lack centralized energy supply systems, by introducing a new system for generation, transmission and distribution of electric power on the base of renewable energy systems; to provide a reliable cost-effective electric service for electrified and uncertified communities; to reduce the consumption of organic fuel in power generation systems; to support the military industry in converting their activity into the renewable energy sector; and to protect the environment

  2. Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation

    International Nuclear Information System (INIS)

    Haller, Markus; Ludig, Sylvie; Bauer, Nico

    2012-01-01

    We use the multi-scale power system model LIMES-EU + to explore coordinated long term expansion pathways for Renewable Energy (RE) generation, long distance transmission and storage capacities for the power sector of the Europe and Middle East/North Africa (MENA) regions that lead to a low emission power system. We show that ambitious emission reduction targets can be achieved at moderate costs by a nearly complete switch to RE sources until 2050, if transmission and storage capacities are expanded adequately. Limiting transmission capacities to current levels leads to higher storage requirements, higher curtailments, and to an increase in temporal and spatial electricity price variations. Results show an escalation of electricity prices if emission reductions exceed a critical value. Adequate expansion of transmission and storage capacities shift this threshold from 70% to 90% emission reductions in 2050 relative to 2010. - Highlights: ► We present an EU+MENA power system model that considers long term investments and integration of renewables. ► For low emission targets, renewable integration issues lead to escalating electricity prices. ► The feasibility frontier can be pushed by adequate transmission and storage investments. ► The transformation from wind/fossil to wind/solar regime changes integration requirements. ► Low emission targets can be reached without significant interconnections between EU and MENA regions.

  3. Backup flexibility classes in emerging large-scale renewable electricity systems

    International Nuclear Information System (INIS)

    Schlachtberger, D.P.; Becker, S.; Schramm, S.; Greiner, M.

    2016-01-01

    Highlights: • Flexible backup demand in a European wind and solar based power system is modelled. • Three flexibility classes are defined based on production and consumption timescales. • Seasonal backup capacities are shown to be only used below 50% renewable penetration. • Large-scale transmission between countries can reduce fast flexible capacities. - Abstract: High shares of intermittent renewable power generation in a European electricity system will require flexible backup power generation on the dominant diurnal, synoptic, and seasonal weather timescales. The same three timescales are already covered by today’s dispatchable electricity generation facilities, which are able to follow the typical load variations on the intra-day, intra-week, and seasonal timescales. This work aims to quantify the changing demand for those three backup flexibility classes in emerging large-scale electricity systems, as they transform from low to high shares of variable renewable power generation. A weather-driven modelling is used, which aggregates eight years of wind and solar power generation data as well as load data over Germany and Europe, and splits the backup system required to cover the residual load into three flexibility classes distinguished by their respective maximum rates of change of power output. This modelling shows that the slowly flexible backup system is dominant at low renewable shares, but its optimized capacity decreases and drops close to zero once the average renewable power generation exceeds 50% of the mean load. The medium flexible backup capacities increase for modest renewable shares, peak at around a 40% renewable share, and then continuously decrease to almost zero once the average renewable power generation becomes larger than 100% of the mean load. The dispatch capacity of the highly flexible backup system becomes dominant for renewable shares beyond 50%, and reach their maximum around a 70% renewable share. For renewable shares

  4. Renewables 2015 global status report - Annual Reporting on Renewables: Ten years of excellence

    International Nuclear Information System (INIS)

    Sawin, Janet L.; Sverrisson, Freyr; Rickerson, Wilson; Lins, Christine; Williamson, Laura E.; Adib, Rana; Murdock, Hannah E.; Musolino, Evan; Hullin, Martin; Reith, Ayla; Valero, Alana; Mastny, Lisa; Petrichenko, Ksenia; Seyboth, Kristin; Skeen, Jonathan; Sovacool, Benjamin; Wouters, Frank; Martinot, Eric

    2015-01-01

    Renewable energy continued to grow in 2014 against the backdrop of increasing global energy consumption, particularly in developing countries, and a dramatic decline in oil prices during the second half of the year. Despite rising energy use, for the first time in four decades, global carbon emissions associated with energy consumption remained stable in 2014 while the global economy grew; this stabilisation has been attributed to increased penetration of renewable energy and to improvements in energy efficiency. Globally, there is growing awareness that increased deployment of renewable energy (and energy efficiency) is critical for addressing climate change, creating new economic opportunities, and providing energy access to the billions of people still living without modern energy services. Although discussion is limited to date, renewables also are an important element of climate change adaptation, improving the resilience of existing energy systems and ensuring delivery of energy services under changing climatic conditions. Renewable energy provided an estimated 19.1% of global final energy consumption in 2013, and growth in capacity and generation continued to expand in 2014. Heating capacity grew at a steady pace, and the production of bio-fuels for transport increased for the second consecutive year, following a slowdown in 2011-2012. The most rapid growth, and the largest increase in capacity, occurred in the power sector, led by wind, solar PV, and hydropower. Growth has been driven by several factors, including renewable energy support policies and the increasing cost-competitiveness of energy from renewable sources. In many countries, renewables are broadly competitive with conventional energy sources. At the same time, growth continues to be tempered by subsidies to fossil fuels and nuclear power, particularly in developing countries. Although Europe remained an important market and a centre for innovation, activity continued to shift towards other

  5. powering nigeria through renewable electricity investments

    African Journals Online (AJOL)

    RAYAN_

    and reliable information, which consumers, investors and the government can rely upon. ..... and Participation in a Private Sector Driven Electricity Industry in Nigeria: Recent .... Furthermore, renewable energy technologies are still very new to.

  6. Feasibility Analysis and Simulation of Integrated Renewable Energy System for Power Generation: A Hypothetical Study of Rural Health Clinic

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2015-01-01

    Full Text Available This paper presents the feasibility analysis and study of integrated renewable energy (IRE using solar photovoltaic (PV and wind turbine (WT system in a hypothetical study of rural health clinic in Borno State, Nigeria. Electrical power consumption and metrology data (such as solar radiation and wind speed were used for designing and analyzing the integrated renewable energy system. The health clinic facility energy consumption is 19 kWh/day with a 3.4 kW peak demand load. The metrological data was collected from National Aeronautics and Space Administration (NASA website and used to analyze the performance of electrical generation system using HOMER program. The simulation and optimization results show that the optimal integrated renewable energy system configuration consists of 5 kW PV array, BWC Excel-R 7.5 kW DC wind turbine, 24 unit Surrette 6CS25P battery cycle charging, and a 19 kW AC/DC converter and that the PV power can generate electricity at 9,138 kWh/year while the wind turbine system can generate electricity at 7,490 kWh/year, giving the total electrical generation of the system as 16,628 kWh/year. This would be suitable for deployment of 100% clean energy for uninterruptable power performance in the health clinic. The economics analysis result found that the integrated renewable system has total NPC of 137,139 US Dollar. The results of this research show that, with a low energy health facility, it is possible to meet the entire annual energy demand of a health clinic solely through a stand-alone integrated renewable PV/wind energy supply.

  7. State and possibilities for development of renewable energy in Bulgaria

    International Nuclear Information System (INIS)

    Varbanov, Marian; Temelkova, Maria

    2011-01-01

    After EU accession, Bulgaria adopted the following indicative goal: 16% of gross domestic energy consumption in 2020 to be produced from renewables. This has created favorable conditions and strong interest of Bulgarian and foreign business to invest in renewables. This interest is materialized in a boom in design and construction of the renewable energy installations. The paper examines the current state and opportunities for development of this sector in Bulgaria. Keywords: renewable energy, hydro power, wind power, solar power

  8. Renewable Energy Policy Fact sheet - Estonia

    International Nuclear Information System (INIS)

    2017-09-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Electricity from renewable sources is mainly promoted through feed-in premiums (FiP). In addition, investment subsidies are available for biogas/biomass-based RES-E and wind power installations. Renewable heat is stimulated through investment subsidies to CHP plants generating renewable heat and electricity, as well as subsidies for private heat consumers. Renewable transport fuels are currently mainly incentivised by way of a support scheme to promote the purchase of electric cars that use power produced from renewable energy sources. Recently, a measure for supporting bio-methane in the transport sector has been adopted. Generally, a number of investment subsidy schemes are in place to promote the development, installation and use of renewable energy production installations. However, certain subsidy conditions still have to be announced and implemented. The total amount of financial support to be allocated to renewable energy and energy efficiency related projects during period 2014-2020 will be over euro 490 million. The current administratively determined FiP scheme is set to be replaced by an auction-based scheme within short

  9. Role of Seawater Desalination in the Management of an Integrated Water and 100% Renewable Energy Based Power Sector in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Upeksha Caldera

    2017-12-01

    Full Text Available This work presents a pathway for Saudi Arabia to transition from the 2015 power structure to a 100% renewable energy-based system by 2050 and investigates the benefits of integrating the power sector with the growing desalination sector. Saudi Arabia can achieve 100% renewable energy power system by 2040 while meeting increasing water demand through seawater reverse osmosis (SWRO and multiple effect distillation (MED desalination plants. The dominating renewable energy sources are PV single-axis tracking and wind power plants with 243 GW and 83 GW, respectively. The levelised cost of electricity (LCOE of the 2040 system is 49 €/MWh and decreases to 41 €/MWh by 2050. Corresponding levelised cost of water (LCOW is found to be 0.8 €/m3 and 0.6 €/m3. PV single-axis tracking dominates the power sector. By 2050 solar PV accounts for 79% of total electricity generation. Battery storage accounts for 41% of total electricity demand. In the integrated scenario, due to flexibility provided by SWRO plants, there is a reduced demand for battery storage and power-to-gas (PtG plants as well as a reduction in curtailment. Thus, the annual levelised costs of the integrated scenario is found to be 1–3% less than the non-integrated scenario.

  10. Questions but precious few answers in renewable energy review

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    This article focuses on the slow progress towards the new and strong drive for renewables promised in the UK Labour Party's manifesto, and the tentative proposal for 10% contribution of renewables by the year 2020. Onshore wind power and the planning system, key roles for offshore wind and biomass energy, growth in wave and solar power projects, increased funding for renewable energy research and development, the cost of delivering the 10% contribution of renewables, embedded power generation, and exemptions from the climate levy are discussed. The form that the stimulation of the market for renewable energy sources will take after the Non-Fossil-Fuel Obligation (NFFO) lapses, and the possibility of further NFFO orders are considered. (UK)

  11. Boosting renewable energies

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    Public policy and funding are basically different, but both are needed to develop the renewable energy market. Public policy creates incentives, but also obligations. The setting up of a 'repurchase rate' also called a 'feed-in tariff' or 'clean energy cash back scheme' obliges electric power companies to buy back energy of renewable origin at a fixed, guaranteed rate. The extra-cost generated, although usually low, is passed on to all customers and does not cost the State anything. Funding is characterized by its source, the manner in which it is obtained and who supplies it, whether it be banks, mutual funds, development agencies, electric power companies, local governments or the consumers themselves. Repurchasing yields regular cash flows over a given period at a lower risk and allows banks to provide funding. This is one of the reasons for its success. This solution is also very popular with political leaders because it does not weigh down public funding. Both these reasons explain why repurchasing is so appreciated in Europe and in a growing number of countries, more than seventy having adopted it in 2010. In addition, it is regularly discounted in relation to technological breakthroughs and lower costs. As is the case in Europe, the problem lies in maintaining an acceptable rate while avoiding excessive project profitability. In Europe, for instance, the number of renewable energy projects is such that consumers are starting to complain about seeing their electricity rates rise because of the famous feed-in tariff, even though the cost of renewable energies continues to drop on a regular basis. The United States and a few other countries, including China, prefer the quota system, or RPS (Renewable Portfolio Standards), which requires electric power companies to generate a minimal share of electric power by a renewable energy source. These companies consequently invest in renewable energy projects or purchase this energy from other suppliers. Like the

  12. Power management of a hybrid renewable system for artificial islands: A case study

    International Nuclear Information System (INIS)

    Cozzolino, R.; Tribioli, L.; Bella, G.

    2016-01-01

    In this paper, a hybrid wind/solar/fuel cell power plant is designed and a possible power management strategy is proposed. In particular, wind and solar energy sources are used as primary power suppliers, while a pure-hydrogen-fueled fuel cell – with hydrogen produced by means of an electrolyzer recovering excess power – and a battery pack are employed to fulfill the power demand, when the power supplied by the renewable sources is not sufficient. The analysis is applied to a particular case study, i.e. the TUNeIT [TUNisia and ITaly] Project, that involves the realization of four artificial islands to connect Bon (Tunisia) and Pizzolato (Sicily), provided with electrical-power-demanding facilities for tourists. Components sizing has been performed with HOMER, where a load profile has been assumed in order to reproduce the possible power demand of one of these artificial islands, while Matlab/Simulink"® is used for simulations and power management strategy design. The obtained results demonstrate the possibility of realizing an almost self-sustaining renewable power plant, able to realize a good integration of different energy sources and power converters, with no negative effects on end-user satisfaction. The system would consist of a wind turbine of 1 MW and a photovoltaic array of 1.1 MW, acting as primary power sources and several backup systems, such as a 72-kWh battery, a 300-kW fuel cell and a 300-kW diesel engine to cope with power demand unmatches and/or failures. In order to verify the system performance under different situations, simulation studies have been carried out using practical load demand profiles and real weather data. Typical winter and summer day loads have been kept for simulations of a four-season scenario and results are provided to show the effectiveness of the proposed system. The major drawback encountered during the analysis is the low value of the utilization factors of both wind turbine and photovoltaic array, which are 10

  13. Renewables. The clean advantage

    International Nuclear Information System (INIS)

    Klein, A.

    2006-01-01

    Europe's big utilities are increasingly seeing renewable energy as a viable alternative to conventional forms of power generation which at present have disadvantages in terms of cost and/or environment. Europe's biggest 20 utilities aim to double their renewables capacity in the next five years and nearly 20 billion US dollars have been earmarked for such projects. This report by Emerging Energy Research discusses the likely trends for the next five years. The various sources of renewable energy and how they might be developed are discussed. The companies leading exploitation of renewables and their market share are named

  14. Optimizing Capacities of Distributed Generation and Energy Storage in a Small Autonomous Power System Considering Uncertainty in Renewables

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2015-03-01

    Full Text Available This paper explores real power generation planning, considering distributed generation resources and energy storage in a small standalone power system. On account of the Kyoto Protocol and Copenhagen Accord, wind and photovoltaic (PV powers are considered as clean and renewable energies. In this study, a genetic algorithm (GA was used to determine the optimal capacities of wind-turbine-generators, PV, diesel generators and energy storage in a small standalone power system. The investment costs (installation, unit and maintenance costs of the distributed generation resources and energy storage and the cost of fuel for the diesel generators were minimized while the reliability requirement and CO2 emission limit were fulfilled. The renewable sources and loads were modeled by random variables because of their uncertainties. The equality and inequality constraints in the genetic algorithms were treated by cumulant effects and cumulative probability of random variables, respectively. The IEEE reliability data for an 8760 h load profile with a 150 kW peak load were used to demonstrate the applicability of the proposed method.

  15. Advanced mechanisms for the promotion of renewable energy-Models for the future evolution of the German Renewable Energy Act

    International Nuclear Information System (INIS)

    Langniss, Ole; Diekmann, Jochen; Lehr, Ulrike

    2009-01-01

    The German Renewable Energy Act (EEG) has been very successful in promoting the deployment of renewable electricity technologies in Germany. The increasing share of EEG power in the generation portfolio, increasing amounts of fluctuating power generation, and the growing European integration of power markets governed by competition calls for a re-design of the EEG. In particular, a more efficient system integration and commercial integration of the EEG power is needed to, e.g. better matching feed-in to demand and avoiding stress on electricity grids. This article describes three different options to improve the EEG by providing appropriate incentives and more flexibility to the promotion mechanism and the quantitative compensation scheme without jeopardising the fast deployment of renewable energy technologies. In the 'Retailer Model', it becomes the responsibility of the end-use retailers to adapt the EEG power to the actual demand of their respective customers. The 'Market Mediator Model' establishes an independent market mediator responsible to market the renewable electricity. This model is the primary choice when new market entrants are regarded as crucial for the better integration of renewable energy and enhanced competition. The 'Optional Bonus Model' relies more on functioning markets since power plant operators can alternatively choose to market the generated electricity themselves with a premium on top of the market price instead of a fixed price

  16. The European market of renewable energies

    International Nuclear Information System (INIS)

    Anon.

    2011-09-01

    This market study on renewable energies presents: 1 - the different renewable energy industries for power generation: the field of renewable energies (hydropower, wind power, solar energy, geothermal energy and biomass power plants) and their common points, their characteristics, advantages and constraints; 2 - the political and regulatory context with its ambitious goals: main steps of worldwide negotiations, Europe and the management of CO 2 emissions, stiffening of the environmental regulation, the energy/climate package and the efforts to be borne by the different member states; 3 - Economy of the sector and the necessary public support: investment and production costs by industry, wholesale prices and competitiveness of the different power generation means, government's incentives for projects profitability; 4 - dynamics of the European market of renewable energies: energy-mix and evolution of the renewable energies contribution in the world and in the European Union, key-figures by country and by industry (installed capacity, production, turnover, employment); 5 - medium-term development perspectives: 2020 prospect scenarios, evolution of the energy mix, perspectives of development for each industry; 6 - the strengths in presence in the domain of facilities: main manufacturers, market shares, innovations, vertical integration, external growth; 7 - the strengths in presence in the domain of power facilities operation: main European operators, position and ranking, installed capacities, projects portfolio; 8 - medium-term perspectives of reconfiguration: best-positioned operators in a developing market, future of European manufacturers with respect to Asian ones, inevitable concentration in the operation sector. (J.S.)

  17. Close or renew? Factors affecting local community support for rebuilding nuclear power plants in the Czech Republic

    International Nuclear Information System (INIS)

    Frantál, Bohumil; Malý, Jiří

    2017-01-01

    Rebuilding and upgrading of existing nuclear power plants represent a great energy policy challenge today. In this paper, factors that affect local community support for the rebuilding of an existing nuclear power plant are explored using a regression analysis model. It is based on a survey involving nearly 600 residents of twelve municipalities located in the vicinity of the Dukovany power plant in the Czech Republic. Nearly two thirds of local population support the rebuilding of the plant. The support for rebuilding is not directly affected by distance of residence from the power plant or perceptions of its local economic impacts, but is more influenced by general perceptions of pros of nuclear power. Work in the power plant, perception of nuclear power as a clean energy contributing to climate change mitigation and negative attitude to the renewable energy development are strongest predictors of the support. In terms of energy policy implications, it seems that the education of the public and awareness of nuclear power plants as a clean, safe and landscape compatible system of energy production are more important for increasing acceptance of rebuilding projects than spatial distribution of economic benefits to local communities. - Highlights: • Predictors of support for nuclear power plant (NPP) rebuilding are explored. • Support is not affected by distance or perception of local economic impacts. • Support is affected by general perceptions of pros of NPPs. • Support is determined by perception of NPPs as a clean energy. • Support is correlated with a negative attitude to renewable energy promotion.

  18. Prospective analysis of energy security: A practical life-cycle approach focused on renewable power generation and oriented towards policy-makers

    International Nuclear Information System (INIS)

    García-Gusano, Diego; Iribarren, Diego; Garraín, Daniel

    2017-01-01

    Highlights: • Formulation and application of the Renewable Energy Security Index (RESI). • Prospective analysis combining Energy Systems Modelling and Life Cycle Assessment. • Feasibility proven through two case studies of power generation in Spain and Norway. • Good coverage of key energy security aspects (availability, affordability, etc.). • Novel and easy-to-report index suitable for energy policy-making. - Abstract: Energy security is a wide-ranging term to encompass issues such as security of supply, reliability of infrastructures, affordability and environmental friendliness. This article develops a robust indicator – the Renewable Energy Security Index, RESI – to enrich the body of knowledge associated with the presence of renewable energy technologies within national electricity production mixes. RESI is built by combining environmental life cycle assessment and techno-economic energy systems modelling. Spain and Norway are used as illustrative case studies for the prospective analysis of power generation from an energy security standpoint. In the Spanish case, with a diversified electricity production mix and a growing presence of renewable technologies, RESI favourably “evolves” from 0.36 at present to 0.65 in 2050 in a business-as-usual scenario, reaching higher values in a highly-restricted CO_2 scenario. The Norwegian case study attains RESI values similar to 1 due to the leading role of renewable electricity (mainly hydropower) regarding both satisfaction of national demand and exportation of electricity surplus. A widespread use of RESI as a quantifiable energy security index of national power generation sectors is found to be feasible and practical for both analysts and energy policy-makers, covering a significant number of energy security aspects.

  19. The unstudied barriers to widespread renewable energy deployment: Fossil fuel price responses

    International Nuclear Information System (INIS)

    Foster, Edward; Contestabile, Marcello; Blazquez, Jorge; Manzano, Baltasar; Workman, Mark; Shah, Nilay

    2017-01-01

    Renewable energy policy focuses on supporting the deployment of renewable power generators so as to reduce their costs through scale economies and technological learning. It is expected that, once cost parity with fossil fuel generation is achieved, a transition towards renewable power should continue without the need for further renewable energy subsidies. However, this reasoning implicitly assumes that the cost of fossil fuel power generation does not respond to the large scale penetration of renewable power. In this paper we build a standard economic framework to test the validity of this assumption, particularly in the case of coal and gas fired power generation. We find that it is likely that the cost of fossil fuel power generation will respond to the large scale penetration of renewables, thus making the renewable energy transition slower or more costly than anticipated. More analysis is needed in order to be able to quantify this effect, the occurrence of which should be considered in the renewable energy discourse. - Highlights: • Renewables are increasingly competing with fossil fuel power generation. • This may have various effects on the fossil fuel generation value chain. • One such possible effect is a response of fossil fuel prices to renewables deployment. • We have tested this hypothesis using a supply-demand analytical framework. • We found that the effect is likely to occur and should be further investigated.

  20. Market Mechanism Design for Renewable Energy based on Risk Theory

    Science.gov (United States)

    Yang, Wu; Bo, Wang; Jichun, Liu; Wenjiao, Zai; Pingliang, Zeng; Haobo, Shi

    2018-02-01

    Generation trading between renewable energy and thermal power is an efficient market means for transforming supply structure of electric power into sustainable development pattern. But the trading is hampered by the output fluctuations of renewable energy and the cost differences between renewable energy and thermal power at present. In this paper, the external environmental cost (EEC) is defined and the EEC is introduced into the generation cost. At same time, the incentive functions of renewable energy and low-emission thermal power are designed, which are decreasing functions of EEC. On these bases, for the market risks caused by the random variability of EEC, the decision-making model of generation trading between renewable energy and thermal power is constructed according to the risk theory. The feasibility and effectiveness of the proposed model are verified by simulation results.

  1. Coastal and Riverine Flood Forecast Model powered by ADCIRC

    Science.gov (United States)

    Khalid, A.; Ferreira, C.

    2017-12-01

    Coastal flooding is becoming a major threat to increased population in the coastal areas. To protect coastal communities from tropical storms & hurricane damages, early warning systems are being developed. These systems have the capability of real time flood forecasting to identify hazardous coastal areas and aid coastal communities in rescue operations. State of the art hydrodynamic models forced by atmospheric forcing have given modelers the ability to forecast storm surge, water levels and currents. This helps to identify the areas threatened by intense storms. Study on Chesapeake Bay area has gained national importance because of its combined riverine and coastal phenomenon, which leads to greater uncertainty in flood predictions. This study presents an automated flood forecast system developed by following Advanced Circulation (ADCIRC) Surge Guidance System (ASGS) guidelines and tailored to take in riverine and coastal boundary forcing, thus includes all the hydrodynamic processes to forecast total water in the Potomac River. As studies on tidal and riverine flow interaction are very scarce in number, our forecast system would be a scientific tool to examine such area and fill the gaps with precise prediction for Potomac River. Real-time observations from National Oceanic and Atmospheric Administration (NOAA) and field measurements have been used as model boundary feeding. The model performance has been validated by using major historical riverine and coastal flooding events. Hydrodynamic model ADCIRC produced promising predictions for flood inundation areas. As better forecasts can be achieved by using coupled models, this system is developed to take boundary conditions from Global WaveWatchIII for the research purposes. Wave and swell propagation will be fed through Global WavewatchIII model to take into account the effects of swells and currents. This automated forecast system is currently undergoing rigorous testing to include any missing parameters which

  2. Energy Production System Management - Renewable energy power supply integration with Building Automation System

    International Nuclear Information System (INIS)

    Figueiredo, Joao; Martins, Joao

    2010-01-01

    Intelligent buildings, historically and technologically, refers to the integration of four distinctive systems: Building Automation Systems (BAS), Telecommunication Systems, Office Automation Systems and Computer Building Management Systems. The increasing sophisticated BAS has become the 'heart and soul' of modern intelligent buildings. Integrating energy supply and demand elements - often known as Demand-Side Management (DSM) - has became an important energy efficiency policy concept. Nowadays, European countries have diversified their power supplies, reducing the dependence on OPEC, and developing a broader mix of energy sources maximizing the use of renewable energy domestic sources. In this way it makes sense to include a fifth system into the intelligent building group: Energy Production System Management (EPSM). This paper presents a Building Automation System where the Demand-Side Management is fully integrated with the building's Energy Production System, which incorporates a complete set of renewable energy production and storage systems.

  3. Analysis of an Improved Solar-Powered Hydrogen Generation System for Sustained Renewable Energy Production

    Science.gov (United States)

    2017-12-01

    hydrogen gas by electrolysis. In LT Aviles’ design , distilled water was collected from the ambient air using Peltier dehumidifiers, manufactured by...Figure 13 shows the shelfing along with the entire system. Figure 13. Reconfigured Hydrogen Production Facility Because the system was designed for...POWERED HYDROGEN GENERATION SYSTEM FOR SUSTAINED RENEWABLE ENERGY PRODUCTION by Sen Feng Yu December 2017 Thesis Advisor: Garth V. Hobson Co

  4. Incorporating Charging/Discharging Strategy of Electric Vehicles into Security-Constrained Optimal Power Flow to Support High Renewable Penetration

    Directory of Open Access Journals (Sweden)

    Kyungsung An

    2017-05-01

    Full Text Available This research aims to improve the operational efficiency and security of electric power systems at high renewable penetration by exploiting the envisioned controllability or flexibility of electric vehicles (EVs; EVs interact with the grid through grid-to-vehicle (G2V and vehicle-to-grid (V2G services to ensure reliable and cost-effective grid operation. This research provides a computational framework for this decision-making process. Charging and discharging strategies of EV aggregators are incorporated into a security-constrained optimal power flow (SCOPF problem such that overall energy cost is minimized and operation within acceptable reliability criteria is ensured. Particularly, this SCOPF problem has been formulated for Jeju Island in South Korea, in order to lower carbon emissions toward a zero-carbon island by, for example, integrating large-scale renewable energy and EVs. On top of conventional constraints on the generators and line flows, a unique constraint on the system inertia constant, interpreted as the minimum synchronous generation, is considered to ensure grid security at high renewable penetration. The available energy constraint of the participating EV associated with the state-of-charge (SOC of the battery and market price-responsive behavior of the EV aggregators are also explored. Case studies for the Jeju electric power system in 2030 under various operational scenarios demonstrate the effectiveness of the proposed method and improved operational flexibility via controllable EVs.

  5. New renewable energy sources

    International Nuclear Information System (INIS)

    2001-06-01

    This publication presents a review of the technological, economical and market status in the field of new renewable energy sources. It also deals briefly with the present use of energy, external conditions for new renewable energy sources and prospects for these energy sources in a future energy system. The renewable energy sources treated here are ''new'' in the sense that hydroelectric energy technology is excluded, being fully developed commercially. This publication updates a previous version, which was published in 1996. The main sections are: (1) Introduction, (2) Solar energy, (3) Bio energy, (4) Wind power, (5) Energy from the sea, (6) Hydrogen, (7) Other new renewable energy technologies and (8) New renewable s in the energy system of the future

  6. Renewable Energy Potential for New Mexico

    Science.gov (United States)

    RE-Powering America's Land: Renewable Energy on Contaminated Land and Mining Sites was presented by Penelope McDaniel, during the 2008 Brown to Green: Make the Connection to Renewable Energy workshop.

  7. Is nuclear economical in comparison to renewables?

    International Nuclear Information System (INIS)

    Suna, Demet; Resch, Gustav

    2016-01-01

    The European Union is divided on the issue of electricity production. While there is consensus that generation technologies need to be low on greenhouse gas emissions, the question of whether to use renewables or nuclear to meet this power demand is highly controversial. Both options still require financial support and this is not going to change in the near future. This raises the question of where public money should be invested in order to achieve greater economic efficiency: into support for renewable energies (RE) or support for nuclear power plants? This paper sets out to answer this question. The detailed model-based prospective scenario assessment performed in this study provides the basis for estimating future cost developments. After discussing the existing support schemes for renewables, the paper compares these with a nuclear model. The comparison is conducted exemplarily for the United Kingdom (UK) at a country level and for the EU 28 overall. The recent state aid case for the construction of the Hinkley Point nuclear power plant (NPP) in the UK serves as the model for the nuclear option. - Highlights: • State aids for new nuclear power is compared with incentives for renewables. • Hinkley Point C in the UK is considered as example for new nuclear power. • Comparison is conducted for the UK at a country level and for the EU 28 overall. • Analysis shows that renewable energies are more economical than nuclear power.

  8. Assessment of renewable energy reserves in Taiwan

    International Nuclear Information System (INIS)

    Chen, Falin; Lu, Shyi-Min; Tseng, Kuo-Tung; Wang, Eric; Lee, Si-Chen

    2010-01-01

    Since Taiwan imports more than 99% of energy supply from foreign countries, energy security has always been the first priority for government to formulate energy policy. The development of renewable energy not only contributes to the independence of energy supply, but also achieves benefits of economic development and environmental protection. Based upon information available to public, the present paper reassesses reserves of various renewable energies in Taiwan. The assessment includes seven kinds of renewable energies, namely, solar energy, wind power, biomass energy, wave energy, tidal energy, geothermal energy and hydropower, which are all commercialized and matured in terms of current technologies. Other renewable energies, which have not proven as matured as the aforementioned ones, are only assessed preliminarily in this paper, such as second generation of biomass, deep geothermal energy, the Kuroshio power generation and ocean thermal energy conversion. According to the estimation of this paper, the reserve of wind energy, up to 29.9 kWh/d/p (i.e., kWh per day per person), is the largest one among seven kinds of renewable energies in Taiwan, followed by 24.27 kWh/d/p of solar energy, 4.55 kWh/d/p of biomass, 4.58 kWh/d/p of ocean energy, 0.67 kWh/d/p of geothermal energy and 16.79 kWh/d/p of hydropower. If regarding biomass as a primary energy, and assuming 40% being the average efficiency to convert primary energy into electricity, the total power of the seven kinds of renewable energy reserves is about 78.03 kWh/d/p, which is equal to 2.75 times of 28.35 kWh/d/p of national power generation in 2008. If the reserves of 54.93 kWh/d/p estimated from other four kinds of renewable energies that have not technically matured yet are also taken into account, it will result that the reserves of renewable energy in Taiwan can be quite abundant. Although the results of the assessment point out that Taiwan has abundant renewable energy resources, the four inherent

  9. Stability analysis of a power system made up of an intermittent renewable energy source directly tied to a conventional rotating power generator

    International Nuclear Information System (INIS)

    Coiante, D.

    1997-02-01

    A simple power system made up of a conventional rotating power generator in direct connection to an intermittent renewable energy source (with energy or photovoltaic) is modelled on the base of respective functional schemes. The relative variations of the voltage frequency are calculated as an output to an abrupt variation of intermittent tied power and in function of electro-mechanical parameters of the rotating generator (dumping coefficient and inertial rotor coefficient). The stability conditions and the tolerance allowed on the frequency variations are considered in relation to toad service requires. As a consequence, the maximum intermittent power amount, which can be accepted in direct connection, is obtained. For usual conventional rotating machines, the resulting limit is placed in the range of (12-19)% of nominal capacity of power generator

  10. Experimental study of mini SCADA renewable energy management system on microgrid using Raspberry Pi

    Science.gov (United States)

    Tridianto, E.; Permatasari, P. D.; Ali, I. R.

    2018-03-01

    Renewable Energy Management System (REMS) is a device that can be able to monitor power through a microgrid. The purpose of this system is to optimize power usage that produced from renewable energy with the result that reduces power demand from the grid. To reach the goal this device manage the load power needs fully supplied by renewable energy when the power produced from renewable energy is higher than load demand, besides power surplus will be stored in battery in this way energy stored in battery can be used when it needed. When the power produced from renewable energy can not satisfy the power demand, power will supply by renewable energy and grid. This device uses power meters for record any power flow through microgrid. In order to manage power flow in microgrid this system use relay module. The user can find out energy consumption (consumed by the load) and production (produced by renewable energy) in a period of time so that the user can switch on the load in right time.

  11. Wave power integration with a renewable hydrogen energy system. Paper no. IGEC-1-085

    International Nuclear Information System (INIS)

    St. Germain, L.; Wild, P.; Rowe, A.

    2005-01-01

    In British Columbia, approximately 90% of the electricity generated comes from hydroelectric facilities while another abundant and renewable resource, ocean wave energy, is not being utilized at all. Technologies exist that can capture and convert wave energy but there are few studies examining systemic integration of wave energy devices. This work examines the potential to use wave energy as an input into a hydrogen-based renewable energy system. A model of an oscillating water column (OWC) was developed as a module within TRNSYS where it can be coupled to other existing hydrogen-specific components such as an electrolyser, storage device, and fuel cell. The OWC model accounts for device geometry, dynamics, and generator efficiency. For this particular study, wave profiles generated from hourly average data for a location on the west coast of Vancouver Island are used as a resource input. An analysis of the potential to utilise wave energy is carried out with an emphasis on overall system efficiency and resulting device scaling. The results of the integration of wave energy with other renewable energy inputs into a hydrogen-based system are used to make recommendations regarding technical feasibility of wave power projects on Vancouver Island. (author)

  12. Electrical efficiency and renewable energy - Economical alternatives to large-scale power generation

    International Nuclear Information System (INIS)

    Oettli, B.; Hammer, S.; Moret, F.; Iten, R.; Nordmann, T.

    2010-05-01

    This final report for WWF Switzerland, Greenpeace Switzerland, the Swiss Energy Foundation SES, Pro Natura and the Swiss Cantons of Basel City and Geneva takes a look at the energy-relevant effects of the propositions made by Swiss electricity utilities for large-scale power generation. These proposals are compared with a strategy that proposes investments in energy-efficiency and the use of renewable sources of energy. The effects of both scenarios on the environment and the risks involved are discussed, as are the investments involved. The associated effects on the Swiss national economy are also discussed. For the efficiency and renewables scenario, two implementation variants are discussed: Inland investments and production are examined as are foreign production options and/or import from foreign countries. The methods used in the study are introduced and discussed. Investment and cost considerations, earnings and effects on employment are also reviewed. The report is completed with an extensive appendix which, amongst other things, includes potential reviews, cost estimates and a discussion on 'smart grids'

  13. Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin; Johnson, Brian; Zhang, Yingchen; Gevorgian, Vahan; Denholm, Paul; Hodge, Bri-Mathias; Hannegan, Bryan

    2017-03-01

    What does it mean to achieve a 100% renewable grid? Several countries already meet or come close to achieving this goal. Iceland, for example, supplies 100% of its electricity needs with either geothermal or hydropower. Other countries that have electric grids with high fractions of renewables based on hydropower include Norway (97%), Costa Rica (93%), Brazil (76%), and Canada (62%). Hydropower plants have been used for decades to create a relatively inexpensive, renewable form of energy, but these systems are limited by natural rainfall and geographic topology. Around the world, most good sites for large hydropower resources have already been developed. So how do other areas achieve 100% renewable grids? Variable renewable energy (VRE), such as wind and solar photovoltaic (PV) systems, will be a major contributor, and with the reduction in costs for these technologies during the last five years, large-scale deployments are happening around the world.

  14. Renewable Energy in Latvia

    Energy Technology Data Exchange (ETDEWEB)

    Shipkovs, P.; Kashkarova, G. [Latvian Energy Agency, Riga (Latvia); Shipkovs, M. [Energy-R Ltd., Riga (Latvia)

    1997-12-31

    Latvia is among those countries that do not have gas, coal and, for the time being, also oil resources of its own. The amount of power produced in Latvia does not meet the demand, consequently a part of the power has to be purchased from neighbouring countries. Firewood, peat and hydro resources are the only significant domestic energy resources. Massive decrease of energy consumption has been observed since Latvia regained independence. Domestic and renewable energy resources have been examined and estimated. There are already 13 modern boiler houses operating in Latvia with total installed capacity 45 MW that are fired with wood chips. Latvian companies are involved in the production of equipment. 7 small HPPs have been renewed with the installed capacity 1.85 MW. Wind plant in Ainazi has started its operation, where two modern wind turbines with the capacity of 0.6 MW each have been installed. Mechanism of tariff setting is aligned. Favourable power energy purchasing prices are set for renewable energy sources and small cogeneration plants

  15. Renewable Energy in Latvia

    Energy Technology Data Exchange (ETDEWEB)

    Shipkovs, P; Kashkarova, G [Latvian Energy Agency, Riga (Latvia); Shipkovs, M [Energy-R Ltd., Riga (Latvia)

    1998-12-31

    Latvia is among those countries that do not have gas, coal and, for the time being, also oil resources of its own. The amount of power produced in Latvia does not meet the demand, consequently a part of the power has to be purchased from neighbouring countries. Firewood, peat and hydro resources are the only significant domestic energy resources. Massive decrease of energy consumption has been observed since Latvia regained independence. Domestic and renewable energy resources have been examined and estimated. There are already 13 modern boiler houses operating in Latvia with total installed capacity 45 MW that are fired with wood chips. Latvian companies are involved in the production of equipment. 7 small HPPs have been renewed with the installed capacity 1.85 MW. Wind plant in Ainazi has started its operation, where two modern wind turbines with the capacity of 0.6 MW each have been installed. Mechanism of tariff setting is aligned. Favourable power energy purchasing prices are set for renewable energy sources and small cogeneration plants

  16. The impact of turbulent renewable energy production on power grid stability and quality

    Science.gov (United States)

    Schmietendorf, Katrin; Peinke, Joachim; Kamps, Oliver

    2017-11-01

    Feed-in fluctuations induced by renewables are one of the key challenges to the stability and quality of electrical power grids. In particular short-term fluctuations disturb the system on a time scale, on which load balancing does not operate yet and the system is intrinsically governed by self-organized synchronization. Wind and solar power are known to be strongly non-Gaussian with intermittent increment statistics in these time scales. We investigate the impact of short-term wind fluctuations on the basis of a Kuramoto-like power grid model considering stability in terms of desynchronization and frequency and voltage quality aspects. We present a procedure to generate realistic feed-in fluctuations with temporal correlations, Kolmogorov power spectrum and intermittent increments. By comparison to correlated Gaussian noise of the same spectrum and Gaussian white noise, we found out that while the correlations are essential to capture the likelihood of severe outages, the intermittent nature of wind power has significant consequences on power quality: intermittency is directly transferred into frequency and voltage fluctuations yielding a novel type of fluctuations, which is beyond engineering status of knowledge.

  17. Regulatory analysis for amendments to regulations for the environmental review for renewal of nuclear power plant operating licenses. Final report

    International Nuclear Information System (INIS)

    1996-05-01

    This regulatory analysis provides the supporting information for a proposed rule that will amend the Nuclear Regulatory Commission's environmental review requirements for applications for renewal of nuclear power plant operating licenses. The objective of the proposed rulemaking is to improve regulatory efficiency by providing for the generic evaluation of certain environmental impacts associated with nuclear plant license renewal. After considering various options, the staff identified and analyzed two major alternatives. With Alternative A, the existing regulations would not be amended. This option requires that environmental reviews be performed under the existing regulations. Alternative B is to assess, on a generic basis, the environmental impacts of renewing the operating license of individual nuclear power plants, and define the issues that will need to be further analyzed on a case-by-case basis. In addition, Alternative B removes from NRC's review certain economics-related issues. The findings of this assessment are to be codified in 10 CFR 51. The staff has selected Alternative B as the preferred alternative

  18. Integrating Renewables in Electricity Markets

    DEFF Research Database (Denmark)

    Morales González, Juan Miguel; Conejo, Antonio J.; Madsen, Henrik

    in the electricity market. • The development of procedures to enable demand response and to facilitate the integration of stochastic renewable units. This book is written in a modular and tutorial manner and includes many illustrative examples to facilitate its comprehension. It is intended for advanced...... such as: • The modeling and forecasting of stochastic renewable power production. • The characterization of the impact of renewable production on market outcomes. • The clearing of electricity markets with high penetration of stochastic renewable units. • The development of mechanisms to counteract...

  19. Wind, hydro or mixed renewable energy source

    DEFF Research Database (Denmark)

    Yang, Yingkui; Solgaard, Hans Stubbe; Haider, Wolfgang

    2016-01-01

    While the share of renewable energy, especially wind power, increases in the energy mix, the risk of temporary energy shortage increases as well. Thus, it is important to understand consumers' preference for the renewable energy towards the continuous growing renewable energy society. We use...

  20. Integration of renewable energies into the power supply system; Integration erneuerbarer Energien in das Stromversorgungssystem

    Energy Technology Data Exchange (ETDEWEB)

    Neubarth, Juergen [e3 consult, Innsbruck (Austria)

    2011-08-15

    In contrast to the record breaking speed with which the German government presented its new energy concept in response to the Fukushima reactor disaster, the practical task of transforming our energy supply system will take decades. One of the greatest challenges involved in the energy turnaround will be that of integrating renewable energies into the power supply system. A holistic analysis and assessment of all aspects involved in this is therefore of utmost importance. Under the focal topic of its new publication ''Energie fuer Deutschland 2011'', Weltenergierat Deutschland e.V. presents a detailed summary of this challenge, thus providing a basis for further discussion. It shows that efficient integration of renewable energies must necessarily involve a combination of systems engineering and organisational measures.

  1. The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints

    NARCIS (Netherlands)

    Van Den Broek, Machteld; Berghout, Niels; Rubin, Edward S.

    2015-01-01

    The costs of intermittent renewable energy systems (IRES) and power storage technologies are compared on a level playing field to those of natural gas combined cycle power plants with CO2 capture and storage (NGCC-CCS). To account for technological progress over time, an "experience

  2. Impact of forecast errors on expansion planning of power systems with a renewables target

    DEFF Research Database (Denmark)

    Pineda, Salvador; Morales González, Juan Miguel; Boomsma, Trine Krogh

    2015-01-01

    This paper analyzes the impact of production forecast errors on the expansion planning of a power system and investigates the influence of market design to facilitate the integration of renewable generation. For this purpose, we propose a programming modeling framework to determine the generation...... and transmission expansion plan that minimizes system-wide investment and operating costs, while ensuring a given share of renewable generation in the electricity supply. Unlike existing ones, this framework includes both a day-ahead and a balancing market so as to capture the impact of both production forecasts...... and the associated prediction errors. Within this framework, we consider two paradigmatic market designs that essentially differ in whether the day-ahead generation schedule and the subsequent balancing re-dispatch are co-optimized or not. The main features and results of the model set-ups are discussed using...

  3. The renewable energies in France 1970-2003

    International Nuclear Information System (INIS)

    2005-01-01

    This report aims to present series of energy production by renewable energies (hydroelectric power, wind power, photovoltaic, geothermal energy, biomass and domestic wastes) and thermal energy production by renewable energies (wood, domestic wastes, heat pumps, geothermal energy, biogas, solar energy, biofuels) in order to estimate the evolution of the energy policy. (A.L.B.)

  4. Law of coastal zones and marine renewable energies: a critical perspective

    International Nuclear Information System (INIS)

    Bordereaux, Laurent

    2013-01-01

    Even before the development of offshore wind energy along the French coasts, marine renewable energies raise many problems of the environmental, industrial and economic, research and political levels. Legal issues are then strongly emerging and have a determining role to play before the deployment of these marine renewable energies. Thus, the author discusses the relationship and interaction between these energies and legal instruments: the French 'Loi Littoral' (Coastlines Act), some specific planning documents (PLUs or town planning local plans, SMVM or scheme for sea valorisation), and the regime of the maritime public domain. As a conclusion, the author wanders whether wind farms should be implanted further offshore

  5. Streamlining the license renewal review process

    International Nuclear Information System (INIS)

    Dozier, J.; Lee, S.; Kuo, P.T.

    2001-01-01

    The staff of the NRC has been developing three regulatory guidance documents for license renewal: the Generic Aging Lessons Learned (GALL) report, Standard Review Plan for License Renewal (SRP-LR), and Regulatory Guide (RG) for Standard Format and Content for Applications to Renew Nuclear Power Plant Operating Licenses. These documents are designed to streamline the license renewal review process by providing clear guidance for license renewal applicants and the NRC staff in preparing and reviewing license renewal applications. The GALL report systematically catalogs aging effects on structures and components; identifies the relevant existing plant programs; and evaluates the existing programs against the attributes considered necessary for an aging management program to be acceptable for license renewal. The GALL report also provides guidance for the augmentation of existing plant programs for license renewal. The revised SRP-LR allows an applicant to reference the GALL report to preclude further NRC staff evaluation if the plant's existing programs meet the criteria described in the GALL report. During the review process, the NRC staff will focus primarily on existing programs that should be augmented or new programs developed specifically for license renewal. The Regulatory Guide is expected to endorse the Nuclear Energy Institute (NEI) guideline, NEI 95-10, Revision 2, entitled 'Industry Guideline for Implementing the Requirements of 10 CFR Part 54 - The License Renewal Rule', which provides guidance for preparing a license renewal application. This paper will provide an introduction to the GALL report, SRP-LR, Regulatory Guide, and NEI 95-10 to show how these documents are interrelated and how they will be used to streamline the license renewal review process. This topic will be of interest to domestic power utilities considering license renewal and international ICONE participants seeking state-of-the-art information about license renewal in the United States

  6. Use of derivative instruments to integrate renewable energies into the electricity market

    International Nuclear Information System (INIS)

    Hartmann, Kilian; Nelles, Michael; Candra, Dodiek Ika

    2017-01-01

    The implementation of renewable energies to the electricity market is inefficient and expensive with current measures. Further these measures are prejudicial for the existing energy-only-market. The combination of fluctuating and controllable renewable powers in virtual power plants enables the marketing of this power as a derivate on the future market. Thus would relieve the spot market and stabilize pricing on both markets. Subsequently the renewable energy obligation will reduce and renewable energies could be marketed as secured power.

  7. Hybrid Systems of Distributed Generation with Renewable Sources: Modeling and Analysis of Their Operational Modes in Electric Power System

    Directory of Open Access Journals (Sweden)

    A. M. Gashimov

    2013-01-01

    Full Text Available The paper considers problems pertaining to modeling and simulation of operational hybrid system modes of the distributed generation comprising conventional sources – modular diesel generators, gas-turbine power units; and renewable sources – wind and solar power plants. Operational modes of the hybrid system have been investigated under conditions of electrical connection with electric power system and in case of its isolated operation. As a consequence

  8. Nuclear plant license renewal

    International Nuclear Information System (INIS)

    Gazda, P.A.; Bhatt, P.C.

    1991-01-01

    During the next 10 years, nuclear plant license renewal is expected to become a significant issue. Recent Electric Power Research Institute (EPRI) studies have shown license renewal to be technically and economically feasible. Filing an application for license renewal with the Nuclear Regulatory Commission (NRC) entails verifying that the systems, structures, and components essential for safety will continue to perform their safety functions throughout the license renewal period. This paper discusses the current proposed requirements for this verification and the current industry knowledge regarding age-related degradation of structures. Elements of a license renewal program incorporating NRC requirements and industry knowledge including a schedule are presented. Degradation mechanisms for structural components, their significance to nuclear plant structures, and industry-suggested age-related degradation management options are also reviewed

  9. On- and off-grid operation of hybrid renewable power plants: When are the economics favorable?

    Science.gov (United States)

    Petrakopoulou, F.; Santana, D.

    2016-12-01

    Hybrid renewable energy conversion systems offer a good alternative to conventional systems in locations where the extension of the electrical grid is difficult or not economical or where the cost of electricity is high. However, stand-alone operation implies net energy output restrictions (limited to exclusively serve the energy demand of a region), capacity oversizing and large storage facilities. In interconnected areas, on the other hand, the operational restrictions of the power stations change significantly and the efficiencies and costs of renewable technologies become more favorable. In this paper, the operation of three main renewable technologies (CSP, PV and wind) is studied assuming both hybrid and individual operation for both autonomous and inter-connected operation. The case study used is a Mediterranean island of ca. 3,000 inhabitants. Each system is optimized to fully cover the energy demand of the community. In addition, in the on-grid operation cases, it is required that the annual energy generated from the renewable sources is net positive (i.e., the island generates at least as much energy as it uses). It is found that when connected to the grid, hybridization of more than one technology is not required to satisfy the energy demand, as expected. Each of the renewable technologies investigated can satisfy the annual energy demand individually, without significant complications. In addition, the cost of electricity generated with the three studied technologies drops significantly for on-grid applications, when compared to off-grid operation. However, when compared to business-as-usual scenarios in both the on- and off-grid cases, both investigated hybrid and single-technology renewable scenarios are found to be economically viable. A sensitivity analysis reveals the limits of the acceptable costs that make the technologies favorable when compared to conventional alternatives.

  10. Impact of embedded renewable on transmission and distribution network

    International Nuclear Information System (INIS)

    Pistora, M.; Maslo, K.

    2012-01-01

    This paper deals with impact of renewable energy sources on both interconnected transmission systems and distribution networks. It evaluates the role of phase-shifting transformers in controlling active power flows created by renewable as well as embedded renewable' role in is landing operation in distribution network. Model of photovoltaic power plant from MODES simulation software is described as well. (Authors)

  11. Bolivia renewable energy development

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1997-12-01

    The author summarizes changes which have occurred in Bolivia in the past year which have had an impact on renewable energy source development. Political changes have included the privatization of power generation and power distribution, and resulted in a new role for state level government and participation by the individual. A National Rural Electrification Plan was adopted in 1996, which stresses the use of GIS analysis and emphasizes factors such as off grid, economic index, population density, maintenance risk, and local organizational structure. The USAID program has chosen to stress economic development, environmental programs, and health over village power programs. The national renewables program has adopted a new development direction, with state projects, geothermal projects, and private sector involvement stressed.

  12. Renewables in Electricity Markets

    DEFF Research Database (Denmark)

    Ordoudis, Christos; Papakonstantinou, Athanasios; Pinson, Pierre

    2014-01-01

    Electricity is nowadays commonly exchanged through electricity markets, designed in a context where dispatchable generators, with non-negligible marginal costs, were dominating. By depending primarily on conventional (fossil, hydro and nuclear) power generation based on marginal pricing...... not designed to take into account the uncertainty brought by the substantial variability and limited predictability associated with stochastic sources, most notably wind power and solar energy. Due to these developments, the need for decision making models able to account for the uncertainty introduced by high...... from renewables, and on the adaption of electricity market designs and power system operations to the aforementioned characteristics of renewables. Additionally, the aim of the research group is supplemented by providing the appropriate frameworks for secure future investments in the field...

  13. Power and choice[expanding use of renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Leipold, Gerd

    2002-07-01

    As we face up to the increased insecurity and slowing global economy caused by the terrorist attacks of 11 September, tackling climate change may appear to be a separate goal. Yet, as environmentalists, we know all things are connected. These issues are directly and critically linked. If we are serious about tackling any of them we have to tackle them all. The British Prime Minister, Tony Blair, recently asked 'what is the lesson of the financial markets, climate change, international terrorism, nuclear proliferation or world trade?' He answered himself: 'It is that our self-interest and our mutual interests are today inextricably woven together - that power, wealth and opportunity must be in the hands of the many, not the few.' If we adopt a visionary and robust approach to tackling climate change we will also bring about real security, provide a boost for the economy, reduce poverty and make the world fairer. Massive expansion of wind and solar power - and other sources of renewable energy - would provide the energy security we so urgently need. We can replace both the fossil fuels that cause climate change and nuclear reactors with their dangerous legacy. In bringing renewable energy to the world's 2 billion poorest people we would reduce poverty, help fight disease, facilitate education, give hope and independence - and make a better environment for everyone, everywhere. Politicians, commentators and scientists the world over have described climate change as the most pressing environmental issue of the day. But it is not limited purely to the agendas of environment departments. Of course it has environmental effects - including floods, drought, dying coral reefs, melting Arctic and Antarctic ice and sea-level rise - which will both directly and indirectly affect people and economies. But its causes go to the heart of industrial society and its energy supply, almost entirely dependent on fossil fuels. Tackling climate change means phasing these out. The United

  14. The flexibility requirements for power plants with CCS in a future energy system with a large share of intermittent renewable energy sources

    NARCIS (Netherlands)

    Brouwer, A. S.; van den Broek, M.; Seebregts, A.; Faaij, A. P. C.

    2013-01-01

    This paper investigates flexibility issues of future low-carbon power systems. The short-term power system impacts of intermittent renewables are identified and roughly quantified based on a review of wind integration studies. Next, the flexibility parameters of three types of power plants with CO2

  15. The Monticello license renewal project

    International Nuclear Information System (INIS)

    Clauss, J.M.; Harrison, D.L.; Pickens, T.A.

    1993-01-01

    Today, 111 nuclear power plants provide over 20 percent of the electrical energy generated in the United States. The operating license of the oldest operating plant will expire in 2003, one-third of the existing operating licenses will expire by 2010 and the newest plant's operating license will expire in 2033. The National Energy Strategy (NES) prepared by the Department of Energy (DOE) assumes that 70 percent of the current operating plants will continue to operate beyond their current license expiration. Power from current operating plants can assist in ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth and improved U.S. competitiveness. In order to preserve this energy resource, three major tasks must be successfully completed: (1) establishment of regulations, technical standards, and procedures for the preparation and review of License Renewal Applications (LRAs); (2) development of technical criteria and bases for monitoring, refurbishing or replacing plant equipment; and (3) demonstration of the regulatory process by a plant obtaining a renewed license. Since 1986, the DOE has been working with the nuclear industry and the Nuclear Regulatory Commission (NRC) to establish and demonstrate the option to extend the life of a nuclear power plant by renewing the operating license. The Monticello Lead Plant demonstration project was initiated in September 1988, following the Pilot Plant studies. This paper is primarily focused on the status and insights gained from the Northern States Power Company (NSP) Monticello Lead Plant demonstration project. The following information is included: (1) Current Status - Monticello License Renewal Application; (2) Economic Analysis; (3) License Renewal Regulatory Uncertainty Issues; (4) Key Decisions; (5) Management Structure; (6) Technical and Licensing Perspective; (7) NRC Interactions; (8) Summary

  16. A renewables-based South African energy system?

    CSIR Research Space (South Africa)

    Bischof-Niemz, T

    2015-12-01

    Full Text Available in electricity mix from 75 to 50% by 2025 That's a reduction by 140 TWh/yr of nuclear power generation, which is the same amount of energy produced by 10 Koebergs This energy will be replaced by renewables This emphasises again the recently achieved cost...-competitiveness of renewableshttp://www.world-nuclear-news.org/NP-French- energy-transition-bill-adopted-2307155.html 8Agenda International context Renewables in South Africa Extreme renewables scenarios 9Integrated Resource Plan 2010 (IRP 2010): Plan of the power generation mix...

  17. Conference on grid integration of renewable energies

    International Nuclear Information System (INIS)

    Fontaine, Pierre; Goeke, Berthold; Mignon, Herve; Brakelmann, Heinrich; Huebner, Gundula; Tanja Schmedes; Remy Garaude Verdier; Pierre-Guy Therond; Werner Diwald

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on grid integration of renewable energies. In the framework of this French-German exchange of experience, about a hundred of participants exchanged views on the similarities and differences between the French and German approaches of renewable energies integration to grids. This document brings together the available presentations (slides) made during this event: 1 - Power grid development - Policy and challenges (Pierre Fontaine); 2 - Grid Development: German Strategy (Berthold Goeke); 3 - Power grids development: situational analysis (Herve Mignon); 4 - Traditional Power Lines, Partial Underground Cabling and HVDC lines: Costs, Benefits and Acceptance (Heinrich Brakelmann); 5 - Transmission Lines - Local Acceptance (Gundula Huebner); 6 - eTelligence- energy meets Intelligence: experience feedback from the grid operator EWe on smart grids and the integration of renewable energies (Tanja Schmedes); 7 - Nice Grid, The French Smart Grid Project within Grid4eU (Remy Garaude Verdier); 8 - Economical Analysis Of energy Storage For Renewable energy Farms - experience of EDF en on the basis of 3 call for tender issued by the French Government in 01/2010, 11/2010, and 09/2011: what conditions for a real deployment (Pierre-Guy Therond); 9 - Hydrogen as a renewable energies storage mean (Werner Diwald)

  18. Towards 100% renewable energy systems: Uncapping power system flexibility

    International Nuclear Information System (INIS)

    Papaefthymiou, G.; Dragoon, Ken

    2016-01-01

    Relying almost entirely on energy from variable renewable resources such as wind and solar energy will require a transformation in the way power systems are planned and operated. This paper outlines the necessary steps in creating power systems with the flexibility needed to maintain stability and reliability while relying primarily on variable energy resources. These steps are provided in the form of a comprehensive overview of policies, technical changes, and institutional systems, organized in three development phases: an initial phase (penetration up to about 10%) characterized by relatively mild changes to conventional power system operations and structures; a dynamic middle phase (up to about 50% penetration) characterized by phasing out conventional generation and a concerted effort to wring flexibility from existing infrastructure; and the high penetration phase that inevitably addresses how power systems operate over longer periods of weeks or months when variable generation will be in either short supply, or in over-abundance. Although this transition is likely a decades-long and incremental process and depends on the specifics of each system, the needed policies, research, demonstration projects and institutional changes need to start now precisely because of the complexity of the transformation. The list of policy actions presented in this paper can serve as a guideline to policy makers on effectuating the transition and on tracking the preparedness of systems. - Highlights: •100% VRES systems: combined analysis of all related technical and policy challenges. •Transition elements: classification of the complete range of challenges in 9 elements. •Development regimes: policy actions in 3 VRES penetration regimes (low-medium-high). •Policies: comprehensive guideline and detailed presentation of policies per regime. •Roadmap: lists of actions per regime act as transition roadmap to 100% VRES systems.

  19. Key challenges to expanding renewable energy

    International Nuclear Information System (INIS)

    Stram, Bruce N.

    2016-01-01

    The key advantage of renewables is that they are free of direct pollution and carbon emissions. Given concern over global warming caused by carbon emissions, there are substantial policy efforts to increase renewable penetrations. The purpose of this paper is to outline and evaluate the challenges presented by increasing penetrations of renewable electricity generation. These generation sources primarily include solar and wind which are growing rapidly and are new enough to the grid that the impact of high penetrations is not fully understood. The intrinsic nature of solar and wind power is very likely to present greater system challenges than “conventional” sources. Within limits, those challenges can be overcome, but at a cost. Later sections of the paper will draw on a variety of sources to identify a range of such costs, at least as they are foreseen by researchers helping prepare ambitious plans for grids to obtain high shares (30–50%) of their megawatt hours from primarily solar and wind generation. Energy poverty issues are outlined and related to renewable costs issues. - Highlights: •Integration of intermittent renewables with existing power grids. •Renewable ramping and over production issues. •Renewable caused system costs. •Energy poverty circumstances and consequences.

  20. Power from renewable resources - 'We want to find out how much we can squeeze out of the lemon'

    International Nuclear Information System (INIS)

    Aeberli, O. E.

    2005-01-01

    This interview with Swiss energy expert Kurt Wiederkehr presents his opinions on the promotion of renewable forms of energy and the model for their promotion proposed by the Swiss Association of Electric Utilities VSE. The topics discussed include the VSE's basic views on the promotion of renewable forms of energy, the association's criteria for its promotion and demands made on state support. In particular, the promotional measures proposed in new Swiss legislation are discussed and the association's ideas concerning concrete methods of promoting renewable forms of energy are discussed. These include the so-called 'call for tender' variant. Various technologies are discussed and alternative methods of promotion proposed by other organisations are looked at. The question of the replacement of nuclear power in the future is also discussed

  1. Syndicate of renewable energies - Highlights 2016

    International Nuclear Information System (INIS)

    2017-01-01

    This publication first proposes a presentation of the SER (Syndicat des Energies Renouvelables, Syndicate of Renewable Energies), a professional body: missions, scope of action, members. It outlines its commitment in the French policy for energy transition as a major actor of the sector of renewable energies. It addresses the legal and regulatory framework as well as the economic framework and markets. It proposes brief presentations of transverse actions regarding power grids, overseas territories, the building sector and the international export. Some highlights related to ground-based wind power, renewable marine energies and offshore wind energy, solar photovoltaic energy, bio-energies (wood-fueled power plants for collective, tertiary and industrial sectors, biogas, biofuels and municipal wastes), domestic wood space heating, geothermal energy and hydroelectricity are mentioned. Actions in the field of communication are summarized, and projects for 2017 are briefly indicated

  2. Can renewable energy be financed with higher electricity prices? Evidence from a Spanish region

    International Nuclear Information System (INIS)

    Gracia, Azucena; Barreiro-Hurlé, Jesús; Pérez y Pérez, Luis

    2012-01-01

    In this paper we estimate the willingness to pay for mix of renewable sources of electric power by means of a discrete choice experiment survey conducted in Spain in 2010. Two main categories of power supply attributes are explored: source of renewable power (wind, solar and biomass) and the origin of such power. The findings suggest that most consumers are not willing to pay a premium for increases in the shares of renewable in their electricity mix. For two of the three renewable sources considered (wind and biomass) an increase of the renewable mix would require a discount. Instead, we record positive willing to pay for increases in the share of both solar power and locally generated power. However, preferences for types of renewable (solar and wind) are found to be heterogeneous. By classifying respondents in two groups according to the implied importance of the share of renewable sources in their power mix we identify a market segment consisting of 20% of respondents that could promote renewable energy in the absence of subsidies. This is because such a segment shows willingness to pay higher than the current feed-in tariffs. - Highlights: ► We evaluate the WTP for different renewable electricity sources in a Aragon. ► Average positive WTP is found for only some renewable sources. ► Specific market segments are willing to pay for specific renewable sources. ► Geographical origin is more important than renewable source.

  3. Renewable energy sources, subsidised indefinitely?; Erneuerbare Energien. Ein ewiger Subventionstatbestand?

    Energy Technology Data Exchange (ETDEWEB)

    Muehlhaeuser, Kurt; Roth, Hans [Stadtwerke Muenchen GmbH, Muenchen (Germany)

    2012-08-15

    The German Renewables Act, EEG, specified a guaranteed reimbursement rate for electric power from renewable energy sources. Normally, the reimbursement rate is far higher than the market value of the power generated and thus makes the plant economically interesting for its owner. It remains to be seen if the renewable energy sources with the biggest potential, i.e. wind power and solar power, will have to be subsidized indefinitely, or whether they can find their place in the electricity market also without the EEG and other funding mechanisms.

  4. Study on extreme high temperature of cooling water in Chinese coastal nuclear power plant

    International Nuclear Information System (INIS)

    Yu Fan; Jiang Ziying

    2012-01-01

    In order to protect aquatic life from the harmful effects of thermal discharge, the appropriate water temperature limits or the scope of the mixing zone is a key issue in the regulatory control of the environmental impact of thermal discharge. Based on the sea surface temperature in the Chinese coastal waters, the extreme value of the seawater temperature change was analyzed by using the Gumbel model. The limit of the design temperature rise of cooling water in the outfall is 9 ℃, and the limit of the temperature rise of cooling water in the edge of the mixing zone is 4 ℃. The extreme high temperature of the cooling water in Chinese coastal nuclear power plant is 37 ℃ in the Bohai Sea, Yellow Sea, and is 40 ℃ in East China Sea, South China Sea. (authors)

  5. NRC's license renewal regulations

    International Nuclear Information System (INIS)

    Akstulewicz, Francis

    1991-01-01

    In order to provide for the continuity of the current generation of nuclear power plant operating licenses and at the same time ensure the health and safety of the public, and the quality of the environment, the US Nuclear Regulatory Commission (NRC) established a goal of developing and issuing regulations and regulatory guidance for license renewal in the early 1990s. This paper will discuss some of those activities underway to achieve this goal. More specifically, this paper will discuss the Commission's regulatory philosophy for license renewal and the two major license renewal rule makings currently underway. The first is the development of a new Part 54 to address procedural and technical requirements for license renewal; the second is a revision to existing Part 51 to exclude environmental issues and impacts from consideration during the license renewal process. (author)

  6. Renewable energy policy in South Africa: policy options for renewable electricity

    International Nuclear Information System (INIS)

    Winkler, H.

    2005-01-01

    Investment in renewable energy and energy efficiency is important to reduce the negative economic, social and environmental impacts of energy production and consumption in South Africa. Currently, renewable energy contributes relatively little to primary energy and even less to the consumption of commercial energy. This article examines policy options for promoting renewable electricity. Feed-in tariffs guarantee prices for developers, but lack certainty on the amount of renewable electricity such laws would deliver under local conditions. Portfolio standards set a fixed quantity, which would guarantee diversity of supply. The question is whether the incremental upfront cost to be paid by society may be unacceptably high, compared to future health and environmental benefits. A renewables obligation combines the setting of a target with a tendering process, but may be bureaucratic to administer. Neither setting targets or regulating prices alone, however, will be sufficient. Power purchase agreements, access to the grid and creating markets for green electricity are some supporting activities that should be considered. Given that renewable electricity technologies have to compete with relatively low electricity tariffs, funding will be needed. Possible sources, both locally and internationally, are identified. The extent to which these are utilised will determine the future mix of renewable energy in South Africa. (author)

  7. Renewable energy policy in South Africa: policy options for renewable electricity

    International Nuclear Information System (INIS)

    Winkler, Harald

    2005-01-01

    Investment in renewable energy and energy efficiency is important to reduce the negative economic, social and environmental impacts of energy production and consumption in South Africa. Currently, renewable energy contributes relatively little to primary energy and even less to the consumption of commercial energy. This article examines policy options for promoting renewable electricity. Feed-in tariffs guarantee prices for developers, but lack certainty on the amount of renewable electricity such laws would deliver under local conditions. Portfolio standards set a fixed quantity, which would guarantee diversity of supply. The question is whether the incremental upfront cost to be paid by society may be unacceptably high, compared to future health and environmental benefits. A renewables obligation combines the setting of a target with a tendering process, but may be bureaucratic to administer. Neither setting targets or regulating prices alone, however, will be sufficient. Power purchase agreements, access to the grid and creating markets for green electricity are some supporting activities that should be considered. Given that renewable electricity technologies have to compete with relatively low electricity tariffs, funding will be needed. Possible sources, both locally and internationally, are identified. The extent to which these are utilised will determine the future mix of renewable energy in South Africa

  8. Outline of Matsuto coastal park power plant and its operation performance; Matsuto kaihin koen hatsudensho no gaiyo to unten jisseki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    The Matsuto Coastal Park where the power plant was constructed, is well arranged as a central facility in the Matsuto Coastal Community Zone Adjustment Plan, and therefore the offshore breakwater and artificial reef in the coast, the highway oasis established firstly in Japan in the highway, the indoor pool and civic bath utilizing a hot spring in the folktale zone are constructed. A system constitution of the power plant is a hybrid system consisted of one unit of the upwind type propeller wind mill with a capacity of 100 kW and the polycrystal type silicon solar cell with a capacity of 3 kW. The power generated in the power plant is supplied to a lighting up system of wind mill, a Holland type monument wind mill, and the Matsuto cycling terminal completed in a fiscal year of 1994 and so forth. An excess power generated is set to be sold to the power company. An operation state of the mill is in a degree that the wind mill stoppage caused by a mismotion of sensors occurred at several times, and consequently no serious failure has occurred up to present. 1 tab.

  9. Renewable Electricity Futures: Exploration of a U.S. Grid with 80% Renewable Electricity

    Science.gov (United States)

    Mai, Trieu

    2013-04-01

    Renewable Electricity Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and un-certainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/refutures/.

  10. Deregulation and sustainable energy supply: perspectives of nuclear power and renewable energies

    International Nuclear Information System (INIS)

    Voss, A.

    2001-01-01

    In the concept expressed by the Brundtland Commission and in the Rio Declaration, sustainability incorporates the need - contradictory at first sight - to make sparing use of the environment and promote economic and social development at the same time. Future generations must not be stripped of their possibilities to live and develop. In this comprehensive interpretation, some quantitative orientation for various energy options can be obtained by means of lifetime analyses. The parameters available for evaluation are resource, environmental and economic aspects. Introducing competition and deregulation in the power industry is legitimate not only for reasons of economic theory. Experience has shown that efficient growth and careful management of scarce resources are achieved not by government planning and regulation, but by the allocation efficiency of the markets. This makes competition a key factor of sustainable development. Against this background, perspectives of nuclear power and of renewable energy sources are evaluated. (orig.) [de

  11. When renewable energy met sustainable growth. Regulation, cost reduction, and the rise of renewable energy in the United States

    International Nuclear Information System (INIS)

    Stephens, Samantha

    2016-01-01

    Historically and famously fossil-fuel dependent, the U.S. energy and electricity mixes are evolving quickly as costs fall for renewables, regulations mandate their implementation, and fiscal policy incentivizes their installation. The investment and production tax credits (ITC and PTC) as well as power purchase agreements (PPAs) are well-known for their contributions to the development of solar and wind capacity, and the recent extensions of these credits has led to a positive outlook for continued growth in installations and generation. In addition, the green power market is experiencing record participation, as tracking the positive environmental externalities of renewable power has become important to meet renewable portfolio standards, which mandate implementation of renewable energy by state. Cost reduction is further taking place globally due to technological advances and economies of scale, which serves as another key driver for development. Of course, challenges are still present, particularly due to a plentiful and inexpensive domestic fossil fuel supply, uneven application of regulation and incentives state-by-state, and the uncertainty of continued political support. Even so, a progressive lowering of traditional barriers is leading to the potential for widespread deployment of renewables across the American landscape. (author)

  12. Optimal Hybrid Renewable Power System for an Emerging Island of South Korea: The Case of Yeongjong Island

    Directory of Open Access Journals (Sweden)

    Seoin Baek

    2015-10-01

    Full Text Available South Korea, which has led in “green growth” since 2012, is now focusing on investigating new-growth engine industries such as the gaming industry and mega-resort development. Yeongjong Island is the most representative and promising location for nurturing the gaming industry, which has already generated more than 20 billion USD. However, the construction of mega resort clusters generates critical energy issues. Despite this potential problem, local governments and South Korea’s central government have not yet established a sustainable energy blueprint plan. Therefore, the objective of our research is to analyze and suggest an optimal hybrid renewable power system for Yeongjong Island by using empirical data (load data, climate data, equipment data, and economic variables. The results of the study academically show 100% of electricity in Yeongjong Island with renewable energy-oriented hybrid system technologically, economically, and socially feasible for the following reasons: First, the island’s renewable energy station has a lower cost and a shorter construction period than other energy stations. Second, the island’s renewable energy station produces no carbon dioxide and has no risk of other environmental pollution that may encounter resistance from local residents.

  13. Development forecast of renewable energy power generation in China and its influence on the GHG control strategy of the country

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong; Xu, Gang; Tian, Longhu; Huang, Qili [National Power Generation Engineering Research Center, National Engineering Laboratory for Biomass Power Generation Equipment, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206 (China); Cai, Peng [Yantai Longyuan Power Technology Co., LTD, Beijing 100070 (China)

    2011-04-15

    CO{sub 2} emissions of the electricity supply sector in China account for about half of the total volume in the country. Thus, reducing CO{sub 2} emissions in China's electricity supply sector will contribute significantly to the efforts of greenhouse gas (GHG) control in the country and the rest of the world. This paper introduces the development status of renewable energy and other main CO{sub 2} mitigation options in power generation in China and makes a preliminary prediction of the development of renewable energy in the country for future decades. Besides, based on the situation in China, the paper undertakes a comprehensive analysis of CO{sub 2} mitigation costs, mitigation potential, and fossil energy conversation capacity of renewable energy and other mitigation options, through which the influence of renewable energy on the mitigation strategy of China is analyzed. (author)

  14. Promoting renewable energy technologies

    International Nuclear Information System (INIS)

    Grenaa Jensen, S.

    2004-06-01

    Technologies using renewable energy sources are receiving increasing interest from both public authorities and power producing companies, mainly because of the environmental advantages they procure in comparison with conventional energy sources. These technologies can be substitution for conventional energy sources and limit damage to the environment. Furthermore, several of the renewable energy technologies satisfy an increasing political goal of self-sufficiency within energy production. The subject of this thesis is promotion of renewable technologies. The primary goal is to increase understanding on how technological development takes place, and establish a theoretical framework that can assist in the construction of policy strategies including instruments for promotion of renewable energy technologies. Technological development is analysed by through quantitative and qualitative methods. (BA)

  15. Analysis on the accommodation of renewable energy in northeast China

    Science.gov (United States)

    Liu, Jun; Zhang, Jinfang; Tian, Feng; Mi, Zhe

    2017-01-01

    The accommodation and curtailment of renewable energy in northeast China have attracted much attention with the rapid growth of wind and solar power generation. Large amount of wind power has been curtailed or abandoned in northeast China due to several reasons, such as, the redundancy of power supplies, inadequate power demands, imperfect power structure with less flexibility and limited cross-regional transmission capacity. In this paper, we use multi-area production simulation to analyse the accommodation of renewable energy in northeast China by 2020. Furthermore, we suggest the measures that could be adopted in generation, grid and load side to reduce curtailment of renewables.

  16. Potential Coastal Pumped Hydroelectric Energy Storage Locations Identified using GIS-based Topographic Analysis

    Science.gov (United States)

    Parsons, R.; Barnhart, C. J.; Benson, S. M.

    2013-12-01

    Large-scale electrical energy storage could accommodate variable, weather dependent energy resources such as wind and solar. Pumped hydroelectric energy storage (PHS) and compressed energy storage area (CAES) have life cycle energy and financial costs that are an order of magnitude lower than conventional electrochemical storage technologies. However PHS and CAES storage technologies require specific geologic conditions. Conventional PHS requires an upper and lower reservoir separated by at least 100 m of head, but no more than 10 km in horizontal distance. Conventional PHS also impacts fresh water supplies, riparian ecosystems, and hydrologic environments. A PHS facility that uses the ocean as the lower reservoir benefits from a smaller footprint, minimal freshwater impact, and the potential to be located near off shore wind resources and population centers. Although technologically nascent, today one coastal PHS facility exists. The storage potential for coastal PHS is unknown. Can coastal PHS play a significant role in augmenting future power grids with a high faction of renewable energy supply? In this study we employ GIS-based topographic analysis to quantify the coastal PHS potential of several geographic locations, including California, Chile and Peru. We developed automated techniques that seek local topographic minima in 90 m spatial resolution shuttle radar topography mission (SRTM) digital elevation models (DEM) that satisfy the following criteria conducive to PHS: within 10 km from the sea; minimum elevation 150 m; maximum elevation 1000 m. Preliminary results suggest the global potential for coastal PHS could be very significant. For example, in northern Chile we have identified over 60 locations that satisfy the above criteria. Two of these locations could store over 10 million cubic meters of water or several GWh of energy. We plan to report a global database of candidate coastal PHS locations and to estimate their energy storage capacity.

  17. Are government policies effective in promoting deployment of renewable electricity resources?

    International Nuclear Information System (INIS)

    Shrimali, Gireesh; Kniefel, Joshua

    2011-01-01

    Using a panel data over 50 US states and years 1991-2007, this paper uses a state fixed-effects model with state-specific time-trends to estimate the effects of state policies on the penetration of various emerging renewable electricity sources, including wind, biomass, geothermal, and solar photovoltaic. Renewable portfolio standards with either capacity or sales requirements have a significant impact on the penetration of all types of renewables-however, this impact is variable depending on the type of renewable source: it is negative for combined renewables, wind, and biomass; and positive for geothermal and solar. Further, clean energy funds and required green power options mostly result in increasing the penetration of all types of renewables. On the other hand, voluntary renewable portfolio standards as well as state green power purchasing programs are found to be ineffective in increasing the penetration of any type of renewable source. Finally, economic variables, such as electricity price, natural gas price, and per capita GDP as well as structural variables, such as league of conservation voters rating and the share of coal-generated electricity are found to be generally insignificant, suggesting the crucial role of policy in increasing the penetration of renewables. - Highlights: → Ascertains the impact of state policies on increasing the renewable capacity. → Renewable portfolio requirements have an (sometimes unexpected) impact. → Clean energy funds and required green power options have a positive impact. → Voluntary renewable standards as well as state green power purchasing requirements are ineffective. → Economics as well as political and structural variables are ineffective.

  18. Utilisation of real-scale renewable energy test facility for validation of generic wind turbine and wind power plant controller models

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Gevorgian, Vahan; Wallen, Robb

    2016-01-01

    This article presents an example of application of a modern test facility conceived for experiments regarding the integration of renewable energy in the power system. The capabilities of the test facility are used to validate dynamic simulation models of wind power plants and their controllers....... The models are based on standard and generic blocks. The successful validation of events related to the control of active power (control phenomena in...

  19. A licence renewal approach for the NRU research reactor

    International Nuclear Information System (INIS)

    Natalizio, A.; Gumley, P.

    1991-01-01

    Licence Renewal is not only a subject that is being addressed for power reactors, but it is one of immediate interest for a number of research facilities, world-wide. In Canada, research reactors and power reactors are issued an operating licence for a limited term (typically two years), hence, licence renewal is done on a regular basis. Therefore, licence renewal in the Canadian context is different than in the context of this topical meeting. The NRU research reactor facility is being assessed for a licence renewal beyond its original design life. This paper describes the licence renewal approach, the assessments being performed to establish the condition of the facility, and the Safety Assessment Basis which defines the requirements for licence renewal. The current status of the assessments is also described. (author)

  20. Advanced DC/AC inverters applications in renewable energy

    CERN Document Server

    Luo, Fang Lin

    2013-01-01

    DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,

  1. Design for Reliability in Renewable Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Zhou, Dao; Sangwongwanich, Ariya

    2017-01-01

    Power electronics are widely used in renewable energy systems to achieve lower cost of energy, higher efficiency and high power density. At the same time, the high reliability of the power electronics products is demanded, in order to reduce the failure rates and ensure cost-effective operation...... of the renewable energy systems. This paper thus describes the basic concepts used in reliability engineering, and presents the status and future trends of Design for Reliability (DfR) in power electronics, which is currently undergoing a paradigm shift to a physics-of-failure approach. Two case studies of a 2 MW...

  2. Unified System-Level Modeling of Intermittent Renewable Energy Sources and Energy Storage for Power System Operation

    DEFF Research Database (Denmark)

    Heussen, Kai; Koch, Stephan; Ulbig, Andreas

    2011-01-01

    The system-level consideration of inter- mittent renewable energy sources and small-scale en- ergy storage in power systems remains a challenge as either type is incompatible with traditional operation concepts. Non-controllability and energy-constraints are still considered contingent cases...... in market-based operation. The design of operation strategies for up to 100 % renewable energy systems requires an explicit consideration of non-dispatchable generation and stor- age capacities, as well as the evaluation of operational performance in terms of energy eciency, reliability, environmental...... impact and cost. By abstracting from technology-dependent and physical unit properties, the modeling framework presented and extended in this pa- per allows the modeling of a technologically diverse unit portfolio with a unied approach, whilst establishing the feasibility of energy-storage consideration...

  3. Renewable energy supply for electric vehicle operations in California

    OpenAIRE

    Papavasiliou, Anthony; Oren, Shmuel S.; Sidhy, Ikhlaq; Kaminsky, Phil; 32nd IAEE International Conference

    2009-01-01

    Due to technological progress, policy thrust and economic circumstances, the large scale integration of renewable energy sources such as wind and solar power is becoming a reality in California, however the variable and unpredictable supply of these renewable resources poses a significant obstacle to their integration. At the same time we are witnessing a strong thrust towards the large scale deployment of electric vehicles which can ideally complement renewable power supply by acting as stor...

  4. Renewable energies in Franche-Comte 2008 - 2010 - 2012 - 2014

    International Nuclear Information System (INIS)

    2015-12-01

    Illustrated by maps and tables, this publication proposes an overview of the evolution of installed power and production of renewable electric power (by hydroelectric, solar photovoltaic, and wind energy), of renewable electricity and heat (by wood-energy, biogas, and recovery energy), of renewable heat (by solar thermal energy, very low energy geothermal energy and heat pumps, and wood-energy). It also briefly indicates the situation of biogas, agri-fuel and bio-fuel production

  5. Solar Power Satellites: Reconsideration as Renewable Energy Source Based on Novel Approaches

    Science.gov (United States)

    Ellery, Alex

    2017-04-01

    Solar power satellites (SPS) are a solar energy generation mechanism that captures solar energy in space and converts this energy into microwave for transmission to Earth-based rectenna arrays. They offer a constant, high integrated energy density of 200 W/m2 compared to <10 W/m2 for other renewable energy sources. Despite this promise as a clean energy source, SPS have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current 20,000/kg to <200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to 2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many including the provision of stable baseload power. Here, I present a novel approach to reduce the specific cost of solar power satellites to 1/kg by leveraging two enabling technologies - in-situ resource utilization of lunar material and 3D printing of this material. Specifically, we demonstrate that electric motors may be constructed from lunar material through 3D printing representing a major step towards the development of self-replicating machines. Such machines have the capacity to build solar power satellites on the Moon, thereby bypassing the launch cost problem. The productive capacity of self-replicating machines favours the adoption of large constellations of small solar power satellites. This opens up additional clean energy options for combating climate change by meeting the demands for future global energy.

  6. Gains from an integrated market for tradable renewable energy credits

    International Nuclear Information System (INIS)

    Mozumder, Pallab; Marathe, Achla

    2004-01-01

    Decoupling the environmental attributes of renewable energy (RE) generation from the physical unit of energy is an innovative mechanism for marketing green or renewable power. The introduction of 'Tradable Renewable Energy Credits' (TRECs) allows the green power attributes of energy to be sold or traded separately from the physical unit of energy. Since the green power certificate system removes potential locational and physical bottlenecks, both suppliers and consumers gain flexibility in the marketplace. The TREC is also an efficient tool to meet 'Renewable Portfolio Standard' (RPS) required by different states in the US. This paper discusses the RPS requirements for different states and examines the implications of an integrated TREC market. It offers a competitive setting to the consumers to pay for renewable energy and a cost effective tool to support renewable energy generation [Grace and Wiser, 2002]. This paper also highlights some practical difficulties that should be addressed in order to establish an efficient integrated TREC market

  7. U.S. Laws and Regulations for Renewable Energy Grid Interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Mackay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Geller, Nina [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Rapidly declining costs of wind and solar energy technologies, increasing concerns about the environmental and climate change impacts of fossil fuels, and sustained investment in renewable energy projects all point to a not-so-distant future in which renewable energy plays a pivotal role in the electric power system of the 21st century. In light of public pressures and market factors that hasten the transition towards a low-carbon system, power system planners and regulators are preparing to integrate higher levels of variable renewable generation into the grid. Updating the regulations that govern generator interconnections and operations is crucial to ensure system reliability while creating an enabling environment for renewable energy development. This report presents a chronological review of energy laws and regulations concerning grid interconnection procedures in the United States, highlighting the consequences of policies for renewable energy interconnections. Where appropriate, this report places interconnection policies and their impacts on renewable energy within the broader context of power market reform.

  8. Micro combined heat and power operating on renewable energy for residential building

    International Nuclear Information System (INIS)

    Aoun, Bernard

    2008-01-01

    The building sector consumes more than 43% of the total national energy consumption in France leading to more than 25% of CO 2 emissions associated to this energy consumption. A large number of options exist to limit CO 2 emissions and to improve the performance of buildings. One of these options is developed in this thesis, the use of renewable energies (solar and biomass) in combined production of heat and power. Conventional systems of combined heat and power production are briefly analyzed. The major part of this work has been focused on the development of a micro-CHP system based on an organic Rankine cycle operating on renewable energies intermittent and non-intermittent (solar and wood). The working fluids have been analyzed to allow reaching high thermodynamic performance. The different promising technologies, for each components of the system are identified, depending on the working fluid. A special test bench has been designed and realized to test and characterize an oil-free vapor scroll expander suitable for our application. The different components have been sized using computerized tools developed for the modeling of the Organic Rankine cycle. A dynamic simulation tool has been developed to simulate the annual performance of the micro-CHP system operating under different climate conditions and thermal loads. Results show that the micro-CHP system could save more than 40% of the primary energy consumption and up to 60% of CO 2 emissions. The Levelized electricity cost has been calculated using economic analysis; results show that the electricity cost (50 c-euros/kWhel) is still high compared to other technologies. (author)

  9. What's happening in 'renewable energy developed country: Germany'. Next step our country should learn

    International Nuclear Information System (INIS)

    Kitamura, Kazuya

    2012-01-01

    What's the next step our country should take? Japan could learn a lot of things such as success or failure examples from renewable energy developed country: Germany. This article reviewed present state of Feed-In Tariffs and renewable energy power in Germany. Share of renewable energy power amounted to 20% including 7.6% of wind power and 6.1% of biomass in 2011. Such trend caused increase of power cost, restructure of power system such as new installation of power transmission against north coast offshore wind power plant, and development of power storage system such as hydrogen production or pumped storage power plant. Efficient introduction of renewable energy should be planned in Japan based on appropriate share target of renewable energy share. As for nuclear power phaseout, Japan should learn German's experiences on decommissioning and decontamination of nuclear power plants, and policies of intermediate storage and final disposal of high-level radioactive wastes, which needed a long time and a great cost. (T. Tanaka)

  10. Promotion of renewable energy in some MENA region countries

    Science.gov (United States)

    Abdeladim, K.; Bouchakour, S.; Arab, A. Hadj; Ould Amrouche, S.; Yassaa, N.

    2018-05-01

    In recent years Middle East and North African (MENA) countries, are showing efforts about the integration of renewable electricity into their power markets. Indeed, installations were already achieved and renewable energy programs were launched. The Algerian program remains one of the most ambitious with its installation capacity up to 22GW of power generating to be installed by 2030. More than 60 % of the total capacity is planned to be solar photovoltaic (PV). Like Algeria, Morocco has integrated development project with a target to develop by 2020 a 2000 MW capacity of electricity production from solar energy. The Tunisian government has launched its first phase of the renewable power generation program, with an objective to install 1,000 MW of renewable power capacity over the 2017-2020 periods, where 650 MW of the total capacity is planned to be solar and 350 MW wind. One of the leading Arab country in wind energy, these recent years is Egypt, with its more than 700 megawatt of operational power generation plants and has launched significant projects development in solar energy. Regarding Jordan, the government has taken different steps in this field of energy with a Strategy plan 2007-2020, by implementing a large scale of projects on renewable energy sources, with an objective to cover 10% of the country’s energy supply, from renewable sources by the year 2020. Concerning Lebanon, the country is looking to attain an integration of 12 % by 2020.

  11. Addressing Palm Biodiesel as Renewable Fuel for the Indonesian Power Generation Sector: Java-Madura-Bali System

    Directory of Open Access Journals (Sweden)

    Natarianto Indrawan

    2011-11-01

    Full Text Available Energy security defined as how to equitably provide available, affordable, reliable efficient, environmentally friendly, proactively governed and socially acceptable energy services to end user. It has in recent years taken attention of policymakers in different parts of the world. Formulating policy to improve energy security is mandatory, not only because of depleting fossil resource, but also implementing diversity of energy source since utilization abundant renewable energy resources can increase the security of energy supply. One of the abundant renewable energy resources in Indonesia is palm oil. This study analyses the utilization of palm biodiesel for Indonesian power generation sector in the Java-Madura-Bali (JAMALI system. Two scenarios were created by projecting the demand and environmental impact as well as GHG emissions reduction over the next 25 years. The first scenario subjects on current energy policy, while the second scenario is to substitute of fossil fuel which is still used in the JAMALI power generation system. Effect of palm biodiesel on emission of Carbon Dioxide, Carbon Monoxide, Sulfur Dioxide, Nitrogen Oxides, Particulate Matter, and Volatile Organic Compounds were estimated for each scenario. An externality analysis to complete the environmental analysis was conducted and resource analysis of palm oil plantation based biodiesel was also estimated. Finally, the economics feasibility of palm biodiesel in the power generation sector was analyzed.

  12. The Integration of Renewable Energy Sources into Electric Power Distribution Systems, Vol. II Utility Case Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Zaininger, H.W.

    1994-01-01

    following utility- and site-specific conditions that may affect the economic viability of distributed renewable energy sources were considered: distribution system characteristics, and design standards, and voltage levels; load density, reliability, and power quality; solar insolation and wind resource levels; utility generation characteristics and load profiles; and investor-owned and publicly owned utilities, size, and financial assumptions.

  13. Renewable energies. Italy is mobilizing

    International Nuclear Information System (INIS)

    Marante, W.

    2005-01-01

    About 3 quarter of the Italian electric power comes from fossil fuel power plants. The rest is generated from hydropower, few comes from biomass and wind energy and a very few from geothermal energy (2% of the national production). However, the situation is changing and geothermal energy, with only 5 TWh, makes Italy the European leader in this domain and the world number 4 behind USA, Philippines and Mexico. The renewable sources represent 18.5% of the total Italian energy production. During the last five years, the renewable energy sources have developed rapidly: +80% per year for the wind energy, +32% per year for biomass and about +3% per year for geothermal energy. Moreover, the Italian government is implementing incentives for the development of renewable energy sources. This article gives an overview of the situation. (J.S.)

  14. A methodology to analize the safety of a coastal nuclear power plant against the Typhoon external flooding risks

    International Nuclear Information System (INIS)

    Chen Tian; He Mi; Chen Guofei; Joly, Antoine; Pan Rong; Ji Ping

    2015-01-01

    For the protection of coastal Nuclear Power Plant (NPP) against the external flooding hazard, the risks caused by natural events have to be taken into account. In this article, a methodology is proposed to analyze the risk of the typical natural event in China (Typhoon). It includes the simulation of the storm surge and the strong waves due to its passage in Chinese coastal zones and the quantification of the sequential overtopping flow rate. The simulation is carried out by coupling 2 modules of the hydraulic modeling system TELEMAC-MASCARET from EDF, TELEMAC2D (Shallow water module) and TOMAWAC (spectral wave module). As an open-source modeling system, this methodology could still be enriched by other phenomena in the near future to ameliorate its performance in safety analysis of the coastal NPPs in China. (author)

  15. Renewable Energy Policy Fact sheet - Croatia

    International Nuclear Information System (INIS)

    2017-07-01

    The EurObserv'ER policy profiles give a snapshot of the renewable energy policy in the EU Member States. Electricity from renewable sources is promoted through a premium tariff (and a guaranteed feed-in tariff for installations of less than 30 kW), allocated through tenders. Soft loans and subsidies for renewable energy projects are also provided. Renewable energy sources for heating purposes only are not promoted through a national support scheme. A training programme for RES installers aims at promoting the development, installation and usage of power generating and heating installations based on renewables. The main promotion scheme in the field of renewable transport fuels is a bio-fuels quota scheme. Additionally, the state provides bio-fuels incentives taking the form of a tax credits mechanism

  16. Financing renewable energies. Windows for new opportunities

    International Nuclear Information System (INIS)

    Pontenagel, I.

    1999-01-01

    Renewable Energies are recognized as indispensable for a sustainable energy economy. Their progressive market introduction, however, depend very much on their economic competitiveness. A wide range of Renewable Energies are already cost competitive today. But still a shortage of information as well as mental and structural barriers are hindering their rapid market penetration. This volume publishes the results of two conferences, held by EUROSOLAR and dealing with the problems of Financing Renewable Energies. In five chapters - Banking Concepts for Financing Renewable Energies - Public Frameworks for Renewable Energy Market Introduction - Financing Renewable Energies in Developing Countries - Green Power - Market Structures and Players - Renewable Energy Financing Applications a variety of new concepts and fresh ideas are presented. (orig.)

  17. Renewable electricity in Sweden: an analysis of policy and regulations

    International Nuclear Information System (INIS)

    Wang Yan

    2006-01-01

    This study aims to analyse the developments in renewable energy policy making in Sweden. It assesses the energy policy context, changes in the choice of policy instruments, and provides explanations behind policy successes and failures. Swedish renewable energy policy has been developing in a context of uncertainty around nuclear issues. While there has been made a political decision to replace nuclear power with renewable s, there is a lack of consensus about the pace of phasing out nuclear power due to perceived negative impacts on industrial competitiveness. Such uncertainty had an effect in the formulation of renewable energy policy. Biomass and wind power are the main options for renewable electricity production. Throughout 1990s, the combined effect of different policy instruments has stimulated the growth of these two renewable sources. Yet, both biomass and wind power are still a minor contributor in the total electricity generation. Lack of strong government commitment due to uncertainty around nuclear issues is a crucial factor. Short-term subsidies have been preferred rather than open-ended subsidy mechanisms, causing intervals without subsidies and interruption to development. Other factors are such as lack of incentives from the major electricity companies and administrative obstacles. The taxation system has been successful in fostering an expansion of biomass for heating but hindered a similar development in the electricity sector. The quota system adopted in 2003 is expected to create high demand on biomass but does not favour wind power. The renewable energy aims are unlikely to be changed. Yet, the future development of renewable energy policies especially for high-cost technologies will again depend strongly on nuclear policies, which are still unstable and might affect the pace of renewable energy development

  18. Reunion island, laboratory of renewable energies

    International Nuclear Information System (INIS)

    Gateaud, P.

    2010-01-01

    Hydro-power, biomass fuel, solar photovoltaic and wind power, are the renewable energy sources that Reunion island (Indian Ocean, FR) is developing to manage the security of its electric power system. In 2009, power generation reached 2618 GWh and was ensured at 67% by imported fossil fuels (47% coal and 20% hydrocarbons) and at 33% by renewable energies (20% hydraulic, 20% bagasse and 2% solar, wind and biogas). Total production capacity of the island reaches 625 MW. The average power used is of about 330 MW. Private companies supply 60% of the production and the remaining 40% are supplied by EdF who owns about 330000 clients. The average consumption of a Reunion inhabitant is 1259 kWh per year (2330 kWh/y for a metropolitan French). (J.S.)

  19. Terrestrial Micro Renewable Energy Applications of Space Technology

    Science.gov (United States)

    Komerath, N. M.; Komerath, P. P.

    This paper explores the synergy between technologies intended for extraterrestrial in situ resource utilization and those for terrestrial mass-market micro renewable power generation systems. The case for a micro renewable energy architecture is presented. The obstacles hindering market success are summarized, along with opportunities from recent demonstrations suggesting that the public appetite for sophisticated technology worldwide may be underappreciated by technical researchers. Technical innovations from space research are summarized along with estimates of possible conversion efficiencies. It is argued that the cost-effectiveness of micro power generation must be viewed through the value of the first few watts of available power, rather than the marginal cost per kilowatt-hour of electric power from utility power grids. This leads to the finding that the actual target cost per unit power, and efficiency, are well within reach of space technology products. Hybrid systems integrating power extraction from multiple resources, and adaptable for multiple applications, can break through mass market price barriers. Recent work to develop learning resources and test beds as part of a Micro Renewable Energy Laboratory is summarized.

  20. Renewable resources - future possibilities

    International Nuclear Information System (INIS)

    Thomas, Martin H.

    1998-01-01

    The paper describes the Australian Cooperative Research Centre for Renewable Energy and Related Greenhouse Gas Abatement Technologies (ACRE), its technologies, commercial relationships and markets. The relevance of ACRE to developing country communities which lack reliable, adequate power supplies, is discussed. The opportunities for mutual collaboration between Australia and the developing countries in the application of renewable energy have never been stronger. Renewable energy promises real advantages to those who deploy it wisely, as well as significant job creation. Education at all level together with operational training, public awareness of what is possible and increased system reliability, are also vital ingredients for acceptance of these new technologies. They underpin successful commercialisation. The author concludes with the hope for a united international cooperative approach to the development of the renewable energy industry. (author)

  1. Renewable energy in Taiwan

    International Nuclear Information System (INIS)

    Chen, Falin; Lu, Shyi-Min; Wang, Eric; Tseng, Kuo-Tung

    2010-01-01

    With limited indigenous conventional energy resources, Taiwan imports over 99% of its energy supply from foreign countries, mostly from the Middle East. Developing independent renewable energy resources is thus of priority concern for the Taiwanese government. A medium subtropical island surrounded by the Pacific Ocean, Taiwan has enormous potential to develop various renewable energies, such as solar energy, biomass energy, wind power, geothermal energy, hydropower, etc. However, owing to the importance of conventional fossil energy in generating exceptionally cheap electricity, renewable energy has not yet fully developed in Taiwan, resulting from a lack of market competition. Consequently, numerous promotional and subsidy programs have recently been proclaimed by the Taiwanese government, focused on the development of various renewables. This study reviews the achievements, polices and future plans in this area. (author)

  2. Renewable energy in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Falin; Lu, Shyi-Min; Wang, Eric; Tseng, Kuo-Tung [Institute of Applied Mechanics, National Taiwan University, Taipei 10617 (China)

    2010-09-15

    With limited indigenous conventional energy resources, Taiwan imports over 99% of its energy supply from foreign countries, mostly from the Middle East. Developing independent renewable energy resources is thus of priority concern for the Taiwanese government. A medium subtropical island surrounded by the Pacific Ocean, Taiwan has enormous potential to develop various renewable energies, such as solar energy, biomass energy, wind power, geothermal energy, hydropower, etc. However, owing to the importance of conventional fossil energy in generating exceptionally cheap electricity, renewable energy has not yet fully developed in Taiwan, resulting from a lack of market competition. Consequently, numerous promotional and subsidy programs have recently been proclaimed by the Taiwanese government, focused on the development of various renewables. This study reviews the achievements, polices and future plans in this area. (author)

  3. Preliminary evaluation of the Section 1603 treasury grant program for renewable power projects in the United States

    International Nuclear Information System (INIS)

    Bolinger, Mark; Wiser, Ryan; Darghouth, Naim

    2010-01-01

    This article evaluates the first year of the Section 1603 Treasury cash grant program, which enables renewable power projects in the US to elect cash grants in lieu of the federal tax credits that are otherwise available. To date, the program has been heavily subscribed, particularly by wind power projects, which had received 86% of the nearly $2.6 billion in grants that had been disbursed as of March 1, 2010. As of that date, 6.2 GW of the 10 GW of new wind capacity installed in the US in 2009 had applied for grants in lieu of production tax credits. Roughly 2.4 GW of this wind capacity may not have otherwise been built in 2009 in the absence of the grant program; this 2.4 GW may have supported approximately 51,600 short-term full-time-equivalent (FTE) gross job-years in the US during the construction phase of these wind projects, and 3860 long-term FTE gross jobs during the operational phase. The program's popularity stems from the significant economic value that it provides to renewable power projects, relative to the otherwise available tax credits. Although grants reward investment rather than efficient performance, this evaluation finds no evidence at this time of either widespread 'gold-plating' or performance problems. (author)

  4. Preliminary Evaluation of the Section 1603 Treasury Grant Program for Renewable Power Projects in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan; Darghouth, Naim

    2010-05-05

    This article evaluates the first year of the Section 1603 Treasury cash grant program, which enables renewable power projects in the U.S. to elect cash grants in lieu of the federal tax credits that are otherwise available. To date, the program has been heavily subscribed, particularly by wind power projects, which had received 86% of the nearly $2.6 billion in grants that had been disbursed as of March 1, 2010. As of that date, 6.2 GW of the 10 GW of new wind capacity installed in the U.S. in 2009 had applied for grants in lieu of production tax credits. Roughly 2.4 GW of this wind capacity may not have otherwise been built in 2009 absent the grant program; this 2.4 GW may have supported approximately 51,600 short-term full-time-equivalent (FTE) gross job-years in the U.S. during the construction phase of these wind projects, and 3,860 longterm FTE gross jobs during the operational phase. The program’s popularity stems from the significant economic value that it provides to renewable power projects, relative to the otherwise available tax credits. Although grants reward investment rather than efficient performance, this evaluation finds no evidence at this time of either widespread “gold-plating” or performance problems.

  5. Theoretical potential and utilization of renewable energy in Afghanistan

    Directory of Open Access Journals (Sweden)

    Gul Ahmad Ludin

    2016-12-01

    Full Text Available Nowadays, renewable energy is gaining more attention than other resources for electricity generation in the world. For Afghanistan that has limited domestic production of electric power and is more dependent on the unstable imported power from neighboring countries which pave the way to raise the cost of energy and increased different technical and economic problems. The employment of renewable energy would not only contribute to the independence of energy supply but also can achieve the socio-economic benefits for the country which is trying to rebuild its energy sector with a focus on sustainable energy for its population. From a theoretical point of view, there is a considerable potential of renewable energies such as solar energy, wind power, hydropower, biomass and geothermal energy available in the country. However, despite the presence of widespread non-agricultural and non-residential lands, these resources have not been deployed efficiently. This paper assesses the theoretical potential of the aforementioned types of renewable energies in the country. The study indicates that deployment of renewable energies can not only supplement the power demand but also will create other opportunities and will enable a sustainable energy base in Afghanistan.

  6. Biofouling evaluation in the seawater cooling circuit of an operating coastal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, P.S.; Veeramani, P.; Ershath, M.I.M.; Venugopalan, V.P. [BARC Facilities, Water and Steam Chemistry Div., Kalpakkam, Tamil Nadu (India)

    2010-07-01

    Chlorination is the most commonly used method of biofouling control in cooling water systems of coastal power stations. In the present study, we report results of extensive sampling in different sections of the cooling water system of an operating power station undertaken during three consecutive maintenance shutdowns. The power plant employed continuous low level chlorination (0.2 ± 0.1 mg L{sup -1} TRO) with twice-a-week booster dosing (0.4 ± 0.1 mg L-1 TRO for 8 hours). In addition, the process seawater heat exchangers received supplementary dosing of bromide treatment (0.2 ± 0.1 mg L{sup -1} TRO for 1 hour in every 8 h shift). Biofouling samples were collected from the cooling water conduits, heat exchanger water boxes, pipelines, heated discharge conduits and outfall section during the annual maintenance shutdown of the plant in the years 2007, 2008 and 2009. Simultaneous monitoring of biofouling on test coupons in coastal waters enabled direct comparison of fouling situation on test panels and that in the cooling system. The data showed significant reduction in biofouling inside the cooling circuit as compared to the coastal waters. However, significant amount of fouling was still evident at several places, indicating inadequacy of the biocide treatment regime. The maximum load of 31.3 kg m{sup 2} y{sup -1} was observed in the conduits leading to the process seawater heat exchangers (PSW-HX) and the minimum of 1.3 kg m{sup 2} y{sup -1} was observed in the outfall section. Fouling loads of 12.2 - 14.7 kg m{sup 2} y{sup -1} were observed in the concrete conduits feeding the main condensers. Bromide treatment ahead of the PSW-HX could marginally reduce the fouling load in the downstream section of the dosing point; the HX inlets still showed good biofouling. Species diversity across the cooling water system showed the pre-condenser section to be dominated by green mussels (Perna viridis), pearl oysters (Pinctada sp.) and edible oysters (Crassostrea sp

  7. Biofouling evaluation in the seawater cooling circuit of an operating coastal power plant

    International Nuclear Information System (INIS)

    Murthy, P.S.; Veeramani, P.; Ershath, M.I.M.; Venugopalan, V.P.

    2010-01-01

    Chlorination is the most commonly used method of biofouling control in cooling water systems of coastal power stations. In the present study, we report results of extensive sampling in different sections of the cooling water system of an operating power station undertaken during three consecutive maintenance shutdowns. The power plant employed continuous low level chlorination (0.2 ± 0.1 mg L -1 TRO) with twice-a-week booster dosing (0.4 ± 0.1 mg L-1 TRO for 8 hours). In addition, the process seawater heat exchangers received supplementary dosing of bromide treatment (0.2 ± 0.1 mg L -1 TRO for 1 hour in every 8 h shift). Biofouling samples were collected from the cooling water conduits, heat exchanger water boxes, pipelines, heated discharge conduits and outfall section during the annual maintenance shutdown of the plant in the years 2007, 2008 and 2009. Simultaneous monitoring of biofouling on test coupons in coastal waters enabled direct comparison of fouling situation on test panels and that in the cooling system. The data showed significant reduction in biofouling inside the cooling circuit as compared to the coastal waters. However, significant amount of fouling was still evident at several places, indicating inadequacy of the biocide treatment regime. The maximum load of 31.3 kg m 2 y -1 was observed in the conduits leading to the process seawater heat exchangers (PSW-HX) and the minimum of 1.3 kg m 2 y -1 was observed in the outfall section. Fouling loads of 12.2 - 14.7 kg m 2 y -1 were observed in the concrete conduits feeding the main condensers. Bromide treatment ahead of the PSW-HX could marginally reduce the fouling load in the downstream section of the dosing point; the HX inlets still showed good biofouling. Species diversity across the cooling water system showed the pre-condenser section to be dominated by green mussels (Perna viridis), pearl oysters (Pinctada sp.) and edible oysters (Crassostrea sp.), whereas the post-condenser section and heat

  8. Wind energy renewable energy and the environment

    CERN Document Server

    Nelson, Vaughn

    2013-01-01

    As the demand for energy increases, and fossil fuels continue to decrease, Wind Energy: Renewable Energy and the Environment, Second Edition considers the viability of wind as an alternative renewable energy source. This book examines the wind industry from its start in the 1970s until now, and introduces all aspects of wind energy. The phenomenal growth of wind power for utilities is covered along with applications such as wind-diesel, village power, telecommunications, and street lighting.. It covers the characteristics of wind, such as shear, power potential, turbulence, wind resource, wind

  9. Potential of renewable and alternative energy sources

    Science.gov (United States)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  10. Study on reasonable curtailment rate of large scale renewable energy

    Science.gov (United States)

    Li, Nan; Yuan, Bo; Zhang, Fuqiang

    2018-02-01

    Energy curtailment rate of renewable energy generation is an important indicator to measure renewable energy consumption, it is also an important parameters to determine the other power sources and grids arrangement in the planning stage. In general, to consume the spike power of the renewable energy which is just a small proportion, it is necessary to dispatch a large number of peaking resources, which will reduce the safety and stability of the system. In planning aspect, if it is allowed to give up a certain amount of renewable energy, overall peaking demand of the system will be reduced, the peak power supply construction can be put off to avoid the expensive cost of marginal absorption. In this paper, we introduce the reasonable energy curtailment rate into the power system planning, and use the GESP power planning software, conclude that the reasonable energy curtailment rate of the regional grids in China is 3% -10% in 2020.

  11. Financing renewable energy: Obstacles and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.H.

    1994-06-01

    The majority of renewable energy technology projects now being developed use long term project financing to raise capital. The financial community scrutinizes renewables more closely than some conventionally fueled electric generation facilities because it perceives renewables as risky and expensive. Renewables pay for this perceived risk through higher interest charges and other more restrictive loan covenants. Risks that are not eliminated in the power sales agreement or through some other means generally result in higher project costs during financing. In part, this situation is a product of the private placement market and project finance process in which renewable energy facilities must function. The project finance process attracts banks and institutional lenders as well as equity investors (often pension funds) who do not want to place their capital at great risk. Energy project finance exists on the basis of a secure revenue stream and a thorough understanding of electric generation technology. Renewables, like all energy projects, operating in uncertain regulatory environments are often difficult to finance. In the uncertain regulatory environment in which renewables now operate, investors and lenders are nervous about challenges to existing contracts between independent power producers and utilities. Challenges to existing contracts could foretell challenges to contracts in the future. Investors and lenders now look to state regulatory environments as an indicator of project risk. Renewable energy technology evolves quickly. Yet, often the information about technological evolution is not available to those who invest in the energy projects. Or, those who have invested in new renewable energy technology in the past have lost money and are nervous about doing so in the future - even though technology may have improved. Inadequate or unfavorable information is a barrier to the development of renewables.

  12. RENEWABLE ENERGY IN UKRAINE: TOWARDS NATIONAL ECO ...

    African Journals Online (AJOL)

    RAYAN_

    on the renewable energy sources, including solar, wind, hydro, biomass and geothermal. It is emphasized that ... structures. Keywords: renewable ..... has three wind power plants with the capacity for 2; 2,5; and 3 MW, respectively. Its special ...

  13. Management of moderate wind energy coastal resources

    International Nuclear Information System (INIS)

    Karamanis, D.

    2011-01-01

    Research highlights: → Life cycle analysis reveals the viability of moderate wind fields utilization. → Wind turbine is the greenest electricity generator at a touristic site. → Wind parks should be collective applications of small hotel-apartments owners. -- Abstract: The feasibility of wind energy utilization at moderate wind fields was investigated for a typical touristic coastal site in Western Greece. Initially, the wind speed and direction as well as its availability, duration and diurnal variation were assessed. For an analysis period of eight years, the mean wind speed at ten meters was determined as 3.8 m s -1 with a small variation in monthly average wind speeds between 3.0 (January) and 4.4 m s -1 (October). The mean wind power density was less than 200 W m -2 at 10 m indicating the limiting suitability of the site for the usual renewable energy applications. However, life cycle analysis for wind turbine generators with lower cut-in, cut-out, and rated speeds revealed that the energy yield ratio can reach a value of six for a service life of 20 years while the energy pay-back period can be 3 years with 33 kt CO 2 -e of avoided greenhouse emissions. Therefore, the recent technological turbine improvements make wind power viable even at moderate wind fields. Moreover, the study of electricity supply of typical small hotel-apartments in the region of Western Greece indicated that the installation of 300 wind turbine generators in these moderate wind fields would cover the total consumption during the open touristic period with profits during the rest of the year. According to these results, wind turbine generators are the 'greenest' way of generating electricity in touristic coastal sites, even of moderate wind speeds.

  14. Promoting renewable energy technologies

    DEFF Research Database (Denmark)

    Olsen, O.J.; Skytte, K.

    2004-01-01

    % of its annual electricity production. In this paper, we present and discuss the Danish experience as a case of promoting renewable energy technologies. The development path of the two technologies has been very different. Wind power is considered an outright success with fast deployment to decreasing...... technology and its particular context, it is possible to formulate some general principles that can help to create an effective and efficient policy for promoting new renewable energy technologies....

  15. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  16. Effect of oil spills on coastal power plants, refineries, and desalination plants

    International Nuclear Information System (INIS)

    Kiefer, C.; Mussali, Y.

    1992-01-01

    Major oil spills such as those experienced in the Gulf War, in Alaska, and in the Gulf of Mexico have raised concern for the protection of coastal facilities which use seawater for cooling or process purposes such as power stations, refineries, and desalination plants. Because of the availability of large quantities of cooling water, many power stations and refineries are located along the coastline in the United States and throughout the world. In addition, many countries in the Middle East, the Caribbean, and other areas of the world depend on desalination plants located along the coast for the vital supply of drinking water. The objective of this paper is to determine the levels of oil contamination which will adversely affect plant performance or result in damage to specific plant equipment such as condensers, heat exchangers, pumps, screens, water treatment equipment, and other vital water handling mechanisms

  17. A methodology for analysis of impacts of grid integration of renewable energy

    International Nuclear Information System (INIS)

    George, Mel; Banerjee, Rangan

    2011-01-01

    Present electricity grids are predominantly thermal (coal, gas) and hydro based. Conventional power planning involves hydro-thermal scheduling and merit order dispatch. In the future, modern renewables (hydro, solar and biomass) are likely to have a significant share in the power sector. This paper presents a method to analyse the impacts of renewables in the electricity grid. A load duration curve based approach has been developed. Renewable energy sources have been treated as negative loads to obtain a modified load duration curve from which capacity savings in terms of base and peak load generation can be computed. The methodology is illustrated for solar, wind and biomass power for Tamil Nadu (a state in India). The trade-offs and interaction between renewable sources are analysed. The impacts on capacity savings by varying the wind regime have also been shown. Scenarios for 2021-22 have been constructed to illustrate the methodology proposed. This technique can be useful for power planners for an analysis of renewables in future electricity grids. - Research highlights: → A new method to analyse impacts of renewables in the electricity grid. → Effects of wind, solar PV and biomass power on load duration curve and capacity savings are shown. → Illustration of intermittent renewables and their interplay for sites in India and the UK. → Future scenarios constructed for generation expansion planning with higher levels of renewable.

  18. Impact of Renewable Energy Forecast Imperfections on Market-Clearing Outcomes

    DEFF Research Database (Denmark)

    Ordoudis, Christos; Pinson, Pierre

    2016-01-01

    The increased integration of renewable energy sources, in particular wind and solar power, calls for changes in power system operation. Current market designs that are only efficient to accommodate limited uncertainty are highly challenged by the partly predictable renewable energy generation...

  19. Renewable Electricity Futures Study Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schneider, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-12-01

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible and that further work is warranted to investigate this clean generation pathway.

  20. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system

    OpenAIRE

    Richards, B.S.; Capão, D.P.S.; Schäfer, Andrea

    2008-01-01

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration-nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized u...