WorldWideScience

Sample records for renal phosphate transport

  1. A new human NHERF1 mutation decreases renal phosphate transporter NPT2a expression by a PTH-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Marie Courbebaisse

    Full Text Available BACKGROUND: The sodium-hydrogen exchanger regulatory factor 1 (NHERF1 binds to the main renal phosphate transporter NPT2a and to the parathyroid hormone (PTH receptor. We have recently identified mutations in NHERF1 that decrease renal phosphate reabsorption by increasing PTH-induced cAMP production in the renal proximal tubule. METHODS: We compared relevant parameters of phosphate homeostasis in a patient with a previously undescribed mutation in NHERF1 and in control subjects. We expressed the mutant NHERF1 protein in Xenopus Oocytes and in cultured cells to study its effects on phosphate transport and PTH-induced cAMP production. RESULTS: We identified in a patient with inappropriate renal phosphate reabsorption a previously unidentified mutation (E68A located in the PDZ1 domain of NHERF1.We report the consequences of this mutation on NHERF1 function. E68A mutation did not modify cAMP production in the patient. PTH-induced cAMP synthesis and PKC activity were not altered by E68A mutation in renal cells in culture. In contrast to wild-type NHERF1, expression of the E68A mutant in Xenopus oocytes and in human cells failed to increase phosphate transport. Pull down experiments showed that E68A mutant did not interact with NPT2a, which robustly interacted with wild type NHERF1 and previously identified mutants. Biotinylation studies revealed that E68A mutant was unable to increase cell surface expression of NPT2a. CONCLUSIONS: Our results indicate that the PDZ1 domain is critical for NHERF1-NPT2a interaction in humans and for the control of NPT2a expression at the plasma membrane. Thus we have identified a new mechanism of renal phosphate loss and shown that different mutations in NHERF1 can alter renal phosphate reabsorption via distinct mechanisms.

  2. Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure.

    Directory of Open Access Journals (Sweden)

    Wilco P Pulskens

    Full Text Available Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD, yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+ and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+ excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5, calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b, whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a and type 3 (PIT2 were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.

  3. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    Science.gov (United States)

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  4. Human Sodium Phosphate Transporter 4 (hNPT4/SLC17A3) as a Common Renal Secretory Pathway for Drugs and Urate*

    Science.gov (United States)

    Jutabha, Promsuk; Anzai, Naohiko; Kitamura, Kenichiro; Taniguchi, Atsuo; Kaneko, Shuji; Yan, Kunimasa; Yamada, Hideomi; Shimada, Hidetaka; Kimura, Toru; Katada, Tomohisa; Fukutomi, Toshiyuki; Tomita, Kimio; Urano, Wako; Yamanaka, Hisashi; Seki, George; Fujita, Toshiro; Moriyama, Yoshinori; Yamada, Akira; Uchida, Shunya; Wempe, Michael F.; Endou, Hitoshi; Sakurai, Hiroyuki

    2010-01-01

    The evolutionary loss of hepatic urate oxidase (uricase) has resulted in humans with elevated serum uric acid (urate). Uricase loss may have been beneficial to early primate survival. However, an elevated serum urate has predisposed man to hyperuricemia, a metabolic disturbance leading to gout, hypertension, and various cardiovascular diseases. Human serum urate levels are largely determined by urate reabsorption and secretion in the kidney. Renal urate reabsorption is controlled via two proximal tubular urate transporters: apical URAT1 (SLC22A12) and basolateral URATv1/GLUT9 (SLC2A9). In contrast, the molecular mechanism(s) for renal urate secretion remain unknown. In this report, we demonstrate that an orphan transporter hNPT4 (human sodium phosphate transporter 4; SLC17A3) was a multispecific organic anion efflux transporter expressed in the kidneys and liver. hNPT4 was localized at the apical side of renal tubules and functioned as a voltage-driven urate transporter. Furthermore, loop diuretics, such as furosemide and bumetanide, substantially interacted with hNPT4. Thus, this protein is likely to act as a common secretion route for both drugs and may play an important role in diuretics-induced hyperuricemia. The in vivo role of hNPT4 was suggested by two hyperuricemia patients with missense mutations in SLC17A3. These mutated versions of hNPT4 exhibited reduced urate efflux when they were expressed in Xenopus oocytes. Our findings will complete a model of urate secretion in the renal tubular cell, where intracellular urate taken up via OAT1 and/or OAT3 from the blood exits from the cell into the lumen via hNPT4. PMID:20810651

  5. Sphingosine-1-phosphate and renal vasoconstriction

    DEFF Research Database (Denmark)

    Jensen, Boye L

    2018-01-01

    ) and in conjunction with increased S1P release in pathophysiological situations like sepsis and ischemia-reperfusion incidents, this effect could be relevant in acute kidney injury with parallel decreases in renal blood flow and GFR. This article is protected by copyright. All rights reserved.......In the present issue of Acta Physiologica, Guan et al. in their article "Mechanisms of sphingosine-1-phosphate-mediated vasoconstriction of rat afferent arterioles" (1) address the signaling events associated with sphingosine-1-phosphate (S1P)-mediated renal afferent vasoconstriction and show in......, technically demanding, blood-perfused juxtamedullary nephron preparation that S1P signaling relies predominantly on transmembrane calcium influx from the extracellular fluid through L-type calcium channels with contribution from oxidative stress metabolites(1) . So not only is new information on S1P signaling...

  6. Renal phosphate handling: Physiology

    Directory of Open Access Journals (Sweden)

    Narayan Prasad

    2013-01-01

    Full Text Available Phosphorus is a common anion. It plays an important role in energy generation. Renal phosphate handling is regulated by three organs parathyroid, kidney and bone through feedback loops. These counter regulatory loops also regulate intestinal absorption and thus maintain serum phosphorus concentration in physiologic range. The parathyroid hormone, vitamin D, Fibrogenic growth factor 23 (FGF23 and klotho coreceptor are the key regulators of phosphorus balance in body.

  7. Kidney injury after sodium phosphate solution beyond the acute renal failure.

    Science.gov (United States)

    Fernández-Juárez, Gema; Parejo, Leticia; Villacorta, Javier; Tato, Ana; Cazar, Ramiro; Guerrero, Carmen; Marin, Isabel Martinez; Ocaña, Javier; Mendez-Abreu, Angel; López, Katia; Gruss, Enrique; Gallego, Eduardo

    2016-01-01

    Screening colonoscopy with polipectomy reduces colonorectal cancer incidence and mortality. An adequate bowel cleansing is one of the keys to achieving best results with this technique. Oral sodium phosphate solution (OSP) had a widespread use in the 90s decade. Its efficacy was similar to polyethylene glycol (PEG) solution, but with less cost and convenient administration. Series of patients with acute renal failure due to OSP use have been reported. However, large cohorts of patients found no difference in the incidence of renal damage between these two solutions. From 2006 to 2009 we identified twelve cases of phosphate nephropathy after colonoscopy prepared with OSP. All patients were followed up to six months. All patients had received just a single dose. We analyzed 12 cases with phosphate nephropathy; three patients debuted with AKI and nine patients had chronic renal injury. Four cases were confirmed with renal biopsy. One patient with AKI needed hemodialysis at diagnosis without subsequent recovery. Two patients (both with chronic damage) fully recovered their previous renal function. The remaining patients (nine) had an average loss of estimated glomerular filtration rate of 24ml/min/1.73m(2). The use of OSP can lead to both acute and chronic renal damage. However, chronic injury was the most common pattern. Both forms of presentation imply a significant and irreversible loss of renal function. Further studies analyzing renal damage secondary to bowel cleaning should consider these two different patterns of injury. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  8. Oral peptide specific egg antibody to intestinal sodium-dependent phosphate co-transporter-2b is effective at altering phosphate transport in vitro and in vivo.

    Science.gov (United States)

    Bobeck, Elizabeth A; Hellestad, Erica M; Sand, Jordan M; Piccione, Michelle L; Bishop, Jeff W; Helvig, Christian; Petkovich, Martin; Cook, Mark E

    2015-06-01

    Hyperimmunized hens are an effective means of generating large quantities of antigen specific egg antibodies that have use as oral supplements. In this study, we attempted to create a peptide specific antibody that produced outcomes similar to those of the human pharmaceutical, sevelamer HCl, used in the treatment of hyperphosphatemia (a sequela of chronic renal disease). Egg antibodies were generated against 8 different human intestinal sodium-dependent phosphate cotransporter 2b (NaPi2b) peptides, and hNaPi2b peptide egg antibodies were screened for their ability to inhibit phosphate transport in human intestinal Caco-2 cell line. Antibody produced against human peptide sequence TSPSLCWT (anti-h16) was specific for its peptide sequence, and significantly reduced phosphate transport in human Caco-2 cells to 25.3±11.5% of control nonspecific antibody, when compared to nicotinamide, a known inhibitor of phosphate transport (P≤0.05). Antibody was then produced against the mouse-specific peptide h16 counterpart (mouse sequence TSPSYCWT, anti-m16) for further analysis in a murine model. When anti-m16 was fed to mice (1% of diet as dried egg yolk powder), egg yolk immunoglobulin (IgY) was detected using immunohistochemical staining in mouse ileum, and egg anti-m16 IgY colocalized with a commercial goat anti-NaPi2b antibody. The effectiveness of anti-m16 egg antibody in reducing serum phosphate, when compared to sevelamer HCl, was determined in a mouse feeding study. Serum phosphate was reduced 18% (Pegg yolk powder) and 30% (Pegg immunoglobulin. The methods described and the findings reported show that oral egg antibodies are useful and easy to prepare reagents for the study and possible treatment of select diseases. © 2015 Poultry Science Association Inc.

  9. Down-Regulation of the Na+-Coupled Phosphate Transporter NaPi-IIa by AMP-Activated Protein Kinase

    Directory of Open Access Journals (Sweden)

    Miribane Dërmaku-Sopjani

    2013-11-01

    Full Text Available Background/Aims: The Na+-coupled phosphate transporter NaPi-IIa is the main carrier accomplishing renal tubular phosphate reabsorption. It is driven by the electrochemical Na+ gradient across the apical cell membrane, which is maintained by Na+ extrusion across the basolateral cell membrane through the Na+/K+ ATPase. The operation of NaPi-IIa thus requires energy in order to avoid cellular Na+ accumulation and K+ loss with eventual decrease of cell membrane potential, Cl- entry and cell swelling. Upon energy depletion, early inhibition of Na+-coupled transport processes may delay cell swelling and thus foster cell survival. Energy depletion is sensed by the AMP-activated protein kinase (AMPK, a serine/threonine kinase stimulating several cellular mechanisms increasing energy production and limiting energy utilization. The present study explored whether AMPK influences the activity of NAPi-IIa. Methods: cRNA encoding NAPi-IIa was injected into Xenopus oocytes with or without additional expression of wild-type AMPK (AMPKα1-HA+AMPKβ1-Flag+AMPKγ1-HA, of inactive AMPKαK45R (AMPKα1K45R+AMPKβ1-Flag+AMPKγ1-HA or of constitutively active AMPKγR70Q (AMPKα1-HA+AMPKβ1-Flag+AMPKγ1R70Q. NaPi-IIa activity was estimated from phosphate-induced current in dual electrode voltage clamp experiments. Results: In NaPi-IIa-expressing, but not in water-injected Xenopus oocytes, the addition of phosphate (1 mM to the extracellular bath solution generated a current (Ip, which was significantly decreased by coexpression of wild-type AMPK and of AMPKγR70Q but not of AMPKαK45R. The phosphate-induced current in NaPi-IIa- and AMPK-expressing Xenopus ooocytes was significantly increased by AMPK inhibitor Compound C (20 µM. Kinetic analysis revealed that AMPK significantly decreased the maximal transport rate. Conclusion: The AMP-activated protein kinase AMPK is a powerful regulator of NaPi-IIa and thus of renal tubular phosphate transport.

  10. Renal Ammonia Metabolism and Transport

    Science.gov (United States)

    Weiner, I. David; Verlander, Jill W.

    2015-01-01

    Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4+ and 2 HCO3− for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3−-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4+ trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4+-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K+, and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis. PMID:23720285

  11. X-linked lissencephaly with abnormal genitalia associated with renal phosphate wasting.

    Science.gov (United States)

    Hahn, A; Gross, C; Uyanik, G; Hehr, U; Hügens-Penzel, M; Alzen, G; Neubauer, B A

    2004-06-01

    X-linked lissencephaly with abnormal genitalia (XLAG) is a rare disorder caused by mutations in the aristaless-related homeobox (ARX) gene. We report on the clinical data of a boy with a 1-bp deletion (790 delC) resulting in a frame shift in the ARX gene and prolonged survival until age 18 months. Similar to other patients, the boy showed postnatal microcephaly, hypothalamic dysfunction, intractable neonatal seizures, and chronic diarrhoea. In addition, he suffered from exocrine pancreatic insufficiency and renal phosphate wasting became apparent from age 5 months, both of which have not been described previously in XLAG. This allows us to speculate that the phenotype of XLAG is more complex than hitherto known and may include renal phosphate wasting which might not have been observed in other patients due to early death.

  12. A familial disorder with low bone density and renal phosphate wasting.

    NARCIS (Netherlands)

    Grondel, I.M.; Deure, J. van der; Zanen, A.L.; Dogger, M.; Heuvel, L.P.W.J. van den

    2009-01-01

    Hereditary forms of renal phosphate wasting have been studied thoroughly in the past years. X-linked Hypophosphatemic rickets (XLH), autosomal dominant hypophosphatemic rickets/osteomalacia (ADHR) and autosomal recessive hypophosphatemic rickets (ARHR) are known genetic disorders in which a

  13. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting

    Science.gov (United States)

    Riminucci, Mara; Collins, Michael T.; Fedarko, Neal S.; Cherman, Natasha; Corsi, Alessandro; White, Kenneth E.; Waguespack, Steven; Gupta, Anurag; Hannon, Tamara; Econs, Michael J.; Bianco, Paolo; Gehron Robey, Pamela

    2003-01-01

    FGF-23, a novel member of the FGF family, is the product of the gene mutated in autosomal dominant hypophosphatemic rickets (ADHR). FGF-23 has been proposed as a circulating factor causing renal phosphate wasting not only in ADHR (as a result of inadequate degradation), but also in tumor-induced osteomalacia (as a result of excess synthesis by tumor cells). Renal phosphate wasting occurs in approximately 50% of patients with McCune-Albright syndrome (MAS) and fibrous dysplasia of bone (FD), which result from postzygotic mutations of the GNAS1 gene. We found that FGF-23 is produced by normal and FD osteoprogenitors and bone-forming cells in vivo and in vitro. In situ hybridization analysis of FGF-23 mRNA expression identified “fibrous” cells, osteogenic cells, and cells associated with microvascular walls as specific cellular sources of FGF-23 in FD. Serum levels of FGF-23 were increased in FD/MAS patients compared with normal age-matched controls and significantly higher in FD/MAS patients with renal phosphate wasting compared with those without, and correlated with disease burden bone turnover markers commonly used to assess disease activity. Production of FGF-23 by FD tissue may play an important role in the renal phosphate–wasting syndrome associated with FD/MAS. PMID:12952917

  14. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli

    NARCIS (Netherlands)

    van Veen, H.W; Abee, T.; Kortstee, G.J J; Konings, W.N; Zehnder, A.J B

    1994-01-01

    P-i transport via the phosphate inorganic transport system (Pit) of Escherichia coil was studied in natural and artificial membranes. P-i uptake via Pit is dependent on the presence of divalent cations, like Mg2+, Ca2+, Co2+, or Mn2+, which form a soluble, neutral metal phosphate (MeHPO(4)) complex.

  15. Indomethacin differentiates the renal effects of sphingosine-1-phosphate and sphingosylphosphorylcholine

    NARCIS (Netherlands)

    Czyborra, Claudia; Bischoff, Angela; Michel, Martin C.

    2006-01-01

    The sphingomyelin breakdown products sphingosine-1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) constrict intrarenal microvessels in vitro in a pertussis toxin (PTX) sensitive manner, and S1P also reduces renal blood flow in vivo. Nevertheless, both S1P and SPC have been reported to enhance

  16. Dual and Direction-Selective Mechanisms of Phosphate Transport by the Vesicular Glutamate Transporter

    Directory of Open Access Journals (Sweden)

    Julia Preobraschenski

    2018-04-01

    Full Text Available Summary: Vesicular glutamate transporters (VGLUTs fill synaptic vesicles with glutamate and are thus essential for glutamatergic neurotransmission. However, VGLUTs were originally discovered as members of a transporter subfamily specific for inorganic phosphate (Pi. It is still unclear how VGLUTs accommodate glutamate transport coupled to an electrochemical proton gradient ΔμH+ with inversely directed Pi transport coupled to the Na+ gradient and the membrane potential. Using both functional reconstitution and heterologous expression, we show that VGLUT transports glutamate and Pi using a single substrate binding site but different coupling to cation gradients. When facing the cytoplasm, both ions are transported into synaptic vesicles in a ΔμH+-dependent fashion, with glutamate preferred over Pi. When facing the extracellular space, Pi is transported in a Na+-coupled manner, with glutamate competing for binding but at lower affinity. We conclude that VGLUTs have dual functions in both vesicle transmitter loading and Pi homeostasis within glutamatergic neurons. : Preobraschenski et al. show that the vesicular glutamate transporter functions as a bi-directional phosphate transporter that is coupled with different cations in each direction and hence may play a key role in neuronal phosphate homeostasis. Keywords: VGLUT, SLC17 family, type I Na+-dependent inorganic phosphate transporter, ATPase, proteoliposomes, hybrid vesicles, anti-VGLUT1 nanobody

  17. Krogh’s principle or a multiple fish model approach to phosphate balance: is there a centrally regulated intestinal-skeletal-renal axis?

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Guerreiro

    2015-10-01

    Full Text Available Inorganic phosphate (Pi is a crucial ion for vertebrate life. In addition to many physiological roles it is, together with calcium, the major element forming the internal skeleton and Pi balance has been considered a secondary consequence of calciotropic endocrine factors. However, contrary to calcium which can be readily obtained from even Ca-poor environments, Pi is not available in water, and fish can only obtain it via the food. Intestinal absorption drives Pi into the blood stream, but a central part of Pi balance is renal excretion and conservation. Recently, several Pi specific regulatory factors have been brought to light, and we use fish models to investigate their role and the hypothesis of a centrally controlled intestinal-skeletal-renal Pi axis. Using tissues mounted in Ussing chambers under symmetrical and asymmetrical short-circuited conditions we measure unidirectional 33Pi fluxes and test PTHrP, but also STC and FGF23 as regulatory factors, as well as specific drugs to unveil the functional transporting mechanisms. Pi absorption is modified in starved and fed sea bass, an effect dependent on Pi availability in diet, which modifies gene expression of uptake mechanisms. Phosphate secretion across flounder primary renal cell cultures is increased by PTHrP, which reduces the expression of reabsorption mechanisms such as NaPiII and evokes an increase in GFR in cannulated fish, thus resulting in net Pi excretion. A similar effect occurs in the toadfish urinary bladder, which displays moderate Pi transport that is abolished by the drug ouabain and modified by endocrines. Finally we used the shark choroid plexus (CP to show active CSF-to-blood transport with biochemical properties consistent with PiT Na+-dependent transporters. RT-PCR revealed the PiT1/2, but no NaPiII gene expression and we localized PiT2 in CP apical membranes while PiT1 occurred in vascular endothelial cells. Shark CP expresses both PTHrP and its receptor. Could

  18. Role of Phosphate Transport System Component PstB1 in Phosphate Internalization by Nostoc punctiforme.

    Science.gov (United States)

    Hudek, L; Premachandra, D; Webster, W A J; Bräu, L

    2016-11-01

    In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB - ) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme IMPORTANCE: Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes the

  19. Role of NH3 and NH4+ transporters in renal acid-base transport.

    Science.gov (United States)

    Weiner, I David; Verlander, Jill W

    2011-01-01

    Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.

  20. Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions.

    Science.gov (United States)

    James, Antoni W; Nachiappan, Vasanthi

    2014-01-01

    In the current study, when phosphate transporters pho88 and pho86 were knocked out they resulted in significant accumulation (84% and 43%) of triacylglycerol (TAG) during phosphate starvation. However in the presence of phosphate, TAG accumulation was only around 45% in both pho88 and pho86 mutant cells. These observations were confirmed by radio-labeling, fluorescent microscope and RT-PCR studies. The TAG synthesizing genes encoding for acyltransferases namely LRO1 and DGA1 were up regulated. This is the first report for accumulation of TAG in pho88Δ and pho86Δ cells under phosphate starvation conditions. Copyright © 2013. Published by Elsevier Ltd.

  1. Extra-phosphate load from food additives in commonly eaten foods: a real and insidious danger for renal patients.

    Science.gov (United States)

    Benini, Omar; D'Alessandro, Claudia; Gianfaldoni, Daniela; Cupisti, Adamasco

    2011-07-01

    Restriction of dietary phosphorus is a major aspect of patient care in those with renal disease. Restriction of dietary phosphorus is necessary to control for phosphate balance during both conservative therapy and dialysis treatment. The extra amount of phosphorus which is consumed as a result of phosphate-containing food additives is a real challenge for patients with renal disease and for dieticians because it represents a "hidden" phosphate load. The objective of this study was to measure phosphorus content in foods, common protein sources in particular, and comprised both those which included a listing of phosphate additives and those which did not. Determinations of dry matter, nitrogen, total and soluble phosphate ions were carried out in 60 samples of foods, namely cooked ham, roast breast turkey, and roast breast chicken, of which, 30 were with declared phosphate additives and the other 30 similar items were without additives. Total phosphorus (290 ± 40 mg/100 g vs. 185 ± 23 mg/100 g, P additives than in foods without additives. No difference was detected between the 2 groups regarding dry matter (27.2 ± 2.0 g/100 g vs. 26.7 ± 1.9 g/100 g) or total nitrogen (3.15 ± 0.40 g/100 g vs. 3.19 ± 0.40 g/100 g). Consequently, phosphorus intake per gram of protein was much greater in the foods containing phosphorus additives (15.0 ± 3.1 mg/g vs. 9.3 ± 0.7 mg/g, P foods which contain phosphate additives have a phosphorus content nearly 70% higher than the samples which did not contain additives. This creates a special concern because this extra amount of phosphorus is almost completely absorbed by the intestinal tract. These hidden phosphates worsen phosphate balance control and increase the need for phosphate binders and related costs. Information and educational programs are essential to make patients with renal disease aware of the existence of foods with phosphate additives. Moreover, these facts highlight the need for national and international

  2. Transvascular lipoprotein transport in patients with chronic renal disease

    DEFF Research Database (Denmark)

    Jensen, Trine Krogsgaard; Nordestgaard, Børge Grønne; Feldt-Rasmussen, Bo

    2004-01-01

    BACKGROUND: While increased plasma cholesterol is a well-established cardiovascular risk factor in the general population, this is not so among patients with chronic renal disease. We hypothesized that the transvascular lipoprotein transport, in addition to the lipoprotein concentration in plasma......, determines the degree of atherosclerosis among patients with chronic renal disease. METHODS: We used an in vivo method for measurement of transvascular transport of low-density lipoprotein (LDL) in 21 patients with chronic renal disease and in 42 healthy control patients. Autologous 131-iodinated LDL...... was reinjected intravenously, and the 1-hour fractional escape rate was taken as index of transvascular transport. RESULTS: Transvascular LDL transport tended to be lower in patients with chronic renal disease than in healthy control patients [3.3 (95% CI 2.4-4.2) vs. 4.2 (3.7-4.2)%/hour; NS]. However...

  3. Luminal nucleotides are tonic inhibitors of renal tubular transport

    DEFF Research Database (Denmark)

    Leipziger, Jens Georg

    2011-01-01

    PURPOSE OF REVIEW: Extracellular ATP is an essential local signaling molecule in all organ systems. In the kidney, purinergic signaling is involved in an array of functions and this review highlights those of relevance for renal tubular transport. RECENT FINDINGS: Purinergic receptors are express...... discovered as an important signaling compartment in which local purinergic signaling determines an inhibitory tone for renal tubular transport. Blocking components of this system leads to tubular hyper-absorption, volume retention and elevated blood pressure.......PURPOSE OF REVIEW: Extracellular ATP is an essential local signaling molecule in all organ systems. In the kidney, purinergic signaling is involved in an array of functions and this review highlights those of relevance for renal tubular transport. RECENT FINDINGS: Purinergic receptors are expressed...... in all renal tubular segments and their stimulation generally leads to transport inhibition. Recent evidence has identified the tubular lumen as a restricted space for purinergic signaling. The concentrations of ATP in the luminal fluids are sufficiently high to inflict a tonic inhibition of renal...

  4. Comparison of radioisotope methods for the measurement of phosphate absorption in normal subjects and in patients with chronic renal failure

    International Nuclear Information System (INIS)

    Farrington, K.; Mohammed, M.N.; Newman, S.P.; Varghese, Z.; Moorhead, J.F.

    1981-01-01

    Intestinal phosphate absorption was measured in normal subjects, in patients with chronic renal failure, and in post-transplant patients, by a double isotope technique involving oral administration of 32 P and simultaneous intravenous injection of 33 P with subsequent deconvolution analysis. By this technique intestinal phosphate absorption has been shown to have two components: an initial rapid phase, which is completed by 3 h, and a slower more prolonged phase, which continues beyond 71/2 h. Phosphate malabsorption has been demonstrated in chronic renal failure and transplant patients, which is accounted for by impairment of the initial phase of absorption. Results obtained by deconvolution analysis have been compared with other estimates of phosphate absorption obtained from analysis of 32 P radioactivity curves alone. The fractional hourly rate of absorption and the plasma 32 P radioactivity at 60 min corrected for extracellular fluid volume provided the best approximations to the result obtained by deconvolution analysis, with respect to both the maximal rate of phosphate absorption and cumulative percentage phosphate absorption. (author)

  5. Paracellular transport and energy utilization in the renal tubule.

    Science.gov (United States)

    Yu, Alan S L

    2017-09-01

    Paracellular transport across the tight junction is a general mechanism for transepithelial transport of solutes in epithelia, including the renal tubule. However, why paracellular transport evolved, given the existence of a highly versatile system for transcellular transport, is unknown. Recent studies have identified the paracellular channel, claudin-2, that is responsible for paracellular reabsorption of sodium in the proximal renal tubule. Knockout of claudin-2 in mice impairs proximal sodium and fluid reabsorption but is compensated by upregulation of sodium reabsorption in the loop of Henle. This occurs at the expense of increased renal oxygen consumption, hypoxia of the outer medulla and increased susceptibility to ischemic kidney injury. Paracellular transport can be viewed as a mechanism to exploit the potential energy in existing electrochemical gradients to drive passive transepithelial transport without consuming additional energy. In this way, it enhances the efficiency of energy utilization by transporting epithelia.

  6. A phosphate transporter from the mycorrhizal fungus Glomus versiforme.

    Science.gov (United States)

    Harrison, M J; van Buuren, M L

    1995-12-07

    Vesicular-arbuscular (VA) mycorrhizal fungi form symbiotic associations with the roots of most terrestrial plants, including many agriculturally important crop species. The fungi colonize the cortex of the root to obtain carbon from their plant host, while assisting the plant with the uptake of phosphate and other mineral nutrients from the soil. This association is beneficial to the plant, because phosphate is essential for plant growth and development, especially during growth under nutrient-limiting conditions. Molecular genetic studies of these fungi and their interaction with plants have been limited owing to the obligate symbiotic nature of the VA fungi, so the molecular mechanisms underlying fungal-mediated uptake and translocation of phosphate from the soil to the plant remain unknown. Here we begin to investigate this process by identifying a complementary DNA that encodes a transmembrane phosphate transporter (GvPT) from Glomus versiforme, a VA mycorrhizal fungus. The function of the protein encoded by GvPT was confirmed by complementation of a yeast phosphate transport mutant. Expression of GvPT was localized to the external hyphae of G. versiforme during mycorrhizal associations, these being the initial site of phosphate uptake from the soil.

  7. Managing oral phosphate binder medication expenditures within the Medicare bundled end-stage renal disease prospective payment system: economic implications for large U.S. dialysis organizations.

    Science.gov (United States)

    Park, Haesuk; Rascati, Karen L; Keith, Michael S

    2015-06-01

    From January 2016, payment for oral-only renal medications (including phosphate binders and cinacalcet) was expected to be included in the new Medicare bundled end-stage renal disease (ESRD) prospective payment system (PPS). The implementation of the ESRD PPS has generated concern within the nephrology community because of the potential for inadequate funding and the impact on patient quality of care. To estimate the potential economic impact of the new Medicare bundled ESRD PPS reimbursement from the perspective of a large dialysis organization in the United States. We developed an interactive budget impact model to evaluate the potential economic implications of Medicare payment changes to large dialysis organizations treating patients with ESRD who are receiving phosphate binders. In this analysis, we focused on the budget impact of the intended 2016 integration of oral renal drugs, specifically oral phosphate binders, into the PPS. We also utilized the model to explore the budgetary impact of a variety of potential shifts in phosphate binder market shares under the bundled PPS from 2013 to 2016. The base model predicts that phosphate binder costs will increase to $34.48 per dialysis session in 2016, with estimated U.S. total costs for phosphate binders of over $682 million. Based on these estimates, a projected Medicare PPS $33.44 reimbursement rate for coverage of all oral-only renal medications (i.e., phosphate binders and cinacalcet) would be insufficient to cover these costs. A potential renal drugs and services budget shortfall for large dialysis organizations of almost $346 million was projected. Our findings suggest that large dialysis organizations will be challenged to manage phosphate binder expenditures within the planned Medicare bundled rate structure. As a result, large dialysis organizations may have to make treatment choices in light of potential inadequate funding, which could have important implications for the quality of care for patients

  8. Interactions of [14C]phosphonoformic acid with renal cortical brush-border membranes. Relationship to the Na+-phosphate co-transporter

    International Nuclear Information System (INIS)

    Szczepanska-Konkel, M.; Yusufi, A.N.; Dousa, T.P.

    1987-01-01

    Since phosphonoformic acid (PFA) acts as a specific competitive inhibitor of Na+-Pi co-transport across renal brush-border membrane (BBM), we employed the [ 14 C]PFA as a probe to determine the mechanism of its interaction with rat renal BBM. The binding of [ 14 C]PFA to BBM vesicles (BBMV), with Na+ present in extravesicular medium (Na+o), was time- and temperature-dependent. The replacement of Na+o with other monovalent cations reduced the PFA binding by -80%. Cl- was the most effective accompanying monovalent anion as NaCl for maximum PFA binding. The Na+o increased the apparent affinity of BBMV for [ 14 C]PFA binding, but it did not change the maximum binding capacity. The maximum [ 14 C]PFA binding was achieved at Na+o approximately equal to 50 mM. The extent of Na+-dependent [ 14 C]PFA binding correlated with percent inhibition by an equimolar dose of PFA of the dependent BBMV uptake of 32Pi. Intravesicular Na+ (Na+i) decreased [ 14 C]PFA binding, on BBMV, and this inhibition by Na+i was dependent on the presence of Na+o. The increase in Na+i, at constant [Na+]o, decreased the Vmax, but not the Km, for [ 14 C]PFA binding on BBMV. Bound [ 14 C]PFA was displaced from BBMV by phosphonocarboxylic acids proportionally to their ability to inhibit gradient-dependent Pi transport, whereas other monophosphonates, diphosphonates, L-proline, or D-glucose did not influence the [ 14 C]PFA binding. The Na+-dependent binding of [ 14 C]PFA and of [ 3 H]phlorizin by BBMV was 10 times higher than binding of these ligands to renal basolateral membranes and to mitochondria. [ 14 C]PFA probably binds onto the same locus on the luminal surface of BBM, where Pi and Na+ form a ternary complex with the Na+-Pi co-transporter

  9. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    Science.gov (United States)

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Alpha 1A and alpha 1B-adrenoceptors enhance inositol phosphate generation in rat renal cortex

    NARCIS (Netherlands)

    Michel, M. C.; Büscher, R.; Philipp, T.; Brodde, O. E.

    1993-01-01

    We have studied the role of alpha 1A- and alpha 1B-adrenoceptors in noradrenaline- and methoxamine-stimulated inositol phosphate accumulation in rat renal cortical slices. [3H]Prazosin binding studies with and without inactivation of alpha 1B-adrenoceptors by chloroethylclonidine treatment suggested

  11. PA21, a novel phosphate binder, improves renal osteodystrophy in rats with chronic renal failure.

    Science.gov (United States)

    Yaguchi, Atsushi; Tatemichi, Satoshi; Takeda, Hiroo; Kobayashi, Mamoru

    2017-01-01

    The effects of PA21, a novel iron-based and non-calcium-based phosphate binder, on hyperphosphatemia and its accompanying bone abnormality in chronic kidney disease-mineral and bone disorder (CKD-MBD) were evaluated. Rats with adenine-induced chronic renal failure (CRF) were prepared by feeding them an adenine-containing diet for four weeks. They were also freely fed a diet that contained PA21 (0.5, 1.5, and 5%), sevelamer hydrochloride (0.6 and 2%) or lanthanum carbonate hydrate (0.6 and 2%) for four weeks. Blood biochemical parameters were measured and bone histomorphometry was performed for femurs, which were isolated after drug treatment. Serum phosphorus and parathyroid hormone (PTH) levels were higher in the CRF rats. Administration of phosphate binders for four weeks decreased serum phosphorus and PTH levels in a dose-dependent manner and there were significant decreases in the AUC0-28 day of these parameters in 5% PA21, 2% sevelamer hydrochloride, and 2% lanthanum carbonate hydrate groups compared with that in the CRF control group. Moreover, osteoid volume improved significantly in 5% of the PA21 group, and fibrosis volume and cortical porosity were ameliorated in 5% PA21, 2% sevelamer hydrochloride, and 2% lanthanum carbonate hydrate groups. These results suggest that PA21 is effective against hyperphosphatemia, secondary hyperparathyroidism, and bone abnormalities in CKD-MBD as sevelamer hydrochloride and lanthanum carbonate hydrate are, and that PA21 is a new potential alternative to phosphate binders.

  12. Water transport by the renal Na(+)-dicarboxylate cotransporter

    DEFF Research Database (Denmark)

    Meinild, A K; Loo, D D; Pajor, A M

    2000-01-01

    . This solute-coupled influx of water took place in the absence of, and even against, osmotic gradients. There was a strict stoichiometric relationship between Na(+), substrate, and water transport of 3 Na(+), 1 dicarboxylate, and 176 water molecules/transport cycle. These results indicate that the renal Na......This study investigated the ability of the renal Na(+)-dicarboxylate cotransporter, NaDC-1, to transport water. Rabbit NaDC-1 was expressed in Xenopus laevis oocytes, cotransporter activity was measured as the inward current generated by substrate (citrate or succinate), and water transport...... was monitored by the changes in oocyte volume. In the absence of substrates, oocytes expressing NaDC-1 showed an increase in osmotic water permeability, which was directly correlated with the expression level of NaDC-1. When NaDC-1 was transporting substrates, there was a concomitant increase in oocyte volume...

  13. sphingosine-1-phosphate transport and its role in immunology

    NARCIS (Netherlands)

    Reitsema, V.; Bouma, Hjalmar; Kok, Jan

    2014-01-01

    Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite with many important functions in cellular and systemic physiology, including the immune system. As it cannot traverse the membrane, it is exported from cells by transporters. Several members of the ATP-binding cassette (ABC) transporter

  14. The transport of phosphate between the plasma and dialysate compartments in peritoneal dialysis is influenced by an electric potential difference

    DEFF Research Database (Denmark)

    Graff, J; Fugleberg, S; Brahm, J

    1996-01-01

    was not identifiable. Furthermore, it was demonstrated that the electrochemical gradient between plasma water and dialysate favours the diffusive phosphate transport, and both electric and chemical potentials must be taken into account in calculations of the transperitoneal phosphate transport.......Six kinetic models of transperitoneal phosphate transport were formulated and validated on the basis of experimental results obtained from 22 non-diabetic patients undergoing peritoneal dialysis. The models were designed to elucidate the presence or absence of diffusive, non-lymphatic convective......, and lymphatic convective phosphate transport. Calculations allowed for a 20% protein binding of phosphate. The validation procedure demonstrated that only diffusive and non-lymphatic convective phosphate transport mechanisms were identifiable. A lymphatic convective phosphate transport mechanism...

  15. A magnesium based phosphate binder reduces vascular calcification without affecting bone in chronic renal failure rats.

    Directory of Open Access Journals (Sweden)

    Ellen Neven

    Full Text Available The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF. In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.

  16. Pregnancy Increases the Renal Secretion of N1-methylnicotinamide, an Endogenous Probe for Renal Cation Transporters, in Patients Prescribed Metformin.

    Science.gov (United States)

    Bergagnini-Kolev, Mackenzie C; Hebert, Mary F; Easterling, Thomas R; Lin, Yvonne S

    2017-03-01

    N 1 -methylnicotinamide (1-NMN) has been investigated as an endogenous probe for the renal transporter activity of organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins 1 and 2-K (MATE1 and MATE2-K). As pregnancy increased the renal secretion of metformin, a substrate for OCT2, MATE1, and MATE2-K, we hypothesized that the renal secretion of 1-NMN would be similarly affected. Blood and urine samples collected from women prescribed metformin for type 2 diabetes, gestational diabetes, and polycystic ovarian syndrome during early, mid, and late pregnancy ( n = 34 visits) and postpartum ( n = 14 visits) were analyzed for 1-NMN using liquid chromatography-mass spectrometry. The renal clearance and secretion clearance, using creatinine clearance to correct for glomerular filtration, were estimated for 1-NMN and correlated with metformin renal clearance. 1-NMN renal clearance was higher in both mid (504 ± 293 ml/min, P pregnancy (557 ± 305 ml/min, P pregnancy (269± 267, P pregnancy compared with postpartum (342 ± 283 versus 76 ± 92 ml/min, P Metformin renal clearance and 1-NMN renal clearance were positively correlated (r s = 0.68, P pregnancy due to increased glomerular filtration and net secretion by renal transporters. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  17. The dual-gate lumen model of renal monoamine transport

    Directory of Open Access Journals (Sweden)

    Marty Hinz

    2010-07-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics, Inc. Cape Coral, Florida, USA; 2Stein Orthopedic Associates, Plantation, Florida, USA; 3DBS Labs, Duluth, Minnesota, USAAbstract: The three-phase response of urinary serotonin and dopamine in subjects ­simultaneously taking amino acid precursors of serotonin and dopamine has been defined.1,2 No model exists regarding the renal etiology of the three-phase response. This writing outlines a model explaining the origin of the three-phase response of urinary serotonin and dopamine. A “dual-gate lumen transporter model” for the basolateral monoamine transporters of the kidneys is proposed as being the etiology of the three-phase urinary serotonin and dopamine responses.Purpose: The purpose of this writing is to document the internal renal function model that has evolved in research during large-scale assay with phase interpretation of urinary serotonin and dopamine.Patients and methods: In excess of 75,000 urinary monoamine assays from more than 7,500 patients were analyzed. The serotonin and the dopamine phase were determined for specimens submitted in the competitive inhibition state. The phase determination findings were then correlated with peer-reviewed literature.Results: The correlation between the three-phase response of urinary serotonin and dopamine with internal renal processes of the bilateral monoamine transporter and the apical monoamine transporter of the proximal convoluted renal tubule cells is defined.Conclusion: The phase of urinary serotonin and dopamine is dependent on the status of the serotonin gate, dopamine gate, and lumen of the basolateral monoamine transporter while in the competitive inhibition state.Keywords: serotonin, dopamine, basolateral, apical, kidney, proximal

  18. Differential expression of genes encoding phosphate transporters contributes to arsenic accumulation in shrub willow (Salix spp.)

    Science.gov (United States)

    Emily E. Puckett; Michelle J. Serpiglia; Alyssa M. DeLeon; Stephanie Long; Rakesh Minocha; Lawrence B. Smart

    2012-01-01

    Studies of arsenate and phosphate uptake by plants in hydroponic and soil systems indicate a common transport mechanism via the phosphate transporters (PHTs) due to structural similarity of the anions. Typically, the presence of phosphate decreases plant uptake and translocation of arsenate in hydroponic solution. This study quantified arsenic (As) uptake related to...

  19. Long-term treatment with tenofovir in Asian-American chronic hepatitis B patients is associated with abnormal renal phosphate handling.

    Science.gov (United States)

    Tien, Connie; Xu, Jason J; Chan, Linda S; Chang, Mimi; Lim, Carolina; Lee, Sue; Huh, Brian; Shinada, Shuntaro; Bae, Ho S; Fong, Tse-Ling

    2015-02-01

    Increased risk of defective urinary phosphate reabsorption and osteoporosis has been reported in HIV and chronic hepatitis B (CHB) patients treated with tenofovir disoproxil fumarate (TDF). Goals of this study were to evaluate the prevalence of renal phosphate wasting and abnormal bone mineral density in CHB patients taking TDF compared to CHB patients treated with entecavir (ETV) and untreated CHB patients. This is a cross-sectional study of 146 consecutive Asian-American CHB patients who were treatment naïve (n = 60) or treated with either TDF (n = 42) or ETV (n = 44). Proximal tubular handling of phosphate was assessed by the maximal rate of tubular reabsorption of phosphate (TmPO4) divided by glomerular filtration rate (GFR) (TmPO4/GFR). Bone mineral density (BMD) was measured using dual X-ray absorptiometry. TmPO4/GFR was similar among CHB patients treated with TDF compared to untreated patients and patients taking ETV. However, among patients treated with ≥18 months of TDF or ETV, prevalence of abnormal TmPO4/GFR was higher among patients treated with TDF compared to ETV (48.5 % (16/33) vs. 12.5 % (3/24), p = 0.005). Overall prevalence of osteoporosis in this cohort of CHB patients was 14 %, with no significant difference between the three groups. Renal phosphate handling did not correlate with osteoporosis. Chronic hepatitis B patients treated with ≥18 months of TDF experienced an increased risk of proximal tubular dysfunction. TDF did not increase the risk of osteoporosis. Longitudinal studies are needed to confirm these findings.

  20. Effect of diuretics on renal tubular transport of calcium and magnesium.

    Science.gov (United States)

    Alexander, R Todd; Dimke, Henrik

    2017-06-01

    Calcium (Ca 2+ ) and Magnesium (Mg 2+ ) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca 2+ and Mg 2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca 2+ and Mg 2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca 2+ and Mg 2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na + ) transport, but also indirectly affect renal Ca 2+ and Mg 2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca 2+ and Mg 2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca 2+ and Mg 2+ transport. Acetazolamide, osmotic diuretics, Na + /H + exchanger (NHE3) inhibitors, and antidiabetic Na + /glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca 2+ transport predominates. Loop diuretics and renal outer medullary K + (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca 2+ and Mg 2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na + transport at distal sites, can also affect divalent cation transport. Copyright © 2017 the American Physiological Society.

  1. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function

    Science.gov (United States)

    Reynafarje, Baltazar; Lehninger, Albert L.

    1978-01-01

    This paper describes the properties and a possible biological role of a transport process across the inner membrane of rat liver mitochondria resulting in the exchange of ATP4- (out) for ADP3- (in) + 0.5 phosphate2- (in). This transmembrane exchange reaction, designated as the ATP-ADP-phosphate exchange, is specific for the ligands shown, electroneutral, insensitive to N-ethylmaleimide or mersalyl, inhibited by atractyloside, and appears to occur only in the direction as written. It is thus distinct from the well-known phosphate-hydroxide and phosphate-dicarboxylate exchange systems, which are inhibited by mersalyl, and from the ATP-ADP exchanger, which does not transport phosphate. During ATP hydrolysis by mitochondria, half of the phosphate formed from ATP passes from the matrix to the medium by the mersalyl-insensitive ATP-ADP-phosphate exchange and the other half by the well-known mersalyl-sensitive phosphate-hydroxide exchange. These and other considerations have led to a hypothesis for the pathway and stoichiometry of ATP-dependent reverse electron transport, characterized by a requirement of 1.33 molecules of ATP per pair of electrons reversed and by the utilization of a different membrane transport pathway for phosphate and adenine nucleotides than is taken in forward electron flow and oxidative phosphorylation. The possible occurrence of independent pathways for ATP-forming forward electron flow and ATP-consuming reverse electron flow is consonant with the fact that the opposing degradative and synthetic pathways in the central routes of cell metabolism generally have different pathways that are independently regulated. PMID:283393

  2. Impact on creatinine renal clearance by the interplay of multiple renal transporters: a case study with INCB039110.

    Science.gov (United States)

    Zhang, Yan; Warren, Mark S; Zhang, Xuexiang; Diamond, Sharon; Williams, Bill; Punwani, Naresh; Huang, Jane; Huang, Yong; Yeleswaram, Swamy

    2015-04-01

    Serum creatinine is commonly used as a marker of renal function, but increases in serum creatinine might not represent changes in glomerular filtration rate (GFR). INCB039110 (2-(3-(4-(7H-pyrrolo[2,3-day]pyrimidin-4-yl)-1H-pyrazol-1-yl)-1-(1-(3-fluoro-2-(trifluoromethyl)isonicotinoyl)piperidin-4-yl)azetidin-3-yl)acetonitrile) is an inhibitor of the Janus kinases (JAKs) with selectivity for JAK1. In a phase 1 study, a modest and reversible increase in serum creatinine was observed after treatment with INCB039110. However, a dedicated renal function study with INCB039110, assessed by iohexol plasma clearance, conducted in healthy volunteers indicated no change in GFR. In vitro studies were therefore conducted to investigate the interaction of INCB039110 with five transporters that are likely involved in the renal clearance of creatinine. Cell systems expressing individual or multiple transporters were used, including a novel quintuple-transporter model OAT2/OCT2/OCT3/MATE1/MATE2-K. INCB039110 potently inhibited OCT2-mediated uptake of creatinine as well as MATE1-/MATE2-K-mediated efflux of creatinine. Given the interactions of INCB039110 with multiple transporters affecting creatinine uptake and efflux, an integrated system expressing all five transporters was sought; in that system, INCB039110 caused a dose-dependent decrease in transcellular transport of creatinine with weaker net inhibition compared with the effects on individual transporters. In summary, a molecular mechanism for the increase in serum creatinine by INCB039110 has been established. These studies also underline the limitations of using serum creatinine as a marker of renal function. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  3. The renal urate transporter SLC17A1 locus: confirmation of association with gout.

    Science.gov (United States)

    Hollis-Moffatt, Jade E; Phipps-Green, Amanda J; Chapman, Brett; Jones, Gregory T; van Rij, Andre; Gow, Peter J; Harrison, Andrew A; Highton, John; Jones, Peter B; Montgomery, Grant W; Stamp, Lisa K; Dalbeth, Nicola; Merriman, Tony R

    2012-04-27

    Two major gout-causing genes have been identified, the urate transport genes SLC2A9 and ABCG2. Variation within the SLC17A1 locus, which encodes sodium-dependent phosphate transporter 1, a renal transporter of uric acid, has also been associated with serum urate concentration. However, evidence for association with gout is equivocal. We investigated the association of the SLC17A1 locus with gout in New Zealand sample sets. Five variants (rs1165196, rs1183201, rs9358890, rs3799344, rs12664474) were genotyped across a New Zealand sample set totaling 971 cases and 1,742 controls. Cases were ascertained according to American Rheumatism Association criteria. Two population groups were studied: Caucasian and Polynesian. At rs1183201 (SLC17A1), evidence for association with gout was observed in both the Caucasian (odds ratio (OR) = 0.67, P = 3.0 × 10-6) and Polynesian (OR = 0.74, P = 3.0 × 10-3) groups. Meta-analysis confirmed association of rs1183201 with gout at a genome-wide level of significance (OR = 0.70, P = 3.0 × 10-8). Haplotype analysis suggested the presence of a common protective haplotype. We confirm the SLC17A1 locus as the third associated with gout at a genome-wide level of significance.

  4. Effect of nephrotoxicants on renal membrane transport: In vitro studies

    International Nuclear Information System (INIS)

    Ansari, R.A.; Berndt, W.O.

    1990-01-01

    It is possible to study the effects of nephrotoxicants on membrane function free of other cellular influences. By the use of Percoll gradient centrifugation, highly purified preparations of right-side-out basolateral (BL) and brush border (BB) membrane vesicles can be obtained from rat (male, Sprague-Dawley) renal cortex. Membrane function can be monitored by evaluation of sodium driven transport: 14 C-p-aminohippurate (PAH) for BL and 14 C-glucose for BB. Transport was measured by the rapid filtration technique. Each vesicle preparation was preincubated with the nephrotoxicant for five minutes before initiation of transport. Control vesicles showed a prominant overshoot 1 to 2 minutes after start of transport. Mercuric ion (Hg) had no effect on transport by BB at concentrations as high as 10μM. Transport by BL was reduced significantly at Hg concentrations as low as 100 nM. Chromate (Cr) also reduced BL transport at 100 nM and had no effect on BB transport. Citrinin significantly reduced both BB and BL transport, but the sensitivity of the membrane preparations differed. These data are consistent with the hypothesis that some nephrotoxicants may act on either side of the renal tubular cell membrane

  5. Sphingosine-1-Phosphate Evokes Unique Segment-Specific Vasoconstriction of the Renal Microvasculature

    Science.gov (United States)

    Singletary, Sean T.; Cook, Anthony K.; Hobbs, Janet L.; Pollock, Jennifer S.; Inscho, Edward W.

    2014-01-01

    Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, has been implicated in regulating vascular tone and participating in chronic and acute kidney injury. However, little is known about the role of S1P in the renal microcirculation. Here, we directly assessed the vasoresponsiveness of preglomerular and postglomerular microvascular segments to exogenous S1P using the in vitro blood-perfused juxtamedullary nephron preparation. Superfusion of S1P (0.001–10 μM) evoked concentration-dependent vasoconstriction in preglomerular microvessels, predominantly afferent arterioles. After administration of 10 μM S1P, the diameter of afferent arterioles decreased to 35%±5% of the control diameter, whereas the diameters of interlobular and arcuate arteries declined to 50%±12% and 68%±6% of the control diameter, respectively. Notably, efferent arterioles did not respond to S1P. The S1P receptor agonists FTY720 and FTY720-phosphate and the specific S1P1 receptor agonist SEW2871 each evoked modest afferent arteriolar vasoconstriction. Conversely, S1P2 receptor inhibition with JTE-013 significantly attenuated S1P-mediated afferent arteriolar vasoconstriction. Moreover, blockade of L-type voltage-dependent calcium channels with diltiazem or nifedipine attenuated S1P-mediated vasoconstriction. Intravenous injection of S1P in anesthetized rats reduced renal blood flow dose dependently. Western blotting and immunofluorescence revealed S1P1 and S1P2 receptor expression in isolated preglomerular microvessels and microvascular smooth muscle cells. These data demonstrate that S1P evokes segmentally distinct preglomerular vasoconstriction via activation of S1P1 and/or S1P2 receptors, partially via L-type voltage-dependent calcium channels. Accordingly, S1P may have a novel function in regulating afferent arteriolar resistance under physiologic conditions. PMID:24578134

  6. Characterization of inorganic phosphate transport in the triple-negative breast cancer cell line, MDA-MB-231.

    Science.gov (United States)

    Russo-Abrahão, Thais; Lacerda-Abreu, Marco Antônio; Gomes, Tainá; Cosentino-Gomes, Daniela; Carvalho-de-Araújo, Ayra Diandra; Rodrigues, Mariana Figueiredo; Oliveira, Ana Carolina Leal de; Rumjanek, Franklin David; Monteiro, Robson de Queiroz; Meyer-Fernandes, José Roberto

    2018-01-01

    Recent studies demonstrate that interstitial inorganic phosphate is significantly elevated in the breast cancer microenvironment as compared to normal tissue. In addition it has been shown that breast cancer cells express high levels of the NaPi-IIb carrier (SLC34A2), suggesting that this carrier may play a role in breast cancer progression. However, the biochemical behavior of inorganic phosphate (Pi) transporter in this cancer type remains elusive. In this work, we characterize the kinetic parameters of Pi transport in the aggressive human breast cancer cell line, MDA-MB-231, and correlated Pi transport with cell migration and adhesion. We determined the influence of sodium concentration, pH, metabolic inhibitors, as well as the affinity for inorganic phosphate in Pi transport. We observed that the inorganic phosphate is dependent on sodium transport (K0,5 value = 21.98 mM for NaCl). Furthermore, the transport is modulated by different pH values and increasing concentrations of Pi, following the Michaelis-Menten kinetics (K0,5 = 0.08 mM Pi). PFA, monensin, furosemide and ouabain inhibited Pi transport, cell migration and adhesion. Taken together, these results showed that the uptake of Pi in MDA-MB-231 cells is modulated by sodium and by regulatory mechanisms of intracellular sodium gradient. General Significance: Pi transport might be regarded as a potential target for therapy against tumor progression.

  7. NMR studies of renal phosphate metabolites in vivo: Effects of hydration and dehydration

    International Nuclear Information System (INIS)

    Wolff, S.D.; Eng, C.; Balaban, R.S.

    1988-01-01

    The present study characterizes the 31 P-nuclear magnetic resonance (NMR) spectrum of rabbit kidneys in vivo and evaluates the effect of hydration on phosphorous metabolites including the organic solute glycerophosphorylcholine (GPC). Cortical phosphorylethanolamine is the predominant component of the phosphomonoester region of the 31 P spectrum. The contribution of blood to the spectrum is mainly from 2,3 diphosphoglycerate, which comprises ∼30% of the inorganic phosphate region. Acute infusion of 0.9% saline decreases the sodium content of the inner medulla by >50% in 15 min as shown by 23 Na imaging. Despite this medullary Na dilution, no change in renal GPC content was observed for >1 h even with the addition of furosemide or furosemide and antidiuretic hormone. However, 20 h of chronic dehydration with 0.45% saline did result in a 30% decrease in renal GPC content when compared with dehydrated animals. These findings are consistent with GPC not playing a role in the short-term regulation of the medullary intracellular milieu in response to acute reductions in medullary Na content

  8. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport

    Directory of Open Access Journals (Sweden)

    Nobuhiko Satoh

    2015-01-01

    Full Text Available A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2 and stimulates sodium-bicarbonate cotransporter (NBCe1, resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC and epithelial sodium channel (ENaC activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1 mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK. Moreover, sodium-proton exchanger 3 (NHE3 in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport.

  9. Renal transport and metabolism of nicotinic acid

    International Nuclear Information System (INIS)

    Schuette, S.; Rose, R.C.

    1986-01-01

    Renal metabolism and brush-border transport of nicotinic acid were studied in renal cortical slices and brush-border membrane vesicles exposed to a physiological concentration of vitamin (2.2-3.5 microM). Vesicle transport of [ 3 H]nicotinic acid was found to be Na+ dependent and concentrative. The presence of a Na+ gradient resulted in a fivefold increase in the rate of nicotinic acid uptake over that observed with mannitol and caused a transient nicotinic acid accumulation two- to fourfold above the equilibrium value. The effects of membrane potential, pH, and elimination of Na+-H+ exchange were also studied. Cortical slices and isolated tubules exposed to 2.2 microM [ 14 C]nicotinic acid took up vitamin and rapidly metabolized most of it to intermediates in the Preiss-Handler pathway for NAD biosynthesis; little free nicotinic acid was detectable intracellularly. The replacement of Na+ with Li+ in the bathing medium reduced total accumulation of 14 C label primarily as a result of reduced nicotinic acid uptake. Cortical tissue concentrated free nicotinic acid only when the involved metabolic pathways were saturated by levels of nicotinic acid far in excess of what occurs in vivo

  10. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica.

    Directory of Open Access Journals (Sweden)

    S Antony Ceasar

    Full Text Available Phosphorus (P is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12 in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet.

  11. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica).

    Science.gov (United States)

    Ceasar, S Antony; Hodge, Angela; Baker, Alison; Baldwin, Stephen A

    2014-01-01

    Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica, and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F. mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the basis for the further characterization of these transporters, with the long term goal of improving the phosphate use efficiency of foxtail millet.

  12. Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins.

    NARCIS (Netherlands)

    Hsu, Y.J.; Dimke, H.; Schoeber, J.P.H.; Hsu, S.C.; Lin, S.H.; Chu, P.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2010-01-01

    Although gender differences in the renal handling of calcium have been reported, the overall contribution of androgens to these differences remains uncertain. We determined here whether testosterone affects active renal calcium reabsorption by regulating calcium transport proteins. Male mice had

  13. Evidence of active transport of cadmium complexing dithiocarbamates into renal and hepatic cells in vivo

    International Nuclear Information System (INIS)

    Gale, G.R.; Smith, A.B.; Jones, M.M.; Singh, P.K.

    1992-01-01

    A study was made of the effects of certain inhibitors of transport systems on the actions of four cadmium (Cd) complexing N,N-disubstituted dithiocarbamates (DTCs) in mobilizing murine renal and hepatic Cd in vivo. Probenecid, the prototypical antagonist of organic anion transport in the kidney, when given 1 hr prior to each DTC, sharply suppressed the DTC-induced reduction of renal Cd but was virtually without effect on mobilization of Cd from liver. Sulfinpyrazone, which blocks tubular reabsorption of uric acid and also inhibits transport of a variety of organic acids, inhibited markedly the mobilization of both renal and hepatic Cd by DTCs. Phlorizin, an inhibitor of tubular sugar reabsorption, did not affect the Cd mobilizing actions of DTCs in any consistent fashion. We propose that the high degree of selectivity of DTCs in mobilizing renal hepatic Cd is dependent, at lest in part, upon active transport of DTCs into these tissues via the organic anion transport systems. This report presents the first evidence that compounds of the (R) 2 NCSS - class may gain access to intracellular space by an active, carrier-mediated process. (au)

  14. Poly[allylamine hydrochloride] (RenaGel): a noncalcemic phosphate binder for the treatment of hyperphosphatemia in chronic renal failure.

    Science.gov (United States)

    Chertow, G M; Burke, S K; Lazarus, J M; Stenzel, K H; Wombolt, D; Goldberg, D; Bonventre, J V; Slatopolsky, E

    1997-01-01

    Dietary phosphate restriction and the oral administration of calcium and aluminum salts have been the principal means of controlling hyperphosphatemia in individuals with end-stage renal disease over the past decade. Although relatively well-tolerated, a large fraction of patients treated with calcium develop hypercalcemia, particularly when administered concurrently with calcitriol, despite a lowering of the dialysate calcium concentration. We evaluated the efficacy of cross-linked poly[allylamine hydrochloride] (RenaGel; Geltex Pharmaceuticals, Waltham, MA), a nonabsorbable calcium- and aluminum-free phosphate binder, in a randomized, placebo-controlled, double-blind trial of 36 maintenance hemodialysis patients followed over an 8-week period. RenaGel was found to be as effective as calcium carbonate or acetate as a phosphate binder. The reduction in serum phosphorus was significantly greater after 2 weeks of treatment with RenaGel (6.6 +/- 2.1 mg/dL to 5.4 +/- 1.5 mg/dL) compared with placebo (7.0 +/- 2.1 mg/dL to 7.2 +/- 2.4 mg/dL; P = 0.037). There was no significant change in serum calcium concentration in either treatment group. The total serum cholesterol and low-density lipoprotein cholesterol fraction were significantly reduced in RenaGel-treated patients compared with placebo-treated patients (P = 0.013 and P = 0.003, respectively) without a concomitant reduction in high-density lipoprotein cholesterol (P = 0.93). There was no difference among recipients of RenaGel and placebo in terms of adverse events. RenaGel is a safe and effective alternative to oral calcium for the management of hyperphosphatemia in end-stage renal disease.

  15. Distribution of glucose transporters in renal diseases

    OpenAIRE

    Szablewski, Leszek

    2017-01-01

    Kidneys play an important role in glucose homeostasis. Renal gluconeogenesis prevents hypoglycemia by releasing glucose into the blood stream. Glucose homeostasis is also due, in part, to reabsorption and excretion of hexose in the kidney. Lipid bilayer of plasma membrane is impermeable for glucose, which is hydrophilic and soluble in water. Therefore, transport of glucose across the plasma membrane depends on carrier proteins expressed in the plasma membrane. In humans, there are three famil...

  16. Effect of Diuretics on Renal Tubular Transport of Calcium and Magnesium

    DEFF Research Database (Denmark)

    Alexander, R Todd; Dimke, Henrik

    2017-01-01

    are important for both forming divalent cation permeable pores and channels, but also for generating the necessary driving forces for Ca2+ and Mg2+ transport. Alterations in these molecular constituents lead to profound effects on tubular Ca2+ and Mg2+ handling. Diuretics are used to treat a large range...... of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na+) transport, but also indirectly affect renal Ca2+ and Mg2+ handling, i.e. by establishing a prerequisite electrochemical gradient....... It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca2+ and Mg2+ handling are reviewed in the context of the current understanding of basal molecular mechanisms of Ca2+ and Mg2+ transport...

  17. Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster.

    Science.gov (United States)

    Tatry, Marie-Violaine; El Kassis, Elie; Lambilliotte, Raphaël; Corratgé, Claire; van Aarle, Ingrid; Amenc, Laurie K; Alary, Rémi; Zimmermann, Sabine; Sentenac, Hervé; Plassard, Claude

    2009-03-01

    Ectomycorrhizal symbiosis markedly improves plant phosphate uptake, but the molecular mechanisms underlying this benefit are still poorly understood. We identified two ESTs in a cDNA library prepared from the ectomycorrhizal basidiomycete Hebeloma cylindrosporum with significant similarities to phosphate transporters from the endomycorrhizal fungus Glomus versiforme and from non-mycorrhizal fungi. The full-length cDNAs corresponding to these two ESTs complemented a yeast phosphate transport mutant (Deltapho84). Measurements of (33)P-phosphate influx into yeast expressing either cDNA demonstrated that the encoded proteins, named HcPT1 and HcPT2, were able to mediate Pi:H(+) symport with different affinities for Pi (K(m) values of 55 and 4 mum, respectively). Real-time RT-PCR showed that Pi starvation increased the levels of HcPT1 transcripts in H. cylindrosporum hyphae grown in pure culture. Transcript levels of HcPT2 were less dependent on Pi availability. The two transporters were expressed in H. cylindrosporum associated with its natural host plant, Pinus pinaster, grown under low or high P conditions. The presence of ectomycorrhizae increased net Pi uptake rates into intact Pinus pinaster roots at low or high soil P levels. The expression patterns of HcPT1 and HcPT2 indicate that the two fungal phosphate transporters may be involved in uptake of phosphate from the soil solution under the two soil P availability conditions used.

  18. Hemodialysis for near-fatal sodium phosphate toxicity in a child receiving sodium phosphate enemas.

    Science.gov (United States)

    Becknell, Brian; Smoyer, William E; O'Brien, Nicole F

    2014-11-01

    This study aimed to demonstrate the importance of considering hemodialysis as a treatment option in the management of sodium phosphate toxicity. This is a case report of a 4-year-old who presented to the emergency department with shock, decreased mental status, seizures, and tetany due to sodium phosphate toxicity from sodium phosphate enemas. Traditional management of hyperphosphatemia with aggressive hydration and diuretics was insufficient to reverse the hemodynamic and neurological abnormalities in this child. This is the first report of the use of hemodialysis in a child without preexisting renal failure for the successful management of near-fatal sodium phosphate toxicity. Hemodialysis can safely be used as an adjunctive therapy in sodium phosphate toxicity to rapidly reduce serum phosphate levels and increase serum calcium levels in children not responding to conventional management.

  19. Characterization of Organic Anion Transporter 2 (SLC22A7): A Highly Efficient Transporter for Creatinine and Species-Dependent Renal Tubular Expression.

    Science.gov (United States)

    Shen, Hong; Liu, Tongtong; Morse, Bridget L; Zhao, Yue; Zhang, Yueping; Qiu, Xi; Chen, Cliff; Lewin, Anne C; Wang, Xi-Tao; Liu, Guowen; Christopher, Lisa J; Marathe, Punit; Lai, Yurong

    2015-07-01

    The contribution of organic anion transporter OAT2 (SLC22A7) to the renal tubular secretion of creatinine and its exact localization in the kidney are reportedly controversial. In the present investigation, the transport of creatinine was assessed in human embryonic kidney (HEK) cells that stably expressed human OAT2 (OAT2-HEK) and isolated human renal proximal tubule cells (HRPTCs). The tubular localization of OAT2 in human, monkey, and rat kidney was characterized. The overexpression of OAT2 significantly enhanced the uptake of creatinine in OAT2-HEK cells. Under physiologic conditions (creatinine concentrations of 41.2 and 123.5 µM), the initial rate of OAT2-mediated creatinine transport was approximately 11-, 80-, and 80-fold higher than OCT2, multidrug and toxin extrusion protein (MATE)1, and MATE2K, respectively, resulting in approximately 37-, 1850-, and 80-fold increase of the intrinsic transport clearance when normalized to the transporter protein concentrations. Creatinine intracellular uptake and transcellular transport in HRPTCs were decreased in the presence of 50 µM bromosulfophthalein and 100 µM indomethacin, which inhibited OAT2 more potently than other known creatinine transporters, OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2K (IC50: 1.3 µM vs. > 100 µM and 2.1 µM vs. > 200 µM for bromosulfophthalein and indomethacin, respectively) Immunohistochemistry analysis showed that OAT2 protein was localized to both basolateral and apical membranes of human and cynomolgus monkey renal proximal tubules, but appeared only on the apical membrane of rat proximal tubules. Collectively, the findings revealed the important role of OAT2 in renal secretion and possible reabsorption of creatinine and suggested a molecular basis for potential species difference in the transporter handling of creatinine. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Mechanisms of renal phosphate loss in liver resection-associated hypophosphatemia.

    Science.gov (United States)

    Nafidi, Otmane; Lapointe, Real W; Lepage, Raymond; Kumar, Rajiv; D'Amour, Pierre

    2009-05-01

    To determine precisely the role of parathyroid hormone (PTH) and of phosphatonins in the genesis of posthepatectomy hypophosphatemia. Posthepatectomy hypophosphatemia has recently been related to increased renal fractional excretion of phosphate (FE P). To address the cause of hypophosphatemia, we measured serum concentrations of PTH, various phosphatonins, and the number of removed hepatic segment in patients with this disorder. Serum phosphate (PO4), ionized calcium (Ca++), HCO3-, pH and FE P, intact PTH (I-PTH), carboxyl-terminal fibroblast growth factor 23 (C-FGF-23) and intact fibroblast growth factor 23 (I-FGF-23), FGF-7, and secreted frizzled related-protein-4 (sFRP-4) were measured before and on postoperative (po) days 1, 2, 3, 5, and 7, in 18 patients undergoing liver resection. The number of removed hepatic segments was also assessed. Serum PO4 concentrations decreased within 24 hours, were lowest (0.66 +/- 0.03 mmol/L; P < 0.001) at 48 hours, and returned to normal within 5 days of the procedure. FE P peaked at 25.07% +/- 2.26% on po day 1 (P < 0.05). Decreased ionized calcium concentrations (1.10 +/- 0.01 mmol/L; P < 0.01) were observed on po day 1 and were negatively correlated with increased I-PTH concentrations (8.8 +/- 0.9 pmol/L; P < 0.01; correlation: r = -0.062, P = 0.016). FE P was positively related to I-PTH levels on po day 1 (r = 0.52, P = 0.047) and negatively related to PO4 concentrations (r = -0.56, P = 0.024). Severe hypophosphatemia and increased urinary phosphate excretion persisted for 72 hours even when I-PTH concentrations had returned to normal. I-FGF-23 decreased to its nadir of 7.8 +/- 6.9 pg/mL (P < 0.001) on po day 3 and was correlated with PO4 levels on po days 0, 3, 5, and 7 (P < 0.001). C-FGF-23, FGF-7 and sFRP-4 levels could not be related to either PO4 concentrations or FE P. Posthepatectomy hypophosphatemia is associated with increased FE P unrelated to I-FGF-23 or C-FGF-23, FGF-7, or sFRP-4. I-PTH contributes to excessive

  1. NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Catherine M. [Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza,7523 Boelter Hall, Los Angeles, CA 90095 (United States); Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Zhang, Xinli; James, Aaron W.; Mari Kim, T.; Sun, Nichole [Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Wu, Benjamin [Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza,7523 Boelter Hall, Los Angeles, CA 90095 (United States); Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Ting, Kang [Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095 (United States); Soo, Chia, E-mail: bsoo@ucla.edu [UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic, Hospital Research Center, University of California, Los Angeles, 2641 Charles E. Young Dr. South, Los Angeles, CA 90095 (United States)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer NELL-1 accelerates extracellular matrix mineralization in MC3T3-E1 pre-osteoblasts. Black-Right-Pointing-Pointer NELL-1 significantly increases intracellular inorganic phosphate levels. Black-Right-Pointing-Pointer NELL-1 positively regulates osteogenesis but not proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer NELL-1 regulates inorganic phosphate transporter activity. -- Abstract: NELL-1 is a potent osteoinductive molecule that enhances bone formation in multiple animal models through currently unidentified pathways. In the present manuscript, we hypothesized that NELL-1 may regulate osteogenic differentiation accompanied by alteration of inorganic phosphate (Pi) entry into the osteoblast via sodium dependent phosphate (NaPi) transporters. To determine this, MC3T3-E1 pre-osteoblasts were cultured in the presence of recombinant human (rh)NELL-1 or rhBMP-2. Analysis was performed for intracellular Pi levels through malachite green staining, Pit-1 and Pit-2 expression, and forced upregulation of Pit-1 and Pit-2. Results showed rhNELL-1 to increase MC3T3-E1 matrix mineralization and Pi influx associated with activation of both Pit-1 and Pit-2 channels, with significantly increased Pit-2 production. In contrast, Pi transport elicited by rhBMP-2 showed to be associated with increased Pit-1 production only. Next, neutralizing antibodies against Pit-1 and Pit-2 completely abrogated the Pi influx effect of rhNELL-1, suggesting rhNELL-1 is dependent on both transporters. These results identify one potential mechanism of action for rhNELL-1 induced osteogenesis and highlight a fundamental difference between NELL-1 and BMP-2 signaling.

  2. NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2

    International Nuclear Information System (INIS)

    Cowan, Catherine M.; Zhang, Xinli; James, Aaron W.; Mari Kim, T.; Sun, Nichole; Wu, Benjamin; Ting, Kang; Soo, Chia

    2012-01-01

    Highlights: ► NELL-1 accelerates extracellular matrix mineralization in MC3T3-E1 pre-osteoblasts. ► NELL-1 significantly increases intracellular inorganic phosphate levels. ► NELL-1 positively regulates osteogenesis but not proliferation in MC3T3-E1 cells. ► NELL-1 regulates inorganic phosphate transporter activity. -- Abstract: NELL-1 is a potent osteoinductive molecule that enhances bone formation in multiple animal models through currently unidentified pathways. In the present manuscript, we hypothesized that NELL-1 may regulate osteogenic differentiation accompanied by alteration of inorganic phosphate (Pi) entry into the osteoblast via sodium dependent phosphate (NaPi) transporters. To determine this, MC3T3-E1 pre-osteoblasts were cultured in the presence of recombinant human (rh)NELL-1 or rhBMP-2. Analysis was performed for intracellular Pi levels through malachite green staining, Pit-1 and Pit-2 expression, and forced upregulation of Pit-1 and Pit-2. Results showed rhNELL-1 to increase MC3T3-E1 matrix mineralization and Pi influx associated with activation of both Pit-1 and Pit-2 channels, with significantly increased Pit-2 production. In contrast, Pi transport elicited by rhBMP-2 showed to be associated with increased Pit-1 production only. Next, neutralizing antibodies against Pit-1 and Pit-2 completely abrogated the Pi influx effect of rhNELL-1, suggesting rhNELL-1 is dependent on both transporters. These results identify one potential mechanism of action for rhNELL-1 induced osteogenesis and highlight a fundamental difference between NELL-1 and BMP-2 signaling.

  3. Effectiveness and cost-efficiency of phosphate binders in hemodialysis

    Directory of Open Access Journals (Sweden)

    Zsifkovits, Johannes

    2009-06-01

    Full Text Available Health political background: In 2006, the prevalence of chronic renal insufficiency in Germany was 91,718, of which 66,508 patients were on dialysis. The tendency is clearly growing. Scientific background: Chronic renal insufficiency results in a disturbance of the mineral balance. It leads to hyperphosphataemia, which is the strongest independent risk factor for mortality in renal patients. Usually, a reduction in the phosphate intake through nutrition and the amount of phosphate filtered out during dialysis are not sufficient to reduce the serum phosphate values to the recommended value. Therefore, phosphate binders are used to bind ingested phosphate in the digestive tract in order to lower the phosphate concentration in the serum. Four different groups of phosphate binders are available: calcium- and aluminium salts are the traditional therapies. Sevelamer and Lanthanum are recent developments on the market. In varying doses, all phosphate binders are able to effectively lower phosphate concentrations. However, drug therapies have achieved recommended phosphate levels in only 50 percent of patients during the last years. Research questions: How effective and efficient are the different phosphate binders in chronic renal insufficient patients? Methods: The systematic literature search yielded 1,251 abstracts. Following a two-part selection process with predefined criteria 18 publications were included in the assessment. Results: All studies evaluated conclude that serum phosphate, serum calcium and intact parathyroid hormone can be controlled effectively with all phosphate binders. Only the number of episodes of hypercalcaemia is higher when using calcium-containing phosphatebinders compared to Sevelamer and Lanthanum. Regarding the mortality rate, the cardiovascular artery calcification and bone metabolism no definite conclusions can be drawn. In any case, the amount of calcification at study start seems to be crucial for the further

  4. Role of phosphate and other proton-donating anions in respiration-coupled transport of Ca2+ by mitochondria.

    Science.gov (United States)

    Lehninger, A L

    1974-04-01

    Measurements of extra oxygen consumption, (45)Ca(2+) uptake, and the osmotic expansion of the matrix compartment show that not all permeant anions are capable of supporting and accompanying the energy-dependent transport of Ca(2+) from the medium into the matrix in respiring rat-liver mitochondria. Phosphate, arsenate, acetate, butyrate, beta-hydroxybutyrate, lactate, and bicarbonate + CO(2) supported Ca(2+) uptake, whereas the permeant anions, nitrate, thiocyanate, chlorate, and perchlorate, did not. The active anions share a common denominator, the potential ability to donate a proton to the mitochondrial matrix; the inactive anions lack this capacity. Phosphate and the other active permeant anions move into the matrix in response to the alkaline-inside electrochemical gradient of protons generated across the mitochondrial membrane by electron transport, thus forming a negative-inside anion gradient. It is postulated that the latter gradient is the immediate "pulling" force for the influx of Ca(2+) on the electrogenic Ca(2+) carrier in respiring mitochondria under intracellular conditions. Since mitochondria in the cell are normally exposed to an excess of phosphate (and the bicarbonate-CO(2) system), particularly in state 4, inward transport of these proton-yielding anions probably precedes and is necessary for inward transport of Ca(2+) and other cations under biological conditions. These observations indicate that a negative-inside gradient of phosphate generated by electron transport is a common step and provides the immediate motive power not only for (a) the inward transport of dicarboxylates and tricarboxylates and (b) the energy-dependent exchange of external ADP(3-) for internal ATP(4-) during oxidative phosphorylation, as has already been established, but also for (c) the inward transport of Ca(2+), K(+), and other cations.

  5. Stimulation of Suicidal Erythrocyte Death by Increased Extracellular Phosphate Concentrations

    Directory of Open Access Journals (Sweden)

    Jakob Voelkl

    2014-02-01

    Full Text Available Background/Aim: Anemia in renal insufficiency results in part from impaired erythrocyte formation due to erythropoietin and iron deficiency. Beyond that, renal insufficiency enhances eryptosis, the suicidal erythrocyte death characterized by phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be stimulated by increase of cytosolic Ca2+-activity ([Ca2+]i. Several uremic toxins have previously been shown to stimulate eryptosis. Renal insufficiency is further paralleled by increase of plasma phosphate concentration. The present study thus explored the effect of phosphate on erythrocyte death. Methods: Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, and [Ca2+]i from Fluo3-fluorescence. Results: Following a 48 hours incubation, the percentage of phosphatidylserine exposing erythrocytes markedly increased as a function of extracellular phosphate concentration (from 0-5 mM. The exposure to 2 mM or 5 mM phosphate was followed by slight but significant hemolysis. [Ca2+]i did not change significantly up to 2 mM phosphate but significantly decreased at 5 mM phosphate. The effect of 2 mM phosphate on phosphatidylserine exposure was significantly augmented by increase of extracellular Ca2+ to 1.7 mM, and significantly blunted by nominal absence of extracellular Ca2+, by additional presence of pyrophosphate as well as by presence of p38 inhibitor SB203580. Conclusion: Increasing phosphate concentration stimulates erythrocyte membrane scrambling, an effect depending on extracellular but not intracellular Ca2+ concentration. It is hypothesized that suicidal erythrocyte death is triggered by complexed CaHPO4.

  6. Molecular mechanism of α-tocopheryl-phosphate transport across the cell membrane

    International Nuclear Information System (INIS)

    Negis, Yesim; Meydani, Mohsen; Zingg, Jean-Marc; Azzi, Angelo

    2007-01-01

    α-Tocopheryl-phosphate (α-TP) is synthesized and hydrolyzed in animal cells and tissues where it modulates several functions. α-TP is more potent than α-T in inhibiting cell proliferation, down-regulating CD36 transcription, inhibiting atherosclerotic plaque formation. Administration of α-TP to cells or animals requires its transfer through membranes, via a transporter. We show here that α-TP is passing the plasma membrane via a system that is inhibited by glibenclamide and probenecid, inhibitors of a number of transporters. Glibenclamide and probenecid prevent dose-dependently α-TP inhibition of cell proliferation. The two inhibitors act on ATP binding cassette (ABC) and organic anion transporters (OAT). Since ABC transporters function to export solutes and α-TP is transported into cells, it may be concluded that α-TP transport may occur via an OAT family member. Due to the protection by glibenclamide and probenecid on the α-TP induced cell growth inhibition it appears that α-TP acts after its uptake inside cells

  7. Dopamine transporter SPECT imaging of the peroral addicts of compound codeine phosphate solution

    International Nuclear Information System (INIS)

    Sun Taotao; Hu Shu; Jia Shaowei; Chen Qing; Fan Rong

    2010-01-01

    Objective: To study the damage to striatum in patients perorally addicted to compound codeine phosphate solution by using the brain dopamine transporter SPECT imaging. Methods: Patients perorally addicted to compound codeine phosphate solution (n = 29) and addicted to heroin (n = 27), as well as healthy volunteers (n = 31) were included in the study. Each of them underwent dopamine transporter (DAT) SPECT imaging with 99 Tc m -2β-[N, N'-bis-( 2- mercaptoethyl ) ethylenediamino] methyl, 3β-(4-chlorophenyl)tropane ( 99 Tc m -TRODAT-1). The striatum volume (V, cm 3 ), mass (m, g) and radioactivity ratio (Ra) of striatum to whole brain were calculated using physio-mathematical modeling method. Results: Bilateral striatum of healthy volunteers showed typical 'panda eyes' pattern and the distribution of DAT was uniform and symmetrical. Bilateral striatum of patients addicted to compound codeine phosphate showed impaired tracer uptake, similar to those addicted to heroin. The V, m and Ra of bilateral striatum of patients addicted to compound codeine phosphate were (23.68±4.94) cm 3 , (24.87±5.19) g and (5.01±0.88) %, respectively, which were significantly lower than those of healthy controls: (35.39 ±4.42) cm 3 ,(37.16±4.64) g and (7.93±0.86)% (t =-9.69, -9.69, - 13.01, all P =0.000), but significantly higher than those addicted to heroin: (18.87±4.66) cm 3 , (19.81±4.90) g and (4.26±1.02) % (t =3.74, 3.74, 2.96, P = 0.000, 0.000, 0.005). Conclusion: Long-term peroral intake of compound codeine phosphate solution may damage the function of cerebral striatum, which is someway similar to though less severe than, the impairment caused by heroin. (authors)

  8. Phosphate and Cardiovascular Disease beyond Chronic Kidney Disease and Vascular Calcification

    Directory of Open Access Journals (Sweden)

    Sinee Disthabanchong

    2018-01-01

    Full Text Available Phosphate is essential for life but its accumulation can be detrimental. In end-stage renal disease, widespread vascular calcification occurs as a result of chronic phosphate load. The accumulation of phosphate is likely to occur long before the rise in serum phosphate above the normal range since several observational studies in both general population and early-stage CKD patients have identified the relationship between high-normal serum phosphate and adverse cardiovascular outcomes. Consumption of food high in phosphate increases both fasting and postprandial serum phosphate and habitual intake of high phosphate diet is associated with aging, cardiac hypertrophy, endothelial dysfunction, and subclinical atherosclerosis. The decline in renal function and dietary phosphate load can increase circulating fibroblast growth factor-23 (FGF-23 which may have a direct impact on cardiomyocytes. Increased FGF-23 levels in both CKD and general populations are associated with left ventricular hypertrophy, congestive heart failure, atrial fibrillation, and mortality. Increased extracellular phosphate directly affects endothelial cells causing cell apoptosis and vascular smooth muscle cells (VSMCs causing transformation to osteogenic phenotype. Excess of calcium and phosphate in the circulation can promote the formation of protein-mineral complex called calciprotein particles (CPPs. In CKD, these CPPs contain less calcification inhibitors, induce inflammation, and promote VSMC calcification.

  9. Prostaglandin-E2 Mediated Increase in Calcium and Phosphate Excretion in a Mouse Model of Distal Nephron Salt Wasting.

    Directory of Open Access Journals (Sweden)

    Manoocher Soleimani

    Full Text Available Contribution of salt wasting and volume depletion to the pathogenesis of hypercalciuria and hyperphosphaturia is poorly understood. Pendrin/NCC double KO (pendrin/NCC-dKO mice display severe salt wasting under basal conditions and develop profound volume depletion, prerenal renal failure, and metabolic alkalosis and are growth retarded. Microscopic examination of the kidneys of pendrin/NCC-dKO mice revealed the presence of calcium phosphate deposits in the medullary collecting ducts, along with increased urinary calcium and phosphate excretion. Confirmatory studies revealed decreases in the expression levels of sodium phosphate transporter-2 isoforms a and c, increases in the expression of cytochrome p450 family 4a isotypes 12 a and b, as well as prostaglandin E synthase 1, and cyclooxygenases 1 and 2. Pendrin/NCC-dKO animals also had a significant increase in urinary prostaglandin E2 (PGE-2 and renal content of 20-hydroxyeicosatetraenoic acid (20-HETE levels. Pendrin/NCC-dKO animals exhibit reduced expression levels of the sodium/potassium/2chloride co-transporter 2 (NKCC2 in their medullary thick ascending limb. Further assessment of the renal expression of NKCC2 isoforms by quantitative real time PCR (qRT-PCR reveled that compared to WT mice, the expression of NKCC2 isotype F was significantly reduced in pendrin/NCC-dKO mice. Provision of a high salt diet to rectify volume depletion or inhibition of PGE-2 synthesis by indomethacin, but not inhibition of 20-HETE generation by HET0016, significantly improved hypercalciuria and salt wasting in pendrin/NCC dKO mice. Both high salt diet and indomethacin treatment also corrected the alterations in NKCC2 isotype expression in pendrin/NCC-dKO mice. We propose that severe salt wasting and volume depletion, irrespective of the primary originating nephron segment, can secondarily impair the reabsorption of salt and calcium in the thick ascending limb of Henle and/or proximal tubule, and reabsorption of

  10. A role for the organic anion transporter OAT3 in renal creatinine secretion in mice

    Science.gov (United States)

    Eraly, Satish A.; Rao, Satish Ramachandra; Gerasimova, Maria; Rose, Michael; Nagle, Megha; Anzai, Naohiko; Smith, Travis; Sharma, Kumar; Nigam, Sanjay K.; Rieg, Timo

    2012-01-01

    Tubular secretion of the organic cation, creatinine, limits its value as a marker of glomerular filtration rate (GFR) but the molecular determinants of this pathway are unclear. The organic anion transporters, OAT1 and OAT3, are expressed on the basolateral membrane of the proximal tubule and transport organic anions but also neutral compounds and cations. Here, we demonstrate specific uptake of creatinine into mouse mOat1- and mOat3-microinjected Xenopus laevis oocytes at a concentration of 10 μM (i.e., similar to physiological plasma levels), which was inhibited by both probenecid and cimetidine, prototypical competitive inhibitors of organic anion and cation transporters, respectively. Renal creatinine clearance was consistently greater than inulin clearance (as a measure of GFR) in wild-type (WT) mice but not in mice lacking OAT1 (Oat1−/−) and OAT3 (Oat3−/−). WT mice presented renal creatinine net secretion (0.23 ± 0.03 μg/min) which represented 45 ± 6% of total renal creatinine excretion. Mean values for renal creatinine net secretion and renal creatinine secretion fraction were not different from zero in Oat1−/− (−0.03 ± 0.10 μg/min; −3 ± 18%) and Oat3−/− (0.01 ± 0.06 μg/min; −6 ± 19%), with greater variability in Oat1−/−. Expression of OAT3 protein in the renal membranes of Oat1−/− mice was reduced to ∼6% of WT levels, and that of OAT1 in Oat3−/− mice to ∼60%, possibly as a consequence of the genes for Oat1 and Oat3 having adjacent chromosomal locations. Plasma creatinine concentrations of Oat3−/− were elevated in clearance studies under anesthesia but not following brief isoflurane anesthesia, indicating that the former condition enhanced the quantitative contribution of OAT3 for renal creatinine secretion. The results are consistent with a contribution of OAT3 and possibly OAT1 to renal creatinine secretion in mice. PMID:22338083

  11. PHOSPHATE CRYSTALLURIA IN VARIOUS FORMS OF UROLITHIASIS AND POSSIBILITIES OF ITS PROGNOSTICATION IN PATIENTS WITH PHOSPHATE STONES

    Directory of Open Access Journals (Sweden)

    O. V. Konstantinova

    2017-01-01

    Full Text Available Purpose. Definition of types of crystalluria in various forms of urolithiasis and biochemical signs of phosphate crystals in the urine, while phosphate urolithiasis (infectious origin.Patients and methods. The study involved 144 patients with recurrent urolithiasis — 75 women and 69 men. Of these, 46 — diagnosed calculi with uric acid, 44 — calcium oxalate or mixed with a prevalence of calcium oxalate, in 54 — phosphate rocks (carbonate-apatite and/or struvite. The age of patients ranged from 21 to 74 years. 93 people have been under long-term, within 2–15 years, outpatient observation. The examination included the collection of anamnesis, general and microbiological analysis of urine, biochemical blood serum and urine on 10 indicators, reflecting renal function, state of the protein, water and electrolyte metabolism, uric acid metabolism, the chemical composition of the stone analysis.Results. It was found that in patients with calcium oxalate stones phosphaturia has been diagnosed in 2% of cases. And, along with calcium phosphate crystals they had oxalate crystals. In patients with phosphate urolithiasis phosphaturia observed in 96% of patients, in two patients (4% they determined except phosphates also oxalate salt in urine sediment. Patients with phosphate urolithiasis at occurrence of phosphate crystalluria have metabolic state changes: increased serum uric acid concentration from 0.322 ± 0.009 to 0.367 ± 0.018 mmol/l daily renal excretion of inorganic phosphate 23.94 ± 2.93 mmol/day to 32.12 ± 4.39 mmol/day, and reduced total calcium content in urine 6.61 ± 0.94 mmol/day to 3.37 ± 0.89 mmol/day. The results led to the following conclusion.Conclusion. Biochemical signs of occurrence of phosphate crystalluria in patients with stones of infectious origin can be: the approaching level of excretion in the urine of inorganic phosphates to 32,12 ± 4,39 mmol/day, serum uric acid concentration to 0,367 ± 0,018 mmol/l, and the

  12. The characterization of novel mycorrhiza-specific phosphate transporters from ¤Lycopersicon esculentum¤ and ¤Solanum tuberosum¤ uncovers functional redundancy in symbiotic phosphate transport in solanaceous species

    DEFF Research Database (Denmark)

    Nagy, F.; Karandashov, V.; Chague, W.

    2005-01-01

    , is the transfer of phosphate (Pi) from the AM fungus to the plant, facilitated by plasma membrane-spanning Pi transporter proteins. The first mycorrhiza-specific plant Pi transporter to be identified, was StPT3 from potato [Nature 414 (2004) 462]. Here, we describe novel Pi transporters from the solanaceous...... species tomato, LePT4, and its orthologue StPT4 from potato, both being members of the Pht1 family of plant Pi transporters. Phylogenetic tree analysis demonstrates clustering of both LePT4 and StPT4 with the mycorrhiza-specific Pi transporter from Medicago truncatula [Plant Cell, 14 (2002) 2413] and rice......Solanaceous species are among the >200 000 plant species worldwide forming a mycorrhiza, that is, a root living in symbiosis with soil-borne arbuscular-mycorrhizal (AM) fungi. An important parameter of this symbiosis, which is vital for ecosystem productivity, agriculture, and horticulture...

  13. Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins.

    NARCIS (Netherlands)

    Nijenhuis, T.; Renkema, K.Y.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2006-01-01

    Chronic metabolic acidosis results in renal Ca2+ and Mg2+ wasting, whereas chronic metabolic alkalosis is known to exert the reverse effects. It was hypothesized that these adaptations are mediated at least in part by the renal Ca2+ and Mg2+ transport proteins. The aim of this study, therefore, was

  14. N(1)-methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: studies on the metformin-trimethoprim interaction.

    Science.gov (United States)

    Müller, Fabian; Pontones, Constanza A; Renner, Bertold; Mieth, Maren; Hoier, Eva; Auge, Daniel; Maas, Renke; Zolk, Oliver; Fromm, Martin F

    2015-01-01

    N(1)-methylnicotinamide (NMN) was proposed as an in vivo probe for drug interactions involving renal cation transporters, which, for example, transport the oral antidiabetic drug metformin, based on a study with the inhibitor pyrimethamine. The role of NMN for predicting other interactions with involvement of renal cation transporters (organic cation transporter 2, OCT2; multidrug and toxin extrusion proteins 1 and 2-K, MATE1 and MATE2-K) is unclear. We determined inhibition of metformin or NMN transport by trimethoprim using cell lines expressing OCT2, MATE1, or MATE2-K. Moreover, a randomized, open-label, two-phase crossover study was performed in 12 healthy volunteers. In each phase, 850 mg metformin hydrochloride was administered p.o. in the evening of day 4 and in the morning of day 5. In phase B, 200 mg trimethoprim was administered additionally p.o. twice daily for 5 days. Metformin pharmacokinetics and effects (measured by OGTT) and NMN pharmacokinetics were determined. Trimethoprim inhibited metformin transport with K i values of 27.2, 6.3, and 28.9 μM and NMN transport with IC50 values of 133.9, 29.1, and 0.61 μM for OCT2, MATE1, and MATE2-K, respectively. In the clinical study, trimethoprim increased metformin area under the plasma concentration-time curve (AUC) by 29.5 % and decreased metformin and NMN renal clearances by 26.4 and 19.9 %, respectively (p ≤ 0.01). Moreover, decreases of NMN and metformin renal clearances due to trimethoprim correlated significantly (r S=0.727, p=0.010). These data on the metformin-trimethoprim interaction support the potential utility of N(1)-methylnicotinamide as an endogenous probe for renal drug-drug interactions with involvement of renal cation transporters.

  15. Comprehensive Genomic Identification and Expression Analysis of the Phosphate Transporter (PHT) Gene Family in Apple.

    Science.gov (United States)

    Sun, Tingting; Li, Mingjun; Shao, Yun; Yu, Lingyan; Ma, Fengwang

    2017-01-01

    Elemental phosphorus (Pi) is essential to plant growth and development. The family of phosphate transporters (PHTs) mediates the uptake and translocation of Pi inside the plants. Members include five sub-cellular phosphate transporters that play different roles in Pi uptake and transport. We searched the Genome Database for Rosaceae and identified five clusters of phosphate transporters in apple ( Malus domestica ), including 37 putative genes. The MdPHT1 family contains 14 genes while MdPHT2 has two, MdPHT3 has seven, MdPHT4 has 11, and MdPHT5 has three. Our overview of this gene family focused on structure, chromosomal distribution and localization, phylogenies, and motifs. These genes displayed differential expression patterns in various tissues. For example, expression was high for MdPHT1;12, MdPHT3;6 , and MdPHT3;7 in the roots, and was also increased in response to low-phosphorus conditions. In contrast, MdPHT4;1, MdPHT4;4 , and MdPHT4;10 were expressed only in the leaves while transcript levels of MdPHT1;4, MdPHT1;12 , and MdPHT5;3 were highest in flowers. In general, these 37 genes were regulated significantly in either roots or leaves in response to the imposition of phosphorus and/or drought stress. The results suggest that members of the PHT family function in plant adaptations to adverse growing environments. Our study will lay a foundation for better understanding the PHT family evolution and exploring genes of interest for genetic improvement in apple.

  16. Renal aquaporins and sodium transporters with special focus on urinary tract obstruction

    DEFF Research Database (Denmark)

    Frøkiaer, Jørgen; Li, Chunling; Shi, Yimin

    2003-01-01

    seven aquaporins are expressed at distinct sites in the kidney and 4 members of this family (AQP1-4) have been demonstrated to play pivotal roles in the physiology and pathophysiology for renal regulation of body water balance. Osmotic equilibration via renal aquaporins is maintained by active transport......The discovery of aquaporin-1 (AQP1) by Agre and colleagues explained the long-standing biophysical question of how water specifically crosses biological membranes. These studies led to the discovery and identification of a whole new family of membrane proteins, the aquaporins. At present, at least...

  17. Phosphate is a potential biomarker of disease severity and predicts adverse outcomes in acute kidney injury patients undergoing continuous renal replacement therapy.

    Directory of Open Access Journals (Sweden)

    Su-Young Jung

    Full Text Available Hyperphosphatemia is associated with mortality in patients with chronic kidney disease, and is common in critically ill patients with acute kidney injury (AKI; however, its clinical implication in these patients is unknown. We conducted an observational study in 1144 patients (mean age, 63.2 years; male, 705 [61.6%] with AKI who received continuous renal replacement therapy (CRRT between January 2009 and September 2016. Phosphate levels were measured before (0 h and 24 h after CRRT initiation. We assessed disease severity using various clinical parameters. Phosphate at 0 h positively correlated with the Acute Physiology and Chronic Health Evaluation II (APACHE II; P < 0.001 and Sequential Organ Failure Assessment (SOFA; P < 0.001 scores, and inversely with mean arterial pressure (MAP; P = 0.02 and urine output (UO; P = 0.01. In a fully adjusted linear regression analysis for age, sex, Charlson comorbidity index (CCI, MAP, and estimated glomerular filtration rate (eGFR, higher 0 h phosphate level was significantly associated with high APACHE II (P < 0.001 and SOFA (P = 0.04 scores, suggesting that phosphate represents disease severity. A multivariable Cox model also showed that hyperphosphatemia was significantly associated with increased 28-day (HR 1.05, 95% CI 1.02-1.08, P = 0.001 and 90-day (HR 1.05, 95% CI 1.02-1.08, P = 0.001 mortality. Furthermore, patients with increased phosphate level during 24 h were at higher risk of death than those with stable or decreased phosphate levels. Finally, c-statistics significantly increased when phosphate was added to a model that included age, sex, CCI, body mass index, eGFR, MAP, hemoglobin, serum albumin, C-reactive protein, and APACHE II score. This study shows that phosphate is a potential biomarker that can reflect disease severity and predict mortality in critically ill patients receiving CRRT.

  18. Luminal uptake and intracellular transport of insulin in renal proximal tubules

    International Nuclear Information System (INIS)

    Hellfritzsch, M.; Christensen, E.I.; Sonne, O.

    1986-01-01

    It is generally accepted that proteins taken up from the renal tubular fluid are transported into lysosomes in proximal tubule cells. Recently, however, it has been postulated that insulin in isolated perfused rat kidneys did not accumulate in lysosomes but to a certain degree in the Golgi region. The present study was undertaken to investigate the intracellular handling of biologically unaltered insulin in rat renal proximal tubule cells. Rats were prepared for in vivo micropuncture and either a colloidal gold insulin complex or insulin monoiodinated in the A-14 position ( 125 I-insulin) was microinfused into proximal tubules. After 5, 10, 25 or 60 min the tubules were fixed by microinfusion of glutaraldehyde and processed for electron microscopy or electron microscope autoradiography. A qualitative analysis of tubules infused with colloidal gold insulin or 125 I-insulin showed that insulin was taken up by endocytosis and transported to lysosomes, and a quantitative autoradiographic analysis of the 125 I-insulin microinfused tubules showed that the grain density after five min was significantly increased for endocytic vacuoles and for lysosomes. After 60 min the grain density was still significant over lysosomes. The accumulation of grains was non-significant over all other areas analyzed at any time. This study shows that insulin is taken up from the luminal side of the proximal tubule by endocytosis and transported to the lysosomes. There was no significant transport to the Golgi region

  19. Imaging of renal osteodystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Jevtic, V. E-mail: vladimir.jevtic@mf.uni-lj.si

    2003-05-01

    Chronic renal insufficiency, hemodialysis, peritoneal dialysis, renal transplantation and administration of different medications provoke complex biochemical disturbances of the calcium-phosphate metabolism with wide spectrum of bone and soft tissue abnormalities termed renal osteodystrophy. Clinically most important manifestation of renal bone disease includes secondary hyperparathyroidism, osteomalacia/rickets, osteoporosis, adynamic bone disease and soft tissue calcification. As a complication of long-term hemodialysis and renal transplantation amyloid deposition, destructive spondyloarthropathy, osteonecrosis, and musculoskeletal infections may occur. Due to more sophisticated diagnostic methods and more efficient treatment classical radiographic features of secondary hyperparathyroidism and osteomalacia/rickets are now less frequently seen. Radiological investigations play an important role in early diagnosis and follow-up of the renal bone disease. Although numerous new imaging modalities have been introduced in clinical practice (scintigraphy, CT, MRI, quantitative imaging), plain film radiography, especially fine quality hand radiograph, still represents most widely used examination.

  20. Imaging of renal osteodystrophy

    International Nuclear Information System (INIS)

    Jevtic, V.

    2003-01-01

    Chronic renal insufficiency, hemodialysis, peritoneal dialysis, renal transplantation and administration of different medications provoke complex biochemical disturbances of the calcium-phosphate metabolism with wide spectrum of bone and soft tissue abnormalities termed renal osteodystrophy. Clinically most important manifestation of renal bone disease includes secondary hyperparathyroidism, osteomalacia/rickets, osteoporosis, adynamic bone disease and soft tissue calcification. As a complication of long-term hemodialysis and renal transplantation amyloid deposition, destructive spondyloarthropathy, osteonecrosis, and musculoskeletal infections may occur. Due to more sophisticated diagnostic methods and more efficient treatment classical radiographic features of secondary hyperparathyroidism and osteomalacia/rickets are now less frequently seen. Radiological investigations play an important role in early diagnosis and follow-up of the renal bone disease. Although numerous new imaging modalities have been introduced in clinical practice (scintigraphy, CT, MRI, quantitative imaging), plain film radiography, especially fine quality hand radiograph, still represents most widely used examination

  1. Molecular cloning, characterization and expression analysis of two members of the Pht1 family of phosphate transporters in Glycine max.

    Directory of Open Access Journals (Sweden)

    Zhaoyun Wu

    Full Text Available BACKGROUND: Phosphorus is one of the macronutrients essential for plant growth and development. The acquisition and translocation of phosphate are pivotal processes of plant growth. In a large number of plants, phosphate uptake by roots and translocation within the plant are presumed to occur via a phosphate/proton cotransport mechanism. PRINCIPAL FINDINGS: We cloned two cDNAs from soybean (Glycine max, GmPT1 and GmPT2, which show homology to the phosphate/proton cotransporter PHO84 from the budding yeast Saccharomyces cerevisiae. The amino acid sequence of the products predicted from GmPT1 and GmPT2 share 61% and 63% identity, respectively, with the PHO84 in amino acid sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass values are ∼58.7 kDa for GmPT1 and ∼58.6 kDa for GmPT2. Transiently expressed GFP-protein fusions provide direct evidence that the two Pi transporters are located in the plasma membrane. Uptake of radioactive orthophosphate by the yeast mutant MB192 showed that GmPT1 and GmPT2 are dependent on pH and uptake is reduced by the addition of uncouplers of oxidative phosphorylation. The K(m for phosphate uptake by GmPT1 and GmPT2 is 6.65 mM and 6.63 mM, respectively. A quantitative real time RT-PCR assay indicated that these two genes are expressed in the roots and shoots of seedlings whether they are phosphate-deficient or not. Deficiency of phosphorus caused a slight change of the expression levels of GmPT1 and GmPT2. CONCLUSIONS: The results of our experiments show that the two phosphate transporters have low affinity and the corresponding genes are constitutively expressed. Thereby, the two phosphate transporters can perform translocation of phosphate within the plant.

  2. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    Science.gov (United States)

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  3. Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli.

    Science.gov (United States)

    Grillo-Puertas, Mariana; Schurig-Briccio, Lici Ariane; Rodríguez-Montelongo, Luisa; Rintoul, María Regina; Rapisarda, Viviana Andrea

    2014-03-19

    Metal tolerance in bacteria has been related to polyP in a model in which heavy metals stimulate the polymer hydrolysis, forming metal-phosphate complexes that are exported. As previously described in our laboratory, Escherichia coli cells grown in media containing a phosphate concentration >37 mM maintained an unusually high polyphosphate (polyP) level in stationary phase. The aim of the present work was to evaluate the influence of polyP levels as the involvement of low-affinity inorganic phosphate transport (Pit) system in E. coli copper tolerance. PolyP levels were modulated by the media phosphate concentration and/or using mutants in polyP metabolism. Stationary phase wild-type cells grown in high phosphate medium were significantly more tolerant to copper than those grown in sufficient phosphate medium. Copper addition to tolerant cells induced polyP degradation by PPX (an exopolyphosphatase), phosphate efflux and membrane polarization. ppk-ppx- (unable to synthesize/degrade polyP), ppx- (unable to degrade polyP) and Pit system mutants were highly sensitive to metal even in high phosphate media. In exponential phase, CopA and polyP-Pit system would act simultaneously to detoxify the metal or one could be sufficient to safeguard the absence of the other. Our results support a mechanism for copper detoxification in exponential and stationary phases of E. coli, involving Pit system and degradation of polyP. Data reflect the importance of the environmental phosphate concentration in the regulation of the microbial physiological state.

  4. Systemic and local regulation of phosphate and nitrogen transporter genes by arbuscular mycorrhizal fungi in roots of winter wheat (Triticum aestivum L.).

    Science.gov (United States)

    Duan, Jianfeng; Tian, Hui; Drijber, Rhae A; Gao, Yajun

    2015-11-01

    Previous studies have reported that the expression of phosphate (Pi) or nitrogen (N) transporter genes in roots of plants could be regulated by arbuscular mycorrhizal (AM) fungi, but little is known whether the regulation is systemic or not. The present study investigated the systemic and local regulation of multiple phosphate and nitrogen transporter genes by four AM fungal species belonging to four genera in the roots of winter wheat. A split-root culture system with AM inoculated (MR) and non-inoculated root compartments (NR) was used to investigate the systemic or local responses of phosphate and nitrogen transporter genes to colonization by four AM fungi in the roots of wheat. The expression of four Pi transporter, five nitrate transporter, and three ammonium transporter genes was quantified using real-time PCR. Of the four AM fungi tested, all locally increased expression of the AM-inducible Pi transporter genes, and most locally decreased expression of a Pi-starvation inducible Pi transporter gene. The addition of N in soil increased the expression of either Pi starvation inducible Pi transporters or AM inducible Pi transporters. Inoculation with AM fungi either had no effect, or could locally or systemically down-regulate expression of nitrogen transporter genes depending on gene type and AM fungal species. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Divalent phosphate is a counterion for carboxyatractyloside-insensitive adenine nucleotide transport in rat liver mitochondria

    International Nuclear Information System (INIS)

    Nosek, M.T.; Aprille, J.R.

    1986-01-01

    Unidirectional, carboxyatractyloside(CAT)-insensitive adenine nucleotide (AdN) fluxes have been studied in isolated rat liver mitochondria (mito). Previous work has shown that ATP x Mg transport in one direction is coupled to ATP x Mg or P/sub i/ transport in the opposite direction. The purpose of this study was to determine whether divalent HPO 4 2- or monovalent H 2 PO 4 - is the transported phosphate species. The authors used the monofluorophosphate (PO 3 F 2- ) and difluorophosphate (PO 2 F 2 - ) analogues as potential counterions forAdN efflux. After a preincubation on ice with 14 C-ADP to label the matrix AdN, efflux was measured at 30 0 C, pH 7.4, in 225mM sucrose, 10mM KCl, 5mM MgCl 2 , 5mM glutamate, 5mM malate, 10mM Tris, 0.5mM P/sub i/, 1mM ATP, and 5μM CAT. With no other additions efflux was -0.62 +/- 0.20 nmole/minute/mg protein. The data supports the hypothesis that divalent but not monovalent phosphate can act as a counterion for ATPx Mg transport over this CAT-insensitive carrier

  6. Natural and azido fatty acids inhibit phosphate transport and activate fatty acid anion uniport mediated by the mitochondrial phosphate carrier

    Czech Academy of Sciences Publication Activity Database

    Engstová, Hana; Žáčková, Markéta; Růžička, Michal; Meinhardt, A.; Hanuš, Jan; Krämer, R.; Ježek, Petr

    2001-01-01

    Roč. 276, č. 7 (2001), s. 4683-4691 ISSN 0021-9258 R&D Projects: GA ČR GA301/95/0620; GA ČR GA301/98/0568; GA MŠk ME 085; GA MŠk ME 389 Grant - others:US(US) Czechoslovak Science and Technology Program 94043 Institutional research plan: CEZ:AV0Z5011922 Keywords : phosphate transport * fatty acids Subject RIV: CE - Biochemistry Impact factor: 7.258, year: 2001

  7. Radiation inactivation studies of renal brush border water and urea transport

    International Nuclear Information System (INIS)

    Verkman, A.S.; Dix, J.A.; Seifter, J.L.; Skorecki, K.L.; Jung, C.Y.; Ausiello, D.A.

    1985-01-01

    Radiation inactivation was used to determine the nature and molecular weight of water and urea transport pathways in brush border membrane vesicles (BBMV) isolated from rabbit renal cortex. BBMV were frozen to -50 degrees C, irradiated with 1.5 MeV electrons, thawed, and assayed for transport or enzyme activity. The freezing process had no effect on enzyme or transport kinetics. BBMV alkaline phosphatase activity gave linear ln(activity) vs. radiation dose plots with a target size of 68 +/- 3 kDa, similar to previously reported values. Water and solute transport were measured using the stopped-flow light-scattering technique. The rates of acetamide and osmotic water transport did not depend on radiation dose (0-7 Mrad), suggesting that transport of these substances does not require a protein carrier. In contrast, urea and thiourea transport gave linear ln(activity) vs. dose curves with a target size of 125-150 kDa; 400 mM urea inhibited thiourea flux by -50% at 0 and 4.7 Mrad, showing that radiation does not affect inhibitor binding to surviving transporters. These studies suggest that BBMV urea transport requires a membrane protein, whereas osmotic water transport does not

  8. Extreme hyperphosphatemia and hypocalcemic coma associated with phosphate enema.

    Science.gov (United States)

    Hsu, Heng Jung; Wu, Mai-Szu

    2008-01-01

    Fleet enema (sodium phosphate, C.B. Fleet Co., Inc., Lynchburg, Virginia) is widely used for bowel preparation or constipation relief in the hospital and over the counter. The potential risks, including hyperphosphatemia and hypocalcemic coma should be kept in mind of primary care physician. The patients with older age, bowel obstruction, small intestinal disorders, poor gut motility, and renal disease are contraindicated or should be administered with caution. We present a patient with old age and chronic renal failure who developed severe hyperphosphatemia and hypocalcemic tetany with coma after sodium phosphate enema. We recommend the use of alternative enema preparations, such as simple tap water or saline solution enemas, which can prevent fatal complications in high risk patients.

  9. Molecular cloning and functional analysis of a H(+)-dependent phosphate transporter gene from the ectomycorrhizal fungus Boletus edulis in southwest China.

    Science.gov (United States)

    Wang, Junling; Li, Tao; Wu, Xiaogang; Zhao, Zhiwei

    2014-01-01

    Phosphate transporters (PTs), as entry points for phosphorus (P) in organisms, are involved in a number of P nutrition processes such as phosphate uptake, transport, and transfer. In the study, a PT gene 1632 bp long (named BePT) was cloned, identified, and functionally characterized from Boletus edulis. BePT was expected to encode a polypeptide with 543 amino acid residues. The BePT polypeptide belonged to the major facilitator superfamily and showed a high degree of sequence identity to the Pht1 family. A topology model revealed that BePT exhibited 12 transmembrane helices, divided into two halves, and connected by a large hydrophilic loop in the middle. A yeast mutant complementation analysis suggested that BePT was a functional PT which mediated orthophosphate uptake of yeast at micromolar concentrations. Green fluorescent protein-BePT fusion proteins expressed were extensively restricted to the plasma membrane in BePT transformed yeast, and its activity was dependent on electrochemical membrane potential. In vitro, quantitative PCR confirmed that the expression of BePT was significantly upregulated at lower phosphorus availability, which may enhance phosphate uptake and transport under phosphate starvation. Our results suggest that BePT plays a key role in phosphate acquisition in the ectomycorrhizal fungus B. edulis. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Renal expression of FGF23 in progressive renal disease of diabetes and the effect of ACE inhibitor.

    Directory of Open Access Journals (Sweden)

    Cristina Zanchi

    Full Text Available Fibroblast growth factor 23 (FGF23 is a phosphaturic hormone mainly produced by bone that acts in the kidney through FGF receptors and Klotho. Here we investigated whether the kidney was an additional source of FGF23 during renal disease using a model of type 2 diabetic nephropathy. Renal expression of FGF23 and Klotho was assessed in Zucker diabetic fatty (ZDF and control lean rats at 2, 4, 6, 8 months of age. To evaluate whether the renoprotective effect of angiotensin converting enzyme (ACE inhibitor in this model was associated with changes in FGF23 and Klotho, ZDF rats received ramipril from 4, when proteinuric, to 8 months of age. FGF23 mRNA was not detectable in the kidney of lean rats, nor of ZDF rats at 2 months of age. FGF23 became measurable in the kidney of diabetic rats at 4 months and significantly increased thereafter. FGF23 protein localized in proximal and distal tubules. Renal Klotho mRNA and protein decreased during time in ZDF rats. As renal disease progressed, serum phosphate levels increased in parallel with decline of fractional phosphorus excretion. Ramipril limited proteinuria and renal injury, attenuated renal FGF23 upregulation and ameliorated Klotho expression. Ramipril normalized serum phosphate levels and tended to increase fractional phosphorus excretion. These data indicate that during progressive renal disease the kidney is a site of FGF23 production which is limited by ACE inhibition. Interfering pharmacologically with the delicate balance of FGF23 and phosphorus in diabetes may have implications in clinics.

  11. Increased serum phosphate concentrations in patients with advanced chronic kidney disease treated with diuretics.

    Science.gov (United States)

    Caravaca, Francisco; García-Pino, Guadalupe; Martínez-Gallardo, Rocío; Ferreira-Morong, Flavio; Luna, Enrique; Alvarado, Raúl; Ruiz-Donoso, Enrique; Chávez, Edgar

    2013-01-01

    Serum phosphate concentrations usually show great variability in patients with advanced chronic kidney disease (ACKD) not on dialysis. Diuretics treatment can have an influence over the severity of mineral-bone metabolism alterations related to ACKD, but their effect on serum phosphate levels is less known. This study aims to determine whether diuretics are independently associated with serum phosphate levels, and to investigate the mechanisms by which diuretics may affect phosphate metabolism. 429 Caucasian patients with CKD not on dialysis were included in this cross-sectional study. In addition to conventional serum biochemical measures, the following parameters of renal phosphate excretion were assessed: 24-hours urinary phosphate excretion, tubular maximum phosphate reabsorption (TmP), and fractional excretion of phosphate (FEP). 58% of patients were on treatment with diuretics. Patients on diuretics showed significantly higher mean serum phosphate concentration (4.78 ± 1.23 vs. 4.24 ± 1.04 mg/dl; Pdiuretics. By multivariate linear and logistic regression, significant associations between diuretics and serum phosphate concentrations or hyperphosphataemia remained after adjustment for potential confounding variables. In patients with the highest phosphate load adjusted to kidney function, those treated with diuretics showed significantly lower FEP than those untreated with diuretics. Treatment with diuretics is associated with increased serum phosphate concentrations in patients with ACKD. Diuretics may indirectly interfere with the maximum renal compensatory capacity to excrete phosphate. Diuretics should be considered in the studies linking the relationship between serum phosphate concentrations and cardiovascular alterations in patients with CKD.

  12. The rise and fall of novel renal magnesium transporters.

    Science.gov (United States)

    Schäffers, Olivier J M; Hoenderop, Joost G J; Bindels, René J M; de Baaij, Jeroen H F

    2018-06-01

    Body Mg 2+ balance is finely regulated in the distal convoluted tubule (DCT), where a tight interplay among transcellular reabsorption, mitochondrial exchange, and basolateral extrusion takes place. In the last decades, several research groups have aimed to identify the molecular players in these processes. A multitude of proteins have been proposed to function as Mg 2+ transporter in eukaryotes based on phylogenetic analysis, differential gene expression, and overexpression studies. However, functional evidence for many of these proteins is lacking. The aim of this review is, therefore, to critically reconsider all putative Mg 2+ transporters and put their presumed function in context of the renal handling of Mg 2+ . Sufficient experimental evidence exists to acknowledge transient receptor potential melastatin (TRPM) 6 and TRPM7, solute carrier family 41 (SLC41) A1 and SLC41A3, and mitochondrial RNA splicing 2 (MRS2) as Mg 2+ transporters. TRPM6/7 facilitate Mg 2+ influx, SLC41A1 mediates Mg 2+ extrusion, and MRS2 and SLC41A3 are implicated in mitochondrial Mg 2+ homeostasis. These proteins are highly expressed in the DCT. The function of cyclin M (CNNM) proteins is still under debate. For the other proposed Mg 2+ transporters including Mg 2+ transporter subtype 1 (MagT1), nonimprinted in Prader-Willi/Angelman syndrome (NIPA), membrane Mg 2+ transport (MMgT), Huntingtin-interacting protein 14 (HIP14), and ATP13A4, functional evidence is limited, or functions alternative to Mg 2+ transport have been suggested. Additional characterization of their Mg 2+ transport proficiency should be provided before further claims about their role as Mg 2+ transporter can be made.

  13. Modulation of small intestinal phosphate transporter by dietary supplements of mineral phosphorus and phytase in broilers.

    Science.gov (United States)

    Huber, Korinna; Zeller, Ellen; Rodehutscord, Markus

    2015-05-01

    Dietary phosphorus (P) is known as a main modulator of phosphate (Pi) transporter expression. The effect of supplemented mineral P with or without phytase on protein expression of two sodium-dependent Pi (NaPi) transporters and a calcium channel was studied in the small intestine of broilers. Thirty-six broilers were randomly assigned to six different diets at 15 days of age. Two levels of total P (tP, adjusted by monocalcium phosphate (MCP) supplementation), 0.39% (BD-) and 0.47% (BD+) were fed until day 25; and at each tP level, three levels of phytase were used with 0, 500, and 12,500 FTU/kg of an E. coli phytase. Mucosa samples from jejunum and ileum were taken and apical membranes were isolated by MgCl2 precipitation. Protein expression of NaPi IIb, NaPi type III (PiT1) and the calcium channel TRPV6 were semiquantitatively measured by Western blotting and jejunal mucosal phytase activity by measurement of Pi release. The jejunal NaPi IIb transporter was expressed with two distinct bands, which were modulated differently by diet. NaPi IIb Band1 increased (P phytase supplementation but was not affected by MCP supplementation. This inverse modulation of Band1 and Band2 was significantly related to the amount of net absorbed P with higher expression of Band1 at higher amounts of net absorbed P. In addition, a second Pi transporter, PiT1, was detected in which ileal expression decreased (P phytase supplementation. The expression of the calcium channel TRPV6 was increased in BD+ groups. A trend for an interaction between MCP and phytase supplementation on mucosal phytase activity was observed (P = 0.079) with a decrease in activity when BD+ with 12,500 FTU/kg phytase was fed. Chicken intestinal epithelial cells responded to dietary supplemented phytase and MCP by changing the Pi transporter expression in apical membranes. In conclusion, availability of Pi is most likely the key modulator of transporter protein expression. However, a contribution of lower inositol

  14. Promoting effects of potassium dibasic phosphate on early-stage renal carcinogenesis in unilaterally nephrectomized rats treated with N-ethyl-N-hydroxyethylnitrosamine.

    Science.gov (United States)

    Hiasa, Y; Konishi, N; Nakaoka, S; Nakamura, T; Nishii, K; Ohshima, M

    1992-07-01

    The effects of potassium dibasic phosphate (PDP), potassium aluminum sulfate (PAS) and copper sulfate (CS) on early-stage renal carcinogenesis were investigated in unilaterally nephrectomized male Wistar rats after N-ethyl-N-hydroxyethylnitrosamine (EHEN) administration. After feeding 1,000 ppm EHEN, or basal diet for 2 weeks and removal of the left kidney at week 3, male Wistar rats were divided into 8 groups of 20 rats each. These groups received the following dietary treatments: 50,000 ppm PDP, 50,000 ppm PAS, 5,000 ppm CS or basal diet, respectively, for 18 weeks from weeks 3 to 20. The average numbers of adenomatous hyperplasias counted as preneoplastic lesions in the EHEN with 50,000 ppm PDP group were significantly higher than in the EHEN alone group or the EHEN followed by 50,000 ppm PAS or 5,000 ppm CS group. The treatment with 50,000 ppm PDP induced renal calcification and promoted the development of preneoplastic lesions in unilaterally nephrectomized rats treated with EHEN, but that with 50,000 ppm PAS or 5,000 ppm CS did not.

  15. Promoting Effects of Potassium Dibasic Phosphate on Early‐stage Renal Carcinogenesis in Unilaterally Nephrectomized Rats Treated with N‐Ethyl‐N‐hydroxyethylnitrosamine

    Science.gov (United States)

    Konishi, Noboru; Nakaoka, Shingo; Nakamura, Toshimitsu; Nishii, Kiyoji; Ohshima, Masato

    1992-01-01

    The effects of potassium dibasic phosphate (PDP), potassium aluminum sulfate (PAS) and copper sulfate (CS) on early‐stage renal carcinogenesis were investigated in unilaterally nephrectomized male Wistar rats after N‐ethyl‐N‐hydroxyethylnitrosamine (EHEN) administration. After feeding 1,000 ppm EHEN, or basal diet for 2 weeks and removal of the left kidney at week 3, male Wistar rats were divided into 8 groups of 20 rats each. These groups received the following dietary treatments: 50,000 ppm PDP, 50,000 ppm PAS, 5,000 ppm CS or basal diet, respectively, for 18 weeks from weeks 3 to 20. The average numbers of adenomatous hyperplasias counted as preneoplastic lesions in the EHEN with 50,000 ppm PDP group were significantly higher than in the EHEN alone group or the EHEN followed by 50,000 ppm PAS or 5,000 ppm CS group. The treatment with 50,000 ppm PDP induced renal calcification and promoted the development of preneoplastic lesions in unilaterally nephrectomized rats treated with EHEN, but that with 50,000 ppm PAS or 5,000 ppm CS did not. PMID:1517146

  16. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    Science.gov (United States)

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the

  17. Phosphate Salts

    Science.gov (United States)

    ... body. They are involved in cell structure, energy transport and storage, vitamin function, and numerous other processes ... Phosphate-containing foods and beverages include cola, wine, beer, whole grain cereals, nuts, dairy products and some ...

  18. Results of the use of a kinetic model of radiohippuran transport in the human body for quantitative assessment of summary and isolated renal function

    International Nuclear Information System (INIS)

    Ryabov, S.I.; Degtereva, O.A.; Klemina, I.K.; Degterev, B.V.; Senchik, R.V.

    1986-01-01

    The results of a method for the interpretation of commonly used methods of the determination of blood clearance and radionephrography with 131 I-hipuran based on a mathematical model of its transport in the human body are presented. Empirical values of model parameters were obtained in 120 patients with chronic glomerulo- and pyelonephritides verified morphologically and roentgenologically. The use of computational-interpretation algorithms made it possible to determine the volume of circulating plasma (blood), values of true summary and isolated effective renal plasma flow (blood flow) by means of a single i.v. hippuran administration. New indicators for assessment of isolated excretory-transport function and renal hemodynamics as well as indicators of the symmetry of renal function were proposed. The results of a statistical analysis made it possible to recommend some of them as criteria of early diagnosis of preuremic disorder of renal function. Radionuclide indicators of renal function showed good correlation with biochemical, morphological and roentgenological characteristics of renal damage in renal

  19. Application of physiologically-based pharmacokinetic modeling to explore the role of kidney transporters in renal reabsorption of perfluorooctanoic acid in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Worley, Rachel Rogers, E-mail: idz7@cdc.gov [Agency for Toxic Substances and Disease Registry, Division of Community Health Investigations, 4770 Buford Highway, Atlanta, GA 30341 (United States); Interdisciplinary Toxicology Program, University of Georgia, 341 Pharmacy South, Athens, GA 30602 (United States); Fisher, Jeffrey [Interdisciplinary Toxicology Program, University of Georgia, 341 Pharmacy South, Athens, GA 30602 (United States); Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079 (United States)

    2015-12-15

    ABSTRACT: Renal elimination and the resulting clearance of perfluorooctanoic acid (PFOA) from the serum exhibit pronounced sex differences in the adult rat. The literature suggests that this is largely due to hormonally regulated expression of organic anion transporters (OATs) on the apical and basolateral membranes of the proximal tubule cells that facilitate excretion and reabsorption of PFOA from the filtrate into the blood. Previously developed PBPK models of PFOA exposure in the rat have not been parameterized to specifically account for transporter-mediated renal elimination. We developed a PBPK model for PFOA in male and female rats to explore the role of Oat1, Oat3, and Oatp1a1 in sex-specific renal reabsorption and excretion of PFOA. Descriptions of the kinetic behavior of these transporters were extrapolated from in vitro studies and the model was used to simulate time-course serum, liver, and urine data for intravenous (IV) and oral exposures in both sexes. Model predicted concentrations of PFOA in the liver, serum, and urine showed good agreement with experimental data for both male and female rats indicating that in vitro derived physiological descriptions of transporter-mediated renal reabsorption can successfully predict sex-dependent excretion of PFOA in the rat. This study supports the hypothesis that sex-specific serum half-lives for PFOA are largely driven by expression of transporters in the kidney and contribute to the development of PBPK modeling as a tool for evaluating the role of transporters in renal clearance. - Highlights: • The PBPK model for PFOA in the rat explores the role of OATs in sex-specific clearance. • Descriptions of OAT kinetics were extrapolated from in vitro studies. • Model predictions showed good fit with experimental data for male and female rats.

  20. Application of physiologically-based pharmacokinetic modeling to explore the role of kidney transporters in renal reabsorption of perfluorooctanoic acid in the rat

    International Nuclear Information System (INIS)

    Worley, Rachel Rogers; Fisher, Jeffrey

    2015-01-01

    ABSTRACT: Renal elimination and the resulting clearance of perfluorooctanoic acid (PFOA) from the serum exhibit pronounced sex differences in the adult rat. The literature suggests that this is largely due to hormonally regulated expression of organic anion transporters (OATs) on the apical and basolateral membranes of the proximal tubule cells that facilitate excretion and reabsorption of PFOA from the filtrate into the blood. Previously developed PBPK models of PFOA exposure in the rat have not been parameterized to specifically account for transporter-mediated renal elimination. We developed a PBPK model for PFOA in male and female rats to explore the role of Oat1, Oat3, and Oatp1a1 in sex-specific renal reabsorption and excretion of PFOA. Descriptions of the kinetic behavior of these transporters were extrapolated from in vitro studies and the model was used to simulate time-course serum, liver, and urine data for intravenous (IV) and oral exposures in both sexes. Model predicted concentrations of PFOA in the liver, serum, and urine showed good agreement with experimental data for both male and female rats indicating that in vitro derived physiological descriptions of transporter-mediated renal reabsorption can successfully predict sex-dependent excretion of PFOA in the rat. This study supports the hypothesis that sex-specific serum half-lives for PFOA are largely driven by expression of transporters in the kidney and contribute to the development of PBPK modeling as a tool for evaluating the role of transporters in renal clearance. - Highlights: • The PBPK model for PFOA in the rat explores the role of OATs in sex-specific clearance. • Descriptions of OAT kinetics were extrapolated from in vitro studies. • Model predictions showed good fit with experimental data for male and female rats.

  1. Construction of bioartificial renal tubule assist device in vitro and its function of transporting sodium and glucose.

    Science.gov (United States)

    Dong, Xinggang; Chen, Jianghua; He, Qiang; Yang, Yi; Zhang, Wei

    2009-08-01

    To explore a new way of constructing bioartificial renal tubule assist device (RAD) in vitro and its function of transporting sodium (Na(+)) and glucose and to evaluate the application of atomic force microscope in the RAD construction, rat renal tubular epithelial cell line NRK-52E was cultured in vitro, seeded onto the outer surfaces of hollow fibers in a bioreactor, and then cultured for two weeks to construct RAD. Bioreactor hollow fibers without NRK-52E cells were used as control. The morphologies of attached cells were observed with scanning electron microscope, and the junctions of cells and polysulfone membrane were observed with atomic force microscope. Transportation of Na(+) and glucose was measured. Oubaine and phlorizin were used to inhibit the transporting property. The results showed that NRK-52E cells and polysulfone membrane were closely linked, as observed under atomic force microscope. After exposure to oubaine and phlorizin, transporting rates of Na(+) and glucose were decreased significantly in the RAD group as compared with that in the control group (Pconstructed successfully in vitro, and it is able to selectively transport Na(+) and glucose.

  2. Similar nature of ionic imbalances in cardiovascular and renal disorders

    International Nuclear Information System (INIS)

    Shahid, S.M.; Jawed, M.; Akram, H.; Mahboob, T.

    2004-01-01

    Background: Several studies have reported improper ionic environment in cardiovascular and renal patients but how the diseases are associated on ionic basis is still not clear. Objective: The present study was aimed to investigate sodium and potassium concentrations and their transport abnormalities in cardiovascular and renal patients. Patients and Methods: Thirty patients of various cardiovascular and thirty patients of various renal disorders (53.33% males, 46.67% females) were selected. Erythrocytes were isolated from freshly drawn blood samples, washed and used for the estimation of sodium and potassium levels using flame photometer (Corning 410). Serum sodium and potassium were measured by flame photometer. RBC membranes were prepared for the estimation of Na/sup +/-K/sup +/-ATPase activity in terms of inorganic phosphate released/mg protein/hour. Results: Intra-erythrocyte and serum sodium and potassium concentrations and Na/sup +/-K/sup +/-ATPase activity were different in cardiovascular and renal patients from controls. Intra-erythrocyte sodium level was increased significantly (P<0.01) in cardiovascular patients and non-significantly in renal patients as compared to controls. Na/sup +/-K/sup +/-ATPase activity and serum sodium level were decreased significantly (P<0.01) in both the groups as compared to controls. Serum potassium was found to be decreased significantly (P<0.01) in cardiovascular patients whereas it was raised significantly (P<0.01) in renal patients as compared to control subjects. Conclusion: The results indicated similar nature of ionic and electrolyte imbalances in cardiovascular and renal disorders resulting from impaired Na/sup +/-K/sup +/-ATPase system. Further investigations in the same area, may be of help to establish an understanding of the progression of diseases, associated complications and the preventive steps that should-be taken to arrest the progression of these disorders. (author)

  3. Transport of Th(IV) and U(VI) through barium silico-phosphate composite membrane using electric field

    International Nuclear Information System (INIS)

    Zaki, E.E.

    2002-01-01

    The present paper describes the preparation of a novel barium silico-phosphate filter paper supported membrane. It is based on precipitation reaction of barium silico-phosphate on the outer surface and in the interstices of a filter paper by means of electrodialysis. The main physical and electrical properties of the membrane are given and its electrodialysis behaviour is assessed for Th(IV) and U(VI). The transport of Th(IV) in presence of U(VI) was studied. The cationic fluxes of Th(IV) and U(VI) were found to be 1.2 x 10 -8 and 6.5 x 10 -9 g eq cm -2 s -1 , respectively. Transport of Th(IV) and U(VI) in presence of EDTA was investigated. The cationic flux of U(VI) is found to be 9.8 x 10 -9 g eq cm -2 s -1 at a current density of 25 mA/cm 2 . A comparative study on the electro osmotic effect was carried out using the developed membrane and commercially available Nafion membranes. In this context, different parameters like current density, electrolyte concentration, etc. were investigated. The electro-osmotic permeability coefficient, D e , of Th(IV) through barium silico-phosphate and Nafion membranes were 6.9 x 10 -2 and 1.0 x 10 -2 cm 3 /As, respectively. It can be concluded that inorganic membranes have very marked electro-osmotic properties unlike their organic counterparts. (orig.)

  4. Renal lithiasis and nutrition

    Directory of Open Access Journals (Sweden)

    Prieto Rafel M

    2006-09-01

    Full Text Available Abstract Renal lithiasis is a multifactorial disease. An important number of etiologic factors can be adequately modified trough diet, since it must be considered that the urine composition is directly related to diet. In fact, the change of inappropriate habitual diet patterns should be the main measure to prevent kidney stones. In this paper, the relation between different dietary factors (liquid intake, pH, calcium, phosphate, oxalate, citrate, phytate, urate and vitamins and each type of renal stone (calcium oxalate monohydrate papillary, calcium oxalate monohydrate unattached, calcium oxalate dihydrate, calcium oxalate dihydrate/hydroxyapatite, hydroxyapatite, struvite infectious, brushite, uric acid, calcium oxalate/uric acid and cystine is discussed.

  5. Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+.

    NARCIS (Netherlands)

    Dimke, H.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2010-01-01

    The kidney plays an important role in maintaining the systemic Ca2+ and Mg2+ balance. Thus the renal reabsorptive capacity of these cations can be amended to adapt to disturbances in plasma Ca2+ and Mg2+ concentrations. The reabsorption of Ca2+ and Mg2+ is driven by transport of other electrolytes,

  6. Modeling of Glycerol-3-Phosphate Transporter Suggests a Potential ‘Tilt’ Mechanism involved in its Function

    Science.gov (United States)

    Tsigelny, Igor F.; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K.

    2009-01-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane α-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family — the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY) — have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational “switching” mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible “switch” mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.23 We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a “tilt” of 9°–10° rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the “tilted” structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while

  7. Phosphate attenuates the anti-proteinuric effect of very low-protein diet in CKD patients.

    Science.gov (United States)

    Di Iorio, Biagio R; Bellizzi, Vincenzo; Bellasi, Antonio; Torraca, Serena; D'Arrigo, Graziella; Tripepi, Giovanni; Zoccali, Carmine

    2013-03-01

    High phosphate levels attenuate nephroprotection through angiotensin-converting enzyme inhibition in patients with proteinuric chronic kidney disease (CKD). Whether this phenomenon holds true for other nephroprotective interventions like very-low-protein diet (VLPD) is unknown. We tested the hypothesis that phosphate interferes with the anti-proteinuric response to VLPD in a non-randomized, sequential study in 99 proteinuric CKD patients who sequentially underwent low-protein diet (LPD; 0.6 g/kg) and VLPD (0.3 g/kg) supplemented with keto-analogues, each for periods longer than 1 year. Serum phosphate significantly reduced during VLPD (3.2 ± 0.6 mg/dL) when compared with LPD (3.7 ± 0.6 mg/dL, P diet periods. In linear mixed models including the diagnosis of renal disease, eGFR, 24-h urine sodium and urea and other potential confounders, there was a strong interaction between serum phosphate (P = 0.04) and phosphaturia (P < 0.001) with the anti-proteinuric response to VLPD. Accordingly, 24-h proteinuria reduced modestly in patients who maintained relatively higher serum phosphate levels or relatively higher phosphaturia to be maximal in those who achieved the lowest level of serum and urine phosphate. Phosphate is an important modifier of the anti-proteinuric response to VLPD. Reducing phosphate burden may decrease proteinuria and slow the progression of renal disease in CKD patients, an issue that remains to be tested in specific clinical trials.

  8. Mathematical rationalization for the renal tubular transport: revised concepts.

    Science.gov (United States)

    Mioni, Roberto; Marega, Alessandra; Romano, Giulio; Montanaro, Domenico

    2017-09-01

    The current emphasis on kinetics and in situ control of molecular exchanges, across the tubular membrane, has not been paralleled by corresponding improvements in our understanding of tubular behaviour at the macroscopic level of classical physiology. In this paper, we propose a mathematical rationalization of macroscopic tubular transport by means of a principal transport equation, originating from the law of mass action between substrate and carrier. The other equations, derived from the main one, demonstrate the possibility of distinguishing between transporters with low affinity and high capacity and transporters with high affinity and low capacity. Moreover, our model formalizes both tubular reabsorption and tubular secretion. Regarding the renal calcium handling, our model confirms the two-compartment system proposed by Mioni in 1971, with some important variants, which are in agreement with the fractional reabsorptions of this cation along the tubule, as verified by micro-puncture technique. To obtain the frequency distribution of saturated tubules, we have utilized the infinitesimal analysis method, starting from the equations proposed by Smith in 1943, concluding that all titration curves result from the combined effect of enzymatic approach and anatomical heterogeneity of the nephrons. The theoretical equations included in our manuscript reflect substantial and palpable physiological mechanisms able to suggest diagnosis and therapy of some electrolyte and hormonal disorders. At the end of this paper, we highlight advantages and disadvantages detectable by comparing our mathematical approach with Marshall's and Bijvoet's methods, proposed, respectively, in 1976 and 1984.

  9. Evaluation of intestinal phosphate binding to improve the safety profile of oral sodium phosphate bowel cleansing.

    Directory of Open Access Journals (Sweden)

    Stef Robijn

    Full Text Available Prior to colonoscopy, bowel cleansing is performed for which frequently oral sodium phosphate (OSP is used. OSP results in significant hyperphosphatemia and cases of acute kidney injury (AKI referred to as acute phosphate nephropathy (APN; characterized by nephrocalcinosis are reported after OSP use, which led to a US-FDA warning. To improve the safety profile of OSP, it was evaluated whether the side-effects of OSP could be prevented with intestinal phosphate binders. Hereto a Wistar rat model of APN was developed. OSP administration (2 times 1.2 g phosphate by gavage with a 12h time interval induced bowel cleansing (severe diarrhea and significant hyperphosphatemia (21.79 ± 5.07 mg/dl 6h after the second OSP dose versus 8.44 ± 0.97 mg/dl at baseline. Concomitantly, serum PTH levels increased fivefold and FGF-23 levels showed a threefold increase, while serum calcium levels significantly decreased from 11.29 ± 0.53 mg/dl at baseline to 8.68 ± 0.79 mg/dl after OSP. OSP administration induced weaker NaPi-2a staining along the apical proximal tubular membrane. APN was induced: serum creatinine increased (1.5 times baseline and nephrocalcinosis developed (increased renal calcium and phosphate content and calcium phosphate deposits on Von Kossa stained kidney sections. Intestinal phosphate binding (lanthanum carbonate or aluminum hydroxide was not able to attenuate the OSP induced side-effects. In conclusion, a clinically relevant rat model of APN was developed. Animals showed increased serum phosphate levels similar to those reported in humans and developed APN. No evidence was found for an improved safety profile of OSP by using intestinal phosphate binders.

  10. Renal accumulation of [{sup 111}In]DOTATOC in rats: influence of inhibitors of the organic ion transport and diuretics

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, A.R. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich (Germany); Universitaetsklinikum Essen, Department of Radiology, Essen (Germany); Wagner, B.; Heemann, U.; Lutz, J. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Nephrology, Munich (Germany); Poethko, T.; Perutka, M.; Wester, H.J.; Essler, M.; Schwaiger, M. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich (Germany)

    2007-12-15

    Radiation exposure to the kidney limits therapy with radiometal labelled DOTATOC. This study evaluates the organic anion and cation transport (inhibitors: probenecid and cimetidine/dexamethason) as well as diuresis (furosemide and mannitol) regarding renal uptake of [{sup 111}In]DOTATOC. One hundred eight male Fisher rats were injected with [{sup 111}In]DOTATOC via the tail vein. Prior to activity injection a total of 84 rats underwent injection with probenecid vs. sodium chloride 0.9% (48 rats), cimetidine vs. dexamethasone vs. sodium chloride 0.9% (18 rats), and furosemide vs. mannitol vs. sodium chloride 0.9% (18 rats). Rats were sacrificed at predetermined time points up to 48 h after activity injection. Kidneys, adrenal glands, pancreas, spleen, blood, liver, and muscle were harvested and injected activity per gram tissue was determined. Autoradiographic images of the kidneys were acquired in a total of 24 rats. Probenecid led to a reduction in renal uptake by up to 30% while not significantly changing the activity accumulation in the other organs investigated. This reduction was attributable to the renal cortex (ratio cortex/medulla 1.72 vs. 1.99; p = 0.006). Cimetidine and dexamethasone had no effect in any of the organs. Furosemide led to a 44% increase in renal activity accumulation attributable to enhanced renal medullary uptake (ratio cortex/medulla 1.44 versus 1.69; p = 0.006). Mannitol had no effect on renal activity uptake. Inhibition of the organic anion transport by probenecid may help reduce renal uptake regarding therapy with radiometal labelled DOTATOC. The enhancing effect of furosemide may be unfavourable for therapy. The results must be confirmed by human studies. (orig.)

  11. Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation.

    Science.gov (United States)

    Beggs, Megan R; Appel, Ida; Svenningsen, Per; Skjødt, Karsten; Alexander, R Todd; Dimke, Henrik

    2017-09-01

    Significant alterations in maternal calcium (Ca 2+ ) and magnesium (Mg 2+ ) balance occur during lactation. Ca 2+ is the primary divalent cation mobilized into breast milk by demineralization of the skeleton and alterations in intestinal and renal Ca 2+ transport. Mg 2+ is also concentrated in breast milk, but the underlying mechanisms are not well understood. To determine the molecular alterations in Ca 2+ and Mg 2+ transport in the intestine and kidney during lactation, three groups of female mice consisting of either nonpregnant controls, lactating mice, or mice undergoing involution were examined. The fractional excretion of Ca 2+ , but not Mg 2+ , rose significantly during lactation. Renal 1-α hydroxylase and 24-OHase mRNA levels increased markedly, as did plasma 1,25 dihydroxyvitamin D levels. This was accompanied by significant increases in intestinal expression of Trpv6 and S100g in lactating mice. However, no alterations in the expression of cation-permeable claudin-2, claudin-12, or claudins-15 were found in the intestine. In the kidney, increased expression of Trpv5 and Calb1 was observed during lactation, while no changes in claudins involved in Ca 2+ and Mg 2+ transport (claudin-2, claudin-14, claudin-16, or claudin-19) were found. Consistent with the mRNA expression, expression of both calbindin-D 28K and transient receptor potential vanilloid 5 (TRPV5) proteins increased. Colonic Trpm6 expression increased during lactation, while renal Trpm6 remained unaltered. In conclusion, proteins involved in transcellular Ca 2+ and Mg 2+ transport pathways increase during lactation, while expression of paracellular transport proteins remained unchanged. Increased fractional Ca 2+ excretion can be explained by vitamin D-dependent intestinal hyperabsorption and bone demineralization, despite enhanced transcellular Ca 2+ uptake by the kidney. Copyright © 2017 the American Physiological Society.

  12. Flozins, inhibitors of type 2 renal sodium-glucose co-transporter – not only antihyperglycemic drugs

    Directory of Open Access Journals (Sweden)

    Mizerski Grzegorz

    2015-09-01

    Full Text Available The kidneys play a crucial role in the regulation of the carbohydrate metabolism. In normal physiological conditions, the glucose that filters through the renal glomeruli is subsequently nearly totally reabsorbed in the proximal renal tubules. Two transporters are engaged in this process: sodium-glucose co-transporter type 1 (SGLT1, and sodium-glucose co-transporter type type 2 (SGLT2 - this being located in the luminal membrane of the renal tubular epithelial cells. It was found that the administration of dapagliflozin, a selective SGLT2 inhibitor, in patients with type 2 diabetes, is associated with the reduction of HbA1c concentration by 0.45-1.11%. Additional benefits from the treatment with dapagliflozin are the reduction of arterial blood pressure and a permanent reduction of body weight. This outcome is related to the effect of osmotic diuresis and to the considerable loss of the glucose load by way of urine excretion. Dapagliflozin may be successfully applied in type 2 diabetes monotherapy, as well as in combined therapy (including insulin, where it is equally effective as other oral anti-diabetic drugs. Of note: serious adverse effects of dapagliflozin administration are rarely observed. What is more, episodes of severe hypoglycaemia related with the treatment occur only sporadically, most often in the course of diabetes polytherapy. The most frequent effects of the SGLT2 inhibitors are inseparably associated with the mechanism of their action (the glucuretic effect, and cover urogenital infections with a mild clinical course. At present, clinical trials are being continued of the administration of several subsequent drugs from this group, the most advanced of these being the use of canagliflozin and empagliflozin.

  13. Excessive fructose intake causes 1,25-(OH)2D3-dependent inhibition of intestinal and renal calcium transport in growing rats

    Science.gov (United States)

    Douard, Veronique; Sabbagh, Yves; Lee, Jacklyn; Patel, Chirag; Kemp, Francis W.; Bogden, John D.; Lin, Sheldon

    2013-01-01

    We recently discovered that chronic high fructose intake by lactating rats prevented adaptive increases in rates of active intestinal Ca2+ transport and in levels of 1,25-(OH)2D3, the active form of vitamin D. Since sufficient Ca2+ absorption is essential for skeletal growth, our discovery may explain findings that excessive consumption of sweeteners compromises bone integrity in children. We tested the hypothesis that 1,25-(OH)2D3 mediates the inhibitory effect of excessive fructose intake on active Ca2+ transport. First, compared with those fed glucose or starch, growing rats fed fructose for 4 wk had a marked reduction in intestinal Ca2+ transport rate as well as in expression of intestinal and renal Ca2+ transporters that was tightly associated with decreases in circulating levels of 1,25-(OH)2D3, bone length, and total bone ash weight but not with serum parathyroid hormone (PTH). Dietary fructose increased the expression of 24-hydroxylase (CYP24A1) and decreased that of 1α-hydroxylase (CYP27B1), suggesting that fructose might enhance the renal catabolism and impair the synthesis, respectively, of 1,25-(OH)2D3. Serum FGF23, which is secreted by osteocytes and inhibits CYP27B1 expression, was upregulated, suggesting a potential role of bone in mediating the fructose effects on 1,25-(OH)2D3 synthesis. Second, 1,25-(OH)2D3 treatment rescued the fructose effect and normalized intestinal and renal Ca2+ transporter expression. The mechanism underlying the deleterious effect of excessive fructose intake on intestinal and renal Ca2+ transporters is a reduction in serum levels of 1,25-(OH)2D3. This finding is significant because of the large amounts of fructose now consumed by Americans increasingly vulnerable to Ca2+ and vitamin D deficiency. PMID:23571713

  14. Clinical usefulness of scintigraphy with 99mTechnetium phosphates in rhabdomyolysis

    International Nuclear Information System (INIS)

    Aizawa, Nobuyuki; Hara, Yoshikuni; Suzuki, Yutaka; Akashi, Tsunehiro; Kamei, Tetsumasa; Uchiyama, Fujio; Mitsui, Tamito; Yamazaki, Yuki.

    1990-01-01

    We performed bone scans with 99m Technetium phosphates in 15 cases of clinically suspected rhabdomyolysis admitted to Chigasaki Tokushukai Hospital. Whole body scans were performed within 5 days from the onset of illness or admission. Accumulation of the radioactivity in the skeletal muscle was revealed in 13 of the 15 cases and the involved muscle groups were visualized vividly. Etiologies of rhabdomyolysis were diverse, ranging from malignant syndrome to sepsis. Myocardial concentration was absent in all of the cases. Renal concentration of the isotope was seen in cases where the degree of rhabdomyolysis was higher and renal impairment was present. We conclude that 99m Technetium phosphate bone scan is useful in clinically suspected rhabdomyolysis as a diagnostic test and as a test to localize and quantitate the muscular involvement. (author)

  15. Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2

    Science.gov (United States)

    Hosomi, Atsushi; Nakanishi, Takeo; Fujita, Takuya; Tamai, Ikumi

    2012-01-01

    Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats. PMID:22348008

  16. Effect of magnesium deficiency on renal magnesium and calcium transport in the rat.

    OpenAIRE

    Carney, S L; Wong, N L; Quamme, G A; Dirks, J H

    1980-01-01

    Recollection of micropuncture experiments were performed on acutely thyroparathyroidectomized rats rendered magnesium deficient by dietary deprivation. Urinary magnesium excretion fell from a control of 15 to 3% of the filtered load after magnesium restriction. The loop of Henle, presumably the thick ascending limb, was the major modulator for renal magnesium homeostasis. The transport capacity for magnesium, however, was less in deficient rats than control animals. Absolute magnesium reabsor...

  17. Brown tumors in patients with chronic renal failure and secondary hyperparathyroidism: Report of 12 cases

    Directory of Open Access Journals (Sweden)

    Fatma Lilia

    2010-01-01

    Full Text Available Brown tumors are unusual but serious complications of renal osteodystrophy. We retrospectively studied 12 patients presenting with chronic renal failure and brown tumor related to secondary hyperparathyroidism. Eleven patients were on chronic hemodialysis. The median duration between renal failure and end stage renal failure was 36 months (range: 12-190 months and the median duration in dialysis for 11 cases: 92 months (range: 72-252 months. The bone pain was noted in all cases (100%, pathological fracture in one case (8% and a palpable bone tumor in 10 cases (83%. Elevated serum Calcium (> 2.35 mmol/L was noted in four cases (33%, elevated serum Phosphate (> 1.78 mmol/L in ten cases (80%, elevated serum Alkaline Phosphate (> 290 UI/L in all cases and intact PTH was > 300 pg/mL in all cases with a serum median rate at 1475 pg/mL (range: 682-3687 pg/L. Subtotal parathyroidectomy was performed in all cases with a resultant decrease in size of brown tumors. We report here patient with CKD with unusual frequency and variable locations. This may be attributed tothe lack of the new calcium free phosphate binders and calcimimetics.

  18. Acid-base transport by the renal proximal tubule.

    Science.gov (United States)

    Skelton, Lara A; Boron, Walter F; Zhou, Yuehan

    2010-01-01

    Each day, the kidneys filter 180 L of blood plasma, equating to some 4,300 mmol of the major blood buffer, bicarbonate (HCO3-). The glomerular filtrate enters the lumen of the proximal tubule (PT), and the majority of filtered HCO3- is reclaimed along the early (S1) and convoluted (S2) portions of the PT in a manner coupled to the secretion of H+ into the lumen. The PT also uses the secreted H+ to titrate non-HCO3- buffers in the lumen, in the process creating "new HCO3-" for transport into the blood. Thus, the PT - along with more distal renal segments - is largely responsible for regulating plasma [HCO3-]. In this review we first focus on the milestone discoveries over the past 50+ years that define the mechanism and regulation of acid-base transport by the proximal tubule. Further on in the review, we will summarize research still in progress from our laboratory, work that addresses the problem of how the PT is able to finely adapt to acid-base disturbances by rapidly sensing changes in basolateral levels of HCO3- and CO2 (but not pH), and thereby to exert tight control over the acid-base composition of the blood plasma.

  19. Sex-Differences in Renal Expression of Selected Transporters and Transcription Factors in Lean and Obese Zucker Spontaneously Hypertensive Fatty Rats

    Directory of Open Access Journals (Sweden)

    Andrea Babelova

    2015-01-01

    Full Text Available The aim of this study was to identify sex-dependent expression of renal transporter mRNA in lean and obese Zucker spontaneously hypertensive fatty (ZSF1 rats and to investigate the interaction of the most altered transporter, organic anion transporter 2 (Oat2, with diabetes-relevant metabolites and drugs. Higher incidence of glomerulosclerosis, tubulointerstitial fibrosis, and protein casts in Bowman’s space and tubular lumen was detected by PAS staining in obese male compared to female ZSF1 rats. Real-time PCR on RNA isolated from kidney cortex revealed that Sglt1-2, Oat1-3, and Oct1 were higher expressed in kidneys of lean females. Oct2 and Mrp2 were higher expressed in obese males. Renal mRNA levels of transporters were reduced with diabetic nephropathy in females and the expression of transcription factors Hnf1β and Hnf4α in both sexes. The highest difference between lean and obese ZSF1 rats was found for Oat2. Therefore, we have tested the interaction of human OAT2 with various substances using tritium-labeled cGMP. Human OAT2 showed no interaction with diabetes-related metabolites, diabetic drugs, and ACE-inhibitors. However, OAT2-dependent uptake of cGMP was inhibited by furosemide. The strongly decreased expression of Oat2 and other transporters in female diabetic ZSF1 rats could possibly impair renal drug excretion, for example, of furosemide.

  20. Modeling cell membrane transport: interaction of guanidinylated poly(propylene imine) dendrimers with a liposomal membrane consisting of phosphate-based lipids.

    Science.gov (United States)

    Tsogas, Ioannis; Tsiourvas, Dimitris; Nounesis, George; Paleos, Constantinos M

    2006-12-19

    Mixed anionic liposomes consisting of dihexadecyl phosphate, phosphatidylcholine, and cholesterol were employed as model systems for assessing the ability of a series of functionalized dendrimers, bearing a varying number of guanidinium groups at their surface, to translocate across the liposomal bilayers. At low guanidinium/phosphate molar ratios or when weakly guanidinylated dendrimeric derivatives were employed, the dendrimeric derivative acted as a kind of "molecular glue" leading to a simple adhesion of the liposomes. Liposomal fusion occurred to a certain extent at high guanidinium/phosphate molar ratios or when highly guanidinylated dendrimeric derivatives were employed. Furthermore, translocation of these dendrimeric derivatives to the liposomal core was observed for low to medium guanidinylation and at low guanidinium/phosphate molar ratios which was, however, enhanced when the lipid bilayer was in its fluid liquid-crystalline phase. Thus, an optimum balance is required between the binding strength of guanidinium with the phosphate groups and the degree of hydrophilicity of the guanidinylated dendrimers for the transport of the latter to the liposomal core to occur.

  1. Drug Transporter Genetic Variants Are Not Associated with TDF-Related Renal Dysfunction in Patients with HIV-1 Infection: A Pharmacogenetic Study.

    Science.gov (United States)

    Nishijima, Takeshi; Hayashida, Tsunefusa; Kurosawa, Takuma; Tanaka, Noriko; Oka, Shinichi; Gatanaga, Hiroyuki

    2015-01-01

    To investigate whether single nucleotide polymorphisms (SNP) of drug transporter proteins for TDF is a risk factor for TDF-related renal function decrement. This study investigated the association between 3 SNPs (ABCC2-24, 1249, and ABCB1 2677), which are shown to be associated with TDF-induced tubulopathy, and clinically important renal outcomes (>10ml/min/1.73m2 decrement in eGFR relative to baseline, >25% decrement in eGFR, and eGFR decrement in eGFR of >10ml/min/1.73m2 and those without such decrement (ABCC2: -24, p = 0.53, 1249, p = 0.68; ABCB1: 2677, p = 0.74), nor between those without and with the other two renal outcomes (>25% decrement: ABCC2: -24, p = 0.83, 1249, p = 0.97, ABCB1: 2677, p = 0.40; eGFR model that applied either dominant, recessive, or additive model yielded the same results. SNPs of the drug transporters for TDF are not associated with clinically important renal outcomes in patients who initiated TDF-containing ART.

  2. Electrogenic Na+-independent Pi transport in canine renal basolateral membrane vesicles

    International Nuclear Information System (INIS)

    Schwab, S.J.; Hammerman, M.R.

    1986-01-01

    To define the mechanism by which Pi exists from the renal proximal tubular cell across the basolateral membrane, we measured 32Pi uptake in basolateral membrane vesicles from dog kidney in the absence of Na+. Preloading of basolateral vesicles with 2 mM Pi transstimulated 32Pi uptake, which is consistent with counterflow. We used measurements of transstimulation to quantitate the transport component of 32Pi uptake. Transstimulation of 32Pi uptake was inhibited less than 30% by concentrations of probenecid as high as 50 mM. In contrast, transstimulation of 35SO4(2-) uptake by intravesicular SO4(2-) was inhibited 92% by 5 mM probenecid. Preloading basolateral vesicles with SO4(2-) did not result in transstimulation of 32Pi uptake. Accumulation of 32Pi in basolateral vesicles above steady state was driven by a membrane potential (intravesicular positive), consistent with Na+-independent Pi transport being accompanied by the net transfer of negative charge across the membrane. We conclude that carrier-mediated, electrogenic Na+-independent 32Pi transport can be demonstrated in basolateral vesicles from dog kidney. This process appears to be mediated, at least in part, via a mechanism different from that by which SO4(2-) is transported. Electrogenic Na+-independent Pi transport may reflect one means by which Pi reabsorbed across the luminal membrane exists from the proximal tubular cell down an electrochemical gradient

  3. Effect of dietary protein restriction on renal ammonia metabolism

    Science.gov (United States)

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Guo, Hui; Verlander, Jill W.

    2015-01-01

    Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction. PMID:25925252

  4. Hepatic and renal Bcrp transporter expression in mice treated with perfluorooctanoic acid

    International Nuclear Information System (INIS)

    Eldasher, Lobna M.; Wen, Xia; Little, Michael S.; Bircsak, Kristin M.; Yacovino, Lindsay L.; Aleksunes, Lauren M.

    2013-01-01

    Highlights: ► PFOA increased liver weight and Cyp4a14 mRNA and protein expression in mice. ► PFOA increased kidney Cyp4a14 mRNA in mice. ► PFOA increased Bcrp mRNA and protein in livers, but not kidneys, of mice. ► PFOA inhibited activation of human BCRP ATPase activity in vitro. ► PFOA inhibited human BCRP transport in inverted membrane vesicles. - Abstract: The breast cancer resistance protein (Bcrp) is an efflux transporter that participates in the biliary and renal excretion of drugs and environmental chemicals. Recent evidence suggests that pharmacological activation of the peroxisome proliferator activated receptor alpha (PPARα) can up-regulate the hepatic expression of Bcrp. The current study investigated the regulation of hepatic and renal Bcrp mRNA and protein in mice treated with the PPARα agonist perfluorooctanoic acid (PFOA) and the ability of PFOA to alter human BCRP function in vitro. Bcrp mRNA and protein expression were quantified in the livers and kidneys of male C57BL/6 mice treated with vehicle or PFOA (1 or 3 mg/kg/day oral gavage) for 7 days. PFOA treatment increased liver weights as well as the hepatic mRNA and protein expression of the PPARα target gene, cytochrome P450 4a14. Compared to vehicle-treated control mice, PFOA increased hepatic Bcrp mRNA and protein between 1.5- and 3-fold. Immunofluorescent staining confirmed enhanced canalicular Bcrp staining in liver sections from PFOA-treated mice. The kidney expression of cytochrome P450 4a14 mRNA, but not Bcrp, was increased in mice treated with PFOA. Micromolar concentrations of PFOA decreased human BCRP ATPase activity and inhibited BCRP-mediated transport in inverted membrane vesicles. Together, these studies demonstrate that PFOA induces hepatic Bcrp expression in mice and may inhibit human BCRP transporter function at concentrations that exceed levels observed in humans

  5. Clinical usefulness of scintigraphy with sup 99m Technetium phosphates in rhabdomyolysis

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Nobuyuki; Hara, Yoshikuni (Shonan Kamakura Hospital, Kanagawa (Japan)); Suzuki, Yutaka; Akashi, Tsunehiro; Kamei, Tetsumasa; Uchiyama, Fujio; Mitsui, Tamito; Yamazaki, Yuki

    1990-08-01

    We performed bone scans with {sup 99m}Technetium phosphates in 15 cases of clinically suspected rhabdomyolysis admitted to Chigasaki Tokushukai Hospital. Whole body scans were performed within 5 days from the onset of illness or admission. Accumulation of the radioactivity in the skeletal muscle was revealed in 13 of the 15 cases and the involved muscle groups were visualized vividly. Etiologies of rhabdomyolysis were diverse, ranging from malignant syndrome to sepsis. Myocardial concentration was absent in all of the cases. Renal concentration of the isotope was seen in cases where the degree of rhabdomyolysis was higher and renal impairment was present. We conclude that {sup 99m}Technetium phosphate bone scan is useful in clinically suspected rhabdomyolysis as a diagnostic test and as a test to localize and quantitate the muscular involvement. (author).

  6. Phosphate additives in food--a health risk.

    Science.gov (United States)

    Ritz, Eberhard; Hahn, Kai; Ketteler, Markus; Kuhlmann, Martin K; Mann, Johannes

    2012-01-01

    Hyperphosphatemia has been identified in the past decade as a strong predictor of mortality in advanced chronic kidney disease (CKD). For example, a study of patients in stage CKD 5 (with an annual mortality of about 20%) revealed that 12% of all deaths in this group were attributable to an elevated serum phosphate concentration. Recently, a high-normal serum phosphate concentration has also been found to be an independent predictor of cardiovascular events and mortality in the general population. Therefore, phosphate additives in food are a matter of concern, and their potential impact on health may well have been underappreciated. We reviewed pertinent literature retrieved by a selective search of the PubMed and EU databases (www.zusatzstoffe-online.de, www.codexalimentarius.de), with the search terms "phosphate additives" and "hyperphosphatemia." There is no need to lower the content of natural phosphate, i.e. organic esters, in food, because this type of phosphate is incompletely absorbed; restricting its intake might even lead to protein malnutrition. On the other hand, inorganic phosphate in food additives is effectively absorbed and can measurably elevate the serum phosphate concentration in patients with advanced CKD. Foods with added phosphate tend to be eaten by persons at the lower end of the socioeconomic scale, who consume more processed and "fast" food. The main pathophysiological effect of phosphate is vascular damage, e.g. endothelial dysfunction and vascular calcification. Aside from the quality of phosphate in the diet (which also requires attention), the quantity of phosphate consumed by patients with advanced renal failure should not exceed 1000 mg per day, according to the guidelines. Prospective controlled trials are currently unavailable. In view of the high prevalence of CKD and the potential harm caused by phosphate additives to food, the public should be informed that added phosphate is damaging to health. Furthermore, calls for labeling

  7. Evaluation of the potential interaction between tofacitinib and drugs that undergo renal tubular secretion using metformin, an in vivo marker of renal organic cation transporter 2.

    Science.gov (United States)

    Klamerus, Karen J; Alvey, Christine; Li, Lei; Feng, Bo; Wang, Rong; Kaplan, Irina; Shi, Haihong; Dowty, Martin E; Krishnaswami, Sriram

    2014-11-01

    Tofacitinib is a novel, oral Janus kinase inhibitor. The potential for drug-drug interactions (DDIs) between tofacitinib and drugs that undergo renal tubular secretion was evaluated using metformin as a probe transporter substrate, and genotyping for organic cation transporter (OCT) 1, OCT2 and multidrug and toxin extrusion 1 polymorphisms. Twenty-four healthy male subjects completed this open-label, fixed-sequence study. Subjects were administered a single oral metformin 500 mg dose on Days 1 and 4, and multiple oral tofacitinib 30 mg twice daily doses on Days 2, 3, and 4. Subjects underwent serial blood and urine samplings (Days 1 and 4) to estimate metformin pharmacokinetics. A single blood sample for tofacitinib was collected 2 hours after the morning dose (Day 4). The 90% confidence intervals for the ratios of maximum plasma concentration, area under the curve and renal clearance of metformin, with and without tofacitinib, were contained within the 80-125% acceptance range commonly used to establish a lack of DDI. No deaths, serious adverse events (AEs), severe AEs or discontinuations due to AEs were reported. The study confirms tofacitinib is unlikely to impact the pharmacokinetics of drugs that undergo renal tubular secretion, and concurs with its weak in vitro OCT2 inhibitory profile. © 2014, The American College of Clinical Pharmacology.

  8. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration

    Science.gov (United States)

    Edwards, Aurélie; Layton, Anita T.

    2015-01-01

    The goal of this study was to investigate the reciprocal interactions among oxygen (O2), nitric oxide (NO), and superoxide (O2−) and their effects on medullary oxygenation and urinary output. To accomplish that goal, we developed a detailed mathematical model of solute transport in the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and O2− concentration in the OM and upper IM. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. The model further predicts that due to the nonlinear interactions among O2, NO, and O2−, the effects of NO and O2− on sodium transport, osmolality, and medullary oxygenation cannot be gleaned by considering each solute's effect in isolation. An additional simulation suggests that a sufficiently large reduction in tubular transport efficiency may be the key contributing factor, more so than oxidative stress alone, to hypertension-induced medullary hypoxia. Moreover, model predictions suggest that urine Po2 could serve as a biomarker for medullary hypoxia and a predictor of the risk for hospital-acquired acute kidney injury. PMID:25651567

  9. Arbuscular Mycorrhizal Symbiosis Requires a Phosphate Transceptor in the Gigaspora margarita Fungal Symbiont.

    Science.gov (United States)

    Xie, Xianan; Lin, Hui; Peng, Xiaowei; Xu, Congrui; Sun, Zhongfeng; Jiang, Kexin; Huang, Antian; Wu, Xiaohui; Tang, Nianwu; Salvioli, Alessandra; Bonfante, Paola; Zhao, Bin

    2016-12-05

    The majority of terrestrial vascular plants are capable of forming mutualistic associations with obligate biotrophic arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycota. This mutualistic symbiosis provides carbohydrates to the fungus, and reciprocally improves plant phosphate uptake. AM fungal transporters can acquire phosphate from the soil through the hyphal networks. Nevertheless, the precise functions of AM fungal phosphate transporters, and whether they act as sensors or as nutrient transporters, in fungal signal transduction remain unclear. Here, we report a high-affinity phosphate transporter GigmPT from Gigaspora margarita that is required for AM symbiosis. Host-induced gene silencing of GigmPT hampers the development of G. margarita during AM symbiosis. Most importantly, GigmPT functions as a phosphate transceptor in G. margarita regarding the activation of the phosphate signaling pathway as well as the protein kinase A signaling cascade. Using the substituted-cysteine accessibility method, we identified residues A 146 (in transmembrane domain [TMD] IV) and Val 357 (in TMD VIII) of GigmPT, both of which are critical for phosphate signaling and transport in yeast during growth induction. Collectively, our results provide significant insights into the molecular functions of a phosphate transceptor from the AM fungus G. margarita. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  10. Biochemical parameters in chronic renal failure.

    Science.gov (United States)

    Hakim, R M; Lazarus, J M

    1988-03-01

    We analyzed biochemical data derived from 911 patients with renal insufficiency observed at our institution for periods up to 7 years. During early renal failure (RF) (creatinine less than 5 mg/dL), the rate of change of hematocrit, total CO2 (tCO2) and urea per unit change of creatinine was significantly higher than during moderate (creatinine between 5 and 10 mg/dL) or advanced (creatinine greater than 10 mg/dL) RF. For example, the rate of change of hematocrit (%, volume/volume [v/v]) was (mean +/- SEM) -2.15 +/- 0.15% for each 1 mg/dL increase in creatinine in the range of creatinine less than 5 mg/dL, whereas for the range of creatinine greater than 10 mg/dL, the rate of change was only -0.48 +/- 0.06% (P less than 0.001). Similarly, the rate of change of tCO2 was -1.68 +/- 0.09 mEq/L for each 1 mg/dL increment in creatinine concentration during early RF, and -0.19 +/- 0.09 mEq/L per unit increase in creatinine during advanced RF (P less than 0.001). Chloride concentration initially increased as a function of creatinine in early RF, but decreased in advanced RF, whereas the anion gap increased throughout the course of RF. Mean serum phosphate concentration also increased steadily, but remained below the upper range of normal (4.7 mg/dL) during early RF without the use of phosphate binders. These data suggest that different biochemical parameters change at different rates as a function of the severity of renal dysfunction, and that although phosphate retention may occur, hyperphosphatemia is not a hallmark of early RF.

  11. SLC37A1 and SLC37A2 are phosphate-linked, glucose-6-phosphate antiporters.

    Directory of Open Access Journals (Sweden)

    Chi-Jiunn Pan

    Full Text Available Blood glucose homeostasis between meals depends upon production of glucose within the endoplasmic reticulum (ER of the liver and kidney by hydrolysis of glucose-6-phosphate (G6P into glucose and phosphate (P(i. This reaction depends on coupling the G6P transporter (G6PT with glucose-6-phosphatase-α (G6Pase-α. Only one G6PT, also known as SLC37A4, has been characterized, and it acts as a P(i-linked G6P antiporter. The other three SLC37 family members, predicted to be sugar-phosphate:P(i exchangers, have not been characterized functionally. Using reconstituted proteoliposomes, we examine the antiporter activity of the other SLC37 members along with their ability to couple with G6Pase-α. G6PT- and mock-proteoliposomes are used as positive and negative controls, respectively. We show that SLC37A1 and SLC37A2 are ER-associated, P(i-linked antiporters, that can transport G6P. Unlike G6PT, neither is sensitive to chlorogenic acid, a competitive inhibitor of physiological ER G6P transport, and neither couples to G6Pase-α. We conclude that three of the four SLC37 family members are functional sugar-phosphate antiporters. However, only G6PT/SLC37A4 matches the characteristics of the physiological ER G6P transporter, suggesting the other SLC37 proteins have roles independent of blood glucose homeostasis.

  12. Hyperparathyroidism of Renal Disease.

    Science.gov (United States)

    Yuen, Noah K; Ananthakrishnan, Shubha; Campbell, Michael J

    2016-01-01

    Renal hyperparathyroidism (rHPT) is a common complication of chronic kidney disease characterized by elevated parathyroid hormone levels secondary to derangements in the homeostasis of calcium, phosphate, and vitamin D. Patients with rHPT experience increased rates of cardiovascular problems and bone disease. The Kidney Disease: Improving Global Outcomes guidelines recommend that screening and management of rHPT be initiated for all patients with chronic kidney disease stage 3 (estimated glomerular filtration rate, < 60 mL/min/1.73 m(2)). Since the 1990s, improving medical management with vitamin D analogs, phosphate binders, and calcimimetic drugs has expanded the treatment options for patients with rHPT, but some patients still require a parathyroidectomy to mitigate the sequelae of this challenging disease.

  13. Abnormalities of the breast in chronic renal failure and renal transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bae Young; Kim, Hak Hee; Choi, Kyu Ho; Park, Seog Hee [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2000-12-15

    Manifestations of breast abnormalities in these patients included breast calcifications, duct dilatation, fibrocystic change, rapidly enlarged multiple fibroadenomas, edema, invasive ductal cancer, extensive fibrosis, spontaneous hemorrhage, and Mondor's disease. These interesting cases we experienced are reported. Prolactin, growth hormone, and cortisol are required concurrently for normal development of mammary epithelium. Hormonal profile of chronic renal failure is different to normal person due to decreased renal clearance. The incidence of breast cancer is also increased in CRF. Metastatic soft tissue calcification is well described finding in chronic renal failure related to an increase in serum calcium phosphate product and secondary hyperparathyroidism. Kidney failure alone may increases prolactin level. The possibility of deranged hypothalamic-pituitary control mechanisms do not excluded. Impaired prolactin response to TRH stimulation has also been observed. Methyldopa and tricyclic antidepressants specifically were associated with hyperprolactinemia. Cyclosporin administration may elevate serum prolactin levels with simultaneous down regulation of prolactin receptors. Some populations of lymphocytes and fibroblasts exhibit cyclosporin receptors. Cyclosporin could potentially promote fibroadenomas by direct action, and seems to alter LH secretion.

  14. Abnormalities of the breast in chronic renal failure and renal transplantation

    International Nuclear Information System (INIS)

    Lee, Bae Young; Kim, Hak Hee; Choi, Kyu Ho; Park, Seog Hee

    2000-01-01

    Manifestations of breast abnormalities in these patients included breast calcifications, duct dilatation, fibrocystic change, rapidly enlarged multiple fibroadenomas, edema, invasive ductal cancer, extensive fibrosis, spontaneous hemorrhage, and Mondor's disease. These interesting cases we experienced are reported. Prolactin, growth hormone, and cortisol are required concurrently for normal development of mammary epithelium. Hormonal profile of chronic renal failure is different to normal person due to decreased renal clearance. The incidence of breast cancer is also increased in CRF. Metastatic soft tissue calcification is well described finding in chronic renal failure related to an increase in serum calcium phosphate product and secondary hyperparathyroidism. Kidney failure alone may increases prolactin level. The possibility of deranged hypothalamic-pituitary control mechanisms do not excluded. Impaired prolactin response to TRH stimulation has also been observed. Methyldopa and tricyclic antidepressants specifically were associated with hyperprolactinemia. Cyclosporin administration may elevate serum prolactin levels with simultaneous down regulation of prolactin receptors. Some populations of lymphocytes and fibroblasts exhibit cyclosporin receptors. Cyclosporin could potentially promote fibroadenomas by direct action, and seems to alter LH secretion.

  15. A Phex Mutation in a Murine Model of X-linked Hypophosphatemia Alters Phosphate Responsiveness of Bone Cells

    OpenAIRE

    Ichikawa, Shoji; Austin, Anthony M.; Gray, Amie K.; Econs, Michael J.

    2012-01-01

    Mutations in the PHEX gene cause X-linked hypophosphatemia (XLH). Hypophosphatemia in XLH results from increased circulating levels of a phosphaturic hormone, fibroblast growth factor 23 (FGF23), which inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D (calcitriol) synthesis. The current standard therapy for XLH – high dose phosphate and calcitriol – further increases FGF23 concentrations, suggesting that patients with XLH may have an altered response to extracellular phosphate...

  16. The Complexities of Interpreting Reversible Elevated Serum Creatinine Levels in Drug Development: Does a Correlation with Inhibition of Renal Transporters Exist?

    Science.gov (United States)

    Chu, Xiaoyan; Bleasby, Kelly; Chan, Grace Hoyee; Nunes, Irene; Evers, Raymond

    2016-09-01

    In humans, creatinine is formed by a multistep process in liver and muscle and eliminated via the kidney by a combination of glomerular filtration and active transport. Based on current evidence, creatinine can be taken up into renal proximal tubule cells by the basolaterally localized organic cation transporter 2 (OCT2) and the organic anion transporter 2, and effluxed into the urine by the apically localized multidrug and toxin extrusion protein 1 (MATE1) and MATE2K. Drug-induced elevation of serum creatinine (SCr) and/or reduced creatinine renal clearance is routinely used as a marker for acute kidney injury. Interpretation of elevated SCr can be complex, because such increases can be reversible and explained by inhibition of renal transporters involved in active secretion of creatinine or other secondary factors, such as diet and disease state. Distinction between these possibilities is important from a drug development perspective, as increases in SCr can result in the termination of otherwise efficacious drug candidates. In this review, we discuss the challenges associated with using creatinine as a marker for kidney damage. Furthermore, to evaluate whether reversible changes in SCr can be predicted prospectively based on in vitro transporter inhibition data, an in-depth in vitro-in vivo correlation (IVIVC) analysis was conducted for 16 drugs with in-house and literature in vitro transporter inhibition data for OCT2, MATE1, and MATE2K, as well as total and unbound maximum plasma concentration (Cmax and Cmax,u) data measured in the clinic. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  17. An Active Learning Exercise to Facilitate Understanding of Nephron Function: Anatomy and Physiology of Renal Transporters

    Science.gov (United States)

    Dirks-Naylor, Amie J.

    2016-01-01

    Renal transport is a central mechanism underlying electrolyte homeostasis, acid base balance and other essential functions of the kidneys in human physiology. Thus, knowledge of the anatomy and physiology of the nephron is essential for the understanding of kidney function in health and disease. However, students find this content difficult to…

  18. Identification and Quantitative Assessment of Uremic Solutes as Inhibitors of Renal Organic Anion Transporters, OAT1 and OAT3.

    Science.gov (United States)

    Hsueh, Chia-Hsiang; Yoshida, Kenta; Zhao, Ping; Meyer, Timothy W; Zhang, Lei; Huang, Shiew-Mei; Giacomini, Kathleen M

    2016-09-06

    One of the characteristics of chronic kidney disease (CKD) is the accumulation of uremic solutes in the plasma. Less is known about the effects of uremic solutes on transporters that may play critical roles in pharmacokinetics. We evaluated the effect of 72 uremic solutes on organic anion transporter 1 and 3 (OAT1 and OAT3) using a fluorescent probe substrate, 6-carboxyfluorescein. A total of 12 and 13 solutes were identified as inhibitors of OAT1 and OAT3, respectively. Several of them inhibited OAT1 or OAT3 at clinically relevant concentrations and reduced the transport of other OAT1/3 substrates in vitro. Review of clinical studies showed that the active secretion of most drugs that are known substrates of OAT1/3 deteriorated faster than the renal filtration in CKD. Collectively, these data suggest that through inhibition of OAT1 and OAT3, uremic solutes contribute to the decline in renal drug clearance in patients with CKD.

  19. Cell kinetics of differentiation of Na+-dependent hexose transport in a cultured renal epithelial cell line

    International Nuclear Information System (INIS)

    Cook, J.S.; Weiss, E.R.

    1985-01-01

    Fully differentiated cells of the renal proximal tubule have the capability of taking up hexoses across their apical borders by transport coupled to the Na + -electrochemical gradient. This property is also found in postconfluent cultures of the cloned cell line LLC-PK 1 , a morphologically polarized line of renal cells. Postconfluent cells develop the Na + -dependent capacity to transport hexoses at their apical surface. This function is not observable during the growth phase of the cultures. To analyze the developmental process at the cellular level a method has been derived to separate transporting cells, expressing the differentiated function, from nontransporting cells. The method is based on the swelling of the cells accompanying the uptake of the nonmetabolizable glucose analog alpha methylglucoside. The swollen cells have a lower buoyant density than the undifferentiated cells and may be separated from them on density gradients. Analysis of the distribution of cells on such gradients shows that after the cells reach confluence the undifferentiated subpopulation is recruited onto the differentiation pathway with a rate constant of 0.2 per day, that 5 to 7 days are required for a cell to traverse this pathway to the fully differentiated state, and that once the maximum uptake capacity is achieved the cells do not develop further

  20. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9.

    Science.gov (United States)

    Lin, I Winnie; Sosso, Davide; Chen, Li-Qing; Gase, Klaus; Kim, Sang-Gyu; Kessler, Danny; Klinkenberg, Peter M; Gorder, Molly K; Hou, Bi-Huei; Qu, Xiao-Qing; Carter, Clay J; Baldwin, Ian T; Frommer, Wolf B

    2014-04-24

    Angiosperms developed floral nectaries that reward pollinating insects. Although nectar function and composition have been characterized, the mechanism of nectar secretion has remained unclear. Here we identify SWEET9 as a nectary-specific sugar transporter in three eudicot species: Arabidopsis thaliana, Brassica rapa (extrastaminal nectaries) and Nicotiana attenuata (gynoecial nectaries). We show that SWEET9 is essential for nectar production and can function as an efflux transporter. We also show that sucrose phosphate synthase genes, encoding key enzymes for sucrose biosynthesis, are highly expressed in nectaries and that their expression is also essential for nectar secretion. Together these data are consistent with a model in which sucrose is synthesized in the nectary parenchyma and subsequently secreted into the extracellular space via SWEET9, where sucrose is hydrolysed by an apoplasmic invertase to produce a mixture of sucrose, glucose and fructose. The recruitment of SWEET9 for sucrose export may have been a key innovation, and could have coincided with the evolution of core eudicots and contributed to the evolution of nectar secretion to reward pollinators.

  1. Transport and homeostasis of potassium and phosphate: limiting factors for sustainable crop production.

    Science.gov (United States)

    Luan, Mingda; Tang, Ren-Jie; Tang, Yumei; Tian, Wang; Hou, Congong; Zhao, Fugeng; Lan, Wenzhi; Luan, Sheng

    2017-06-01

    Potassium (K) and phosphate (Pi) are both macronutrients essential for plant growth and crop production, but the unrenewable resources of phosphorus rock and potash have become limiting factors for food security. One critical measure to help solve this problem is to improve nutrient use efficiency (NUE) in plants by understanding and engineering genetic networks for ion uptake, translocation, and storage. Plants have evolved multiple systems to adapt to various nutrient conditions for growth and production. Within the NUE networks, transport proteins and their regulators are the primary players for maintaining nutrient homeostasis and could be utilized to engineer high NUE traits in crop plants. A large number of publications have detailed K+ and Pi transport proteins in plants over the past three decades. Meanwhile, the discovery and validation of their regulatory mechanisms are fast-track topics for research. Here, we provide an overview of K+ and Pi transport proteins and their regulatory mechanisms, which participate in the uptake, translocation, storage, and recycling of these nutrients in plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao

    2010-06-01

    myo-Inositol-1-phosphate synthase is a conserved enzyme that catalyzes the first committed and rate-limiting step in inositol biosynthesis. Despite its wide occurrence in all eukaryotes, the role of myo-inositol-1-phosphate synthase and de novo inositol biosynthesis in cell signaling and organism development has been unclear. In this study, we isolated loss-of-function mutants in the Arabidopsis MIPS1 gene from different ecotypes. It was found that all mips1 mutants are defective in embryogenesis, cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower rates of endocytosis. Treatment with brefeldin A induces slower PIN2 protein aggregation in mips1, indicating altered PIN2 trafficking. Our results demonstrate that MIPS1 is critical for maintaining phosphatidylinositol levels and affects pattern formation in plants likely through regulation of auxin distribution. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Drug Transporter Genetic Variants Are Not Associated with TDF-Related Renal Dysfunction in Patients with HIV-1 Infection: A Pharmacogenetic Study.

    Directory of Open Access Journals (Sweden)

    Takeshi Nishijima

    Full Text Available To investigate whether single nucleotide polymorphisms (SNP of drug transporter proteins for TDF is a risk factor for TDF-related renal function decrement.This study investigated the association between 3 SNPs (ABCC2-24, 1249, and ABCB1 2677, which are shown to be associated with TDF-induced tubulopathy, and clinically important renal outcomes (>10ml/min/1.73m2 decrement in eGFR relative to baseline, >25% decrement in eGFR, and eGFR 10ml/min/1.73m2 and those without such decrement (ABCC2: -24, p = 0.53, 1249, p = 0.68; ABCB1: 2677, p = 0.74, nor between those without and with the other two renal outcomes (>25% decrement: ABCC2: -24, p = 0.83, 1249, p = 0.97, ABCB1: 2677, p = 0.40; eGFR <60ml/min/1.73m2: ABCC2: -24, p = 0.51, 1249, p = 0.81, ABCB1: 2677, p = 0.94. Logistic regression analysis showed that the risk genotype of the three SNPs were not associated with any of the three renal outcomes, respectively. Logistic regression model that applied either dominant, recessive, or additive model yielded the same results.SNPs of the drug transporters for TDF are not associated with clinically important renal outcomes in patients who initiated TDF-containing ART.

  4. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells.

    Science.gov (United States)

    Balestrini, Raffaella; Gómez-Ariza, Jorge; Lanfranco, Luisa; Bonfante, Paola

    2007-09-01

    The establishment of a symbiotic interaction between plant roots and arbuscular mycorrhizal (AM) fungi requires both partners to undergo significant morphological and physiological modifications which eventually lead to reciprocal beneficial effects. Extensive changes in gene expression profiles recently have been described in transcriptomic studies that have analyzed the whole mycorrhizal root. However, because root colonization by AM fungi involves different cell types, a cell-specific gene expression pattern is likely to occur. We have applied the laser microdissection (LMD) technology to investigate expression profiles of both plant and fungal genes in Lycopersicon esculentum roots colonized by Glomus mosseae. A protocol to harvest arbuscule-containing cells from paraffin sections of mycorrhizal roots has been developed using a Leica AS LMD system. RNA of satisfactory quantity and quality has been extracted for molecular analysis. Transcripts for plant phosphate transporters (LePTs), selected as molecular markers for a functional symbiosis, have been detected by reverse-transcriptase polymerase chain reaction assays and associated to distinct cell types, leading to novel insights into the distribution of LePT mRNAs. In fact, the transcripts of the five phosphate transporters (PTs) have been detected contemporaneously in the same arbusculated cell population, unlike from the neighboring noncolonized cells. In addition, fungal H(+)ATPase (GmHA5) and phosphate transporter (GmosPT) mRNAs were found exclusively in arbusculated cells. The discovery that five plant and one fungal PT genes are consistently expressed inside the arbusculated cells provides a new scenario for plant-fungus nutrient exchanges.

  5. The transport characteristics of {sup 238}U, {sup 232}Th, {sup 226}Ra, and {sup 40}K in the production cycle of phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yoon Hee; Lim, Jong Myoung; Ji, Young Yong; Chung, Kun Ho; Kang, Mun Ja [Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    Phosphate rock and its by-product are widely used in various industries to produce phosphoric acid, gypsum, gypsum board, and fertilizer. Owing to its high level of natural radioactive nuclides (e.g., 238U and 226Ra), the radiological safety of workers who work with phosphate rock should be systematically managed. In this study, 238U, 232Th, 226Ra, and 40K levels were measured to analyze the transport characteristics of these radionuclides in the production cycle of phosphate rock. Energy dispersive X-ray fluorescence and gamma spectrometry were used to determine the activity of 238U, 232Th, 226Ra, and 40K. To evaluate the extent of secular disequilibrium, the analytical results were compared using statistical methods. Finally, the distribution of radioactivity across different stages of the phosphate rock production cycle was evaluated. The concentration ratios of 226Ra and 238U in phosphate rock were close to 1.0, while those found in gypsum and fertilizer were extremely different, reflecting disequilibrium after the chemical reaction process. The nuclide with the highest activity level in the production cycle of phosphate rock was 40K, and the median 40K activity was 8.972 Bq·g−1 and 1.496 Bq·g−1, respectively. For the 238U series, the activity of 238U and 226Ra was greatest in phosphate rock, and the distribution of activity values clearly showed the transport characteristics of the radionuclides, both for the byproducts of the decay sequences and for their final products. Although the activity of 40K in k-related fertilizer was relatively high, it made a relatively low contribution to the total radiological effect. However, the activity levels of 226Ra and 238U in phosphate rock were found to be relatively high, near the upper end of the acceptable limits. Therefore, it is necessary to systematically manage the radiological safety of workers engaged in phosphate rock processing.

  6. The Effect of Moderate Dietary Protein and Phosphate Restriction on Calcium-Phosphate Homeostasis in Healthy Older Cats.

    Science.gov (United States)

    Geddes, R F; Biourge, V; Chang, Y; Syme, H M; Elliott, J

    2016-09-01

    Dietary phosphate and protein restriction decreases plasma PTH and FGF-23 concentrations and improves survival time in azotemic cats, but has not been examined in cats that are not azotemic. Feeding a moderately protein- and phosphate-restricted diet decreases PTH and FGF-23 in healthy older cats and thereby slows progression to azotemic CKD. A total of 54 healthy, client-owned cats (≥ 9 years). Prospective double-blinded randomized placebo-controlled trial. Cats were assigned to test diet (protein 76 g/Mcal and phosphate 1.6 g/Mcal) or control diet (protein 86 g/Mcal and phosphate 2.6 g/Mcal) and monitored for 18 months. Changes in variables over time and effect of diet were assessed by linear mixed models. A total of 26 cats ate test diet and 28 cats ate control diet. There was a significant effect of diet on urinary fractional excretion of phosphate (P = 0.045), plasma PTH (P = 0.005), and ionized calcium concentrations (P = 0.018), but not plasma phosphate, FGF-23, or creatinine concentrations. Plasma PTH concentrations did not significantly change in cats fed the test diet (P = 0.62) but increased over time in cats fed the control diet (P = 0.001). There was no significant treatment effect of the test diet on development of azotemic CKD (3 of 26 (12%) test versus 3 of 28 (11%) control, odds ratio 1.09 (95% CI 0.13-8.94), P = 0.92). Feeding a moderately protein- and phosphate-restricted diet has effects on calcium-phosphate homeostasis in healthy older cats and is well tolerated. This might have an impact on renal function and could be useful in early chronic kidney disease. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  7. A decreased soluble Klotho level with normal eGFR, FGF23, serum phosphate, and FEP in an ADPKD patient with enlarged kidneys due to multiple cysts.

    Science.gov (United States)

    Kanai, Takahiro; Shiizaki, Kazuhiro; Betsui, Hiroyuki; Aoyagi, Jun; Yamagata, Takanori

    2018-05-16

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disorder. ADPKD is characterized clinically by the presence of multiple bilateral renal cysts that lead to chronic renal failure. The cysts evolve from renal tubular epithelial cells that express the Klotho gene. Notably, Klotho acts as a co-receptor for fibroblast growth factor 23 (FGF23); in this context, it induces phosphaturia and maintains serum phosphate at a normal level. Many reports have shown that decreases in the soluble Klotho level and increases in the FGF23 level are associated with glomerular filtration rate (GFR) decline, but a recent study observed these changes in patient with normal eGFR. It remains unclear whether the decrease in the Klotho level precedes the increase in FGF23. Here, we present an ADPKD patient with enlarged kidneys due to multiple cysts who had a decreased soluble Klotho level but a normal eGFR and a normal FGF23 level. The patient's serum phosphate level was normal, as was the fractional excretion of phosphate (FEP). This appears to be the first reported case to show a decreased soluble Klotho level plus normal eGFR, FGF23, and FEP. These results suggest that Klotho decreases before FGF23 increases and further suggest that Klotho is not required to maintain normal serum phosphate levels in ADPKD if the FEP and serum phosphate levels are normal.

  8. Expression of Trans- and Paracellular Calcium and Magnesium Transport Proteins in Renal and Intestinal Epithelia During Lactation

    DEFF Research Database (Denmark)

    Beggs, Megan R; Appel, Ida; Svenningsen, Per

    2017-01-01

    Significant alterations in maternal calcium (Ca2+) and magnesium (Mg2+) balance occur during lactation. Ca2+ is the primary divalent cation mobilized into breast milk by demineralization of the skeleton and alterations in intestinal and renal Ca2+ transport. Mg2+ is also concentrated in breast milk...

  9. Determination of lead in human calculi and its effects on renal function of lead occupational workers

    International Nuclear Information System (INIS)

    Memon, F.; Vasandani, A.G.M.

    2016-01-01

    Seventy five samples of renal and eighteen samples of supra gingival calculi of lead recycling workers were collected over the period of seven years (2008-2014) and studied for the accumulation of lead. The results were compared with those of non exposed subjects. The lead content of calculi was investigated for its dependence on type and composition of calculi, blood lead, job status and duration of exposure. The effect of blood lead and renal calculi was also investigated in relation to kidney function of respective subjects. The mean lead levels of various types of calculi were found to follow the order as phosphate > oxalate > urate > cystine while single principal group of supra gingival calculi resulted in lower levels of metal. The lead content of calculi positively correlated with phosphate content of both of the renal (r = 0.655) and supra gingival calculi (r= 0.866). Impaired renal function was more pronounced in active workers and depended on blood lead levels in addition to presence of metal in renal calculi. (author)

  10. Meal phosphate variability does not support fixed dose phosphate binder schedules for patients treated with peritoneal dialysis: a prospective cohort study.

    Science.gov (United States)

    Leung, Simon; McCormick, Brendan; Wagner, Jessica; Biyani, Mohan; Lavoie, Susan; Imtiaz, Rameez; Zimmerman, Deborah

    2015-12-09

    Removal of phosphate by peritoneal dialysis is insufficient to maintain normal serum phosphate levels such that most patients must take phosphate binders with their meals. However, phosphate 'counting' is complicated and many patients are simply prescribed a specific dose of phosphate binders with each meal. Therefore, our primary objective was to assess the variability in meal phosphate content to determine the appropriateness of this approach. In this prospective cohort study, adult patients with ESRD treated with peritoneal dialysis and prescribed phosphate binder therapy were eligible to participate. Participants were excluded from the study if they were unable to give consent, had hypercalcemia, were visually or hearing impaired or were expected to receive a renal transplant during the time of the study. After providing informed consent, patients kept a 3-day diet diary that included all foods and beverages consumed in addition to portion sizes. At the same time, patients documented the amount of phosphate binders taken with each meal. The phosphate content of the each meal was estimated using ESHA Food Processor SQL Software by a registered dietitian. Meal phosphate and binder variability were estimated by the Intra Class Correlation Coefficient (ICC) where 0 indicates maximal variability and 1 indicates no variability. Seventy-eight patients consented to participate in the study; 18 did not complete the study protocol. The patients were 60 (± 17) years, predominately male (38/60) and Caucasian (51/60). Diabetic nephropathy was the most common cause of end stage kidney disease. The daily phosphate intake including snacks ranged from 959 ± 249 to 1144 ± 362 mg. The phosphate ICC by meal: breakfast 0.63, lunch 0.16; supper 0.27. The phosphate binder ICC by meal: breakfast 0.68, lunch 0.73, supper 0.67. The standard prescription of a set number of phosphate binders with each meal is not supported by the data; patients do not appear to be adjusting their

  11. Fluorescence-based rapid measurement of sphingosine-1-phosphate transport activity in erythrocytes[S

    Science.gov (United States)

    Kobayashi, Naoki; Otsuka, Masato; Yamaguchi, Akihito; Nishi, Tsuyoshi

    2016-01-01

    Sphingosine-1-phosphate (S1P) is present in the blood plasma and acts as a pivotal intercellular signal transmitter in the immune system by recruiting lymphocytes from the thymus and secondary lymphoid tissues. The plasma S1P concentration is maintained by the supply of S1P from erythrocytes. Previously, we showed that S1P release from erythrocytes is mediated by an ATP-dependent transporter. In this study, we attempted to establish a rapid and reliable method for measuring the S1P transport activity in erythrocytes by using a fluorescent S1P analog, 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)-labeled S1P. NBD-S1P was released from erythrocytes in a time-dependent manner. The NBD-S1P release was reduced after exposure to glyburide, which is an inhibitor of the S1P transporter in erythrocytes. Moreover, the release of NBD-S1P and S1P from erythrocytes was competitively inhibited by intracellular S1P and NBD-S1P, respectively. These results showed that the erythrocyte S1P transporter exports NBD-S1P. We optimized the sample-preparation conditions and lipid extraction to increase the sensitivity of the assay. Furthermore, we successfully measured NBD-S1P release without lipid extraction by decreasing the concentration of BSA in the assay buffer to 0.1%. This method will be useful for the high-throughput screening of S1P transporter inhibitors using conventional fluorometers. PMID:27655910

  12. MEDICAL METHODS OF CORRECTION OF RENAL OSTEODYSTROPHY

    Directory of Open Access Journals (Sweden)

    L V Egshatyan

    2014-12-01

    Full Text Available The article presents a literature review summarizing the contemporary data on the effects of drug therapy on various parameters of renal osteodystrophy: phosphate binders, vitamin D preparations, bisphosphonates, denosumab, and calcimimetics. We discuss the results of pilot study of the efficacy of teriparatide and denosumab on parameters of bone metabolism in patients with chronic kidney disease.

  13. Sphingosine-1-phosphate signalling induces the production of Lcn-2 by macrophages to promote kidney regeneration

    DEFF Research Database (Denmark)

    Sola, Anna; Weigert, Andreas; Jung, Michaela

    2011-01-01

    the kidney. The present study describes a mechanism for renal tissue regeneration after ischaemia/reperfusion injury. Following injury, apoptotic cell-derived sphingosine-1-phosphate (S1P) or exogenously administered sphingosine analogue FTY720 activates macrophages to support the proliferation and healing...... of renal epithelium, once inflammatory conditions are terminated. Both suppression of inflammation and renal regeneration might require S1P receptor 3 (S1P3) signalling and downstream release of neutrophil gelatinase-associated lipocalin (NGAL/Lcn-2) from macrophages. Overall, our data point...

  14. Altered regulation of renal sodium transporters in salt-sensitive hypertensive rats induced by uninephrectomy.

    Science.gov (United States)

    Jung, Ji Yong; Lee, Jay Wook; Kim, Sejoong; Jung, Eun Sook; Jang, Hye Ryoun; Han, Jin Suk; Joo, Kwon Wook

    2009-12-01

    Uninephrectomy (uNx) in young rats causes salt-sensitive hypertension (SSH). Alterations of sodium handling in residual nephrons may play a role in the pathogenesis. Therefore, we evaluated the adaptive alterations of renal sodium transporters according to salt intake in uNx-SSH rats. uNx or sham operations were performed in male Sprague-Dawley rats, and normal-salt diet was fed for 4 weeks. Four experimental groups were used: sham-operated rats raised on a high-salt diet for 2 weeks (CHH) or on a low-salt diet for 1 week after 1 week's high-salt diet (CHL) and uNx rats fed on the same diet (NHH, NHL) as the sham-operated rats were fed. Expression of major renal sodium transporters were determined by semiquantitative immunoblotting. Systolic blood pressure was increased in NHH and NHL groups, compared with CHH and CHL, respectively. Protein abundances of Na(+)/K(+)/2Cl(-) cotransporter (NKCC2) and Na(+)/Cl(-) cotransporter (NCC) in the CHH group were lower than the CHL group. Expression of epithelial sodium channel (ENaC)-γ increased in the CHH group. In contrast, expressions of NKCC2 and NCC in the NHH group didn't show any significant alterations, compared to the NHL group. Expressions of ENaC-α and ENaC-β in the NHH group were higher than the CHH group. Adaptive alterations of NKCC2 and NCC to changes of salt intake were different in the uNx group, and changes in ENaC-α and ENaC-β were also different. These altered regulations of sodium transporters may be involved in the pathogenesis of SSH in the uNx rat model.

  15. Retrospective review of bone mineral metabolism management in end-stage renal disease patients wait-listed for renal transplant

    Directory of Open Access Journals (Sweden)

    Chavlovski A

    2012-09-01

    Full Text Available Anna Chavlovski,1 Greg A Knoll,1–3 Timothy Ramsay,4 Swapnil Hiremath,1–3 Deborah L Zimmerman1–31University of Ottawa, 2Ottawa Hospital, 3Kidney Research Centre, Ottawa Hospital Research Institute, 4Ottawa Methods Centre, Ottawa, ON, CanadaBackground: In patients with end-stage renal disease, use of vitamin D and calcium-based phosphate binders have been associated with progression of vascular calcification that might have an impact on renal transplant candidacy. Our objective was to examine management of mineral metabolism in patients wait-listed for renal transplant and to determine the impact on cardiac perfusion imaging.Methods: Data was collected retrospectively on patients wait-listed for a renal transplant (n = 105, being either active (n = 73 and on hold (n = 32. Demographic data, medications, serum concentrations of calcium, phosphate, parathyroid hormone, and cardiac perfusion imaging studies were collected from the electronic health record. Chi-square and Student’s t-tests were used to compare active and on-hold patients as appropriate. Logistic regression was used to examine variables associated with worsening cardiac imaging studies.Results: The wait-listed patients were of mean age 56 ± 14 years and had been on dialysis for 1329 ± 867 days. On-hold patients had received a significantly greater total dose of calcium (2.35 ± .94 kg versus 1.49 ± 1.52 kg; P = 0.02 and were more likely to have developed worsening cardiovascular imaging studies (P = 0.03. Total doses of calcium and calcitriol were associated with worsening cardiovascular imaging studies (P = 0.05.Conclusion: Patients on hold on the renal transplant waiting list received higher total doses of calcium. A higher total dose of calcium and calcitriol was also associated with worsening cardiovascular imaging. Time on dialysis before transplant has been associated with worse post-transplant outcomes, and it is possible that the total calcium and calcitriol dose

  16. Human alternative Klotho mRNA is a nonsense-mediated mRNA decay target inefficiently spliced in renal disease

    NARCIS (Netherlands)

    Mencke, Rik; Harms, Geert; Moser, Jill; van Meurs, Matijs; Diepstra, Arjan; Leuvenink, Henri G.D.; Hillebrands, Jan-Luuk

    2017-01-01

    Klotho is a renal protein involved in phosphate homeostasis, which is down-regulated in renal disease. It has long been considered an anti-ageing factor. Two Klotho gene transcripts are thought to encode membrane-bound and secreted Klotho. Indeed, soluble Klotho is detectable in bodily fluids, but

  17. Effect of Osteocyte-Ablation on Inorganic Phosphate Metabolism: Analysis of Bone–Kidney–Gut Axis

    Directory of Open Access Journals (Sweden)

    Osamu Fujii

    2017-12-01

    Full Text Available In response to kidney damage, osteocytes increase the production of several hormones critically involved in mineral metabolism. Recent studies suggest that osteocyte function is altered very early in the course of chronic kidney disease. In the present study, to clarify the role of osteocytes and the canalicular network in mineral homeostasis, we performed four experiments. In Experiment 1, we investigated renal and intestinal Pi handling in osteocyte-less (OCL model mice [transgenic mice with the dentin matrix protein-1 promoter-driven diphtheria toxin (DT-receptor that were injected with DT]. In Experiment 2, we administered granulocyte colony-stimulating factor to mice to disrupt the osteocyte canalicular network. In Experiment 3, we investigated the role of osteocytes in dietary Pi signaling. In Experiment 4, we analyzed gene expression level fluctuations in the intestine and liver by comparing mice fed a high Pi diet and OCL mice. Together, the findings of these experiments indicate that osteocyte ablation caused rapid renal Pi excretion (P < 0.01 before the plasma fibroblast growth factor 23 (FGF23 and parathyroid hormone (PTH levels increased. At the same time, we observed a rapid suppression of renal Klotho (P < 0.01, type II sodium phosphate transporters Npt2a (P < 0.01 and Npt2c (P < 0.05, and an increase in intestinal Npt2b (P < 0.01 protein. In OCL mice, Pi excretion in feces was markedly reduced (P < 0.01. Together, these effects of osteocyte ablation are predicted to markedly increase intestinal Pi absorption (P < 0.01, thus suggesting that increased intestinal Pi absorption stimulates renal Pi excretion in OCL mice. In addition, the ablation of osteocytes and feeding of a high Pi diet affected FGF15/bile acid metabolism and controlled Npt2b expression. In conclusion, OCL mice exhibited increased renal Pi excretion due to enhanced intestinal Pi absorption. We discuss the role of FGF23–Klotho on renal

  18. Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter.

    Science.gov (United States)

    Schophuizen, Carolien M S; Wilmer, Martijn J; Jansen, Jitske; Gustavsson, Lena; Hilgendorf, Constanze; Hoenderop, Joost G J; van den Heuvel, Lambert P; Masereeuw, Rosalinde

    2013-12-01

    Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP(+)). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP(+) uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP(+) uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC50 = 44 ± 2 μM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 μM ASP(+), which demonstrated competitive or mixed type of interaction (K i = 93 ± 16 μM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP(+) uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several uremic toxins, which might indicate a possible role in kidney disease progression during uremia.

  19. Proton transport properties of tin phosphate, chromotropic acid ...

    Indian Academy of Sciences (India)

    The functionalized materials of tin (IV) phosphate (SnP) like chromotropic acid anchored tin ... elemental analysis (ICP–AES), thermal analysis, X-ray analysis and FTIR spectroscopy. .... nal level below 1 V, interfaced to a minicomputer for data.

  20. Renal responses of trout to chronic respiratory and metabolic acidoses and metabolic alkalosis.

    Science.gov (United States)

    Wood, C M; Milligan, C L; Walsh, P J

    1999-08-01

    Exposure to hyperoxia (500-600 torr) or low pH (4.5) for 72 h or NaHCO(3) infusion for 48 h were used to create chronic respiratory (RA) or metabolic acidosis (MA) or metabolic alkalosis in freshwater rainbow trout. During alkalosis, urine pH increased, and [titratable acidity (TA) - HCO(-)(3)] and net H(+) excretion became negative (net base excretion) with unchanged NH(+)(4) efflux. During RA, urine pH did not change, but net H(+) excretion increased as a result of a modest rise in NH(+)(4) and substantial elevation in [TA - HCO(-)(3)] efflux accompanied by a large increase in inorganic phosphate excretion. However, during MA, urine pH fell, and net H(+) excretion was 3.3-fold greater than during RA, reflecting a similar increase in [TA - HCO(-)(3)] and a smaller elevation in phosphate but a sevenfold greater increase in NH(+)(4) efflux. In urine samples of the same pH, [TA - HCO(-)(3)] was greater during RA (reflecting phosphate secretion), and [NH(+)(4)] was greater during MA (reflecting renal ammoniagenesis). Renal activities of potential ammoniagenic enzymes (phosphate-dependent glutaminase, glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, alanine aminotransferase, phosphoenolpyruvate carboxykinase) and plasma levels of cortisol, phosphate, ammonia, and most amino acids (including glutamine and alanine) increased during MA but not during RA, when only alanine aminotransferase increased. The differential responses to RA vs. MA parallel those in mammals; in fish they may be keyed to activation of phosphate secretion by RA and cortisol mobilization by MA.

  1. Regulation of Expression of Renal Organic Anion Transporters OAT1 and OAT3 in a Model of Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Christina Preising

    2015-08-01

    Full Text Available Background: Recently, we gained evidence that impairment of rOat1 and rOat3 expression induced by ischemic acute kidney injury (AKI is mediated by COX metabolites and this suppression might be critically involved in renal damage. Methods: (i Basolateral organic anion uptake into proximal tubular cells after model ischemia and reperfusion (I/R was investigated by fluorescein uptake. The putative promoter sequences from hOAT1 (SLC22A6 and hOAT3 (SCL22A8 were cloned into a reporter plasmid, transfected into HEK cells and (ii transcriptional activity was determined after model ischemia and reperfusion as a SEAP reporter gen assay. Inhibitors or antagonists were applied with the beginning of reperfusion. Results: By using inhibitors of PKA (H89 and PLC (U73122, antagonists of E prostanoid receptor type 2 (AH6809 and type 4 (L161,982, we gained evidence that I/R induced down regulation of organic anion transport is mediated by COX1 metabolites via E prostanoid receptor type 4. The latter signaling was confirmed by application of butaprost (EP2 agonist or TCS2510 (EP4 agonist to control cells. In brief, the latter signaling was verified for the transcriptional activity in the reporter gen assay established. Therein, selective inhibitors for COX1 (SC58125 and COX2 (SC560 were also applied. Conclusion: Our data show (a that COX1 metabolites are involved in the regulation of renal organic anion transport(ers after I/R via the EP4 receptor and (b that this is due to transcriptional regulation of the respective transporters. As the promoter sequences cloned were of human origin and expressed in a human renal epithelial cell line we (c hypothesize that the regulatory mechanisms described after I/R is meaningful for humans as well.

  2. The transport characteristics of "2"3"8U, "2"3"2Th, "2"2"6Ra, and "4"0K in the production cycle of phosphate rock

    International Nuclear Information System (INIS)

    Jung, Yoon Hee; Lim, Jong Myoung; Ji, Young Yong; Chung, Kun Ho; Kang, Mun Ja

    2017-01-01

    Phosphate rock and its by-product are widely used in various industries to produce phosphoric acid, gypsum, gypsum board, and fertilizer. Owing to its high level of natural radioactive nuclides (e.g., 238U and 226Ra), the radiological safety of workers who work with phosphate rock should be systematically managed. In this study, 238U, 232Th, 226Ra, and 40K levels were measured to analyze the transport characteristics of these radionuclides in the production cycle of phosphate rock. Energy dispersive X-ray fluorescence and gamma spectrometry were used to determine the activity of 238U, 232Th, 226Ra, and 40K. To evaluate the extent of secular disequilibrium, the analytical results were compared using statistical methods. Finally, the distribution of radioactivity across different stages of the phosphate rock production cycle was evaluated. The concentration ratios of 226Ra and 238U in phosphate rock were close to 1.0, while those found in gypsum and fertilizer were extremely different, reflecting disequilibrium after the chemical reaction process. The nuclide with the highest activity level in the production cycle of phosphate rock was 40K, and the median 40K activity was 8.972 Bq·g−1 and 1.496 Bq·g−1, respectively. For the 238U series, the activity of 238U and 226Ra was greatest in phosphate rock, and the distribution of activity values clearly showed the transport characteristics of the radionuclides, both for the byproducts of the decay sequences and for their final products. Although the activity of 40K in k-related fertilizer was relatively high, it made a relatively low contribution to the total radiological effect. However, the activity levels of 226Ra and 238U in phosphate rock were found to be relatively high, near the upper end of the acceptable limits. Therefore, it is necessary to systematically manage the radiological safety of workers engaged in phosphate rock processing

  3. Effects of phospho- and calciotropic hormones on electrolyte transport in the proximal tubule [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Justin J. Lee

    2017-10-01

    Full Text Available Calcium and phosphate are critical for a myriad of physiological and cellular processes within the organism. Consequently, plasma levels of calcium and phosphate are tightly regulated. This occurs through the combined effects of the phospho- and calciotropic hormones, parathyroid hormone (PTH, active vitamin D3, and fibroblast growth factor 23 (FGF23. The organs central to this are the kidneys, intestine, and bone. In the kidney, the proximal tubule reabsorbs the majority of filtered calcium and phosphate, which amounts to more than 60% and 90%, respectively. The basic molecular mechanisms responsible for phosphate reclamation are well described, and emerging work is delineating the molecular identity of the paracellular shunt wherein calcium permeates the proximal tubular epithelium. Significant experimental work has delineated the molecular effects of PTH and FGF23 on these processes as well as their regulation of active vitamin D3 synthesis in this nephron segment. The integrative effects of both phospho- and calciotropic hormones on proximal tubular solute transport and subsequently whole body calcium-phosphate balance thus have been further complicated. Here, we first review the molecular mechanisms of calcium and phosphate reabsorption from the proximal tubule and how they are influenced by the phospho- and calciotropic hormones acting on this segment and then consider the implications on both renal calcium and phosphate handling as well as whole body mineral balance.

  4. High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoying [Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Xu, Xingbo [Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); Zeisberg, Elisabeth M. [Department of Cardiology and Pneumology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); German Center for Cardiovascular Research (DZHK), Göttingen (Germany); Zeisberg, Michael, E-mail: mzeisberg@med.uni-goettingen.de [Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen (Germany); German Center for Cardiovascular Research (DZHK), Göttingen (Germany)

    2016-04-08

    Phosphate is an essential constituent of critical cellular functions including energy metabolism, nucleic acid synthesis and phosphorylation-dependent cell signaling. Increased plasma phosphate levels are an independent risk factor for lowered life-expectancy as well as for heart and kidney failure. Nevertheless, direct cellular effects of elevated phosphate concentrations within the microenvironment are poorly understood and have been largely neglected in favor of phosphor-regulatory hormones. Because interstitial fibrosis is the common determinant of chronic progressive kidney disease, and because fibroblasts are major mediators of fibrogenesis, we here explored the effect of high extracellular phosphate levels on renal fibroblasts. We demonstrate that high inorganic phosphate directly induces fibrotic fibroblast activation associated with increased proliferative activity, increased expression of α-smooth muscle actin and increased synthesis of type I collagen. We further demonstrate that such fibroblast activation is dependent on phosphate influx, aberrant phosphorylation of DNA methyltransferase DNMT1 and aberrant CpG island promoter methylation. In summary, our studies demonstrate that elevated phosphate concentrations induce pro-fibrotic fibroblast activation independent of phospho-regulatory hormones. - Highlights: • We exposed human kidney fibroblasts to media containing 1 mM or 3 mM phosphate. • Increased phosphate influx causes phosphorylation of DNA methyltransferase Dnmt1. • Phosphorylated Dnmt1 causes promoter methylation and transcriptional silencing of RASAL1. • Depletion of RASAL1 causes increased intrinsic Ras-GTP activity and fibroblast activation. • Inorganic phosphate causes fibroblast activation independent of phospho-regulatory hormones.

  5. The role of HUCB derived stem cells therapy in repair of renal ...

    African Journals Online (AJOL)

    Dr Olaleye Samuel

    and improvement of renal function in cisplatin-induced ARF model. Forty four rats ... 88.9% of animals in MSCs treated rats versus 87.5% in CD34+ cells treated rats. HUCB derived .... containing 5 ml of citrate phosphate dextrose adenine-1.

  6. Tubular transport and metabolism of cimetidine in chicken kidneys

    International Nuclear Information System (INIS)

    Rennick, B.; Ziemniak, J.; Smith, I.; Taylor, M.; Acara, M.

    1984-01-01

    Renal tubular transport and renal metabolism of [ 14 C]cimetidine (CIM) were investigated by unilateral infusion into the renal portal circulation in chickens (Sperber technique). [ 14 C]CIM was actively transported at a rate 88% that of simultaneously infused p-aminohippuric acid, and its transport was saturable. The following organic cations competitively inhibited the tubular transport of [ 14 C]CIM with decreasing potency: CIM, ranitidine, thiamine, procainamide, guanidine and choline. CIM inhibited the transport of [ 14 C]thiamine, [ 14 C]amiloride and [ 14 C]tetraethylammonium. During CIM infusion, two renal metabolites, CIM sulfoxide and hydroxymethylcimetidine, were found in urine. When CIM sulfoxide was infused, its transport efficiency was 32% and not saturable. CIM sulfoxide did ot inhibit the simultaneous renal tubular transport of p-aminohippuric acid or tetraethylammonium. CIM is transported by the organic cation transport system and the kidney metabolizes CIM. Transport of CIM and other cationic drugs could produce a drug interaction to alter drug excretion

  7. Renal acid excretion in the domestic fowl.

    Science.gov (United States)

    Long, S; Skadhauge, E

    1983-05-01

    1. In order to assess the role of uricotelism in net renal acid excretion, blood and ureteral urine samples were collected from five hens fed a commercial poultry feed (Diet A) and five hens fed a protein-rich, Na-poor feed (Diet B). All samples were analysed for pH, PCO2, ammonium, phosphate, uric acid and urates (UA + U) and inulin. 2. On Diet A, average pH in venous blood was 7.42, while urinary pH (pHu) ranged from 4.74 to 7.25. At average pHu (6.10), uric acid accounted for 52% of total acid excreted, H2PO4 for 20% and NH4 for 28%. Net acid excretion in ureteral urine was 345 muequiv h-1 kg body weight-1, or 5-10 times that observed in ureotelic vertebrates (amphibians and mammals). 3. The relative contributions of these urinary buffers to net renal acid excretion changed with pHu. Significant negative correlations exist between pHu and both total phosphate and ammonium excretion rates (P less than 0.001). Excretion rates of (UA + U) showed a positive correlation (P less than 0.05) with pHu. 4. Feeding on Diet B revealed the homeostatic power of the avian kidney. Blood pH and PCO2 were not changed relative to values in hens fed the control diet while striking increases in excretion rates of all urinary buffers (except HCO3) were observed. Average pHu fell to 5.12, and the average net renal acid excretion rate doubled.

  8. Functional interaction between CFTR and the sodium-phosphate co-transport type 2a in Xenopus laevis oocytes.

    Directory of Open Access Journals (Sweden)

    Naziha Bakouh

    Full Text Available A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR. CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present study, we investigated if CFTR and the sodium-phosphate co-transporter type 2a (NPT2a functionally interact after heterologous expression of both proteins in Xenopus laevis oocytes.NPT2a was expressed alone or in combination with CFTR in X. laevis oocytes. Using the two-electrode voltage-clamp technique, the inorganic phosphate-induced current (IPi was measured and taken as an index of NPT2a activity. The maximal IPi for NPT2a substrates was reduced when CFTR was co-expressed with NPT2a, suggesting a decrease in its expression at the oolemna. This was consistent with Western blot analysis showing reduced NPT2a plasma membrane expression in oocytes co-expressing both proteins, whereas NPT2a protein level in total cell lysate was the same in NPT2a- and NPT2a+CFTR-oocytes. In NPT2a+CFTR- but not in NPT2a-oocytes, IPi and NPT2a surface expression were increased upon PKA stimulation, whereas stimulation of Exchange Protein directly Activated by cAMP (EPAC had no effect. When NPT2a-oocytes were injected with NEG2, a short amino-acid sequence from the CFTR regulatory domain that regulates PKA-dependent CFTR trafficking to the plasma membrane, IPi values and NPT2a membrane expression were diminished, and could be enhanced by PKA stimulation, thereby mimicking the effects of CFTR co-expression.We conclude that when both CFTR and NPT2a are expressed in X. laevis oocytes, CFTR confers to NPT2a a cAMPi-dependent trafficking to the membrane. This functional interaction raises the hypothesis that CFTR may play a role in phosphate homeostasis.

  9. Effects of Sucroferric Oxyhydroxide Compared to Lanthanum Carbonate and Sevelamer Carbonate on Phosphate Homeostasis and Vascular Calcifications in a Rat Model of Chronic Kidney Failure

    Directory of Open Access Journals (Sweden)

    Olivier Phan

    2015-01-01

    Full Text Available Elevated serum phosphorus, calcium, and fibroblast growth factor 23 (FGF23 levels are associated with cardiovascular disease in chronic renal disease. This study evaluated the effects of sucroferric oxyhydroxide (PA21, a new iron-based phosphate binder, versus lanthanum carbonate (La and sevelamer carbonate (Se, on serum FGF23, phosphorus, calcium, and intact parathyroid hormone (iPTH concentrations, and the development of vascular calcification in adenine-induced chronic renal failure (CRF rats. After induction of CRF, renal function was significantly impaired in all groups: uremic rats developed severe hyperphosphatemia, and serum iPTH increased significantly. All uremic rats (except controls then received phosphate binders for 4 weeks. Hyperphosphatemia and increased serum iPTH were controlled to a similar extent in all phosphate binder-treatment groups. Only sucroferric oxyhydroxide was associated with significantly decreased FGF23. Vascular calcifications of the thoracic aorta were decreased by all three phosphate binders. Calcifications were better prevented at the superior part of the thoracic and abdominal aorta in the PA21 treated rats. In adenine-induced CRF rats, sucroferric oxyhydroxide was as effective as La and Se in controlling hyperphosphatemia, secondary hyperparathyroidism, and vascular calcifications. The role of FGF23 in calcification remains to be confirmed.

  10. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion

    Science.gov (United States)

    Mitch, William E.; Sands, Jeff M.

    2015-01-01

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance. PMID:25078422

  11. Transcriptome Characterization of the Chinese Fir (Cunninghamia lanceolata (Lamb. Hook. and Expression Analysis of Candidate Phosphate Transporter Genes

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-11-01

    Full Text Available Chinese fir (Cunninghamia lanceolata (Lamb. Hook. is the most important afforestation tree species in China because of its excellent timber quality and high yield. However, the limited availability of phosphorus in forest soils is widespread and has become an important factor in the declining productivity of Chinese fir plantations. Here we used the Illumina HiSeq™ 2000 DNA sequencing platform to sequence root, stem, and leaf transcriptomes of one-year old Chinese fir clones with phosphorus treatment. Approximately 236,529,278 clean reads were obtained and generated 35.47 G of sequencing data. These reads were assembled into 413,806 unigenes with a mean length of 520 bp. In total, 109,596 unigenes were annotated in the NR (NCBI non-redundant database, 727,287 genes were assigned for GO (Gene Ontology terms, information for 92,001 classified unigenes was assigned to 26 KOG (Karyotic Orthologous Groups categories, and 57,042 unigenes were significantly matched with 132 KEGG (Kyoto Encyclopedia of Genes and Genomes predicted pathways. In total, 49 unigenes were identified as exhibiting inorganic phosphate transporter activity, and 14 positive genes’ expression patterns in different phosphorus deficiency treatments were analyzed by qRT-PCR to explore their putative functions. This study provides a basic foundation for functional genomic studies of the phosphate transporter in Chinese fir, and also presents an extensive annotated sequence resource for molecular research.

  12. Contributions of nuclear magnetic resonance to renal biochemistry

    International Nuclear Information System (INIS)

    Ross, B.; Freeman, D.; Chan, L.

    1986-01-01

    31 P NMR as a descriptive technique is of interest to nephrologists. Particular contributions of 31 P NMR to our understanding of renal function may be enumerated.: Free metabolite levels are different from those classically accepted; in particular, ADP and Pi are low with implications for the control of renal metabolism and Pi transport, and, via the phosphorylation potential, for Na+ transport. Renal pH is heterogeneous; between cortex, outer medulla, and papilla, and between cell and lumen, a large pH gradient exists. Also, quantitation between cytosol and mitochondrion of the pH gradient is now feasible. In acute renal failure of either ischemic or nonischemic origin, both ATP depletion and acidification of the renal cell result in damage, with increasing evidence for the importance of the latter. Measurements of renal metabolic rate in vivo suggest the existence of a prodromal phase of acute renal failure, which could lead to its detection at an earlier and possibly reversible stage. Human renal cancers show a unique 31 P NMR spectrum and a very acidic environment. Cancer chemotherapy may alter this and detection of such changes with NMR offers a method of therapeutic monitoring with significance beyond nephrology. Renal cortex and medulla have a different T1 relaxation time, possibly due to differences in lipid composition. It seems that NMR spectroscopy has much to offer to the future understanding of the relationship between renal biochemistry and function. 56 references

  13. Fanconi syndrome and chronic renal failure in a chronic hepatitis B monoinfected patient treated with tenofovir

    Directory of Open Access Journals (Sweden)

    Pedro Magalhães-Costa

    Full Text Available Tenofovir disoproxil fumarate (TDF is one of the first-line treatment options in chronic hepatitis B (CHB. Despite its efficacy in suppressing viral load and a high resistance barrier, long life maintenance therapy is required. Registration studies demonstrated TDF to be a safe drug. However, post-marketing experience reported cases of serious nephrotoxicity associated with hypophosphatemia, osteomalacia and, even more recently, Fanconi syndrome associated with TDF therapy in CHB monoinfected patients. Here the authors report a case of a 40 year-old male, with a CHB monoinfection, that, three years after TDF therapy, developed a progressive chronic kidney disease with a serious hypophosphatemia and a secondary osteomalacia that was manifested by bone pain and multiple bone fractures. Further investigational analyses unveiled a proximal renal tubular dysfunction, which fulfilled most of the diagnostic criteria for a Fanconi syndrome. After TDF withdrawal and oral supplementation with phosphate and calcitriol, his renal function stabilized (despite not returning to normal, proximal renal tubular dysfunction abnormalities resolved as well as osteomalacia. In conclusion, physicians should be aware that, in CHB monoinfected patients under TDF therapy, serious renal damage is possible and preventable by timely monitoring serum creatinine and phosphate.

  14. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    Renal tubular epithelial cells receive hormonal input that regulates volume and electrolyte homeostasis. In addition, numerous intrarenal, local signaling agonists have appeared on the stage of renal physiology. One such system is that of intrarenal purinergic signaling. This system involves all......-reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula...

  15. Purinergic Signalling in Inflammatory Renal Disease

    Directory of Open Access Journals (Sweden)

    Nishkantha eArulkumaran

    2013-07-01

    Full Text Available Extracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signalling is dependent on the concentrations of extracellular purines. Low basal levels of purines are important in normal homeostasis and growth. Concentrations of extracellular purines are significantly elevated during inflammation and mediate either an adaptive role or propagate local inflammation. Adenosine signalling mediates alterations in regional renal blood flow by regulation of the renal microcirculation, tubulo-glomerular feedback, and tubular transport of sodium and water. Increased extracellular ATP and renal P2 receptor-mediated inflammation are associated with various renal diseases, including hypertension, diabetic nephropathy, and glomerulonephritis. Experimental data suggests P2 receptor deficiency or receptor antagonism is associated with amelioration of antibody-mediated nephritis, suggesting a pathogenic (rather than adaptive role of purinergic signalling. We discuss the role of extracellular nucleotides in adaptation to ischaemic renal injury and in the pathogenesis of inflammatory renal disease.

  16. International symposium on cellular and molecular biology of phosphate and phosphorylated compounds in microorganisms: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This report contains the abstracts of papers presented at the conference. Attention is focused on the following topics: regulation of phosphate metabolism in bacteria; structure-function of alkaline phosphatase; regulation of phosphate metabolism in yeast; transport of phosphate and phosphorylated compounds; and phosphate regulation in pathogenesis and secondary metabolism.

  17. Ammonia transport in the kidney by Rhesus glycoproteins

    Science.gov (United States)

    Verlander, Jill W.

    2014-01-01

    Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4+ with a new model in which specific and regulated transport of both NH3 and NH4+ across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport. PMID:24647713

  18. Perinatal Na+ Overload Programs Raised Renal Proximal Na+ Transport and Enalapril-Sensitive Alterations of Ang II Signaling Pathways during Adulthood

    Science.gov (United States)

    Cabral, Edjair V.; Vieira-Filho, Leucio D.; Silva, Paulo A.; Nascimento, Williams S.; Aires, Regina S.; Oliveira, Fabiana S. T.; Luzardo, Ricardo; Vieyra, Adalberto; Paixão, Ana D. O.

    2012-01-01

    Background High Na+ intake is a reality in nowadays and is frequently accompanied by renal and cardiovascular alterations. In this study, renal mechanisms underlying perinatal Na+ overload-programmed alterations in Na+ transporters and the renin/angiotensin system (RAS) were investigated, together with effects of short-term treatment with enalapril in terms of reprogramming molecular alterations in kidney. Methodology/Principal Findings Male adult Wistar rats were obtained from dams maintained throughout pregnancy and lactation on a standard diet and drinking water (control) or 0.17 M NaCl (saline group). Enalapril (100 mg/l), an angiotensin converting enzyme inhibitor, was administered for three weeks after weaning. Ninety day old offspring from dams that drank saline presented with proximal tubules exhibiting increased (Na++K+)ATPase expression and activity. Ouabain-insensitive Na+-ATPase activity remained unchanged but its response to angiotensin II (Ang II) was lost. PKC, PKA, renal thiobarbituric acid reactive substances (TBARS), macrophage infiltration and collagen deposition markedly increased, and AT2 receptor expression decreased while AT1 expression was unaltered. Early treatment with enalapril reduced expression and activity of (Na++K+)ATPase, partially recovered the response of Na+-ATPase to Ang II, and reduced PKC and PKA activities independently of whether offspring were exposed to high perinatal Na+ or not. In addition, treatment with enalapril per se reduced AT2 receptor expression, and increased TBARS, macrophage infiltration and collagen deposition. The perinatally Na+-overloaded offspring presented high numbers of Ang II-positive cortical cells, and significantly lower circulating Ang I, indicating that programming/reprogramming impacted systemic and local RAS. Conclusions/Significance Maternal Na+ overload programmed alterations in renal Na+ transporters and in its regulation, as well as severe structural lesions in adult offspring. Enalapril

  19. Adherence to phosphate binders in hemodialysis patients: prevalence and determinants.

    Science.gov (United States)

    Van Camp, Yoleen P M; Vrijens, Bernard; Abraham, Ivo; Van Rompaey, Bart; Elseviers, Monique M

    2014-12-01

    Phosphate control is a crucial treatment goal in end-stage renal disease, but poor patient adherence to phosphate binder therapy remains a challenge. This study aimed to estimate the extent of phosphate binder adherence in hemodialysis patients and to identify potential determinants. Phosphate binder adherence was measured blindly in 135 hemodialysis patients for 2 months using the medication event monitoring system. Patient data, gathered at inclusion through medical records, ad hoc questionnaires and the short form (SF)-36 health survey, included: (1) demographics, (2) perceived side-effects, belief in benefit, self-reported adherence to the therapy, (3) knowledge about phosphate binder therapy, (4) social support, and (5) quality of life (SF-36). Phosphatemia data was collected from charts. 'Being adherent' was defined as missing adherent' as missing adherent. Over the entire 8-week period, 22 % of patients were totally adherent. Mean phosphatemia levels were 0.55 mg/dl lower in adherent than nonadherent patients (4.76 vs. 5.31 mg/dl). Determinants for being totally adherent were living with a partner, higher social support (both were interrelated) and higher physical quality of life. Experiencing intake-related inconvenience negatively affected adherence. The social support and quality of life physical score explained 26 % of the variance in adherence. Phosphate binder nonadherence remains a major problem. Interventions should aim, at least, to improve social support. With few associated factors found and yet low adherence, an individualized approach seems indicated.

  20. A bioartificial renal tubule device embedding human renal stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Anna Giovanna Sciancalepore

    Full Text Available We present a bio-inspired renal microdevice that resembles the in vivo structure of a kidney proximal tubule. For the first time, a population of tubular adult renal stem/progenitor cells (ARPCs was embedded into a microsystem to create a bioengineered renal tubule. These cells have both multipotent differentiation abilities and an extraordinary capacity for injured renal cell regeneration. Therefore, ARPCs may be considered a promising tool for promoting regenerative processes in the kidney to treat acute and chronic renal injury. Here ARPCs were grown to confluence and exposed to a laminar fluid shear stress into the chip, in order to induce a functional cell polarization. Exposing ARPCs to fluid shear stress in the chip led the aquaporin-2 transporter to localize at their apical region and the Na(+K(+ATPase pump at their basolateral portion, in contrast to statically cultured ARPCs. A recovery of urea and creatinine of (20±5% and (13±5%, respectively, was obtained by the device. The microengineered biochip here-proposed might be an innovative "lab-on-a-chip" platform to investigate in vitro ARPCs behaviour or to test drugs for therapeutic and toxicological responses.

  1. The dark side of the kidney in cardio-renal syndrome: renal venous hypertension and congestive kidney failure.

    Science.gov (United States)

    Di Nicolò, Pierpaolo

    2018-03-01

    Renal involvement in some forms of acute or chronic diseases, such as heart failure or sepsis, presents with a complex pathophysiological basis that is not always clearly distinguishable. In these clinical settings, kidney failure is traditionally and almost exclusively attributed to renal hypoperfusion and it is commonly accepted that causal elements are pre-renal, such as a reduction in the ejection fraction or absolute or relative hypovolemia acting directly on oxygen transport mechanisms and renal autoregulation systems, causing a reduction of glomerular filtration rate. Nevertheless, the concept emerging from accumulating clinical and experimental evidence is that in complex clinical pictures, kidney failure is strongly linked to the hemodynamic alterations occurring in the renal venous micro and macrocirculation. Accordingly, the transmission of the increased venous pressure to the renal venous compartment and the consequent increasing renal afterload has a pivotal role in determining and sustaining the kidney damage. The aim of this review was to clarify the physiopathological aspects of the link between worsening renal function and renal venous hypertension, analyzing the prognostic and therapeutic implications of the so-called congestive kidney failure in cardio-renal syndrome and in other clinical contexts of its possible onset.

  2. Early effects of synthetic bovine parathyroid hormone and synthetic salmon calcitonin on urinary excretion of cyclic AMP, phosphate and calcium in man.

    Science.gov (United States)

    Caniggia, A; Gennari, C; Vattimo, A; Nardi, P; Nuti, R; Galli, M

    1976-04-20

    Bovine synthetic parathyroid hormone infused intravenously in man increased both the urinary excretion of cyclic AMP and the urinary excretion of phosphate whereas a Salmon synthetic calcitonin infusion increased the urinary excretion of phosphate without change in urinary excretion of cyclic AMP. These data are consistent with the hypothesis that different renal mechanisms are involved in the response to each hormone.

  3. Functional vitamin B-6 status and long-term mortality in renal transplant recipients

    NARCIS (Netherlands)

    Minović, Isidor; Veen, van der Anna; Faassen, van Martijn; Riphagen, Ineke J.; Berg, van den Else; Ley, van der Claude; Gomes-Neto, António W.; Geleijnse, Johanna M.; Eggersdorfer, Manfred; Navis, Gerjan J.; Kema, Ido P.; Bakker, Stephan J.L.

    2017-01-01

    Background: Low plasma concentrations of pyridoxal 5'-phosphate (PLP) are common in renal transplant recipients (RTRs) and confer increased risk of long-term mortality. To our knowledge, it is not known whether low plasma PLP concentrations have functional (i.e., intracellular) consequences and,

  4. Pentose phosphates in nucleoside interconversion and catabolism.

    Science.gov (United States)

    Tozzi, Maria G; Camici, Marcella; Mascia, Laura; Sgarrella, Francesco; Ipata, Piero L

    2006-03-01

    Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway, or are supplied by nucleoside phosphorylases. The two main pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, are readily interconverted by the action of phosphopentomutase. Ribose-5-phosphate is the direct precursor of 5-phosphoribosyl-1-pyrophosphate, for both de novo and 'salvage' synthesis of nucleotides. Phosphorolysis of deoxyribonucleosides is the main source of deoxyribose phosphates, which are interconvertible, through the action of phosphopentomutase. The pentose moiety of all nucleosides can serve as a carbon and energy source. During the past decade, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. We review herein the experimental knowledge on the molecular mechanisms by which (a) ribose-1-phosphate, produced by purine nucleoside phosphorylase acting catabolically, is either anabolized for pyrimidine salvage and 5-fluorouracil activation, with uridine phosphorylase acting anabolically, or recycled for nucleoside and base interconversion; (b) the nucleosides can be regarded, both in bacteria and in eukaryotic cells, as carriers of sugars, that are made available though the action of nucleoside phosphorylases. In bacteria, catabolism of nucleosides, when suitable carbon and energy sources are not available, is accomplished by a battery of nucleoside transporters and of inducible catabolic enzymes for purine and pyrimidine nucleosides and for pentose phosphates. In eukaryotic cells, the modulation of pentose phosphate production by nucleoside catabolism seems to be affected by developmental and physiological factors on enzyme levels.

  5. Effect of submarine groundwater discharge containing phosphate on coral calcification

    Science.gov (United States)

    Yasumoto, J.; Yasumoto, K.; Iijima, M.; Nozaki, M.; Asai, K.; Yasumoto, M. H.

    2017-12-01

    It is well known that the anthropogenic eutrophication enriched with various substances including phosphate in coastal waters has resulted in coral degradation. However, to the best of our knowledge, the phosphate threshold value to inhibit the coral calcification has been unclear, due to the unknown mechanisms involved in the inhibition of the calcification by phosphate. In island regions, groundwater is one of the most important clues to transport the nutrients contained in livestock or agricultural wastewaters. However, the actual conditions of coastal pollution with such nutrients have not been understood because of unperceived submarine groundwater discharge (SGD). In this study, to quantify of extremely rapid and localized SGD from Ryukyu limestone aquifer, we investigated the rate and concentration of phosphate of SGD using automated seepage mater in Yoron Island, which is located southern part of Japan. And, to elucidate the inhibition mechanisms for phosphate against coral calcification, we examined its effect on the bottom skeleton formation in primary polyps of Acropora digitifera by using the fluorescence derivatizing reagent having phosphate group (FITC-AA). As a result, the SGD was found to contain 1 to 2 µM of phosphate as much as the concentration in the coastal ground water under agricultural land. Moreover, the amount of phosphate contained in the surface layers of bottom calcareous sands close to the region of SGD were about 5 µmol/g. When the primary polyps were treated with 50 µM of FITC-AA, the bottom skeleton of the primary polyps showed the fluorescence from FITC-AA within a few minutes, suggesting the phosphate binding. Furthermore, when the polyps were treated with 10 µM of FITC-AA, irregular patterns of the elongated skeleton were observed. These results led us to conclude that phosphate is transported via a paracellular pathway to the subcalicoblastic extracellular calcifying medium. These results indicate that the phosphate adsorbed

  6. Use of osmolytes during solubilization and reconstitution of phosphate: sugar phosphate antiport from bacteria

    International Nuclear Information System (INIS)

    Ambudkar, S.V.; Sonna, L.A.; Maloney, P.C.

    1986-01-01

    Phosphate:2-deoxyglucose 6-phosphate (Pi:2DG6P) antiport was extracted from Streptococcus lactis or Staphylococcus aureus with 1.1% octylglucoside in the presence of 0.37% E. coli lipid and reconstituted by detergent dilution. Because previous work suggested inactivation at an early stage, the authors introduced protein stabilants during solubilization. When 20% glycerol was used, proteoliposomes showed a 20-fold increase in 32 Pi transport. This enhanced recovery required phospholipid plus glycerol, and was found only when both were added together with the detergent. Glycerol protection yielded proteoliposomes in which antiporters retained their normal kinetic properties, and Pi exchange by the streptococcal example gave a maximal rate (200-400 nmol/min per mg protein) and a turnover number (30-50/s) which suggested that inactivation had been avoided. Further study showed that 20% glycerol could be replaced by equally high concentrations of compounds classified as osmolytes polyols (erythritol, xylitol, sorbitol), sugars (glucose, trehalose) and certain amino acids (glycine, proline, but not valine). The authors suggest that osmolytes may be used to fully stabilize chemiosmotic transporters during reconstitution

  7. Overexpression of Thellungiella halophila H+-pyrophosphatase Gene Improves Low Phosphate Tolerance in Maize

    Science.gov (United States)

    Pei, Laming; Wang, Jiemin; Li, Kunpeng; Li, Yongjun; Li, Bei; Gao, Feng; Yang, Aifang

    2012-01-01

    Low phosphate availability is a major constraint on plant growth and agricultural productivity. Engineering a crop with enhanced low phosphate tolerance by transgenic technique could be one way of alleviating agricultural losses due to phosphate deficiency. In this study, we reported that transgenic maize plants that overexpressed the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) were more tolerant to phosphate deficit stress than the wild type. Under phosphate sufficient conditions, transgenic plants showed more vigorous root growth than the wild type. When phosphate deficit stress was imposed, they also developed more robust root systems than the wild type, this advantage facilitated phosphate uptake, which meant that transgenic plants accumulated more phosphorus. So the growth and development in the transgenic maize plants were not damaged as much as in the wild type plants under phosphate limitation. Overexpression of TsVP increased the expression of genes involved in auxin transport, which indicated that the development of larger root systems in transgenic plants might be due in part to enhanced auxin transport which controls developmental events in plants. Moreover, transgenic plants showed less reproductive development retardation and a higher grain yield per plant than the wild type plants when grown in a low phosphate soil. The phenotypes of transgenic maize plants suggested that the overexpression of TsVP led to larger root systems that allowed transgenic maize plants to take up more phosphate, which led to less injury and better performance than the wild type under phosphate deficiency conditions. This study describes a feasible strategy for improving low phosphate tolerance in maize and reducing agricultural losses caused by phosphate deficit stress. PMID:22952696

  8. Self-Motivation Is Associated With Phosphorus Control in End-Stage Renal Disease.

    Science.gov (United States)

    Umeukeje, Ebele M; Merighi, Joseph R; Browne, Teri; Victoroff, Jacquelyn N; Umanath, Kausik; Lewis, Julia B; Ikizler, T Alp; Wallston, Kenneth A; Cavanaugh, Kerri

    2015-09-01

    Hyperphosphatemia is common in end-stage renal disease and associates with mortality. Phosphate binders reduce serum phosphorus levels; however, adherence is often poor. This pilot study aims to assess patients' self-motivation to adhere to phosphate binders, its association with phosphorus control, and potential differences by race. Cross sectional design. Subjects were enrolled from one academic medical center dialysis practice from July to November 2012. Self-motivation to adhere to phosphate binders was assessed with the autonomous regulation (AR) scale (range: 1-7) and self-reported medication adherence with the Morisky Medication Adherence Scale. Linear regression models adjusting for age, sex, health literacy, and medication adherence were applied to determine associations with serum phosphorus level, including any evidence of interaction by race. Among 100 participants, mean age was 51 years (±15 years), 53% were male, 72% were non-white, 89% received hemodialysis, and mean serum phosphorus level was 5.7 ± 1.6 mg/dL. More than half (57%) reported the maximum AR score (7). Higher AR scores were noted in those reporting better health overall (P = .001) and those with higher health literacy (P = .01). AR score correlated with better medication adherence (r = 0.22; P = .02), and medication adherence was negatively associated with serum phosphorus (r = -0.40; P motivation was associated with phosphate binder adherence and phosphorus control, and this differed by race. Additional research is needed to determine if personalized, culturally sensitive strategies to understand and overcome motivational barriers may optimize mineral bone health in end-stage renal disease. Published by Elsevier Inc.

  9. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters

    DEFF Research Database (Denmark)

    Sawers, Ruairidh J H; Svane, Simon F; Quan, Clement

    2016-01-01

    content, abundance of intra-radical and root-external fungal structures, mycorrhizal phosphorus uptake, and accumulation of transcripts encoding plant PHT1 family phosphate transporters varied among lines. Larger growth responses in Oh43 were correlated with extensive development of root-external hyphae...

  10. Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (PhPT1) during petunia corolla senescence

    Science.gov (United States)

    Chapin, Laura J.; Jones, Michelle L.

    2009-01-01

    The programmed degradation of macromolecules during petal senescence allows the plant to remobilize nutrients from dying to developing tissues. Ethylene is involved in regulating the timing of nucleic acid degradation in petunia, but it is not clear if ethylene has a role in the remobilization of phosphorus during petal senescence. To investigate ethylene's role in nutrient remobilization, the P content of petals (collectively called the corolla) during early development and senescence was compared in ethylene-sensitive wild type Petunia×hybrida ‘Mitchell Diploid’ (MD) and transgenic petunias with reduced sensitivity to ethylene (35S::etr1-1). When compared to the total P content of corollas on the day of flower opening (the early non-senescing stage), P in MD corollas had decreased 74% by the late stage of senescence (advanced wilting). By contrast, P levels were only reduced by an average of 32% during etr1-1 corolla (lines 44568 and Z00-35-10) senescence. A high-affinity phosphate transporter, PhPT1 (PhPht1;1), was cloned from senescing petunia corollas by RT-PCR. PhPT1 expression was up-regulated during MD corolla senescence and a much smaller increase was detected during the senescence of etr1-1 petunia corollas. PhPT1 mRNA levels showed a rapid increase in detached corollas (treated at 1 d after flower opening) following treatment with low levels of ethylene (0.1 μl l-1). Transcripts accumulated in the presence of the protein synthesis inhibitor, cycloheximide, indicating that PhPT1 is a primary ethylene response gene. PhPT1 is a putative phosphate transporter that may function in Pi translocation during senescence. PMID:19380421

  11. Quantitative analysis of elevation of serum creatinine via renal transporter inhibition by trimethoprim in healthy subjects using physiologically-based pharmacokinetic model.

    Science.gov (United States)

    Nakada, Tomohisa; Kudo, Toshiyuki; Kume, Toshiyuki; Kusuhara, Hiroyuki; Ito, Kiyomi

    2018-02-01

    Serum creatinine (SCr) levels rise during trimethoprim therapy for infectious diseases. This study aimed to investigate whether the elevation of SCr can be quantitatively explained using a physiologically-based pharmacokinetic (PBPK) model incorporating inhibition by trimethoprim on tubular secretion of creatinine via renal transporters such as organic cation transporter 2 (OCT2), OCT3, multidrug and toxin extrusion protein 1 (MATE1), and MATE2-K. Firstly, pharmacokinetic parameters in the PBPK model of trimethoprim were determined to reproduce the blood concentration profile after a single intravenous and oral administration of trimethoprim in healthy subjects. The model was verified with datasets of both cumulative urinary excretions after a single administration and the blood concentration profile after repeated oral administration. The pharmacokinetic model of creatinine consisted of the creatinine synthesis rate, distribution volume, and creatinine clearance (CL cre ), including tubular secretion via each transporter. When combining the models for trimethoprim and creatinine, the predicted increments in SCr from baseline were 29.0%, 39.5%, and 25.8% at trimethoprim dosages of 5 mg/kg (b.i.d.), 5 mg/kg (q.i.d.), and 200 mg (b.i.d.), respectively, which were comparable with the observed values. The present model analysis enabled us to quantitatively explain increments in SCr during trimethoprim treatment by its inhibition of renal transporters. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  12. Excreção renal de fósforo em cães nefropatas sob estimulação dopaminérgica Renal excretion of phosphorus in nephropathy dogs under dopaminergic stimulation

    Directory of Open Access Journals (Sweden)

    Alexandre Martini de Brum

    2010-06-01

    Full Text Available A dopamina possui um amplo espectro de ação no sistema urinário. Aumento da taxa de filtração glomerular, do fluxo sanguíneo renal e da excreção fracionada de sódio e fósforo é um efeito renal esperado em indivíduos normais. Este estudo foi realizado com o propósito de testar a hipótese de que a dopamina é capaz de aumentar a excreção fracionada de fósforo em cães nefropatas. Cinco cães sadios e quatro cães nefropatas, com doença predominantemente túbulo-intersticial, foram submetidos à infusão de solução controle (NaCl 0,9% e solução de dopamina em duas taxas de infusão diferentes (1µg kg-1 min-1 e 3µg kg-1 min-1, sendo realizadas avaliações antes, durante e 30 minutos após a infusão. Os cães sadios apresentaram aumento significativo (P≤0,05 na excreção fracionada e excreção renal de fósforo durante a infusão de 3µg kg-1 min-1, porém a concentração sérica permaneceu sem alterações durante o tratamento. Já os cães nefropatas apresentaram aumento significativo (P≤0,05 na excreção fracionada e excreção renal de fósforo, tanto na dose de 1µg kg-1 min-1, como na de 3µg kg-1 min-1. Além disso, após a infusão de 1µg kg-1min-1, a concentração sérica de fósforo apresentou redução significativa. Os resultados são indicativos de que a dopamina nas doses de 1µg kg-1 min-1 e 3µg kg-1 min-1 podem ser incluídas na terapia de cães nefropatas para melhorar a homeostase de fosfato.The dopamine has a wide spectrum of action on the urinary system. Increases in glomerular filtration rate, renal blood flow, sodium and phosphate fractioned excretion are renal effects expected in healthy people. Thus, this study was conducted in order to test the hypothesis that the dopamine is efficient to increase the fractioned excretion of phosphorus in nephropathic dogs. Five healthy dogs and four dogs nephropathic, predominantly with tubule-interstitial illness were submitted to a solution control

  13. Preparation, characterization, biological activity, and transport study of polystyrene based calcium–barium phosphate composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Mohammad Mujahid Ali; Rafiuddin,, E-mail: rafi_amu@rediffmail.com

    2013-10-15

    Calcium–barium phosphate (CBP) composite membrane with 25% polystyrene was prepared by co-precipitation method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR), and Thermogravimetric analysis (TGA) were used to characterize the membrane. The membrane was found to be crystalline in nature with consistent arrangement of particles and no indication of visible cracks. The electrical potentials measured across the composite membrane in contact with univalent electrolytes (KCl, NaCl and LiCl), have been found to increase with decrease in concentrations. Thus the membrane was found to be cation-selective. Transport properties of developed membranes may be utilized for the efficient desalination of saline water and more importantly demineralization process. The antibacterial study of this composite membrane shows good results for killing the disease causing bacteria along with waste water treatment. Highlights: • Transport properties of composite membrane are evaluated. • The composite membrane was found to be stable in all media. • TMS method is used for electrochemical characterization. • The membrane was found to be cation selective. • The order of surface charge density was found to be LiCl < NaCl < KCl.

  14. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters

    DEFF Research Database (Denmark)

    Sawers, Ruairidh J. H.; Svane, Simon; Quan, Clement

    2017-01-01

    -internal and -external fungal structures, mycorrhizal phosphorus uptake, and accumulation of transcripts encoding plant PHT1 family phosphate transporters varied among lines. Superior response in Oh43 is correlated with extensive development of root-external hyphae, accumulation of specific Pht1 transcripts and high...

  15. Effect of Sodium-Glucose Co-Transporter 2 Inhibitor, Dapagliflozin, on Renal Renin-Angiotensin System in an Animal Model of Type 2 Diabetes.

    Science.gov (United States)

    Shin, Seok Joon; Chung, Sungjin; Kim, Soo Jung; Lee, Eun-Mi; Yoo, Young-Hye; Kim, Ji-Won; Ahn, Yu-Bae; Kim, Eun-Sook; Moon, Sung-Dae; Kim, Myung-Jun; Ko, Seung-Hyun

    2016-01-01

    Renal renin-angiotensin system (RAS) activation is one of the important pathogenic mechanisms in the development of diabetic nephropathy in type 2 diabetes. The aim of this study was to investigate the effects of a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, dapagliflozin, on renal RAS in an animal model with type 2 diabetes. Dapagliflozin (1.0 mg/kg, OL-DA) or voglibose (0.6 mg/kg, OL-VO, diabetic control) (n = 10 each) was administered to Otsuka Long-Evans Tokushima Fatty (OLETF) rats for 12 weeks. We used voglibose, an alpha-glucosidase inhibitor, as a comparable counterpart to SGLT2 inhibitor because of its postprandial glucose-lowering effect without proven renoprotective effects. Control Long-Evans Tokushima Otsuka (LT) and OLETF (OL-C) rats received saline (n = 10, each). Changes in blood glucose, urine albumin, creatinine clearance, and oxidative stress were measured. Inflammatory cell infiltration, mesangial widening, and interstitial fibrosis in the kidney were evaluated by histological analysis. The effects of dapagliflozin on renal expression of the RAS components were evaluated by quantitative RT-PCR in renal tissue. After treatment, hyperglycemia and urine microalbumin levels were attenuated in both OL-DA and OL-VO rather than in the OL-C group (P renal RAS component expression, oxidative stress and interstitial fibrosis in OLETF rats. We suggest that, in addition to control of hyperglycemia, partial suppression of renal RAS with an SGLT2 inhibitor would be a promising strategy for the prevention of treatment of diabetic nephropathy.

  16. Radionuclide containment in soil by phosphate treatment

    International Nuclear Information System (INIS)

    Lee, S.Y.; Francis, C.W.; Timpson, M.E.; Elless, M.P.

    1995-01-01

    Radionuclide transport from a contaminant source to groundwater and surface water is a common problem faced by most US Department of Energy (DOE) facilities. Containment of the radionuclide plume, including strontium-90 and uranium, is possible using phosphate treatment as a chemical stabilizer. Such a chemical process occurs in soils under natural environmental conditions. Therefore, the concept of phosphate amendment for radiostrontium and uranium immobilization is already a proven principle. In this presentation, results of bench-scale experiments and the concept of a field-scale demonstration are discussed. The phosphate treatment is possible at the source or near the advancing contaminant plume. Cleanup is still the ideal concept; however, containment through stabilization is a more practical and costeffective concept that should be examined by DOE Environmental Restoration programs

  17. Occupational radiation risks in conveyance of bulk phosphate and potash

    International Nuclear Information System (INIS)

    Grof, Y.; Even, O.; Schlesinger, T.; Margaliot, M.

    1996-01-01

    The issue of occupational ionizing radiation risks encountered in the conveyance and storage of Phosphates and Potash as loose cargo got very minor attention from the national health and occupational safety authorities in the world. In Israel, the Phosphates include an average 100- 150 ppm of Uranium in equilibrium with its daughters, while in Phosphates produced in most other countries the inaction reaches regularly only few ppm up to 50 ppm. Because of the high content of the Uranium in the Phosphate in Israel we must take into consideration the radiological implications involved in the handling of this mineral. The radiological implications of handling Potash are less significant but can not be neglected as we demonstrate bellow In this presentation we will estimate the occupational radiological risks involved in the storing and transportation of Phosphate and Potash. Note, that the main risk in working with Phosphate and Potash is the risk from the dust itself (authors)

  18. Occupational radiation risks in conveyance of bulk phosphate and potash

    Energy Technology Data Exchange (ETDEWEB)

    Grof, Y; Even, O; Schlesinger, T; Margaliot, M [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1996-12-01

    The issue of occupational ionizing radiation risks encountered in the conveyance and storage of Phosphates and Potash as loose cargo got very minor attention from the national health and occupational safety authorities in the world. In Israel, the Phosphates include an average 100- 150 ppm of Uranium in equilibrium with its daughters, while in Phosphates produced in most other countries the inaction reaches regularly only few ppm up to 50 ppm. Because of the high content of the Uranium in the Phosphate in Israel we must take into consideration the radiological implications involved in the handling of this mineral. The radiological implications of handling Potash are less significant but can not be neglected as we demonstrate bellow In this presentation we will estimate the occupational radiological risks involved in the storing and transportation of Phosphate and Potash. Note, that the main risk in working with Phosphate and Potash is the risk from the dust itself (authors).

  19. Risks of rapid decline renal function in patients with type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    Yi-Jing; Sheen; Wayne; HH; Sheu

    2014-01-01

    Progressive rising population of diabetes and related nephropathy, namely, diabetic kidney disease and associated end stage renal disease has become a major global public health issue. Results of observational studies indicate that most diabetic kidney disease progresses over decades; however, certain diabetes patients display a rapid decline in renal function, which may lead to renal failure within months. Although the definition of rapid renal function decline remained speculative, in general,it is defined by the decrease of estimated glomerular filtration rate(e GFR) in absolute rate of loss or percent change. Based on the Kidney Disease: Improving Global Outcomes 2012 clinical practice guidelines, a rapid decline in renal function is defined as a sustained declinein e GFR of > 5 m L/min per 1.73 m2 per year. It has been reported that potential factors contributing to a rapid decline in renal function include ethnic/genetic and demographic causes, smoking habits, increased glycated hemoglobin levels, obesity, albuminuria, anemia, low serum magnesium levels, high serum phosphate levels, vitamin D deficiency, elevated systolic blood pressure, pulse pressure, brachial-ankle pulse wave velocity values, retinopathy, and cardiac autonomic neuropathy. This article reviews current literatures in this area and provides insight on the early detection of diabetic subjects who are at risk of a rapid decline in renal function in order to develop a more aggressive approach to renal and cardiovascular protection.

  20. Pediatric Sjogren syndrome with distal renal tubular acidosis and autoimmune hypothyroidism: an uncommon association.

    Science.gov (United States)

    Agarwal, Amit; Kumar, Pradeep; Gupta, Nomeeta

    2015-11-01

    A 14-year-old female came with the history of sudden onset weakness; during work up, she was found to have hyperchloremic metabolic acidosis with normal anion gap and normal renal function suggesting the possibility of renal tubular acidosis (RTA). On further evaluation of RTA, she had positive antinuclear antibody, anti-Ro, and anti-La antibodies. On nuclear scan of salivary glands, her left parotid gland was nonfunctional. Her parotid biopsy revealed dilated interlobular ducts engulfed by lymphoid cells. She also had autoimmune hypothyroidism as suggested by raised TSH and positive anti-TPO antibodies. At admission, her serum potassium levels were low and she was treated with intravenous potassium chloride. After she recovered from acute hypokalemic paralysis, she was started on oral potassium citrate along with phosphate supplements, hydroxychloroquine, oral prednisolone and thyroxine supplements. Over the next 6 months, she has significant reduction in the dosage of potassium, bicarbonate and phosphate and gained 3 kg of weight and 3.5 cm of height. As primary Sjogren syndrome itself is rare in pediatric population and its association with renal tubular acidosis is even rarer, we suggest considering Sjogren syndrome as a differential diagnosis during the RTA work-up is worth trying.

  1. Sphingosine 1-phosphate (S1P) induces COX-2 expression and PGE2 formation via S1P receptor 2 in renal mesangial cells.

    Science.gov (United States)

    Völzke, Anja; Koch, Alexander; Meyer Zu Heringdorf, Dagmar; Huwiler, Andrea; Pfeilschifter, Josef

    2014-01-01

    Understanding the mechanisms of sphingosine 1-phosphate (S1P)-induced cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) formation in renal mesangial cells may provide potential therapeutic targets to treat inflammatory glomerular diseases. Thus, we evaluated the S1P-dependent signaling mechanisms which are responsible for enhanced COX-2 expression and PGE2 formation in rat mesangial cells under basal conditions. Furthermore, we investigated whether these mechanisms are operative in the presence of angiotensin II (Ang II) and of the pro-inflammatory cytokine interleukin-1β (IL-1β). Treatment of rat and human mesangial cells with S1P led to concentration-dependent enhanced expression of COX-2. Pharmacological and molecular biology approaches revealed that the S1P-dependent increase of COX-2 mRNA and protein expression was mediated via activation of S1P receptor 2 (S1P2). Further, inhibition of Gi and p42/p44 MAPK signaling, both downstream of S1P2, abolished the S1P-induced COX-2 expression. In addition, S1P/S1P2-dependent upregulation of COX-2 led to significantly elevated PGE2 levels, which were further potentiated in the presence of Ang II and IL-1β. A functional consequence downstream of S1P/S1P2 signaling is mesangial cell migration that is stimulated by S1P. Interestingly, inhibition of COX-2 by celecoxib and SC-236 completely abolished the migratory response. Overall, our results demonstrate that extracellular S1P induces COX-2 expression via activation of S1P2 and subsequent Gi and p42/p44 MAPK-dependent signaling in renal mesangial cells leading to enhanced PGE2 formation and cell migration that essentially requires COX-2. Thus, targeting S1P/S1P2 signaling pathways might be a novel strategy to treat renal inflammatory diseases. © 2013.

  2. Opsismodysplasia: Phosphate wasting osteodystrophy responds to bisphosphonate therapy

    Directory of Open Access Journals (Sweden)

    Ansab eKhwaja

    2015-06-01

    Full Text Available We present two siblings affected with opsismodysplasia, a rare skeletal dysplasia caused by mutations in the INPPL1 gene. The skeletal findings include short stature with postnatal onset micromelia, marked platyspondyly, squared metacarpals, delayed skeletal ossification, metaphyseal cupping and postnatal micromelia. Respiratory compromise, delayed ambulation, and progressive lower extremity deformities are described. The severity of findings is variable. Renal phosphate wasting is associated with severe bone demineralization and a more severe phenotype. This report represents the first described cases of opsismodysplasia treated with intravenous bisphosphonate (pamidronate. Surgical management for lower extremity deformities associated with OPS is also reviewed.

  3. Solubility and transport measurements as tools for the speciation of f-elements at tracer-scale amounts; application to Eu and Th in phosphate media

    International Nuclear Information System (INIS)

    Fourest, B.; David, F.; Lagarde, G.; Lindecker, C.; Du, J.F. Le; Tarapcik, P.; Trskova, R.

    1998-01-01

    The speciation of f-elements can be examined by methods which are based either on the distribution of the radionuclide of interest between two phases (solubility measurements) or on its moving in solution (capillary diffusion and migration). Predictive curves giving the variation of the mobility and the concentration of Europium as a function of pH and/or phosphate concentration can be proposed from selected literature data. Capillary electrophoresis experiments show that the mobility decrease due to hydrolysis occurs at a pH value lower than expected. The peak intensity is correspondingly smaller, but this observation cannot be simply related to a change in the charge of the migrating species because of sorption and precipitation phenomena on the capillary walls. Diffusion coefficient measurements by the 'open end capillary' method confirm the formation of larger and/or less charged species starting at a similar pH value. In the presence of phosphate anions, both transport methods should indicate the presence in solution of species having a larger size than expected, which could be polynuclear. Solubility measurements give more information but require the synthesis of a well-defined labelled phosphate compound. The total concentration of f-elements detected in the solutions equilibrated with such compounds allow to deduce, by varying only one parameter in the solution (pH or phosphate concentration), the form and the charge of the different species prevailing in the solution. The solubility method appears particularly interesting in the case of concentrated phosphate media

  4. Downregulation of the S1P Transporter Spinster Homology Protein 2 (Spns2 Exerts an Anti-Fibrotic and Anti-Inflammatory Effect in Human Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Olivier Blanchard

    2018-05-01

    Full Text Available Sphingosine kinase (SK catalyses the formation of sphingosine 1-phosphate (S1P, which acts as a key regulator of inflammatory and fibrotic reactions, mainly via S1P receptor activation. Here, we show that in the human renal proximal tubular epithelial cell line HK2, the profibrotic mediator transforming growth factor β (TGFβ induces SK-1 mRNA and protein expression, and in parallel, it also upregulates the expression of the fibrotic markers connective tissue growth factor (CTGF and fibronectin. Stable downregulation of SK-1 by RNAi resulted in the increased expression of CTGF, suggesting a suppressive effect of SK-1-derived intracellular S1P in the fibrotic process, which is lost when SK-1 is downregulated. In a further approach, the S1P transporter Spns2, which is known to export S1P and thereby reduces intracellular S1P levels, was stably downregulated in HK2 cells by RNAi. This treatment decreased TGFβ-induced CTGF and fibronectin expression, and it abolished the strong induction of the monocyte chemotactic protein 1 (MCP-1 by the pro-inflammatory cytokines tumor necrosis factor (TNFα and interleukin (IL-1β. Moreover, it enhanced the expression of aquaporin 1, which is an important water channel that is expressed in the proximal tubules, and reverted aquaporin 1 downregulation induced by IL-1β/TNFα. On the other hand, overexpression of a Spns2-GFP construct increased S1P secretion and it resulted in enhanced TGFβ-induced CTGF expression. In summary, our data demonstrate that in human renal proximal tubular epithelial cells, SK-1 downregulation accelerates an inflammatory and fibrotic reaction, whereas Spns2 downregulation has an opposite effect. We conclude that Spns2 represents a promising new target for the treatment of tubulointerstitial inflammation and fibrosis.

  5. Differential regulation of renal Klotho and FGFR1 in normal and uremic rats.

    Science.gov (United States)

    Muñoz-Castañeda, Juan R; Herencia, Carmen; Pendón-Ruiz de Mier, Maria Victoria; Rodriguez-Ortiz, Maria Encarnación; Diaz-Tocados, Juan M; Vergara, Noemi; Martínez-Moreno, Julio M; Salmerón, Maria Dolores; Richards, William G; Felsenfeld, Arnold; Kuro-O, Makoto; Almadén, Yolanda; Rodríguez, Mariano

    2017-09-01

    In renal failure, hyperphosphatemia occurs despite a marked elevation in serum fibroblast growth factor (FGF)-23. Abnormal regulation of the FGFR1-Klotho receptor complex may cause a resistance to the phosphaturic action of FGF23. The purpose of the present study was to investigate the regulation of renal Klotho and FGF receptor (FEFR)-1 in healthy and uremic rats induced by 5/6 nephrectomy. In normal rats, the infusion of rat recombinant FGF23 enhanced phosphaturia and increased renal FGFR1 expression; however, Klotho expression was reduced. Uremic rats on a high-phosphate (HP) diet presented hyperphosphatemia with marked elevation of FGF23 and an increased fractional excretion of phosphate (P) that was associated with a marked reduction of Klotho expression and an increase in FGFR1. After neutralization of FGF23 by anti-FGF23 administration, phosphaturia was still abundant, Klotho expression remained low, and the FGFR1 level was reduced. These results suggest that the expression of renal Klotho is modulated by phosphaturia, whereas the FGFR1 expression is regulated by FGF23. Calcitriol (CTR) administration prevented a decrease in renal Klotho expression. In HEK293 cells HP produced nuclear translocation of β-catenin, together with a reduction in Klotho. Wnt/β-catenin inhibition with Dkk-1 prevented the P-induced down-regulation of Klotho. The addition of CTR to HP medium was able to recover Klotho expression. In summary, high FGF23 levels increase FGFR1, whereas phosphaturia decreases Klotho expression through the activation of Wnt/β-catenin pathway.-Muñoz-Castañeda, J. R., Herencia, C., Pendón-Ruiz de Mier, M. V., Rodriguez-Ortiz, M. E., Diaz-Tocados, J. M., Vergara, N., Martínez-Moreno, J. M., Salmerón, M. D., Richards, W. G., Felsenfeld, A., Kuro-O, M., Almadén, Y., Rodríguez, M. Differential regulation of renal Klotho and FGFR1 in normal and uremic rats. © FASEB.

  6. Sequential Scintigraphy in Renal Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Winkel, K. zum; Harbst, H.; Schenck, P.; Franz, H. E.; Ritz, E.; Roehl, L.; Ziegler, M.; Ammann, W.; Maier-Borst, W. [Institut Fuer Nuklearmedizin, Deutsches Krebsforschungszentrum, Heidelberg, Federal Republic of Germany (Germany)

    1969-05-15

    Based on experience gained from more than 1600 patients with proved or suspected kidney diseases and on results on extended studies with dogs, sequential scintigraphy was performed after renal transplantation in dogs. After intravenous injection of 500 {mu}Ci. {sup 131}I-Hippuran scintiphotos were taken during the first minute with an exposure time of 15 sec each and thereafter with an exposure of 2 min up to at least 16 min.. Several examinations were evaluated digitally. 26 examinations were performed on 11 dogs with homotransplanted kidneys. Immediately after transplantation the renal function was almost normal arid the bladder was filled in due time. At the beginning of rejection the initial uptake of radioactive Hippuran was reduced. The intrarenal transport became delayed; probably the renal extraction rate decreased. Corresponding to the development of an oedema in the transplant the uptake area increased in size. In cases of thrombosis of the main artery there was no evidence of any uptake of radioactivity in the transplant. Similar results were obtained in 41 examinations on 15 persons. Patients with postoperative anuria due to acute tubular necrosis showed still some uptake of radioactivity contrary to those with thrombosis of the renal artery, where no uptake was found. In cases of rejection the most frequent signs were a reduced initial uptake and a delayed intrarenal transport of radioactive Hippuran. Infarction could be detected by a reduced uptake in distinct areas of the transplant. (author)

  7. Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter.

    NARCIS (Netherlands)

    Smeets, P.H.E.; Aubel, R.A.M.H. van; Wouterse, A.C.; Heuvel, J.J.T.M.; Russel, F.G.M.

    2004-01-01

    p-Aminohippurate (PAH) is the classical substrate used in the characterization of organic anion transport in renal proximal tubular cells. Although basolateral transporters for PAH uptake from blood into the cell have been well characterized, there is still little knowledge on the apical urinary

  8. Na+-H+ exchange and Na+-dependent transport systems in streptozotocin diabetic rat kidneys

    International Nuclear Information System (INIS)

    El-Seifi, S.; Freiberg, J.M.; Kinsella, F.J.; Cheng, L.; Sacktor, B.

    1987-01-01

    The streptozotocin-induced diabetic rat was used to test the hypothesis that Na + -H + exchange activity in the proximal tubule luminal membrane would be increased in association with renal hypertrophy, altered glomerular hemodynamics, enhanced filtered load and tubular reabsorption of 22 Na + , and stimulated 22 Na= pump activity in the basolateral membrane, previously reported characteristics of this experimental animal model. Amiloride-sensitive H + gradient-dependent Na + uptake and Na + gradient-dependent H + flux were increased in brush-border membrane vesicles from the streptozotocin-treated animals. Na + gradient-dependent uptakes of phosphate, D-glucose, L-proline, and myoinositol were decreased in the drug-induced diabetic animals. These membrane transport alterations were not found when the streptozotocin-diabetic animals were treated with insulin

  9. Preoperative percutaneous transhepatic internal drainage in obstructive jaundice: a randomized, controlled trial examining renal function.

    Science.gov (United States)

    Smith, R C; Pooley, M; George, C R; Faithful, G R

    1985-06-01

    Thirty patients with obstructive jaundice with plasma bilirubin values greater than 200 mumol/L were randomized at the time of percutaneous transhepatic Cholangiography to undergo immediate or delayed surgery. The patients who had preoperative percutaneous transhepatic biliary drainage (PTBD) for 13.8 +/- 5.8 days had fewer surgical complications than did patients who underwent immediate surgery (p less than 0.02), although when the complications of PTBD were included this advantage was diminished. Immediate surgery caused greater deterioration of renal function as measured by plasma urea, plasma B 2-microglobulin, phosphate clearance, uric acid clearance, and maximal concentrating ability than occurred after PTBD or delayed surgery. The improvement in phosphate clearance that followed PTBD was sustained through delayed surgical treatment, indicating better tubular function in these patients. This article supports the concept that preoperative PTBD will reduce surgical morbidity and will result in less renal impairment than will immediate surgery. However, the morbidity rates of the PTBD procedure will preclude its wide use.

  10. Penile gangrene associated with chronic renal failure - report of 2 cases and review of literature

    Directory of Open Access Journals (Sweden)

    Arvind Goyal

    2001-01-01

    Full Text Available Penile gangrene associated with chronic renal failure, is a rare entity. Patients usually have associated diseases like diabetes, hypertension. Gangrene occurs because the dystrophic calcific infiltration causes huninal obstruction. This is an accompaniment of generalized soft tissue calcification and bony abnormality resulting. from secondary hyperparathyroidism. Calcium phosphate product exceeds plasma solubility causing precipitation of calcium phosphate. Medical treatment may maintain the product below precipitation levels. Mortality in these patients remains high due to the severity of the associated systemic illnesses. Conservative surgical treatment is advocated in view of short life span.

  11. A fixed protocol for outpatient clinic routines in the care of patients with severe renal failure.

    Science.gov (United States)

    Hadimeri, Henrik; Frisenette-Fich, Carsten; Deurell, Sven-Ingemar; Svensson, Lars; Carlsson-Bjering, Lena; Fernström, Anders; Almroth, Gabriel; Melander, Stefan; Haarhaus, Mattias; Andersson, Per-Olof; Cassel, Agneta; Mauritz, Nils-Johan; Ståhl-Nilsson, Agneta; Wilske, Jan; Nordström, Kataryna; Oruda, Pavel; Eriksson, Marie; Larsson, Annelie Inghilesi; Stegmayr, Bernd

    2013-07-01

    The primary aim of this study was to assess whether a fixed protocol, using a specially trained team, for intermediate follow-up to fulfillment of guideline targets is non-inferior to conventional follow-up in the care of uraemic patients. A secondary aim was to investigate possible impact on patient outcome. The cohort comprised 424 patients from seven centers. Inclusion criteria were either serum creatinine exceeding 200 µmol/l or calculated clearance below 30 ml/min, representing CKD 4 or 5a. Six centers followed a standardized protocol (group 1). One center provided controls (group 2). The study design was prospective and interventional. The variables measured were blood hemoglobin, bicarbonate, calcium, phosphate, intact parathyroid hormone, albumin, renal function variables, blood pressure and RAAS blockade. The number of patients achieving the set goals was analyzed as a time trend to determine if the intervention resulted in an improvement. At baseline, group 1 had significantly lower GFR and higher serum creatinine, calcium, phosphate, calcium × phosphate product and bicarbonate, lower mean arterial pressure (MAP), systolic blood pressures and less use of RAAS. During the intervention, group 1 improved in the direction of guidelines for blood hemoglobin, albumin, bicarbonate and MAP. Outcome of secondary endpoints gave a risk of death of 30% in both groups, while the risk of renal replacement therapy was higher in group 1. However, the time to renal replacement therapy was significantly shorter in the intervention group, indicating that other variables than guideline achievements are important for the patient.

  12. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life

    DEFF Research Database (Denmark)

    Bøttger, Pernille; Pedersen, Lene

    2011-01-01

    -keeping functions. Alignment of protein sequences representing PiT family members from all kingdoms reveals the presence of conserved amino acids and that bacterial phosphate permeases and putative phosphate permeases from archaea lack substantial parts of the protein sequence when compared to the mammalian Pi...... PiT2 histidine, H502, and the human PiT1 glutamate, E70, - both conserved in eukaryotic PiT family members - are critical for Pi transport function. Noticeably, human PiT2 H502 is located in the C-terminal PiT family signature sequence, and human PiT1 E70 is located in ProDom domains characteristic....... Conclusions The results suggest that the overall structure of the Pi-transporting unit of the PiT family proteins has remained unchanged during evolution. Moreover, in combination, our studies of the gene structure of the human PiT1 and PiT2 genes (SLC20A1 and SLC20A2, respectively) and alignment of protein...

  13. The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis.

    Science.gov (United States)

    Boulet, Aren; Vest, Katherine E; Maynard, Margaret K; Gammon, Micah G; Russell, Antoinette C; Mathews, Alexander T; Cole, Shelbie E; Zhu, Xinyu; Phillips, Casey B; Kwong, Jennifer Q; Dodani, Sheel C; Leary, Scot C; Cobine, Paul A

    2018-02-09

    Copper is required for the activity of cytochrome c oxidase (COX), the terminal electron-accepting complex of the mitochondrial respiratory chain. The likely source of copper used for COX biogenesis is a labile pool found in the mitochondrial matrix. In mammals, the proteins that transport copper across the inner mitochondrial membrane remain unknown. We previously reported that the mitochondrial carrier family protein Pic2 in budding yeast is a copper importer. The closest Pic2 ortholog in mammalian cells is the mitochondrial phosphate carrier SLC25A3. Here, to investigate whether SLC25A3 also transports copper, we manipulated its expression in several murine and human cell lines. SLC25A3 knockdown or deletion consistently resulted in an isolated COX deficiency in these cells, and copper addition to the culture medium suppressed these biochemical defects. Consistent with a conserved role for SLC25A3 in copper transport, its heterologous expression in yeast complemented copper-specific defects observed upon deletion of PIC2 Additionally, assays in Lactococcus lactis and in reconstituted liposomes directly demonstrated that SLC25A3 functions as a copper transporter. Taken together, these data indicate that SLC25A3 can transport copper both in vitro and in vivo . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Phosphate homeostasis in CKD: report of a scientific symposium sponsored by the National Kidney Foundation.

    Science.gov (United States)

    Block, Geoffrey A; Ix, Joachim H; Ketteler, Markus; Martin, Kevin J; Thadhani, Ravi I; Tonelli, Marcello; Wolf, Myles; Jüppner, Harald; Hruska, Keith; Wheeler, David C

    2013-09-01

    Chronic kidney disease (CKD)-mineral and bone disorder is associated with diverse metabolic and endocrine disturbances that ultimately may contribute to further loss of kidney function, bone demineralization, and fatal or nonfatal cardiovascular events. Recent insights into the pathophysiology of the events that unfold during the development of this disorder suggest that disturbances in phosphate metabolism are pivotal. The consequences of abnormal phosphate homeostasis are evident at estimated glomerular filtration rates <70 mL/min/1.73 m(2), long before serum phosphate levels increase. Healthy individuals with blood phosphate levels in the top quartile of the normal range have an increased risk of developing CKD, reaching end-stage renal disease, and experiencing cardiovascular events. Substantial public health consequences may be related to increased dietary phosphorus exposure from additives that contain phosphate in the food supply and from modest increases in serum phosphate levels; however, it remains to be established whether interventions aimed at these targets can impact on the development of adverse clinical outcomes. Current approaches involving dietary intervention and intestinal phosphate binders are based on principles and assumptions that need to be examined more rigorously. Compelling animal, observational, and clinical data indicate that interventions directed at lowering phosphate exposure and serum phosphate levels should be subject to rigorous clinical trials that use appropriate placebo comparators and focus on key clinical outcomes, such as cardiovascular events, progression of CKD, fractures, quality of life, and mortality. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  15. The anti-epileptic drug substance vigabatrin inhibits taurine transport in intestinal and renal cell culture models

    DEFF Research Database (Denmark)

    Plum, Jakob Munk; Nøhr, Martha Kampp; Hansen, Steen H

    2014-01-01

    , such evidence does not preclude the involvement of other transporters. The aim of the present study was, therefore, to investigate if vigabatrin interacts with taurine transport. The uptake of taurine was measured in intestinal human Caco-2 and canine MDCK cell monolayers in the absence or presence of amino...... acids such as GABA and vigabatrin. Vigabatrin inhibits the uptake of taurine in Caco-2 and MDCK cells to 34±3 and 53±2%, respectively, at a concentration of 30mM. In Caco-2 cells the uptake of vigabatrin under neutral pH conditions is concentration-dependent and saturable with a Km-value of 27mM (log......Km is 1.43±0.09). In conclusion, the present study shows that vigabatrin was able to inhibit the uptake of taurine in intestinal and renal cell culture models. Furthermore, uptake of vigabatrin in Caco-2 cells under neutral pH conditions was concentration-dependent and saturable and suggesting...

  16. Phosphate-binding protein from Polaromonas JS666: purification, characterization, crystallization and sulfur SAD phasing

    Energy Technology Data Exchange (ETDEWEB)

    Pegos, Vanessa R.; Hey, Louis; LaMirande, Jacob; Pfeffer, Rachel; Lipsh, Rosalie; Amitay, Moshe; Gonzalez, Daniel; Elias, Mikael (JCT-Israel); (UMM); (CNRS-UMR)

    2017-05-25

    Phosphate-binding proteins (PBPs) are key proteins that belong to the bacterial ABC-type phosphate transporters. PBPs are periplasmic (or membrane-anchored) proteins that capture phosphate anions from the environment and release them to the transmembrane transporter. Recent work has suggested that PBPs have evolved for high affinity as well as high selectivity. In particular, a short, unique hydrogen bond between the phosphate anion and an aspartate residue has been shown to be critical for selectivity, yet is not strictly conserved in PBPs. Here, the PBP fromPolaromonasJS666 is focused on. Interestingly, this PBP is predicted to harbor different phosphate-binding residues to currently known PBPs. Here, it is shown that the PBP fromPolaromonasJS666 is capable of binding phosphate, with a maximal binding activity at pH 8. Its structure is expected to reveal its binding-cleft configuration as well as its phosphate-binding mode. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.35 Å resolution of the PBP fromPolaromonasJS666 are reported.

  17. Alteration of renal excretion pathways in gentamicin-induced renal injury in rats.

    Science.gov (United States)

    Ma, Yan-Rong; Luo, Xuan; Wu, Yan-Fang; Zhang, Tiffany; Zhang, Fan; Zhang, Guo-Qiang; Wu, Xin-An

    2018-02-20

    The kidney plays a major part in the elimination of many drugs and their metabolites, and drug-induced kidney injury commonly alters either glomerular filtration or tubular transport, or both. However, the renal excretion pathway of drugs has not been fully elucidated at different stages of renal injury. This study aimed to evaluate the alteration of renal excretion pathways in gentamicin (GEN)-induced renal injury in rats. Results showed that serum cystatin C, creatinine and urea nitrogen levels were greatly increased by the exposure of GEN (100 mg kg -1 ), and creatinine concentration was increased by 39.7% by GEN (50 mg kg -1 ). GEN dose-dependently upregulated the protein expression of rOCT1, downregulated rOCT2 and rOAT1, but not affected rOAT2. Efflux transporters, rMRP2, rMRP4 and rBCRP expressions were significantly increased by GEN(100), and the rMATE1 level was markedly increased by GEN(50) but decreased by GEN(100). GEN(50) did not alter the urinary excretion of inulin, but increased metformin and furosemide excretion. However, GEN(100) resulted in a significant decrease of the urinary excretion of inulin, metformin and p-aminohippurate. In addition, urinary metformin excretions in vivo were significantly decreased by GEN(100), but slightly increased by GEN(50). These results suggested that GEN(50) resulted in the induction of rOCTs-rMATE1 and rOAT3-rMRPs pathway, but not changed the glomerular filtration rate, and GEN(100)-induced acute kidney injury caused the downregulated function of glomerular filtration -rOCTs-rMATE1 and -rOAT1-rMRPs pathway. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Amelioration of renal lesions associated with diabetes by dietary curcumin in streptozotocin diabetic rats.

    Science.gov (United States)

    Suresh Babu, P; Srinivasan, K

    1998-04-01

    Curcumin, the coloring principle of the commonly used spice turmeric (Curcuma longa) was fed at 0.5% in the diet to streptozotocin-induced diabetic Wistar rats for 8 weeks. Renal damage was assessed by the amount of proteins excreted in the urine and the extent of leaching of renal tubular enzymes: NAG, LDH, AsAT, AlAT, alkaline and acid phosphatases. The integrity of kidney was assessed by measuring the activities of several key enzymes of the renal tissue: glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, and LDH (Carbohydrate metabolism), aldose reductase and sorbitol dehydrogenase (polyol pathway), transaminases, ATPases and membrane PUFA/SFA ratio (membrane integrity). Data on enzymuria, albuminuria, activity of kidney ATPases and fatty acid composition of renal membranes in diabetic condition suggested that dietary curcumin brought about significant beneficial modulation of the progression of renal lesions in diabetes. These findings were also corroborated by histological examination of kidney sections. It is inferred that this beneficial ameliorating influence of dietary curcumin on diabetic nephropathy is possibly mediated through its ability to lower blood cholesterol levels.

  19. Compartment model for the measurement of the effective renal plasma flow by radionuclidenephrography

    International Nuclear Information System (INIS)

    Ryabov, S.I.; Degtyareva, O.A.

    1988-01-01

    By reason of model ideas on hippuran kinetics radionuclide nephrograms were split up into a renal component and a component of the tissue background. New indices for the evaluation of renal function symmetry were proposed comprising the proportional determination of the effective renal plasma flow as well as of the symmetrical blood flow. For early diagnosis of latent renal dysfunction a new index is proposed characterizing the excretory renal transport as to local renal blood supply. Empirical indices of 120 patients suffering from chronic glomerulonephritis and pyelonephritis, resp., are stated

  20. Water diffusion in phosphate-containing hydrogels

    International Nuclear Information System (INIS)

    George, K.A.; Wentrup-Byrne, E.; Hill, D.J.T.; Whittaker, A.K.

    2003-01-01

    An understanding of the kinetics and diffusion of liquids through polymeric hydrogels is critical for the successful design and application of these materials in biomedical field, particularly as controlled drug delivery systems. In this study, the mechanisms of water transport and parameters that describe the diffusion process in crosslinked poly(2-hydroxyethylmethacrylate-co-methyloxyethylene phosphate), poly(HEMA-co-MOEP) polymers were investigated. The copolymerisation of HEMA with MOEP was initiated by γ radiolysis with full conversion of monomer to polymer. The sorption of water into the polymers with 0 - 30 mol% MOEP was monitored gravimetrically over a period of 2 - 3 weeks. This study provided an insight into the diffusion mechanism and showed that the PHEMA hydrogel displayed concentration-independent Fickian diffusion. As the concentration of MOEP in the network increased, the diffusion rate and the rigidity of the network also increased in a linear fashion. NMR imaging was used in conjunction with the gravimetric study to elucidate the transport mechanisms, diffusion coefficients and proportionality constants governing the water diffusion in the phosphate-containing polymers. The hydrogels with 3 - 20 mol% MOEP exhibited exponential concentration-dependent Fickian diffusion and the transport mechanism in the system with 30 mol% MOEP was shown to be anomalous. The systems with greater concentrations of MOEP displayed a high degree of fracturing during water sorption and resulted in the ultimate destruction of the cylindrical geometry

  1. Renal handling of drugs in renal failure. I: Differential effects of uranyl nitrate- and glycerol-induced acute renal failure on renal excretion of TEAB and PAH in rats

    International Nuclear Information System (INIS)

    Lin, J.H.; Lin, T.H.

    1988-01-01

    Two etiologically different models of experimental acute renal failure were induced in rats by administration of either glycerol or uranyl nitrate. Both compounds caused a substantial decrease in the glomerular filtration rate (GFR) and the net tubular secretion of tetraethylammonium bromide (TEAB) and para-aminohippuric acid (PAH). The degree of renal impairment induced by uranyl nitrate and glycerol appeared to be dose related. Deprivation of drinking water 24 hr before the administration of glycerol potentiated the renal damage. In uranyl nitrate-induced renal failure, the decline of the net tubular secretion for TEAB and PAH was not proportional to the decrease in GFR; the secretion process deteriorated faster than the GFR. For example, when 0.5 mg/kg uranyl nitrate was administered, GFR fell to approximately 65% of normal, whereas the net tubular secretion was decreased to 30% of normal. These results suggest that the tubular transport was preferentially affected by uranyl nitrate. In contrast, in glycerol-induced renal failure, the decline of TEAB secretion fell in a parallel fashion with the GFR, suggesting that the glomeruli and the proximal tubules were equally damaged by glycerol. However, in this latter model, the decline of PAH secretion did not parallel the decrease in GFR, contradicting the proposal that glycerol affects equally the glomeruli and the proximal tubules. This discrepancy may be due to the selective competitive inhibition of PAH secretion by the accumulation of naturally occurring organic acids

  2. Evidence Report: Risk of Renal Stone Formation

    Science.gov (United States)

    Sibonga, Jean D.; Pietrzyk, Robert

    2017-01-01

    The formation of renal stones poses an in-flight health risk of high severity, not only because of the impact of renal colic on human performance but also because of complications that could potentially lead to crew evacuation, such as hematuria, infection, hydronephrosis, and sepsis. Evidence for risk factors comes from urine analyses of crewmembers, documenting changes to the urinary environment that are conducive to increased saturation of stone-forming salts, which are the driving force for nucleation and growth of a stone nidus. Further, renal stones have been documented in astronauts after return to Earth and in one cosmonaut during flight. Biochemical analysis of urine specimens has provided indication of hypercalciuria and hyperuricemia, reduced urine volumes, and increased urine saturation of calcium oxalate and calcium phosphate. A major contributor to the risk for renal stone formation is bone atrophy with increased turnover of the bone minerals. Dietary and fluid intakes also play major roles in the risk because of the influence on urine pH (more acidic) and on volume (decreased). Historically, specific assessments on urine samples from some Skylab crewmembers indicated that calcium excretion increased early in flight, notable by day 10 of flight, and almost exceeded the upper threshold for normal excretion (300mg/day in males). Other crewmember data documented reduced intake of fluid and reduced intake of potassium, phosphorus, magnesium, and citrate (an inhibitor of calcium stone formation) in the diet. Hence, data from both short-duration and long-duration missions indicate that space travel induces risk factors for renal stone formation that continue to persist after flight; this risk has been documented by reported kidney stones in crewmembers.

  3. Microinjection studies of phosphate permeability in rats during mild saline diuresis: influence of acute thyroparathyroidectomy and parathormone administration

    International Nuclear Information System (INIS)

    Poujeol, P.; Rouffignac, C. de.

    1975-01-01

    The tubular permeability to phosphate of the different segments of the rat nephron and the influence of parathyroid hormone on such a permeability were investigated. Tracer microinjections of 32 P and 3 H inulin were performed in control, acutely thyroparathyroidectomized (TPTX) and TPTX + PTH animals undergoing saline diuresis. In order to estimate the 32 P reabsorption capacity of the proximal convoluted tubule (PCT), the loop of Henle and the terminal part of the nephron, microinjections were performed in early proximal, late proximal and early distal tubules respectively. The results reported confirm that the renal phosphate reabsorption is under PTH control [fr

  4. In vitro comparison of renal handling and uptake of two somatostatin receptor-specific peptides labeled with indium-111

    International Nuclear Information System (INIS)

    Trejtnar, F.; Novy, Z.; Petrik, M.; Laznickova, A.; Melicharova, L.; Vankova, M.; Laznicek, M.

    2008-01-01

    Radiolabeled receptor-specific somatostatin analogs labeled with gamma- or beta-emitting radionuclides are useful for scintigraphic imaging and/or therapy of selected neuroendocrine tumors. However, significant renal uptake may result in radiotoxicological injury of the kidney and can limit clinical application of the agents. The aim of the study was to analyze renal handling, rate, and mechanism of renal accumulation of two somatostatin receptor-targeted peptides, [DOTA 0 , Tyr 3 , Thr 8 ]-octreotide (DOTA-TATE) and [DOTA 0 , 1-Nal 3 ]-octreotide (DOTA-NOC), labeled with indium-111 using in vitro methods. The perfused rat kidney and freshly isolated rat renal cells were used as experimental models. The perfusion was performed in a recirculation regimen at constant pressure with solution containing bovine albumin, erythrocytes, and a mixture of essential substrates. The renal cells were isolated from rat kidneys using two-phase collagenase perfusion. Accumulation studies were used to evaluate the renal uptake of the peptides and to compare their accumulation with that of passively or actively transported model drugs. The influence of selected inhibitors of receptor-mediated endocytosis and the inhibition of energy-dependent transport processes on the uptake were also investigated using isolated renal cells. The renal clearance of 111 In-DOTA-NOC in the perfused rat kidney was significantly lower than that of 111 In-DOTA-TATE. Reverse situation was found in the case of renal retention. Pretreatment of the perfused kidney with maleate markedly decreased the renal retention. 111 In-DOTA-NOC was accumulated in the isolated renal cells at a higher rate than 111 In-DOTA-TATE (ratio 3:1). The uptake of the radiopeptides in renal cells was higher than the uptake of not only the passively transported sucrose but also actively transported and accumulated methylglucose. The rank order of potency to inhibit the uptake by active endocytosis was approximately aprotinin

  5. The role of vitamin D metabolites in the osteomalacia of renal disease

    Energy Technology Data Exchange (ETDEWEB)

    Kanis, J.A.; Brown, C.B.; Cameron, E.C.; Cundy, T.; Platts, M.M.; Paterson, M.; Russell, R.G.

    1981-01-01

    Osteomalacia is commonly found in patients with severe renal impairment. Its aetiology is multifactional and not simply due to deficient production of active metabolites of vitamin D. Decreased availability of calcium and phosphate and the accumulation of aluminium is some dialysis-treated patients are also important aetiological factors. The treatment of osteomalacia depends, in part, upon its accurate diagnosis, and identifying and reversing the underlying cause.

  6. Role of renal sympathetic nerve activity in prenatal programming of hypertension.

    Science.gov (United States)

    Baum, Michel

    2018-03-01

    Prenatal insults, such as maternal dietary protein deprivation and uteroplacental insufficiency, lead to small for gestational age (SGA) neonates. Epidemiological studies from many different parts of the world have shown that SGA neonates are at increased risk for hypertension and early death from cardiovascular disease as adults. Animal models, including prenatal administration of dexamethasone, uterine artery ligation and maternal dietary protein restriction, result in SGA neonates with fewer nephrons than controls. These models are discussed in this educational review, which provides evidence that prenatal insults lead to altered sodium transport in multiple nephron segments. The factors that could result in increased sodium transport are discussed, focusing on new information that there is increased renal sympathetic nerve activity that may be responsible for augmented renal tubular sodium transport. Renal denervation abrogates the hypertension in programmed rats but has no effect on control rats. Other potential factors that could cause hypertension in programmed rats, such as the renin-angiotensin system, are also discussed.

  7. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hauwaert, Cynthia; Savary, Grégoire [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Buob, David [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Leroy, Xavier; Aubert, Sébastien [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); Flamand, Vincent [Service d' Urologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Hennino, Marie-Flore [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Service de Néphrologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Perrais, Michaël [Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); and others

    2014-09-15

    Numerous xenobiotics have been shown to be harmful for the kidney. Thus, to improve our knowledge of the cellular processing of these nephrotoxic compounds, we evaluated, by real-time PCR, the mRNA expression level of 377 genes encoding xenobiotic-metabolizing enzymes (XMEs), transporters, as well as nuclear receptors and transcription factors that coordinate their expression in eight normal human renal cortical tissues. Additionally, since several renal in vitro models are commonly used in pharmacological and toxicological studies, we investigated their metabolic capacities and compared them with those of renal tissues. The same set of genes was thus investigated in HEK293 and HK2 immortalized cell lines in commercial primary cultures of epithelial renal cells and in proximal tubular cell primary cultures. Altogether, our data offers a comprehensive description of kidney ability to process xenobiotics. Moreover, by hierarchical clustering, we observed large variations in gene expression profiles between renal cell lines and renal tissues. Primary cultures of proximal tubular epithelial cells exhibited the highest similarities with renal tissue in terms of transcript profiling. Moreover, compared to other renal cell models, Tacrolimus dose dependent toxic effects were lower in proximal tubular cell primary cultures that display the highest metabolism and disposition capacity. Therefore, primary cultures appear to be the most relevant in vitro model for investigating the metabolism and bioactivation of nephrotoxic compounds and for toxicological and pharmacological studies. - Highlights: • Renal proximal tubular (PT) cells are highly sensitive to xenobiotics. • Expression of genes involved in xenobiotic disposition was measured. • PT cells exhibited the highest similarities with renal tissue.

  8. High levels of the type III inorganic phosphate transporter PiT1 (SLC20A1) can confer faster cell adhesion

    OpenAIRE

    Kongsfelt, Iben Boutrup; Byskov, Kristina; Pedersen, Lasse Ebdrup; Pedersen, Lene

    2014-01-01

    The inorganic phosphate transporter PiT1 (SLC20A1) is ubiquitously expressed in mammalian cells. We recently showed that overexpression of human PiT1 was sufficient to increase proliferation of two strict density-inhibited cell lines, murine fibroblastic NIH3T3 and pre-osteoblastic MC3T3-E1 cells, and allowed the cultures to grow to higher cell densities. In addition, upon transformation NIH3T3 cells showed increased ability to form colonies in soft agar. The cellular regulation of PiT1 expre...

  9. Genesis of apatite in the phosphatized limestones of the western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Lamboy, M.

    ) and this siliciclastic flux appear to have transported episodically to the shelf for short duration at about 8300 yr B.P. This flux at places is enriched with iron (Table 1). Iron oxides have strong adsorption capacity for phosphate ions (Nriagu, 1976....C. Burnett and S.R. Riggs (Editors), Neogene to Modern Phosphorites. Phosphate Deposits of the World, 3. Cam- bridge University Press, Cambridge. Cayeux, L., 1939. Existence de nombreuses batteries dans les phosphates sedimentaires de tout age...

  10. Progression of chronic renal failure.

    Science.gov (United States)

    Hakim, R M; Lazarus, J M

    1989-11-01

    Rates of progression of renal failure were calculated for a group of 277 patients who had five or more clinic visits. The goals of therapy in the absence of ongoing immunological processes were control of blood pressure to diastolic pressures less than 85 mm Hg and serum phosphate less than 1.60 mmol/L (5 mg/dL). The mean rate of progression expressed as the slope of the reciprocal creatinine versus time was -0.0054 +/- 0.0009 dL/mg/mo (mean +/- SEM), and the median was -0.00315 dL/mg/mo. Approximately 25% of these patients had rates of progression less than -0.001 dL/mg/mo. The rate of progression was inversely correlated with the creatinine concentration at entry (P less than 0.004) and with the frequency of clinic visits (P less than 0.01). The "renal survival" time from a creatinine of 880 mumol/L (10 mg/dL) to dialysis was 10.0 +/- 1.2 months (mean +/- SEM). These data provide rates of progression for a group of patients without specific dietary intervention but with vigorous control of blood pressure and phosphorus.

  11. Exercise renogram. A new approach documents renal involvement in systemic hypertension

    International Nuclear Information System (INIS)

    Clorius, J.H.; Schmidlin, P.

    1983-01-01

    Hippurate functional scintiscans were obtained in 51 hypertensive patients and in 15 controls. The authors investigated the influence that posture and exercise have on hippurate kinetics in patients with hypertension. A posture- or exercise-induced disturbance of renal hippurate transport was sought. All persons were examined in prone and standing positions, as well as during exercise. When prone and upright renograms were compared, 24% of the hypertensives demonstrated bilateral orthostatic renal dysfunction. Exercise caused the hippurate transport disturbance to increase. Fifty-seven percent of all hypertensives developed evidence of marked, bilateral, renal dysfunction during ergometric stress, so that exercise renography was shown to be a more sensitive test of the presence of transient tubular dysfunction in hypertension than the standing renogram. In normotensive controls the hippurate functional scintigram failed to be influenced by posture and exercise. The results suggest presence in hypertension of transient, posture- and exercise-mediated alterations of renal cortical blood flow

  12. Lipopolysaccharide-induced acute renal failure in conscious rats

    DEFF Research Database (Denmark)

    Jonassen, Thomas E N; Graebe, Martin; Promeneur, Dominique

    2002-01-01

    In conscious, chronically instrumented rats we examined 1) renal tubular functional changes involved in lipopolysaccharide (LPS)-induced acute renal failure; 2) the effects of LPS on the expression of selected renal tubular water and sodium transporters; and 3) effects of milrinone......-alpha and lactate, inhibited the LPS-induced tachycardia, and exacerbated the acute LPS-induced fall in GFR. Furthermore, Ro-20-1724-treated rats were unable to maintain MAP. We conclude 1) PDE3 or PDE4 inhibition exacerbates LPS-induced renal failure in conscious rats; and 2) LPS treated rats develop an escape......, a phosphodiesterase type 3 (PDE3) inhibitor, and Ro-20-1724, a PDE4 inhibitor, on LPS-induced changes in renal function. Intravenous infusion of LPS (4 mg/kg b.wt. over 1 h) caused an immediate decrease in glomerular filtration rate (GFR) and proximal tubular outflow without changes in mean arterial pressure (MAP...

  13. Phytate (IP6) is a powerful agent for preventing calcifications in biological fluids: usefulness in renal lithiasis treatment.

    Science.gov (United States)

    Grases, F; Costa-Bauzá, A

    1999-01-01

    The extraordinary capacity of phytate (myo-inositol hexaphosphate), a substance present in blood, urine, interstitial and intracellular fluids, to inhibit crystallization of calcium salts (oxalate and phosphate) is discussed. Its role in preventing calcium renal stone formation is specifically presented and discussed. "In vitro" and "in vivo" experiments, as well as clinical studies clearly demonstrated that phytate plays an important role as a crystallization inhibitor of calcium salts in biological fluids and becomes a clear alternative in the treatment of calcium oxalate renal lithiasis.

  14. Sodium glucose co-transporter 2 inhibitors: blocking renal tubular reabsorption of glucose to improve glycaemic control in patients with diabetes.

    Science.gov (United States)

    Jabbour, S A; Goldstein, B J

    2008-08-01

    The kidney plays a central role in the regulation of plasma glucose levels, although until recently this has not been widely appreciated or considered a target for therapeutic intervention. The sodium glucose co-transporter type 2 (SGLT2) located in the plasma membrane of cells lining the proximal tubule mediates the majority of renal glucose reabsorption from the tubular fluid, which normally prevents the loss of glucose in the urine. Competitive inhibitors of SGLT2 that provoke the renal excretion of glucose have been discovered, thereby providing a unique mechanism to potentially lower the elevated blood glucose levels in patients with diabetes. To explore the physiology of SGLT2 action and discuss several SGLT2 inhibitors that have entered early clinical development. All publicly available data were identified by searching the internet for 'SGLT2' and 'SGLT2 inhibitor' through 1 November 2007. Published articles, press releases and abstracts presented at national and international meetings were considered. Sodium glucose co-transporter type 2 inhibition is a novel treatment option for diabetes, which has been studied in preclinical models and a few potent and selective SGLT2 inhibitors have been reported and are currently in clinical development. These agents appear to be safe and generally well tolerated, and will potentially be a beneficial addition to the growing battery of oral antihyperglycaemic agents.

  15. Mechanistic insights of intestinal absorption and renal conservation of folate in chronic alcoholism.

    Science.gov (United States)

    Wani, Nissar Ahmad; Thakur, Shilpa; Najar, Rauf Ahmad; Nada, Ritambhara; Khanduja, Krishan Lal; Kaur, Jyotdeep

    2013-03-01

    Folate mediated one-carbon metabolism is of fundamental importance for various cellular processes, including DNA synthesis and methylation of biological molecules. Due to the exogenous requirement of folate in mammals, there exists a well developed epithelial folate transport system for regulation of normal folate homeostasis. The intestinal and renal folate uptake is tightly and diversely regulated and disturbances in folate homeostasis like in alcoholism have pathological consequences. The study was sought to delineate the regulatory mechanism of folate uptake in intestine and reabsorption in renal tubular cells that could evaluate insights of malabsorption during alcoholism. The folate transporters PCFT and RFC were found to be associated with lipid rafts of membrane surfaces in intestine and kidney. Importantly, the observed lower intestinal and renal folate uptake was associated with decreased levels of folate transporter viz. PCFT and RFC in lipid rafts of intestinal and renal membrane surfaces. The decreased association of folate transporters in lipid rafts was associated with decreased protein and mRNA levels. In addition, immunohistochemical studies showed that alcoholic conditions deranged that localization of PCFT and RFC. These findings could explain the possible mechanistic insights that may result in folate malabsorption during alcoholism. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Na+-K+ pump in chronic renal failure

    International Nuclear Information System (INIS)

    Deepak, K.; Kahn, T.

    1987-01-01

    This review summarizes the evidence for the defect in Na + -K + pump in chronic renal failure, considers the role of various factors in causing this defect, and discusses the clinical implications thereof. Intracellular Na is elevated in erythrocytes, leukocytes, and muscle cells from some patients with chronic renal failure (CRF). Recent evidence suggest that this elevation of cell Na may be, in large part, a consequence of decreased number of Na + -K + pump units per cell. Maintenance dialysis over a period of weeks ameliorates the defect in intracellular Na + , and this improvement is contemporaneous with an increase in the number of Na + -K + pump sites per cell. In erythrocytes with normal cell Na + , acute hemodialysis increases the rate of 22 Na + and 42 K + transport. Many factors such as the presence of retained toxic metabolite or circulating inhibitor in the uremic plasma, or biochemical changes produced by acute hemodialysis, may explain this finding. In cells with high cell Na + , the pump-mediated 42 K + transport is normalized at the expense of a raised cell Na + . The decreased muscle membrane potential in uremic subjects has been attributed to a decreased activity of Na + -K + pump. The authors discuss the role of hormonal abnormalities and circulating inhibitors, which may cause an acute inhibition of the pump and of other factors such as K + depletion, which may cause more chronic alterations. The implications of alteration of Na + and K + pump transport and raised cell Na + on other non-pump-mediated transport pathways are discussed. Raised cell Na + may be a marker for the adequacy of maintenance dialysis in patients with end-stage renal failure

  17. Mecanismos del daño celular en la insuficiencia renal aguda Mechanisms of cell damage in acute renal failure

    Directory of Open Access Journals (Sweden)

    José Martínez

    1989-01-01

    Full Text Available

    Los mecanismos del da no celular en la insuficiencia renal aguda Incluyen alteraciones en la producción de energía, la permeabilidad celular y el transporte de calcio. Dichas alteraciones producen cambios progresivos en la estructura celular que pueden ser reversibles si desaparece la causa que llevó a la falla renal, excepto cuando se alcanza la fase final de la lesión de la membrana y se llega a necrosis celular. Este mismo fenómeno probablemente ocurre tambIén en situaciones clínicas.

    The mechanisms of cellular damage In acute renal failure Include alterations In energy production, cell membrane permeability and calcium transport. These changes lead to progressive damage of the whole cellular structure which In general can be reversible If the precipitating cause disappears, except when the final stages of cell membrane lesion take place and cellular necrosis has occurred. This phenomenon probably applies for the clinical settling as well.

  18. Ternary complex formation of lanthanides and radiolanthanides with phosphate and serum proteins

    International Nuclear Information System (INIS)

    Neumaier, B.; Roesch, F.

    1999-01-01

    Radioyttrium was recently reported to form ternary complexes with phosphate and serum proteins in blood. In the present work it was investigated whether the trivalent radiolanthanides react in a chemically similar way. In systematic binding studies using gel filtration a ternary complex formation between different lanthanides, phosphate and serum proteins could be identified. The tendency to build a ternary compound of the type Ln III - phosphate - serum protein, however, is dependent on the ionic radii of the lanthanides. Whereas the light and transition lanthanides have a strong inclination to build a ternary complex, this tendency is weaker for the heavier ones. Taking into account the high content of phosphate in human blood, the corresponding ternary complexes of radiolanthanides represent an important transport form of these elements in blood. This finding may contribute to an understanding of the nuclear medical observation on the biodistribution of radiolanthanides. The heavy radiolanthanides can be classified as bone seeking metals, whereas the light and transition lanthanide elements accumulate mainly in the liver and the spleen. For the lighter radiolanthanides the corresponding ternary complexes thus represent an important transport form in blood. This physicochemical form of lanthanides mainly results in reticulo endothelial accumulation; on the other hand, the lower tendency of heavier lanthanides leads to preferential skeletal deposition. (orig.)

  19. The exercise renogram. A new approach documents renal involvement in systemic hypertension

    International Nuclear Information System (INIS)

    Clorius, J.H.; Schmidlin, P.

    1983-01-01

    Hippurate functional scintiscans were obtained in 51 hypertensive patients and in 15 controls. We investigated the influence that posture and exercise have on hippurate kinetics in patients with hypertension. A posture- or exercise-induced disturbance of renal hippurate transport was sought. All persons were examined in prone and standing positions, as well as during exercise. When prone and upright renograms were compared, 24% of the hypertensives demonstrated bilateral orthostatic renal dysfunction. Exercise caused the hippurate transport disturbance to increase. Fifty-seven percent of all hypertensives developed evidence of marked, bilateral, renal dysfunction during ergometric stress, so that exercise renography was shown to be a more sensitive test of the presence of transient tubular dysfunction in hypertension than the standing renogram. In normotensive controls the hippurate functional scintigram failed to be influenced by posture and exercise. The results suggest presence in hypertension of transient, posture- and exercise-mediated alterations of renal cortical blood flow

  20. PHOSPHATE METABOLISM IN KIDNEY DONORS: A CROSS-SECTIONAL STUDY

    Directory of Open Access Journals (Sweden)

    Jayakumar Edathedathe

    2016-05-01

    Full Text Available AIM To study the changes in phosphate metabolism in kidney donors, to study the correlation of albuminuria, fractional excretion of phosphorus [FE Pi] and estimated glomerular filtration rate [eGFR] with fibroblast growth factor 23 [FGF 23] in kidney donors, to study the early tubule interstitial injury in the remnant kidney of donors by measuring urine transforming growth factor beta [TGF beta] levels. MATERIALS AND METHODS A cross-sectional study in which kidney donors with 1 year or more after donation were included. 69 kidney donors with a mean duration of 5.86 years after kidney donation were studied. Serum phosphate level, fractional excretion of phosphorus [FE Pi] and serum levels of parathyroid hormone were measured. Plasma levels of FGF 23 were measured by a second generation enzyme linked immune sorbent assay [ELISA]. Renal function was assessed by estimated glomerular filtration rate [eGFR] and degree of albuminuria. Urine levels of transforming growth factor beta [TGF beta] were measured by ELISA. A hypothesis that in kidney donors with reduced nephron number, the single nephron excretion of phosphorus will be increased to maintain normal phosphorus homeostasis and that this increase in single nephron phosphorus excretion may be mediated by FGF 23 was proposed. Testing of this hypothesis was done by studying the correlation between parameters of phosphorus metabolism, FGF 23 and the renal function of the donors. RESULTS The mean eGFR was 70.36 mL/min/1.73 m2 . 52.2% of donors had moderate increase in albuminuria [microalbuminuria], Serum phosphorus, fractional excretion of phosphorus and serum PTH levels were in the normal range. FGF 23 levels were in the normal reference range and showed no correlation with FE pi, eGFR or albuminuria, Urine TGF-beta levels were undetectable in all the donors. DISCUSSION Normal phosphorus homeostasis is maintained in kidney donors. There was no correlation between FE pi and FGF 23 levels. Kidney

  1. Nephrotic syndrome induced by dibasic sodium phosphate injections for twenty-eight days in rats.

    Science.gov (United States)

    Tsuchiya, Noriko; Torii, Mikinori; Narama, Isao; Matsui, Takane

    2009-04-01

    Sprague-Dawley rats received once daily tail-vein injections of 360 mM dibasic sodium phosphate solution at 8 mL/kg for fourteen or twenty-eight days. Clinical examination revealed persistent proteinuria from three days after the first dosing and thereafter severe proteinuria from eight days or later in the phosphate-treated groups. Proteinuria developed without remission even after fourteen-day withdrawal in the fourteen-day dosed group. Phosphate-treated animals developed lipemia, hypercholesterolemia, anemia, higher serum fibrinogen levels, and lower serum albumin/globulin ratios on day 29. Renal weight increased significantly compared with control animals, and the kidneys appeared pale and enlarged with a rough surface. Histopathologically, glomerular changes consisted of mineralization in whole glomeruli, glomerular capillary dilatation, partial adhesion of glomerular tufts to Bowman's capsule, and mesangiolysis. Ultrastructural lesions such as an increased number of microvilli, effacement of foot processes, and thickening of the glomerular basement membrane, and immunocytochemical changes in podocytes, mainly decreased podoplanin-positive cells and increased desmin expression, were also conspicuous in the phosphate-treated rats for twenty-eight days. Marked tubulointerstitial lesions were tubular regeneration and dilatation, protein casts, mineralization in the basement membrane, focal interstitial inflammation, and fibrosis in the cortex. These clinical and morphological changes were similar to features of human nephrotic syndrome.

  2. The Putative Role of the Antiageing Protein Klotho in Cardiovascular and Renal Disease

    Directory of Open Access Journals (Sweden)

    Giuseppe Maltese

    2012-01-01

    Full Text Available Ageing is a multifactorial process often characterized by a progressive decline in physiological function(s. Ageing can and is often associated with an increased incidence of cardiovascular and renal disease. Klotho is a novel antiageing gene that encodes a protein with multiple pleiotropic functions including an emerging role in cardiorenal disease. Mice deficient for this gene display a phenotype of premature human ageing characterized by diffuse vascular calcification, altered calcium/phosphate metabolism, and shortened lifespan. Klotho is mainly expressed in the renal tubules but it also exists as circulating soluble form detectable in the blood, with systemic effects. Reduction in soluble Klotho has been associated with renal disease, hyperphosphataemia, increased oxidative stress, endothelial dysfunction, and diffuse vascular calcification. Conversely, overexpression of Klotho promotes cardiovascular-renal protection. The majority of the research on Klotho has been conducted in vitro and in animal studies but there is emerging data from human studies which suggest that Klotho may be a modifiable factor involved in the pathogenesis of cardiovascular and renal disease in at-risk populations. Further data is required to confirm if this novel protein can emerge as therapeutic tool that may be used to prevent or slow progression of cardiorenal disease.

  3. Role of Klotho in Osteoporosis and Renal Osteodystrophy

    Science.gov (United States)

    2014-10-01

    proximal tubules of the kidney. This is an important finding because prior to these data it was unclear how Fgf23 could downregulate the sodium phosphate...downregulates the sodium phosphate co-transporters (NaPi2a, Napi2c) and inhibits expression of 1α(OH)ase. We are interested in determining if there are any...7-day adaptation phase to the casein diet without addition of adenine. Then 8-week old Prx1cre;Klotho fl/fl and Klotho fl/fl mice were randomized

  4. Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure

    NARCIS (Netherlands)

    Pulskens, W.P.C.; Verkaik, M.; Sheedfar, F.; Loon, E.P.M. van; Sluis, B. van de; Vervloet, M.G.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2015-01-01

    Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce

  5. An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation.

    Science.gov (United States)

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Pérez-Torres, Anahí; Rampey, Rebekah A; Bartel, Bonnie; Herrera-Estrella, Luis

    2005-02-01

    Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 microm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG.

  6. The Transporter Spns2 Is Required for Secretion of Lymph but Not Plasma Sphingosine-1-Phosphate

    Directory of Open Access Journals (Sweden)

    Alejandra Mendoza

    2012-11-01

    Full Text Available Plasma sphingosine-1-phosphate (S1P regulates vascular permeability, and plasma and lymph S1P guide lymphocyte egress from lymphoid organs. S1P is made intracellularly, and little is known about how S1P is delivered into circulatory fluids. Here, we find that mice without the major facilitator superfamily transporter Spns2 have a profound reduction in lymph S1P, but only a minor decrease in plasma S1P. Spns2-deficient mice have a redistribution of lymphocytes from the spleen to lymph nodes and a loss of circulating lymphocytes, consistent with normal egress from the spleen directed by plasma S1P and blocked egress from lymph nodes directed by lymph S1P. Spns2 is needed in endothelial cells to supply lymph S1P and support lymphocyte circulation. As a differential requirement for lymph and blood S1P, Spns2 may be an attractive target for immune suppressive drugs.

  7. The rebirth of interest in renal tubular function.

    Science.gov (United States)

    Lowenstein, Jerome; Grantham, Jared J

    2016-06-01

    The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured. Over the past decade, studies in experimental animals with reduced nephron mass and in patients with reduced renal function have identified small gut-derived, protein-bound uremic retention solutes ("uremic toxins") that are poorly filtered but are secreted into the lumen by organic anion transporters (OATs) in the proximal renal tubule. These are not effectively removed by conventional hemodialysis or peritoneal dialysis. Residual renal function, urine produced in patients with advanced renal failure or undergoing dialysis treatment, may represent, at least in part, secretion of fluid and uremic toxins, such as indoxyl sulfate, mediated by proximal tubule OATs and might serve as a useful survival function. In light of this new evidence of the physiological role of proximal tubule OATs, we suggest that measurement of renal tubular function and renal plasma flow may be of considerable value in understanding and managing chronic kidney disease. Data obtained in normal subjects indicate that renal plasma flow and renal tubular function might be measured by the clearance of the endogenous aryl amine, hippurate. Copyright © 2016 the American Physiological Society.

  8. [Executive summary of the recommendations on the evaluation and management of renal disease in human immunodeficiency virus-infected patients].

    Science.gov (United States)

    Gorriz, José L; Gutiérrez, Félix; Trullàs, Joan C; Arazo, Piedad; Arribas, Jose R; Barril, Guillermina; Cervero, Miguel; Cofán, Frederic; Domingo, Pere; Estrada, Vicente; Fulladosa, Xavier; Galindo, María J; Gràcia, Sílvia; Iribarren, José A; Knobel, Hernando; López-Aldeguer, José; Lozano, Fernando; Martínez-Castelao, Alberto; Martínez, Esteban; Mazuecos, Maria A; Miralles, Celia; Montañés, Rosario; Negredo, Eugenia; Palacios, Rosario; Pérez-Elías, María J; Portilla, Joaquín; Praga, Manuel; Quereda, Carlos; Rivero, Antonio; Santamaría, Juan M; Sanz, José; Sanz, Jesús; Miró, José M

    2014-11-01

    The aim of this article is to update the 2010 recommendations on the evaluation and management of renal disease in human immunodeficiency virus (HIV)-infected patients. Renal function should be monitored in all HIV-infected patients. The basic renal work-up should include measurements of serum creatinine, estimated glomerular filtration rate by CKD-EPI, urine protein-to-creatinine ratio, and urinary sediment. Tubular function tests should include determination of serum phosphate levels and urine dipstick for glycosuria. In the absence of abnormal values, renal screening should be performed annually. In patients treated with tenofovir, or with risk factors for chronic kidney disease (CKD), more frequent renal screening is recommended. In order to prevent disease progression, potentially nephrotoxic antiretroviral drugs are not recommended in patients with CKD or risk factors for CKD. The document provides indications for renal biopsy and advises on the optimal time for referral of a patient to the nephrologist. The indications for and evaluation and management of dialysis and renal transplantation are also addressed. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  9. Pregnancy-associated polyuria in familial renal glycosuria.

    Science.gov (United States)

    Toka, Hakan R; Yang, Jun; Zera, Chloe A; Duffield, Jeremy S; Pollak, Martin R; Mount, David B

    2013-12-01

    A pregnant woman presented at gestational week 28 with loss of consciousness and profound polyuria. Further characterization revealed osmotic diuresis due to massive glycosuria without hyperglycemia. Glycosuria reduced substantially postpartum, from approximately 100 to approximately 30 g/1.73 m2 per day. DNA sequencing analysis of the SLC5A2 gene encoding the renal glucose transporter SGLT2 showed a homozygous frame-shift mutation (occurring after the glutamine at amino acid 168 and leading to premature termination of the protein at amino acid 186) diagnostic of familial renal glycosuria. Pregnant women with familial renal glycosuria can be at risk of profound polyuria during pregnancy due to the associated increase in glycosuria. These findings also have implications for the use of SGLT2 inhibitors in clinical practice. Published by Elsevier Inc.

  10. The effect of protein restriction on the progression of renal insufficiency

    International Nuclear Information System (INIS)

    Ihle, B.U.; Becker, G.J.; Whitworth, J.A.; Charlwood, R.A.; Kincaid-Smith, P.S.

    1989-01-01

    Dietary protein intake may be an important determinant of the rate of decline in renal function in patients with chronic renal insufficiency. We conducted a prospective, randomized study of the efficacy of protein restriction in slowing the rate of progression of renal impairment. The study lasted 18 months and included 64 patients with serum creatinine concentrations ranging from 350 to 1000 micromol per liter. The patients were randomly assigned to follow either a regular diet or an isocaloric protein-restricted diet (0.4 g of protein per kilogram of the body weight per day). Blood-pressure levels and the balance between calcium and phosphate were similar in the two groups. End-stage renal failure developed in 9 of the 33 patients (27 percent) who followed the regular diet during the study, as compared with 2 of the 31 patients (6 percent) who followed the protein-restricted diet (P less than 0.05). The mean (+/- SE) glomerular filtration rate, as measured by the clearance of 51Cr bound to EDTA, fell from 0.25 +/- 0.03 to 0.10 +/- 0.05 ml per second (P less than 0.01) in the group on the regular diet, whereas it fell from 0.23 +/- 0.04 to 0.20 +/- 0.05 ml per second (P not significant) in the group on the protein-restricted diet. We conclude that dietary protein restriction is effective in slowing the rate of progression of chronic renal failure

  11. DIETARY PROTEIN INTAKE IS INDEPENDENTLY ASSOCIATED WITH THE URINARY EXCRETION OF PHOSPHATE

    Directory of Open Access Journals (Sweden)

    Vladimir Dobronravov

    2012-06-01

    Full Text Available Decrease of urinary phosphate (P excretion and P retention triggers activation of phosphotonins and subsequent development of secondary hyperparathyroidism in progressing of chronic kidney disease (CKD. The main source of P is dietary protein. No large studies are presented to-date to evaluate the relationship between dietary protein intake and parameters of P metabolism in CKD patients. This was a goal of the cross-sectional cohort study .11315 CKD patients were entered (males 43%. Median (10th-90th percentile of age and estimated glomerular filtration rate (GFR were 46 (24-69 and 64 (24-104. The analyzed data were: age, gender, body mass index (BMI serum albumin, creatinine, calcium and phosphate; 24-h urine creatinine, phosphate (P,proteinuria (DP. Estimated parameters includes: eGFR, fractional P excretion (FEP, 24-h P excretion (24-h UP, and P clearance (CP. Dietary protein intake (DPI was based on 24-h urinary urea excretion. No significant differences in serum phosphate were found in groups with various DPI. FEP, 24-h UP and CP were significantly higher in higher DPI range. DPI was positively associated with 24-h UP (β=0,287, p<0.000001 in multivariate model adjusted for age, gender, DP, eGFR, serum P, FEP, BMI, and Ca. Thus, DPI is considered to be the independent factor influencing urinary P excretion and hence contributing to progression of mineral and bone disease in renal dysfunction.

  12. Homer W. Smith's contribution to renal physiology.

    Science.gov (United States)

    Giebisch, Gerhard

    2004-01-01

    Homer Smith was, for three decades, from the 1930s until his death in 1962, one of the leaders in the field of renal physiology. His contributions were many: he played a major role in introducing and popularizing renal clearance methods, introduced non-invasive methods for the measurement of glomerular filtration rate, of renal blood flow and tubular transport capacity, and provided novel insights into the mechanisms of excretion of water and electrolytes. Homer Smith's contributions went far beyond his personal investigations. He was a superb writer of several inspiring textbooks of renal physiology that exerted great and lasting influence on the development of renal physiology. Smith's intellectual insights and ability for critical analysis of data allowed him to create broad concepts that defined the functional properties of glomeruli, tubules and the renal circulation. A distinguishing feature of Homer Smith's career was his close contact and collaboration, over many years, with several clinicians of his alma mater, New York University. For initiating these pathophysiological investigations, he is justly credited to have advanced, in a major way, our understanding of altered renal function in disease. Smith's lasting scientific impact is also reflected by a whole school of investigators that trained with him and who applied his methods, analyses and concepts to the study of renal function all over the world. So great was his influence and preeminence that Robert Pitts, in his excellent tribute to Homer Smith in the Memoirs of the National Academy of Science states that his death brought an end to what might be aptly called the Smithian Era of renal physiology.

  13. Surgical Management of Renal Hyperparathyroidism: Case Series and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Mircea Neagoe Radu

    2015-12-01

    Full Text Available Secondary hyperparathyroidism (sHPT occurs most commonly in the setting of chronic renal failure (CRF being frequently referred to as “renal” hyperparathyroidism The “classical” medical treatment with oral calcium and vitamin D supplementation is generally sufficient to lower parathyroid hormone levels in the majority of these patients. However, we frequently encounter cases of severe refractory sHPT, a state in which even recently available therapeutic agents, i.e. calcimimetics, new phosphate binders, vitamin D analogues, remain inefficient, thus parathyroidectomy and/or renal transplant becoming necessary. Three types of surgeries have been proposed in sHPT: two of them are grouped as remnant-conserving techniques, i.e. subtotal parathyroidectomy (sPtx and total parathyroidectomy with autotransplantation (tPtx+AT, the third one being total parathyroidectomy without autotransplantation (tPtx. There was a continuous debate concerning the best surgical approach in renal hyperparathyroidism, starting very soon after those techniques were described; without pretending to solve these controversies, this paper aims to review the surgical treatment options in sHPT, based on our 5-year experience in dealing with the disease.

  14. Lacking Ketohexokinase-A Exacerbates Renal Injury in Streptozotocin-induced Diabetic Mice.

    Science.gov (United States)

    Doke, Tomohito; Ishimoto, Takuji; Hayasaki, Takahiro; Ikeda, Satsuki; Hasebe, Masako; Hirayama, Akiyoshi; Soga, Tomoyoshi; Kato, Noritoshi; Kosugi, Tomoki; Tsuboi, Naotake; Lanaspa, Miguel A; Johnson, Richard J; Kadomatsu, Kenji; Maruyama, Shoichi

    2018-03-28

    Ketohexokinase (KHK), a primary enzyme in fructose metabolism, has two isoforms, namely, KHK-A and KHK-C. Previously, we reported that renal injury was reduced in streptozotocin-induced diabetic mice which lacked both isoforms. Although both isoforms express in kidney, it has not been elucidated whether each isoform plays distinct roles in the development of diabetic kidney disease (DKD). The aim of the study is to elucidate the role of KHK-A for DKD progression. Diabetes was induced by five consecutive daily intraperitoneal injections of streptozotocin (50 mg/kg) in C57BL/6 J wild-type mice, mice lacking KHK-A alone (KHK-A KO), and mice lacking both KHK-A and KHK-C (KHK-A/C KO). At 35 weeks, renal injury, inflammation, hypoxia, and oxidative stress were examined. Metabolomic analysis including polyol pathway, fructose metabolism, glycolysis, TCA (tricarboxylic acid) cycle, and NAD (nicotinamide adenine dinucleotide) metabolism in kidney and urine was done. Diabetic KHK-A KO mice developed severe renal injury compared to diabetic wild-type mice, and this was associated with further increases of intrarenal fructose, dihydroxyacetone phosphate (DHAP), TCA cycle intermediates levels, and severe inflammation. In contrast, renal injury was prevented in diabetic KHK-A/C KO mice compared to both wild-type and KHK-A KO diabetic mice. Further, diabetic KHK-A KO mice contained decreased renal NAD + level with the increase of renal hypoxia-inducible factor 1-alpha expression despite having increased renal nicotinamide (NAM) level. These results suggest that KHK-C might play a deleterious role in DKD progression through endogenous fructose metabolism, and that KHK-A plays a unique protective role against the development of DKD. Copyright © 2018. Published by Elsevier Inc.

  15. Nonredundant Regulation of Rice Arbuscular Mycorrhizal Symbiosis by Two Members of the Phosphate Transporter 1 Gene Family

    DEFF Research Database (Denmark)

    Yang, Shu-Yi; Grønlund, Mette; Jakobsen, Iver

    2012-01-01

    Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited highgrade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via...... or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands...... the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage...

  16. Clinical safety and efficacy of implantation of octacalcium phosphate collagen composites in tooth extraction sockets and cyst holes

    Directory of Open Access Journals (Sweden)

    Tadashi Kawai

    2016-09-01

    Full Text Available It was demonstrated that octacalcium phosphate collagen composite achieved notable bone regeneration in bone defects in preclinical studies. On the basis of the research results, an investigator-initiated exploratory clinical trial was conducted after approval from a local Institutional Review Board. This clinical study was performed as a single-arm non-randomized intervention study. Octacalcium phosphate collagen composite was implanted into a total of 10 cases of alveolar bone defects after tooth extractions and cystectomy. Safety assessment was performed in terms of the clinical course and several consecutive laboratory examinations, and sequential radiographs were used for efficacy assessment. All participants uneventfully completed the clinical trial without major problems in their general condition. Postoperative wound swelling was observed, as also commonly seen in tooth extraction or cystectomy. Although no serious liver dysfunction, renal dysfunction, electrolyte imbalance, or abnormal urinalysis results were recognized, the number of white blood cells and C-reactive protein level temporarily increased after the operation. An increase in radiopacity in the octacalcium phosphate collagen composite–implanted site was observed in all cases. Finally, the border between the original bone and the octacalcium phosphate collagen composite–implanted site became indistinguishable. These results suggest that octacalcium phosphate collagen composite could be utilized safely in clinical situations in the future.

  17. A Mathematical Model of Renal Blood Distribution Coupling TGF, MR and Tubular System

    Institute of Scientific and Technical Information of China (English)

    GAO Ci-xiu; YANG Lin; WANG Ke-qiang; XU Shi-xiong; DAI Pei-dong

    2009-01-01

    Objective:To investigate the relationship between renal blood distribution and the physiological activities of the kidney. Methods:A mathematical model is developed based on Hagan-Poiseuille law and mass transport, coupling mechanics of myogenic response (MR), tubuloglomerular feedback (TGF) and the tubular system in the renal medulla. The model parameters, including the permeability coefficients, the vascular lumen radius and the solute concentration at the inlet of the tubes, are derived from the experimental results. Simulations of the blood and water flow in the loop of Henel, the collecting duct and vas rectum, are carried out by the model of the tubular system in the renal medulla, based on conservations of water and solutes for transmural transport. Then the tubular model is coupled with MR and TGF mechanics. Results:The results predict the dynamics of renal autoregulation on its blood pressure and flow,and the distributions are 88.5% in the cortex, 10.3% in the medulla, and 1.2% at papilla,respectively. The fluid flow and solute concentrations along the tubules and vasa recta are obtained. Conclusion:The present model could assess renal functions qualitatively and quantitatively and provide a methodological approach for clinical research.

  18. Expression of four phosphate transporter genes from Finger millet (Eleusine coracana L.) in response to mycorrhizal colonization and Pi stress.

    Science.gov (United States)

    Pudake, Ramesh Namdeo; Mehta, Chandra Mohan; Mohanta, Tapan Kumar; Sharma, Suvigya; Varma, Ajit; Sharma, Anil Kumar

    2017-05-01

    Phosphorus (P) is a vital nutrient for plant growth and development, and is absorbed in cells with the help of membrane-spanning inorganic phosphate transporter (Pht) protein. Symbiosis with arbuscular mycorrhiza (AM) also helps in transporting P from the soil to plant and Pht proteins play an important role in it. To understand this phenomenon in Finger Mille plant, we have cloned four Pht genes from Finger millet, which shares the homology with Pht1 protein family of cereals. Expression pattern analysis during the AM infection indicated that EcPT4 gene was AM specific, and its expression was higher in roots where AM colonization percentage was high. The expression level of EcPT1-4 gene under the phosphorous (Pi) stress in seedlings was found to be consistent with its role in acquisition of phosphorus. Homology study of the EcPt proteins with Pht proteins of cereals shows close relationship. The findings of the study indicate that Pht1 family genes from finger millet can serve to be an important resource for the better understanding of phosphorus use efficiency.

  19. The electrical properties of semiconducting vanadium phosphate glasses

    International Nuclear Information System (INIS)

    Moridi, G.R.; Hogarth, C.A.; Hekmat Shooar, N.H.

    1984-01-01

    Vanadium phosphate glasses are a group of oxide glasses which show the semiconducting behaviour. In contrast to the conventional glasses, the conduction mechanism in these glasses is electronic, rather than being ionic. Since 1954, when the first paper appeared on the semiconducting properties of these glasses, much work has been carried out on transition-metal-oxide glasses in general, and vanadium phosphate glasses in particular. The mechanism of conduction is basicaly due to the transport of electrons between the transition-metal ions in different valency states. In the present paper, we have reviewed the previous works on the electrical characteristics of P 2 O 5 -V 2 O 5 glasses and also discussed the current theoretical ideas relevant for the interpretation of the experimental data

  20. Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug-drug interaction involving organic anion transporter 3 in humans by in vitro uptake experiments.

    Science.gov (United States)

    Watanabe, Takao; Kusuhara, Hiroyuki; Watanabe, Tomoko; Debori, Yasuyuki; Maeda, Kazuya; Kondo, Tsunenori; Nakayama, Hideki; Horita, Shigeru; Ogilvie, Brian W; Parkinson, Andrew; Hu, Zhuohan; Sugiyama, Yuichi

    2011-06-01

    The present study investigated prediction of the overall renal tubular secretion and hepatic clearances of anionic drugs based on in vitro transport studies. The saturable uptake of eight drugs, most of which were OAT3 substrates (rosuvastatin, pravastatin, pitavastatin, valsartan, olmesartan, trichlormethiazide, p-aminohippurate, and benzylpenicillin) by freshly prepared human kidney slices underestimated the overall intrinsic clearance of the tubular secretion; therefore, a scaling factor of 10 was required for in vitro-in vivo extrapolation. We examined the effect of gemfibrozil and its metabolites, gemfibrozil glucuronide and the carboxylic metabolite, gemfibrozil M3, on pravastatin uptake by human kidney slices. The inhibition study using human kidney slices suggests that OAT3 plays a predominant role in the renal uptake of pravastatin. Comparison of unbound concentrations and K(i) values (1.5, 9.1, and 4.0 μM, for gemfibrozil, gemfibrozil glucuronide, and gemfibrozil M3, respectively) suggests that the mechanism of the interaction is due mainly to inhibition by gemfibrozil and gemfibrozil glucuronide. Furthermore, extrapolation of saturable uptake by cryopreserved human hepatocytes predicts clearance comparable with the observed hepatic clearance although fluvastatin and rosuvastatin required a scaling factor of 11 and 6.9, respectively. This study suggests that in vitro uptake assays using human kidney slices and hepatocytes provide a good prediction of the overall tubular secretion and hepatic clearances of anionic drugs and renal drug-drug interactions. It is also recommended that in vitro-in vivo extrapolation be performed in animals to obtain more reliable prediction.

  1. Diuretics and salt transport along the nephron.

    Science.gov (United States)

    Bernstein, Paul L; Ellison, David H

    2011-11-01

    The clinical use of diuretics almost uniformly predated the localization of their site of action. The consequence of diuretic specificity predicts clinical application and side effect, and the proximity of the sodium transporters, one to the next, often dictates potency or diuretic efficiency. All diuretics function by inhibiting the normal transport of sodium from the filtrate into the renal tubular cells. This movement of sodium into the renal epithelial cells on the apical side is facilitated by a series of transporters whose function is, in turn, dependent on the adenosine triphosphate (ATP)-dependent Na-K cotransporter on the basolateral side of the cell. Our growing understanding of the physiology of sodium transport has spawned new possibilities for diuretic development. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. sup(99m)Tc-DMSA renal scintigraphy in renal failure due to various renal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, S; Daijo, K; Okabe, T; Kawamura, J; Hara, A [Kyoto Univ. (Japan). Hospital

    1979-08-01

    Renal contours in renal failure were studied by means of sup(99m)Tc-dimercaptosuccinic acid (DMSA) renoscintigraphy. Renal cortical images were obtained even in renal failure cases. Causes of renal failure were chronic glomerulonephritis in 7, bilateral renal tuberculosis in 2, chronic pyelonephritis in 3, bilateral renal calculi in 3, diabetic nephropathy in 2, polycystic kidney disease in 2 and stomach cancer in 1.

  3. sup(99m)Tc-DMSA renal scintigraphy in renal failure due to various renal diseases

    International Nuclear Information System (INIS)

    Hosokawa, Shin-ichi; Daijo, Kazuyuki; Okabe, Tatsushiro; Kawamura, Juichi; Hara, Akira

    1979-01-01

    Renal contours in renal failure were studied by means of sup(99m)Tc-dimercaptosuccinic acid (DMSA) renoscintigraphy. Renal cortical images were obtained even in renal failure cases. Causes of renal failure were chronic glomerulonephritis in 7, bilateral renal tuberculosis in 2, chronic pyelonephritis in 3, bilateral renal calculi in 3, diabetic nephropathy in 2, polycystic kidney disease in 2 and stomach cancer in 1. (author)

  4. Intensive Hemodialysis, Mineral and Bone Disorder, and Phosphate Binder Use.

    Science.gov (United States)

    Copland, Michael; Komenda, Paul; Weinhandl, Eric D; McCullough, Peter A; Morfin, Jose A

    2016-11-01

    Mineral and bone disorder is a common complication of end-stage renal disease. Notably, hyperphosphatemia likely promotes calcification of the myocardium, valves, and arteries. Hyperphosphatemia is associated with higher risk for cardiovascular mortality and morbidity along a gradient beginning at 5.0mg/dL. Among contemporary hemodialysis (HD) patients, mean serum phosphorus level is 5.2mg/dL, although 25% of patients have serum phosphorus levels of 5.5 to 6.9mg/dL; and 13%, >7.0mg/dL. Treatment of hyperphosphatemia is burdensome. Dialysis patients consume a mean of 19 pills per day, half of which are phosphate binders. Medicare Part D expenditures on binders for dialysis patients approached $700 million in 2013. Phosphorus removal with thrice-weekly HD (4 hours per session) is ∼3,000mg/wk. However, clearance is unlikely to counterbalance dietary intake, which varies around a mean of 7,000mg/wk. Dietary restriction and phosphate binders are important interventions, but each has limitations. Dietary control is complicated by limited access to healthy food choices and unclear labeling. Meanwhile, adherence to phosphate binders is poor, especially in younger patients and those with high pill burden. Multiple randomized clinical trials show that intensive HD reduces serum phosphorus levels. In the Frequent Hemodialysis Network (FHN) trial, short daily and nocturnal schedules reduced serum phosphorus levels by 0.6 and 1.6mg/dL, respectively, relative to 3 sessions per week. A similar effect of nocturnal HD was observed in an earlier trial. In the daily arm of the FHN trial, intensive HD significantly lowered estimated phosphate binder dose per day, whereas in the nocturnal arm, intensive HD led to binder discontinuation in 75% of patients. However, intensive HD appears to have no meaningful effects on serum calcium and parathyroid hormone concentrations. In conclusion, intensive HD, especially nocturnal HD, lowers serum phosphorus levels and decreases the need for

  5. Mechanism of ochratoxin A transport in kidney

    International Nuclear Information System (INIS)

    Sokol, P.P.; Ripich, G.; Holohan, P.D.; Ross, C.R.

    1988-01-01

    The effect of the fungal metabolite (mycotoxin) Ochratoxin A (OTA) on the transport of p-amino[ 3 H]hippurate (PAH), a prototypic organic anion, was examined in renal brush border (BBMV) and basolateral membrane vesicles (BLMV). OTA was as effective an inhibitor of PAH uptake in both membranes as probenecid. The dose response curves for OTA in BBMV and BLMV gave IC50 values of 20 +/- 6 and 32 +/- 7 microM, respectively. The effect was specific since the transport of the organic cation N1-methylnicotinamide was not affected. The phenomenon of counterflow was studied to establish that OTA is translocated. OTA produced trans stimulation of PAH transport in both BBMV and BLMV, demonstrating that OTA is transported across both these membranes. The data suggest that OTA interacts with the PAH transport system in both BBMV and BLMV. We conclude that OTA transport in the kidney is mediated via the renal organic anion transport system

  6. Heat Stress Affects Pi-related Genes Expression and Inorganic Phosphate Deposition/Accumulation in Barley

    DEFF Research Database (Denmark)

    Pacak, Andrzej; Barciszewska-Pacak, Maria; Swida-Barteczka, Aleksandra

    2016-01-01

    Phosphorus (P) in plants is taken from soil as an inorganic phosphate (Pi) and is one of the most important macroelements in growth and development. Plants actively react to Pi starvation by the induced expression of Pi transporters, MIR399, MIR827, and miR399 molecular sponge - IPS1 genes...... and by the decreased expression of the ubiquitin-conjugating enzyme E2 (PHOSPHATE2 - PHO2) and Pi sensing and transport SPX-MFS genes. The PHO2 protein is involved in the degradation of Pi transporters PHT1;1 (from soil to roots) and PHO1 (from roots to shoots). The decreased expression of PHO2 leads to Pi....... In shoots, the PHO2 mRNA level is decreased, leading to an increased Pi level. We concluded that Pi homeostasis in barley during heat stress is maintained by dynamic changes in Pi-related genes expression....

  7. Fine-tuning by strigolactones of root response to low phosphate.

    Science.gov (United States)

    Kapulnik, Yoram; Koltai, Hinanit

    2016-03-01

    Strigolactones are plant hormones that regulate the development of different plant parts. In the shoot, they regulate axillary bud outgrowth and in the root, root architecture and root-hair length and density. Strigolactones are also involved with communication in the rhizosphere, including enhancement of hyphal branching of arbuscular mycorrhizal fungi. Here we present the role and activity of strigolactones under conditions of phosphate deprivation. Under these conditions, their levels of biosynthesis and exudation increase, leading to changes in shoot and root development. At least for the latter, these changes are likely to be associated with alterations in auxin transport and sensitivity. On the other hand, strigolactones may positively affect plant-mycorrhiza interactions and thereby promote phosphate acquisition by the plant. Strigolactones may be a way for plants to fine-tune their growth pattern under phosphate deprivation. © 2015 Institute of Botany, Chinese Academy of Sciences.

  8. Molecular analysis of the SGLT2 gene in patients with renal glucosuria

    DEFF Research Database (Denmark)

    Santer, René; Kinner, Martina; Lassen, Christoph L.

    2003-01-01

    The role of SGLT2 (the gene for a renal sodium-dependent glucose transporter) in renal glucosuria was evaluated. Therefore, its genomic sequence and its intron-exon organization were determined, and 23 families with index cases were analyzed for mutations. In 21 families, 21 different SGLT2 mutat...

  9. Renal computed angiography. Part I: Renal CT phlebography. Renal veins variants

    International Nuclear Information System (INIS)

    Al-Amin, M.; Krupev, M.; Hadjidekov, V.; Plachkov, I.

    2012-01-01

    The changing trend in renal surgery, transplantation and minimal invasive urology implies preprocedure evaluation of renal veins. Development of imaging methods offers new possibilities for venographic visualization. The goal of this study is to present authors experience in visualization of renal veins using 64 MDCT and to evaluate the utility in assessments of their variants. 128 patients (68 females and 60 males, mean age 53,3) with urological complaints underwent 64MDCT examination including CT angiography. Contrast enhancement includes 3-4ml/sec injection flow of 90 ml contrast medium followed by 20 ml saline at the same rate. In 23 out of 128 examined patients some of the common variants of the renal vein is found. 64 MDCT angiography visualize very well renal veins and becomes method of choice in preoperative assessment of renal vein anatomy. (authors)

  10. Topical Application of Trisodium Ascorbyl 6-Palmitate 2-Phosphate Actively Supplies Ascorbate to Skin Cells in an Ascorbate Transporter-Independent Manner

    Directory of Open Access Journals (Sweden)

    Shuichi Shibuya

    2017-06-01

    Full Text Available Ascorbic acid (AA possesses multiple beneficial functions, such as regulating collagen biosynthesis and redox balance in the skin. AA derivatives have been developed to overcome this compound’s high fragility and to assist with AA supplementation to the skin. However, how AA derivatives are transferred into cells and converted to AA in the skin remains unclear. In the present study, we showed that AA treatment failed to increase the cellular AA level in the presence of AA transporter inhibitors, indicating an AA transporter-dependent action. In contrast, torisodium ascorbyl 6-palmitate 2-phosphate (APPS treatment significantly enhanced the cellular AA level in skin cells despite the presence of inhibitors. In ex vivo experiments, APPS treatment also increased the AA content in a human epidermis model. Interestingly, APPS was readily metabolized and converted to AA in keratinocyte lysates via an intrinsic mechanism. Furthermore, APPS markedly repressed the intracellular superoxide generation and promoted viability associated with an enhanced AA level in Sod1-deficient skin cells. These findings indicate that APPS effectively restores the AA level and normalizes the redox balance in skin cells in an AA transporter-independent manner. Topical treatment of APPS is a beneficial strategy for supplying AA and improving the physiology of damaged skin.

  11. Carrier-mediated transport of peptides by the kidney

    International Nuclear Information System (INIS)

    Skopicki, H.A.

    1988-01-01

    Small peptide transport was characterized to determine if: (1) Multiple carriers are present in the luminal membrane of renal proximal tubular cells; (2) Carrier-mediated peptide transport is limited by size; and (3) Gentamicin inhibits carrier-mediated reabsorption of peptides. Uptake of glycyl-[ 3 H]proline (Gly-Pro) into renal brush border membrane vesicles demonstrated a dual affinity carrier system. Whether multiple carriers are present was further investigated by characterizing the uptake of [ 3 H]pyroglutamyl-histidine. To determine if carrier-mediated transport of peptides is limited by size of the molecule, uptake of the hydrolytically resistant tripeptide, [ 3 H]pryroglutamyl-histidyl-tryptophan (pGlu-His-Trp), and tetrapeptide, [ 3 H]pyroglutamyl-histidyl-tryptophyl-serine (pGlu-His-Trp-Ser) were assessed. These data indicate: multiple carriers exist on the luminal membrane of renal proximal tubular cells for the transport of dipeptides, and tripeptide pGlu-His-Trp and the tetrapeptide pGlu-His-Trp-Ser are not taken up by a carrier-mediated mechanism, suggesting that the carrier may be limited by the size of the substrate

  12. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat.

    Science.gov (United States)

    Lepist, Eve-Irene; Zhang, Xuexiang; Hao, Jia; Huang, Jane; Kosaka, Alan; Birkus, Gabriel; Murray, Bernard P; Bannister, Roy; Cihlar, Tomas; Huang, Yong; Ray, Adrian S

    2014-08-01

    Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 μM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition.

  13. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat

    Science.gov (United States)

    Lepist, Eve-Irene; Zhang, Xuexiang; Hao, Jia; Huang, Jane; Kosaka, Alan; Birkus, Gabriel; Murray, Bernard P; Bannister, Roy; Cihlar, Tomas; Huang, Yong; Ray, Adrian S

    2014-01-01

    Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 μM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition. PMID:24646860

  14. Deficiency of acyl-CoA: Dihydroxyacetone phosphate acyltransferase in patients with Zellweger (cerebro-hepato-renal) syndrome

    NARCIS (Netherlands)

    Bosch, H. van den; Schutgens, R.B.H.; Romeyn, G.J.; Wanders, R.J.A.; Schrakamp, G.; Heymans, H.S.A.

    1984-01-01

    We have recently reported on plasmalogen deficiency in tissues and fibroblasts from patients with Zellweger syndrome. In this paper we have analyzed the activity of the first enzyme in the pathway leading to plasmalogen biosynthesis, i.e. acyl-CoA: dihydroxyacetone phosphate acyltransferase in

  15. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    -reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula...

  16. A Phex mutation in a murine model of X-linked hypophosphatemia alters phosphate responsiveness of bone cells.

    Science.gov (United States)

    Ichikawa, Shoji; Austin, Anthony M; Gray, Amie K; Econs, Michael J

    2012-02-01

    Mutations in the PHEX gene cause X-linked hypophosphatemia (XLH). Hypophosphatemia in XLH results from increased circulating levels of a phosphaturic hormone, fibroblast growth factor 23 (FGF23), which inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D (calcitriol) synthesis. The current standard therapy for XLH--high-dose phosphate and calcitriol--further increases FGF23 concentrations, suggesting that patients with XLH may have an altered response to extracellular phosphate. To test for the presence of abnormal phosphate responsiveness, we compared serum biochemistries and femoral Fgf23 mRNA expression between wild-type mice, murine models of XLH (Phex(K496X)) and hyperphosphatemic tumoral calcinosis (Galnt3(-/-)), and Galnt3/Phex double-mutant mice. Phex mutant mice had not only increased Fgf23 expression but also reduced proteolytic cleavage of intact Fgf23 protein, resulting in markedly elevated intact Fgf23 levels and consequent hypophosphatemia. In contrast, despite markedly increased Fgf23 expression, Galnt3 knockout mice had significantly high proteolytic cleavage of Fgf23 protein, leading to low intact Fgf23 concentrations and hyperphosphatemia. Galnt3/Phex double-mutant mice had an intermediate biochemical phenotype between wild-type and Phex mutant mice, including slightly elevated intact Fgf23 concentrations with milder hypophosphatemia. Despite the hypophosphatemia, double-mutant mice attempted to reduce serum phosphate back to the level of Phex mutant mice by upregulating Fgf23 expression as much as 24-fold higher than Phex mutant mice. These data suggest that Phex mutations alter the responsiveness of bone cells to extracellular phosphate concentrations and may create a lower set point for "normal" phosphate levels.

  17. Effect of potential renal acid load of foods on urinary citrate excretion in calcium renal stone formers.

    Science.gov (United States)

    Trinchieri, Alberto; Lizzano, Renata; Marchesotti, Federica; Zanetti, Giampaolo

    2006-02-01

    The aim of this study was to investigate the influence of the potential renal acid load (PRAL) of the diet on the urinary risk factors for renal stone formation. The present series comprises 187 consecutive renal calcium stone patients (114 males, 73 females) who were studied in our stone clinic. Each patient was subjected to an investigation including a 24-h dietary record and 24-h urine sample taken over the same period. Nutrients and calories were calculated by means of food composition tables using a computerized procedure. Daily PRAL was calculated considering the mineral and protein composition of foods, the mean intestinal absorption rate for each nutrient and the metabolism of sulfur-containing amino acids. Sodium, potassium, calcium, magnesium, phosphate, oxalate, urate, citrate, and creatinine levels were measured in the urine. The mean daily PRAL was higher in male than in female patients (24.1+/-24.0 vs 16.1+/-20.1 mEq/day, P=0.000). A significantly (P=0.01) negative correlation (R=-0.18) was found between daily PRAL and daily urinary citrate, but no correlation between PRAL and urinary calcium, oxalate, and urate was shown. Daily urinary calcium (R=0.186, P=0.011) and uric acid (R=0.157, P=0.033) were significantly related to the dietary intake of protein. Daily urinary citrate was significantly related to the intakes of copper (R=0.178, P=0.015), riboflavin (R=0.20, P=0.006), piridoxine (R=0.169, P=0.021) and biotin (R=0.196, P=0.007). The regression analysis by stepwise selection confirmed the significant negative correlation between PRAL and urinary citrate (P=0.002) and the significant positive correlation between riboflavin and urinary citrate (P=0.000). Urinary citrate excretion of renal stone formers (RSFs) is highly dependent from dietary acid load. The computation of the renal acid load is advisable to investigate the role of diet in the pathogenesis of calcium stone disease and it is also a useful tool to evaluate the lithogenic potential of

  18. Complex formation of uranium(VI) with fructose and glucose phosphates

    International Nuclear Information System (INIS)

    Koban, A.; Geipel, G.; Bernhard, G.; Fanghaenel, T.

    2002-01-01

    The uptake of heavy metals into plants is commonly quantified by the soil-plant transfer factor. Up to now little is known about the chemical speciation of actinides in plants. To compare the obtained spectroscopic data of uranium complexes in plants with model compounds, we investigate the complexation of uranium with relevant bioligands of various functionalities. A very important class of ligands consists of phosphate esters, which serve as phosphate group and energy transmitters as well as energy storage media in biological systems. Heavy metal ions bound to the phosphate esters can be transported into living cells and then deposited. Therefore, in our study we present the results of uranium complexation with glucose-6-phosphate (G6P), and fructose-6-phosphate (F6P) obtained by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The experiments were performed at a fixed uranyl concentration (10 -5 M) as a function of the ligand concentrations (10 -5 to 10 -3 M) in a pH range from 2 to 4.5. For the glucose phosphate system we observed, using increasing ligand concentrations, a decrease in the fluorescence intensity and a small red shift of the emission bands. From this we conclude that the complexed uranyl glucose phosphate species show only minor or no fluorescence properties. The TRLFS spectra of the glucose phosphate samples indicated the presence of a single species with fluorescence properties. This species has a lifetime of approximately 1.5 μs and was identified as the free uranyl ion. An opposite phenomenon was observed for the fructose phosphate system: there was no decrease in fluorescence intensity. However, a strong red shift of the spectra was observed, illustrating the fluorescence properties of the uranyl fructose phosphate complex. The TRLFS spectra of the fructose phosphate system showed a second lifetime ( 2 2+ UO 2 (lig) x (2-y)+ + y H + (lig = sugar phosphate). Applying the mass action law and transformation to the logarithmic

  19. Structural determinants of NH3 and NH4+ transport by mouse Rhbg, a renal Rh glycoprotein.

    Science.gov (United States)

    Abdulnour-Nakhoul, Solange; Le, Trang; Rabon, Edd; Hamm, L Lee; Nakhoul, Nazih L

    2016-12-01

    Renal Rhbg is localized to the basolateral membrane of intercalated cells and is involved in NH 3 /NH 4 + transport. The structure of Rhbg is not yet resolved; however, a high-resolution crystal structure of AmtB, a bacterial homolog of Rh, has been determined. We aligned the sequence of Rhbg to that of AmtB and identified important sites of Rhbg that may affect transport. Our analysis positioned three conserved amino acids, histidine 183 (H183), histidine 342 (H342), and tryptophan 230 (W230), within the hydrophobic pore where they presumably serve to control NH 3 transport. A fourth residue, phenylalanine 128 (F128) was positioned at the upper vestibule, presumably contributing to recruitment of NH 4 + We generated three mutations each of H183, H342, W230, and F128 and expressed them in frog oocytes. Immunolabeling showed that W230 and F128 mutants were localized to the cell membrane, whereas H183 and H342 staining was diffuse and mostly intracellular. To determine function, we compared measurements of NH 3 /NH 4 + and methyl amine (MA)/methyl ammonium (MA + )-induced currents, intracellular pH, and surface pH (pHs) among oocytes expressing the mutants, Rhbg, or injected with H 2 O. In H183 and W230 mutants, NH 4 + -induced current and intracellular acidification were inhibited compared with that of Rhbg, and MA-induced intracellular alkalinization was completely absent. Expression of H183A or W230A mutants inhibited NH 3 /NH 4 + - and MA/MA + -induced decrease in pHs to the level observed in H 2 O-injected oocytes. Mutations of F128 did not significantly affect transport of NH 3 or NH 4 + These data demonstrated that mutating H183 or W230 caused loss of function but not F128. H183 and H342 may affect membrane expression of the transporter.

  20. Development of nanosensors for studying intracellular phosphate levels

    DEFF Research Database (Denmark)

    Gu, Hong

    -time monitoring of Pi metabolism in living cells, providing a new tool for fluxomics (measurement of metabolic flux), analysis of pathophysiology or changes of Pi during cell activity. Transformation of plants with FLIPs had resulted in only low expression levels. As an alternative a protein transduction domain......Abstract Inorganic phosphate (Pi) is an essential macronutrient that plays a central role in metabolism and signal transduction in plants. Uptake, compartmentation and transport are important players of cellular Pi homeostasis; however, methods to determine the cellular phosphate concentration...... of a substrate-binding protein linked to two fluorescent reporter proteins. Substrate binding changes the conformation of the nanosensor and, hence, the efficiency of fluorescence resonance energy transfer (FRET) between the reporter proteins. The aim of the present project was to develop nanosensors for Pi...

  1. Magnesium modifies the association between serum phosphate and the risk of progression to end-stage kidney disease in patients with non-diabetic chronic kidney disease.

    Science.gov (United States)

    Sakaguchi, Yusuke; Iwatani, Hirotsugu; Hamano, Takayuki; Tomida, Kodo; Kawabata, Hiroaki; Kusunoki, Yasuo; Shimomura, Akihiro; Matsui, Isao; Hayashi, Terumasa; Tsubakihara, Yoshiharu; Isaka, Yoshitaka; Rakugi, Hiromi

    2015-10-01

    It is known that magnesium antagonizes phosphate-induced apoptosis of vascular smooth muscle cells and prevents vascular calcification. Here we tested whether magnesium can also counteract other pathological conditions where phosphate toxicity is involved, such as progression of chronic kidney disease (CKD). We explored how the link between the risk of CKD progression and hyperphosphatemia is modified by magnesium status. A post hoc analysis was run in 311 non-diabetic CKD patients who were divided into four groups according to the median values of serum magnesium and phosphate. During a median follow-up of 44 months, 135 patients developed end-stage kidney disease (ESKD). After adjustment for relevant clinical factors, patients in the lower magnesium-higher phosphate group were at a 2.07-fold (95% CI: 1.23-3.48) risk for incident ESKD and had a significantly faster decline in estimated glomerular filtration rate compared with those in the higher magnesium-higher phosphate group. There were no significant differences in the risk of these renal outcomes among the higher magnesium-higher phosphate group and both lower phosphate groups. Incubation of tubular epithelial cells in high phosphate and low magnesium medium in vitro increased apoptosis and the expression levels of profibrotic and proinflammatory cytokine; these changes were significantly suppressed by increasing magnesium concentration. Thus, magnesium may act protectively against phosphate-induced kidney injury.

  2. SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: A systematic review and meta-analysis.

    Science.gov (United States)

    Seidu, Samuel; Kunutsor, Setor K; Cos, Xavier; Gillani, Syed; Khunti, Kamlesh

    2018-06-01

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors may have renal protective effects in people with impaired kidney function. We assessed the use of SGLT2 inhibitors in people with type 2 diabetes with or without renal impairment [defined as estimated glomerular filtration rate (eGFR) of ≥30 and 300 and ≤5000mg/g] by conducting a systematic review and meta-analysis of available studies. Randomised controlled trials (RCTs) were identified from MEDLINE, EMABASE, Web of Science, the Cochrane Library, and search of bibliographies to March 2017. No relevant observational study was identified. Summary measures were presented as mean differences and narrative synthesis performed for studies that could not be pooled. 42 articles which included 40 RCTs comprising 29,954 patients were included. In populations with renal impairment, SGLT2 inhibition compared with placebo was consistently associated with an initial decrease in eGFR followed by an increase and return to baseline levels. In pooled analysis of 17 studies in populations without renal impairment, there was no significant change in eGFR comparing SGLT2 inhibitors with placebo (mean difference, 0.51ml/min/1.73m 2 ; 95% CI: -0.69, 1.72; p=403). SGLT2 inhibition relative to placebo was associated with preservation in serum creatinine levels or initial increases followed by return to baseline levels in patients with renal impairment, but levels were preserved in patients without renal impairment. In populations with or without renal impairment, SGLT2 inhibitors (particularly canagliflozin and empagliflozin) compared with placebo were associated with decreased urine albumin, improved albuminiuria, slowed progression to macroalbuminuria, and reduced the risk of worsening renal impairment, the initiation of kidney transplant, and death from renal disease. Emerging data suggests that with SGLT2 inhibition, renal function seems to be preserved in people with diabetes with or without renal impairment. Furthermore, SGLT2

  3. Review of Phosphate in soils: Interaction with micronutrients, radionuclides, and heavy metals

    Science.gov (United States)

    Phosphate-phosphorus present in the vadose zone of soil as native, added, or residual fertilizer influences the retention, transport, and bioavailability of heavy metals, metalloids, or metallic radionuclides to aboveground vegetation, soil microorganisms, and fauna that browse that vegetation, or d...

  4. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids.

    Science.gov (United States)

    Xu, Ren-kou; Zhu, Yong-guan; Chittleborough, David

    2004-01-01

    Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was notcorrelated with pKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.

  5. Adaptive changes in renal mitochondrial redox status in diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Putt, David A.; Zhong, Qing; Lash, Lawrence H., E-mail: l.h.lash@wayne.edu

    2012-01-15

    Nephropathy is a serious and common complication of diabetes. In the streptozotocin (STZ)-treated rat model of diabetes, nephropathy does not typically develop until 30 to 45 days post-injection, although hyperglycemia occurs within 24 h. We tested the hypothesis that chronic hyperglycemia results in a modest degree of oxidative stress that is accompanied by compensatory changes in certain antioxidants and mitochondrial redox status. We propose that as kidneys progress to a state of diabetic nephropathy, further adaptations occur in mitochondrial redox status. Basic parameters of renal function in vivo and several parameters of mitochondrial function and glutathione (GSH) and redox status in isolated renal cortical mitochondria from STZ-treated and age-matched control rats were examined at 30 days and 90 days post-injection. While there was no effect of diabetes on blood urea nitrogen, measurement of other, more sensitive parameters, such as urinary albumin and protein, and histopathology showed significant and progressive worsening in diabetic rats. Thus, renal function is compromised even prior to the onset of frank nephropathy. Changes in mitochondrial respiration and enzyme activities indicated existence of a hypermetabolic state. Higher mitochondrial GSH content and rates of GSH transport into mitochondria in kidneys from diabetic rats were only partially due to changes in expression of mitochondrial GSH carriers and were mostly due to higher substrate supply. Although there are few clear indicators of oxidative stress, there are several redox changes that occur early and change further as nephropathy progresses, highlighting the complexity of the disease. Highlights: ►Adaptive changes in renal mitochondrial and redox status in diabetic rats. ►Modest renal dysfunction even prior to onset of nephropathy. ►Elevated concentrations of mitochondrial GSH in diabetic kidneys. ►Change in GSH due partly to increased protein expression of transporter.

  6. Adaptive changes in renal mitochondrial redox status in diabetic nephropathy

    International Nuclear Information System (INIS)

    Putt, David A.; Zhong, Qing; Lash, Lawrence H.

    2012-01-01

    Nephropathy is a serious and common complication of diabetes. In the streptozotocin (STZ)-treated rat model of diabetes, nephropathy does not typically develop until 30 to 45 days post-injection, although hyperglycemia occurs within 24 h. We tested the hypothesis that chronic hyperglycemia results in a modest degree of oxidative stress that is accompanied by compensatory changes in certain antioxidants and mitochondrial redox status. We propose that as kidneys progress to a state of diabetic nephropathy, further adaptations occur in mitochondrial redox status. Basic parameters of renal function in vivo and several parameters of mitochondrial function and glutathione (GSH) and redox status in isolated renal cortical mitochondria from STZ-treated and age-matched control rats were examined at 30 days and 90 days post-injection. While there was no effect of diabetes on blood urea nitrogen, measurement of other, more sensitive parameters, such as urinary albumin and protein, and histopathology showed significant and progressive worsening in diabetic rats. Thus, renal function is compromised even prior to the onset of frank nephropathy. Changes in mitochondrial respiration and enzyme activities indicated existence of a hypermetabolic state. Higher mitochondrial GSH content and rates of GSH transport into mitochondria in kidneys from diabetic rats were only partially due to changes in expression of mitochondrial GSH carriers and were mostly due to higher substrate supply. Although there are few clear indicators of oxidative stress, there are several redox changes that occur early and change further as nephropathy progresses, highlighting the complexity of the disease. Highlights: ►Adaptive changes in renal mitochondrial and redox status in diabetic rats. ►Modest renal dysfunction even prior to onset of nephropathy. ►Elevated concentrations of mitochondrial GSH in diabetic kidneys. ►Change in GSH due partly to increased protein expression of transporter.

  7. X-linked hypophosphatemia. A phenotype in search of a cause.

    Science.gov (United States)

    Tenenhouse, H S; Scriver, C R

    1992-05-01

    XLH is an important disease, it is the subject of several classic articles in the medical sciences (Scriver et al., 1991), and it has been an important stimulus to study renal hypophosphatemias and how they are involved in rickets and osteomalacia (Scriver, 1974; Scriver and Tenenhouse, 1991). Renal transport is the major determinant of phosphate homeostasis in mammals and it is unlikely that this important biochemical parameter would have been left by evolution to a single renal transport system. Together physiologists and geneticists found that the mammalian kidney has several gene products dedicated to phosphate transport. That has implications for biochemists in search of a membrane protein to clone and explain XLH, for example. Let us suppose the transporter affected in XLH is cloned. Will it be the product of the XLH (or Hyp or Gy) locus? One will not know until the transporter gene is mapped. There is no question of the X-chromosome locus product being protein kinase C for example, since it maps to autosomes. But where does one start in the search for the X-chromosome locus? With the elusive putative diffusible factor or with the transporter, or perhaps with an enzyme in vitamin D hormone metabolism? Which goes to say that it is necessary to know the phenotype to arrive at the right locus. Or is it? Sufficient physical mapping of region Xp22.31-p21.3 will eventually lead to positional cloning of the Hyp gene. What will it be?(ABSTRACT TRUNCATED AT 250 WORDS)

  8. In vivo characterization of insulin uptake by dog renal cortical epithelium

    International Nuclear Information System (INIS)

    Whiteside, C.I.; Lumsden, C.J.; Silverman, M.

    1988-01-01

    In vivo 125I-labeled insulin uptake by dog renal tubular epithelium was studied using the single-pass multiple indicator dilution (MID) method and analyzed by a computer-assisted model of transcapillary exchange and substrate-cell interaction. Anesthetized dogs received an intrarenal arterial bolus of multiple tracers: [3H]dextran greater than 70 kDa (plasma reference), [14C]inulin (extracellular reference), and 125I-insulin. Rapid serial sampling of the renal venous and urine outflows was performed. The renal venous outflow curves of 125I-insulin fell below [14C]inulin implying postglomerular extraction and antiluminal membrane (ALM) uptake. The fractional urine recovery of 125I-insulin was less than 0.03, indicating luminal tubular uptake of filtered hormone. After intravenous infusion of unlabeled insulin, repeat MID runs with tracer revealed saturable ALM uptake as evidenced by the 125I-insulin renal venous outflow curves approaching [14C]inulin. Luminal tubular uptake was unchanged and therefore unsaturable. The 125I-insulin renal venous data were studied using three mathematical models, incorporating postglomerular reversible binding, irreversible binding or transport. The best fit was obtained using the transport model. The modeling analysis is consistent with either uptake into a virtual epithelial membrane space (i.e., insulin never enters the cell but binds to or is distributed along the ALM) or insulin actually enters the intracellular compartment. In vivo uptake of 125I-insulin ALM is characterized by a Km of 15.44 nM

  9. Renal transplantant blood flow in patients with acute tubular necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Huic, D; Crnkovic, S; Bubic-Filipi, L J; Grosev, D; Dodig, P; Porapat, M; Puretic, Z [Univ. Hospital Rebro, Zagreb (Croatia)

    1997-09-01

    The aim of this study was to investigate the quantity of renal transport blood flow in patients affected by acute tubular necrosis (ATN). During the four years period two hundred and thirty-three studies were performed using {sup 99m}Tc pertechnetate and {sup 131}I - OIH. Renal blood flow was calculated from the first-pass time activity curves generated over the kidney and aorta and expressed as a percentage of cardiac output (RBF/CO). Renal transplant blood flow is clearly diminished in ATN, similar as in acute rejection, and significantly related to the graft function, what means that RBF/CO value could potentially serve as a prognostic factor in the graft function recovery from ATN.

  10. Early release of neonatal ureteral obstruction preserves renal function

    DEFF Research Database (Denmark)

    Shi, Yimin; Pedersen, Michael; Li, Chunling

    2004-01-01

    was left in place or released after 1 or 4 wk. Renal blood flow (RBF) and kidney size were measured sequentially over 24 wk using MRI. In rats in which the obstruction was left in place, RBF of the obstructed kidney was progressively reduced to 0.92 ± 0.17 vs. 1.79 ± 0.12 ml·min−1·100 g body wt−1 (P ...The incidence of congenital hydronephrosis is ∼1% and is often associated with renal insufficiency. It is unknown whether early release is essential to prevent deterioration of renal function. Rats were subjected to partial unilateral ureteral obstruction (PUUO) on postnatal day 2. The obstruction...... downregulation of Na-K-ATPase to 62 ± 7%, aquaporin-1 to 53 ± 3%, and aquaporin-3 to 53 ± 7% of sham levels. Release after 1 wk completely prevented development of hydronephrosis, reduction in RBF and glomerular filtration rate, and downregulation of renal transport proteins, whereas release after 4 wk had...

  11. Structural features of PhoX, one of the phosphate-binding proteins from Pho regulon of Xanthomonas citri

    Science.gov (United States)

    Pegos, Vanessa R.; Santos, Rodrigo M. L.; Medrano, Francisco J.

    2017-01-01

    In Escherichia coli, the ATP-Binding Cassette transporter for phosphate is encoded by the pstSCAB operon. PstS is the periplasmic component responsible for affinity and specificity of the system and has also been related to a regulatory role and chemotaxis during depletion of phosphate. Xanthomonas citri has two phosphate-binding proteins: PstS and PhoX, which are differentially expressed under phosphate limitation. In this work, we focused on PhoX characterization and comparison with PstS. The PhoX three-dimensional structure was solved in a closed conformation with a phosphate engulfed in the binding site pocket between two domains. Comparison between PhoX and PstS revealed that they originated from gene duplication, but despite their similarities they show significant differences in the region that interacts with the permeases. PMID:28542513

  12. The Role of Hydrogen Sulfide in Renal System.

    Science.gov (United States)

    Cao, Xu; Bian, Jin-Song

    2016-01-01

    Hydrogen sulfide has gained recognition as the third gaseous signaling molecule after nitric oxide and carbon monoxide. This review surveys the emerging role of H 2 S in mammalian renal system, with emphasis on both renal physiology and diseases. H 2 S is produced redundantly by four pathways in kidney, indicating the abundance of this gaseous molecule in the organ. In physiological conditions, H 2 S was found to regulate the excretory function of the kidney possibly by the inhibitory effect on sodium transporters on renal tubular cells. Likewise, it also influences the release of renin from juxtaglomerular cells and thereby modulates blood pressure. A possible role of H 2 S as an oxygen sensor has also been discussed, especially at renal medulla. Alternation of H 2 S level has been implicated in various pathological conditions such as renal ischemia/reperfusion, obstructive nephropathy, diabetic nephropathy, and hypertensive nephropathy. Moreover, H 2 S donors exhibit broad beneficial effects in renal diseases although a few conflicts need to be resolved. Further research reveals that multiple mechanisms are underlying the protective effects of H 2 S, including anti-inflammation, anti-oxidation, and anti-apoptosis. In the review, several research directions are also proposed including the role of mitochondrial H 2 S in renal diseases, H 2 S delivery to kidney by targeting D-amino acid oxidase/3-mercaptopyruvate sulfurtransferase (DAO/3-MST) pathway, effect of drug-like H 2 S donors in kidney diseases and understanding the molecular mechanism of H 2 S. The completion of the studies in these directions will not only improves our understanding of renal H 2 S functions but may also be critical to translate H 2 S to be a new therapy for renal diseases.

  13. Nitric oxide induces the alternative oxidase pathway in Arabidopsis seedlings deprived of inorganic phosphate.

    Science.gov (United States)

    Royo, Beatriz; Moran, Jose F; Ratcliffe, R George; Gupta, Kapuganti J

    2015-10-01

    Phosphate starvation compromises electron flow through the cytochrome pathway of the mitochondrial electron transport chain, and plants commonly respond to phosphate deprivation by increasing flow through the alternative oxidase (AOX). To test whether this response is linked to the increase in nitric oxide (NO) production that also increases under phosphate starvation, Arabidopsis thaliana seedlings were grown for 15 d on media containing either 0 or 1mM inorganic phosphate. The effects of the phosphate supply on growth, the production of NO, respiration, the AOX level and the production of superoxide were compared for wild-type (WT) seedlings and the nitrate reductase double mutant nia. Phosphate deprivation increased NO production in WT roots, and the AOX level and the capacity of the alternative pathway to consume electrons in WT seedlings; whereas the same treatment failed to stimulate NO production and AOX expression in the nia mutant, and the plants had an altered growth phenotype. The NO donor S-nitrosoglutathione rescued the growth phenotype of the nia mutants under phosphate deprivation to some extent, and it also increased the respiratory capacity of AOX. It is concluded that NO is required for the induction of the AOX pathway when seedlings are grown under phosphate-limiting conditions. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Glutaric Aciduria type I and acute renal failure — Coincidence or causality?

    Directory of Open Access Journals (Sweden)

    Ben Pode-Shakked

    2014-01-01

    Full Text Available Glutaric Aciduria type I (GA-I is a rare organic acidemia, caused by mutations in the GCDH gene, and characterized by encephalopathic crises with neurological sequelae. We report herein a patient with GA-I who presented with severe acute renal failure requiring dialysis, following an acute diarrheal illness. Histopathological evaluation demonstrated acute tubular necrosis, and molecular diagnosis revealed the patient to be homozygous for a previously unreported mutation, p.E64D. As renal impairment is not part of the clinical spectrum typical to GA-I, possible associations of renal failure and the underlying inborn error of metabolism are discussed, including recent advancements made in the understanding of the renal transport of glutaric acid and its derivatives during metabolic disturbance in GA-I.

  15. Continuous renal replacement therapy improves renal recovery from acute renal failure.

    Science.gov (United States)

    Jacka, Michael J; Ivancinova, Xenia; Gibney, R T Noel

    2005-03-01

    Acute renal failure (ARF) occurs in up to 10% of critically ill patients, with significant associated morbidity and mortality. The optimal mode of renal replacement therapy (RRT) remains controversial. This retrospective study compared continuous renal replacement therapy (CRRT) and intermittent hemodialysis (IHD) for RRT in terms of intensive care unit (ICU) and hospital mortality, and renal recovery. We reviewed the records of all patients undergoing RRT for the treatment of ARF over a 12-month period. Patients were compared according to mode of RRT, demographics, physiologic characteristics, and outcomes of ICU and hospital mortality and renal recovery using the Chi square, Student's t test, and multiple logistic regression as appropriate. 116 patients with renal insufficiency underwent RRT during the study period. Of these, 93 had ARF. The severity of illness of CRRT patients was similar to that of IHD patients using APACHE II (25.1 vs 23.5, P = 0.37), but they required significantly more intensive nursing (therapeutic intervention scale 47.8 vs 37.6, P = 0.0001). Mortality was associated with lower pH at presentation (P = 0.003) and increasing age (P = 0.03). Renal recovery was significantly more frequent among patients initially treated with CRRT (21/24 vs 5/14, P = 0.0003). Further investigation to define optimal timing, dose, and duration of RRT may be beneficial. Although further study is needed, this study suggests that renal recovery may be better after CRRT than IHD for ARF. Mortality was not affected significantly by RRT mode.

  16. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite.

    Science.gov (United States)

    Yagi, Shintaro; Fukushi, Keisuke

    2012-10-15

    The sorption behavior and mechanism of phosphate on monohydrocalcite (CaCO(3)·H(2)O: MHC) were examined using batch sorption experiments as a function of phosphate concentrations, ionic strengths, temperatures, and reaction times. The mode of PO(4) sorption is divisible into three processes depending on the phosphate loading. At low phosphate concentrations, phosphate is removed by coprecipitation of phosphate during the transformation of MHC to calcite. The sorption mode at the low-to-moderate phosphate concentrations is most likely an adsorption process because the sorption isotherm at the conditions can be fitted reasonably with the Langmuir equation. The rapid sorption kinetics at the conditions is also consistent with the adsorption reaction. The adsorption of phosphate on MHC depends strongly on ionic strength, but slightly on temperature. The maximum adsorption capacities of MHC obtained from the regression of the experimental data to the Langmuir equation are higher than those reported for stable calcium carbonate (calcite or aragonite) in any conditions. At high phosphate concentrations, the amount of sorption deviates from the Langmuir isotherm, which can fit the low-to-moderate phosphate concentrations. Speciation-saturation analyses of the reacted solutions at the conditions indicated that the solution compositions which deviate from the Langmuir equation are supersaturated with respect to a certain calcium phosphate. The obtained calcium phosphate is most likely amorphous calcium phosphate (Ca(3)(PO(4))(2)·xH(2)O). The formation of the calcium phosphate depends strongly on ionic strength, temperature, and reaction times. The solubility of MHC is higher than calcite and aragonite because of its metastability. Therefore, the higher solubility of MHC facilitates the formation of the calcium phosphates more than with calcite and aragonite. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Root cortical aerenchyma inhibits radial nutrient transport in maize (Zea mays).

    Science.gov (United States)

    Hu, Bo; Henry, Amelia; Brown, Kathleen M; Lynch, Jonathan P

    2014-01-01

    Formation of root cortical aerenchyma (RCA) can be induced by nutrient deficiency. In species adapted to aerobic soil conditions, this response is adaptive by reducing root maintenance requirements, thereby permitting greater soil exploration. One trade-off of RCA formation may be reduced radial transport of nutrients due to reduction in living cortical tissue. To test this hypothesis, radial nutrient transport in intact roots of maize (Zea mays) was investigated in two radiolabelling experiments employing genotypes with contrasting RCA. In the first experiment, time-course dynamics of phosphate loading into the xylem were measured from excised nodal roots that varied in RCA formation. In the second experiment, uptake of phosphate, calcium and sulphate was measured in seminal roots of intact young plants in which variation in RCA was induced by treatments altering ethylene action or genetic differences. In each of three paired genotype comparisons, the rate of phosphate exudation of high-RCA genotypes was significantly less than that of low-RCA genotypes. In the second experiment, radial nutrient transport of phosphate and calcium was negatively correlated with the extent of RCA for some genotypes. The results support the hypothesis that RCA can reduce radial transport of some nutrients in some genotypes, which could be an important trade-off of this trait.

  18. A critical evaluation of phosphate retardation and leaching in Hapludults

    Science.gov (United States)

    Dao, Thanh

    2016-04-01

    Nutrients used in production agriculture, in particular bioactive phosphorus (P), continue to present challenges in trying to reverse the degradation of fragile aquatic ecosystems. Soils treated with large amounts of nutrient-enriched animal manure have elevated P levels in regions of intensive animal agriculture and the residual effects of past large P additions were found to be long-lived. Mathematical models are increasingly used in the evaluation and development of mitigation strategies and sustainable management practices. A large number of predictive tools are currently used in the U.S. for simulating phosphorus environmental fate, including models such AGNPS (Agricultural Non-Point Source), FHANTM Field Hydrologic And Nutrient Transport Model (Field Hydrologic And Nutrient Transport Model), SWAT (Soil & Water Assessment Tool), or APEX (Agric. Policy/Environmental EXtender). The P routines in these models have had limited changes in spite of the advances in our understanding of speciation and transport of various P forms in soil and water systems that have occurred over the last three decades. We conducted soil sorption isotherm experiments that yielded basic information for estimating the Phosphorus Sorption coefficient (PSP) a key parameter used to allocate mineral P into soil labile, active, and stable pools. We compare these coefficients to parameters derived from breakthrough curves (BTC) for determining the extent of retardation and transport of phosphate supplied as KH2PO4 under a constant hydraulic head. Sigmoidal and multi-reaction rate models were observed in the BTCs of the anion, which undermine the rationale for using an overall simple partition coefficient to describe the transport and dispersal of phosphate in soil. Minimizing such generalities used in estimating nutrient availability and transport gives a more accurate picture of status of P in soil to conserve nutrients and minimize loss of excess P inputs to the environment.

  19. Renal cell carcinoma in patient with crossed fused renal ectopia

    Directory of Open Access Journals (Sweden)

    Ozgur Cakmak

    2016-01-01

    Full Text Available Primary renal cell carcinomas have rarely been reported in patients with crossed fused renal ectopia. We presented a patient with right to left crossed fused kidney harbouring renal tumor. The most frequent tumor encountered in crossed fused renal ectopia is renal cell carcinoma. In this case, partial nephrectomy was performed which pave way to preservation of the uninvolved both renal units. Due to unpredictable anatomy, careful preoperative planning and meticulous delineation of renal vasculature is essential for preservation of the uninvolved renal units.

  20. Phosphate Recovery From Sewage Sludge Containing Iron Phosphate

    NARCIS (Netherlands)

    Wilfert, P.K.

    2018-01-01

    The scope of this thesis was to lay the basis for a phosphate recovery technology that can be applied on sewage sludge containing iron phosphate. Such a technology should come with minimal changes to the existing sludge treatment configuration while keeping the use of chemicals or energy as small as

  1. High-resolution angle-resolved photoemission investigation of potassium and phosphate tungsten bronzes

    International Nuclear Information System (INIS)

    Paul, Sanhita; Kumari, Spriha; Raj, Satyabrata

    2016-01-01

    Highlights: • Electronic structure of potassium and phosphate tungsten bronzes. • Origin of transport anomalies in bronzes. • Flat segments of Fermi surfaces are connected by a nesting vector, q. • Nesting driven charge-density wave is responsible for the anomalies. - Abstract: We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) and density functional ab initio theoretical calculation to study the electronic structure of potassium (K_0_._2_5WO_3) and phosphate (P_4W_1_2O_4_4) tungsten bronzes. We have experimentally determined the band dispersions and Fermi surface topology of these bronzes and compared with our theoretical calculations and a fair agreement has been seen between them. Our experimental as well as theoretical investigation elucidates the origin of transport anomalies in these bronzes. The Fermi surfaces of these bronzes consist of flat patches, which can be connected with each other by a constant nesting wave vector, q. The scattering wave vectors found from diffraction measurements match with these nesting vectors and the anomalies in the transport properties of these bronzes can be well explained by the evolution of charge-density wave with a partial nesting between the flat segments of the Fermi surfaces.

  2. Role of glutathione transport processes in kidney function

    International Nuclear Information System (INIS)

    Lash, Lawrence H.

    2005-01-01

    The kidneys are highly dependent on an adequate supply of glutathione (GSH) to maintain normal function. This is due, in part, to high rates of aerobic metabolism, particularly in the proximal tubules. Additionally, the kidneys are potentially exposed to high concentrations of oxidants and reactive electrophiles. Renal cellular concentrations of GSH are maintained by both intracellular synthesis and transport from outside the cell. Although function of specific carriers has not been definitively demonstrated, it is likely that multiple carriers are responsible for plasma membrane transport of GSH. Data suggest that the organic anion transporters OAT1 and OAT3 and the sodium-dicarboxylate 2 exchanger (SDCT2 or NaDC3) mediate uptake across the basolateral plasma membrane (BLM) and that the organic anion transporting polypeptide OATP1 and at least one of the multidrug resistance proteins mediate efflux across the brush-border plasma membrane (BBM). BLM transport may be used pharmacologically to provide renal proximal tubular cells with exogenous GSH to protect against oxidative stress whereas BBM transport functions physiologically in turnover of cellular GSH. The mitochondrial GSH pool is derived from cytoplasmic GSH by transport into the mitochondrial matrix and is mediated by the dicarboxylate and 2-oxoglutarate exchangers. Maintenance of the mitochondrial GSH pool is critical for cellular and mitochondrial redox homeostasis and is important in determining susceptibility to chemically induced apoptosis. Hence, membrane transport processes are critical to regulation of renal cellular and subcellular GSH pools and are determinants of susceptibility to cytotoxicity induced by oxidants and electrophiles

  3. Inorganic phosphate uptake in unicellular eukaryotes.

    Science.gov (United States)

    Dick, Claudia F; Dos-Santos, André L A; Meyer-Fernandes, José R

    2014-07-01

    Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Osteocyte regulation of phosphate homeostasis and bone mineralization underlies the pathophysiology of the heritable disorders of rickets and osteomalacia

    Science.gov (United States)

    Feng, Jian Q.; Clinkenbeard, Erica L.; Yuan, Baozhi; White, Kenneth E.; Drezner, Marc K.

    2013-01-01

    Although recent studies have established that osteocytes function as secretory cells that regulate phosphate metabolism, the biomolecular mechanism(s) underlying these effects remain incompletely defined. However, investigations focusing on the pathogenesis of X-linked hypophosphatemia (XLH), autosomal dominant hypophosphatemic rickets (ADHR), and autosomal recessive hypophosphatemic rickets (ARHR), heritable disorders characterized by abnormal renal phosphate wasting and bone mineralization, have clearly implicated FGF23 as a central factor in osteocytes underlying renal phosphate wasting, documented new molecular pathways regulating FGF23 production, and revealed complementary abnormalities in osteocytes that regulate bone mineralization. The seminal observations leading to these discoveries were the following: 1) mutations in FGF23 cause ADHR by limiting cleavage of the bioactive intact molecule, at a subtilisin-like protein convertase (SPC) site, resulting in increased circulating FGF23 levels and hypophosphatemia; 2) mutations in DMP1 cause ARHR, not only by increasing serum FGF23, albeit by enhanced production and not limited cleavage, but also by limiting production of the active DMP1 component, the C-terminal fragment, resulting in dysregulated production of DKK1 and β-catenin, which contributes to impaired bone mineralization; and 3) mutations in PHEX cause XLH both by altering FGF23 proteolysis and production and causing dysregulated production of DKK1 and β-catenin, similar to abnormalities in ADHR and ARHR, but secondary to different central pathophysiological events. These discoveries indicate that ADHR, XLH, and ARHR represent three related heritable hypophosphatemic diseases that arise from mutations in, or dysregulation of, a single common gene product, FGF23 and, in ARHR and XLH, complimentary DMP1 and PHEX directed events that contribute to abnormal bone mineralization. PMID:23403405

  5. Monoclonal antibodies that bind the renal Na+/glucose symport system. 1. Identification

    International Nuclear Information System (INIS)

    Wu, J.S.R.; Lever, J.E.

    1987-01-01

    Phlorizin is a specific, high-affinity ligand that binds the active site of the Na + /glucose symporter by a Na + -dependent mechanism but is not itself transported across the membrane. The authors have isolated a panel of monoclonal antibodies that influence high-affinity, Na + -dependent phlorizin binding to pig renal brush border membranes. Antibodies were derived after immunization of mice either with highly purified renal brush border membranes or with apical membranes purified from LLC-PK 1 , a cell line of pig renal proximal tubule origin. Antibody 11A3D6, an IgG/sub 2b/, reproducibly stimulated Na + -dependent phlorizin binding whereas antibody 18H10B12, an IgM, strongly inhibited specific binding. These effects were maximal after 30-min incubation and exhibited saturation at increased antibody concentrations. Antibodies did not affect Na + -dependent sugar uptake in vesicles but significantly prevented transport inhibition by bound phlorizin. Antibodies recognized a 75-kDa antigen identified by Western blot analysis of brush border membranes, and a 75-kDa membrane protein could be immunoprecipitated by 18H10B12. These properties, provide compelling evidence that the 75-kDa antigen recognized by these antibodies is a component of the renal Na + /glucose symporter

  6. Chronic renal failure due to unilateral renal agenesis and total renal dysplasia (=aplasia)

    International Nuclear Information System (INIS)

    Kroepelin, T.; Ziupa, J.; Wimmer, B.

    1983-01-01

    Three adult patients with unilateral renal agenesis/total dysplasia (= aplasia) and with an early chronic renal failure are presented. One patient had renal agenesis without ureter bud and ureteric ostium on one side, and reflux pyelonephritis on the other; one had small compact total renal dysplasia (= aplasia) on one side, while chronic uric acid nephropathy (chronic renal disease as a cause of gout) was diagnosed on the other; the third patient had a total large multicystic dysplasia on one side, and on the other a segmental large multicystic dysplasia. Radiological steps and radiodiagnostic criteria are discussed and the combination of urogenital and extraurogenital anomalies is referred to. (orig.)

  7. Efficacy of ultrasonography-guided renal biopsy for the evaluation of renal dysfunction following renal transplantation

    International Nuclear Information System (INIS)

    Kim, Young Jae; Choi, Chul Soon; Min, Seon Jeong; Lee, Gyung Kyu; Lee, Eil Seong; Kang, Ik Won; Bae, Sang Hoon

    2003-01-01

    To evaluate the usefulness and complications of renal biopsy under ultrasonography-guidance in renal dysfunction after renal transplantation. Ultrasonography-guided renal biopsy was done in 47 patients with the transplanted kidney. The subjects consisted of 30 males and 17 females, age ranged from 16 to 66 years (average age=38 years). Biopsies were done once in 27 patients, twice in 17 patients, three times in 3 patients, a total of 70 biopsies. The success rate of renal biopsy for the accurate pathologic diagnosis and the incidence and types of complications following biopsy were evaluated. The success rate of renal biopsy for the accurate pathologic diagnosis was 96%(67/70). Pathologic diagnosis included 27 cases of acute rejection (39%), 8 cases of acute tubular necrosis (11%), 4 cases of acute rejection and acute tubular necrosis (6%), 4 cases of cyclosporin toxicity (6%), 4 cases of primary disease recurrence (6%), 4 cases of infection (6%) and others. Complications after renal biopsy included 15 cases of microscopic hematuria (21%), 1 case of gross hematuria with spontaneous cessation and 1 case of life threatening hemorrhage. Ultrasonography-guided renal biopsy is a safe and effective diagnostic method for the evaluation of renal dysfunction following renal transplantation.

  8. Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli

    OpenAIRE

    Grillo-Puertas, Mariana; Schurig-Briccio, Lici Ariane; Rodríguez-Montelongo, Luisa; Rintoul, María Regina; Rapisarda, Viviana Andrea

    2014-01-01

    Background Metal tolerance in bacteria has been related to polyP in a model in which heavy metals stimulate the polymer hydrolysis, forming metal-phosphate complexes that are exported. As previously described in our laboratory, Escherichia coli cells grown in media containing a phosphate concentration >37 mM maintained an unusually high polyphosphate (polyP) level in stationary phase. The aim of the present work was to evaluate the influence of polyP levels as the involvement of low-affinity ...

  9. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease.

    Science.gov (United States)

    Falkevall, Annelie; Mehlem, Annika; Palombo, Isolde; Heller Sahlgren, Benjamin; Ebarasi, Lwaki; He, Liqun; Ytterberg, A Jimmy; Olauson, Hannes; Axelsson, Jonas; Sundelin, Birgitta; Patrakka, Jaakko; Scotney, Pierre; Nash, Andrew; Eriksson, Ulf

    2017-03-07

    Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers

    OpenAIRE

    de Saint-Jean, Maud; Delfosse, Vanessa; Douguet, Dominique; Chicanne, Gaetan; Payrastre, Bernard; Bourguet, William; Antonny, Bruno; Drin, Guillaume

    2011-01-01

    Osh/Orp proteins transport sterols between organelles and are involved in phosphoinositide metabolism. The link between these two aspects remains elusive. Using novel assays, we address the influence of membrane composition on the ability of Osh4p/Kes1p to extract, deliver, or transport dehydroergosterol (DHE). Surprisingly, phosphatidylinositol 4-phosphate (PI(4)P) specifically inhibited DHE extraction because PI(4)P was itself efficiently extracted by Osh4p. We solve the structure of the Os...

  11. Renal handling of technetium-99m DMSA in rats with proximal tubular dysfunction

    International Nuclear Information System (INIS)

    Provoost, A.P.; Van Aken, M.

    1985-01-01

    The renal handling of technetium-/sup 99m/ dimercaptosuccinic acid ([/sup 99m/Tc]DMSA) was studied in rats before and after treatment with Na-maleate (2 mmol/kg i.v.). In the control period, when measured 2 hr after the intravenous injection of [/sup 99m/Tc]DMSA, 39.9% of the injected dose was in the kidneys and 14.6% was in the bladder. After Na-maleate treatment, only 6.4% of the injected dose of [/sup 99m/Tc]DMSA was retained in the kidneys while 37.9% was found in the bladder. Subsequent studies revealed that Na-maleate produced a fall in the glomerular filtration rate, the effective renal plasma flow, and a generalized proximal tubular dysfunction. The latter was characterized by polyuria and an increased excretion of glucose, protein, albumin, calcium, and inorganic phosphate. It was concluded that proximal tubular dysfunction markedly alters the renal handling of [/sup 99m/Tc]DMSA. Whether this augmented urinary excretion is due to an inhibition of reabsorption or an enhanced cellular efflux of [/sup 99m/Tc]DMSA remains to be answered

  12. Passive detection of Pb in water using rock phosphate agarose beads.

    Science.gov (United States)

    Edenborn, Harry M; Howard, Bret H; Sams, James I; Vesper, Dorothy J; Edenborn, Sherie L

    2017-08-15

    In this study, passive detectors for Pb were prepared by immobilizing powdered rock phosphate in agarose beads. Rock phosphate has been used to treat Pb-contaminated waters and soil by fixing the metal as an insoluble pyromorphite mineral. Under lab conditions, Pb was rapidly adsorbed from aqueous solution by the beads over time, consistent with the acidic dissolution of rock phosphate, the precipitation of pyromorphite within the pore space of the agarose gel matrix, and surface exchange reactions. Net accumulation of Pb occurred when beads were exposed to simulated periodic releases of Pb over time. Under field conditions, beads in mesh bags were effective at detecting dissolved Pb being transported as surface runoff from a site highly contaminated with Pb. Rates of Pb accumulation in beads under field conditions appeared to be correlated with the frequency of storm events and total rainfall. The rock phosphate agarose bead approach could be an inexpensive way to carry out source-tracking of Pb pollution, to verify the successful remediation of sites with Pb-contaminated soil, and to routinely monitor public water systems for potential Pb contamination. Published by Elsevier B.V.

  13. Variability in properties of grouted Phosphate/Sulfate N-Reactor Waste

    International Nuclear Information System (INIS)

    Lokken, R.O.; Martin, P.F.C.; Bowen, W.M.; Harty, H.; Treat, R.L.

    1987-02-01

    A Transportable Grout Facility (TGF) is being constructed at the Hanford site in Washington State to convert various low-level liquid wastes to a grout waste form for onsite disposal. The TGF Project is managed by Rockwell Hanford Operations (Rockwell). Oak Ridge National Laboratory (ORNL) has provided a grout formulation for Phosphate/Sulfate N-Reactor Waste, the first waste stream scheduled for grouting beginning in late 1987. The formulation includes a blend of portland cement, fly ash, attapulgite clay, and an illitic clay. Grout will be produced by mixing the blend with Phosphate/Sulfate N-Reactor Waste. These wastes result from decontamination and ion-exchange regeneration activities at Hanford's N-Reactor. Pacific Northwest Laboratory (PNL) is conducting studies on grouted Phosphate/Sulfate N-Reactor Waste to verify that the grout can be successfully processed and, when hardened, that it will meet all performance and regulatory requirements. As part of these studies, PNL is assessing the variability that may be encountered when processing Phosphate/Sulfate N-Reactor Waste grout. Sources of variability that may affect grout properties include the composition and concentrations of the waste and dry solids, temperature, efficiency of dry solids blending, and dry blend storage time. 13 refs., 20 figs., 9 tabs

  14. Bone aluminum measurements in patients with end-stage renal disease

    International Nuclear Information System (INIS)

    Ellis, K.J.; Kelleher, S.P.

    1986-01-01

    Long-term use of aluminum-based phosphate binders and trace aluminum contamination of dialysate solution have led to increased body burden of this metal in patients with end-stage renal disease. Aluminum accumulates in bone and has been associated with the development of a renal osteodystrophy, called aluminum-induced osteomalacia. At present, bone biopsy is the method of diagnosis of this condition. When examined by quantitative histomorphometry, the aluminum accumulation was reported to correlate with the severity of the osteomalacia. This project was therefore undertaken to investigate the possibility of developing a non-invasive technique using neutron activation analysis for the direct in vivo assessment of bone aluminum levels. A bilateral exposure of the patient's hand is performed at the patient port of the Brookhaven Medical Research Reactor. The induced activity is then counted for 5 min using four 4'' x 4'' x 16'' NaI(T1) detectors arranged in a quasi-4! geometry. In addition to Al, Ca is also detected and serves as each individual's internal standard for the volume of bone mass irradiated. The Al/Ca ratio provides an index of the amount of elevated aluminum per unit bone mass. When this ratio is multiplied by the total body calcium value, an estimate of total skeletal aluminum is obtained. These measurements will be presented for a pilot study of ten asymptomatic renal patients

  15. Phosphate-a poison for humans?

    Science.gov (United States)

    Komaba, Hirotaka; Fukagawa, Masafumi

    2016-10-01

    Maintenance of phosphate balance is essential for life, and mammals have developed a sophisticated system to regulate phosphate homeostasis over the course of evolution. However, due to the dependence of phosphate elimination on the kidney, humans with decreased kidney function are likely to be in a positive phosphate balance. Phosphate excess has been well recognized as a critical factor in the pathogenesis of mineral and bone disorders associated with chronic kidney disease, but recent investigations have also uncovered toxic effects of phosphate on the cardiovascular system and the aging process. Compelling evidence also suggests that increased fibroblastic growth factor 23 and parathyroid hormone levels in response to a positive phosphate balance contribute to adverse clinical outcomes. These insights support the current practice of managing serum phosphate in patients with advanced chronic kidney disease, although definitive evidence of these effects is lacking. Given the potential toxicity of excess phosphate, the general population may also be viewed as a target for phosphate management. However, the widespread implementation of dietary phosphate intervention in the general population may not be warranted due to the limited impact of increased phosphate intake on mineral metabolism and clinical outcomes. Nonetheless, the increasing incidence of kidney disease or injury in our aging society emphasizes the potential importance of this issue. Further work is needed to more completely characterize phosphate toxicity and to establish the optimal therapeutic strategy for managing phosphate in patients with chronic kidney disease and in the general population. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. “Transcollateral” Renal Angioplasty for a Completely Occluded Renal Artery

    International Nuclear Information System (INIS)

    Chandra, Subash; Chadha, Davinder S.; Swamy, Ajay

    2011-01-01

    Percutaneous transluminal renal angioplasty with stenting has been effective in the control of hypertension, renal function, and pulmonary edema caused by atherosclerotic renal artery stenosis. However, the role of the procedure has not been fully established in the context of chronic total occlusion of renal artery. We report the successful use of this procedure in 57-year-old male patient who reported for evaluation of a recent episode of accelerated hypertension. A renal angiogram in this patient showed ostial stenosis of the right renal artery, which was filling by way of the collateral artery. Renal angioplasty for chronic total occlusion of right renal artery was successfully performed in a retrograde fashion through a collateral artery, thereby leading to improvement of renal function and blood pressure control.

  17. Regulation of transport in the connecting tubule and cortical collecting duct

    Science.gov (United States)

    Staruschenko, Alexander

    2012-01-01

    The central goal of this overview article is to summarize recent findings in renal epithelial transport, focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD). Mammalian CCD and CNT are involved in fine tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, e.g. aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades. Recent studies shed new light on several key questions concerning the regulation of renal transport. Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will be also covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD. PMID:23227301

  18. Sodium bicarbonate cotransporter NBCe2 gene variants increase sodium and bicarbonate transport in human renal proximal tubule cells.

    Science.gov (United States)

    Gildea, John J; Xu, Peng; Kemp, Brandon A; Carlson, Julia M; Tran, Hanh T; Bigler Wang, Dora; Langouët-Astrié, Christophe J; McGrath, Helen E; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2018-01-01

    Salt sensitivity of blood pressure affects >30% of the hypertensive and >15% of the normotensive population. Variants of the electrogenic sodium bicarbonate cotransporter NBCe2 gene, SLC4A5, are associated with increased blood pressure in several ethnic groups. SLC4A5 variants are also highly associated with salt sensitivity, independent of hypertension. However, little is known about how NBCe2 contributes to salt sensitivity, although NBCe2 regulates renal tubular sodium bicarbonate transport. We hypothesized that SLC4A5 rs10177833 and rs7571842 increase NBCe2 expression and human renal proximal tubule cell (hRPTC) sodium transport and may be a cause of salt sensitivity of blood pressure. To characterize the hRPTC ion transport of wild-type (WT) and homozygous variants (HV) of SLC4A5. The expressions of NBCe2 mRNA and protein were not different between hRPTCs carrying WT or HV SLC4A5 before or after dopaminergic or angiotensin (II and III) stimulation. However, luminal to basolateral sodium transport, NHE3 protein, and Cl-/HCO3- exchanger activity in hRPTCs were higher in HV than WT SLC4A5. Increasing intracellular sodium enhanced the apical location of NBCe2 in HV hRPTCs (4.24±0.35% to 11.06±1.72% (P<0.05, N = 3, 2-way ANOVA, Holm-Sidak test)) as determined by Total Internal Reflection Fluorescence Microscopy (TIRFM). In hRPTCs isolated from kidney tissue, increasing intracellular sodium enhanced bicarbonate-dependent pH recovery rate and increased NBCe2 mRNA and protein expressions to a greater extent in HV than WT SLC4A5 (+38.00±6.23% vs HV normal salt (P<0.01, N = 4, 2-way ANOVA, Holm-Sidak test)). In hRPTCs isolated from freshly voided urine, bicarbonate-dependent pH recovery was also faster in those from salt-sensitive and carriers of HV SLC4A5 than from salt-resistant and carriers of WT SLC4A5. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was normalized by SLC4A5- but not SLC4A4-shRNA. The binding of purified hepatocyte

  19. Triphenyl phosphate allergy from spectacle frames

    DEFF Research Database (Denmark)

    Carlsen, L; Andersen, K E; Egsgaard, Helge

    1986-01-01

    A case of triphenyl phosphate allergy from spectacle frames is reported. Patch tests with analytical grade triphenyl phosphate, tri-m-cresyl phosphate, and tri-p-cresyl phosphate in the concentrations 5%, 0.5% and 0.05% pet. showed positive reactions to 0.05% triphenyl phosphate and 0.5% tri......-m-cresyl phosphate, but no reaction to tri-p-cresyl phosphate. Gas chromatography of the tricresyl phosphate 5% pet. patch test material supplied from Trolab showed that it contained a mixture of a wide range of triaryl phosphates, including 0.08% triphenyl phosphate which is above the threshold for detecting...

  20. Kinetics of renal organic acid transport; studies on the counter-transport of p-aminohippuric acid

    International Nuclear Information System (INIS)

    Yang Saeng Park

    1979-04-01

    The experiments have been performed in various conditions using 14 C-PAH as a tracer. The relative ratio of the inhibitor constant (Ki) between Diodrast and probenecid was of the same magnitude as the concentrations of these inhibitors for maximal stimulation of PAH efflux. The author observed that in metabolically inhibited slices there was no PAH uptake against concentration gradient, but the efflux of PAH was greater than that in the normal slice. In these metabolically inhibited slice PAH efflux was also biphasically altered by Diodrast and probenecid added to the medium. When the concentration of sodium was reduced in medium, PAH influx was decreased but PAH efflux facilitated. 0.1mM disulfonic stilbene derivative, SITS (4-acetamido-4'-isothiocyano-2.2' disulfonic stilbene) increased PAH efflux in the normal slice, but decreased the efflux in the metabolically inhibited slice. Analyzing the data presented, the contractor came to the conclusion that the influx and efflux of PAH in the renal slice are mediated by mobile carrier cycling across the peritubular membrane of renal tubular cell. He observed also that the affinity of carrier for organic acids is altered by the energy-linking reaction at the cytoplasmic border of the membrane

  1. Influences of renal stone surgeries on renal function; Evaluation of renal function with sup 99m Tc-DMSA renal scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Yasushi (Niigata Univ. (Japan). School of Medicine)

    1991-10-01

    From 1984 to 1990, {sup 99m}Tc-DMSA renal scintigraphy was performed before and after nephrolithotomy (15 cases), pyelolithotomy (15 cases), percutaneous nephrolithotripsy (PNL: 15 cases) and extracorporeal shock wave lithotripsy (ESWL: 16 cases, 17 kidneys) in order to evaluate of influences of renal stone surgeries on split renal function. DMSA renal uptake change ratio of treated kidneys of nephrolithotomy (-24.94{+-}5.60%) was significantly lower than that of PNL (-0.06{+-}3.92%), pyelolithotomy (-4.08{+-}4.79%) (p<0.01) and ESWL (-7.72{+-}3.87%) (p<0.05). The average change ratios of contralateral kidneys were as follows: PNL 4.80{+-}4.21% nephrolithotomy 4.67{+-}4.73%, pyelolithotomy -1.46{+-}5.39% and ESWL -2.02{+-}4.44%. One to 3 weeks after PNL, the cold area on the renal image was found in 10 (66.7%) of 15 cases. In cases of ESWL, DMSA renal uptake decreased even 4-10 weeks (mean 7 weeks) after treatment. In conclusion, possibility of deterioration of renal function after ESWL was suggested. (author).

  2. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan [University of Duisburg-Essen, Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Nalbant, Perihan [University of Duisburg-Essen, Faculty of Biology, Institute of Molecular Cell Biology (Germany); Buer, Jan; Knuschke, Torben; Westendorf, Astrid M. [University Hospital Essen, University of Duisburg-Essen, Institute of Medical Microbiology (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-06-15

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100-250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  3. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    Science.gov (United States)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan; Nalbant, Perihan; Buer, Jan; Knuschke, Torben; Westendorf, Astrid M.; Epple, Matthias

    2012-06-01

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100-250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  4. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    International Nuclear Information System (INIS)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan; Nalbant, Perihan; Buer, Jan; Knuschke, Torben; Westendorf, Astrid M.; Epple, Matthias

    2012-01-01

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100–250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  5. Simultaneous in vivo determination of calcium and phosphate effective intestinal absorption in the rat

    International Nuclear Information System (INIS)

    Ladizesky, M.; Mautalen, C.A.; Cabrejas, M.; Degrossi, O.J.

    1978-01-01

    A description is given of a technique which allows a more precise assessment of the interrelation between calcium and phosphate transport systems. Rats were given an i.p. or oral dose of 47 Ca with 40 Ca as carrier and/or 32 P with 31 P as carrier. The animals were sacrificed and activities in body and excised gastrointestinal tract determined. The 1.28 MeV photopeak activity was measured for calcium 47, and phosphorus 32 activity was determined by measuring the Bremsstrahlung produced by this isotope in the rat's body in the 80 to 200 keV range. The rates of intestinal absorption of calcium and phosphate differed; there seemed to be no urinary excretion of the radioisotopes within 3 hours. The reciprocal influence of calcium and phosphate on the intestinal absorption was also studied. The technique is simple and allows the simultaneous in vivo measurement of the effective intestinal absorption of calcium and phosphate. (U.K.)

  6. Renal Osteodystrophy

    Directory of Open Access Journals (Sweden)

    Aynur Metin Terzibaşoğlu

    2004-12-01

    Full Text Available Chronic renal insufficiency is a functional definition which is characterized by irreversible and progressive decreasing in renal functions. This impairment is in collaboration with glomeruler filtration rate and serum creatinine levels. Besides this, different grades of bone metabolism disorders develop in chronic renal insufficiency. Pathologic changes in bone tissue due to loss of renal paranchyme is interrelated with calcium, phosphorus vitamine-D and parathyroid hormone. Clinically we can see high turnover bone disease, low turnover bone disease, osteomalacia, osteosclerosis and osteoporosis in renal osteodystropy. In this article we aimed to review pathology of bone metabolism disorders due to chronic renal insufficiency, clinic aspects and treatment approaches briefly.

  7. Salubrious effect of C-phycocyanin against oxalate-mediated renal cell injury.

    Science.gov (United States)

    Farooq, Shukkur Muhammed; Asokan, Devarajan; Sakthivel, Ramasamy; Kalaiselvi, Periandavan; Varalakshmi, Palaninathan

    2004-10-01

    C-phycocyanin, a biliprotein pigment found in some blue green algae (Spirulina platensis) with nutritional and medicinal properties, was investigated for its efficacy on sodium oxalate-induced nephrotoxicity in experimentally induced urolithic rats. Male Wistar rats were divided into four groups. Hyperoxaluria was induced in two of these groups by intraperitoneal infusion of sodium oxalate (70 mg/kg), and a pretreatment of phycocyanin (100 mg/kg) as a single oral dosage was given to one of these groups by 1 h prior to sodium oxalate infusion challenges. The study also encompasses an untreated control group and a phycocyanin-alone treated drug control group. The extent of lipid peroxidation (LPO) was evaluated in terms of renal concentrations of MDA, conjugated diene and hydroperoxides. The following assay was performed in the renal tissue (a) antioxidant enzymes such as superoxide dismutase (SOD) and catalase, (b) glutathione metabolizing enzymes such as glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) and glucose 6-phosphate dehydrogenase (G6PD), (c) the low molecular weight antioxidants (GSH, vitamins E and C) and protein carbonyl content. The increased concentrations of MDA, conjugated diene and hydroperoxide (index of the lipid peroxidation) were controlled (P antioxidants were appreciably increased (P antioxidants. It was noticed that the activities of antioxidant enzymes and glutathione metabolizing enzymes were considerably stabilized in rats pretreated with phycocyanin. We suggest that phycocyanin protects the integrity of the renal cell by stabilizing the free radical mediated LPO and protein carbonyl, as well as low molecular weight antioxidants and antioxidant enzymes in renal cells. Thus, the present analysis reveals that the antioxidant nature of C-phycocyanin protects the renal cell against oxalate-induced injury and may be a nephroprotective agent.

  8. The economic impact of improving phosphate binder therapy adherence and attainment of guideline phosphorus goals in hemodialysis patients: a Medicare cost-offset model.

    Science.gov (United States)

    Ramakrishnan, Karthik; Braunhofer, Peter; Newsome, Britt; Lubeck, Deborah; Wang, Steven; Deuson, Jennifer; Claxton, Ami J

    2014-12-01

    Hyperphosphatemia (serum phosphorus >5.5 mg/dL) in hemodialysis patients is a key factor in mineral and bone disorders and is associated with increased hospitalization and mortality risks. Treatment with oral phosphate binders offers limited benefit in achieving target serum phosphorus concentrations due to high daily pill burden (7-10 pills/day) and associated poor medication adherence. The economic value of improving phosphate binder adherence and increasing percent time in range (PTR) for target phosphorus concentrations has not been previously assessed in dialysis patients. The current retrospective analysis was conducted to summarize health care cost savings to United States (US) payers associated with improved phosphate binder adherence and increased PTR for target phosphorus concentrations in adult end-stage renal disease (ESRD) patients receiving hemodialysis therapy. Phosphate binder adherence and PTR were derived from hemodialysis patients who were treated at a large dialysis organization between January 2007 and December 2011. Cost model inputs were derived from US Renal Data System data between July 2007 and December 2009. A cost-offset model was constructed to estimate monthly and annual incremental health care costs (total Medicare; inpatient, outpatient, and Medicare Part B) associated with different levels of phosphate binder adherence and PTR. Model inputs included number of ESRD patients, population adherence to phosphate binders, PTR associated with adherence to phosphate binders, and per-patient per-month cost associated with PTR. A base case model estimated monthly and annual costs of phosphate binder therapy in the population using estimated model inputs. The estimated adherence rate was used to determine number of patients in compliant and noncompliant groups. Monthly costs were calculated as the sum of per-patient per-month cost times the number of patients in adherent and nonadherent groups. Annual costs were monthly costs times 12 and

  9. The consequences of pediatric renal transplantation on bone metabolism and growth.

    Science.gov (United States)

    Bacchetta, Justine; Ranchin, Bruno; Demède, Delphine; Allard, Lise

    2013-10-01

    During childhood, growth retardation, decreased final height and renal osteodystrophy are common complications of chronic kidney disease (CKD). These problems remain present in patients undergoing renal transplantation, even though steroid-sparing strategies are more widely used. In this context, achieving normal height and growth in children after transplantation is a crucial issue for both quality of life and self-esteem. The aim of this review is to provide an overview of pathophysiology of CKD-mineral bone disorder (MBD) in children undergoing renal transplantation and to propose keypoints for its daily management. In adults, calcimimetics are effective for posttransplant hyperparathyroidism, but data are missing in the pediatric population. Fibroblast growth factor 23 levels are associated with increased risk of rejection, but the underlying mechanisms remain unclear. A recent meta-analysis also demonstrated the effectiveness of rhGH therapy in short transplanted children. In 2013, the daily clinical management of CKD-MBD in transplanted children should still focus on simple objectives: to optimize renal function, to develop and promote steroid-sparing strategies, to provide optimal nutritional support to maximize final height and avoid bone deformations, to equilibrate calcium/phosphate metabolism so as to provide acceptable bone quality and cardiovascular status, to correct all metabolic and clinical abnormalities that can worsen both bone and growth (mainly metabolic acidosis, anemia and malnutrition), promote good lifestyle habits (adequate calcium intake, regular physical activity, no sodas consumption, no tobacco exposure) and eventually to correct native vitamin D deficiency (target of 25-vitamin D >75 nmol/l).

  10. The renal concentrating mechanism and the clinical consequences of its loss

    Science.gov (United States)

    Agaba, Emmanuel I.; Rohrscheib, Mark; Tzamaloukas, Antonios H.

    2012-01-01

    The integrity of the renal concentrating mechanism is maintained by the anatomical and functional arrangements of the renal transport mechanisms for solute (sodium, potassium, urea, etc) and water and by the function of the regulatory hormone for renal concentration, vasopressin. The discovery of aquaporins (water channels) in the cell membranes of the renal tubular epithelial cells has elucidated the mechanisms of renal actions of vasopressin. Loss of the concentrating mechanism results in uncontrolled polyuria with low urine osmolality and, if the patient is unable to consume (appropriately) large volumes of water, hypernatremia with dire neurological consequences. Loss of concentrating mechanism can be the consequence of defective secretion of vasopressin from the posterior pituitary gland (congenital or acquired central diabetes insipidus) or poor response of the target organ to vasopressin (congenital or nephrogenic diabetes insipidus). The differentiation between the three major states producing polyuria with low urine osmolality (central diabetes insipidus, nephrogenic diabetes insipidus and primary polydipsia) is done by a standardized water deprivation test. Proper diagnosis is essential for the management, which differs between these three conditions. PMID:23293407

  11. CT differentiation of infiltrating renal cell carcinoma and renal urothelial tumor

    International Nuclear Information System (INIS)

    Choi, Hyo Kyeong; Goo, Dong Erk; Bang, Sun Woo; Lee, Moon Gyu; Cho, Kyoung Sik; Auh, Yong Ho

    1994-01-01

    It may be difficult to differentiate renal cell carcinoma involving collecting system from renal urothelial tumor invading into renal parenchyma. The purpose of this study was to assess the differences of CT findings between two conditions. CT findings of 5 cases of renal cell carcinoma involving the renal collecting systems and 10 cases of renal urothelial tumors invading the renal parenchyma were compared, and analyzed about the presence or absence of hydronephrosis, normal or abnormal CT nephrogram, renal contour changes due to mass and tentative diagnosis. The diagnoses were confirmed at surgery. Renal cell carcinoma showed hydronephrosis in only 20% and normal CT nephrogram and outward contour bulging in all cases. In contrast, renal urothelial tumor showed hydronephrosis(70%), abnormal CT nephrogram(60%), and preservation of reinform shape(100%). Renal contour changes and CT nephrogram may be useful in distinguishing both disease entities

  12. Calcitonin, phosphate, and the osteocyte--osteoblast bone cell unit

    Energy Technology Data Exchange (ETDEWEB)

    Talmage, R.V.; Matthews, J.L.; Martin, J.H.; Kennedy, J.W. III; Davis, W.L.; Roycroft, J.H. Jr.

    1974-01-01

    In this report we have attempted to correlate the morphological and chemical changes that occur in the long bone (tibia) of rats with the hypocalcemia that is produced following calcitonin injection or release from its gland of origin. By varying the supply of phosphate available to the rat, it has been possible to demonstrate that changes produced by CT both in bone and in plasma calcium concentrations were dependent upon an adequate supply of this ion. It is, therefore, postulated that the hypocalcemia produced by calcitonin is secondary to the formation of a calcium phosphate complex in and around osteocytes and lining cells. It is suggested that this complex, which is normally prevented from transforming to apatite crystal by the presence of an inhibitor, reduces the availability of calcium for rapid transport to the ECF. The reduction in calcium flux from bone to ECF results in a rapid and transient hypocalcemia. Regardless of the status of this postulate, we have at least demonstrated that the osteocyte-osteoblast unit of compact bone reacts rapidly to calcitonin in a process requiring phosphate in a sequence of events which can be closely correlated to the hypocalcemic action of the hormone.

  13. Renal glucose metabolism in normal physiological conditions and in diabetes.

    Science.gov (United States)

    Alsahli, Mazen; Gerich, John E

    2017-11-01

    The kidney plays an important role in glucose homeostasis via gluconeogenesis, glucose utilization, and glucose reabsorption from the renal glomerular filtrate. After an overnight fast, 20-25% of glucose released into the circulation originates from the kidneys through gluconeogenesis. In this post-absorptive state, the kidneys utilize about 10% of all glucose utilized by the body. After glucose ingestion, renal gluconeogenesis increases and accounts for approximately 60% of endogenous glucose release in the postprandial period. Each day, the kidneys filter approximately 180g of glucose and virtually all of this is reabsorbed into the circulation. Hormones (most importantly insulin and catecholamines), substrates, enzymes, and glucose transporters are some of the various factors influencing the kidney's role. Patients with type 2 diabetes have an increased renal glucose uptake and release in the fasting and the post-prandial states. Additionally, glucosuria in these patients does not occur at plasma glucose levels that would normally produce glucosuria in healthy individuals. The major abnormality of renal glucose metabolism in type 1 diabetes appears to be impaired renal glucose release during hypoglycemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Interactive transport of guanidinylated poly(propylene imine)-based dendrimers through liposomal and cellular membranes.

    Science.gov (United States)

    Tsogas, Ioannis; Sideratou, Zili; Tsiourvas, Dimitris; Theodossiou, Theodossis A; Paleos, Constantinos M

    2007-10-15

    The ability of guanidinylated poly(propylene imine) dendrimers to translocate across lipid bilayers was assessed by employing either a model phosphate-bearing liposomal membrane system or A549 human lung carcinoma cells. Two dendrimer generations, differing in the number of surface guanidinium groups, were employed, while surface acetylation or the use of spacers affected the binding of the guanidinium group to the phosphate moiety and finally the transport efficiency. Following adhesion of dendrimers with liposomes, fusion or transport occurred. Transport through the liposomal bilayer was observed at low guanidinium/phosphate molar ratios, and was enhanced when the bilayer was in the liquid-crystalline phase. For effective transport through the liposomal membrane, an optimum balance between the binding strength and the degree of hydrophobicity of the guanidinylated dendrimer is required. In experiments performed in vitro with cells, efficient penetration and internalization in subcellular organelles and cytosol was observed.

  15. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    Directory of Open Access Journals (Sweden)

    Lílian Estrela Borges Baldotto

    2014-06-01

    Full Text Available Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i to select and characterize diazotrophs able to solubilize phosphates in vitro and (ii evaluate the initial performance of the pineapple cultivars Imperial and Pérola in response to inoculation with selected bacteria in combination with rock phosphate. The experiments were conducted at Universidade Estadual do Norte Fluminense Darcy Ribeiro, in 2009. In the treatments with bacteria the leaf contents of N, P and K were higher than those of the controls, followed by an increase in plant growth. These results indicate that the combined application of diazotrophic phosphate-solubilizing bacteria Burkholderia together with Araxá rock phosphate can be used to improve the initial performance of pineapple slips.

  16. The renal scan in pregnant renal transplant patients

    International Nuclear Information System (INIS)

    Goldstein, H.A.; Ziessman, H.A.; Fahey, F.H.; Collea, J.V.; Alijani, M.R.; Helfrich, G.B.

    1985-01-01

    With the greater frequency of renal transplant surgery, more female pts are becoming pregnant and carrying to term. In the renal allograft blood vessels and ureter may be compressed resulting in impaired renal function and/or, hypertension. Toxemia of pregnancy is seen more frequently than normal. Radionuclide renal scan monitoring may be of significant value in this high risk obstetrical pt. After being maintained during the pregnancy, renal function may also deteriorate in the post partum period. 5 pregnant renal transplant pts who delivered live babies had renal studies with Tc-99m DTPA to assess allograft perfusion and function. No transplanted kidney was lost during or after pregnancy as a result of pregnancy. No congenital anomalies were associated with transplant management. 7 studies were performed on these 5 pts. The 7 scans all showed the uterus/placenta. The bladder was always distorted. The transplanted kidney was rotated to a more vertical position in 3 pts. The radiation dose to the fetus is calculated at 0.024 rad/mCi administered. This study demonstrates the anatomic and physiologic alterations expected in the transplanted kidney during pregnancy when evaluated by renal scan and that the radiation burden may be acceptable in management of these pts

  17. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism.

    Science.gov (United States)

    Ezawa, Tatsuhiro; Saito, Katsuharu

    2018-04-27

    Contents Summary I. Introduction II. Foraging for phosphate III. Fine-tuning of phosphate homeostasis IV. The frontiers: phosphate translocation and export V. Conclusions and outlook Acknowledgements References SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  18. Factors Influencing the Increase in Na-K-ATPase in Compensatory Renal Hypertrophy

    Science.gov (United States)

    Epstein, Franklin H.; Charney, Alan N.; Silva, Patricio

    1978-01-01

    An increase in Na-K-ATPase in kidney homogenates usually accompanies compensatory renal hypertrophy. While it may be evident in both the cortex and medulla of the kidney, it is most marked in the outer medulla and may be present only in that region. The increase in enzyme activity does not depend on an intact adrenal cortex and can be elicited in the absence of adrenal glucocorticoids. It is not seen in the form of renal hypertrophy produced by potassium depletion, in which the transport of sodium and potassium by the kidney is not increased. When present in compensatory renal growth, the enzyme change is correlated with an increase in the reabsorption of sodium, or the excretion of potassium, or both, per unit of renal tissue. It proceeds in the presence of either, but not in the absence of both. PMID:216164

  19. Interaction and Transport of Methamphetamine and its Primary Metabolites by Organic Cation and Multidrug and Toxin Extrusion Transporters.

    Science.gov (United States)

    Wagner, David J; Sager, Jennifer E; Duan, Haichuan; Isoherranen, Nina; Wang, Joanne

    2017-07-01

    Methamphetamine is one of the most abused illicit drugs with roughly 1.2 million users in the United States alone. A large portion of methamphetamine and its metabolites is eliminated by the kidney with renal clearance larger than glomerular filtration clearance. Yet the mechanism of active renal secretion is poorly understood. The goals of this study were to characterize the interaction of methamphetamine and its major metabolites with organic cation transporters (OCTs) and multidrug and toxin extrusion (MATE) transporters and to identify the major transporters involved in the disposition of methamphetamine and its major metabolites, amphetamine and para -hydroxymethamphetamine ( p -OHMA). We used cell lines stably expressing relevant transporters to show that methamphetamine and its metabolites inhibit human OCTs 1-3 (hOCT1-3) and hMATE1/2-K with the greatest potencies against hOCT1 and hOCT2. Methamphetamine and amphetamine are substrates of hOCT2, hMATE1, and hMATE2-K, but not hOCT1 and hOCT3. p -OHMA is transported by hOCT1-3 and hMATE1, but not hMATE2-K. In contrast, organic anion transporters 1 and 3 do not interact with or transport these compounds. Methamphetamine and its metabolites exhibited complex interactions with hOCT1 and hOCT2, suggesting the existence of multiple binding sites. Our studies suggest the involvement of the renal OCT2/MATE pathway in tubular secretion of methamphetamine and its major metabolites and the potential of drug-drug interactions with substrates or inhibitors of the OCTs. This information may be considered when prescribing medications to suspected or known abusers of methamphetamine to mitigate the risk of increased toxicity or reduced therapeutic efficacy. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Formulation of single super phosphate fertilizer from rock phosphate of Hazara, Pakistan

    Directory of Open Access Journals (Sweden)

    Matiullah Khan

    2012-05-01

    Full Text Available Phosphorus deficiency is wide spread in soils of Pakistan. It is imperative to explore the potential and economics of indigenous Hazara rock phosphate for preparation of single super phosphate fertilizer. For the subject study rock phosphate was collected from Hazara area ground at 160 mesh level with 26% total P2O5 content for manual preparation of single super phosphate fertilizer. The rock phosphate was treated with various concentrations of sulfuric acid (98.9%, diluted or pure in the field. The treatments comprised of 20 and 35% pure acid and diluted with acid-water ratios of 1:5, 1:2, 1:1 and 2:1 v/v for acidulation at the rate of 60 liters 100 kg-1 rock phosphate. The amount was prior calculated in the laboratory for complete wetting of rock phosphate. A quantity of 150 kg rock phosphate was taken as treatment. The respective amount of acid was applied with the spray pump of stainless steel or poured with bucket. After proper processing, chemical analysis of the products showed a range of available P2O5 content from 9.56 to 19.24% depending upon the amount of acid and its dilution. The results reveal at that 1:1 dilutions gave the highest P2O5 content (19.24%, lowest free acid (6 % and 32% weight increase. The application of acid beyond or below this combination either pure or diluted gave hygroscopic product and higher free acids. The cost incurred upon the manual processing was almost half the prevailing rates in the market. These results lead to conclude that application of sulfuric acid at the rate of 60 liters 100 kg-1 with the dilution of 50% (v/v can yield better kind of SSP from Hazara rock phosphate at lower prices.

  1. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria

    Science.gov (United States)

    Chino, Yukihiro; Samukawa, Yoshishige; Sakai, Soichi; Nakai, Yasuhiro; Yamaguchi, Jun-ichi; Nakanishi, Takeo; Tamai, Ikumi

    2014-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been reported to lower the serum uric acid (SUA) level. To elucidate the mechanism responsible for this reduction, SUA and the urinary excretion rate of uric acid (UEUA) were analysed after the oral administration of luseogliflozin, a SGLT2 inhibitor, to healthy subjects. After dosing, SUA decreased, and a negative correlation was observed between the SUA level and the UEUA, suggesting that SUA decreased as a result of the increase in the UEUA. The increase in UEUA was correlated with an increase in urinary d-glucose excretion, but not with the plasma luseogliflozin concentration. Additionally, in vitro transport experiments showed that luseogliflozin had no direct effect on the transporters involved in renal UA reabsorption. To explain that the increase in UEUA is likely due to glycosuria, the study focused on the facilitative glucose transporter 9 isoform 2 (GLUT9ΔN, SLC2A9b), which is expressed at the apical membrane of the kidney tubular cells and transports both UA and d-glucose. It was observed that the efflux of [14C]UA in Xenopus oocytes expressing the GLUT9 isoform 2 was trans-stimulated by 10 mm d-glucose, a high concentration of glucose that existed under SGLT2 inhibition. On the other hand, the uptake of [14C]UA by oocytes was cis-inhibited by 100 mm d-glucose, a concentration assumed to exist in collecting ducts. In conclusion, it was demonstrated that the UEUA could potentially be increased by luseogliflozin-induced glycosuria, with alterations of UA transport activity because of urinary glucose. PMID:25044127

  2. Differences in renal metabolism of insulin and cytochrome c

    International Nuclear Information System (INIS)

    Herrman, J.; Simmons, R.E.; Frank, B.H.; Rabkin, R.

    1988-01-01

    Kidneys degrade small proteins such as cytochrome c (CYT c) by the classic lysosomal pathway. However, because alternate routes for the transport and degradation of protein hormones have been identified in other tissues, the authors set out to determine whether extralysosomal sites might participate in the renal degradation of insulin. First, they compared the effect of the lysosomal inhibitor NH 4 Cl on insulin and CYT c degradation by isolated perfused rat kidneys. After kidneys were loaded with radiolabeled proteins to allow for absorption and transport to lysosomes, degradation was measured in the presence or absence of inhibitors. Next they followed the subcellular distribution of 125 I-labeled insulin in kidneys exposed to 125 I-labeled insulin in vivo or when isolated and perfused. Under both circumstances the distribution of insulin on a linear sucrose gradient differed from that of the lysosomal enzyme N-acetyl-β-glucosaminidase. In contrast, [ 14 CH 3 ]CYT c, injected in vivo, distributed over a density similar to the lysosomal marker. Thus important differences exist between the renal metabolism of CYT c, which proceeds in lysosomes, and the renal metabolism of insulin. These include rate of degradation, sensitivity to NH 4 Cl, and subcellular sites of localization. Accordingly, they suggest that insulin degradation may occur, at least in part, in a different compartment from the classic lysosomal site of protein degradation

  3. Nephrolithiasis-induced end stage renal disease

    Directory of Open Access Journals (Sweden)

    M Ounissi

    2010-03-01

    Full Text Available M Ounissi¹, T Gargueh², M Mahfoudhi¹, K Boubaker¹, H Hedri¹, R Goucha¹, E Abderrahim¹, F Ben Hamida¹, T Ben Abdallah¹, F El Younsi¹, H Ben Maiz³, A Kheder¹1Internal Medicine Department, 2Pediatric Department, 3Laboratory of Kidney Diseases, Charles Nicolle Hospital, Tunis, TunisiaIntroduction: Nephrolithiasis still remains a too frequent and underappreciated cause of end stage renal disease (ESRD.Methods and patients: Of the entire cohort of 7128 consecutive patients who started maintenance dialysis in our nephrology department between January 1992 and December 2006, a total of 45 patients (26 women, 19 men had renal stone disease as the cause of ESRD. The type of nephrolithiasis was determined in 45 cases and etiology in 42. The treatment and evolution of stone disease and patient’s survival were studied.Results: The overall proportion of nephrolithiasis related ESRD was 0.63%. The mean age was 48.4 years. Infection stones (struvite accounted for 40%, calcium stones, 26.67% (primary hyperparathyroidism:15.56%; familial hypercalciuria: 4.44%, unknown etiology: 6.66%, primary hyperoxaluria type 1, 17.78% and uric acid lithiasis in 15.56% of cases. The mean delay of the evolution of the stone renal disease to chronic renal failure was 85.8 months. The feminine gender, obesity and elevated alkaline phosphatases >128 IU/L were significantly correlated with fast evolution of ESRD. The median evolution to ESRD was 12 months. The normal body mass index (BMI, medical treatment of stone and primary hyperoxaluria type 1 were correlated with fast evolution to ESRD. All patients were treated by hemodialysis during a mean evolution of 60 months. Sixteen patients died. The patient's survival rate at 1, 3 and 5 years was 97.6, 92.8 and 69% respectively. Hypocalcemia, cardiopathy and normal calcium-phosphate product were significantly correlated with lower survival rate.Conclusion: Severe forms of nephrolithiasis remain an underestimated cause of

  4. Integrated assessment of the phosphate industry

    International Nuclear Information System (INIS)

    Ryan, M.T.; Cotter, S.J.

    1980-05-01

    The phosphate industry in the United States includes three major activities, namely, mining and milling of phosphate rock, phosphate product manufacture, and phosphate product use. Phosphatic materials contain uranium, thorium, and their decay products in greater than background amounts. This assessment of the radiological impacts associated with the redistribution of radioactive components of phosphate materials may provide insight into the effects of uranium extraction from phosphate materials for use in the nuclear fuel cycle

  5. Effect of alendronate on early bone loss of renal transplant recipients.

    Science.gov (United States)

    Abediazar, S; Nakhjavani, M R

    2011-03-01

    Renal transplant recipients (RTRs) are at risk of developing osteoporosis and osteopenia due to underlying renal osteodystrophy, hypophosphatemia, and immunosuppression. This process occurs more frequently in the first year after renal transplantation (RTX), resulting in eventual bone loss and fractures. The purpose of this study was to evaluate the effect of low-dose alendronate to prevent early bone loss after RTX. We prospectively studied 43 successful RTR including 22 men and 21-women with a mean overall age of 39.16±11.73 years, mean body mass index of 23.6±3.73, and mean dialysis duration of 25.73±17.67 months. We matched them based on age and sex: the alendronate-treated group received vitamin D (Vit D) during the study plus 30 mg alendronate weekly from 1 month after RTX. The control group only received Vit D. We measured serum calcium, phosphate, alkaline phosphatase, blood urea, creatinine, and intact parathyroid hormone (iPTH) at the pretransplant baseline and monthly thereafter as well as BMD of the lumbar spine, femur, and radius pretransplant baseline versus 3 and 6 months after RTX. At 6 month after RTX, the lumbar BMD in the alendronate group increased significantly from 0.819±0.11 to 0.863±0.14 (Pbone loss and increase BMD immediately after RTX. Copyright © 2011. Published by Elsevier Inc.

  6. Effects of education on low-phosphate diet and phosphate binder intake to control serum phosphate among maintenance hemodialysis patients: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Eunsoo Lim

    2018-03-01

    Full Text Available Background : For phosphate control, patient education is essential due to the limited clearance of phosphate by dialysis. However, well-designed randomized controlled trials about dietary and phosphate binder education have been scarce. Methods : We enrolled maintenance hemodialysis patients and randomized them into an education group (n = 48 or a control group (n = 22. We assessed the patients' drug compliance and their knowledge about the phosphate binder using a questionnaire. Results : The primary goal was to increase the number of patients who reached a calcium-phosphorus product of lower than 55. In the education group, 36 (75.0% patients achieved the primary goal, as compared with 16 (72.7% in the control group (P = 0.430. The education increased the proportion of patients who properly took the phosphate binder (22.9% vs. 3.5%, P = 0.087, but not to statistical significance. Education did not affect the amount of dietary phosphate intake per body weight (education vs. control: -1.18 ± 3.54 vs. -0.88 ± 2.04 mg/kg, P = 0.851. However, the dietary phosphate-to-protein ratio tended to be lower in the education group (-0.64 ± 2.04 vs. 0.65 ± 3.55, P = 0.193. The education on phosphate restriction affected neither the Patient-Generated Subjective Global Assessment score (0.17 ± 4.58 vs. -0.86 ± 3.86, P = 0.363 nor the level of dietary protein intake (-0.03 ± 0.33 vs. -0.09 ± 0.18, P = 0.569. Conclusion : Education did not affect the calcium-phosphate product. Education on the proper timing of phosphate binder intake and the dietary phosphate-to-protein ratio showed marginal efficacy.

  7. Renal perfusion scintiscan

    Science.gov (United States)

    ... Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion Images Kidney anatomy Kidney - blood and urine flow Intravenous pyelogram References Rottenberg G, Andi AC. Renal ...

  8. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  9. Preliminary observations on high energy phosphates and metabolic pathway and transporter potentials in extensor carpi radialis brevis and trapezius muscles of women with work-related myalgia.

    Science.gov (United States)

    Green, Howard J; Ranney, Don; Burnett, Margaret; Galvin, Patti; Kyle, Natasha; Lounsbury, David; Ouyang, Jing; Smith, Ian C; Stewart, Riley; Tick, Heather; Tupling, A Russell

    2014-11-01

    This study compared both the extensor carpi radialis brevis (ECRB) and the trapezius (TRAP) muscles of women with work-related myalgia (WRM) with healthy controls (CON) to determine whether abnormalities existed in cellular energy status and the potentials of the various metabolic pathways and segments involved in energy production and substrate transport. For both the ECRB (CON, n = 6-9; WRM, n = 13) and the TRAP (CON, n = 6-7; WRM, n = 10), no differences (P > 0.05) were found for the concentrations (in millimoles per kilogram of dry mass) of ATP, PCr, lactate, and glycogen. Similarly, with one exception, the maximal activities (in moles per milligram of protein per hour) of mitochondrial enzymes representative of the citric acid cycle (CAC), the electron transport chain (ETC), and β-oxidation, as well as the cytosolic enzymes involved in high energy phosphate transfer, glycogenolysis, glycolysis, lactate oxidation, and glucose phosphorylation were not different (P > 0.05). The glucose transporters GLUT1 and GLUT4, and the monocarboxylate transporters MCT1 and MCT4, were also normal in WRM. It is concluded that, in general, abnormalities in the resting energy and substrate state, the potential of the different metabolic pathways and segments, as well as the glucose and monocarboxylate transporters do not appear to be involved in the cellular pathophysiology of WRM.

  10. Direct effect of methylprednisolone on renal sodium and water transport via the principal cells in the kidney

    DEFF Research Database (Denmark)

    Lauridsen, Thomas G; Vase, Henrik; Bech, Jesper N

    2010-01-01

    Glucocorticoids influence renal concentrating and diluting ability. We tested the hypothesis that methylprednisolone treatment increased renal water and sodium absorption by increased absorption via the aquaporin-2 (AQP2) water channels and the epithelial sodium channels (ENaCs) respectively....

  11. Study of acute renal insufficiency and chronic renal insufficiency using radioisotopes

    International Nuclear Information System (INIS)

    Raynaud, C.

    1976-01-01

    Radioisotopic renal function tests are of assistance to diagnose and follow-up the course of renal insufficiency. The radioisotopic renogram is useful in assessing the response to therapy of child obstructive uropathies and evaluating renal transplant function. The renal scan is helpful, in an emergency service, to differenciate chronic renal insufficiency from acute renal insufficiency. Hg renal uptake test provides informations on physiopathological problems. Among them, the following problems are emphasized: evolution of a nonfunctioning kidney, control of the success of a reparative surgery and of bilateral obstructive uropathies with unilateral symptoms [fr

  12. Germany: Exposure of Transport Workers During the Transport of Most Frequently Transported NORM in Germany

    International Nuclear Information System (INIS)

    2013-01-01

    The German national report to this CRP was focused on the following services according to the research agreement: (1) Status review, analysis and evaluation of the radiation exposure imposed by shipment and expected exposure of the shipment staff of the most relevant NORM in Germany; (2) Development of evaluation criteria and safety requirements to provide adequate safety standards for the transportation of NORM; (3) Development and application of procedures to determine the limits for exempt materials/consignments for transportation according to German Transport Regulations for all NORM. For the analysis and evaluation of the radiation exposure imposed by shipment of NORM for the following materials, a couple of transport scenarios were defined and the dose to transport workers was calculated. - Tantalum raw materials; - Raw phosphate; - Pipe scales and sludge from oil and gas exploitation; - Coal ash; - Waste rock material from uranium mining; - Zircon raw materials; - Titanium dioxide raw materials; - Filter gravel from waterworks

  13. Controlled synthesized natroalunite microtubes applied for cadmium(II) and phosphate co–removal

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huan [School of Physics and Materials Science, Anhui University, Hefei 230601 (China); Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Zhu, Baisheng [University of Science and Technology of China, Hefei 230026 (China); Ren, Xuemei, E-mail: renxm1985@163.com [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Shao, Dadong; Tan, Xiaoli; Chen, Changlun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China)

    2016-08-15

    Highlights: • Five natroalunite samples with different morphologies were synthesized. • EG: water ratio controls the morphology and adsorption performance of natroalunite. • NMs show the best performance in Cd(II) and phosphate co-uptake. • Phosphate bridges NMs and Cd(II) in co–removal process and enhances Cd(II) uptake. - Abstract: Treatment of wastewater containing several kinds of contaminants poses great challenges, because heavy metal and inorganic anion contaminants possess different fate and transport mechanisms. Individual adsorption of Cd(II)/phosphate on clay or metallic oxides has been extensively investigated, but the mutual effects of these two species in co–existing systems have received little attention. In this study, five natroalunite samples with different morphologies were synthesized by a simple hydrothermal method with appropriate volume ratio of ethylene glycol (EG) to water. The volume ratio of EG to water plays a key role in the formation of natroalunite samples, and dramatically affects their adsorption capacities. The mutual effects of Cd(II) and phosphate on their interaction with natroalunite microtubes (NMs) were investigated by varying experimental conditions, such as pH, temperature and addition sequences. The results demonstrate that highly efficient co–removal of Cd(II) and phosphate can be accomplished using NMs, and the process is strongly dependent on solution pH and temperature via the formation of ternary surface complexes. This study implies that the hydrothermally synthesized NMs can be regarded as a potential promising material for the co–removal of Cd(II) and phosphate from large volumes of aqueous solutions in pollution management.

  14. Distal renal tubular acidosis in recurrent renal stone formers

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1989-01-01

    Renal acidification ability was examined in 90 recurrent renal stone formers, using fasting morning urinary pH levels followed by a short ammonium chloride loading test in subjects with pH levels above 6.0. Fifteen patients (16.6%) revealed a distal renal tubular acidification defect: one patient......, this has important therapeutic implications. The pathological sequence in renal stone formers with dRTA is discussed....

  15. Osteomalacia complicating renal tubular acidosis in association with Sjogren's syndrome.

    Science.gov (United States)

    El Ati, Zohra; Fatma, Lilia Ben; Boulahya, Ghada; Rais, Lamia; Krid, Madiha; Smaoui, Wided; Maiz, Hedi Ben; Beji, Soumaya; Zouaghi, Karim; Moussa, Fatma Ben

    2014-09-01

    Renal involvement in Sjogren's syndrome (SS) is not uncommon and may precede other complaints. Tubulointerstitial nephritis is the most common renal disease in SS and may lead to renal tubular acidosis (RTA), which in turn may cause osteomalacia. Nevertheless, osteomalacia rarely occurs as the first manifestation of a renal tubule disorder due to SS. We herewith describe a 43-year-old woman who was admitted to our hospital for weakness, lumbago and inability to walk. X-ray of the long bones showed extensive demineralization of the bones. Laboratory investigations revealed chronic kidney disease with serum creatinine of 2.3 mg/dL and creatinine clearance of 40 mL/min, hypokalemia (3.2 mmol/L), hypophosphatemia (0.4 mmol/L), hypocalcemia (2.14 mmol/L) and hyperchloremic metabolic acidosis (chlorine: 114 mmol/L; alkaline reserve: 14 mmol/L). The serum alkaline phosphatase levels were elevated. The serum levels of 25-hydroxyvitamin D and 1,25-dihydroxy vitamin D were low and borderline low, respectively, and the parathyroid hormone level was 70 pg/L. Urinalysis showed inappropriate alkaline urine (urinary PH: 7), glycosuria with normal blood glucose, phosphaturia and uricosuria. These values indicated the presence of both distal and proximal RTA. Our patient reported dryness of the mouth and eyes and Schirmer's test showed xerophthalmia. An accessory salivary gland biopsy showed changes corresponding to stage IV of Chisholm and Masson score. Kidney biopsy showed diffuse and severe tubulo-interstitial nephritis with dense lymphoplasmocyte infiltrates. Sicca syndrome and renal interstitial infiltrates indicated SS as the underlying cause of the RTA and osteomalacia. The patient received alkalinization, vitamin D (Sterogyl ®), calcium supplements and steroids in an initial dose of 1 mg/kg/day, tapered to 10 mg daily. The prognosis was favorable and the serum creatinine level was 1.7 mg/dL, calcium was 2.2 mmol/L and serum phosphate was 0.9 mmol/L.

  16. Screening renal stone formers for distal renal tubular acidosis

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1989-01-01

    A group of 110 consecutive renal stone formers were screened for distal renal tubular acidosis (RTA) using morning fasting urinary pH (mfUpH) levels followed by a short ammonium chloride loading test in patients with levels above 6.0. In 14 patients (12.7%) a renal acidification defect was noted...... RTA in renal stone formers. Regardless of whether the acidification defect is primary or secondary to stone formation, however, all renal stone formers with distal RTA can expect to benefit from prophylactic alkaline therapy and it is recommended that the screening procedure, which is easy to use...

  17. Acute renal infarction Secondary to Atrial Fibrillation Mimicking Renal Stone Picture

    International Nuclear Information System (INIS)

    Salih, Salih Bin; Al-Durihim, H.; Al-Jizeeri, A.; Al-Maziad, G.

    2006-01-01

    Acute renal infarction presents in a similar clinical picture to that of a renal stone. We report a 55-year-old Saudi female, known to have atrial fibrillation secondary to mitral stenosis due to rheumatic heart disease. She presented with a two day history of right flank pain that was treated initially as renal stone. Further investigations confirmed her as a case of renal infarction. Renal infarction is under-diagnosed because the similarity of its presentation to renal stone. Renal infarction should be considered in the differential diagnosis of loin pain, particularly in a patient with atrial fibrillation. (author)

  18. Akt Substrate of 160 kD Regulates Na+,K+-ATPase Trafficking in Response to Energy Depletion and Renal Ischemia

    Science.gov (United States)

    Alves, Daiane S.; Thulin, Gunilla; Loffing, Johannes; Kashgarian, Michael

    2015-01-01

    Renal ischemia and reperfusion injury causes loss of renal epithelial cell polarity and perturbations in tubular solute and fluid transport. Na+,K+-ATPase, which is normally found at the basolateral plasma membrane of renal epithelial cells, is internalized and accumulates in intracellular compartments after renal ischemic injury. We previously reported that the subcellular distribution of Na+,K+-ATPase is modulated by direct binding to Akt substrate of 160 kD (AS160), a Rab GTPase-activating protein that regulates the trafficking of glucose transporter 4 in response to insulin and muscle contraction. Here, we investigated the effect of AS160 on Na+,K+-ATPase trafficking in response to energy depletion. We found that AS160 is required for the intracellular accumulation of Na+,K+-ATPase that occurs in response to energy depletion in cultured epithelial cells. Energy depletion led to dephosphorylation of AS160 at S588, which was required for the energy depletion–induced accumulation of Na,K-ATPase in intracellular compartments. In AS160-knockout mice, the effects of renal ischemia on the distribution of Na+,K+-ATPase were substantially reduced in the epithelial cells of distal segments of the renal tubules. These data demonstrate that AS160 has a direct role in linking the trafficking of Na+,K+-ATPase to the energy state of renal epithelial cells. PMID:25788531

  19. Akt Substrate of 160 kD Regulates Na+,K+-ATPase Trafficking in Response to Energy Depletion and Renal Ischemia.

    Science.gov (United States)

    Alves, Daiane S; Thulin, Gunilla; Loffing, Johannes; Kashgarian, Michael; Caplan, Michael J

    2015-11-01

    Renal ischemia and reperfusion injury causes loss of renal epithelial cell polarity and perturbations in tubular solute and fluid transport. Na(+),K(+)-ATPase, which is normally found at the basolateral plasma membrane of renal epithelial cells, is internalized and accumulates in intracellular compartments after renal ischemic injury. We previously reported that the subcellular distribution of Na(+),K(+)-ATPase is modulated by direct binding to Akt substrate of 160 kD (AS160), a Rab GTPase-activating protein that regulates the trafficking of glucose transporter 4 in response to insulin and muscle contraction. Here, we investigated the effect of AS160 on Na(+),K(+)-ATPase trafficking in response to energy depletion. We found that AS160 is required for the intracellular accumulation of Na(+),K(+)-ATPase that occurs in response to energy depletion in cultured epithelial cells. Energy depletion led to dephosphorylation of AS160 at S588, which was required for the energy depletion-induced accumulation of Na,K-ATPase in intracellular compartments. In AS160-knockout mice, the effects of renal ischemia on the distribution of Na(+),K(+)-ATPase were substantially reduced in the epithelial cells of distal segments of the renal tubules. These data demonstrate that AS160 has a direct role in linking the trafficking of Na(+),K(+)-ATPase to the energy state of renal epithelial cells. Copyright © 2015 by the American Society of Nephrology.

  20. 21 CFR 137.175 - Phosphated flour.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Phosphated flour. 137.175 Section 137.175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and phosphated...

  1. Molecular mechanisms in lithium-associated renal disease: a systematic review.

    Science.gov (United States)

    Rej, Soham; Pira, Shamira; Marshe, Victoria; Do, André; Elie, Dominique; Looper, Karl J; Herrmann, Nathan; Müller, Daniel J

    2016-11-01

    Lithium is an essential treatment in bipolar disorder and treatment-resistant depression; however, its use has been limited by concerns regarding its renal adverse effects. An improved understanding of potential molecular mechanisms can help develop prevention and treatment strategies for lithium-associated renal disease. We conducted a systematic literature search using MEDLINE, Embase, and PsychINFO including English-language original research articles published prior to November 2015 that specifically investigated lithium's effects on nephrogenic diabetes insipidus (NDI) and chronic kidney disease (CKD), using molecular markers. From a total of 3510 records, 71 pre-clinical studies and two relevant clinical studies were identified. Molecular alterations were reported in calcium signaling, inositol monophosphate, extracellular-regulated, prostaglandin, sodium/solute transport, G-protein-coupled receptors, nitric oxide, vasopressin/aquaporin, and inflammation-related pathways in lithium-associated renal disease. The majority of studies found that these mechanisms were implicated in NDI, while few studies had examined CKD. Future studies will have to focus on (1) validating the present findings in human subjects and (2) examining CKD, which is the most clinically relevant lithium-associated renal effect. This will improve our understanding of lithium's biological effects, as well as inform a personalized medicine approach, which could lead to safer lithium prescribing and less renal adverse events.

  2. Urinary Excretion of Tetrodotoxin Modeled in a Porcine Renal Proximal Tubule Epithelial Cell Line, LLC-PK1

    Directory of Open Access Journals (Sweden)

    Takuya Matsumoto

    2017-07-01

    Full Text Available This study examined the urinary excretion of tetrodotoxin (TTX modeled in a porcine renal proximal tubule epithelial cell line, LLC-PK1. Time course profiles of TTX excretion and reabsorption across the cell monolayers at 37 °C showed that the amount of TTX transported increased linearly for 60 min. However, at 4 °C, the amount of TTX transported was approximately 20% of the value at 37 °C. These results indicate that TTX transport is both a transcellular and carrier-mediated process. Using a transport inhibition assay in which cell monolayers were incubated with 50 µM TTX and 5 mM of a transport inhibitor at 37 °C for 30 min, urinary excretion was significantly reduced by probenecid, tetraethylammonium (TEA, l-carnitine, and cimetidine, slightly reduced by p-aminohippuric acid (PAH, and unaffected by 1-methyl-4-phenylpyridinium (MPP+, oxaliplatin, and cefalexin. Renal reabsorption was significantly reduced by PAH, but was unaffected by probenecid, TEA and l-carnitine. These findings indicate that TTX is primarily excreted by organic cation transporters (OCTs and organic cation/carnitine transporters (OCTNs, partially transported by organic anion transporters (OATs and multidrug resistance-associated proteins (MRPs, and negligibly transported by multidrug and toxic compound extrusion transporters (MATEs.

  3. Nature-Inspired Design of Artificial Solar-to-Fuel Conversion Systems based on Copper Phosphate Microflowers.

    Science.gov (United States)

    Wang, Jing; Zhu, Ting; Ho, Ghim Wei

    2016-07-07

    Phosphates play significant roles in plant photosynthesis by mediating electron transportation and furnishing energy for CO2 reduction. Motivated by this, we demonstrate herein an artificial solar-to-fuel conversion system, involving versatile copper phosphate microflowers as template and titanium dioxide nanoparticles as host photocatalyst. The elaborate flowerlike architectures, coupled with a unique proton-reduction cycle from interchangeability of different species of orthophosphate ions, not only offer a 2D nanosheet platform for an optimal heterostructure interface but also effectively augment charge-carrier transfer, thereby contributing to enhanced photoactivity and hydrogen generation. These nature-inspired, phosphate-derived nanocomposites advance the synthesis of a large variety of functional materials, which holds great potential for photochemical, photoelectric and catalytic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. [Intestinal absorption of Ca47 in chronic renal insufficiency before and after treatment with 1,25 dihydroxycholecalciferol].

    Science.gov (United States)

    Vattimo, A

    1979-12-01

    The effects of vitamin D3 follow its metabolisation in the liver and then in the kidney. Its most active metabolite is 1,25 (OH)2D3, produced by the liver precursor 25(OH)D3. In chronic renal insufficiency, demineralising osteopathy can be corrected by administering 1,25 (OH)2D3 to make up for its under-production by the kidneys. An assessment if is made of 47Ca intestinal transport in patients with chronic renal insufficiency before and after such treatment. It was found that the effects of the metabolite on calcium transport were dose-dependent.

  5. H+, Water and Urea Transport in the Inner Medullary Collecting Duct and Their Role in the Prevention and Pathogenesis of Renal Stone Disease

    Science.gov (United States)

    Wall, Susan M.; Klein, Janet D.

    2008-09-01

    The inner medullary collecting duct (IMCD) is the final site within the kidney for the reabsorption of urea, water and electrolytes and for the secretion of H+ before the luminal fluid becomes the final urine. Transporters expressed in the IMCD contribute to the generation of the large ion gradients that exist between the interstitium and the collecting duct lumen. Thus, the luminal fluid within the human IMCD can reach an osmolality of 1200 mOsm/kg H2O and a pH of 4. This ability of the human nephron to concentrate and acidify the urine might predispose to stone formation. However, under treatment conditions that predispose to stone formation, such as during hypercalciuria, the kidney mitigates stone formation by reducing solute concentration by reducing H2O reabsorption. Moreover, the kidney attenuates stone formation by tightly controlling acid-base balance, which prevents the bone loss, hypocitraturia and hypercalciuria observed during metabolic acidosis by augmenting net H+ excretion by tightly regulating H+ transporter function and through luminal buffering, particularly with NH3. This article will review the ion transporters present in the mammalian IMCD and their role in the prevention and in the pathogenesis of renal stone formation.

  6. The Effects of Renal Denervation on Renal Hemodynamics and Renal Vasculature in a Porcine Model.

    Directory of Open Access Journals (Sweden)

    Willemien L Verloop

    Full Text Available Recently, the efficacy of renal denervation (RDN has been debated. It is discussed whether RDN is able to adequately target the renal nerves.We aimed to investigate how effective RDN was by means of functional hemodynamic measurements and nerve damage on histology.We performed hemodynamic measurements in both renal arteries of healthy pigs using a Doppler flow and pressure wire. Subsequently unilateral denervation was performed, followed by repeated bilateral hemodynamic measurements. Pigs were terminated directly after RDN or were followed for 3 weeks or 3 months after the procedure. After termination, both treated and control arteries were prepared for histology to evaluate vascular damage and nerve damage. Directly after RDN, resting renal blood flow tended to increase by 29±67% (P = 0.01. In contrast, renal resistance reserve increased from 1.74 (1.28 to 1.88 (1.17 (P = 0.02 during follow-up. Vascular histopathology showed that most nerves around the treated arteries were located outside the lesion areas (8±7 out of 55±25 (14% nerves per pig were observed within a lesion area. Subsequently, a correlation was noted between a more impaired adventitia and a reduction in renal resistance reserve (β: -0.33; P = 0.05 at three weeks of follow-up.Only a small minority of renal nerves was targeted after RDN. Furthermore, more severe adventitial damage was related to a reduction in renal resistance in the treated arteries at follow-up. These hemodynamic and histological observations may indicate that RDN did not sufficiently target the renal nerves. Potentially, this may explain the significant spread in the response after RDN.

  7. The Effects of Renal Denervation on Renal Hemodynamics and Renal Vasculature in a Porcine Model

    Science.gov (United States)

    Verloop, Willemien L.; Hubens, Lisette E. G.; Spiering, Wilko; Doevendans, Pieter A.; Goldschmeding, Roel; Bleys, Ronald L. A. W.; Voskuil, Michiel

    2015-01-01

    Rationale Recently, the efficacy of renal denervation (RDN) has been debated. It is discussed whether RDN is able to adequately target the renal nerves. Objective We aimed to investigate how effective RDN was by means of functional hemodynamic measurements and nerve damage on histology. Methods and Results We performed hemodynamic measurements in both renal arteries of healthy pigs using a Doppler flow and pressure wire. Subsequently unilateral denervation was performed, followed by repeated bilateral hemodynamic measurements. Pigs were terminated directly after RDN or were followed for 3 weeks or 3 months after the procedure. After termination, both treated and control arteries were prepared for histology to evaluate vascular damage and nerve damage. Directly after RDN, resting renal blood flow tended to increase by 29±67% (P = 0.01). In contrast, renal resistance reserve increased from 1.74 (1.28) to 1.88 (1.17) (P = 0.02) during follow-up. Vascular histopathology showed that most nerves around the treated arteries were located outside the lesion areas (8±7 out of 55±25 (14%) nerves per pig were observed within a lesion area). Subsequently, a correlation was noted between a more impaired adventitia and a reduction in renal resistance reserve (β: -0.33; P = 0.05) at three weeks of follow-up. Conclusion Only a small minority of renal nerves was targeted after RDN. Furthermore, more severe adventitial damage was related to a reduction in renal resistance in the treated arteries at follow-up. These hemodynamic and histological observations may indicate that RDN did not sufficiently target the renal nerves. Potentially, this may explain the significant spread in the response after RDN. PMID:26587981

  8. Regional characterization of energy metabolism in the brain of normal and MPTP-intoxicated mice using new markers of glucose and phosphate transport

    Directory of Open Access Journals (Sweden)

    Touhami Jawida

    2010-12-01

    Full Text Available Abstract The gibbon ape leukemia virus (GALV, the amphotropic murine leukemia virus (AMLV and the human T-cell leukemia virus (HTLV are retroviruses that specifically bind nutrient transporters with their envelope glycoproteins (Env when entering host cells. Here, we used tagged ligands derived from GALV, AMLV, and HTLV Env to monitor the distribution of their cognate receptors, the inorganic phosphate transporters PiT1 and PiT2, and the glucose transporter GLUT1, respectively, in basal conditions and after acute energy deficiency. For this purpose, we monitored changes in the distribution of PiT1, PiT2 and GLUT1 in the cerebellum, the frontal cortex, the corpus callosum, the striatum and the substantia nigra (SN of C57/BL6 mice after administration of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridinium (MPTP, a mitochondrial complex I inhibitor which induces neuronal degeneration in the striato-nigral network. The PiT1 ligand stained oligodendrocytes in the corpus callosum and showed a reticular pattern in the SN. The PiT2 ligand stained particularly the cerebellar Purkinje cells, while GLUT1 labelling was mainly observed throughout the cortex, basal ganglia and cerebellar gray matter. Interestingly, unlike GLUT1 and PiT2 distributions which did not appear to be modified by MPTP intoxication, PiT1 immunostaining seemed to be more extended in the SN. The plausible reasons for this change following acute energy stress are discussed. These new ligands therefore constitute new metabolic markers which should help to unravel cellular adaptations to a wide variety of normal and pathologic conditions and to determine the role of specific nutrient transporters in tissue homeostasis.

  9. Renal pathological implications in type 2 diabetes mellitus patients with renal involvement.

    Science.gov (United States)

    Li, Li; Zhang, Xiuhui; Li, Zhicheng; Zhang, Rui; Guo, Ruikun; Yin, Qinghua; Yang, Lichuan; Yue, Rongzheng; Su, Baihai; Huang, Songmin; Xu, Huan; He, Cijiang; Liu, Fang

    2017-01-01

    To investigate the renal pathological implications in type 2 diabetes mellitus patients with renal involvement. A total of 328 type 2 diabetes mellitus (T2DM) patients with renal involvement who underwent a renal biopsy and received follow-up for at least one year were recruited in our study. The patients were divided into the diabetic nephropathy (DN), non-diabetic renal disease (NDRD), and NDRD superimposed on DN groups based on the pathological diagnosis. Renal outcomes were defined by the initiation of renal replacement therapy or doubling of the serum creatinine. Kaplan-Meier analysis was used to compare renal survival, and Cox proportional hazard analysis was used to determine the predictors of renal outcomes in the DN group. Renal biopsy findings revealed that 188 patients (57.32%) had pure DN, 121 patients (36.89%) had NDRD alone, and 19 patients (5.79%) had NDRD superimposed on DN. The most frequent subclassification of NDRD was membranous nephropathy (MN). Compared with the NDRD and NDRD superimposed on DN groups, patients with pure DN had poorer renal function and lower renal survival rates. In the DN group, the five-year renal survival rates of glomerular classes of I, IIa, IIb, III and IV were 100%, 84.62%, 60%, 47.5% and 33.33%, respectively. Multivariate Cox proportional hazard analysis showed that the glomerular lesions, proteinuria and serum creatinine were independent risk factors for renal outcomes, while interstitial fibrosis/inflammation and arteriolar hyalinosis were not independently associated with renal outcomes in the DN group. Making an accurate pathologic diagnosis by renal biopsy is crucial for diabetes mellitus (DM) patients with renal involvement. The findings of our present study indicated that patients with pure DN had poorer renal outcomes than patients with NDRD or NDRD superimposed on DN. The classification of glomerular lesions, proteinuria and serum creatinine were independent risk factors for renal outcomes in the DN group

  10. Calcium Overload Accelerates Phosphate-Induced Vascular Calcification Via Pit-1, but not the Calcium-Sensing Receptor.

    Science.gov (United States)

    Masumoto, Asuka; Sonou, Tomohiro; Ohya, Masaki; Yashiro, Mitsuru; Nakashima, Yuri; Okuda, Kouji; Iwashita, Yuko; Mima, Toru; Negi, Shigeo; Shigematsu, Takashi

    2017-07-01

    Vascular calcification (VC) is a risk factor of cardiovascular and all-cause mortality in patients with chronic kidney disease (CKD). CKD-mineral and bone metabolism disorder is an important problem in patients with renal failure. Abnormal levels of serum phosphate and calcium affect CKD-mineral and bone metabolism disorder and contribute to bone disease, VC, and cardiovascular disease. Hypercalcemia is a contributing factor in progression of VC in patients with CKD. However, the mechanisms of how calcium promotes intracellular calcification are still unclear. This study aimed to examine the mechanisms underlying calcium-induced calcification in a rat aortic tissue culture model. Aortic segments from 7-week-old male Sprague-Dawley rats were cultured in serum-supplemented medium for 10 days. We added high calcium (HiCa; calcium 3.0 mM) to high phosphate (HPi; phosphate 3.8 mM) medium to accelerate phosphate and calcium-induced VC. We used phosphonoformic acid and the calcimimetic R-568 to determine whether the mechanism of calcification involves Pit-1 or the calcium-sensing receptor. Medial VC was significantly augmented by HPi+HiCa medium compared with HPi alone (300%, p<0.05), and was associated with upregulation of Pit-1 protein. Pit-1 protein concentrations in HPi+HiCa medium were greater than those in HPi medium. Phosphonoformic acid completely negated the augmentation of medial VC induced by HPi+HiCa. R-568 had no additive direct effect on medial VC. These results indicated that exposure to HPi+HiCa accelerates medial VC, and this is mediated through Pit-1, not the calcium-sensing receptor.

  11. Detection of acute renal allograft rejection by analysis of renal tissue proteomics in rat models of renal transplantation

    Directory of Open Access Journals (Sweden)

    Dai Yong

    2008-01-01

    Full Text Available At present, the diagnosis of renal allograft rejection requires a renal biopsy. Clinical management of renal transplant patients would be improved if rapid, noninvasive and reliable biomarkers of rejection were available. This study is designed to determine whether such protein biomarkers can be found in renal-graft tissue proteomic approach. Orthotopic kidney transplantations were performed using Fisher (F344 or Lewis rats as donors and Lewis rats as recipients. Hence, there were two groups of renal transplant models: one is allograft (from F344 to Lewis rats; another is syngrafts (from Lewis to Lewis rats serving as control. Renal tissues were collected 3, 7 and 14 days after transplantation. As many as 18 samples were analyzed by 2-D Electrophoresis and mass spectrometry (MALDI-TOF-TOF-MS. Eleven differentially expressed proteins were identified between groups. In conclusion, proteomic technology can detect renal tissue proteins associated with acute renal allograft rejection. Identification of these proteins as diagnostic markers for rejection in patients′ urine or sera may be useful and non-invasive, and these proteins might serve as novel therapeutic targets that also help to improve the understanding of mechanism of renal rejection.

  12. Renal sympathetic denervation: MDCT evaluation of the renal arteries.

    LENUS (Irish Health Repository)

    Hutchinson, Barry D

    2013-08-01

    Percutaneous transluminal renal sympathetic denervation is a new treatment of refractory systemic hypertension. The purpose of this study was to assess the clinical utility of MDCT to evaluate the anatomic configuration of the renal arteries in the context of renal sympathetic denervation.

  13. Relationship between renal cortex and parenchyma thickness and renal function: study with CT measurement

    International Nuclear Information System (INIS)

    Xu Yufeng; Tang Guangjian; Jiang Xuexiang

    2006-01-01

    Objective: To study the relationship between renal morphology and renal function, and to assess the value of CT as a criterion to grade renal function. Methods: Enhancement CT were performed in 89 patients with no local renal disease whose split renal glomerular filtration rates (GFR) were measured by renal dynamic imaging with 99 Tc m -DTPA. The 178 kidneys were divided into normal renal function, mild and severe renal impairment groups according to renal function. Differences between three groups respect to the mean thickness of renal cortex and parenchyma were assessed by ANOVA. Using Pearson's correlation test, the correlation between the renal cortex, parenchyma thicknesses and renal GFR were examined. The value of CT in predicting renal function was assessed by using ROC analysis. Results: The renal cortex thicknesses of normal renal function, mild and severe renal impairment groups were (5.9±1.1), (4.6± 1.1), and (3.3±1.0) mm respectively, and the renal parenchyma thicknesses were (26.3±4.2), (21.3±4.6), (16.2±4.6) mm. There were significant differences of renal cortex, parenchyma thicknesses between 3 groups (cortex F=54.78, P<0.01; parenehyma F=43.90, P<0.01). The thicknesses of renal cortex (r=0.752, P<0.01), parenchyma (r=0.738, P<0.01) had positive linear correlation with renal function. ROC analysis of the renal cortex thicknesses measured by CT in predicting mild and severe renal impairment showed that the Az was 0.860 and 0.905 respectively, whereas that of parenchyma was 0.868 and 0.884. Conclusion: The thicknesses of renal cortex, parenchyma measured by CT can reflect renal function. CT was a supplementary method to assess renal function. (authors)

  14. miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis.

    Science.gov (United States)

    Wang, Lei; ZengJ, Hou Qing; Song, Jun; Feng, Sheng Jun; Yang, Zhi Min

    2015-09-01

    microRNAs (miRNAs) play an important role in plant adaptation to phosphate (Pi) starvation. Histone methylation can remodel chromatin structure and mediate gene expression. This study identified Arabidopsis miR778, a Pi-responsive miRNA, and its target gene Su(var) 3-9 homologs 6 (SUVH6) encoding a histone H3 lysine 9 (H3K9) methyltransferase. Overexpression of miR778 moderately enhanced primary and lateral root growth, free phosphate accumulation in shoots, and accumulation of anthocyanin under Pi deficient conditions. miR778 overexpression relieved the arrest of columella cell development under Pi starvation. Conversely, transgenic plants overexpressing a miR778-target mimic (35S::MIM778), that act as a sponge and sequesters miR778, showed opposite phenotypes of 35S::miR778 plants under Pi deficiency. Expression of several Pi deficiency-responsive genes such as miR399, Phosphate Transporter (PHT1;4), Low Phosphate-Resistant1 (LPR1) and Production of Anthocyanin Pigment 1 (PAP1) were elevated in the miR778 overexpressing plants, suggesting that both miR778 and SUVH6 are involved in phosphate homeostasis in plants. This study has provided a basis for further investigation on how SUVH6 regulates its downstream genes through chromatin remodeling and DNA methylation in plants stressed by Pi deficiency. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Comparison of Renal Function and Other Predictors in Lacto-Ovo Vegetarians and Omnivores With Chronic Kidney Disease.

    Science.gov (United States)

    Chang, Chou-Yueh; Chang, Horng-Rong; Lin, Hsing-Chun; Chang, Han-Hsin

    2018-03-13

    Objective Vegetarian diets have been shown to increase the risk of certain nutritional deficiencies, such as iron. As a number of patients with chronic kidney disease (CKD) in Taiwan are lacto-ovo vegetarians, the aim of this study was to investigate the effects of different proportions and sources of protein in lacto-ovo vegetarian and omnivorous diets, as well as the influence of adequate dietary protein intake, on renal function and nutritional status of Taiwanese patients with stage 3 to stage 5 CKD. Methods This is a cross-sectional study. In total, 100 outpatients with stage 3 to stage 5 CKD were enrolled in this study, including 40 lacto-ovo vegetarians and 60 omnivores. Subjects were divided into the lacto-ovo vegetarian group and omnivorous group based on dietary protein patterns. The indicators of renal function included estimated glomerular filtration rate (eGFR), creatinine, and blood urea nitrogen (BUN). Albumin, hemoglobin (Hb), and red blood cell count (RBC) measurements served as nutritional indicators. The levels of dietary energy and protein, as well as protein sources (plant or animal), were also analyzed. Results The levels of serum phosphate and triglycerides were significantly lower in the lacto-ovo vegetarian group than in the omnivore group, suggesting that lacto-ovo vegetarian diets have both phosphate-lowering and lipid-lowering effects, which could reduce the development of hyperphosphatemia and dyslipidemia. However, since all groups consumed higher than the recommended amounts of protein diet intake, no significant differences were observed in other renal function indices between the two groups. Conclusion Although a larger cohort study is necessary, the findings of this study could help patients with CKD to make healthier food choices and be used to support future medical nutritional therapies.

  16. Glomerular Filtration Rate Estimation in Renal and Non-Renal Solid Organ Transplantation

    DEFF Research Database (Denmark)

    Hornum, Mads; Feldt-Rasmussen, Bo

    2017-01-01

    Following transplantation (TX) of both renal and non-renal organs, a large proportion of patients have renal dysfunction. There are multiple causes for this. Chronic nephrotoxicity and high doses of calcineurin inhibitors are important factors. Preoperative and perioperative factors like...... or estimates of renal function in these patients, in order to accurately and safely dose immunosuppressive medication and perform and adjust the treatment and prophylaxis of renal dysfunction. This is a short overview and discussion of relevant studies and possible caveats of estimated glomerular filtration...... rate methods for use in renal and non-renal TX....

  17. Superselective transcatheter renal arterial embolization for acute renal bleeding in patients with renal insufficiency: its clinical efficacy and safety

    International Nuclear Information System (INIS)

    Hu Tingyang; Zhou Bing; Yu Wenqiang; Luo Zuyan; Mao Yingmin; Chen Fanghong; Li Bo; Yuan Jianhua

    2010-01-01

    Objective: To discuss the clinical efficacy and complications of super selective renal arterial embolization in treating acute renal arterial bleeding in patients with renal insufficiency, and to evaluate the influence of the treatment on the renal function. Methods: During the period of January 2000 December 2009, super selective renal arterial embolization was performed in our institution for acute renal bleeding in 13 patients with renal insufficiency. The complete clinical and imaging materials of all patients were properly collected. The clinical effectiveness, the renal function, the extent of embolization and the complications were observed and the relationship between each other was analyzed. Results: The embolization procedure was successfully completed in all patients with a technical success rate of 100%. The mean embolized territory was 22% of a single kidney. Three days after the procedure, the hemoglobin level, hematocrit, blood pressure and heart rate were considerably improved in all patients. Compared to the corresponding preoperative data, all the differences were statistically significant (P 0.05), while the blood urea nitrogen was markedly decreased (P=0.011). Post embolization syndrome occurred in 5 patients and progressive aggravation of the renal function was observed in one patient, who had to receive hemodialysis finally. The embolized territory in patients occurring complications was larger than that in patients without occurring complications (U=1.500, P=0.006). Conclusion: Super selective renal arterial embolization is an effective and safe treatment for acute renal arterial bleeding in patients with renal insufficiency, the therapy will not significantly worsen the renal function. Appropriate and reasonable extent of embolization, as small as possible, is the key point for reducing the complications. (authors)

  18. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway.

    Science.gov (United States)

    Rowe, Peter S N

    2012-01-01

    More than 300 million years ago, vertebrates emerged from the vast oceans to conquer gravity and the dry land. With this transition, new adaptations occurred that included ingenious changes in reproduction, waste secretion, and bone physiology. One new innovation, the egg shell, contained an ancestral protein (ovocleidin-116) that likely first appeared with the dinosaurs and was preserved through the theropod lineage in modern birds and reptiles. Ovocleidin-116 is an avian homolog of matrix extracellular phosphoglycoprotein (MEPE) and belongs to a group of proteins called short integrin-binding ligand-interacting glycoproteins (SIBLINGs). These proteins are all localized to a defined region on chromosome 5q in mice and chromosome 4q in humans. A unifying feature of SIBLING proteins is an acidic serine aspartate-rich MEPE-associated motif (ASARM). Recent research has shown that the ASARM motif and the released ASARM peptide have regulatory roles in mineralization (bone and teeth), phosphate regulation, vascularization, soft-tissue calcification, osteoclastogenesis, mechanotransduction, and fat energy metabolism. The MEPE ASARM motif and peptide are physiological substrates for PHEX, a zinc metalloendopeptidase. Defects in PHEX are responsible for X-linked hypophosphatemic rickets (HYP). There is evidence that PHEX interacts with another ASARM motif containing SIBLING protein, dentin matrix protein-1 (DMP1). DMP1 mutations cause bone and renal defects that are identical with the defects caused by a loss of PHEX function. This results in autosomal recessive hypophosphatemic rickets (ARHR). In both HYP and ARHR, increased FGF23 expression plays a major role in the disease and in autosomal dominant hypophosphatemic rickets (ADHR), FGF23 half-life is increased by activating mutations. ASARM peptide administration in vitro and in vivo also induces increased FGF23 expression. FGF23 is a member of the fibroblast growth factor (FGF) family of cytokines, which surfaced 500

  19. Increased Urinary Extracellular Vesicle Sodium Transporters in Cushing's Syndrome with Hypertension.

    Science.gov (United States)

    Salih, Mahdi; Bovée, Dominique M; van der Lubbe, Nils; Danser, Alexander H J; Zietse, Robert; Feelders, Richard A; Hoorn, Ewout J

    2018-05-02

    Increased renal sodium reabsorption contributes to hypertension in Cushing's syndrome (CS). Renal sodium transporters can be analyzed non-invasively in urinary extracellular vesicles (uEVs). To analyze renal sodium transporters in uEVs of patients with CS and hypertension. Observational study. University hospital. uEVs were isolated by ultracentrifugation and analyzed by immunoblotting in 10 CS patients and 7 age-matched healthy subjects. In 7 CS patients uEVs were analyzed before and after treatment. uEV protein abundance. The 10 CS patients were divided in those with suppressed and non-suppressed renin-angiotensin-aldosterone system (RAAS, n = 5/group). CS patients with suppressed RAAS had similar blood pressure but significantly lower serum potassium than CS patients with non-suppressed RAAS. Compared to healthy subjects, only those with suppressed RAAS had higher phosphorylated Na+-K+-Cl- cotransporter type 2 (pNKCC2) and higher total and phosphorylated Na+-Cl- cotransporter (NCC) in uEVs. Serum potassium but not urinary free cortisol correlated with pNKCC2, pNCC, and NCC in uEVs. Treatment of CS reversed the increases in pNKCC2, NCC, and pNCC. CS increases renal sodium transporter abundance in uEVs especially in patients with hypertension and suppressed RAAS. As potassium has recently been identified as an important driver of NCC activity, low serum potassium may also contribute to increased renal sodium reabsorption and hypertension in CS. These results may also be relevant for hypertension induced by exogenous glucocorticoids.

  20. Differential changes in functional activity of organic cation transporters in rats with uranyl nitrate-induced acute renal failure.

    Science.gov (United States)

    Maeng, Han-Joo; Shim, Won-Sik; Ahn, Sun-Joo; Yu, Sang-Soo; Kim, Dae-Duk; Shim, Chang-Koo; Chung, Suk-Jae

    2012-08-01

    We studied the impact of experimental kidney failure on the pharmacokinetics of a model organic cation and investigated the underlying mechanism(s) of the organic cation transporters. The systemic pharmacokinetics and tissue distribution of triethylmethylammonium (TEMA), a model organic cation, were characterized after intravenous doses of 0.3-30 μmol/kg in rats with or without uranyl nitrate-induced acute renal failure (UN-ARF). To study the effect of endogenous substrates in plasma from UN-ARF rats on organic cation transport, rOCT- or rOCT2-dependent uptake of tetraethylammonium (TEA) was studied in rOCT1-transfected or rOCT2-transfected LLC-PK1 cells, respectively. As a result, the AUC for TEMA was increased, probably because of decreased total clearance, and the tissue-to-plasma concentration ratio (T/P ratio) of TEMA was unchanged in the liver but decreased significantly in the kidneys of UN-ARF rats. In vitro, the uptake of TEA was decreased significantly by adding UN-ARF plasma, compared with control plasma, in rOCT2-overexpressing LLC-PK1 cells, but not in rOCT1-overexpressing LLC-PK1 cells. These observations suggest that the induction of UN-ARF leads to an accumulation of endogenous organic cation(s), probably rOCT2 substrate(s), in the plasma, thereby affecting the TEMA pharmacokinetics and distribution to the kidneys in rats.

  1. Oral sodium phosphate solution: a review of its use as a colorectal cleanser.

    Science.gov (United States)

    Curran, Monique P; Plosker, Greg L

    2004-01-01

    with bowel obstructions, small intestinal disorders, poor gut motilderly and those with bowel obstructions, small intestinal disorders, poor gut motility, renal insufficiency, cardiovascular disease or taking concomitant medication) or in patients ingesting more than the recommended dosage. Changes in the colonic mucosa have been reported in patients treated with oral sodium phosphate solution; however, the exact role of this agent in the appearance of these changes has not been fully clarified. The tolerability profile of oral sodium phosphate solution was similar to, or significantly better than, that of PEG or other colorectal cleansing regimens. Oral sodium phosphate solution was generally significantly more acceptable than PEG or other colorectal cleansing regimens. Oral sodium phosphate solution had similar tolerability, but was considered to be more acceptable than commercially available oral sodium phosphate tablets prior to colonoscopy (data from one study).

  2. EFFECT OF ACUTE RENAL FAILURE ON KIDNEY AMIDINOTRANSFERASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Jelenka Nikolic

    2004-04-01

    Full Text Available L-Arginine-:glycine amidinotransferase (EC 2.1.4.1 catalyzes the transfer of an amidino group from arginine to glycine to form guanidinoacetate, precursor in creatine synthesis. The kidneys are major site of the creatine synthesis and primary target organs for mercury toxicity. In evaluation of molecular mechanisms of mercury chloride intoxication relating to creatine metabolism we have investigated the enzyme activity in kidney tissue after mercury chloride administration. Acute renal failure was induced by i.p administration of mercury chloride in a dose of 3 mg/kg to male Spraque Dawley rats weighing about 200 g. The results of our study indicate an acute renal failure 24 hours after mercury chloride administration. Urea and creatinine levels in blood plasma were significantly elevated compared to control group (p<0.001. Amidinotransferase activity in kidney tissue was depressed, while, in plasma of intoxicated rats activity of enzyme was increased (p<0.001. The obtained results indicate that mercury chloride has strong nephrotoxic effect. Depressed amidinotransferase activity and decreased production of guanidinoacetate, initial product in creatine synthesis, may be implicated in neurotoxicity, cardiotoxicity and muscle damage in mercury intoxication, because creatine and its phosphorylated form creatine phosphate play an important role in the energy metabolism.

  3. Detection of acute renal allograft rejection by analysis of Renal TissueProteomics in rat models of renal transplantation

    International Nuclear Information System (INIS)

    Dai, Y.; Lv, T.; Wang, K.; Li, D.; Huang, Y.; Liu, J.

    2008-01-01

    At present, the diagnosis of renal allograft rejection requires a renalbiopsy. Clinical management of renal transplant patients would be improved ifrapid, noninvasive and reliable biomarkers of rejection were available. Thisstudy is designed to determine whether such protein biomarkers can be foundin renal graft tissue proteomic approach. Orthotopic kidney transplantationswere performed using Fisher (F344) or Lewis rats as donors and Lewis rats asrecipients. Hence, there were two groups of renal transplant models: one isallograft (from F344 to Lewis rats); another is syngrafts (from Lewis toLewis rats) serving as control. Renal tissues were collected 3, 7 and 14 daysafter transplantation. As many 18 samples were analyzed by 2-DElectrophoresis and mass spectrometry (MALDI-TOF-TOF-MS). Elevendifferentially expressed proteins were identified between groups. Inconclusion, proteomic technology can detect renal tissue proteins associatedwith acute renal allograft rejection. Identification of these proteins asdiagnostic markers for rejection in patient's urine or sera may be useful andnon-invasive, and these proteins might serve as novel therapeutic targetsthat also help to improve the understanding of mechanisms of renal rejection.(author)

  4. Anatomic Patterns of Renal Arterial Sympathetic Innervation: New Aspects for Renal Denervation.

    Science.gov (United States)

    Imnadze, Guram; Balzer, Stefan; Meyer, Baerbel; Neumann, Joerg; Krech, Rainer Horst; Thale, Joachim; Franz, Norbert; Warnecke, Henning; Awad, Khaled; Hayek, Salim S; Devireddy, Chandan

    2016-12-01

    Initial studies of catheter-based renal arterial sympathetic denervation to lower blood pressure in resistant hypertensive patients renewed interest in the sympathetic nervous system's role in the pathogenesis of hypertension. However, the SYMPLICITY HTN-3 study failed to meet its prespecified blood pressure lowering efficacy endpoint. To date, only a limited number of studies have described the microanatomy of renal nerves, of which, only two involve humans. Renal arteries were harvested from 15 cadavers from the Klinikum Osnabruck and Schuchtermann Klinik, Bad Rothenfelde. Each artery was divided longitudinally in equal thirds (proximal, middle, and distal), with each section then divided into equal superior, inferior, anterior, and posterior quadrants, which were then stained. Segments containing no renal nerves were given a score value = 0, 1-2 nerves with diameter 4 nerves or nerve diameter ≥600 µm a score = 3. A total of 22 renal arteries (9 right-sided, 13 left-sided) were suitable for examination. Overall, 691 sections of 5 mm thickness were prepared. Right renal arteries had significantly higher mean innervation grade (1.56 ± 0.85) compared to left renal arteries (1.09 ± 0.87) (P renal artery has significantly higher innervation scores than the left. The anterior and superior quadrants of the renal arteries scored higher in innervation than the posterior and inferior quadrants did. The distal third of the renal arteries are more innervated than the more proximal segments. These findings warrant further evaluation of the spatial innervation patterns of the renal artery in order to understand how it may enhance catheter-based renal arterial denervation procedural strategy and outcomes. The SYMPLICITY HTN-3 study dealt a blow to the idea of the catheter-based renal arterial sympathetic denervation. We investigated the location and patterns of periarterial renal nerves in cadaveric human renal arteries. To quantify the density of the

  5. Self-motivation is associated with phosphorus control in End-Stage Renal Disease

    Science.gov (United States)

    Umeukeje, Ebele M; Merighi, Joseph R; Browne, Teri; Carlsson, Jacquelyn N; Umanath, Kausik; Lewis, Julia B; Ikizler, T. Alp; Wallston, Kenneth A.; Cavanaugh, Kerri

    2015-01-01

    Summary Objective Hyperphosphatemia is common in end-stage renal disease (ESRD), and associates with mortality. Phosphate binders reduce serum phosphorus; however, adherence is often poor. This pilot study aims to assess patients’ self-motivation to adhere to phosphate binders, its association with phosphorus control, and potential differences by race. Design Cross-sectional Participants and measurements Subjects were enrolled from one academic medical center dialysis practice from July–November 2012. Self-motivation to adhere to phosphate binders was assessed with the Autonomous Regulation (AR) scale (range: 1–7), and self-reported medication adherence with the Morisky Medication Adherence Scale (MMAS). Linear regression models adjusting for age, gender, health literacy and medication adherence were applied to determine associations with serum phosphorus level, including any evidence of interaction by race. Results Among 100 participants, mean age was 51 years (± 15), 53% were male, 72% were non-white, 89% received hemodialysis, and mean serum phosphorus level was 5.7 [±1.6] mg/dL. More than half (57%) reported the maximum AR score (7). Higher AR scores were noted in those reporting better health overall (p=0.001) and those with higher health literacy (p=0.01). AR score correlated with better medication adherence (r=0.22; p=0.02), and medication adherence was negatively associated with serum phosphorus (r= −0.40; pSelf-motivation was associated with phosphate binder adherence and phosphorus control, and this differed by race. Additional research is needed to determine if personalized, culturally sensitive strategies to understand and overcome motivational barriers may optimize mineral bone health in ESRD. PMID:25912398

  6. Rationale, design and baseline characteristics of the CANagliflozin cardioVascular Assessment Study-Renal (CANVAS-R) : A randomized, placebo-controlled trial

    NARCIS (Netherlands)

    Neal, Bruce; Perkovic, Vlado; Matthews, David R.; Mahaffey, Kenneth W.; Fulcher, Greg; Meininger, Gary; Erondu, Ngozi; Desai, Mehul; Shaw, Wayne; Vercruysse, Frank; Yee, Jacqueline; Deng, Hsiaowei; de Zeeuw, Dick

    Aims: The primary aim of the CANagliflozin cardioVascular Assessment Study-Renal (CANVAS-R) is to determine whether the favourable effects of inhibition of the sodium glucose co-transporter 2 (SGLT2) on blood glucose, blood pressure and body weight are accompanied by protection against adverse renal

  7. Renal Blood Flow, Glomerular Filtration Rate, and Renal Oxygenation in Early Clinical Septic Shock.

    Science.gov (United States)

    Skytte Larsson, Jenny; Krumbholz, Vitus; Enskog, Anders; Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2018-06-01

    Data on renal hemodynamics, function, and oxygenation in early clinical septic shock are lacking. We therefore measured renal blood flow, glomerular filtration rate, renal oxygen consumption, and oxygenation in patients with early septic shock. Prospective comparative study. General and cardiothoracic ICUs. Patients with norepinephrine-dependent early septic shock (n = 8) were studied within 24 hours after arrival in the ICU and compared with postcardiac surgery patients without acute kidney injury (comparator group, n = 58). None. Data on systemic hemodynamics and renal variables were obtained during two 30-minute periods. Renal blood flow was measured by the infusion clearance of para-aminohippuric acid, corrected for renal extraction of para-aminohippuric acid. Renal filtration fraction was measured by renal extraction of chromium-51 labeled EDTA. Renal oxygenation was estimated from renal oxygen extraction. Renal oxygen delivery (-24%; p = 0.037) and the renal blood flow-to-cardiac index ratio (-21%; p = 0.018) were lower, renal vascular resistance was higher (26%; p = 0.027), whereas renal blood flow tended to be lower (-19%; p = 0.068) in the septic group. Glomerular filtration rate (-32%; p = 0.006) and renal sodium reabsorption (-29%; p = 0.014) were both lower in the septic group. Neither renal filtration fraction nor renal oxygen consumption differed significantly between groups. Renal oxygen extraction was significantly higher in the septic group (28%; p = 0.022). In the septic group, markers of tubular injury were elevated. In early clinical septic shock, renal function was lower, which was accompanied by renal vasoconstriction, a lower renal oxygen delivery, impaired renal oxygenation, and tubular sodium reabsorption at a high oxygen cost compared with controls.

  8. The 64-MSCT study of relationship between renal corticomedullary differentiation, contrast between renal cortex and medulla, renal cortex and medulla CT peak value with the single renal function in hydronephrotic kidney

    International Nuclear Information System (INIS)

    Wang Yunhua; Hou Weiwei; Liu Ruihong; He Jianjun; Zhi Ke

    2009-01-01

    Objective: To study 64-MSCT perfusion imaging features about renal corticomedullary differentiation, contrast between renal cortex and medulla (CMC), renal cortex and medulla CT peak value in normal and hydronephrotic kidneys, and to explore the relationship between them and the unilateral renal function. Methods: Thirty-six patients with obstructive nephrohydrosis underwent 64-MSCT perfusion scanning. The split renal glomerular filtration rates (GFR) of their kidneys were measured by SPECT renal dynamic imaging. The 72 kidneys were divided into groups of normal renal function group, mild and severe renal impairment groups according to GFR. Renal corticomedullary differentiation on CT images was graded as clear, obscure, part clear. The CT intensity of cortex and medulla was measured in order to calculate contrast between renal cortex and medulla (CMC). Using Pearson correlation test, the correlation between them and renal GFR were examined. Results: (1) In the 24 kidneys of normal group, all kidneys showed clear CMD. In the 21 kidneys of mild renal impairment group, 14 kidneys showed clear CMD, 2 showed obscure CMD and 5 showed part clear of CMD. In the 27 kidneys of severe renal impairment group, 7 kidneys showed clear CMD, 5 showed obscure CMD and 15 showed part clear of CMD. (2)The CMC of normal group was 0.62 ± 0.20, while it was 0.52 ± 0.14 and 0.37 ± 0.11 for mild renal impairment group and severe renal impairment group CMC respectively. The CMC had positive linear correlation with GFR (r=0.536,P<0.05). (3) The renal cortex and medulla CT peak value of normal group were (133 ± 22) and (104 ± 16) HU; The renal cortex and medulla CT peak value of mild renal impairment group were (91 ± 29) and (76 ± 25) HU; The renal cortex and medulla CT peak value of severe renal impairment group were (68 ± 24) and (57 ± 21) HU(F=42.76 and 32.68,P<0.05). The renal cortex and medulla CT peak value had positive linear correlation with GFR (r=0.672 and 0.623, P<0

  9. Multiple Renal Artery Pseudoaneurysms in Patients Undergoing Renal Artery Embolization Following Partial Nephrectomy: Correlation with RENAL Nephrometry Scores

    International Nuclear Information System (INIS)

    Gupta, Nakul; Patel, Anish; Ensor, Joe; Ahrar, Kamran; Ahrar, Judy; Tam, Alda; Odisio, Bruno; Huang, Stephen; Murthy, Ravi; Mahvash, Armeen; Avritscher, Rony; McRae, Stephen; Sabir, Sharjeel; Wallace, Michael; Matin, Surena; Gupta, Sanjay

    2017-01-01

    PurposeTo describe the incidence of multiple renal artery pseudoaneurysms (PSA) in patients referred for renal artery embolization following partial nephrectomy and to study its relationship to RENAL nephrometry scores.Materials and MethodsThe medical records of 25 patients referred for renal artery embolization after partial nephrectomy were retrospectively reviewed for the following parameters: size and number of tumors, RENAL nephrometry scores, angiographic abnormalities, technical and clinical outcomes, and estimated glomerular filtration rates (eGFRs) after embolization.ResultsTwenty-four patients had primary renal tumors, while 1 patient had a pancreatic tumor invading the kidney. Multiple tumors were resected in 4 patients. Most patients (92 %) were symptomatic, presenting with gross hematuria, flank pain, or both. Angiography revealed PSA with (n = 5) or without (n = 20) AV fistulae. Sixteen patients (64 %) had multiple PSA involving multiple renal vessels. Higher RENAL nephrometry scores were associated with an increasing likelihood of multiple PSA. Multiple vessels were embolized in 14 patients (56 %). Clinical success was achieved after one (n = 22) or two (n = 3) embolization sessions in all patients. Post-embolization eGFR values at different time points after embolization were not significantly different from the post-operative eGFR.ConclusionA majority of patients requiring renal artery embolization following partial nephrectomy have multiple pseudoaneurysms, often requiring selective embolization of multiple vessels. Higher RENAL nephrometry score is associated with an increasing likelihood of multiple pseudoaneurysms. We found transarterial embolization to be a safe and effective treatment option with no long-term adverse effect on renal function in all but one patient with a solitary kidney.

  10. Multiple Renal Artery Pseudoaneurysms in Patients Undergoing Renal Artery Embolization Following Partial Nephrectomy: Correlation with RENAL Nephrometry Scores

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Nakul [Houston Methodist Hospital (United States); Patel, Anish [The University of Texas Southwestern Medical Center (United States); Ensor, Joe [Houston Methodist Research Institute, The Houston Methodist Cancer Center (United States); Ahrar, Kamran; Ahrar, Judy; Tam, Alda; Odisio, Bruno; Huang, Stephen; Murthy, Ravi; Mahvash, Armeen; Avritscher, Rony; McRae, Stephen; Sabir, Sharjeel; Wallace, Michael [The University of Texas MD Anderson Cancer Center, Department of Interventional Radiology (United States); Matin, Surena [The University of Texas MD Anderson Cancer Center, Department of Urology (United States); Gupta, Sanjay, E-mail: sgupta@mdanderson.org [The University of Texas MD Anderson Cancer Center, Department of Interventional Radiology (United States)

    2017-02-15

    PurposeTo describe the incidence of multiple renal artery pseudoaneurysms (PSA) in patients referred for renal artery embolization following partial nephrectomy and to study its relationship to RENAL nephrometry scores.Materials and MethodsThe medical records of 25 patients referred for renal artery embolization after partial nephrectomy were retrospectively reviewed for the following parameters: size and number of tumors, RENAL nephrometry scores, angiographic abnormalities, technical and clinical outcomes, and estimated glomerular filtration rates (eGFRs) after embolization.ResultsTwenty-four patients had primary renal tumors, while 1 patient had a pancreatic tumor invading the kidney. Multiple tumors were resected in 4 patients. Most patients (92 %) were symptomatic, presenting with gross hematuria, flank pain, or both. Angiography revealed PSA with (n = 5) or without (n = 20) AV fistulae. Sixteen patients (64 %) had multiple PSA involving multiple renal vessels. Higher RENAL nephrometry scores were associated with an increasing likelihood of multiple PSA. Multiple vessels were embolized in 14 patients (56 %). Clinical success was achieved after one (n = 22) or two (n = 3) embolization sessions in all patients. Post-embolization eGFR values at different time points after embolization were not significantly different from the post-operative eGFR.ConclusionA majority of patients requiring renal artery embolization following partial nephrectomy have multiple pseudoaneurysms, often requiring selective embolization of multiple vessels. Higher RENAL nephrometry score is associated with an increasing likelihood of multiple pseudoaneurysms. We found transarterial embolization to be a safe and effective treatment option with no long-term adverse effect on renal function in all but one patient with a solitary kidney.

  11. Osteomalacia complicating renal tubular acidosis in association with Sjogren′s syndrome

    Directory of Open Access Journals (Sweden)

    Zohra El Ati

    2014-01-01

    Full Text Available Renal involvement in Sjogren′s syndrome (SS is not uncommon and may precede other complaints. Tubulointerstitial nephritis is the most common renal disease in SS and may lead to renal tubular acidosis (RTA, which in turn may cause osteomalacia. Nevertheless, osteomalacia rarely occurs as the first manifestation of a renal tubule disorder due to SS. We herewith describe a 43-year-old woman who was admitted to our hospital for weakness, lumbago and inability to walk. X-ray of the long bones showed extensive demineralization of the bones. Laboratory investigations revealed chronic kidney disease with serum creatinine of 2.3 mg/dL and creatinine clearance of 40 mL/min, hypokalemia (3.2 mmol/L, hypophosphatemia (0.4 mmol/L, hypocalcemia (2.14 mmol/L and hyperchloremic metabolic acidosis (chlorine: 114 mmol/L; alkaline reserve: 14 mmol/L. The serum alkaline phosphatase levels were elevated. The serum levels of 25-hydroxyvitamin D and 1,25-dihydroxy vitamin D were low and borderline low, respectively, and the parathyroid hormone level was 70 pg/L. Urinalysis showed inappropriate alkaline urine (urinary PH: 7, glycosuria with normal blood glucose, phosphaturia and uricosuria. These values indicated the presence of both distal and proximal RTA. Our patient reported dryness of the mouth and eyes and Schirmer′s test showed xerophthalmia. An accessory salivary gland biopsy showed changes corresponding to stage IV of Chisholm and Masson score. Kidney biopsy showed diffuse and severe tubulo-interstitial nephritis with dense lymphoplasmocyte infiltrates. Sicca syndrome and renal interstitial infiltrates indicated SS as the underlying cause of the RTA and osteomalacia. The patient received alkalinization, vitamin D (Sterogyl ®, calcium supplements and steroids in an initial dose of 1 mg/kg/day, tapered to 10 mg daily. The prognosis was favorable and the serum creatinine level was 1.7 mg/dL, calcium was 2.2 mmol/L and serum phosphate was 0.9 mmol/L.

  12. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3

    OpenAIRE

    Bischoff, Ariane; Bucher, Michael; Gekle, Michael; Sauvant, Christoph

    2014-01-01

    Abstract Determination of renal plasma flow (RPF) by para‐aminohippurate (PAH) clearance leads to gross underestimation of this respective parameter due to impaired renal extraction of PAH after renal ischemia and reperfusion injury. However, no mechanistic explanation for this phenomenon is available. Based on our own previous studies we hypothesized that this may be due to impairment of expression of the basolateral rate limiting organic anion transporters Oat1 and Oat3. Thus, we investigat...

  13. Radioactivity of phosphate ores from Karatas-Mazidag phosphate deposit of Turkey

    International Nuclear Information System (INIS)

    Akyuez, T.; Varinlioglu, A.; Kose, A.; Akyuez, S.

    2000-01-01

    The specific activities of 238 U, 226 Ra, 232 Th and 40 K in the composite samples of phosphate ores of type I (grey-coloured ore, with high P 2 O 5 (21-35%) and low calcite content) and of type II (grey coloured calcite ore, with low P 2 O 5 content (5-17%)) of Karatas-Mazidag phosphate deposit, Turkey, have been determined by gamma spectrometry together with phosphatic animal feed ingredients. The concentrations of 238 U, 226 Ra, 232 Th and 40 K were found to be up to 557, 625, 26 and 297 Bq x kg -1 , respectively. Radium equivalent activities of samples were calculated and compared with those given in the literature. Uranium concentration of the individual phosphate samples, from which composite samples of ores of type I and II have been prepared, were found to show and increasing trend with increasing P 2 O 5 and F concentrations. (author)

  14. Phosphate application to firing range soils for Pb immobilization: The unclear role of phosphate

    International Nuclear Information System (INIS)

    Chrysochoou, Maria; Dermatas, Dimitris; Grubb, Dennis G.

    2007-01-01

    Phosphate treatment has emerged as a widely accepted approach to immobilize Pb in contaminated soils and waste media, relying on the formation of the highly insoluble mineral pyromorphite as solubility-controlling phase for Pb. As such, phosphate treatment has been proposed as a Best Management Practice (BMP) for firing ranges where Pb occurs in its metallic forms and several other phases (carbonates, oxides). While pyromorphite thermodynamically has the potential to control Pb solubility at low levels, its formation is kinetically controlled by pH, the solubility of the phosphate source, and the solubility of Pb species. Treatability studies have shown that excess quantities of soluble and acidic phosphate sources, such as phosphoric acid, are necessary for successful in situ treatment. Even under these conditions, Extended X-ray Absorption Fine Structure (EXAFS), the only reliable method to identify and quantify Pb speciation, showed that Pb conversion to pyromorphite in in situ treated soils was less than 45% after 32 months. Furthermore, the use of lime (CaO) to restore soil pH in acidified soil treatments inhibited further conversion. Additionally, phosphate treatment is known to reduce bioavailability through pyromorphite formation in the intestinal tract, and the phytoaccumulation of Pb; both desirable effects for Pb-impacted areas. Given the costs of phosphate treatment, the use of biogenic phosphate sources, such as bone meal, may be a more environmentally sustainable approach toward this end. In the many studies focusing on phosphate treatment, the attendant P leaching and eutrophication have been largely overlooked, along with other issues such as the enhanced leaching of oxyanionic contaminants, such as Se, As and W. The success and sustainability of applying phosphate as a BMP in firing range soils therefore remain questionable

  15. Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria.

    Science.gov (United States)

    Brand, M D; Reynafarje, B; Lehninger, A L

    1976-01-01

    The number of protons ejected during electron transport per pair of electrons per energy-conserving site (the H+/site ratio) was measured in rat liver mitochondria by three different methods under conditions in which transmembrane movements of endogenous phosphate were minized or eliminated. (1) In the Ca2+ pulse method, between 3.5 and 4.0 molecules of 3-hydroxybutyrate and 1.75 to 2.0 Ca2+ ions were accumulated per 2 e- per site during Ca2+ induced electron transport in the presence of rotenone, when measured under conditions in which movements of endogenous phosphate were negligible. Since entry of 3-hydroxybutyrate requires its protonation to the free acid these data correspond to an H+/site ratio of 3.5-4.0 (2) In the oxygen pulse method addition of known amounts of oxygen to anaerobic mitochondria in the presence of substrate yielded H+/site ratios of 3.0 when phosphate transport was eliminated by addition of N-ethylmaleimide or by anaerobic washing to remove endogenous phosphate. In the absence of such measures the observed H+/site ratio was 2.0. (3) In the reductant pulse method measurement of the initial steady rates of H+ ejection and oxygen consumption by mitochondria in an aerobic medium after addition of substrate gave H+/site near 4.0 in the presence of N-ethylmaleimide; in the absence of the inhibitor the observed ratio was only 2.0. These and other experiments reported indicate that the values of 2.0 earlier obtained for the H+/site ratio by Mitchell and Moyle [Biochem J. (1967) 105, 1147-1162] and others were underestimates due to the unrecognized masking of H+ ejection by movements of endogenous phosphate. The results presented here show that the H+/site ratio of mitochondrial electron transport is at least 3.0 and may be as high as 4.0. PMID:1061146

  16. Determination of tricresyl phosphate air contamination in aircraft.

    Science.gov (United States)

    Denola, G; Hanhela, P J; Mazurek, W

    2011-08-01

    Monitoring of tricresyl phosphate (TCP) contamination of cockpit air was undertaken in three types of military aircraft [fighter trainer (FT), fighter bomber (FB), and cargo transport (CT) aircraft]. The aircraft had a previous history of pilot complaints about cockpit air contamination suspected to originate from the engine bleed air supply through the entry of aircraft turbine engine oil (ATO) into the engine compressor. Air samples were collected in flight and on the ground during engine runs using sorbent tubes packed with Porapak Q and cellulose filters. A total of 78 air samples were analysed, from 46 different aircraft, and 48 samples were found to be below the limit of detection. Nine incidents of smoke/odour were identified during the study. The concentrations of toxic o-cresyl phosphate isomers were below the level of detection in all samples. The highest total TCP concentration was 51.3 μg m(-3), while most were generally found to be contamination of cabin/cockpit air has been the subject of much concern in aviation, quantitative data are sparse.

  17. The renal quantitative scintillation camera study for determination of renal function

    International Nuclear Information System (INIS)

    Thompson, I.M. Jr.; Boineau, F.G.; Evans, B.B.; Schlegel, J.U.

    1983-01-01

    The renal quantitative scintillation camera study assesses glomerular filtration rate and effective renal plasma flow based upon renal uptake of 99mtechnetium-iron ascorbate and 131iodine-hippuran, respectively. The method was compared to inulin, para-aminohippuric acid and creatinine clearance studies in 7 normal subjects and 9 patients with various degrees of reduced renal function. The reproducibility of the technique was determined in 15 randomly selected pediatric patients. The values of glomerular filtration rate and effective renal plasma flow were not significantly different from those of inulin and para-aminohippuric acid studies. The reproducibility of the technique was comparable to that of inulin and para-aminohippuric acid studies. Patient acceptance of the technique is excellent and the cost is minimal. Renal morphology and excretory dynamics also are demonstrated. The technique is advocated as a clinical measure of renal function

  18. Equilibrium and kinetics of co-extraction of U(VI) and HNO3 using tri-n-butyl phosphate and tri-iso-amyl phosphate in paraffin

    International Nuclear Information System (INIS)

    Das, Diptendu; Juvekar, V.A.; Biswas, Sujoy; Roy, S.B.; Bhattacharya, R.

    2014-01-01

    Tri-n-butyl phosphate (TBP) is versatile solvent for recovery of actinides as it is cheaper and the extracted actinides can be stripped from the loaded organic phase using plain water. However there are inherent problems associated TBP such as i) formation of the third phase ii) high solubility in aqueous phase iii) radiolytic hydrolysis at high radiation environment and iv) high propensity for extraction of mineral acids. The last mentioned property makes it less suitable for liquid emulsion membrane (LEM) extraction where acid transport to the strip phase drastically reduces extraction efficiency. Therefore there is need to replace TBP with an extractant which has lesser propensity for acid extraction. Many researcher reported Tri-iso-amyl phosphate (TiAP) as an alternative extractant which can sustain high radiation environment without chemical/radiative degradation. However there are no studies available on co-extraction of U(VI) and mineral acids by TiAP. In this research paper equilibrium and kinetics of co-extraction of U(VI) and HNO 3 from nitric acid medium into a hydrocarbon phase (paraffin) using Tri n- butyl phosphate (TBP), Tri-iso-amyl phosphate (TiAP) has been studied. Relative rates of extraction of uranium(VI) and HNO 3 by TiAP and TBP were measured simultaneously using bulk-liquid membrane (BLM) system. Study reveals although TiAP is less efficient in extracting U(IV), than TBP, it transfers lesser quantity of nitric acid to organic phase. Hence TiAP is more suitable as a carrier for LEM extraction than TBP

  19. Method of stripping plutonium from tributyl phosphate solution which contains dibutyl phosphate-plutonium stable complexes

    International Nuclear Information System (INIS)

    Ochsenfeld, W.; Schmieder, H.

    1976-01-01

    Fast breeder fuel elements which have been highly burnt-up are reprocessed by extracting uranium and plutonium into an organic solution containing tributyl phosphate. The tributyl phosphate degenerates at least partially into dibutyl phosphate and monobutyl phosphate, which form stable complexes with tetravalent plutonium in the organic solution. This tetravalent plutonium is released from its complexed state and stripped into aqueous phase by contacting the organic solution with an aqueous phase containing tetravalent uranium. 6 claims, 1 drawing figure

  20. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

    Science.gov (United States)

    Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei

    2017-09-01

    Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.

  1. RENAL CRYOABLATION

    Directory of Open Access Journals (Sweden)

    A. V. Govorov

    2012-01-01

    Full Text Available Renal cryoablation is an alternative minimally-invasive method of treatment for localized renal cell carcinoma. The main advantages of this methodology include visualization of the tumor and the forming of "ice ball" in real time, fewer complications compared with other methods of treatment of renal cell carcinoma, as well as the possibility of conducting cryotherapy in patients with concomitant pathology. Compared with other ablative technologies cryoablation has a low rate of repeat sessions and good intermediate oncological results. The studies of long-term oncological and functional results of renal cryoablation are presently under way.

  2. Inhibition of renal Na+/H+ exchange in cadmium-intoxicated rats

    International Nuclear Information System (INIS)

    Ahn, Do Whan; Chung, Jin Mo; Kim, Jee Yeun; Kim, Kyoung Ryong; Park, Yang Saeng

    2005-01-01

    Chronic exposure to cadmium (Cd) results in bicarbonaturia, leading to metabolic acidosis. To elucidate the mechanism(s) by which renal bicarbonate reabsorption is inhibited, we investigated changes in renal transporters and enzymes associated with bicarbonate reabsorption in Cd-intoxicated rats. Cd intoxication was induced by subcutaneous injections of CdCl 2 (2 mg Cd/kg per day) for 3 weeks. Cd intoxication resulted in a significant reduction in V max of Na + /H + antiport with no changes in K Na in the renal cortical brush-border membrane vesicles (BBMV). Western blotting of BBM proteins and indirect immunohistochemistry in renal tissue sections, using an antibody against Na + /H + exchange-3 (NHE3), showed a diminished expression of NHE3 protein in the BBM. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that NHE3 mRNA expression was reduced in the renal cortex. The activity of carbonic anhydrase IV (CA IV) in BBM was not changed. The protein abundance of Na + -HCO 3 - cotransporter-1 (NBC1) in whole kidney membrane fractions was slightly attenuated, whereas that of the Na + -K + -ATPase α-subunit was markedly elevated in Cd-intoxicated animals. These results indicate that Cd intoxication impairs NHE3 expression in the proximal tubule, thereby reducing the capacity for bicarbonate reabsorption, leading to bicarbonaturia in an intact animal

  3. Renal artery pulsatility index and renal volume: Normal fetuses versus growth-retarded fetuses

    International Nuclear Information System (INIS)

    Lee, Kyung Soon; Woo, Bock Hi

    2001-01-01

    To evaluate the blood flow velocity waveform of the renal artery and renal volume of growth-retarded fetuses and to compare them with those of normal fetuses. Pulsatility index of the renal artery and renal volume measured by three-dimensional ultrasonography were obtained from seventy eight normal fetuses at the gestational age from twenty five to thirty nine weeks and eighteen intrauterine growth retarded fetuses whose weight was below ten percentile at birth. We studied changes of the pulsatility index of the renal artery and renal volume according to the gestational age and compared with those of growth-retarded fetuses. Pulsatility index (PI) of the fetal renal artery decreased throughout the gestational period (r=0.703, p<0.0001). In growth-retarded fetuses, despite of abnormal doppler velocity waveform of the middle cerebral artery, which was showing fetal hypoxia, the renal PI was not increased significantly. The fetal renal volume increased throughout the gestational period (r=0.834, p<0.0001) whereas in growth-retarded fetuses, all renal volume was below fifth percentile of normal fetuses. In growth-retarded fetuses, fetal renal volume was decreased significantly without change of the renal vascular flow. Therefore, the fetal renal volume measured by three-dimensional ultrasonography may be a helpful parameter in the diagnosis of growth-retarded fetuses.

  4. Renal artery pulsatility index and renal volume: Normal fetuses versus growth-retarded fetuses

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Soon; Woo, Bock Hi [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    2001-06-15

    To evaluate the blood flow velocity waveform of the renal artery and renal volume of growth-retarded fetuses and to compare them with those of normal fetuses. Pulsatility index of the renal artery and renal volume measured by three-dimensional ultrasonography were obtained from seventy eight normal fetuses at the gestational age from twenty five to thirty nine weeks and eighteen intrauterine growth retarded fetuses whose weight was below ten percentile at birth. We studied changes of the pulsatility index of the renal artery and renal volume according to the gestational age and compared with those of growth-retarded fetuses. Pulsatility index (PI) of the fetal renal artery decreased throughout the gestational period (r=0.703, p<0.0001). In growth-retarded fetuses, despite of abnormal doppler velocity waveform of the middle cerebral artery, which was showing fetal hypoxia, the renal PI was not increased significantly. The fetal renal volume increased throughout the gestational period (r=0.834, p<0.0001) whereas in growth-retarded fetuses, all renal volume was below fifth percentile of normal fetuses. In growth-retarded fetuses, fetal renal volume was decreased significantly without change of the renal vascular flow. Therefore, the fetal renal volume measured by three-dimensional ultrasonography may be a helpful parameter in the diagnosis of growth-retarded fetuses.

  5. The urinary excretion of metformin, ceftizoxime and ofloxacin in high serum creatinine rats: Can creatinine predict renal tubular elimination?

    Science.gov (United States)

    Ma, Yan-Rong; Zhou, Yan; Huang, Jing; Qin, Hong-Yan; Wang, Pei; Wu, Xin-An

    2018-03-01

    The renal excretion of creatinine and most drugs are the net result of glomerular filtration and tubular secretion, and their tubular secretions are mediated by individual transporters. Thus, we hypothesized that the increase of serum creatinine (SCr) levels attributing to inhibiting tubular transporters but not glomerular filtration rate (GFR) could be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine. In this work, we firstly developed the creatinine excretion inhibition model with normal GFR by competitively inhibiting tubular transporters, and investigated the renal excretion of metformin, ceftizoxime and ofloxacin in vivo and in vitro. The results showed that the 24-hour urinary excretion of metformin and ceftizoxime in model rats were decreased by 25% and 17% compared to that in control rats, respectively. The uptake amount and urinary excretion of metformin and ceftizoxime could be inhibited by creatinine in renal cortical slices and isolated kidney perfusion. However, the urinary excretion of ofloxacin was not affected by high SCr. These results showed that the inhibition of tubular creatinine transporters by high SCr resulted to the decrease of urinary excretion of metformin and ceftizoxime, but not ofloxacin, which implied that the increase of SCr could also be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine in normal GFR rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Obesity and renal hemodynamics

    NARCIS (Netherlands)

    Bosma, R. J.; Krikken, J. A.; van der Heide, J. J. Homan; de Jong, P. E.; Navis, G. J.

    2006-01-01

    Obesity is a risk factor for renal damage in native kidney disease and in renal transplant recipients. Obesity is associated with several renal risk factors such as hypertension and diabetes that may convey renal risk, but obesity is also associated with an unfavorable renal hemodynamic profile

  7. MAP17 Is a Necessary Activator of Renal Na+/Glucose Cotransporter SGLT2

    Science.gov (United States)

    Coady, Michael J.; El Tarazi, Abdulah; Santer, René; Bissonnette, Pierre; Sasseville, Louis J.; Calado, Joaquim; Lussier, Yoann; Dumayne, Christopher; Bichet, Daniel G.

    2017-01-01

    The renal proximal tubule reabsorbs 90% of the filtered glucose load through the Na+-coupled glucose transporter SGLT2, and specific inhibitors of SGLT2 are now available to patients with diabetes to increase urinary glucose excretion. Using expression cloning, we identified an accessory protein, 17 kDa membrane-associated protein (MAP17), that increased SGLT2 activity in RNA-injected Xenopus oocytes by two orders of magnitude. Significant stimulation of SGLT2 activity also occurred in opossum kidney cells cotransfected with SGLT2 and MAP17. Notably, transfection with MAP17 did not change the quantity of SGLT2 protein at the cell surface in either cell type. To confirm the physiologic relevance of the MAP17–SGLT2 interaction, we studied a cohort of 60 individuals with familial renal glucosuria. One patient without any identifiable mutation in the SGLT2 coding gene (SLC5A2) displayed homozygosity for a splicing mutation (c.176+1G>A) in the MAP17 coding gene (PDZK1IP1). In the proximal tubule and in other tissues, MAP17 is known to interact with PDZK1, a scaffolding protein linked to other transporters, including Na+/H+ exchanger 3, and to signaling pathways, such as the A-kinase anchor protein 2/protein kinase A pathway. Thus, these results provide the basis for a more thorough characterization of SGLT2 which would include the possible effects of its inhibition on colocalized renal transporters. PMID:27288013

  8. Does the presence of accessory renal arteries affect the efficacy of renal denervation?

    Science.gov (United States)

    Id, Dani; Kaltenbach, Benjamin; Bertog, Stefan C; Hornung, Marius; Hofmann, Ilona; Vaskelyte, Laura; Sievert, Horst

    2013-10-01

    This study sought to assess the efficacy of catheter-based renal sympathetic denervation in patients with accessory renal arteries and to compare the blood pressure (BP)-lowering effect with that observed in patients with bilateral single renal arteries after renal denervation. Catheter-based renal sympathetic denervation causes significant BP reductions in patients with resistant hypertension. Seventy-four patients were included in this study. Patients were assigned to 2 main groups: a bilateral single renal arteries group I (n = 54) and an accessory renal arteries group II (n = 20). Group II consisted of 9 patients whose accessory renal arteries were all denervated (group IIa), and 11 patients whose accessory renal arteries were not, or only incompletely, denervated (group IIb). The primary endpoint was the change in office systolic BP after 6 months. The procedure was successful in all patients. Group I: mean BP at baseline was 166.2/89.4 ± 20.5/14.6 mm Hg and decreased by -16.6 (p renal denervation in patients with accessory renal arteries is less pronounced than in patients with bilateral single renal arteries. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Phosphate control in dialysis

    Directory of Open Access Journals (Sweden)

    Cupisti A

    2013-10-01

    Full Text Available Adamasco Cupisti,1 Maurizio Gallieni,2 Maria Antonietta Rizzo,2 Stefania Caria,3 Mario Meola,4 Piergiorgio Bolasco31Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; 2Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, Milan, Italy; 3Territorial Department of Nephrology and Dialysis, ASL Cagliari, Italy; 4Sant'Anna School of Advanced Studies, University of Pisa, Pisa, ItalyAbstract: Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source

  10. Radiopharmaceuticals for renal studies

    International Nuclear Information System (INIS)

    Verdera, Silvia

    1994-01-01

    Between the diagnostic techniques using radiopharmaceuticals in nuclear medicine it find renal studies.A brief description about renal glomerular filtration(GFR) and reliability renal plasma flux (ERPF),renal blood flux measurement agents (RBF),renal scintillation agents and radiation dose estimates by organ physiology was given in this study.tabs

  11. Glomerular Filtration Rate Estimation in Renal and Non-Renal Solid Organ Transplantation

    DEFF Research Database (Denmark)

    Hornum, Mads; Feldt-Rasmussen, Bo

    2017-01-01

    Following transplantation (TX) of both renal and non-renal organs, a large proportion of patients have renal dysfunction. There are multiple causes for this. Chronic nephrotoxicity and high doses of calcineurin inhibitors are important factors. Preoperative and perioperative factors like hyperten......Following transplantation (TX) of both renal and non-renal organs, a large proportion of patients have renal dysfunction. There are multiple causes for this. Chronic nephrotoxicity and high doses of calcineurin inhibitors are important factors. Preoperative and perioperative factors like...... hypertension, hypotension, drugs and infections may play a causative role as well. Organ-specific causes include hepatorenal syndrome, cirrhosis, low cardiac function, low respiratory function and diabetes developed both before and after TX. It is important to be able to perform precise and valid measurements...... rate methods for use in renal and non-renal TX....

  12. Treatment of non-neoplastic renal hemorrhage with segmental embolization of renal artery

    International Nuclear Information System (INIS)

    Zhu Bing

    2007-01-01

    Objective: To explore the value of segmental embolization of renal artery in dealing with non- neoplastic renal hemorrhage. Methods: Four cases of non-neoplastic hemorrhage, including 2 with bleeding after renal acupuncture biopsy, 2 with bleeding after nephrolithotomy and 1 with congenital renal arteriovenous malformation, were treated with superselective segmental embolization of renal artery. 2 were embolized with coil, 1 with alcohol plus coil and 1 with PVA parcels. Results: Hematuria disappeared in 1-3 days. There was no recurrence in 7-45 months follow up and no complications induced by embolization. Conclusion: It is a safe and reliable therapy to treat non-neoplastic renal hemorrhage with segmental embolization of renal artery. (authors)

  13. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    OpenAIRE

    Lílian Estrela Borges Baldotto; Marihus Altoé Baldotto; Fábio Lopes Olivares; Adriane Nunes de Souza

    2014-01-01

    Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i) to select and characterize diazotrophs abl...

  14. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate

    Science.gov (United States)

    2009-01-01

    Background Secondary metabolism in Serratia sp. ATCC 39006 (Serratia 39006) is controlled via a complex network of regulators, including a LuxIR-type (SmaIR) quorum sensing (QS) system. Here we investigate the molecular mechanism by which phosphate limitation controls biosynthesis of two antibiotic secondary metabolites, prodigiosin and carbapenem, in Serratia 39006. Results We demonstrate that a mutation in the high affinity phosphate transporter pstSCAB-phoU, believed to mimic low phosphate conditions, causes upregulation of secondary metabolism and QS in Serratia 39006, via the PhoBR two-component system. Phosphate limitation also activated secondary metabolism and QS in Serratia 39006. In addition, a pstS mutation resulted in upregulation of rap. Rap, a putative SlyA/MarR-family transcriptional regulator, shares similarity with the global regulator RovA (regulator of virulence) from Yersina spp. and is an activator of secondary metabolism in Serratia 39006. We demonstrate that expression of rap, pigA-O (encoding the prodigiosin biosynthetic operon) and smaI are controlled via PhoBR in Serratia 39006. Conclusion Phosphate limitation regulates secondary metabolism in Serratia 39006 via multiple inter-linked pathways, incorporating transcriptional control mediated by three important global regulators, PhoB, SmaR and Rap. PMID:19476633

  15. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate

    Directory of Open Access Journals (Sweden)

    Everson Lee

    2009-05-01

    Full Text Available Abstract Background Secondary metabolism in Serratia sp. ATCC 39006 (Serratia 39006 is controlled via a complex network of regulators, including a LuxIR-type (SmaIR quorum sensing (QS system. Here we investigate the molecular mechanism by which phosphate limitation controls biosynthesis of two antibiotic secondary metabolites, prodigiosin and carbapenem, in Serratia 39006. Results We demonstrate that a mutation in the high affinity phosphate transporter pstSCAB-phoU, believed to mimic low phosphate conditions, causes upregulation of secondary metabolism and QS in Serratia 39006, via the PhoBR two-component system. Phosphate limitation also activated secondary metabolism and QS in Serratia 39006. In addition, a pstS mutation resulted in upregulation of rap. Rap, a putative SlyA/MarR-family transcriptional regulator, shares similarity with the global regulator RovA (regulator of virulence from Yersina spp. and is an activator of secondary metabolism in Serratia 39006. We demonstrate that expression of rap, pigA-O (encoding the prodigiosin biosynthetic operon and smaI are controlled via PhoBR in Serratia 39006. Conclusion Phosphate limitation regulates secondary metabolism in Serratia 39006 via multiple inter-linked pathways, incorporating transcriptional control mediated by three important global regulators, PhoB, SmaR and Rap.

  16. Uranium-phosphate relationship in phosphated chalks of the Mons and Picardie Bassins

    Energy Technology Data Exchange (ETDEWEB)

    Quinif, Y; Charlet, J M; Dupuis, C; Robaszynski, F [Faculte Polytechnique de Mons (Belgium)

    1981-11-30

    The lithological and geochemical conditions relative to the ''Senonian'' phosphatic chalks are relatively simple in the Basins of Mons (Belgium) and of Picardy (France). Their characteristics permit us to study chiefly the uranium-phosphate relation. It appears a very good linear correlation between the phosphate and the uranium. The coefficient U/P/sub 2/O/sub 5/ remains a constant from the bottom to the top of the same section, but changes in space for synchronic formations (lateral variation of geochemical facies) and in time for two separated basins.

  17. High-energy phosphate transfer in human muscle: diffusion of phosphocreatine

    OpenAIRE

    Gabr, Refaat E.; El-Sharkawy, AbdEl-Monem M.; Schär, Michael; Weiss, Robert G.; Bottomley, Paul A.

    2011-01-01

    The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (DPCr) is thus critical for modeling and understanding energy transport in the myocyte, but DPC...

  18. Bilateral renal artery variation

    OpenAIRE

    Üçerler, Hülya; Üzüm, Yusuf; İkiz, Z. Aslı Aktan

    2014-01-01

    Each kidney is supplied by a single renal artery, although renal artery variations are common. Variations of the renal arteryhave become important with the increasing number of renal transplantations. Numerous studies describe variations in renalartery anatomy. Especially the left renal artery is among the most critical arterial variations, because it is the referred side forresecting the donor kidney. During routine dissection in a formalin fixed male cadaver, we have found a bilateral renal...

  19. Uranium abundance in some sudanese phosphate ores

    International Nuclear Information System (INIS)

    Adam, A.A.; Eltayeb, M.A.H.

    2009-01-01

    This work was carried out mainly to analysis of some Sudanese phosphate ores, for their uranium abundance and total phosphorus content measured as P 2 O 5 %. For this purpose, 30 samples of two types of phosphate ore from Eastern Nuba Mountains, in Sudan namely, Kurun and Uro areas were examined. In addition, the relationship between uranium and major, and trace elements were obtained, also, the natural radioactivity of the phosphate samples was measured, in order to characterize and differentiate between the two types of phosphate ores. The uranium abundance in Uro phosphate with 20.3% P 2 O 5 is five time higher than in Kurun phosphate with 26.7% P 2 O 5 . The average of uranium content was found to be 56.6 and 310 mg/kg for Kurun and Uro phosphate ore, respectively. The main elements in Kurun and Uro phosphate ore are silicon, aluminum, and phosphorus, while the most abundant trace elements in these two ores are titanium, strontium and barium. Pearson correlation coefficient revealed that uranium in Kurun phosphate shows strong positive correlation with P 2 O 5 , and its distribution is essentially controlled by the variations of P2O5 concentration, whereas uranium in Uro phosphate shows strong positive correlation with strontium, and its distribution is controlled by the variations of Sr concentration. Uranium behaves in different ways in Kurun phosphate and in Uro phosphate. Uro phosphate shows higher concentrations of all the estimated radionuclides than Kurun phosphate. According to the obtained results, it can be concluded that Uro phosphate is consider as secondary uranium source, and is more suitable for uranium recovery, because it has high uranium abundance and low P 2 O 5 %, than Kurun phosphate. (authors) [es

  20. Uranium from phosphate ores

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant

  1. [Aortic dissection spread to the renal arteries: role of renal volumetry after angioplasty].

    Science.gov (United States)

    Vautrin, E; Thony, F; Chavanon, O; Hannachi, I; Barone-Rochette, G; Pierre, H; Baguet, J-P

    2012-06-01

    Type A or B aortic dissection can extend to renal arteries, causing a renal ischemia which treatment is usually endovascular. The aim of our study is to show the interest of the renal volumetry in the follow-up of these patients. Twenty-two patients (16 men, mean age 63.4±11.8years, BMI 25.2±3.4kg/m(2)) with a type A or B aortic dissection spread to one or to both renal arteries and followed at Grenoble university hospital were consecutively included. All patients underwent renal angiography with aorto-renal pressure gradients measurements and follow-up by renal volumetry (scanner Siemens(®)). A renal ischemia was defined by a decrease of 20% or more of the volumetry. Sixteen patients (73%) were hypertensive before the aortic dissection among which ten (62%) were treated. Eight patients (36%) have a significant renal pressure gradient among which five (62%) underwent renal endovascular therapy. The renal volumetry of these five patients remained unchanged while six of 17 patients (36%) without angioplasty have a decreasing volumetry. Renal volumetry appeared an effective and attractive option for the follow-up of the patients with aortic dissection spread to the renal arteries. These results should be taken into account to put the indication of an endovascular treatment. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. BILATERAL DUPLICATION OF RENAL ARTERIES

    OpenAIRE

    Prajkta A Thete; Mehera Bhoir; M.V.Ambiye

    2014-01-01

    Routine dissection of a male cadaver revealed the presence of bilateral double renal arteries. On the right side the accessory renal artery originated from the abdominal aorta just above the main renal artery. On the left side the accessory renal artery originated from the abdominal aorta about 1 cm above the main renal artery. Knowledge of the variations of renal vascular anatomy has importance in exploration and treatment of renal trauma, renal transplantation, renal artery embolization, su...

  3. Proximal Tubular Secretion of Creatinine by Organic Cation Transporter OCT2 in Cancer Patients

    Science.gov (United States)

    Ciarimboli, Giuliano; Lancaster, Cynthia S.; Schlatter, Eberhard; Franke, Ryan M.; Sprowl, Jason A.; Pavenstädt, Hermann; Massmann, Vivian; Guckel, Denise; Mathijssen, Ron H. J.; Yang, Wenjian; Pui, Ching-Hon; Relling, Mary V.; Herrmann, Edwin; Sparreboom, Alex

    2012-01-01

    Purpose Knowledge of transporters responsible for the renal secretion of creatinine is key to a proper interpretation of serum creatinine and/or creatinine clearance as markers of renal function in cancer patients receiving chemotherapeutic agents. Experimental Design Creatinine transport was studied in transfected HEK293 cells in vitro and in wildtype mice and age-matched organic cation transporter 1 and 2-deficient [Oct1/2(−/−)] mice ex vivo and in vivo. Clinical pharmacogenetic and transport inhibition studies were done in two separate cohorts of cancer patients. Results Compared to wildtype mice, creatinine clearance was significantly impaired in Oct1/2(−/−) mice. Furthermore, creatinine inhibited organic cation transport in freshly-isolated proximal tubules from wild-type mice and humans, but not in those from Oct1/2(−/−) mice. In a genetic-association analysis (n=590), several polymorphisms around the OCT2/SLC22A2 gene locus, including rs2504954 (P=0.000873), were significantly associated with age-adjusted creatinine levels. Furthermore, in cancer patients (n=68), the OCT2 substrate cisplatin caused an acute elevation of serum creatinine (P=0.0083), consistent with inhibition of an elimination pathway. Conclusions Collectively, this study shows that OCT2 plays a decisive role in the renal secretion of creatinine. This process can be inhibited by OCT2 substrates, which impair the usefulness of creatinine as a marker of renal function. PMID:22223530

  4. Computed tomography of renal cell carcinoma in patients with terminal renal impairment

    International Nuclear Information System (INIS)

    Ferda, Jiri; Hora, Milan; Hes, Ondrej; Reischig, Tomas; Kreuzberg, Boris; Mirka, Hynek; Ferdova, Eva; Ohlidalova, Kristyna; Baxa, Jan; Urge, Tomas

    2007-01-01

    Purpose: An increased incidence of renal tumors has been observed in patients with end-stage-renal-disease (ESRD). The very strong association with acquired renal cystic disease (ACRD) and increased incidence of the renal tumors (conventional renal cell carcinoma (CRCC), papillary renal cell carcinoma (PRCC) or papillary renal cell adenoma (PRCA)) was reported. This study discusses the role of computed tomography (CT) in detecting renal tumors in patients with renal impairment: pre-dialysis, those receiving dialysis or with renal allograft transplants. Materials and methods: Ten patients (nine male, one female) with renal cell tumors were enrolled into a retrospective study; two were new dialysis patients, three on long-term dialysis, and five were renal transplant recipients with history of dialysis. All patients underwent helical CT, a total of 11 procedures were performed. Sixteen-row detector system was used five times, and a 64-row detector system for the six examinations. All patients underwent nephrectomy of kidney with suspected tumor, 15 nephrectomies were performed, and 1 kidney was assessed during autopsy. CT findings were compared with macroscopic and microscopic assessments of the kidney specimen in 16 cases. Results: Very advanced renal parenchyma atrophy with small cysts corresponding to ESRD was found in nine patients, chronic pyelonephritis in remained one. A spontaneously ruptured tumor was detected incidentally in one case, patient died 2 years later. In the present study, 6.25% (1/16) were multiple PRCA, 12.5% (2/16) were solitary PRCC, 12.5% tumors (2/16) were solitary conventional renal cell carcinomas (CRCC's), 12.5% tumors (2/16) were multiple conventional renal cell carcinomas (CRCC's), 25% (4/16) were CRCC's combined with multiple papillary renal cell carcinomas with adenomas (PRCC's and PRCA's), and 25% (4/16) of the tumors were multiple PRCC's combined with PRCA's without coexisting CRCC's. Bilateral renal tumors were found in our study

  5. Traumatic renal infarction

    International Nuclear Information System (INIS)

    Yashiro, Naobumi; Ohtomo, Kuni; Kokubo, Takashi; Itai, Yuji; Iio, Masahiro

    1986-01-01

    Four cases of traumatic renal artery occlusion were described and illustrated. In two cases, direct blows to the abdomen compressed the renal artery against the vertebral column. Clinically, they were severely injured with macroscopic hematuria. Aortograms showed abrupt truncation of renal arteries. In the other two, rapid deceleration caused sudden displacement of the kidney producing an intimal tear with resultant thrombosis. Although they showed little injury without macrohematuria, aortograms revealed tapered occlusion of renal arteries. One of them developed hypertension. ''Rim sign'' of post-contrast CT and hypertension resulted from traumatic renal artery occlusion were reviewed. (author)

  6. High levels of the type III inorganic phosphate transporter PiT1 (SLC20A1) can confer faster cell adhesion

    DEFF Research Database (Denmark)

    Kongsfelt, Iben Boutrup; Byskov, Kristina; Pedersen, Lasse Ebdrup

    2014-01-01

    overexpression led to faster cell spreading. The final total numbers of attached cells did, however, not differ between cultures of PiT1 overexpressing cells and control cells of neither cell type. We suggest that the PiT1-mediated fast adhesion potentials allow the cells to go faster out of G0/G1 and thereby......The inorganic phosphate transporter PiT1 (SLC20A1) is ubiquitously expressed in mammalian cells. We recently showed that overexpression of human PiT1 was sufficient to increase proliferation of two strict density-inhibited cell lines, murine fibroblastic NIH3T3 and pre-osteoblastic MC3T3-E1 cells......, and allowed the cultures to grow to higher cell densities. In addition, upon transformation NIH3T3 cells showed increased ability to form colonies in soft agar. The cellular regulation of PiT1 expression supports that cells utilize the PiT1 levels to control proliferation, with non-proliferating cells showing...

  7. Electrochemical Reduction of Zinc Phosphate

    International Nuclear Information System (INIS)

    Kim, Chang Hwan; Lee, Jung Hyun; Shin, Woon Sup

    2010-01-01

    We demonstrated first that the electrochemical reduction of zinc phosphate in neutral phosphate buffer is possible and potentially applicable to bio-compatible rechargeable battery. The actual redox component is Zn(s)/Zn phosphate(s) and the future research about the control of crystal formation for the better cyclability is required. In lead-acid battery, the electrochemical redox reaction of Pb (s) /PbSO 4(s) is used by reducing Pb(II) and oxidizing Pb(0) in sulfate rich solution. Since both reduced form and oxidized form are insoluble, they cannot diffuse to the opposite electrodes and react. It is a very common strategy to make a stable battery electrode that a metal element is reduced and oxidized in solution containing an abundance of anion readily precipitating with the metal ion. For the application of this strategy to construction of rechargeable battery using bio-compatible electrode materials and electrolytes, the use of phosphate ion can be considered as anion readily precipitating with metal ions. If phosphate buffer with neutral pH is used as electrolyte, the better bio-compatibility will be achieved than most of rechargeable battery using strong acid, strong base or organic solvent as electrolyte solution. There are many metal ions readily precipitating with phos-phate ion, and zinc is one of them

  8. Imaging chronic renal disease and renal transplant in children

    International Nuclear Information System (INIS)

    Carmichael, Jim; Easty, Marina

    2010-01-01

    At Great Ormond Street Hospital we have the highest number of paediatric renal transplant patients in Europe, taking cases from across the United Kingdom and abroad. Our caseload includes many children with rare complicating medical problems and chronic renal failure related morbidity. This review aims to provide an overview of our experience of imaging children with chronic renal failure and transplants. (orig.)

  9. Radionuclide evaluation of renal transplants

    International Nuclear Information System (INIS)

    Yang Hong; Zhao Deshan

    2000-01-01

    Radionuclide renal imaging and plasma clearance methods can quickly quantitate renal blood flow and function in renal transplants. They can diagnose acute tubular necrosis and rejection, renal scar, surgical complications such as urine leaks, obstruction and renal artery stenosis after renal transplants. At the same time they can assess the therapy effect of renal transplant complications and can also predict renal transplant survival from early post-operative function studies

  10. Radiological impact of natural radioactivity in Egyptian phosphate rocks, phosphogypsum and phosphate fertilizers

    International Nuclear Information System (INIS)

    El-Bahi, S.M.; Sroor, A.; Mohamed, Gehan Y.; El-Gendy, N.S.

    2017-01-01

    In this study, the activity concentrations of the natural radionuclides in phosphate rocks and its products were measured using a high- purity germanium detector (HPGe). The obtained activity results show remarkable wide variation in the radioactive contents for the different phosphate samples. The average activity concentration of "2"3"5U, "2"3"8U, "2"2"6Ra, "2"3"2Th and "4"0K was found as (45, 1031, 786, 85 and 765 Bq/kg) for phosphate rocks, (28, 1234, 457, 123 and 819 Bq/kg) for phosphate fertilizers, (47, 663, 550, 79 and 870 Bq/kg) for phosphogypsum and (25, 543, 409, 54 and 897 Bq/kg) for single super phosphate respectively. Based on the measured activities, the radiological parameters (activity concentration index, absorbed gamma dose rate in outdoor and indoor and the corresponding annual effective dose rates and total excess lifetime cancer risk) were estimated to assess the radiological hazards. The total excess lifetime cancer risk (ELCR) has been calculated and found to be high in all samples, which related to high radioactivity, representing radiological risk for the health of the population. - Highlights: • Level of radioactivity of phosphate rocks and by-products samples. • The radiological health hazard parameters. • Radiological risk to the health of the population. • The excess lifetime cancer risk factor.

  11. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters.

    Science.gov (United States)

    Sawers, Ruairidh J H; Svane, Simon F; Quan, Clement; Grønlund, Mette; Wozniak, Barbara; Gebreselassie, Mesfin-Nigussie; González-Muñoz, Eliécer; Chávez Montes, Ricardo A; Baxter, Ivan; Goudet, Jerome; Jakobsen, Iver; Paszkowski, Uta

    2017-04-01

    Plant interactions with arbuscular mycorrhizal fungi have long attracted interest for their potential to promote more efficient use of mineral resources in agriculture. Their use, however, remains limited by a lack of understanding of the processes that determine the outcome of the symbiosis. In this study, the impact of host genotype on growth response to mycorrhizal inoculation was investigated in a panel of diverse maize lines. A panel of 30 maize lines was evaluated with and without inoculation with arbuscular mycorrhizal fungi. The line Oh43 was identified to show superior response and, along with five other reference lines, was characterized in greater detail in a split-compartment system, using 33 P to quantify mycorrhizal phosphorus uptake. Changes in relative growth indicated variation in host capacity to profit from the symbiosis. Shoot phosphate content, abundance of root-internal and -external fungal structures, mycorrhizal phosphorus uptake, and accumulation of transcripts encoding plant PHT1 family phosphate transporters varied among lines. Superior response in Oh43 is correlated with extensive development of root-external hyphae, accumulation of specific Pht1 transcripts and high phosphorus uptake by mycorrhizal plants. The data indicate that host genetic factors influence fungal growth strategy with an impact on plant performance. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Mobilization and removing of cadmium from kidney by GMDTC utilizing renal glucose reabsorption pathway

    International Nuclear Information System (INIS)

    Tang, Xiaojiang; Zhu, Jinqiu; Zhong, Zhiyong; Luo, Minhui; Li, Guangxian; Gong, Zhihong; Zhang, Chenzi; Fei, Fan; Ruan, Xiaolin; Zhou, Jinlin; Liu, Gaofeng; Li, Guoding; Olson, James; Ren, Xuefeng

    2016-01-01

    Chronic exposure to cadmium compounds (Cd 2+ ) is one of the major public health problems facing humans in the 21st century. Cd 2+ in the human body accumulates primarily in the kidneys which leads to renal dysfunction and other adverse health effects. Efforts to find a safe and effective drug for removing Cd 2+ from the kidneys have largely failed. We developed and synthesized a new chemical, sodium (S)-2-(dithiocarboxylato((2S,3R,4R,5R)-2,3,4,5,6 pentahydroxyhexyl)amino)-4-(methylthio) butanoate (GMDTC). Here we report that GMDTC has a very low toxicity with an acute lethal dose (LD50) of more than 10,000 mg/kg or 5000 mg/kg body weight, respectively, via oral or intraperitoneal injection in mice and rats. In in vivo settings, up to 94% of Cd 2+ deposited in the kidneys of Cd 2+ -laden rabbits was removed and excreted via urine following a safe dose of GMDTC treatment for four weeks, and renal Cd 2+ level was reduced from 12.9 μg/g to 1.3 μg/g kidney weight. We observed similar results in the mouse and rat studies. Further, we demonstrated both in in vitro and in animal studies that the mechanism of transporting GMDTC and GMDTC-Cd complex into and out of renal tubular cells is likely assisted by two glucose transporters, sodium glucose cotransporter 2 (SGLT2) and glucose transporter 2 (GLUT2). Collectively, our study reports that GMDTC is safe and highly efficient in removing deposited Cd 2+ from kidneys assisted by renal glucose reabsorption system, suggesting that GMDTC may be the long-pursued agent used for preventive and therapeutic purposes for both acute and chronic Cd 2+ exposure.

  13. Mobilization and removing of cadmium from kidney by GMDTC utilizing renal glucose reabsorption pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaojiang, E-mail: river-t@126.com [Guangdong Medical Laboratory Animal Center (China); Zhu, Jinqiu [Department of Epidemiology and Environmental Health, The State University of New York, Buffalo, NY (United States); Zhong, Zhiyong; Luo, Minhui; Li, Guangxian [Guangdong Medical Laboratory Animal Center (China); Gong, Zhihong [Department of Epidemiology and Environmental Health, The State University of New York, Buffalo, NY (United States); Zhang, Chenzi; Fei, Fan [Guangdong Medical Laboratory Animal Center (China); Ruan, Xiaolin [Guangdong Poison Control Center (China); Zhou, Jinlin [Golden Health (Foshan) Technology Co., Ltd (China); Liu, Gaofeng [School of Chemistry and Chemical Engineering, Sun Yat-Sen University (China); Li, Guoding [Guangdong Medical Laboratory Animal Center (China); Olson, James [Department of Epidemiology and Environmental Health, The State University of New York, Buffalo, NY (United States); Department of Pharmacology and Toxicology, The State University of New York, Buffalo, NY (United States); Ren, Xuefeng, E-mail: xuefengr@buffalo.edu [Guangdong Medical Laboratory Animal Center (China); Department of Epidemiology and Environmental Health, The State University of New York, Buffalo, NY (United States); Department of Pharmacology and Toxicology, The State University of New York, Buffalo, NY (United States)

    2016-08-15

    Chronic exposure to cadmium compounds (Cd{sup 2+}) is one of the major public health problems facing humans in the 21st century. Cd{sup 2+} in the human body accumulates primarily in the kidneys which leads to renal dysfunction and other adverse health effects. Efforts to find a safe and effective drug for removing Cd{sup 2+} from the kidneys have largely failed. We developed and synthesized a new chemical, sodium (S)-2-(dithiocarboxylato((2S,3R,4R,5R)-2,3,4,5,6 pentahydroxyhexyl)amino)-4-(methylthio) butanoate (GMDTC). Here we report that GMDTC has a very low toxicity with an acute lethal dose (LD50) of more than 10,000 mg/kg or 5000 mg/kg body weight, respectively, via oral or intraperitoneal injection in mice and rats. In in vivo settings, up to 94% of Cd{sup 2+} deposited in the kidneys of Cd{sup 2+}-laden rabbits was removed and excreted via urine following a safe dose of GMDTC treatment for four weeks, and renal Cd{sup 2+} level was reduced from 12.9 μg/g to 1.3 μg/g kidney weight. We observed similar results in the mouse and rat studies. Further, we demonstrated both in in vitro and in animal studies that the mechanism of transporting GMDTC and GMDTC-Cd complex into and out of renal tubular cells is likely assisted by two glucose transporters, sodium glucose cotransporter 2 (SGLT2) and glucose transporter 2 (GLUT2). Collectively, our study reports that GMDTC is safe and highly efficient in removing deposited Cd{sup 2+} from kidneys assisted by renal glucose reabsorption system, suggesting that GMDTC may be the long-pursued agent used for preventive and therapeutic purposes for both acute and chronic Cd{sup 2+} exposure.

  14. Effect of ionophores on phosphate and arsenate transport in Micrococcus lysodeikticus

    Energy Technology Data Exchange (ETDEWEB)

    Friedberg, I

    1977-09-01

    The effects of ionophores on P/sub i/ and arsenate transport, at acid and alkaline environment, were investigated in whole cells of Micrococcus lysodeikticus, a Gram positive obligatory aerobic bacterium. The results suggest that both ..delta.. Psi and ..delta.. pH contribute to the driving force of P/sub i/ transport; ..delta.. Psi seems to be predominant at pH 7.8, whereas at pH 5.5, the transport is primarily driven by ..delta.. pH. 12 references, 1 figure.

  15. Renal Replacement Therapy Modality in the ICU and Renal Recovery at Hospital Discharge.

    Science.gov (United States)

    Bonnassieux, Martin; Duclos, Antoine; Schneider, Antoine G; Schmidt, Aurélie; Bénard, Stève; Cancalon, Charlotte; Joannes-Boyau, Olivier; Ichai, Carole; Constantin, Jean-Michel; Lefrant, Jean-Yves; Kellum, John A; Rimmelé, Thomas

    2018-02-01

    Acute kidney injury requiring renal replacement therapy is a major concern in ICUs. Initial renal replacement therapy modality, continuous renal replacement therapy or intermittent hemodialysis, may impact renal recovery. The aim of this study was to assess the influence of initial renal replacement therapy modality on renal recovery at hospital discharge. Retrospective cohort study of all ICU stays from January 1, 2010, to December 31, 2013, with a "renal replacement therapy for acute kidney injury" code using the French hospital discharge database. Two hundred ninety-one ICUs in France. A total of 1,031,120 stays: 58,635 with renal replacement therapy for acute kidney injury and 25,750 included in the main analysis. None. PPatients alive at hospital discharge were grouped according to initial modality (continuous renal replacement therapy or intermittent hemodialysis) and included in the main analysis to identify predictors of renal recovery. Renal recovery was defined as greater than 3 days without renal replacement therapy before hospital discharge. The main analysis was a hierarchical logistic regression analysis including patient demographics, comorbidities, and severity variables, as well as center characteristics. Three sensitivity analyses were performed. Overall mortality was 56.1%, and overall renal recovery was 86.2%. Intermittent hemodialysis was associated with a lower likelihood of recovery at hospital discharge; odds ratio, 0.910 (95% CI, 0.834-0.992) p value equals to 0.0327. Results were consistent across all sensitivity analyses with odds/hazards ratios ranging from 0.883 to 0.958. In this large retrospective study, intermittent hemodialysis as an initial modality was associated with lower renal recovery at hospital discharge among patients with acute kidney injury, although the difference seems somewhat clinically limited.

  16. Technical aspects of renal denervation in end-stage renal disease patients with challenging anatomy.

    Science.gov (United States)

    Spinelli, Alessio; Da Ros, Valerio; Morosetti, Daniele; Onofrio, Silvia D; Rovella, Valentina; Di Daniele, Nicola; Simonetti, Giovanni

    2014-01-01

    We describe our preliminary experience with percutaneous renal denervation in end-stage renal disease patients with resistant hypertension and challenging anatomy, in terms of the feasibility, safety, and efficacy of this procedure. Four patients with end-stage renal disease patients with resistant hypertension (mean hemodialysis time, 2.3 years) who had been taking at least four antihypertensive medications underwent percutaneous renal denervation. Renal artery eligibility included the absence of prior renal artery interventions, vessel stenosis renal denervation is a feasible approach for end-stage renal disease patients with resistant hypertension with encouraging short-term preliminary results in terms of procedural efficacy and safety.

  17. Enhancement of 210Po and 210Pb arising from phosphate industry in the Syrian coast

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Mamish, S.; Budeir, Y.

    1999-01-01

    Phosphate industry is considered to be one of the potential sources of natural radionuclide in Syria. Most of the phosphate processed ore is exported in large quantities via one of the Syrian main ports (Tartous) situated on the east part of the Mediterranean Sea (34 deg. 54 N, 35 deg. 52 E). Loading activities into ships have been carried out for more than 20 years. Dust carrying radioactivity is elevated and transported to the surroundings; most of the port area is affected. The impact of these loading activities on the marine environment has been evaluated. 210 Po and other natural radionuclides in seawater, sediment and marine organisms have been determined

  18. Calcium phosphates: what is the evidence?

    Science.gov (United States)

    Larsson, Sune

    2010-03-01

    A number of different calcium phosphate compounds such as calcium phosphate cements and solid beta-tricalcium phosphate products have been introduced during the last decade. The chemical composition mimics the mineral phase of bone and as a result of this likeness, the materials seem to be remodeled as for normal bone through a cell-mediated process that involves osteoclastic activity. This is a major difference when compared with, for instance, calcium sulphate compounds that after implantation dissolve irrespective of the new bone formation rate. Calcium phosphates are highly biocompatible and in addition, they act as synthetic osteoconductive scaffolds after implantation in bone. When placed adjacent to bone, osteoid is formed directly on the surface of the calcium phosphate with no soft tissue interposed. Remodeling is slow and incomplete, but by adding more and larger pores, like in ultraporous beta-tricalcium phosphate, complete or nearly complete resorption can be achieved. The indications explored so far include filling of metaphyseal fracture voids or bone cysts, a volume expander in conjunction with inductive products, and as a carrier for various growth factors and antibiotics. Calcium phosphate compounds such as calcium phosphate cement and beta-tricalcium phosphate will most certainly be part of the future armamentarium when dealing with fracture treatment. It is reasonable to believe that we have so far only seen the beginning when it comes to clinical applications.

  19. Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure

    Science.gov (United States)

    Konkalmatt, Prasad R.; Asico, Laureano D.; Zhang, Yanrong; Yang, Yu; Drachenberg, Cinthia; Zheng, Xiaoxu; Han, Fei; Jose, Pedro A.; Armando, Ines

    2016-01-01

    Dopamine D2 receptor (DRD2) deficiency increases renal inflammation and blood pressure in mice. We show here that long-term renal-selective silencing of Drd2 using siRNA increases renal expression of proinflammatory and profibrotic factors and blood pressure in mice. To determine the effects of renal-selective rescue of Drd2 expression in mice, the renal expression of DRD2 was first silenced using siRNA and 14 days later rescued by retrograde renal infusion of adeno-associated virus (AAV) vector with DRD2. Renal Drd2 siRNA treatment decreased the renal expression of DRD2 protein by 55%, and DRD2 AAV treatment increased the renal expression of DRD2 protein by 7.5- to 10-fold. Renal-selective DRD2 rescue reduced the expression of proinflammatory factors and kidney injury, preserved renal function, and normalized systolic and diastolic blood pressure. These results demonstrate that the deleterious effects of renal-selective Drd2 silencing on renal function and blood pressure were rescued by renal-selective overexpression of DRD2. Moreover, the deleterious effects of 45-minute bilateral ischemia/reperfusion on renal function and blood pressure in mice were ameliorated by a renal-selective increase in DRD2 expression by the retrograde ureteral infusion of DRD2 AAV immediately after the induction of ischemia/reperfusion injury. Thus, 14 days after ischemia/reperfusion injury, the renal expression of profibrotic factors, serum creatinine, and blood pressure were lower in mice infused with DRD2 AAV than in those infused with control AAV. These results indicate an important role of renal DRD2 in limiting renal injury and preserving normal renal function and blood pressure. PMID:27358912

  20. Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors.

    Science.gov (United States)

    Marin-Valencia, Isaac; Cho, Steve K; Rakheja, Dinesh; Hatanpaa, Kimmo J; Kapur, Payal; Mashimo, Tomoyuki; Jindal, Ashish; Vemireddy, Vamsidhara; Good, Levi B; Raisanen, Jack; Sun, Xiankai; Mickey, Bruce; Choi, Changho; Takahashi, Masaya; Togao, Osamu; Pascual, Juan M; Deberardinis, Ralph J; Maher, Elizabeth A; Malloy, Craig R; Bachoo, Robert M

    2012-10-01

    It has been hypothesized that increased flux through the pentose phosphate pathway (PPP) is required to support the metabolic demands of rapid malignant cell growth. Using orthotopic mouse models of human glioblastoma (GBM) and renal cell carcinoma metastatic to brain, we estimated the activity of the PPP relative to glycolysis by infusing [1,2-(13) C(2) ]glucose. The [3-(13) C]lactate/[2,3-(13) C(2) ]lactate ratio was similar for both the GBM and brain metastasis and their respective surrounding brains (GBM, 0.197 ± 0.011 and 0.195 ± 0.033, respectively (p = 1); metastasis: 0.126 and 0.119 ± 0.033, respectively). This suggests that the rate of glycolysis is significantly greater than the PPP flux in these tumors, and that the PPP flux into the lactate pool is similar in both tumors. Remarkably, (13) C-(13) C coupling was observed in molecules derived from Krebs cycle intermediates in both tumor types, denoting glucose oxidation. In the renal cell carcinoma, in contrast with GBM, (13) C multiplets of γ-aminobutyric acid (GABA) differed from its precursor glutamate, suggesting that GABA did not derive from a common glutamate precursor pool. In addition, the orthotopic renal tumor, the patient's primary renal mass and brain metastasis were all strongly immunopositive for the 67-kDa isoform of glutamate decarboxylase, as were 84% of tumors on a renal cell carcinoma tissue microarray of the same histology, suggesting that GABA synthesis is cell autonomous in at least a subset of renal cell carcinomas. Taken together, these data demonstrate that (13) C-labeled glucose can be used in orthotopic mouse models to study tumor metabolism in vivo and to ascertain new metabolic targets for cancer diagnosis and therapy. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Tc-99m-DMSA renal uptake rate and renal volume of elderly persons

    International Nuclear Information System (INIS)

    Ohishi, Yukihiko; Machida, Toyohei; Kido, Akira

    1987-01-01

    Renal function of erderly persons was evaluated by the radionuclide renal function test based on the renal uptake rate and the renal volume determined by Tc-99m-DMSA transectional tomographic images using single photon emission computed tomography (SPECT). Forty-three erderly cases (13 healthy persons and 30 patients with various types of renal disorders) aged between 60 and 87 on an average of 70 were studied and compared with results obtained from 20 healthy adults (18 - 45 years old). Renal volume was calculated from the summation of voxels in the region districted by equi-count threshold level (percentage to maximum count) on each section of the SPECT image. Attenuation correction was made by GE-STAR protocol utilizing Sorrenson's precorrection method. The renal uptake rate was expressed as a percentage of the total radioactivity detected within the renal volume, against an amount of dose injected. In the 26 kidneys of 13 healthy elderly persons, Tc-99m-DMSA renal uptake was 23 ± 5 %, which was significantly lower (p < 0.01) than that of healthy adults being 27 ± 2 %. A correlation coefficient between renal volume and uptake of 79 kidneys of 43 elderly persons was 0.5081 (p < 0.01). Creatinine clearance (Ccr) was better correlated with the total renal uptake (r = 0.6471, p < 0.01) than with the total renal volume (r = 0.3592, p < 0.01). This method is considered to be useful for clinical purpose as a test of renal function for elderly persons since it requires neither blood nor urine samples. (author)

  2. Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Renal cell carcinoma patients respond poorly to conventional chemotherapy, this unresponsiveness may be attributable to multidrug resistance (MDR). The mechanisms of MDR in renal cancer are not fully understood and the specific contribution of ABC transporter proteins which have been implicated in the chemoresistance of various cancers has not been fully defined in this disease. METHODS: In this retrospective study the expression of two of these transporter efflux pumps, namely MDR-1 P-gp (ABCB1) and MRP-1 (ABCC1) were studied by immunohistochemistry in archival material from 95 renal cell carcinoma patients. RESULTS: In the first study investigating MDR-1 P-gp and MRP-1 protein expression patterns in renal cell carcinoma patients, high levels of expression of both efflux pumps are observed with 100% of tumours studied showing MDR-1 P-gp and MRP-1 positivity. CONCLUSION: Although these findings do not prove a causal role, the high frequency of tumours expressing these efflux pumps suggests that they may be important contributors to the chemoresistance of this tumour type.

  3. Blood Pressure Response to Main Renal Artery and Combined Main Renal Artery Plus Branch Renal Denervation in Patients With Resistant Hypertension.

    Science.gov (United States)

    Fengler, Karl; Ewen, Sebastian; Höllriegel, Robert; Rommel, Karl-Philipp; Kulenthiran, Saaraaken; Lauder, Lucas; Cremers, Bodo; Schuler, Gerhard; Linke, Axel; Böhm, Michael; Mahfoud, Felix; Lurz, Philipp

    2017-08-10

    Single-electrode ablation of the main renal artery for renal sympathetic denervation showed mixed blood pressure (BP)-lowering effects. Further improvement of the technique seems crucial to optimize effectiveness of the procedure. Because sympathetic nerve fibers are closer to the lumen in the distal part of the renal artery, treatment of the distal main artery and its branches has been shown to reduce variability in treatment effects in preclinical studies and a recent randomized trial. Whether this optimized technique improves clinical outcomes remains uncertain. We report a 2-center experience of main renal artery and combined main renal artery plus branches renal denervation in patients with resistant hypertension using a multielectrode catheter. Twenty-five patients with therapy-resistant hypertension underwent renal sympathetic denervation with combined main renal artery and renal branch ablation and were compared to matched controls undergoing an ablation of the main renal artery only. BP change was assessed by ambulatory measurement at baseline and after 3 months. At baseline, BP was balanced between the groups. After 3 months, BP changed significantly in the combined ablation group (systolic/diastolic 24-hour mean and daytime mean BP -8.5±9.8/-7.0±10.7 and -9.4±9.8/-7.1±13.5 mm Hg, P renal artery and branches appears to improve BP-lowering efficacy and should be further investigated. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  4. Renal angiographic and computed tomographic evaluation of local extension of renal cell carcinoma

    International Nuclear Information System (INIS)

    Masuda, Fujio; Onishi, Tetsuro; Sasaki, Tadamasa; Arai, Yoshikazu; Shoji, Ryo

    1981-01-01

    In 23 cases of renal cell carcinoma, the degree of local invasion of carcinoma was diagnosed using renal angiography and CT, and compared with the findings obtained by operation or autopsy. Among 5 cases in which the tumor was confined to the renal capsule, accurate diagnosis could be established with renal angiography in 4 cases and with CT in all of 5 cases. Both renal angiography and CT provided correct diagnosis in 7 of 8 cases in which the tumor showed infiltration extending to the perinephric fat. Out of 5 cases with tumor invasion of renal vein or inferior vena cava, diagnosis could be established correctly by renal angiography and CT in 3 cases. Among the remaining 2 cases the diagnosis could be established by renal angiography and CT in one each case. Among 5 cases with metastases to the regional lymph nodes, diagnosis could be established by renal angiography in only 2 cases, while all of 5 cases could be diagnosed by CT. In 3 cases where the tumor invaded an ajacent organ beyond Gerota's fastia, renal angiography could diagnose in none of the 3 cases while with CT all of 3 cases could successfully be diagnosed. The consistency of degree of local invasion as revealed by renal angiography and CT was seen in 15 of 23 cases (65%) for renal agniography and 20 of 23 cases (87%) for CT, indicating superiority of CT in this respect. In particular, CT appears to be more superior to renal angiography for determining whether the tumor confined to Gerota's fastia or it infiltrated over it. Both combined use of renal angiography and CT, the degree of infiltration of tumor could be diagnosed correctly in 22 of 23 cases (96%). (author)

  5. 25-Hydroxycholecalciferol as an antagonist of adverse corticosteroid effects on phosphate and calcium metabolism in man.

    Science.gov (United States)

    Nuti, R; Vattimo, A; Turchetti, V; Righi, G

    1984-10-01

    The present study was performed in 30 patients who needed steroid therapy: courses of triamcinolone or DTM 8-15 given orally lasted 30 days. In 15 of these patients glucoactive corticosteroids were administered in combination with 5 micrograms/day of 25OH-vitamin D3 (25OHD3). 47Calcium oral test and 99mTc-MDP kinetics, as an index of bone turnover, were performed at the beginning of the therapy and after 30 days. At the end of treatment a significant improvement of intestinal radiocalcium transport together with a decrease in bone turnover in the group of patients treated with 25OHD3 was observed. As it concerns plasma calcium level, inorganic phosphate, the urinary excretion of calcium, phosphate and hydroxyproline no significant difference between the two groups examined were noticed. These results indicate that the adverse effects of glucoactive corticosteroids on intestinal calcium transport and bone turnover may be counteracted by the combined administration of physiological doses of 25OHD3.

  6. Akut fosfatnefropati som komplikation til udrensning med oral natriumfosfat

    DEFF Research Database (Denmark)

    Colic, Edin; Marcussen, Niels

    2011-01-01

    Acute phosphate nephropathy (APhN) has recently been identified as a reason for acute and subsequently chronic renal failure, following exposure to the oral sodium phosphate bowel purgatives. Renal biopsies show acute and chronic tubular injury with calcium phosphate deposits. A case of biopsy...

  7. Roles of estrogen and progesterone in modulating renal nerve function in the rat kidney

    International Nuclear Information System (INIS)

    Graceli, J.B.; Cicilini, M.A.; Bissoli, N.S.; Abreu, G.R.; Moysés, M.R.

    2013-01-01

    The maintenance of extracellular Na + and Cl - concentrations in mammals depends, at least in part, on renal function. It has been shown that neural and endocrine mechanisms regulate extracellular fluid volume and transport of electrolytes along nephrons. Studies of sex hormones and renal nerves suggested that sex hormones modulate renal function, although this relationship is not well understood in the kidney. To better understand the role of these hormones on the effects that renal nerves have on Na + and Cl - reabsorption, we studied the effects of renal denervation and oophorectomy in female rats. Oophorectomized (OVX) rats received 17β-estradiol benzoate (OVE, 2.0 mg·kg -1 ·day -1 , sc) and progesterone (OVP, 1.7 mg·kg -1 ·day -1 , sc). We assessed Na + and Cl - fractional excretion (FE Na + and FE Cl - , respectively) and renal and plasma catecholamine release concentrations. FE Na + , FE Cl - , water intake, urinary flow, and renal and plasma catecholamine release levels increased in OVX vs control rats. These effects were reversed by 17β-estradiol benzoate but not by progesterone. Renal denervation did not alter FE Na + , FE Cl - , water intake, or urinary flow values vs controls. However, the renal catecholamine release level was decreased in the OVP (236.6±36.1 ng/g) and denervated rat groups (D: 102.1±15.7; ODE: 108.7±23.2; ODP: 101.1±22.1 ng/g). Furthermore, combining OVX + D (OD: 111.9±25.4) decreased renal catecholamine release levels compared to either treatment alone. OVE normalized and OVP reduced renal catecholamine release levels, and the effects on plasma catecholamine release levels were reversed by ODE and ODP replacement in OD. These data suggest that progesterone may influence catecholamine release levels by renal innervation and that there are complex interactions among renal nerves, estrogen, and progesterone in the modulation of renal function

  8. Secretory NaCl and volume flow in renal tubules.

    Science.gov (United States)

    Beyenbach, K W

    1986-05-01

    This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.

  9. Effects of alpha-2 agonists on renal function in hypertensive humans.

    Science.gov (United States)

    Goldberg, M; Gehr, M

    1985-01-01

    Centrally acting adrenergic agonists, by decreasing peripheral adrenergic activity, are effective antihypertensive agents. The older agents, however, especially methyldopa, have been associated with weight gain, clinical edema, and antihypertensive tolerance when used as monotherapy. While acute studies in humans have demonstrated weight gain and sodium retention with clonidine and guanabenz, chronic administration results in a decrease in weight and plasma volume. The absence of chronic weight gain and of sodium retention could be the result of a counterbalance between hypotension-related antinatriuresis, secondary to a decrease in glomerular filtration rate and renal blood flow, and natriuretic activity, as a result of a decrease in renal sympathetic tone. Whereas natriuresis and water diuresis have been demonstrated in animals with acute clonidine or guanabenz administration, this has not been demonstrated in humans. Recent studies in which saline administration was used to precondition humans to a subsequent natriuretic stimulus (i.e., guanabenz-induced decreased renal adrenergic activity) resulted in stabilization of renal blood flow and natriuresis. Selective reduction renal sympathetic activity affecting salt and water transport may explain why guanabenz and probably also clonidine seem to be devoid of the sodium/fluid-retaining properties that are common with other antihypertensive agents. Because agents of this class have effects other than pure central alpha-2 agonism (such as alpha-1 activity), they might have confounding and counterbalancing side effects leading to sodium and water retention.

  10. Reversal of Proximal Renal Tubular Dysfunction after Nucleotide Analogue Withdrawal in Chronic Hepatitis B

    Directory of Open Access Journals (Sweden)

    Abhasnee Sobhonslidsuk

    2017-01-01

    Full Text Available Aims. Proximal renal tubular dysfunction (PRTD is an infrequent complication after nucleotide analogue therapy. We evaluated the outcomes of PRTD and nephrotoxicity after nucleotide analogue withdrawal in chronic hepatitis B (CHB. Methods. A longitudinal follow-up study was performed in patients with PRTD after nucleotide analogue discontinuation. Serum and urine were collected at baseline and every 3 months for one year. The fractional excretion of phosphate (PO4, uric acid (UA, and potassium and tubular maximal reabsorption rate of PO4 to glomerular filtration rate (TmPO4/GFR were calculated. Renal losses were defined based on the criteria of substance losses. Subclinical PRTD and overt PRTD were diagnosed when 2 and ≥3 criteria were identified. Results. Eight subclinical and eight overt PRTD patients were enrolled. After nucleotide analogue withdrawal, there were overall improvements in GFR, serum PO4, and UA. Renal loss of PO4, UA, protein, and β2-microglobulin reduced over time. At one year, complete reversal of PRTD was seen in 13 patients (81.2%. Improvements in PRTD were seen in all but one patient. Conclusion. One year after nucleotide analogue withdrawal, PRTD was resolved in most patients. Changes in TmPO4/GFR, urinary protein, and β2-microglobulin indicate that urinary biomarkers may represent an early sign of PRTD recovery.

  11. Phosphate analysis of natural sausage casings preserved in brines with phosphate additives as inactivating agent - Method validation.

    Science.gov (United States)

    Wijnker, J J; Tjeerdsma-van Bokhoven, J L M; Veldhuizen, E J A

    2009-01-01

    Certain phosphates have been identified as suitable additives for the improvement of the microbial and mechanical properties of processed natural sausage casings. When mixed with NaCl (sodium chloride) and used under specific treatment and storage conditions, these phosphates are found to prevent the spread of foot-and-mouth disease and classical swine fever via treated casings. The commercially available Quantichrom™ phosphate assay kit has been evaluated as to whether it can serve as a reliable and low-tech method for routine analysis of casings treated with phosphate. The outcome of this study indicates that this particular assay kit has sufficient sensitivity to qualitatively determine the presence of phosphate in treated casings without interference of naturally occurring phosphate in salt used for brines in which casings are preserved.

  12. Characterization of a calcium phosphate cement based on alpha-tricalcium phosphate obtained by wet precipitation process

    International Nuclear Information System (INIS)

    Thurmer, M.B.; Diehl, C.E.; Vieira, R.S.; Coelho, W.T.G.; Santos, L.A.

    2012-01-01

    There are several systems of calcium phosphate cements being studied. Those based on alpha-tricalcium phosphate are of particular interest. After setting they produce calcium deficient hydroxyapatite similar to bone like hydroxyapatite. This work aims to obtain alpha-tricalcium phosphate powders by the wet precipitation process, using calcium nitrate and phosphoric acid as reagents. This powder was characterized by infrared spectroscopy, X-ray diffraction and particle size distribution. In order to prepare the calcium phosphate cement, the powder was mixed with an accelerator in an aqueous solution. The mechanical properties of the cement were assessed and it was evaluated by means of apparent density, X-ray diffraction and scanning electron microscopy. The described method produced crystalline alpha-tricalcium phosphate as the major phase. The calcium phosphate cement showed high values of compression strength (50 MPa). The soaking of the cement in a simulated body fluid (SBF) formed a layer of hydroxyapatite like crystals in the surface of the samples. (author)

  13. Clinical application of calculated split renal volume using computed tomography-based renal volumetry after partial nephrectomy: Correlation with technetium-99m dimercaptosuccinic acid renal scan data.

    Science.gov (United States)

    Lee, Chan Ho; Park, Young Joo; Ku, Ja Yoon; Ha, Hong Koo

    2017-06-01

    To evaluate the clinical application of computed tomography-based measurement of renal cortical volume and split renal volume as a single tool to assess the anatomy and renal function in patients with renal tumors before and after partial nephrectomy, and to compare the findings with technetium-99m dimercaptosuccinic acid renal scan. The data of 51 patients with a unilateral renal tumor managed by partial nephrectomy were retrospectively analyzed. The renal cortical volume of tumor-bearing and contralateral kidneys was measured using ImageJ software. Split estimated glomerular filtration rate and split renal volume calculated using this renal cortical volume were compared with the split renal function measured with technetium-99m dimercaptosuccinic acid renal scan. A strong correlation between split renal function and split renal volume of the tumor-bearing kidney was observed before and after surgery (r = 0.89, P volumetry had a strong correlation with the split renal function measured using technetium-99m dimercaptosuccinic acid renal scan. Computed tomography-based split renal volume measurement before and after partial nephrectomy can be used as a single modality for anatomical and functional assessment of the tumor-bearing kidney. © 2017 The Japanese Urological Association.

  14. Assessment of relative individual renal function based on DMSA uptake corrected for renal size

    International Nuclear Information System (INIS)

    Estorch, M.; Camacho, V.; Tembl, A.; Mena, I.; Hernandez, A.; Flotats, A.; Carrio, I.; Torres, G.; Prat, L.

    2002-01-01

    Decreased relative renal DMSA uptake can be a consequence of abnormal kidney size, associated with normal or impaired renal function. The quantification of relative renal function based on DMSA uptake in both kidneys is an established method for the assessment of individual renal function. Aim: To assess relative renal function by means of quantification of renal DMSA uptake corrected for kidney size. Results were compared with relative renal DMSA uptake without size correction, and were validated against the absolute renal DMSA uptake. Material and Methods: Four-hundred-forty-four consecutive patients (147 adults, mean age 14 years) underwent a DMSA study for several renal diseases. The relative renal function, based on the relative DMSA uptake uncorrected and corrected for renal size, and the absolute renal DMSA uptake were calculated. In order to relate the relative DMSA uptake uncorrected and corrected for renal size with the absolute DMSA uptake, subtraction of uncorrected (SU) and corrected (SC) relative uptake percentages of each pair of kidneys was obtained, and these values were correlated to the matched subtraction percentages of absolute uptake (SA). If the individual relative renal function is normal (45%-55%), the subtraction value is less or equal to 10%. Results: In 227 patients (51%) the relative renal DMSA uptake value was normal either uncorrected or corrected for renal size (A), and in 149 patients (34%) it was abnormal by both quantification methods (B). Seventy-seven patients (15%) had the relative renal DMSA uptake abnormal only by the uncorrected method (C). Subtraction value of absolute DMSA uptake percentages was not significantly different of subtraction value of relative DMSA uptake percentages corrected for renal size when relative uncorrected uptake was abnormal and corrected normal. where * p<0.0001, and p=NS. Conclusion: When uncorrected and corrected relative DMSA uptake are abnormal, the absolute uptake is also impaired, while when

  15. Phosphate solubilization and multiple plant growth promoting ...

    African Journals Online (AJOL)

    Phosphate solubilizing efficiencies of the strains were analyzed using different insoluble phosphorus sources and the results show that most isolates released a substantial amount of soluble phosphate from tricalcium phosphate, rock phosphate and bone meal. Screening for multiple plant growth promoting attributes ...

  16. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3.

    Science.gov (United States)

    Bischoff, Ariane; Bucher, Michael; Gekle, Michael; Sauvant, Christoph

    2014-02-01

    Determination of renal plasma flow (RPF) by para-aminohippurate (PAH) clearance leads to gross underestimation of this respective parameter due to impaired renal extraction of PAH after renal ischemia and reperfusion injury. However, no mechanistic explanation for this phenomenon is available. Based on our own previous studies we hypothesized that this may be due to impairment of expression of the basolateral rate limiting organic anion transporters Oat1 and Oat3. Thus, we investigated this phenomenon in a rat model of renal ischemia and reperfusion by determining PAH clearance, PAH extraction, PAH net secretion, and the expression of rOat1 and rOat3. PAH extraction was seriously impaired after ischemia and reperfusion which led to a threefold underestimation of RPF when PAH extraction ratio was not considered. PAH extraction directly correlated with the expression of basolateral Oat1 and Oat3. Tubular PAH secretion directly correlated with PAH extraction. Consequently, our data offer an explanation for impaired renal PAH extraction by reduced expression of the rate limiting basolateral organic anion transporters Oat1 and Oat3. Moreover, we show that determination of PAH net secretion is suitable to correct PAH clearance for impaired extraction after ischemia and reperfusion in order to get valid results for RPF.

  17. Alteraciones renales en la drepanocitosis Renal disorders in sickle cell disease

    Directory of Open Access Journals (Sweden)

    Aramís Núñez-Quintana

    2011-06-01

    Full Text Available La drepanocitosis está asociada con un amplio espectro de alteraciones renales que tienen su base en la falciformación de los eritrocitos en los vasos de la médula renal, que conduce a fenómenos de isquemia, microinfartos y anomalías de la función tubular. Se producen también alteraciones glomerulares funcionales reversibles de la autorregulación renal (hiperfiltración, que pueden conducir a cambios anatómicos irreversibles con glomeruloesclerosis segmentaria focal. Estas anomalías se expresan tempranamente como microalbuminuria, proteinuria y de forma mas tardía, como síndrome nefrótico e insuficiencia renal crónica. Medidas terapéuticas como el uso de inhibidores de la enzima convertidora de la angiotensina II, de los bloqueadores del receptor de la angiotensina II, asociados o no con la hidroxiurea, pueden prevenir o retardar el daño glomerular. En el presente trabajo se exponen de forma resumida aspectos relacionados con la fisiopatología del daño renal en la drepanocitosis y su tratamiento.Sickle cell disease is associated with a wide range of renal disorders resulting from the falciformation of erythrocytes in vessels of the renal medulla, leading to ischemia, microinfarctions and tubular function abnormalities. Reversible glomerular functional renal self-regulation disorders (hyperfiltration also occur, which may lead to irreversible anatomical changes with focal segmental glomerular sclerosis. These anomalies are expressed at an early stage as microalbuminuria and proteinuria, and at a later stage as nephrotic syndrome and chronic renal failure. Therapeutic measures such as the use of angiotensin-II converting enzyme inhibitors and angiotensin-II receptor blockers, associated or not with hydroxyurea, may either prevent or delay glomerular damage. The paper succinctly presents the physiopathology of renal damage in drepanocytosis and its treatment.

  18. Transport and phosphorylation of disaccharides by the ruminal bacterium Streptococcus bovis

    International Nuclear Information System (INIS)

    Martin, S.A.; Russell, J.B.

    1987-01-01

    Toluene-treated cells of Streptococcus bovis JB1 phosphorylated cellobiose, glucose, maltose, and sucrose by the phosphoenolpyruvate-dependent phosphotransferase system. Glucose phosphorylation was constitutive, while all three disaccharide systems were inducible. Competition experiments, indicated that separate phosphotransferases systems existed for glucose, maltose, and sucrose. [ 14 C]maltose transport was inhibited by excess glucose and to a lesser extent by sucrose. [ 14 C]glucose and [ 14 C]sucrose transports were not inhibited by an excess of maltose. Since [ 14 C]maltose phosphorylation in triethanolamine buffer was increased 160-fold as the concentration of P/sub i/ was increased from 0 to 100 mM, a maltose phosphorylase was present, and this activity was inducible. Maltose was also hydrolyzed by an inducible maltase. Glucose 1-phosphate arising from the maltose phosphorylase was metabolized by a constitutive phosphoglucomutase that was specific for α-glucose 1-phosphate. Only sucrose-grown cells possessed sucrose hydrolase activity, and this activity was much lower than the sucrose phosphotransferase system and sucrose-phosphate hydrolase activities

  19. The involvement of mitochondrial phosphate transporter in accelerating bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa).

    Science.gov (United States)

    Huang, Xin; Zhu, Wei; Dai, Silan; Gai, Shupeng; Zheng, Guosheng; Zheng, Chengchao

    2008-09-01

    A cDNA clone was isolated from tree peony (Paeonia suffruticosa) subtractive cDNA library of burst buds and characterized with regard to its sequence, expression in response to chilling treatment during the release of bud dormancy, and its function in transgenic Arabidopsis thaliana. The clone, designated as PsMPT, contains 1,615 nucleotides with an open reading frame of 1,119 nucleotides, and the deduced amino acid sequence shows high homology with mitochondrial phosphate transporters (MPTs) from various organisms. The mRNA accumulation of PsMPT in tree peony was strongly induced by chilling treatment during the release of bud dormancy. When the treated plants were transferred to normal growth conditions, the level of PsMPT transcripts induced by sufficient chilling could be maintained high, whereas that induced by insufficient chilling decreased sharply. The transgenic Arabidopsis plants that overexpress PsMPT showed rapid growth and earlier flowering than wild-type plants. ATP contents in the transgenic plants were much higher than that in wild-type plants through various developmental stages. Together, these results suggest that the product of PsMPT is a MPT and might play an important role during the release of bud dormancy in tree peony.

  20. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available The mitochondrial phosphate transporter (MPT plays crucial roles in ATP production in plant cells. Three MPT genes have been identified in Arabidopsis thaliana. Here we report that the mRNA accumulations of AtMPTs were up-regulated by high salinity stress in A. thaliana seedlings. And the transgenic lines overexpressing AtMPTs displayed increased sensitivity to salt stress compared with the wild-type plants during seed germination and seedling establishment stages. ATP content and energy charge was higher in overexpressing plants than those in wild-type A. thaliana under salt stress. Accordingly, the salt-sensitive phenotype of overexpressing plants was recovered after the exogenous application of atractyloside due to the change of ATP content. Interestingly, Genevestigator survey and qRT-PCR analysis indicated a large number of genes, including those related to gibberellin synthesis could be regulated by the energy availability change under stress conditions in A. thaliana. Moreover, the exogenous application of uniconazole to overexpressing lines showed that gibberellin homeostasis was disturbed in the overexpressors. Our studies reveal a possible link between the ATP content mediated by AtMPTs and gibberellin metabolism in responses to high salinity stress in A. thaliana.

  1. Autosomal recessive hypophosphataemic rickets with hypercalciuria is not caused by mutations in the type II renal sodium/phosphate cotransporter gene.

    NARCIS (Netherlands)

    Heuvel, L.P.W.J. van den; Koul, K. Op de; Knots, E.; Knoers, N.V.A.M.; Monnens, L.A.H.

    2001-01-01

    BACKGROUND: At present the genetic defect for autosomal recessive and autosomal dominant hypophosphataemic rickets with hypercalciuria (HHRH) is unknown. Type II sodium/phosphate cotransporter (NPT2) gene is a serious candidate for being the causative gene in either or both autosomal recessive and

  2. Phosphate and phosphate fertilizer sector: structure and future prospects. [Uranium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Zenaidi, B

    1981-12-01

    A statement of the past evolution of this sector's structure is given. Various prospective studies which have been made are reviewed and lead to the precision of the phosphate requirement in the year 2000 which is between 200 and 250 Mt. Only a small section p. 696-697 is devoted to recovery of uranium contained in phosphate and prospects in this field are given.

  3. Renal denervation and hypertension - The need to investigate unintended effects and neural control of the human kidney.

    Science.gov (United States)

    Grisk, Olaf

    2017-05-01

    Increased renal sympathetic nerve activity (RSNA) is present in human and experimental forms of arterial hypertension. Experimental denervation studies showed that renal nerves contribute to the development of hypertension. Clinical trials provided equivocal results on the antihypertensive efficacy of renal denervation in patients spurring discussions on technical aspects of renal denervation and further research on the role of renal nerves for the regulation of kidney function as well as the pathophysiology of hypertension. This review summarizes recent findings on adrenoceptor expression and function in the human kidney, adrenoceptor-dependent regulation of sodium chloride transport in the distal nephron, experimental data on chronic RSNA and the development of high arterial pressure and consequences of renal denervation that may limit its antihypertensive efficacy. Future research needs to reduce the gap between our knowledge on neural control of renal function in animals vs. humans to facilitate translation of experimental animal data to humans. More experimental studies on the temporal relationship between RSNA and arterial pressure in the chronic setting are needed to better define the pathogenetic role of heightened RSNA in different forms of arterial hypertension in order to improve the rational basis for renal denervation in antihypertensive therapy. Finally, research on unintended consequences of renal denervation including but not limited to reinnervation and denervation supersensitivity needs to be intensified to further assess the potential of renal denervation to slow the progression of renal disease and hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A Renal Perforating Artery Mistaken for Arterial Bleeding after Percutaneous Renal Biopsy: A Case Report

    International Nuclear Information System (INIS)

    Kim, Ye Lim; Lee, Chang Hee; Kim, Kyeong Ah; Park, Cheol Min

    2009-01-01

    Perirenal hematoma after a renal biopsy is a common complication that usually resolves spontaneously, but this rarely requires transfusions or surgical/radiological intervention. We report here on a case of a renal perforating artery that was mistaken for renal arterial bleeding in a 53-year-old woman who was complicated with perirenal hematoma after undergoing a percutaneous renal biopsy. On the color and pulsed wave Doppler ultrasonography, linear blood flow was seen in the perirenal hematoma, which extended perpendicularly from the renal parenchyma into the perirenal space, and this linear blood flow exhibited an arterial pulse wave. On CT angiography, the renal perforating artery was demonstrated as a curvilinear vessel coursing tangentially to the renal margin and we decided that it was a pseudolesion caused by the renal perforating artery. A renal perforating artery may be mistaken for renal arterial bleeding after a percutaneous renal biopsy. A renal perforating artery and arterial bleeding can be differentiated by the location and shape seen on a color Doppler examination and the pulse waves characteristics

  5. A Renal Perforating Artery Mistaken for Arterial Bleeding after Percutaneous Renal Biopsy: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ye Lim; Lee, Chang Hee; Kim, Kyeong Ah; Park, Cheol Min [Korea University College of Medicine, Seoul (Korea, Republic of)

    2009-12-15

    Perirenal hematoma after a renal biopsy is a common complication that usually resolves spontaneously, but this rarely requires transfusions or surgical/radiological intervention. We report here on a case of a renal perforating artery that was mistaken for renal arterial bleeding in a 53-year-old woman who was complicated with perirenal hematoma after undergoing a percutaneous renal biopsy. On the color and pulsed wave Doppler ultrasonography, linear blood flow was seen in the perirenal hematoma, which extended perpendicularly from the renal parenchyma into the perirenal space, and this linear blood flow exhibited an arterial pulse wave. On CT angiography, the renal perforating artery was demonstrated as a curvilinear vessel coursing tangentially to the renal margin and we decided that it was a pseudolesion caused by the renal perforating artery. A renal perforating artery may be mistaken for renal arterial bleeding after a percutaneous renal biopsy. A renal perforating artery and arterial bleeding can be differentiated by the location and shape seen on a color Doppler examination and the pulse waves characteristics

  6. The renal effects and initial characterization of venom from Philodryas nattereri Steindachner, 1870

    Directory of Open Access Journals (Sweden)

    Marinetes Dantas de Aquino Nery

    2014-01-01

    Full Text Available The venom of the snake Philodryas nattereri is a mixture of proteins and toxic peptides with several important local and systemic actions, which are similar to those occurring in Bothrops snake bites. The mechanisms involved in the local and systemic actions of this venom are unknown. The aims of the work were to initial characterization of P. nattereri venom and investigate the effects of the poison in the renal perfusion system and in cultured renal tubular cells of the type MDCK (Madin–Darby canine kidney. The P. nattereri venom is composed majority of proteins (86.3% and this poison promoted changes in all the evaluated renal parameters, mainly decreasing renal perfusion pressure (PP and renal vascular resistance (RVR and increasing urine flow (UF and glomerular filtration rate (GFR. The most relevant result was that this venom was highly detrimental to the renal tubules independent of the PP reduction, which was shown by a decrease in sodium (Na+, potassium (K+ and chloride (Cl− electrolyte transport in the studied concentrations. The glomeruli and tubules contain protein bodies and blood extravasation, which were observed by histological analysis. The venom of P. nattereri reduced viability of the MDCK cells only at high concentrations (50 and 100 μg/mL with an IC50 of 169.5 μg/mL.

  7. Renal venogram

    Science.gov (United States)

    ... be black. Other structures will be shades of gray. Veins are not normally seen in an x- ... Venogram - kidney; Renal vein thrombosis - venogram Images Kidney anatomy Kidney - blood and urine flow Renal veins References ...

  8. Better prospects for phosphate production

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The extraction of uranium as a by product of phosphate production is discussed. Techniques being commercially developed are described. The trend towards the wet process, in which sulphuric acid is used to dissolve the phosphate, producing phosphoric acid, is also the preferred method for uranium recovery. Recovery from a wet process phosphoric acid stream, integrated with phosphate fertilizer manufacture, is becoming increasingly commercially viable for the production of yellow-cake.

  9. [Anatomy character of renal artery and treatment of living-donor renal transplantation].

    Science.gov (United States)

    Zhang, Lei; Fei, Ji-guang; Chen, Li-zhong; Wang, Chang-xi; Deng, Su-xiong; Qiu, Jiang; Li, Jun; Chen, Guo-dong; Huang, Gang

    2009-12-15

    To study the anatomy characters of renal artery and the treatment of multiple arteries in living donor renal grafts. Records of 142 living donors were analyzed in our center. We analyzed the anatomic structure of renal arteries by DSA and CTA pre-transplantation. Thirty-one kidneys with multiple arteries were transplanted after reconstruction. Then clinical effects were compared between multiple-renal-arteries group (n=31) and single-renal-artery group (n=111). The incidence of multiple renal artery was 30.99%, and there was no difference between both sides (left kidney 22.54%, right kidney 22.13%). If the multiple artery occurred in left or right kidney, the incidence of the multiple artery occurred in the other side was 56.25% and 60.00%, respectively. The diameter of left main renal artery was more magnanimous (P=0.001) and the first branch was more closed to abdominal aorta (P=0.004). Operation time and warm/cool ischemia time were longer in the multiple-renal-arteries group. However, estimated blood loss, delayed graft function, acute rejection and flow rate of arcuate artery were similar in both groups, the same as serum creatinine and serum creatinine clearance rate on day 7, 1 month and 3 month post-operation. It was shown by repeated measures ANOVA that graft with multiple arteries didn't affect the tendency of renal function at early time post-operation. Comprehending the character of renal artery and accurate treatment of multiple artery anastomosis are critical for the effect of the living kidney transplantation.

  10. Na+-Dependent High-Affinity Nitrate, Phosphate and Amino Acids Transport in Leaf Cells of the Seagrass Posidonia oceanica (L. Delile

    Directory of Open Access Journals (Sweden)

    Lourdes Rubio

    2018-05-01

    Full Text Available Posidonia oceanica (L. Delile is a seagrass, the only group of vascular plants to colonize the marine environment. Seawater is an extreme yet stable environment characterized by high salinity, alkaline pH and low availability of essential nutrients, such as nitrate and phosphate. Classical depletion experiments, membrane potential and cytosolic sodium measurements were used to characterize the high-affinity NO3−, Pi and amino acids uptake mechanisms in this species. Net uptake rates of both NO3− and Pi were reduced by more than 70% in the absence of Na+. Micromolar concentrations of NO3− depolarized mesophyll leaf cells plasma membrane. Depolarizations showed saturation kinetics (Km = 8.7 ± 1 μM NO3−, which were not observed in the absence of Na+. NO3− induced depolarizations at increasing Na+ also showed saturation kinetics (Km = 7.2 ± 2 mM Na+. Cytosolic Na+ measured in P. oceanica leaf cells (17 ± 2 mM Na+ increased by 0.4 ± 0.2 mM Na+ upon the addition of 100 μM NO3−. Na+-dependence was also observed for high-affinity l-ala and l-cys uptake and high-affinity Pi transport. All together, these results strongly suggest that NO3−, amino acids and Pi uptake in P. oceanica leaf cells are mediated by high-affinity Na+-dependent transport systems. This mechanism seems to be a key step in the process of adaptation of seagrasses to the marine environment.

  11. The Oxygen Isotopic Composition of Phosphate: A Tracer for Phosphate Sources and Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Mclaughlin, K. [Southern California Coastal Water Research Project, Costa Mesa, University of California, CA (United States); Young, M. B.; Paytan, A.; Kendall, C. [U.S. Geological Survey, University of California, CA (United States)

    2013-05-15

    Phosphorus (P) is a limiting macro-nutrient for primary productivity and anthropogenic P-loading to aquatic ecosystems is one of the leading causes of eutrophication in many ecosystems throughout the world. Because P has only one stable isotope, traditional isotope techniques are not possible for tracing sources and cycling of P in aquatic systems. However, much of the P in nature is bonded to four oxygen (O) atoms as orthophosphate (PO{sub 4}{sup 3-}). The P-O bonds in orthophosphate are strongly resistant to inorganic hydrolysis and do not exchange oxygen with water without biological mediation (enzyme-mediated recycling). Thus, the oxygen isotopic composition of dissolved inorganic phosphate ({delta}{sup 18}O{sub p}) may be used as a tracer for phosphate sources and cycling in aquatic ecosystems. Recently, several studies have been conducted utilizing {delta}{sup 18}O{sub p} as a tracer for phosphate sources and cycling in various aquatic environments. Specifically, work to date indicates that {delta}{sup 18}O{sub p} is useful for determining sources of phosphate to aquatic systems if these sources have unique isotopic signatures and phosphate cycling within the system is limited compared to input fluxes. In addition, because various processes imprint specific fractionation effects, the {delta}{sup 18}O{sub p} tracer can be utilized to determine the degree of phosphorous cycling and processing through the biomass. This chapter reviews several of these studies and discusses the potential to utilize the {delta}{sup 18}O{sub p} of phosphate in rivers and streams. (author)

  12. Preemptive Renal Transplantation-The Best Treatment Option for Terminal Chronic Renal Failure.

    Science.gov (United States)

    Arze Aimaretti, L; Arze, S

    2016-03-01

    Renal transplantation is the best therapeutic option for end-stage chronic renal disease. Assuming that it is more advisable if performed early, we aimed to show the clinical, social, and economic advantages in 70% of our patients who were dialyzed only for a short period. For this purpose, we retrospectively collected data over 28 years in 142 kidney transplants performed in patients with renal transplantation with renal failure, especially in developing countries such as Bolivia, where until last year, full public support for renal replacement therapy was unavailable. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Albumin uptake by renal lymphatics with and without obstruction of the renal vein

    International Nuclear Information System (INIS)

    Threefoot, S.A.; Pearson, J.E. Jr.; Georgiardis, A.

    1989-01-01

    Experiments involving injection of radio-iodinated albumin into the left renal arteries or left ureters of dogs indicate that the renal lymphatics are capable of a major contribution in returning to the circulation albumin (or other large molecules) escaping from renal capillaries. I-131-albumin was injected into the jugular vein of controls or into the left renal artery or in retrograde manner into the left ureter of female dogs. Experimental groups included those with no obstruction, occlusion of left renal veins or left renal lymphatics, or both. Collections were made from the right femoral artery, both renal veins, thoracic duct and both ureters at frequent intervals for 2 to 4 hours. Data analysis included I-131 concentration, specific activity, rate of recovery and selected ratios. After renal arterial injection, the percentage of I131 recovered in thoracic duct lymph of dogs without renal venous obstruction was 5 to 10 times that recovered in those that received injections into the jugular vein. In dogs with renal venous obstruction, recovery from the thoracic duct was 10 to 1,000 times that in control dogs. Most of the differences occurred during the first hour, after which time as recirculation and redistribution occurred the rates of appearance in thoracic duct lymph in each group were similar. The differences in the ratios of concentration in thoracic duct lymph to concentration in femoral arterial blood were also much greater when the renal vein was obstructed than in dogs with no obstruction. The greater return of albumin through the thoracic duct in those with impeded renal venous outflow was probably related to both sequestered concentration and increased intrarenal pressure

  14. Occurrence and functioning of phosphate solubilizing ...

    African Journals Online (AJOL)

    Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree ( Elaeis guineensis ) rhizosphere in Cameroon. ... While the use of soluble mineral phosphate fertilizers is the obvious best means to combat phosphate ... in order to improve agricultural production, using low inputs technology. Isolates ...

  15. Incidental renal neoplasms

    DEFF Research Database (Denmark)

    Rabjerg, Maj; Mikkelsen, Minne Nedergaard; Walter, Steen

    2014-01-01

    On the basis of associations between tumor size, pathological stage, histological subtype and tumor grade in incidentally detected renal cell carcinoma vs symptomatic renal cell carcinoma, we discussed the need for a screening program of renal cell carcinoma in Denmark. We analyzed a consecutive...... series of 204 patients with renal tumors in 2011 and 2012. The tumors were classified according to detection mode: symptomatic and incidental and compared to pathological parameters. Eighty-nine patients (44%) were symptomatic, 113 (55%) were incidental. Information was not available in two patients...

  16. Renal function study assessed by 99mTc-DMSA renal scintigraphy before and after PNL

    International Nuclear Information System (INIS)

    Sakurai, Masaki; Hioki, Takuichi; Okuno, Toshiyuki; Sugimura, Yoshiki; Yamakawa, Kensuke; Yanagawa, Makoto; Tajima, Kazuhiro; Tochigi, Hiromi; Kawamura, Juichi

    1990-01-01

    99m Tc-DMSA renal scintigraphy was carried out in 54 patients with unilateral renal stones before and after PNL. Four to 8 weeks after PNL the DMSA renal uptake significantly decreased to 17.2±6.0% from 18.2±6.7% before PNL. DMSA renal uptake did not change in the contralateral side. Since in some patients changes in the DMSA renal uptake of 5-7% were observed after PNL not only in the PNL side but also in the contralateral side, the renal function was assessed by the formula: DMSA renal uptake in the PNL side/DMSA renal uptake in the contralateral side, and the change of this ratio was evaluated in 44 patients, in whom the renal DMSA uptake in the PNL side was less than two times that in the contralateral side. The DMSA renal uptake ratio decreased to 95.6±8.7% from the base line 4-8 weeks after PNL. This change was statistically significant. Some functional risks such as massive bleeding with PNL, the fever after PNL and the number of nephrostomy tract did not affect the decrease in the renal function. In 29 patients in whom renal function was reevaluated one year after PNL, the DMSA renal uptake ratio significantly decreased to 94.2±9.6% from the base line 4-8 weeks after PNL. But the ratio significantly improved to 99.6±11.6% about one year after PNL. In two patients with a cold area on the renal image, the renal function of the operated side still remained at about 80% levels from the base line even one year after PNL. It is concluded that although renal function slightly decreased 4-8 weeks after PNL, it is expected to improve within one year after PNL. But in the case with a cold area on the renal image, the complete functional recovery would not be expected. 99m Tc-DMSA renal scintigraphy is a useful adjunct to evaluate the renal function before and after PNL. (author)

  17. Renal artery and parenchymal changes after renal denervation: assessment by magnetic resonance angiography

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Margreet F.; Vink, Eva E.; Blankestijn, Peter J. [University Medical Center Utrecht, Department of Nephrology and Hypertension, PO Box 85500, Utrecht (Netherlands); Doormaal, Pieter Jan van; Habets, Jesse; Vonken, Evert-Jan; Leiner, Tim [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Beeftink, Martine M.A.; Verloop, Willemien L.; Voskuil, Michiel [University Medical Center Utrecht, Department of Cardiology, Utrecht (Netherlands); Bots, Michiel L. [University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands); Fadl Elmula, Fadl Elmula M. [Oslo University Hospital, Department of Internal Medicine and Department of Cardiology, Ullevaal, Oslo (Norway); Hammer, Frank [Cliniques Universitaires Saint-Luc, Universite Catholique de Louvain, Department of Radiology, Brussels (Belgium); Hoffmann, Pavel [Oslo University Hospital, Section for Interventional Cardiology, Department of Cardiology, Ullevaal, Oslo (Norway); Jacobs, Lotte; Staessen, Jan A. [University of Leuven, Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, Leuven (Belgium); Mark, Patrick B.; Taylor, Alison H. [University of Glasgow, Institute of Cardiovascular and Medical Sciences, Glasgow, Scotland (United Kingdom); Persu, Alexandre; Renkin, Jean [Universite Catholique de Louvain, Pole of Cardiovascular Research, Institut de Recherche Experimentale et Clinique, Brussels (Belgium); Cliniques Universitaires Saint-Luc, Universite Catholique de Louvain, Cardiology Department, Brussels (Belgium); Roditi, Giles [Glasgow Royal Infirmary, Department of Radiology, Glasgow (United Kingdom); Spiering, Wilko [University Medical Centre Utrecht, Department of Vascular Medicine, Utrecht (Netherlands); Collaboration: on behalf of the European Network COordinating research on Renal Denervation (ENCOReD) Consortium

    2017-09-15

    Relatively little is known about the incidence of long-term renal damage after renal denervation (RDN), a potential new treatment for hypertension. In this study the incidence of renal artery and parenchymal changes, assessed with contrast-enhanced magnetic resonance angiography (MRA) after RDN, is investigated. This study is an initiative of ENCOReD, a collaboration of hypertension expert centres. Patients in whom an MRA was performed before and after RDN were included. Scans were evaluated by two independent, blinded radiologists. Primary outcome was the change in renal artery morphology and parenchyma. MRAs from 96 patients were analysed. Before RDN, 41 renal anomalies were observed, of which 29 mostly mild renal artery stenoses. After a median time of 366 days post RDN, MRA showed a new stenosis (25-49% lumen reduction) in two patients and progression of pre-existing lumen reduction in a single patient. No other renal changes were observed and renal function remained stable. We observed new or progressed renal artery stenosis in three out of 96 patients, after a median time of 12 months post RDN (3.1%). Procedural angiographies showed that ablations were applied near the observed stenosis in only one of the three patients. (orig.)

  18. Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake

    Science.gov (United States)

    Cupisti, Adamasco; D’Alessandro, Claudia; Gesualdo, Loreto; Cosola, Carmela; Gallieni, Maurizio; Egidi, Maria Francesca; Fusaro, Maria

    2017-01-01

    Renal diets for advanced chronic kidney disease (CKD) are structured to achieve a lower protein, phosphate and sodium intake, while supplying adequate energy. The aim of this nutritional intervention is to prevent or correct signs, symptoms and complications of renal insufficiency, delaying the start of dialysis and preserving nutritional status. This paper focuses on three additional aspects of renal diets that can play an important role in the management of CKD patients: the vitamin K1 and fiber content, and the alkalizing potential. We examined the energy and nutrients composition of four types of renal diets according to their protein content: normal diet (ND, 0.8 g protein/kg body weight (bw)), low protein diet (LPD, 0.6 g protein/kg bw), vegan diet (VD, 0.7 g protein/kg bw), very low protein diet (VLPD, 0.3 g protein/kg bw). Fiber content is much higher in the VD and in the VLPD than in the ND or LPD. Vitamin K1 content seems to follow the same trend, but vitamin K2 content, which could not be investigated, might have a different pattern. The net endogenous acid production (NEAP) value decreases from the ND and LPD to the vegetarian diets, namely VD and VLPD; the same finding occurred for the potential renal acid load (PRAL). In conclusion, renal diets may provide additional benefits, and this is the case of vegetarian diets. Namely, VD and VLPD also provide high amounts of fibers and Vitamin K1, with a very low acid load. These features may have favorable effects on Vitamin K1 status, intestinal microbiota and acid-base balance. Hence, we can speculate as to the potential beneficial effects on vascular calcification and bone disease, on protein metabolism, on colonic environment and circulating levels of microbial-derived uremic toxins. In the case of vegetarian diets, attention must be paid to serum potassium levels. PMID:28468236

  19. Phosphate regulates chondrogenesis in a biphasic and maturation-dependent manner.

    Science.gov (United States)

    Wu, Biming; Durisin, Emily K; Decker, Joseph T; Ural, Evran E; Shea, Lonnie D; Coleman, Rhima M

    Inorganic phosphate (Pi) has been recognized as an important signaling molecule that modulates chondrocyte maturation and cartilage mineralization. However, conclusive experimental evidence for its involvement in early chondrogenesis is still lacking. Here, using high-density monolayer (2D) and pellet (3D) culture models of chondrogenic ATDC5 cells, we demonstrate that the cell response to Pi does not correlate with the Pi concentration in the culture medium but is better predicted by the availability of Pi on a per cell basis (Pi abundance). Both culture models were treated with ITS+, 10mM β-glycerophosphate (βGP), or ITS+/10mM βGP, which resulted in three levels of Pi abundance in cultures: basal (Pi/DNA 60ng/µg). In chondrogenic medium alone, the abundance levels were at the basal level in 2D culture and moderate in 3D cultures. The addition of 10mM βGP resulted in moderate abundance in 2D and high abundance in 3D cultures. Moderate Pi abundance enhanced early chondrogenesis and production of aggrecan and type II collagen whereas high Pi abundance inhibited chondrogenic differentiation and induced rapid mineralization. Inhibition of sodium phosphate transporters reduced phosphate-induced expression of chondrogenic markers. When 3D ITS+/βGP cultures were treated with levamisole to reduce ALP activity, Pi abundance was decreased to moderate levels, which resulted in significant upregulation of chondrogenic markers, similar to the response in 2D cultures. Delay of phosphate delivery until after early chondrogenesis occurs (7 days) no longer enhanced chondrogenesis, but instead accelerated hypertrophy and mineralization. Together, our data highlights the dependence of chondroprogenitor cell response to Pi on its availability to individual cells and the chondrogenic maturation stage of these cells and suggest that appropriate temporal delivery of phosphate to ATDC5 cells in 3D cultures represents a rapid model for mechanistic studies into the effects of

  20. Renal Function in Hypothyroidism

    International Nuclear Information System (INIS)

    Khalid, S.; Khalid, M; Elfaki, M.; Hassan, N.; Suliman, S.M.

    2007-01-01

    Background Hypothyroidism induces significant changes in the function of organ systems such as the heart, muscles and brain. Renal function is also influenced by thyroid status. Physiological effects include changes in water and electrolyte metabolism, notably hyponatremia, and reliable alterations of renal hemodynamics, including decrements in renal blood flow, renal plasma flow, glomerular filtration rate (GFR). Objective Renal function is profoundly influenced by thyroid status; the purpose of the present study was to determine the relationship between renal function and thyroid status of patients with hypothyroidism. Design and Patients In 5 patients with primary hypothyroidism and control group renal functions are measured by serum creatinine and glomerular filtration rate (GFR) using modified in diet renal disease (MDRD) formula. Result In hypothyroidism, mean serum creatinine increased and mean estimated GFR decreased, compared to the control group mean serum creatinine decreased and mean estimated GFR Increased. The hypothyroid patients showed elevated serum creatinine levels (> 1.1mg/dl) compared to control group (p value .000). In patients mean estimated GFR decreased, compared to mean estimated GFR increased in the control group (p value= .002).

  1. Successful treatment of acute renal failure secondary to complicated infective endocarditis by peritoneal dialysis: a case report.

    Science.gov (United States)

    Al-Osail, Aisha M; Al-Zahrani, Ibrahim M; Al-Abdulwahab, Abdullah A; Alhajri, Sarah M; Al-Osail, Emad M; Al-Hwiesh, Abdullah K; Al-Muhanna, Fahad A

    2017-09-07

    Infective endocarditis is one of the most common infections among intravenous drug addicts. Its complications can affect many systems, and these can include acute renal failure. There is a scarcity of cases in the literature related to acute renal failure secondary to infective endocarditis treated with peritoneal dialysis. In this paper, the case of a 48-year-old Saudi male is reported, who presented with features suggestive of infective endocarditis and who developed acute kidney injury that was treated successfully with high tidal volume automated peritoneal dialysis. To our knowledge, this is the second report of such an association in the literature. A 48-year-old Saudi gentleman diagnosed to have a glucose-6-phosphate dehydrogenase deficiency and hepatitis C infection for the last 9 years, presented to the emergency department with a history of fever of 2 days' duration. On examination: his temperature = 41 °C, there was clubbing of the fingers bilaterally and a pansystolic murmur in the left parasternal area. The results of the blood cultures and echocardiogram were supportive of the diagnosis of infective endocarditis, and the patient subsequently developed acute kidney injury, and his creatinine reached 5.2 mg/dl, a level for which dialysis is essential for the patient to survive. High tidal volume automated peritoneal dialysis is highly effective as a renal replacement therapy in acute renal failure secondary to infective endocarditis if no contraindication is present.

  2. Renal Sinus Fat Invasion and Tumoral Thrombosis of the Inferior Vena Cava-Renal Vein: Only Confined to Renal Cell Carcinoma

    OpenAIRE

    Turker Acar; Mustafa Harman; Serkan Guneyli; Sait Sen; Nevra Elmas

    2014-01-01

    Epithelioid angiomyolipoma (E-AML), accounting for 8% of renal angiomyolipoma, is usually associated with tuberous sclerosis (TS) and demonstrates aggressive behavior. E-AML is macroscopically seen as a large infiltrative necrotic tumor with occasional extension into renal vein and/or inferior vena cava. However, without history of TS, renal sinus and venous invasion E-AML would be a challenging diagnosis, which may lead radiologists to misinterpret it as a renal cell carcinoma (RCC). In this...

  3. Acute renal failure in children

    International Nuclear Information System (INIS)

    Vergesslich, K.A.; Balzar, E.; Weninger, M.; Ponhold, W.; Sommer, G.; Wittich, G.R.; Vienna Univ.

    1987-01-01

    Acute renal failure (ARF) may be due to obstructive uropathy or renal parenchymal disease. Twenty-five children with acute renal failure secondary to renal parenchymal disease underwent ultrasonographic examination of the kidneys. Changes of renal size and cortical echogenicity were correlated with renal function. All patients presented with bilaterally enlarged kidneys with the exception in renal function resulted in normalization of renal size. With regard to cortical echogenicity two groups were formed. Group A comprised 11 patients whose kidneys had the same echogenicity as the liver, while in group B the kidneys were more echogenic (14 patients). Cortical echogenicity was always increased. Determination of creatinine levels showed a statistically significant difference between group A (3.32 mg% ± 1.40 S.D.) and group B (5.95 mg% ± 1.96 S.D.), p < 0.001. Changes in renal function were paralleled by rapid changes in renal size and cortical echogenicity. (orig.)

  4. on association of trialkyl phosphates

    International Nuclear Information System (INIS)

    Petkovic, D.M.; Maksimovic, Z.B.

    1976-01-01

    The association constants of tri-n-butyl (TBP), tri-n-propyl (TPP) and triethyl phosphate (TEP) with chloroform, carbon tetrachloride and benzene were determined by dielectric constant, proton magnetic resonance and vapor pressure measurements. Correlation of the trialkyl phosphate-chloroform association constants, using the Hammett equation, showed their increase with the number of carbon atoms in the aliphatic radicals. The change of trialkyl phosphate reactivity with temperature was used to determine the thermodynamic quantities. (author)

  5. Bio-treatment of phosphate from synthetic wastewater using ...

    African Journals Online (AJOL)

    In this study, the efficient phosphate utilizing isolates were used to remove phosphate from synthetic phosphate wastewater was tested using batch scale process. Hence the objective of the present study was to examine the efficiency of bacterial species individually for the removal of phosphate from synthetic phosphate ...

  6. Renal tolerance for iopromide (ultravist) in patients with chronic renal failure. Preliminary report

    International Nuclear Information System (INIS)

    Golebiowski, M.; Pruszynski, B.

    1993-01-01

    The authors present the renal tolerance for nonionic low-osmotic contrast agent iopromide (ultravist) on the ground of literature and of angiographic examinations in 10 patients with chronic renal failure. One patient only had significant temporary deterioration of renal function. The presented results showed that analyzed agent is less nephrotoxic than high osmolality contrast agents. The use of iopromide is strongly recommended in patients with chronic renal failure. The risk of depression of renal function after administration of contrast material is minimized. (author)

  7. Effect of Shenkang injection combined with hemodialysis treatment on renal function, renal anemia and cytokine levels in patients with chronic renal failure

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2016-10-01

    Full Text Available Objective: To study the effect of Shenkang injection combined with hemodialysis treatment on renal function, renal anemia and cytokine levels in patients with chronic renal failure. Methods: A total of 68 patients with chronic renal failure who received hemodialysis treatment in our hospital during between October 2013 and February 2016 were selected and randomly divided into two groups, the observation group received Shenkang injection treatment in the process of dialysis, and the control group only received conventional symptomatic and supportive treatment. 8 weeks after treatment, serum was collected to determine the levels of renal function indexes, nutritional status indexes, anemia indexes and cytokines, and urine was collected to determine renal function indexes. Results: β2-MG, UA, Cr, phosphorus, IL-17, IL-23, CTGF, TGF-β1, FGF-2 and FGF-23 levels in serum as well as NGAL, KIM-1 and RBP levels in urine of observation group were significantly lower than those of control group, and TP, Alb, PA, calcium, Hb, EPO, Fe, TRF and FER levels in serum were significantly higher than those of control group. Conclusion: Shenkang injection combined with hemodialysis treatment helps to improve renal function, nutritional status and renal anemia, and reduce the synthesis of inflammation and renal interstitial fibrosis-related cytokines in patients with chronic renal failure.

  8. Anatomic variations of the renal vessels: focus on the precaval right renal artery.

    Science.gov (United States)

    Bouali, Ourdia; Labarre, David; Molinier, François; Lopez, Raphaël; Benouaich, Vincent; Lauwers, Frédéric; Moscovici, Jacques

    2012-07-01

    The aim of this study was to determine the prevalence of precaval right renal artery and to investigate the distribution of renal arteries and veins. We discuss a theory of development of renal vascular variants. We retrospectively reviewed 120 arterial phase contrast material-enhanced spiral computerized tomography scans of the abdomen (1- to 2-mm section thickness) performed during a two-month period. Forty percent of the study group (48 patients) had one artery and one vein on each side, with typical course. There was a 9.17% prevalence of precaval right renal artery: 10 patients had a lower pole accessory artery in precaval position and one patient had the main and the accessory arteries that pass anterior to the inferior vena cava. In these cases, associated variations of renal vessels were higher than in the patients without precaval artery variant. There were multiple arteries in 28.3% of the right kidneys and in 26.7% of the left ones. Variants of the right renal vein consisted in multiple veins in 20% (24 cases). We detected no case of multiple left renal veins, but we described variations of its course (circum- or retroaortic vein) in 9.17% (11 cases). Twenty-six patients (21.7%) had associated variations of the renal pedicle. The current technical support allows for a minimally invasive study of vessels anatomy. In our study the prevalence of a precaval right renal artery appears to be higher than previously reported (9.17%). Knowledge on anatomical variations of right renal artery and associated renal vessels variations has major clinical implications.

  9. Renal shear wave velocity by acoustic radiation force impulse did not reflect advanced renal impairment.

    Science.gov (United States)

    Takata, Tomoaki; Koda, Masahiko; Sugihara, Takaaki; Sugihara, Shinobu; Okamoto, Toshiaki; Miyoshi, Kenichi; Matono, Tomomitsu; Hosho, Keiko; Mae, Yukari; Iyama, Takuji; Fukui, Takeaki; Fukuda, Satoko; Munemura, Chishio; Isomoto, Hajime

    2016-12-01

    Acoustic radiation force impulse is a noninvasive method for evaluating tissue elasticity on ultrasound. Renal shear wave velocity measured by this technique has not been fully investigated in patients with renal disease. The aim of the present study was to compare renal shear wave velocity in end-stage renal disease patients and that in patients without chronic kidney disease and to investigate influencing factors. Renal shear wave velocities were measured in 59 healthy young subjects (control group), 31 subjects without chronic kidney disease (non-CKD group), and 39 end-stage renal disease patients (ESRD group). Each measurement was performed 10 times at both kidneys, and the mean value of eight of 10 measurements, excluding the maximum and minimum values, was compared. Renal shear wave velocity could be measured in all subjects. Renal shear wave velocity in the control group was higher than in the non-CKD group and in the ESRD group, and no difference was found between the non-CKD group and the ESRD group. Age and depth were negatively correlated to the renal shear wave velocity. In multiple regression analysis, age and depth were independent factors for renal shear wave velocity, while renal impairment was not. There was no difference between the non-CKD group and the ESRD group, even when ages were matched and depth was adjusted. Renal shear wave velocity was not associated with advanced renal impairment. However, it reflected alteration of renal aging, and this technique may be useful to detect renal impairment in the earlier stages. © 2015 Asian Pacific Society of Nephrology.

  10. Developmental Programming of Renal Function and Re-Programming Approaches.

    Science.gov (United States)

    Nüsken, Eva; Dötsch, Jörg; Weber, Lutz T; Nüsken, Kai-Dietrich

    2018-01-01

    Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to "re-program" renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin-angiotensin-aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application. Early

  11. Developmental Programming of Renal Function and Re-Programming Approaches

    Science.gov (United States)

    Nüsken, Eva; Dötsch, Jörg; Weber, Lutz T.; Nüsken, Kai-Dietrich

    2018-01-01

    Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to “re-program” renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin–angiotensin–aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application

  12. Renal parenchyma thickness: a rapid estimation of renal function on computed tomography

    International Nuclear Information System (INIS)

    Kaplon, Daniel M.; Lasser, Michael S.; Sigman, Mark; Haleblian, George E.; Pareek, Gyan

    2009-01-01

    Purpose: To define the relationship between renal parenchyma thickness (RPT) on computed tomography and renal function on nuclear renography in chronically obstructed renal units (ORUs) and to define a minimal thickness ratio associated with adequate function. Materials and Methods: Twenty-eight consecutive patients undergoing both nuclear renography and CT during a six-month period between 2004 and 2006 were included. All patients that had a diagnosis of unilateral obstruction were included for analysis. RPT was measured in the following manner: The parenchyma thickness at three discrete levels of each kidney was measured using calipers on a CT workstation. The mean of these three measurements was defined as RPT. The renal parenchyma thickness ratio of the ORUs and non-obstructed renal unit (NORUs) was calculated and this was compared to the observed function on Mag-3 lasix Renogram. Results: A total of 28 patients were evaluated. Mean parenchyma thickness was 1.82 cm and 2.25 cm in the ORUs and NORUs, respectively. The mean relative renal function of ORUs was 39%. Linear regression analysis comparing renogram function to RPT ratio revealed a correlation coefficient of 0.48 (p * RPT ratio. A thickness ratio of 0.68 correlated with 20% renal function. Conclusion: RPT on computed tomography appears to be a powerful predictor of relative renal function in ORUs. Assessment of RPT is a useful and readily available clinical tool for surgical decision making (renal salvage therapy versus nephrectomy) in patients with ORUs. (author)

  13. Renal ornithine decarboxylase activity, polyamines, and compensatory renal hypertrophy in the rat

    International Nuclear Information System (INIS)

    Humphreys, M.H.; Etheredge, S.B.; Lin, Shanyan; Ribstein, J.; Marton, L.J.

    1988-01-01

    The authors determined the role of ornithine decarboxylase (ODC) in compensatory renal hypertrophy (CRH) by relating renal ODC activity and polyamine content to kidney size, expressed as a percent of body weight, 1 wk after unilateral nephrectomy (UN). In normal rats, renal ODC activity increased after UN; 1 wk later the remaining kidney weight had increased. Renal concentration of putrescine, the product of ODC's decarboxylation of ornithine, was increased 3, 8, and 48 h after UN, but concentrations of polyamines synthesized later in the pathway, spermidine and spermine, were not appreciably affected. Pretreatment with difluoromethylornithine (DFMO), an irreversible inhibitor of ODC inhibited both base-line renal ODC activity and putrescine concentration as well as increases stimulated by UN, although concentrations of spermidine and spermine were not decreased. In hypophysectomized rats, both increased renal ODC activity and CRH occurred as well, indicating that these two consequences of UN do not require intact pituitary function. Thus stimulation of renal ODC activity and putrescine content do not appear critical to the process of CRH after UN

  14. Infrared-spectroscopy analysis of zinc phosphate and nickel and manganese modified zinc phosphate coatings on electrogalvanized steel

    International Nuclear Information System (INIS)

    Fernandes, Kirlene Salgado; Alvarenga, Evandro de Azevedo; Lins, Vanessa de Freitas Cunha

    2011-01-01

    Hopeite-type phosphate coatings in which zinc is partially replaced by other metals like manganese and nickel are of great interest for the automotive and home appliance industries. Such industries use phosphate conversion coatings on galvanized steels in association with cataphoretic electro painting. Zinc phosphates modified with manganese and nickel are isomorphic with the hopeite, and the phase identification using X-ray diffraction is difficult. In this paper, the phosphate coatings are identified using the Fourier transform infrared spectroscopy (FTIR). (author)

  15. Phosphate dynamics in an acidic mountain stream: Interactions involving algal uptake, sorption by iron oxide, and photoreduction

    Science.gov (United States)

    Tate, Cathy M.; Broshears, Robert E.; McKnight, Diane M.

    1995-01-01

    Acid mine drainage streams in the Rocky Mountains typically have few algal species and abundant iron oxide deposits which can sorb phosphate. An instream injection of radiolabeled phosphate (32P0,) into St. Kevin Gulch, an acid mine drainage stream, was used to test the ability of a dominant algal species, Ulothrix sp., to rapidly assimilate phosphate. Approximately 90% of the injected phosphate was removed from the water column in the 175-m stream reach. When shaded stream reaches were exposed to full sunlight after the injection ended, photoreductive dissolution of iron oxide released sorbed 32P, which was then also removed downstream. The removal from the stream was modeled as a first-order process by using a reactive solute transport transient storage model. Concentrations of 32P mass-’ of algae were typically lo-fold greater than concentrations in hydrous iron oxides. During the injection, concentrations of 32P increased in the cellular P pool containing soluble, low-molecular-weight compounds and confirmed direct algal uptake of 32P0, from water. Mass balance calculations indicated that algal uptake and sorption on iron oxides were significant in removing phosphate. We conclude that in stream ecosystems, PO, sorbed by iron oxides can act as a dynamic nutrient reservoir regulated by photoreduction.

  16. Growth and characterization of calcium hydrogen phosphate dihydrate crystals from single diffusion gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, K.; Dale Keefe, C. [Department of Chemistry, Cape Breton University, Sydney, Nova Scotia (Canada)

    2010-09-15

    Calcium hydrogen phosphate dihydrate (CaHPO{sub 4}.2H{sub 2}O, CHPD) a dissolved mineral in urine is known to cause renal or bladder stones in both human and animals. Growth of CHPD or brushite using sodium metasilicate gel techniques followed by light and polarizing microscopic studies revealed its structural and morphological details. Crystal identity by powder x-ray diffraction confirmed the FT-IR and FT-Raman spectroscopic techniques as alternate methods for fast analysis of brushite crystals which could form as one type of renal stones. P-O-P asymmetric stretchings in both FT-IR (987.2, 874.1 and 792 cm{sup -1}) and FT-Raman (986.3 cm{sup -1}, 1057.6 cm{sup -1} and 875.2 cm{sup -1}) were found as characteristics of brushite crystals. Differential Scanning Calorimetry (DSC) analysis revealed brushite crystallization purity using gel method by studying their endothermic peaks. This study incorporated a multidisciplinary approach in characterizing CHPD crystals grown in vitro to help formulate prevention or dissolution strategy in controlling urinary stone growth. Initial studies with 0.2 M citric acid ions as controlling agent in the nucleation of brushite crystals further support the presented approach. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  18. Different pathways of [3H]inositol phosphate formation mediated by α 1a- and α 1b-adrenergic receptors

    International Nuclear Information System (INIS)

    Wilson, K.M.; Minneman, K.P.

    1990-01-01

    The types of inositol phosphates (InsPs) formed in response to activation of alpha 1-adrenergic receptor subtypes were determined in collagenase-dispersed renal cells and hepatocytes by high pressure liquid chromatography separation. In hepatocytes, which contain only the alpha 1b subtype, norepinephrine stimulated rapid (10-s) formation of [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4)P3 and slower (5-min) formation of Ins(1,4)P2 and Ins(1)P. Selective inactivation of alpha 1b receptors by chloroethylclonidine almost completely blocked the effects of norepinephrine in hepatocytes. In renal cells, which contain both alpha 1a and alpha 1b receptors in a 60:40 ratio, norepinephrine did not significantly increase the size of any peaks until 5 min after agonist activation. At this time, only a peak eluting with Ins(1)P and one eluting shortly after Ins(1,4)P2 were significantly elevated. Incubation with norepinephrine for 2 h caused small but significant increases in peaks co-eluting with Ins(1)P and Ins(1,4,5)P3 in renal cells; however, only the increase in Ins(1)P was inhibited by chloroethylclonidine pretreatment. Extraction under neutral conditions suggested that cyclic InsPs may be the primary compounds formed in response to norepinephrine in renal cells. Removal of extracellular Ca2+ caused a 60% reduction in the InsP response to norepinephrine in renal cells but had no effect in hepatocytes. These results suggest that activation of alpha 1a and alpha 1b receptor subtypes results in formation of different InsPs and that the response to alpha 1a activation may require influx of extracellular Ca2+

  19. Phosphate acquisition efficiency and phosphate starvation tolerance ...

    Indian Academy of Sciences (India)

    3Department of Genetics and Plant Breeding, College of Agriculture, Lembucherra, Tripura 799 ... vated in soil like red and lateritic or acid, with low soluble phosphate content. ..... activation of genes involved in the adaptation of Arabidopsis to.

  20. Renal pelvis urothelial carcinoma of the upper moiety in complete right renal duplex: a case report.

    Science.gov (United States)

    Zhang, Yiran; Yu, Quanfeng; Zhang, Zhihong; Liu, Ranlu; Xu, Yong

    2015-01-01

    Urothelial carcinoma (UC) originated from renal pelvis is the common tumor of the urinary system, however, neoplasia of the renal pelvis in duplex kidneys is extremely rare, especially in the complete renal and ureteral duplex cases. We present the first case of renal pelvis UC of the upper moiety in a complete right renal duplex. This male patient has bilateral complete renal and ureteral duplex. To the best of our knowledge, this is the first reported case of renal pelvis UC in a complete renal duplex system. After this experience we feel that the diagnosis of renal pelvis UC in duplex kidneys is not so easy, and once the diagnosis is determined, the whole renal duplex units and bladder cuff or ectopic orifice should be excised radically.